xref: /netbsd-src/lib/libm/src/b_exp.c (revision a898920ce2f52fa32ef1eedf9644f12d772b8065)
1 /*	$NetBSD: b_exp.c,v 1.1 2012/05/05 17:54:14 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 1985, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 /* @(#)exp.c	8.1 (Berkeley) 6/4/93 */
37 #include <sys/cdefs.h>
38 #if 0
39 __FBSDID("$FreeBSD: release/9.0.0/lib/msun/bsdsrc/b_exp.c 176449 2008-02-22 02:26:51Z das $");
40 #else
41 __RCSID("$NetBSD: b_exp.c,v 1.1 2012/05/05 17:54:14 christos Exp $");
42 #endif
43 
44 
45 /* EXP(X)
46  * RETURN THE EXPONENTIAL OF X
47  * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
48  * CODED IN C BY K.C. NG, 1/19/85;
49  * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
50  *
51  * Required system supported functions:
52  *	scalb(x,n)
53  *	copysign(x,y)
54  *	finite(x)
55  *
56  * Method:
57  *	1. Argument Reduction: given the input x, find r and integer k such
58  *	   that
59  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
60  *	   r will be represented as r := z+c for better accuracy.
61  *
62  *	2. Compute exp(r) by
63  *
64  *		exp(r) = 1 + r + r*R1/(2-R1),
65  *	   where
66  *		R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
67  *
68  *	3. exp(x) = 2^k * exp(r) .
69  *
70  * Special cases:
71  *	exp(INF) is INF, exp(NaN) is NaN;
72  *	exp(-INF)=  0;
73  *	for finite argument, only exp(0)=1 is exact.
74  *
75  * Accuracy:
76  *	exp(x) returns the exponential of x nearly rounded. In a test run
77  *	with 1,156,000 random arguments on a VAX, the maximum observed
78  *	error was 0.869 ulps (units in the last place).
79  */
80 
81 #include "math.h"
82 #include "math_private.h"
83 
84 static const double p1 = 0x1.555555555553ep-3;
85 static const double p2 = -0x1.6c16c16bebd93p-9;
86 static const double p3 = 0x1.1566aaf25de2cp-14;
87 static const double p4 = -0x1.bbd41c5d26bf1p-20;
88 static const double p5 = 0x1.6376972bea4d0p-25;
89 static const double ln2hi = 0x1.62e42fee00000p-1;
90 static const double ln2lo = 0x1.a39ef35793c76p-33;
91 static const double lnhuge = 0x1.6602b15b7ecf2p9;
92 static const double lntiny = -0x1.77af8ebeae354p9;
93 static const double invln2 = 0x1.71547652b82fep0;
94 
95 /* returns exp(r = x + c) for |c| < |x| with no overlap.  */
96 
97 double
__exp__D(double x,double c)98 __exp__D(double x, double c)
99 {
100 	double  z,hi,lo;
101 	int k;
102 
103 	if (x != x)	/* x is NaN */
104 		return(x);
105 	if ( x <= lnhuge ) {
106 		if ( x >= lntiny ) {
107 
108 		    /* argument reduction : x --> x - k*ln2 */
109 			z = invln2*x;
110 			k = z + copysign(.5, x);
111 
112 		    /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */
113 
114 			hi=(x-k*ln2hi);			/* Exact. */
115 			x= hi - (lo = k*ln2lo-c);
116 		    /* return 2^k*[1+x+x*c/(2+c)]  */
117 			z=x*x;
118 			c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
119 			c = (x*c)/(2.0-c);
120 
121 			return  scalb(1.+(hi-(lo - c)), k);
122 		}
123 		/* end of x > lntiny */
124 
125 		else
126 		     /* exp(-big#) underflows to zero */
127 		     if(finite(x))  return(scalb(1.0,-5000));
128 
129 		     /* exp(-INF) is zero */
130 		     else return(0.0);
131 	}
132 	/* end of x < lnhuge */
133 
134 	else
135 	/* exp(INF) is INF, exp(+big#) overflows to INF */
136 	    return( finite(x) ?  scalb(1.0,5000)  : x);
137 }
138