xref: /netbsd-src/lib/libm/ld128/s_logl.c (revision cfe182f36bde4c4d81e1607954ce22a67cf35d7a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2007-2013 Bruce D. Evans
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 /**
31  * Implementation of the natural logarithm of x for 128-bit format.
32  *
33  * First decompose x into its base 2 representation:
34  *
35  *    log(x) = log(X * 2**k), where X is in [1, 2)
36  *           = log(X) + k * log(2).
37  *
38  * Let X = X_i + e, where X_i is the center of one of the intervals
39  * [-1.0/256, 1.0/256), [1.0/256, 3.0/256), .... [2.0-1.0/256, 2.0+1.0/256)
40  * and X is in this interval.  Then
41  *
42  *    log(X) = log(X_i + e)
43  *           = log(X_i * (1 + e / X_i))
44  *           = log(X_i) + log(1 + e / X_i).
45  *
46  * The values log(X_i) are tabulated below.  Let d = e / X_i and use
47  *
48  *    log(1 + d) = p(d)
49  *
50  * where p(d) = d - 0.5*d*d + ... is a special minimax polynomial of
51  * suitably high degree.
52  *
53  * To get sufficiently small roundoff errors, k * log(2), log(X_i), and
54  * sometimes (if |k| is not large) the first term in p(d) must be evaluated
55  * and added up in extra precision.  Extra precision is not needed for the
56  * rest of p(d).  In the worst case when k = 0 and log(X_i) is 0, the final
57  * error is controlled mainly by the error in the second term in p(d).  The
58  * error in this term itself is at most 0.5 ulps from the d*d operation in
59  * it.  The error in this term relative to the first term is thus at most
60  * 0.5 * |-0.5| * |d| < 1.0/1024 ulps.  We aim for an accumulated error of
61  * at most twice this at the point of the final rounding step.  Thus the
62  * final error should be at most 0.5 + 1.0/512 = 0.5020 ulps.  Exhaustive
63  * testing of a float variant of this function showed a maximum final error
64  * of 0.5008 ulps.  Non-exhaustive testing of a double variant of this
65  * function showed a maximum final error of 0.5078 ulps (near 1+1.0/256).
66  *
67  * We made the maximum of |d| (and thus the total relative error and the
68  * degree of p(d)) small by using a large number of intervals.  Using
69  * centers of intervals instead of endpoints reduces this maximum by a
70  * factor of 2 for a given number of intervals.  p(d) is special only
71  * in beginning with the Taylor coefficients 0 + 1*d, which tends to happen
72  * naturally.  The most accurate minimax polynomial of a given degree might
73  * be different, but then we wouldn't want it since we would have to do
74  * extra work to avoid roundoff error (especially for P0*d instead of d).
75  */
76 
77 #ifdef DEBUG
78 #include <fenv.h>
79 #endif
80 
81 #include "math.h"
82 #ifndef NO_STRUCT_RETURN
83 #define	STRUCT_RETURN
84 #endif
85 #include "math_private.h"
86 
87 #if !defined(NO_UTAB) && !defined(NO_UTABL)
88 #define	USE_UTAB
89 #endif
90 
91 /*
92  * Domain [-0.005280, 0.004838], range ~[-1.1577e-37, 1.1582e-37]:
93  * |log(1 + d)/d - p(d)| < 2**-122.7
94  */
95 static const long double
96 P2 = -0.5L,
97 P3 =  3.33333333333333333333333333333233795e-1L,	/*  0x15555555555555555555555554d42.0p-114L */
