xref: /netbsd-src/sys/arch/arm/xscale/ixp425_qmgr.c (revision ac7141ac99edd8cf6757f633baa1e81afde9f721)
1 /*	$NetBSD: ixp425_qmgr.c,v 1.12 2022/09/27 06:12:58 skrll Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  *
18  * NO WARRANTY
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
22  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
23  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
24  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
27  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
29  * THE POSSIBILITY OF SUCH DAMAGES.
30  */
31 
32 /*-
33  * Copyright (c) 2001-2005, Intel Corporation.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the Intel Corporation nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS''
50  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60 */
61 #include <sys/cdefs.h>
62 /*__FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/ixp425_qmgr.c,v 1.1 2006/11/19 23:55:23 sam Exp $");*/
63 __KERNEL_RCSID(0, "$NetBSD: ixp425_qmgr.c,v 1.12 2022/09/27 06:12:58 skrll Exp $");
64 
65 /*
66  * Intel XScale Queue Manager support.
67  *
68  * Each IXP4XXX device has a hardware block that implements a priority
69  * queue manager that is shared between the XScale cpu and the backend
70  * devices (such as the NPE).  Queues are accessed by reading/writing
71  * special memory locations.  The queue contents are mapped into a shared
72  * SRAM region with entries managed in a circular buffer.  The XScale
73  * processor can receive interrupts based on queue contents (a condition
74  * code determines when interrupts should be delivered).
75  *
76  * The code here basically replaces the qmgr class in the Intel Access
77  * Library (IAL).
78  */
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/time.h>
83 #include <sys/kmem.h>
84 #include <sys/resource.h>
85 
86 #include <sys/bus.h>
87 #include <machine/cpu.h>
88 #include <machine/intr.h>
89 
90 #include <arm/xscale/ixp425reg.h>
91 #include <arm/xscale/ixp425var.h>
92 
93 #include <arm/xscale/ixp425_qmgr.h>
94 
95 /*
96  * State per AQM hw queue.
97  * This structure holds q configuration and dispatch state.
98  */
99 struct qmgrInfo {
100 	int		qSizeInWords;		/* queue size in words */
101 
102 	uint32_t	qOflowStatBitMask;	/* overflow status mask */
103 	int		qWriteCount;		/* queue write count */
104 
105 	bus_size_t	qAccRegAddr;		/* access register */
106 	bus_size_t	qUOStatRegAddr;		/* status register */
107 	bus_size_t	qConfigRegAddr;		/* config register */
108 	int		qSizeInEntries;		/* queue size in entries */
109 
110 	uint32_t	qUflowStatBitMask;	/* underflow status mask */
111 	int		qReadCount;		/* queue read count */
112 
113 	/* XXX union */
114 	uint32_t	qStatRegAddr;
115 	uint32_t	qStatBitsOffset;
116 	uint32_t	qStat0BitMask;
117 	uint32_t	qStat1BitMask;
118 
119 	uint32_t	intRegCheckMask;	/* interrupt reg check mask */
120 	void		(*cb)(int, void *);	/* callback function */
121 	void		*cbarg;			/* callback argument */
122 	int 		priority;		/* dispatch priority */
123 #if 0
124 	/* NB: needed only for A0 parts */
125 	u_int		statusWordOffset;	/* status word offset */
126 	uint32_t	statusMask;             /* status mask */
127 	uint32_t	statusCheckValue;	/* status check value */
128 #endif
129 };
130 
131 struct ixpqmgr_softc {
132 #ifdef __FreeBSD__
133 	device_t		sc_dev;
134 	bus_space_tag_t		sc_iot;
135 	bus_space_handle_t	sc_ioh;
136 	struct resource		*sc_irq;	/* IRQ resource */
137 	int			sc_rid;		/* resource id for irq */
138 	void			*sc_ih;		/* interrupt handler */
139 #else
140 	bus_space_tag_t		sc_iot;
141 	bus_space_handle_t	sc_ioh;
142 	void			*sc_ih[2];	/* interrupt handler */
143 #endif
144 
145 	struct qmgrInfo		qinfo[IX_QMGR_MAX_NUM_QUEUES];
146 	/*
147 	 * This array contains a list of queue identifiers ordered by
148 	 * priority. The table is split logically between queue
149 	 * identifiers 0-31 and 32-63.  To optimize lookups bit masks
150 	 * are kept for the first-32 and last-32 q's.  When the
151 	 * table needs to be rebuilt mark rebuildTable and it'll
152 	 * happen after the next interrupt.
