xref: /netbsd-src/sys/arch/arm/xscale/becc_timer.c (revision 482eef70502290f7cbd2cb9a24a4f41e6bacd98d)
1 /*	$NetBSD: becc_timer.c,v 1.16 2020/05/29 12:30:39 rin Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Timer/clock support for the ADI Engineering Big Endian Companion Chip.
40  */
41 
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: becc_timer.c,v 1.16 2020/05/29 12:30:39 rin Exp $");
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/atomic.h>
49 #include <sys/time.h>
50 #include <sys/timetc.h>
51 
52 #include <dev/clock_subr.h>
53 
54 #include <sys/bus.h>
55 #include <arm/cpufunc.h>
56 
57 #include <arm/xscale/beccreg.h>
58 #include <arm/xscale/beccvar.h>
59 
60 void	(*becc_hardclock_hook)(void);
61 
62 /*
63  * Note, since COUNTS_PER_USEC doesn't divide evenly, we round up.
64  */
65 #define	COUNTS_PER_SEC		BECC_PERIPH_CLOCK
66 #define	COUNTS_PER_USEC		((COUNTS_PER_SEC / 1000000) + 1)
67 
68 static void *clock_ih;
69 
70 static u_int	becc_get_timecount(struct timecounter *);
71 
72 static struct timecounter becc_timecounter = {
73 	.tc_get_timecount = becc_get_timecount,
74 	.tc_counter_mask = 0xffffffff,
75 	.tc_frequency = COUNTS_PER_SEC,
76 	.tc_name = "becc",
77 	.tc_quality = 100,
78 };
79 
80 static volatile uint32_t becc_base;
81 
82 /*
83  * Since the timer interrupts when the counter underflows, we need to
84  * subtract 1 from counts_per_hz when loading the preload register.
85  */
86 static uint32_t counts_per_hz;
87 
88 int	clockhandler(void *);
89 
90 /*
91  * becc_calibrate_delay:
92  *
93  *	Calibrate the delay loop.
94  */
95 void
becc_calibrate_delay(void)96 becc_calibrate_delay(void)
97 {
98 
99 	/*
100 	 * Just use hz=100 for now -- we'll adjust it, if necessary,
101 	 * in cpu_initclocks().
102 	 */
103 	counts_per_hz = COUNTS_PER_SEC / 100;
104 
105 	/* Stop both timers, clear interrupts. */
106 	BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TIF);
107 	BECC_CSR_WRITE(BECC_TSCRB, TSCRx_TIF);
108 
109 	/* Set the timer preload value. */
110 	BECC_CSR_WRITE(BECC_TPRA, counts_per_hz - 1);
111 
112 	/* Start the timer. */
113 	BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TE | TSCRx_CM);
114 }
115 
116 /*
117  * cpu_initclocks:
118  *
119  *	Initialize the clock and get them going.
120  */
121 void
cpu_initclocks(void)122 cpu_initclocks(void)
123 {
124 	u_int oldirqstate;
125 
126 #if 0
127 	if (hz < 50 || COUNTS_PER_SEC % hz) {
128 		printf("Cannot get %d Hz clock; using 100 Hz\n", hz);
129 		hz = 100;
130 	}
131 #endif
132 
133 	/*
134 	 * We only have one timer available; stathz and profhz are
135 	 * always left as 0 (the upper-layer clock code deals with
136 	 * this situation).
137 	 */
138 	if (stathz != 0)
139 		printf("Cannot get %d Hz statclock\n", stathz);
140 	stathz = 0;
141 
142 	if (profhz != 0)
143 		printf("Cannot get %d Hz profclock\n", profhz);
144 	profhz = 0;
145 
146 	/* Report the clock frequency. */
147 	aprint_normal("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
148 
149 	oldirqstate = disable_interrupts(I32_bit);
150 
151 	/* Hook up the clock interrupt handler. */
152 	clock_ih = becc_intr_establish(ICU_TIMERA, IPL_CLOCK,
153 	    clockhandler, NULL);
154 	if (clock_ih == NULL)
155 		panic("cpu_initclocks: unable to register timer interrupt");
156 
157 	/* Set up the new clock parameters. */
158 
159 	/* Stop timer, clear interrupt */
160 	BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TIF);
161 
162 	counts_per_hz = COUNTS_PER_SEC / hz;
163 
164 	/* Set the timer preload value. */
165 	BECC_CSR_WRITE(BECC_TPRA, counts_per_hz - 1);
166 
167 	/* ...and start it in motion. */
168 	BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TE | TSCRx_CM);
169 
170 #ifdef __HAVE_FAST_SOFTINTS
171 	/* register soft interrupt handler as well */
172 	becc_intr_establish(ICU_SOFT, IPL_SOFTCLOCK, becc_softint, NULL);
173 #endif
174 
175 	restore_interrupts(oldirqstate);
176 
177 	tc_init(&becc_timecounter);
178 }
179 
180 /*
181  * setstatclockrate:
182  *
183  *	Set the rate of the statistics clock.
184  *
185  *	We assume that hz is either stathz or profhz, and that neither
186  *	will change after being set by cpu_initclocks().  We could
187  *	recalculate the intervals here, but that would be a pain.
188  */
189 void
setstatclockrate(int new_hz)190 setstatclockrate(int new_hz)
191 {
192 
193 	/*
194 	 * XXX Use TMR1?
195 	 */
196 }
197 
198 static u_int
becc_get_timecount(struct timecounter * tc)199 becc_get_timecount(struct timecounter *tc)
200 {
201 	uint32_t counter, base;
202 	u_int oldirqstate;
203 
204 	oldirqstate = disable_interrupts(I32_bit);
205 	counter = BECC_CSR_READ(BECC_TCVRA);
206 	base = becc_base;
207 	restore_interrupts(oldirqstate);
208 
209 	return base - counter;
210 }
211 
212 /*
213  * delay:
214  *
215  *	Delay for at least N microseconds.
216  */
217 void
delay(u_int n)218 delay(u_int n)
219 {
220 	uint32_t cur, last, delta, usecs;
221 
222 	/*
223 	 * This works by polling the timer and counting the
224 	 * number of microseconds that go by.
225 	 */
226 	last = BECC_CSR_READ(BECC_TCVRA);
227 	delta = usecs = 0;
228 
229 	while (n > usecs) {
230 		cur = BECC_CSR_READ(BECC_TCVRA);
231 
232 		/* Check to see if the timer has wrapped around. */
233 		if (last < cur)
234 			delta += (last + (counts_per_hz - cur));
235 		else
236 			delta += (last - cur);
237 
238 		last = cur;
239 
240 		if (delta >= COUNTS_PER_USEC) {
241 			usecs += delta / COUNTS_PER_USEC;
242 			delta %= COUNTS_PER_USEC;
243 		}
244 	}
245 }
246 
247 /*
248  * clockhandler:
249  *
250  *	Handle the hardclock interrupt.
251  */
252 int
clockhandler(void * arg)253 clockhandler(void *arg)
254 {
255 	struct clockframe *frame = arg;
256 
257 	/* ACK the interrupt. */
258 	BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TE | TSCRx_CM | TSCRx_TIF);
259 
260 	hardclock(frame);
261 
262 	atomic_add_32(&becc_base, counts_per_hz);
263 
264 	if (becc_hardclock_hook != NULL)
265 		(*becc_hardclock_hook)();
266 
267 	return (1);
268 }
269