xref: /netbsd-src/sys/arch/arm/sunxi/sun6i_dma.c (revision c7941324122a924b6e20c322a6b49a6a3b6137e7)
1 /* $NetBSD: sun6i_dma.c,v 1.16 2024/08/13 07:20:23 skrll Exp $ */
2 
3 /*-
4  * Copyright (c) 2014-2017 Jared McNeill <jmcneill@invisible.ca>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include "opt_ddb.h"
30 
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: sun6i_dma.c,v 1.16 2024/08/13 07:20:23 skrll Exp $");
33 
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/device.h>
37 #include <sys/intr.h>
38 #include <sys/systm.h>
39 #include <sys/mutex.h>
40 #include <sys/bitops.h>
41 #include <sys/kmem.h>
42 
43 #include <dev/fdt/fdtvar.h>
44 
45 #define DMA_IRQ_EN_REG0_REG		0x0000
46 #define DMA_IRQ_EN_REG1_REG		0x0004
47 #define  DMA_IRQ_EN_REG0_QUEUE_IRQ_EN(n)	__BIT(n * 4 + 2)
48 #define  DMA_IRQ_EN_REG0_PKG_IRQ_EN(n)		__BIT(n * 4 + 1)
49 #define  DMA_IRQ_EN_REG0_HLAF_IRQ_EN(n)		__BIT(n * 4 + 0)
50 #define  DMA_IRQ_EN_REG1_QUEUE_IRQ_EN(n)	__BIT((n - 8) * 4 + 2)
51 #define  DMA_IRQ_EN_REG1_PKG_IRQ_EN(n)		__BIT((n - 8) * 4 + 1)
52 #define  DMA_IRQ_EN_REG1_HLAF_IRQ_EN(n)		__BIT((n - 8) * 4 + 0)
53 #define DMA_IRQ_PEND_REG0_REG		0x0010
54 #define DMA_IRQ_PEND_REG1_REG		0x0014
55 #define  DMA_IRQ_QUEUE_MASK			0x4444444444444444ULL
56 #define  DMA_IRQ_PKG_MASK			0x2222222222222222ULL
57 #define  DMA_IRQ_HF_MASK			0x1111111111111111ULL
58 #define DMA_STA_REG			0x0030
59 #define DMA_EN_REG(n)			(0x0100 + (n) * 0x40 + 0x00)
60 #define  DMA_EN_EN				__BIT(0)
61 #define DMA_PAU_REG(n)			(0x0100 + (n) * 0x40 + 0x04)
62 #define  DMA_PAU_PAUSE				__BIT(0)
63 #define DMA_START_ADDR_REG(n)		(0x0100 + (n) * 0x40 + 0x08)
64 #define DMA_CFG_REG(n)			(0x0100 + (n) * 0x40 + 0x0C)
65 #define  DMA_CFG_DEST_DATA_WIDTH		__BITS(26,25)
66 #define   DMA_CFG_DATA_WIDTH(n)			((n) >> 4)
67 #define	  DMA_CFG_BST_LEN(n)			((n) == 1 ? 0 : (((n) >> 3) + 1))
68 #define  DMA_CFG_DEST_ADDR_MODE			__BITS(22,21)
69 #define   DMA_CFG_ADDR_MODE_LINEAR		0
70 #define   DMA_CFG_ADDR_MODE_IO			1
71 #define  DMA_CFG_DEST_DRQ_TYPE			__BITS(20,16)
72 #define	  DMA_CFG_DRQ_TYPE_SDRAM		1
73 #define  DMA_CFG_SRC_DATA_WIDTH			__BITS(10,9)
74 #define  DMA_CFG_SRC_ADDR_MODE			__BITS(6,5)
75 #define  DMA_CFG_SRC_DRQ_TYPE			__BITS(4,0)
76 #define DMA_CUR_SRC_REG(n)		(0x0100 + (n) * 0x40 + 0x10)
77 #define DMA_CUR_DEST_REG(n)		(0x0100 + (n) * 0x40 + 0x14)
78 #define DMA_BCNT_LEFT_REG(n)		(0x0100 + (n) * 0x40 + 0x18)
79 #define DMA_PARA_REG(n)			(0x0100 + (n) * 0x40 + 0x1C)
80 #define  DMA_PARA_DATA_BLK_SIZE			__BITS(15,8)
81 #define  DMA_PARA_WAIT_CYC			__BITS(7,0)
82 #define DMA_MODE_REG(n)			(0x0100 + (n) * 0x40 + 0x28)