153 	 */
154 	int			priorityTable[IX_QMGR_MAX_NUM_QUEUES];
155 	uint32_t		lowPriorityTableFirstHalfMask;
156 	uint32_t		uppPriorityTableFirstHalfMask;
157 	int			rebuildTable;	/* rebuild priorityTable */
158 
159 	uint32_t		aqmFreeSramAddress;	/* SRAM free space */
160 };
161 
162 static int qmgr_debug = 0;
163 #define	DPRINTF(dev, fmt, ...) do {					\
164 	if (qmgr_debug) printf(fmt, __VA_ARGS__);			\
165 } while (0)
166 #define	DPRINTFn(n, dev, fmt, ...) do {					\
167 	if (qmgr_debug >= n) printf(fmt, __VA_ARGS__);			\
168 } while (0)
169 
170 static struct ixpqmgr_softc *ixpqmgr_sc = NULL;
171 
172 static void ixpqmgr_rebuild(struct ixpqmgr_softc *);
173 static int ixpqmgr_intr(void *);
174 
175 static void aqm_int_enable(struct ixpqmgr_softc *sc, int qId);
176 static void aqm_int_disable(struct ixpqmgr_softc *sc, int qId);
177 static void aqm_qcfg(struct ixpqmgr_softc *sc, int qId, u_int ne, u_int nf);
178 static void aqm_srcsel_write(struct ixpqmgr_softc *sc, int qId, int sourceId);
179 static void aqm_reset(struct ixpqmgr_softc *sc);
180 
181 static void
dummyCallback(int qId,void * arg)182 dummyCallback(int qId, void *arg)
183 {
184 	/* XXX complain */
185 }
186 
187 static uint32_t
aqm_reg_read(struct ixpqmgr_softc * sc,bus_size_t off)188 aqm_reg_read(struct ixpqmgr_softc *sc, bus_size_t off)
189 {
190 	DPRINTFn(9, sc->sc_dev, "%s(0x%x)\n", __func__, (int)off);
191 	return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
192 }
193 
194 static void
aqm_reg_write(struct ixpqmgr_softc * sc,bus_size_t off,uint32_t val)195 aqm_reg_write(struct ixpqmgr_softc *sc, bus_size_t off, uint32_t val)
196 {
197 	DPRINTFn(9, sc->sc_dev, "%s(0x%x, 0x%x)\n", __func__, (int)off, val);
198 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
199 }
200 
201 #ifdef __FreeBSD__
202 static int
ixpqmgr_probe(device_t dev)203 ixpqmgr_probe(device_t dev)
204 {
205 	device_set_desc(dev, "IXP425 Q-Manager");
206 	return 0;
207 }
208 #endif
209 
210 #ifdef __FreeBSD__
211 static void
ixpqmgr_attach(device_t dev)212 ixpqmgr_attach(device_t dev)
213 #else
214 void *
215 ixpqmgr_init(bus_space_tag_t iot)
216 #endif
217 {
218 #ifdef __FreeBSD__
219 	struct ixpqmgr_softc *sc = device_get_softc(dev);
220 	struct ixp425_softc *sa = device_get_softc(device_get_parent(dev));
221 #else
222 	struct ixpqmgr_softc *sc;
223 #endif
224 	int i;
225 
226 #ifdef __FreeBSD__
227 	ixpqmgr_sc = sc;
228 
229 	sc->sc_dev = dev;
230 	sc->sc_iot = sa->sc_iot;
231 #else
232 	sc = kmem_zalloc(sizeof(*sc), KM_SLEEP);
233 	sc->sc_iot = iot;
234 #endif
235 
236 	if (bus_space_map(sc->sc_iot, IXP425_QMGR_HWBASE, IXP425_QMGR_SIZE,
237 	    0, &sc->sc_ioh))
238 		panic("%s: Cannot map registers", __func__);
239 
240 #ifdef __FreeBSD__
241 	/* NB: we only use the lower 32 q's */
242 	sc->sc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->sc_rid,
243 	    IXP425_INT_QUE1_32, IXP425_INT_QUE33_64, 2, RF_ACTIVE);
244 	if (!sc->sc_irq)
245 		panic("Unable to allocate the qmgr irqs.\n");
246 	/* XXX could be a source of entropy */
247 	bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
248 		ixpqmgr_intr, NULL, &sc->sc_ih);
249 #else
250 	ixpqmgr_sc = sc;
251 	sc->sc_ih[0] = ixp425_intr_establish(IXP425_INT_QUE1_32, IPL_NET,
252 	    ixpqmgr_intr, sc);
253 	if (sc->sc_ih[0] == NULL) {
254 		ixpqmgr_sc = NULL;
255 		kmem_free(sc, sizeof(*sc));
256 		return (NULL);
257 	}
258 	sc->sc_ih[1] = ixp425_intr_establish(IXP425_INT_QUE33_64, IPL_NET,
259 	    ixpqmgr_intr, sc);
260 	if (sc->sc_ih[1] == NULL) {
261 		ixp425_intr_disestablish(sc->sc_ih[0]);
262 		ixpqmgr_sc = NULL;
263 		kmem_free(sc, sizeof(*sc));
264 		return (NULL);
265 	}
266 #endif
267 
268 	/* NB: softc is pre-zero'd */
269 	for (i = 0; i < IX_QMGR_MAX_NUM_QUEUES; i++) {
270 	    struct qmgrInfo *qi = &sc->qinfo[i];
271 
272 	    qi->cb = dummyCallback;
273 	    qi->priority = IX_QMGR_Q_PRIORITY_0;	/* default priority */
274 	    /*
275 	     * There are two interrupt registers, 32 bits each. One
276 	     * for the lower queues(0-31) and one for the upper
277 	     * queues(32-63). Therefore need to mod by 32 i.e the
278 	     * min upper queue identifier.
279 	     */
280 	    qi->intRegCheckMask = (1<<(i%(IX_QMGR_MIN_QUEUPP_QID)));
281 
282 	    /*
283 	     * Register addresses and bit masks are calculated and
284 	     * stored here to optimize QRead, QWrite and QStatusGet
285 	     * functions.
286 	     */
287 
288 	    /* AQM Queue access reg addresses, per queue */
289 	    qi->qAccRegAddr = IX_QMGR_Q_ACCESS_ADDR_GET(i);
290 	    qi->qAccRegAddr = IX_QMGR_Q_ACCESS_ADDR_GET(i);
291 	    qi->qConfigRegAddr = IX_QMGR_Q_CONFIG_ADDR_GET(i);
292 
293 	    /* AQM Queue lower-group (0-31), only */
294 	    if (i < IX_QMGR_MIN_QUEUPP_QID) {
295 		/* AQM Q underflow/overflow status reg address, per queue */
296 		qi->qUOStatRegAddr = IX_QMGR_QUEUOSTAT0_OFFSET +
297 		    ((i / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD) *
298 		     sizeof(uint32_t));
299 
300 		/* AQM Q underflow status bit masks for status reg per queue */
301 		qi->qUflowStatBitMask =
302 		    (IX_QMGR_UNDERFLOW_BIT_OFFSET + 1) <<
303 		    ((i & (IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD - 1)) *
304 		     (32 / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD));
305 
306 		/* AQM Q overflow status bit masks for status reg, per queue */