98 P4 = -2.49999999999999999999999999941139296e-1L,	/* -0x1ffffffffffffffffffffffdab14e.0p-115L */
99 P5 =  2.00000000000000000000000085468039943e-1L,	/*  0x19999999999999999999a6d3567f4.0p-115L */
100 P6 = -1.66666666666666666666696142372698408e-1L,	/* -0x15555555555555555567267a58e13.0p-115L */
101 P7 =  1.42857142857142857119522943477166120e-1L,	/*  0x1249249249249248ed79a0ae434de.0p-115L */
102 P8 = -1.24999999999999994863289015033581301e-1L;	/* -0x1fffffffffffffa13e91765e46140.0p-116L */
103 /* Double precision gives ~ 53 + log2(P9 * max(|d|)**8) ~= 120 bits. */
104 static const double
105 P9 =  1.1111111111111401e-1,		/*  0x1c71c71c71c7ed.0p-56 */
106 P10 = -1.0000000000040135e-1,		/* -0x199999999a0a92.0p-56 */
107 P11 =  9.0909090728136258e-2,		/*  0x1745d173962111.0p-56 */
108 P12 = -8.3333318851855284e-2,		/* -0x1555551722c7a3.0p-56 */
109 P13 =  7.6928634666404178e-2,		/*  0x13b1985204a4ae.0p-56 */
110 P14 = -7.1626810078462499e-2;		/* -0x12562276cdc5d0.0p-56 */
111 
112 static volatile const double zero = 0;
113 
114 #define	INTERVALS	128
115 #define	LOG2_INTERVALS	7
116 #define	TSIZE		(INTERVALS + 1)
117 #define	G(i)		(T[(i)].G)
118 #define	F_hi(i)		(T[(i)].F_hi)
119 #define	F_lo(i)		(T[(i)].F_lo)
120 #define	ln2_hi		F_hi(TSIZE - 1)
121 #define	ln2_lo		F_lo(TSIZE - 1)
122 #define	E(i)		(U[(i)].E)
123 #define	H(i)		(U[(i)].H)
124 
125 static const struct {
126 	float	G;			/* 1/(1 + i/128) rounded to 8/9 bits */
127 	float	F_hi;			/* log(1 / G_i) rounded (see below) */
128 	/* The compiler will insert 8 bytes of padding here. */
129 	long double F_lo;		/* next 113 bits for log(1 / G_i) */
130 } T[TSIZE] = {
131 	/*
132 	 * ln2_hi and each F_hi(i) are rounded to a number of bits that
133 	 * makes F_hi(i) + dk*ln2_hi exact for all i and all dk.
134 	 *
135 	 * The last entry (for X just below 2) is used to define ln2_hi
136 	 * and ln2_lo, to ensure that F_hi(i) and F_lo(i) cancel exactly
137 	 * with dk*ln2_hi and dk*ln2_lo, respectively, when dk = -1.
138 	 * This is needed for accuracy when x is just below 1.  (To avoid
139 	 * special cases, such x are "reduced" strangely to X just below
140 	 * 2 and dk = -1, and then the exact cancellation is needed
141 	 * because any the error from any non-exactness would be too
142 	 * large).
143 	 *
144 	 * The relevant range of dk is [-16445, 16383].  The maximum number
145 	 * of bits in F_hi(i) that works is very dependent on i but has
146 	 * a minimum of 93.  We only need about 12 bits in F_hi(i) for
147 	 * it to provide enough extra precision.
148 	 *
149 	 * We round F_hi(i) to 24 bits so that it can have type float,
150 	 * mainly to minimize the size of the table.  Using all 24 bits
151 	 * in a float for it automatically satisfies the above constraints.
152 	 */
153       { 0x800000.0p-23,  0,               0 },
154       { 0xfe0000.0p-24,  0x8080ac.0p-30, -0x14ee431dae6674afa0c4bfe16e8fd.0p-144L },
155       { 0xfc0000.0p-24,  0x8102b3.0p-29, -0x1db29ee2d83717be918e1119642ab.0p-144L },
156       { 0xfa0000.0p-24,  0xc24929.0p-29,  0x1191957d173697cf302cc9476f561.0p-143L },