83 #define  MODE_WAIT				0b0
84 #define  MODE_HANDSHAKE				0b1
85 #define  DMA_MODE_DST(m)			__SHIFTIN((m), __BIT(3))
86 #define  DMA_MODE_SRC(m)			__SHIFTIN((m), __BIT(2))
87 #define DMA_FDESC_ADDR_REG(n)		(0x0100 + (n) * 0x40 + 0x2C)
88 #define DMA_PKG_NUM_REG(n)		(0x0100 + (n) * 0x40 + 0x30)
89 
90 struct sun6idma_desc {
91 	uint32_t	dma_config;
92 	uint32_t	dma_srcaddr;
93 	uint32_t	dma_dstaddr;
94 	uint32_t	dma_bcnt;
95 	uint32_t	dma_para;
96 	uint32_t	dma_next;
97 #define DMA_NULL	0xfffff800
98 };
99 
100 struct sun6idma_config {
101 	u_int		num_channels;
102 	bool		autogate;
103 	uint8_t		bursts;
104 	uint8_t		widths;
105 	bus_size_t	autogate_reg;
106 	uint32_t	autogate_mask;
107 	uint32_t	burst_mask;
108 };
109 
110 #define IL2B(x)			__BIT(ilog2(x))
111 #define IL2B_RANGE(x, y)	__BITS(ilog2(x), ilog2(y))
112 #define WIDTHS_1_2_4		IL2B_RANGE(4, 1)
113 #define WIDTHS_1_2_4_8		IL2B_RANGE(8, 1)
114 #define BURSTS_1_8		(IL2B(8)|IL2B(1))
115 #define BURSTS_1_4_8_16		(IL2B(16)|IL2B(8)|IL2B(4)|IL2B(1))
116 
117 static const struct sun6idma_config sun6i_a31_dma_config = {
118 	.num_channels = 16,
119 	.burst_mask = __BITS(8,7),
120 	.bursts = BURSTS_1_8,
121 	.widths = WIDTHS_1_2_4,
122 };
123 
124 static const struct sun6idma_config sun8i_a83t_dma_config = {
125 	.num_channels = 8,
126 	.autogate = true,
127 	.autogate_reg = 0x20,
128 	.autogate_mask = 0x4,
129 	.burst_mask = __BITS(8,7),
130 	.bursts = BURSTS_1_8,
131 	.widths = WIDTHS_1_2_4,
132 };
133 
134 static const struct sun6idma_config sun8i_h3_dma_config = {
135 	.num_channels = 12,
136 	.autogate = true,
137 	.autogate_reg = 0x28,
138 	.autogate_mask = 0x4,
139 	.burst_mask = __BITS(7,6),
140 	.bursts = BURSTS_1_4_8_16,
141 	.widths = WIDTHS_1_2_4_8,
142 };
143 
144 static const struct sun6idma_config sun8i_v3s_dma_config = {
145 	.num_channels = 8,
146 	.autogate = true,
147 	.autogate_reg = 0x20,
148 	.autogate_mask = 0x4,
149 	.burst_mask = __BITS(8,7),
150 	.bursts = BURSTS_1_8,
151 	.widths = WIDTHS_1_2_4,
152 };
153 
154 static const struct sun6idma_config sun20i_d1_dma_config = {
155 	.num_channels = 16,
156 	.autogate = true,
157 	.autogate_reg = 0x28,
158 	.autogate_mask = 0x4,
159 	.burst_mask = __BITS(7,6),
160 	.bursts = BURSTS_1_4_8_16,
161 	.widths = WIDTHS_1_2_4_8,
162 };
163 
164 static const struct sun6idma_config sun50i_a64_dma_config = {
165 	.num_channels = 8,
166 	.autogate = true,
167 	.autogate_reg = 0x28,
168 	.autogate_mask = 0x4,
169 	.burst_mask = __BITS(7,6),
170 	.bursts = BURSTS_1_4_8_16,
171 	.widths = WIDTHS_1_2_4_8,
172 };
173 
174 static const struct device_compatible_entry compat_data[] = {