307 		qi->qOflowStatBitMask =
308 		    (IX_QMGR_OVERFLOW_BIT_OFFSET + 1) <<
309 		    ((i & (IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD - 1)) *
310 		     (32 / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD));
311 
312 		/* AQM Q lower-group (0-31) status reg addresses, per queue */
313 		qi->qStatRegAddr = IX_QMGR_QUELOWSTAT0_OFFSET +
314 		    ((i / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD) *
315 		     sizeof(uint32_t));
316 
317 		/* AQM Q lower-group (0-31) status register bit offset */
318 		qi->qStatBitsOffset =
319 		    (i & (IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD - 1)) *
320 		    (32 / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD);
321 	    } else { /* AQM Q upper-group (32-63), only */
322 		qi->qUOStatRegAddr = 0;		/* XXX */
323 
324 		/* AQM Q upper-group (32-63) Nearly Empty status reg bitmasks */
325 		qi->qStat0BitMask = (1 << (i - IX_QMGR_MIN_QUEUPP_QID));
326 
327 		/* AQM Q upper-group (32-63) Full status register bitmasks */
328 		qi->qStat1BitMask = (1 << (i - IX_QMGR_MIN_QUEUPP_QID));
329 	    }
330 	}
331 
332 	sc->aqmFreeSramAddress = 0x100;	/* Q buffer space starts at 0x2100 */
333 
334 	ixpqmgr_rebuild(sc);		/* build initial priority table */
335 	aqm_reset(sc);			/* reset h/w */
336 
337 	return (sc);
338 }
339 
340 #ifdef __FreeBSD__
341 static void
ixpqmgr_detach(device_t dev)342 ixpqmgr_detach(device_t dev)
343 {
344 	struct ixpqmgr_softc *sc = device_get_softc(dev);
345 
346 	aqm_reset(sc);		/* disable interrupts */
347 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
348 	bus_release_resource(dev, SYS_RES_IRQ, sc->sc_rid, sc->sc_irq);
349 	bus_space_unmap(sc->sc_iot, sc->sc_ioh, IXP425_QMGR_SIZE);
350 }
351 #endif
352 
353 int
ixpqmgr_qconfig(int qId,int qEntries,int ne,int nf,int srcSel,void (* cb)(int,void *),void * cbarg)354 ixpqmgr_qconfig(int qId, int qEntries, int ne, int nf, int srcSel,
355     void (*cb)(int, void *), void *cbarg)
356 {
357 	struct ixpqmgr_softc *sc = ixpqmgr_sc;
358 	struct qmgrInfo *qi = &sc->qinfo[qId];
359 
360 	DPRINTF(sc->sc_dev, "%s(%u, %u, %u, %u, %u, %p, %p)\n",
361 	    __func__, qId, qEntries, ne, nf, srcSel, cb, cbarg);
362 
363 	/* NB: entry size is always 1 */
364 	qi->qSizeInWords = qEntries;
365 
366 	qi->qReadCount = 0;
367 	qi->qWriteCount = 0;
368 	qi->qSizeInEntries = qEntries;	/* XXX kept for code clarity */
369 
370 	if (cb == NULL) {
371 	    /* Reset to dummy callback */
372 	    qi->cb = dummyCallback;
373 	    qi->cbarg = 0;
374 	} else {
375 	    qi->cb = cb;
376 	    qi->cbarg = cbarg;
377 	}
378 
379 	/* Write the config register; NB must be AFTER qinfo setup */
380 	aqm_qcfg(sc, qId, ne, nf);
381 	/*
382 	 * Account for space just allocated to queue.
383 	 */
384 	sc->aqmFreeSramAddress += (qi->qSizeInWords * sizeof(uint32_t));
385 
386 	/* Set the interrupt source if this queue is in the range 0-31 */
387 	if (qId < IX_QMGR_MIN_QUEUPP_QID)
388 	    aqm_srcsel_write(sc, qId, srcSel);
389 
390 	if (cb != NULL)				/* Enable the interrupt */
391 	    aqm_int_enable(sc, qId);
392 
393 	sc->rebuildTable = true;
394 
395 	return 0;		/* XXX */
396 }
397 
398 int
ixpqmgr_qwrite(int qId,uint32_t entry)399 ixpqmgr_qwrite(int qId, uint32_t entry)
400 {
401 	struct ixpqmgr_softc *sc = ixpqmgr_sc;
402 	struct qmgrInfo *qi = &sc->qinfo[qId];
403 
404 	DPRINTFn(3, sc->sc_dev, "%s(%u, 0x%x) writeCount %u size %u\n",
405 	    __func__, qId, entry, qi->qWriteCount, qi->qSizeInEntries);
406 
407 	/* write the entry */
408 	aqm_reg_write(sc, qi->qAccRegAddr, entry);
409 
410 	/* NB: overflow is available for lower queues only */
411 	if (qId < IX_QMGR_MIN_QUEUPP_QID) {
412 	    int qSize = qi->qSizeInEntries;
413 	    /*
414 	     * Increment the current number of entries in the queue
415 	     * and check for overflow .
416 	     */
417 	    if (qi->qWriteCount++ == qSize) {	/* check for overflow */
418 		uint32_t status = aqm_reg_read(sc, qi->qUOStatRegAddr);
419 		int qPtrs;
420 
421 		/*
422 		 * Read the status twice because the status may
423 		 * not be immediately ready after the write operation
424 		 */
425 		if ((status & qi->qOflowStatBitMask) ||
426 		    ((status = aqm_reg_read(sc, qi->qUOStatRegAddr)) & qi->qOflowStatBitMask)) {
427 		    /*
428 		     * The queue is full, clear the overflow status bit if set.
429 		     */
430 		    aqm_reg_write(sc, qi->qUOStatRegAddr,
431 			status & ~qi->qOflowStatBitMask);
432 		    qi->qWriteCount = qSize;
433 		    DPRINTFn(5, sc->sc_dev,
434 			"%s(%u, 0x%x) Q full, overflow status cleared\n",
435 			__func__, qId, entry);
436 		    return ENOSPC;
437 		}
438 		/*
439 		 * No overflow occurred : someone is draining the queue
440 		 * and the current counter needs to be
441 		 * updated from the current number of entries in the queue
442 		 */
443 
444 		/* calculate number of words in q */
445 		qPtrs = aqm_reg_read(sc, qi->qConfigRegAddr);
446 		DPRINTFn(2, sc->sc_dev,
447 		    "%s(%u, 0x%x) Q full, no overflow status, qConfig 0x%x\n",
448 		    __func__, qId, entry, qPtrs);
449 		qPtrs = (qPtrs - (qPtrs >> 7)) & 0x7f;
450 
451 		if (qPtrs == 0) {
452 		    /*
453 		     * The queue may be full at the time of the
454 		     * snapshot. Next access will check
455 		     * the overflow status again.