175 	{ .compat = "allwinner,sun6i-a31-dma",
176 	  .data = &sun6i_a31_dma_config },
177 	{ .compat = "allwinner,sun8i-a83t-dma",
178 	  .data = &sun8i_a83t_dma_config },
179 	{ .compat = "allwinner,sun8i-h3-dma",
180 	  .data = &sun8i_h3_dma_config },
181 	{ .compat = "allwinner,sun8i-v3s-dma",
182 	  .data = &sun8i_v3s_dma_config },
183 	{ .compat = "allwinner,sun20i-d1-dma",
184 	  .data = &sun20i_d1_dma_config },
185 	{ .compat = "allwinner,sun50i-a64-dma",
186 	  .data = &sun50i_a64_dma_config },
187 
188 	DEVICE_COMPAT_EOL
189 };
190 
191 struct sun6idma_channel {
192 	uint8_t			ch_index;
193 	void			(*ch_callback)(void *);
194 	void			*ch_callbackarg;
195 	u_int			ch_portid;
196 	void			*ch_dmadesc;
197 };
198 
199 struct sun6idma_softc {
200 	device_t		sc_dev;
201 	bus_space_tag_t		sc_bst;
202 	bus_space_handle_t	sc_bsh;
203 	bus_dma_tag_t		sc_dmat;
204 	int			sc_phandle;
205 	void			*sc_ih;
206 
207 	uint32_t		sc_burst_mask;
208 
209 	kmutex_t		sc_lock;
210 
211 	struct sun6idma_channel	*sc_chan;
212 	u_int			sc_nchan;
213 	u_int			sc_ndesc_ch;
214 	uint8_t			sc_widths;
215 	uint8_t			sc_bursts;
216 
217 	bus_dma_segment_t	sc_dmasegs[1];
218 	bus_dmamap_t		sc_dmamap;
219 	void			*sc_dmadescs;
220 };
221 
222 #define DMA_READ(sc, reg)		\
223     bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
224 #define DMA_WRITE(sc, reg, val)		\
225     bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
226 
227 #define DESC_NUM			((MAXPHYS / MIN_PAGE_SIZE + 1) + 1)
228 #define DESC_LEN(n)			\
229     (sizeof(struct sun6idma_desc) * (n))
230 #define DESC_OFFS(ch, n)		\
231     ((ch) * roundup2(DESC_LEN(DESC_NUM), COHERENCY_UNIT) + DESC_LEN(n))
232 #define DESC_ADDR(sc, chp, n)		\
233     ((sc)->sc_dmamap->dm_segs[0].ds_addr + DESC_OFFS((chp)->ch_index, (n)))
234 
235 static void *
236 sun6idma_acquire(device_t dev, const void *data, size_t len,
237     void (*cb)(void *), void *cbarg)
238 {
239 	struct sun6idma_softc *sc = device_private(dev);
240 	struct sun6idma_channel *ch = NULL;
241 	uint32_t irqen;
242 	uint8_t index;
243 
244 	if (len != 4)
245 		return NULL;
246 
247 	const u_int portid = be32dec(data);
248 	if (portid > __SHIFTOUT_MASK(DMA_CFG_SRC_DRQ_TYPE))
249 		return NULL;
250 
251 	mutex_enter(&sc->sc_lock);
252 
253 	for (index = 0; index < sc->sc_nchan; index++) {
254 		if (sc->sc_chan[index].ch_callback == NULL) {
255 			ch = &sc->sc_chan[index];
256 			ch->ch_callback = cb;
257 			ch->ch_callbackarg = cbarg;
258 			ch->ch_portid = portid;
259 
260 			irqen = DMA_READ(sc, index < 8 ?
261 			    DMA_IRQ_EN_REG0_REG :
262 			    DMA_IRQ_EN_REG1_REG);
263 			irqen |= (index < 8 ?