456 		     */
457 		    qi->qWriteCount = qSize;
458 		} else {
459 		    /* convert the number of words to a number of entries */
460 		    qi->qWriteCount = qPtrs & (qSize - 1);
461 		}
462 	    }
463 	}
464 	return 0;
465 }
466 
467 int
ixpqmgr_qread(int qId,uint32_t * entry)468 ixpqmgr_qread(int qId, uint32_t *entry)
469 {
470 	struct ixpqmgr_softc *sc = ixpqmgr_sc;
471 	struct qmgrInfo *qi = &sc->qinfo[qId];
472 	bus_size_t off = qi->qAccRegAddr;
473 
474 	*entry = aqm_reg_read(sc, off);
475 
476 	/*
477 	 * Reset the current read count : next access to the read function
478 	 * will force a underflow status check.
479 	 */
480 	qi->qReadCount = 0;
481 
482 	/* Check if underflow occurred on the read */
483 	if (*entry == 0 && qId < IX_QMGR_MIN_QUEUPP_QID) {
484 	    /* get the queue status */
485 	    uint32_t status = aqm_reg_read(sc, qi->qUOStatRegAddr);
486 
487 	    if (status & qi->qUflowStatBitMask) { /* clear underflow status */
488 		aqm_reg_write(sc, qi->qUOStatRegAddr,
489 		    status &~ qi->qUflowStatBitMask);
490 		return ENOSPC;
491 	    }
492 	}
493 	return 0;
494 }
495 
496 int
ixpqmgr_qreadm(int qId,uint32_t n,uint32_t * p)497 ixpqmgr_qreadm(int qId, uint32_t n, uint32_t *p)
498 {
499 	struct ixpqmgr_softc *sc = ixpqmgr_sc;
500 	struct qmgrInfo *qi = &sc->qinfo[qId];
501 	uint32_t entry;
502 	bus_size_t off = qi->qAccRegAddr;
503 
504 	entry = aqm_reg_read(sc, off);
505 	while (--n) {
506 	    if (entry == 0) {
507 		/* if we read a NULL entry, stop. We have underflowed */
508 		break;
509 	    }
510 	    *p++ = entry;	/* store */
511 	    entry = aqm_reg_read(sc, off);
512 	}
513 	*p = entry;
514 
515 	/*
516 	 * Reset the current read count : next access to the read function
517 	 * will force a underflow status check.
518 	 */
519 	qi->qReadCount = 0;
520 
521 	/* Check if underflow occurred on the read */
522 	if (entry == 0 && qId < IX_QMGR_MIN_QUEUPP_QID) {
523 	    /* get the queue status */
524 	    uint32_t status = aqm_reg_read(sc, qi->qUOStatRegAddr);
525 
526 	    if (status & qi->qUflowStatBitMask) { /* clear underflow status */
527 		aqm_reg_write(sc, qi->qUOStatRegAddr,
528 		    status &~ qi->qUflowStatBitMask);
529 		return ENOSPC;
530 	    }
531 	}
532 	return 0;
533 }
534 
535 uint32_t
ixpqmgr_getqstatus(int qId)536 ixpqmgr_getqstatus(int qId)
537 {
538 #define	QLOWSTATMASK \
539     ((1 << (32 / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD)) - 1)
540 	struct ixpqmgr_softc *sc = ixpqmgr_sc;
541 	const struct qmgrInfo *qi = &sc->qinfo[qId];
542 	uint32_t status;
543 
544 	if (qId < IX_QMGR_MIN_QUEUPP_QID) {
545 	    /* read the status of a queue in the range 0-31 */
546 	    status = aqm_reg_read(sc, qi->qStatRegAddr);
547 
548 	    /* mask out the status bits relevant only to this queue */
549 	    status = (status >> qi->qStatBitsOffset) & QLOWSTATMASK;
550 	} else { /* read status of a queue in the range 32-63 */
551 	    status = 0;
552 	    if (aqm_reg_read(sc, IX_QMGR_QUEUPPSTAT0_OFFSET)&qi->qStat0BitMask)
553 		status |= IX_QMGR_Q_STATUS_NE_BIT_MASK;	/* nearly empty */
554 	    if (aqm_reg_read(sc, IX_QMGR_QUEUPPSTAT1_OFFSET)&qi->qStat1BitMask)
555 		status |= IX_QMGR_Q_STATUS_F_BIT_MASK;	/* full */
556 	}
557 	return status;
558 #undef QLOWSTATMASK
559 }
560 
561 uint32_t
ixpqmgr_getqconfig(int qId)562 ixpqmgr_getqconfig(int qId)
563 {
564 	struct ixpqmgr_softc *sc = ixpqmgr_sc;
565 
566 	return aqm_reg_read(sc, IX_QMGR_Q_CONFIG_ADDR_GET(qId));
567 }
568 
569 void
ixpqmgr_dump(void)570 ixpqmgr_dump(void)
571 {
572 	struct ixpqmgr_softc *sc = ixpqmgr_sc;
573 	int i, a;
574 
575 	/* status registers */
576 	printf("0x%04x: %08x %08x %08x %08x\n"
577 		, 0x400
578 		, aqm_reg_read(sc, 0x400)
579 		, aqm_reg_read(sc, 0x400+4)
580 		, aqm_reg_read(sc, 0x400+8)
581 		, aqm_reg_read(sc, 0x400+12)
582 	);
583 	printf("0x%04x: %08x %08x %08x %08x\n"
584 		, 0x410
585 		, aqm_reg_read(sc, 0x410)
586 		, aqm_reg_read(sc, 0x410+4)
587 		, aqm_reg_read(sc, 0x410+8)
588 		, aqm_reg_read(sc, 0x410+12)
589 	);
590 	printf("0x%04x: %08x %08x %08x %08x\n"
591 		, 0x420
592 		, aqm_reg_read(sc, 0x420)
593 		, aqm_reg_read(sc, 0x420+4)
594 		, aqm_reg_read(sc, 0x420+8)
595 		, aqm_reg_read(sc, 0x420+12)