264 			    DMA_IRQ_EN_REG0_PKG_IRQ_EN(index) :
265 			    DMA_IRQ_EN_REG1_PKG_IRQ_EN(index));
266 			DMA_WRITE(sc, index < 8 ?
267 			    DMA_IRQ_EN_REG0_REG :
268 			    DMA_IRQ_EN_REG1_REG, irqen);
269 
270 			break;
271 		}
272 	}
273 
274 	mutex_exit(&sc->sc_lock);
275 
276 	return ch;
277 }
278 
279 static void
280 sun6idma_release(device_t dev, void *priv)
281 {
282 	struct sun6idma_softc *sc = device_private(dev);
283 	struct sun6idma_channel *ch = priv;
284 	uint32_t irqen;
285 	uint8_t index = ch->ch_index;
286 
287 	mutex_enter(&sc->sc_lock);
288 
289 	irqen = DMA_READ(sc, index < 8 ?
290 	    DMA_IRQ_EN_REG0_REG :
291 	    DMA_IRQ_EN_REG1_REG);
292 	irqen &= ~(index < 8 ?
293 	    DMA_IRQ_EN_REG0_PKG_IRQ_EN(index) :
294 	    DMA_IRQ_EN_REG1_PKG_IRQ_EN(index));
295 	DMA_WRITE(sc, index < 8 ?
296 	    DMA_IRQ_EN_REG0_REG :
297 	    DMA_IRQ_EN_REG1_REG, irqen);
298 
299 	ch->ch_callback = NULL;
300 	ch->ch_callbackarg = NULL;
301 
302 	mutex_exit(&sc->sc_lock);
303 }
304 
305 static int
306 sun6idma_transfer(device_t dev, void *priv, struct fdtbus_dma_req *req)
307 {
308 	struct sun6idma_softc *sc = device_private(dev);
309 	struct sun6idma_channel *ch = priv;
310 	struct sun6idma_desc *desc = ch->ch_dmadesc;
311 	uint32_t src, dst, len, cfg, mem_cfg, dev_cfg;
312 	uint32_t mem_width, dev_width, mem_burst, dev_burst;
313 
314 	if (req->dreq_nsegs > sc->sc_ndesc_ch)
315 		return EINVAL;
316 
317 	if ((sc->sc_widths &
318 	    IL2B(req->dreq_mem_opt.opt_bus_width/NBBY)) == 0)
319 		return EINVAL;
320 	if ((sc->sc_widths &
321 	    IL2B(req->dreq_dev_opt.opt_bus_width/NBBY)) == 0)
322 		return EINVAL;
323 	if ((sc->sc_bursts &
324 	    IL2B(req->dreq_mem_opt.opt_burst_len)) == 0)
325 		return EINVAL;
326 	if ((sc->sc_bursts &
327 	    IL2B(req->dreq_dev_opt.opt_burst_len)) == 0)
328 		return EINVAL;
329 
330 	mem_width = DMA_CFG_DATA_WIDTH(req->dreq_mem_opt.opt_bus_width);
331 	dev_width = DMA_CFG_DATA_WIDTH(req->dreq_dev_opt.opt_bus_width);
332 	mem_burst = DMA_CFG_BST_LEN(req->dreq_mem_opt.opt_burst_len);
333 	dev_burst = DMA_CFG_BST_LEN(req->dreq_dev_opt.opt_burst_len);
334 
335 	mem_cfg = __SHIFTIN(mem_width, DMA_CFG_SRC_DATA_WIDTH) |
336 	    __SHIFTIN(mem_burst, sc->sc_burst_mask) |
337 	    __SHIFTIN(DMA_CFG_ADDR_MODE_LINEAR, DMA_CFG_SRC_ADDR_MODE) |
338 	    __SHIFTIN(DMA_CFG_DRQ_TYPE_SDRAM, DMA_CFG_SRC_DRQ_TYPE);
339 	dev_cfg = __SHIFTIN(dev_width, DMA_CFG_SRC_DATA_WIDTH) |
340 	    __SHIFTIN(dev_burst, sc->sc_burst_mask) |
341 	    __SHIFTIN(DMA_CFG_ADDR_MODE_IO, DMA_CFG_SRC_ADDR_MODE) |
342 	    __SHIFTIN(ch->ch_portid, DMA_CFG_SRC_DRQ_TYPE);
343 
344 	for (size_t j = 0; j < req->dreq_nsegs; j++) {
345 		if (req->dreq_dir == FDT_DMA_READ) {
346 			src = req->dreq_dev_phys;
347 			dst = req->dreq_segs[j].ds_addr;
348 			cfg = mem_cfg << 16 | dev_cfg;
349 		} else {
350 			src = req->dreq_segs[j].ds_addr;
351 			dst = req->dreq_dev_phys;
352 			cfg = dev_cfg << 16 | mem_cfg;
353 		}
354 		len = req->dreq_segs[j].ds_len;
355 
356 		desc[j].dma_config = htole32(cfg);
357 		desc[j].dma_srcaddr = htole32(src);
358 		desc[j].dma_dstaddr = htole32(dst);
359 		desc[j].dma_bcnt = htole32(len);
360 		desc[j].dma_para = htole32(0);
361 		if (j < req->dreq_nsegs - 1)
362 			desc[j].dma_next = htole32(DESC_ADDR(sc, ch, j + 1));
363 		else
364 			desc[j].dma_next = htole32(DMA_NULL);
365 	}
366 
367 #if notyet && maybenever
368 	DMA_WRITE(sc, DMA_MODE_REG(ch->ch_index),
369 	    DMA_MODE_DST(MODE_HANDSHAKE)|DMA_MODE_SRC(MODE_HANDSHAKE));
370 #endif
371 
372 	bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, DESC_OFFS(ch->ch_index, 0),
373 	    DESC_LEN(req->dreq_nsegs), BUS_DMASYNC_PREWRITE);
374 
375 	DMA_WRITE(sc, DMA_START_ADDR_REG(ch->ch_index),
376 	    DESC_ADDR(sc, ch, 0));
377 	DMA_WRITE(sc, DMA_EN_REG(ch->ch_index), DMA_EN_EN);
378 
379 	if ((DMA_READ(sc, DMA_EN_REG(ch->ch_index)) & DMA_EN_EN) == 0) {
380 		aprint_error_dev(sc->sc_dev,
381 		    "DMA Channel %u failed to start\n", ch->ch_index);
382 		return EIO;
383 	}
384 
385 	return 0;
386 }
387 
388 static void
389 sun6idma_halt(device_t dev, void *priv)
390 {
391 	struct sun6idma_softc *sc = device_private(dev);
392 	struct sun6idma_channel *ch = priv;
393 
394 	DMA_WRITE(sc, DMA_EN_REG(ch->ch_index), 0);
395 }
396 
397 static const struct fdtbus_dma_controller_func sun6idma_funcs = {
398 	.acquire = sun6idma_acquire,
399 	.release = sun6idma_release,
400 	.transfer = sun6idma_transfer,
401 	.halt = sun6idma_halt
402 };
403 
404 static int
405 sun6idma_intr(void *priv)
406 {
407 	struct sun6idma_softc *sc = priv;
408 	uint32_t pend0, pend1, bit;
409 	uint64_t pend, mask;
410 	uint8_t index;
411 
412 	pend0 = DMA_READ(sc, DMA_IRQ_PEND_REG0_REG);
413 	pend1 = DMA_READ(sc, DMA_IRQ_PEND_REG1_REG);
414 	if (!pend0 && !pend1)
415 		return 0;
416 
417 	DMA_WRITE(sc, DMA_IRQ_PEND_REG0_REG, pend0);
418 	DMA_WRITE(sc, DMA_IRQ_PEND_REG1_REG, pend1);
419 
420 	pend = pend0 | ((uint64_t)pend1 << 32);
421 
422 	while ((bit = ffs64(pend & DMA_IRQ_PKG_MASK)) != 0) {
423 		mask = __BIT(bit - 1);
424 		pend &= ~mask;
425 		index = (bit - 1) / 4;
426 
427 		if (sc->sc_chan[index].ch_callback == NULL)
428 			continue;
429 		sc->sc_chan[index].ch_callback(
430 		    sc->sc_chan[index].ch_callbackarg);
431 	}
432 
433 	return 1;
434 }
435 
436 static int
437 sun6idma_match(device_t parent, cfdata_t cf, void *aux)
438 {
439 	struct fdt_attach_args * const faa = aux;
440 
441 	return of_compatible_match(faa->faa_phandle, compat_data);
442 }
443 
444 static void
445 sun6idma_attach(device_t parent, device_t self, void *aux)
446 {
447 	struct sun6idma_softc * const sc = device_private(self);
448 	struct fdt_attach_args * const faa = aux;
449 	const int phandle = faa->faa_phandle;