596 	);
597 	printf("0x%04x: %08x %08x %08x %08x\n"
598 		, 0x430
599 		, aqm_reg_read(sc, 0x430)
600 		, aqm_reg_read(sc, 0x430+4)
601 		, aqm_reg_read(sc, 0x430+8)
602 		, aqm_reg_read(sc, 0x430+12)
603 	);
604 	/* q configuration registers */
605 	for (a = 0x2000; a < 0x20ff; a += 32)
606 		printf("0x%04x: %08x %08x %08x %08x %08x %08x %08x %08x\n"
607 			, a
608 			, aqm_reg_read(sc, a)
609 			, aqm_reg_read(sc, a+4)
610 			, aqm_reg_read(sc, a+8)
611 			, aqm_reg_read(sc, a+12)
612 			, aqm_reg_read(sc, a+16)
613 			, aqm_reg_read(sc, a+20)
614 			, aqm_reg_read(sc, a+24)
615 			, aqm_reg_read(sc, a+28)
616 		);
617 	/* allocated SRAM */
618 	for (i = 0x100; i < sc->aqmFreeSramAddress; i += 32) {
619 		a = 0x2000 + i;
620 		printf("0x%04x: %08x %08x %08x %08x %08x %08x %08x %08x\n"
621 			, a
622 			, aqm_reg_read(sc, a)
623 			, aqm_reg_read(sc, a+4)
624 			, aqm_reg_read(sc, a+8)
625 			, aqm_reg_read(sc, a+12)
626 			, aqm_reg_read(sc, a+16)
627 			, aqm_reg_read(sc, a+20)
628 			, aqm_reg_read(sc, a+24)
629 			, aqm_reg_read(sc, a+28)
630 		);
631 	}
632 	for (i = 0; i < 16; i++) {
633 		printf("Q[%2d] config 0x%08x status 0x%02x  "
634 		       "Q[%2d] config 0x%08x status 0x%02x\n"
635 		    , i, ixpqmgr_getqconfig(i), ixpqmgr_getqstatus(i)
636 		    , i+16, ixpqmgr_getqconfig(i+16), ixpqmgr_getqstatus(i+16)
637 		);
638 	}
639 }
640 
641 void
ixpqmgr_notify_enable(int qId,int srcSel)642 ixpqmgr_notify_enable(int qId, int srcSel)
643 {
644 	struct ixpqmgr_softc *sc = ixpqmgr_sc;
645 #if 0
646 	/* Calculate the checkMask and checkValue for this q */
647 	aqm_calc_statuscheck(sc, qId, srcSel);
648 #endif
649 	/* Set the interrupt source if this queue is in the range 0-31 */
650 	if (qId < IX_QMGR_MIN_QUEUPP_QID)
651 	    aqm_srcsel_write(sc, qId, srcSel);
652 
653 	/* Enable the interrupt */
654 	aqm_int_enable(sc, qId);
655 }
656 
657 void
ixpqmgr_notify_disable(int qId)658 ixpqmgr_notify_disable(int qId)
659 {
660 	struct ixpqmgr_softc *sc = ixpqmgr_sc;
661 
662 	aqm_int_disable(sc, qId);
663 }
664 
665 /*
666  * Rebuild the priority table used by the dispatcher.
667  */
668 static void
ixpqmgr_rebuild(struct ixpqmgr_softc * sc)669 ixpqmgr_rebuild(struct ixpqmgr_softc *sc)
670 {
671 	int q, pri;
672 	int lowQuePriorityTableIndex, uppQuePriorityTableIndex;
673 	struct qmgrInfo *qi;
674 
675 	sc->lowPriorityTableFirstHalfMask = 0;
676 	sc->uppPriorityTableFirstHalfMask = 0;
677 
678 	lowQuePriorityTableIndex = 0;
679 	uppQuePriorityTableIndex = 32;
680 	for (pri = 0; pri < IX_QMGR_NUM_PRIORITY_LEVELS; pri++) {
681 	    /* low priority q's */
682 	    for (q = 0; q < IX_QMGR_MIN_QUEUPP_QID; q++) {
683 		qi = &sc->qinfo[q];
684 		if (qi->priority == pri) {
685 		    /*
686 		     * Build the priority table bitmask which match the
687 		     * queues of the first half of the priority table.
688 		     */
689 		    if (lowQuePriorityTableIndex < 16) {
690 			sc->lowPriorityTableFirstHalfMask |=
691 			    qi->intRegCheckMask;
692 		    }
693 		    sc->priorityTable[lowQuePriorityTableIndex++] = q;
694 		}
695 	    }
696 	    /* high priority q's */
697 	    for (; q < IX_QMGR_MAX_NUM_QUEUES; q++) {
698 		qi = &sc->qinfo[q];
699 		if (qi->priority == pri) {
700 		    /*
701 		     * Build the priority table bitmask which match the
702 		     * queues of the first half of the priority table .
703 		     */
704 		    if (uppQuePriorityTableIndex < 48) {
705 			sc->uppPriorityTableFirstHalfMask |=
706 			    qi->intRegCheckMask;
707 		    }
708 		    sc->priorityTable[uppQuePriorityTableIndex++] = q;
709 		}
710 	    }
711 	}
712 	sc->rebuildTable = false;
713 }
714 
715 /*
716  * Count the number of leading zero bits in a word,
717  * and return the same value than the CLZ instruction.
718  * Note this is similar to the standard ffs function but
719  * it counts zero's from the MSB instead of the LSB.
720  *
721  * word (in)    return value (out)
722  * 0x80000000   0
723  * 0x40000000   1
724  * ,,,          ,,,
725  * 0x00000002   30
726  * 0x00000001   31
727  * 0x00000000   32
728  *
729  * The C version of this function is used as a replacement
730  * for system not providing the equivalent of the CLZ
731  * assembly language instruction.