450 	size_t desclen;
451 	const struct sun6idma_config *conf;
452 	struct fdtbus_reset *rst;
453 	struct clk *clk;
454 	char intrstr[128];
455 	bus_addr_t addr;
456 	bus_size_t size;
457 	int error, nsegs;
458 	u_int index;
459 
460 	if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) {
461 		aprint_error(": couldn't get registers\n");
462 		return;
463 	}
464 
465 	if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL ||
466 	    clk_enable(clk) != 0) {
467 		aprint_error(": couldn't enable clock\n");
468 		return;
469 	}
470 	if ((rst = fdtbus_reset_get_index(phandle, 0)) == NULL ||
471 	    fdtbus_reset_deassert(rst) != 0) {
472 		aprint_error(": couldn't de-assert reset\n");
473 		return;
474 	}
475 
476 	sc->sc_dev = self;
477 	sc->sc_phandle = phandle;
478 	sc->sc_dmat = faa->faa_dmat;
479 	sc->sc_bst = faa->faa_bst;
480 	if (bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
481 		aprint_error(": couldn't map registers\n");
482 		return;
483 	}
484 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SCHED);
485 
486 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
487 		aprint_error(": failed to decode interrupt\n");
488 		return;
489 	}
490 
491 	conf = of_compatible_lookup(phandle, compat_data)->data;
492 
493 	sc->sc_burst_mask = conf->burst_mask;
494 	sc->sc_nchan = conf->num_channels;
495 	sc->sc_widths = conf->widths;
496 	sc->sc_bursts = conf->bursts;
497 	sc->sc_chan = kmem_alloc(sizeof(*sc->sc_chan) * sc->sc_nchan, KM_SLEEP);
498 	desclen = DESC_OFFS(sc->sc_nchan, 0);
499 	sc->sc_ndesc_ch = DESC_OFFS(1, 0) / sizeof(struct sun6idma_desc);
500 
501 	aprint_naive("\n");
502 	aprint_normal(": DMA controller (%u channels)\n", sc->sc_nchan);
503 
504 	DMA_WRITE(sc, DMA_IRQ_EN_REG0_REG, 0);
505 	DMA_WRITE(sc, DMA_IRQ_EN_REG1_REG, 0);
506 	DMA_WRITE(sc, DMA_IRQ_PEND_REG0_REG, ~0);
507 	DMA_WRITE(sc, DMA_IRQ_PEND_REG1_REG, ~0);
508 
509 	error = bus_dmamem_alloc(sc->sc_dmat, desclen, 0, 0,
510 	    sc->sc_dmasegs, 1, &nsegs, BUS_DMA_WAITOK);
511 	if (error)
512 		panic("bus_dmamem_alloc failed: %d", error);
513 	error = bus_dmamem_map(sc->sc_dmat, sc->sc_dmasegs, nsegs,
514 	    desclen, (void **)&sc->sc_dmadescs, BUS_DMA_WAITOK);
515 	if (error)
516 		panic("bus_dmamem_map failed: %d", error);
517 	error = bus_dmamap_create(sc->sc_dmat, desclen, 1, desclen, 0,
518 	    BUS_DMA_WAITOK, &sc->sc_dmamap);
519 	if (error)
520 		panic("bus_dmamap_create failed: %d", error);
521 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
522 	    sc->sc_dmadescs, desclen, NULL, BUS_DMA_WAITOK);
523 	if (error)
524 		panic("bus_dmamap_load failed: %d", error);
525 
526 	for (index = 0; index < sc->sc_nchan; index++) {
527 		struct sun6idma_channel *ch = &sc->sc_chan[index];
528 		ch->ch_index = index;
529 		ch->ch_dmadesc = (void *)((uintptr_t)sc->sc_dmadescs + DESC_OFFS(index, 0));
530 		ch->ch_callback = NULL;
531 		ch->ch_callbackarg = NULL;
532 
533 		DMA_WRITE(sc, DMA_EN_REG(index), 0);
534 	}
535 
536 	if (conf->autogate)
537 		DMA_WRITE(sc, conf->autogate_reg, conf->autogate_mask);
538 
539 	sc->sc_ih = fdtbus_intr_establish_xname(phandle, 0, IPL_SCHED,
540 	    FDT_INTR_MPSAFE, sun6idma_intr, sc, device_xname(sc->sc_dev));
541 	if (sc->sc_ih == NULL) {
542 		aprint_error_dev(sc->sc_dev,
543 		    "couldn't establish interrupt on %s\n", intrstr);
544 		return;
545 	}
546 	aprint_normal_dev(sc->sc_dev, "interrupting on %s\n", intrstr);
547 
548 	fdtbus_register_dma_controller(self, phandle, &sun6idma_funcs);
549 }
550 
551 CFATTACH_DECL_NEW(sun6i_dma, sizeof(struct sun6idma_softc),
552         sun6idma_match, sun6idma_attach, NULL, NULL);
553 
554 #ifdef DDB
555 void sun6idma_dump(void);
556 
557 void
558 sun6idma_dump(void)
559 {
560 	struct sun6idma_softc *sc;
561 	device_t dev;
562 	u_int index;
563 
564 	dev = device_find_by_driver_unit("sun6idma", 0);
565 	if (dev == NULL)
566 		return;
567 	sc = device_private(dev);
568 
569 	device_printf(dev, "DMA_IRQ_EN_REG0_REG:   %08x\n", DMA_READ(sc, DMA_IRQ_EN_REG0_REG));
570 	device_printf(dev, "DMA_IRQ_EN_REG1_REG:   %08x\n", DMA_READ(sc, DMA_IRQ_EN_REG1_REG));
571 	device_printf(dev, "DMA_IRQ_PEND_REG0_REG: %08x\n", DMA_READ(sc, DMA_IRQ_PEND_REG0_REG));
572 	device_printf(dev, "DMA_IRQ_PEND_REG1_REG: %08x\n", DMA_READ(sc, DMA_IRQ_PEND_REG1_REG));
573 	device_printf(dev, "DMA_STA_REG:           %08x\n", DMA_READ(sc, DMA_STA_REG));
574 
575 	for (index = 0; index < sc->sc_nchan; index++) {
576 		struct sun6idma_channel *ch = &sc->sc_chan[index];
577 		if (ch->ch_callback == NULL)
578 			continue;
579 		device_printf(dev, " %2d: DMA_EN_REG:         %08x\n", index, DMA_READ(sc, DMA_EN_REG(index)));
580 		device_printf(dev, " %2d: DMA_PAU_REG:        %08x\n", index, DMA_READ(sc, DMA_PAU_REG(index)));
581 		device_printf(dev, " %2d: DMA_START_ADDR_REG: %08x\n", index, DMA_READ(sc, DMA_START_ADDR_REG(index)));
582 		device_printf(dev, " %2d: DMA_CFG_REG:        %08x\n", index, DMA_READ(sc, DMA_CFG_REG(index)));
583 		device_printf(dev, " %2d: DMA_CUR_SRC_REG:    %08x\n", index, DMA_READ(sc, DMA_CUR_SRC_REG(index)));
584 		device_printf(dev, " %2d: DMA_CUR_DEST_REG:   %08x\n", index, DMA_READ(sc, DMA_CUR_DEST_REG(index)));
585 		device_printf(dev, " %2d: DMA_BCNT_LEFT_REG:  %08x\n", index, DMA_READ(sc, DMA_BCNT_LEFT_REG(index)));
586 		device_printf(dev, " %2d: DMA_PARA_REG:       %08x\n", index, DMA_READ(sc, DMA_PARA_REG(index)));
587 		device_printf(dev, " %2d: DMA_MODE_REG:       %08x\n", index, DMA_READ(sc, DMA_MODE_REG(index)));
588 		device_printf(dev, " %2d: DMA_FDESC_ADDR_REG: %08x\n", index, DMA_READ(sc, DMA_FDESC_ADDR_REG(index)));
589 		device_printf(dev, " %2d: DMA_PKG_NUM_REG:    %08x\n", index, DMA_READ(sc, DMA_PKG_NUM_REG(index)));
590 	}
591 }
592 #endif
593