732  *
733  * Note that this version is big-endian
734  */
735 static unsigned int
_lzcount(uint32_t word)736 _lzcount(uint32_t word)
737 {
738 	unsigned int lzcount = 0;
739 
740 	if (word == 0)
741 	    return 32;
742 	while ((word & 0x80000000) == 0) {
743 	    word <<= 1;
744 	    lzcount++;
745 	}
746 	return lzcount;
747 }
748 
749 static int
ixpqmgr_intr(void * arg)750 ixpqmgr_intr(void *arg)
751 {
752 	struct ixpqmgr_softc *sc = ixpqmgr_sc;
753 	uint32_t intRegVal;                /* Interrupt reg val */
754 	struct qmgrInfo *qi;
755 	int priorityTableIndex;		/* Priority table index */
756 	int qIndex;			/* Current queue being processed */
757 
758 	/* Read the interrupt register */
759 	intRegVal = aqm_reg_read(sc, IX_QMGR_QINTREG0_OFFSET);
760 	/* Write back to clear interrupt */
761 	aqm_reg_write(sc, IX_QMGR_QINTREG0_OFFSET, intRegVal);
762 
763 	DPRINTFn(5, sc->sc_dev, "%s: ISR0 0x%x ISR1 0x%x\n",
764 	    __func__, intRegVal, aqm_reg_read(sc, IX_QMGR_QINTREG1_OFFSET));
765 
766 	/* No queue has interrupt register set */
767 	if (intRegVal != 0) {
768 		/* get the first queue Id from the interrupt register value */
769 		qIndex = (32 - 1) - _lzcount(intRegVal);
770 
771 		DPRINTFn(2, sc->sc_dev, "%s: ISR0 0x%x qIndex %u\n",
772 		    __func__, intRegVal, qIndex);
773 
774 		/*
775 		 * Optimize for single callback case.
776 		 */
777 		 qi = &sc->qinfo[qIndex];
778 		 if (intRegVal == qi->intRegCheckMask) {
779 		    /*
780 		     * Only 1 queue event triggered a notification.
781 		     * Call the callback function for this queue
782 		     */
783 		    qi->cb(qIndex, qi->cbarg);
784 		 } else {
785 		     /*
786 		      * The event is triggered by more than 1 queue,
787 		      * the queue search will start from the beginning
788 		      * or the middle of the priority table.
789 		      *
790 		      * The search will end when all the bits of the interrupt
791 		      * register are cleared. There is no need to maintain
792 		      * a separate value and test it at each iteration.
793 		      */
794 		     if (intRegVal & sc->lowPriorityTableFirstHalfMask) {
795 			 priorityTableIndex = 0;
796 		     } else {
797 			 priorityTableIndex = 16;
798 		     }
799 		     /*
800 		      * Iterate over the priority table until all the bits
801 		      * of the interrupt register are cleared.
802 		      */
803 		     do {
804 			 qIndex = sc->priorityTable[priorityTableIndex++];
805 			 if (qIndex >= IX_QMGR_MAX_NUM_QUEUES)
806 			     break;
807 			 qi = &sc->qinfo[qIndex];
808 
809 			 /* If this queue caused this interrupt to be raised */
810 			 if (intRegVal & qi->intRegCheckMask) {
811 			     /* Call the callback function for this queue */
812 			     qi->cb(qIndex, qi->cbarg);
813 			     /* Clear the interrupt register bit */
814 			     intRegVal &= ~qi->intRegCheckMask;
815 			 }
816 		      } while (intRegVal &&
817 		          priorityTableIndex < IX_QMGR_MAX_NUM_QUEUES);
818 		 }
819 	 }
820 
821 	/* Rebuild the priority table if needed */
822 	if (sc->rebuildTable)
823 	    ixpqmgr_rebuild(sc);
824 
825 	return (1);
826 }
827 
828 #if 0
829 /*
830  * Generate the parameters used to check if a Q's status matches
831  * the specified source select.  We calculate which status word
832  * to check (statusWordOffset), the value to check the status
833  * against (statusCheckValue) and the mask (statusMask) to mask
834  * out all but the bits to check in the status word.
835  */
836 static void
837 aqm_calc_statuscheck(int qId, IxQMgrSourceId srcSel)
838 {
839 	struct qmgrInfo *qi = &qinfo[qId];
840 	uint32_t shiftVal;
841 
842 	if (qId < IX_QMGR_MIN_QUEUPP_QID) {
843 	    switch (srcSel) {
844 	    case IX_QMGR_Q_SOURCE_ID_E:
845 		qi->statusCheckValue = IX_QMGR_Q_STATUS_E_BIT_MASK;
846 		qi->statusMask = IX_QMGR_Q_STATUS_E_BIT_MASK;
847 		break;
848 	    case IX_QMGR_Q_SOURCE_ID_NE:
849 		qi->statusCheckValue = IX_QMGR_Q_STATUS_NE_BIT_MASK;
850 		qi->statusMask = IX_QMGR_Q_STATUS_NE_BIT_MASK;
851 		break;
852 	    case IX_QMGR_Q_SOURCE_ID_NF:
853 		qi->statusCheckValue = IX_QMGR_Q_STATUS_NF_BIT_MASK;
854 		qi->statusMask = IX_QMGR_Q_STATUS_NF_BIT_MASK;
855 		break;
856 	    case IX_QMGR_Q_SOURCE_ID_F:
857 		qi->statusCheckValue = IX_QMGR_Q_STATUS_F_BIT_MASK;
858 		qi->statusMask = IX_QMGR_Q_STATUS_F_BIT_MASK;
859 		break;
860 	    case IX_QMGR_Q_SOURCE_ID_NOT_E:
861 		qi->statusCheckValue = 0;
862 		qi->statusMask = IX_QMGR_Q_STATUS_E_BIT_MASK;
863 		break;
864 	    case IX_QMGR_Q_SOURCE_ID_NOT_NE:
865 		qi->statusCheckValue = 0;
866 		qi->statusMask = IX_QMGR_Q_STATUS_NE_BIT_MASK;
867 		break;
868 	    case IX_QMGR_Q_SOURCE_ID_NOT_NF:
869 		qi->statusCheckValue = 0;
870 		qi->statusMask = IX_QMGR_Q_STATUS_NF_BIT_MASK;
871 		break;
872 	    case IX_QMGR_Q_SOURCE_ID_NOT_F:
873 		qi->statusCheckValue = 0;
874 		qi->statusMask = IX_QMGR_Q_STATUS_F_BIT_MASK;
875 		break;
876 	    default:
877 		/* Should never hit */
878 		IX_OSAL_ASSERT(0);
879 		break;
880 	    }
881 
882 	    /* One nibble of status per queue so need to shift the
883 	     * check value and mask out to the correct position.
884 	     */
885 	    shiftVal = (qId % IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD) *
886 		IX_QMGR_QUELOWSTAT_BITS_PER_Q;
887 
888 	    /* Calculate the which status word to check from the qId,
889 	     * 8 Qs status per word
890 	     */
891 	    qi->statusWordOffset = qId / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD;
892 
893 	    qi->statusCheckValue <<= shiftVal;
894 	    qi->statusMask <<= shiftVal;
895 	} else {
896 	    /* One status word */
897 	    qi->statusWordOffset = 0;
898 	    /* Single bits per queue and int source bit hardwired  NE,
899 	     * Qs start at 32.
900 	     */
901 	    qi->statusMask = 1 << (qId - IX_QMGR_MIN_QUEUPP_QID);
902 	    qi->statusCheckValue = qi->statusMask;
903 	}
904 }
905 #endif
906 
907 static void
aqm_int_enable(struct ixpqmgr_softc * sc,int qId)908 aqm_int_enable(struct ixpqmgr_softc *sc, int qId)
909 {
910 	bus_size_t reg;
911 	uint32_t v;
912 
913 	if (qId < IX_QMGR_MIN_QUEUPP_QID)
914 	    reg = IX_QMGR_QUEIEREG0_OFFSET;
915 	else
916 	    reg = IX_QMGR_QUEIEREG1_OFFSET;
917 	v = aqm_reg_read(sc, reg);
918 	aqm_reg_write(sc, reg, v | (1 << (qId % IX_QMGR_MIN_QUEUPP_QID)));
919 
920 	DPRINTF(sc->sc_dev, "%s(%u) 0x%lx: 0x%x => 0x%x\n",
921 	    __func__, qId, reg, v, aqm_reg_read(sc, reg));
922 }
923 
924 static void
aqm_int_disable(struct ixpqmgr_softc * sc,int qId)925 aqm_int_disable(struct ixpqmgr_softc *sc, int qId)
926 {
927 	bus_size_t reg;
928 	uint32_t v;
929 
930 	if (qId < IX_QMGR_MIN_QUEUPP_QID)
931 	    reg = IX_QMGR_QUEIEREG0_OFFSET;
932 	else
933 	    reg = IX_QMGR_QUEIEREG1_OFFSET;
934 	v = aqm_reg_read(sc, reg);
935 	aqm_reg_write(sc, reg, v &~ (1 << (qId % IX_QMGR_MIN_QUEUPP_QID)));
936 
937 	DPRINTF(sc->sc_dev, "%s(%u) 0x%lx: 0x%x => 0x%x\n",
938 	    __func__, qId, reg, v, aqm_reg_read(sc, reg));
939 }
940 
941 static unsigned
log2(unsigned n)942 log2(unsigned n)
943 {
944 	unsigned count;
945 	/*
946 	 * N.B. this function will return 0 if supplied 0.
947 	 */
948 	for (count = 0; n/2; count++)
949 	    n /= 2;
950 	return count;
951 }
952 
953 static __inline unsigned
toAqmEntrySize(int entrySize)954 toAqmEntrySize(int entrySize)
955 {
956 	/* entrySize  1("00"),2("01"),4("10") */
957 	return log2(entrySize);
958 }
959 
960 static __inline unsigned
toAqmBufferSize(unsigned bufferSizeInWords)961 toAqmBufferSize(unsigned bufferSizeInWords)
962 {
963 	/* bufferSize 16("00"),32("01),64("10"),128("11") */
964 	return log2(bufferSizeInWords / IX_QMGR_MIN_BUFFER_SIZE);
965 }
966 
967 static __inline unsigned
toAqmWatermark(int watermark)968 toAqmWatermark(int watermark)
969 {
970 	/*
971 	 * Watermarks 0("000"),1("001"),2("010"),4("011"),
972 	 * 8("100"),16("101"),32("110"),64("111")
973 	 */
974 	return log2(2 * watermark);
975 }
976 
977 static void
aqm_qcfg(struct ixpqmgr_softc * sc,int qId,u_int ne,u_int nf)978 aqm_qcfg(struct ixpqmgr_softc *sc, int qId, u_int ne, u_int nf)
979 {
980 	const struct qmgrInfo *qi = &sc->qinfo[qId];
981 	uint32_t qCfg;
982 	uint32_t baseAddress;
983 
984 	/* Build config register */
985 	qCfg = ((toAqmEntrySize(1) & IX_QMGR_ENTRY_SIZE_MASK) <<
986 		    IX_QMGR_Q_CONFIG_ESIZE_OFFSET)
987 	     | ((toAqmBufferSize(qi->qSizeInWords) & IX_QMGR_SIZE_MASK) <<
988 		    IX_QMGR_Q_CONFIG_BSIZE_OFFSET);
989 
990 	/* baseAddress, calculated relative to start address */
991 	baseAddress = sc->aqmFreeSramAddress;
992 
993 	/* base address must be word-aligned */
994 	KASSERT((baseAddress % IX_QMGR_BASE_ADDR_16_WORD_ALIGN) == 0);
995 
996 	/* Now convert to a 16 word pointer as required by QUECONFIG register */
997 	baseAddress >>= IX_QMGR_BASE_ADDR_16_WORD_SHIFT;
998 	qCfg |= baseAddress << IX_QMGR_Q_CONFIG_BADDR_OFFSET;
999 
1000 	/* set watermarks */
1001 	qCfg |= (toAqmWatermark(ne) << IX_QMGR_Q_CONFIG_NE_OFFSET)
1002 	     |  (toAqmWatermark(nf) << IX_QMGR_Q_CONFIG_NF_OFFSET);
1003 
1004 	DPRINTF(sc->sc_dev, "%s(%u, %u, %u) 0x%x => 0x%x @ 0x%x\n",
1005 	    __func__, qId, ne, nf,
1006 	    aqm_reg_read(sc, IX_QMGR_Q_CONFIG_ADDR_GET(qId)),
1007 	    qCfg, (u_int)IX_QMGR_Q_CONFIG_ADDR_GET(qId));
1008 
1009 	aqm_reg_write(sc, IX_QMGR_Q_CONFIG_ADDR_GET(qId), qCfg);
1010 }
1011 
1012 static void
aqm_srcsel_write(struct ixpqmgr_softc * sc,int qId,int sourceId)1013 aqm_srcsel_write(struct ixpqmgr_softc *sc, int qId, int sourceId)
1014 {
1015 	bus_size_t off;
1016 	uint32_t v;
1017 
1018 	/*
1019 	 * Calculate the register offset; multiple queues split across registers
1020 	 */
1021 	off = IX_QMGR_INT0SRCSELREG0_OFFSET +
1022 	    ((qId / IX_QMGR_INTSRC_NUM_QUE_PER_WORD) * sizeof(uint32_t));
1023 
1024 	v = aqm_reg_read(sc, off);
1025 	if (off == IX_QMGR_INT0SRCSELREG0_OFFSET && qId == 0) {
1026 	    /* Queue 0 at INT0SRCSELREG should not corrupt the value bit-3  */
1027 	    v |= 0x7;
1028 	} else {
1029 	  const uint32_t bpq = 32 / IX_QMGR_INTSRC_NUM_QUE_PER_WORD;
1030 	  uint32_t mask;
1031 	  int qshift;
1032 
1033 	  qshift = (qId & (IX_QMGR_INTSRC_NUM_QUE_PER_WORD-1)) * bpq;
1034 	  mask = ((1 << bpq) - 1) << qshift;	/* q's status mask */
1035 
1036 	  /* merge sourceId */
1037 	  v = (v &~ mask) | ((sourceId << qshift) & mask);
1038 	}
1039 
1040 	DPRINTF(sc->sc_dev, "%s(%u, %u) 0x%x => 0x%x @ 0x%lx\n",
1041 	    __func__, qId, sourceId, aqm_reg_read(sc, off), v, off);
1042 	aqm_reg_write(sc, off, v);
1043 }
1044 
1045 /*
1046  * Reset AQM registers to default values.
1047  */
1048 static void
aqm_reset(struct ixpqmgr_softc * sc)1049 aqm_reset(struct ixpqmgr_softc *sc)
1050 {
1051 	int i;
1052 
1053 	/* Reset queues 0..31 status registers 0..3 */
1054 	aqm_reg_write(sc, IX_QMGR_QUELOWSTAT0_OFFSET,
1055 		IX_QMGR_QUELOWSTAT_RESET_VALUE);
1056 	aqm_reg_write(sc, IX_QMGR_QUELOWSTAT1_OFFSET,
1057 		IX_QMGR_QUELOWSTAT_RESET_VALUE);
1058 	aqm_reg_write(sc, IX_QMGR_QUELOWSTAT2_OFFSET,
1059 		IX_QMGR_QUELOWSTAT_RESET_VALUE);
1060 	aqm_reg_write(sc, IX_QMGR_QUELOWSTAT3_OFFSET,
1061 		IX_QMGR_QUELOWSTAT_RESET_VALUE);
1062 
1063 	/* Reset underflow/overflow status registers 0..1 */
1064 	aqm_reg_write(sc, IX_QMGR_QUEUOSTAT0_OFFSET,
1065 		IX_QMGR_QUEUOSTAT_RESET_VALUE);
1066 	aqm_reg_write(sc, IX_QMGR_QUEUOSTAT1_OFFSET,
1067 		IX_QMGR_QUEUOSTAT_RESET_VALUE);
1068 
1069 	/* Reset queues 32..63 nearly empty status registers */
1070 	aqm_reg_write(sc, IX_QMGR_QUEUPPSTAT0_OFFSET,
1071 		IX_QMGR_QUEUPPSTAT0_RESET_VALUE);
1072 
1073 	/* Reset queues 32..63 full status registers */
1074 	aqm_reg_write(sc, IX_QMGR_QUEUPPSTAT1_OFFSET,
1075 		IX_QMGR_QUEUPPSTAT1_RESET_VALUE);
1076 
1077 	/* Reset int0 status flag source select registers 0..3 */
1078 	aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG0_OFFSET,
1079 			     IX_QMGR_INT0SRCSELREG_RESET_VALUE);
1080 	aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG1_OFFSET,
1081 			     IX_QMGR_INT0SRCSELREG_RESET_VALUE);
1082 	aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG2_OFFSET,
1083 			     IX_QMGR_INT0SRCSELREG_RESET_VALUE);
1084 	aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG3_OFFSET,
1085 			     IX_QMGR_INT0SRCSELREG_RESET_VALUE);
1086 
1087 	/* Reset queue interrupt enable register 0..1 */
1088 	aqm_reg_write(sc, IX_QMGR_QUEIEREG0_OFFSET,
1089 		IX_QMGR_QUEIEREG_RESET_VALUE);
1090 	aqm_reg_write(sc, IX_QMGR_QUEIEREG1_OFFSET,
1091 		IX_QMGR_QUEIEREG_RESET_VALUE);
1092 
1093 	/* Reset queue interrupt register 0..1 */
1094 	aqm_reg_write(sc, IX_QMGR_QINTREG0_OFFSET, IX_QMGR_QINTREG_RESET_VALUE);
1095 	aqm_reg_write(sc, IX_QMGR_QINTREG1_OFFSET, IX_QMGR_QINTREG_RESET_VALUE);
1096 
1097 	/* Reset queue configuration words 0..63 */
1098 	for (i = 0; i < IX_QMGR_MAX_NUM_QUEUES; i++)
1099 	    aqm_reg_write(sc, sc->qinfo[i].qConfigRegAddr,
1100 		IX_QMGR_QUECONFIG_RESET_VALUE);
1101 
1102 	/* XXX zero SRAM to simplify debugging */
1103 	for (i = IX_QMGR_QUEBUFFER_SPACE_OFFSET;
1104 	     i < IX_QMGR_AQM_SRAM_SIZE_IN_BYTES; i += sizeof(uint32_t))
1105 	    aqm_reg_write(sc, i, 0);
1106 }
1107 
1108 #ifdef __FreeBSD__
1109 static device_method_t ixpqmgr_methods[] = {
1110 	DEVMETHOD(device_probe,		ixpqmgr_probe),
1111 	DEVMETHOD(device_attach,	ixpqmgr_attach),
1112 	DEVMETHOD(device_detach,	ixpqmgr_detach),
1113 
1114 	{ 0, 0 }
1115 };
1116 
1117 static driver_t ixpqmgr_driver = {
1118 	"ixpqmgr",
1119 	ixpqmgr_methods,
1120 	sizeof(struct ixpqmgr_softc),
1121 };
1122 static devclass_t ixpqmgr_devclass;
1123 
1124 DRIVER_MODULE(ixpqmgr, ixp, ixpqmgr_driver, ixpqmgr_devclass, 0, 0);
1125 #endif
1126