157       { 0xf80000.0p-24,  0x820aec.0p-28,  0x13ce8888e02e78eba9b1113bc1c18.0p-142L },
158       { 0xf60000.0p-24,  0xa33577.0p-28, -0x17a4382ce6eb7bfa509bec8da5f22.0p-142L },
159       { 0xf48000.0p-24,  0xbc42cb.0p-28, -0x172a21161a107674986dcdca6709c.0p-143L },
160       { 0xf30000.0p-24,  0xd57797.0p-28, -0x1e09de07cb958897a3ea46e84abb3.0p-142L },
161       { 0xf10000.0p-24,  0xf7518e.0p-28,  0x1ae1eec1b036c484993c549c4bf40.0p-151L },
162       { 0xef0000.0p-24,  0x8cb9df.0p-27, -0x1d7355325d560d9e9ab3d6ebab580.0p-141L },
163       { 0xed8000.0p-24,  0x999ec0.0p-27, -0x1f9f02d256d5037108f4ec21e48cd.0p-142L },
164       { 0xec0000.0p-24,  0xa6988b.0p-27, -0x16fc0a9d12c17a70f7a684c596b12.0p-143L },
165       { 0xea0000.0p-24,  0xb80698.0p-27,  0x15d581c1e8da99ded322fb08b8462.0p-141L },
166       { 0xe80000.0p-24,  0xc99af3.0p-27, -0x1535b3ba8f150ae09996d7bb4653e.0p-143L },
167       { 0xe70000.0p-24,  0xd273b2.0p-27,  0x163786f5251aefe0ded34c8318f52.0p-145L },
168       { 0xe50000.0p-24,  0xe442c0.0p-27,  0x1bc4b2368e32d56699c1799a244d4.0p-144L },
169       { 0xe38000.0p-24,  0xf1b83f.0p-27,  0x1c6090f684e6766abceccab1d7174.0p-141L },
170       { 0xe20000.0p-24,  0xff448a.0p-27, -0x1890aa69ac9f4215f93936b709efb.0p-142L },
171       { 0xe08000.0p-24,  0x8673f6.0p-26,  0x1b9985194b6affd511b534b72a28e.0p-140L },
172       { 0xdf0000.0p-24,  0x8d515c.0p-26, -0x1dc08d61c6ef1d9b2ef7e68680598.0p-143L },
173       { 0xdd8000.0p-24,  0x943a9e.0p-26, -0x1f72a2dac729b3f46662238a9425a.0p-142L },
174       { 0xdc0000.0p-24,  0x9b2fe6.0p-26, -0x1fd4dfd3a0afb9691aed4d5e3df94.0p-140L },
175       { 0xda8000.0p-24,  0xa2315d.0p-26, -0x11b26121629c46c186384993e1c93.0p-142L },
176       { 0xd90000.0p-24,  0xa93f2f.0p-26,  0x1286d633e8e5697dc6a402a56fce1.0p-141L },
177       { 0xd78000.0p-24,  0xb05988.0p-26,  0x16128eba9367707ebfa540e45350c.0p-144L },
178       { 0xd60000.0p-24,  0xb78094.0p-26,  0x16ead577390d31ef0f4c9d43f79b2.0p-140L },
179       { 0xd50000.0p-24,  0xbc4c6c.0p-26,  0x151131ccf7c7b75e7d900b521c48d.0p-141L },
180       { 0xd38000.0p-24,  0xc3890a.0p-26, -0x115e2cd714bd06508aeb00d2ae3e9.0p-140L },
181       { 0xd20000.0p-24,  0xcad2d7.0p-26, -0x1847f406ebd3af80485c2f409633c.0p-142L },
182       { 0xd10000.0p-24,  0xcfb620.0p-26,  0x1c2259904d686581799fbce0b5f19.0p-141L },
183       { 0xcf8000.0p-24,  0xd71653.0p-26,  0x1ece57a8d5ae54f550444ecf8b995.0p-140L },
184       { 0xce0000.0p-24,  0xde843a.0p-26, -0x1f109d4bc4595412b5d2517aaac13.0p-141L },
185       { 0xcd0000.0p-24,  0xe37fde.0p-26,  0x1bc03dc271a74d3a85b5b43c0e727.0p-141L },
186       { 0xcb8000.0p-24,  0xeb050c.0p-26, -0x1bf2badc0df841a71b79dd5645b46.0p-145L },
187       { 0xca0000.0p-24,  0xf29878.0p-26, -0x18efededd89fbe0bcfbe6d6db9f66.0p-147L },
188       { 0xc90000.0p-24,  0xf7ad6f.0p-26,  0x1373ff977baa6911c7bafcb4d84fb.0p-141L },
189       { 0xc80000.0p-24,  0xfcc8e3.0p-26,  0x196766f2fb328337cc050c6d83b22.0p-140L },
190       { 0xc68000.0p-24,  0x823f30.0p-25,  0x19bd076f7c434e5fcf1a212e2a91e.0p-139L },
191       { 0xc58000.0p-24,  0x84d52c.0p-25, -0x1a327257af0f465e5ecab5f2a6f81.0p-139L },
192       { 0xc40000.0p-24,  0x88bc74.0p-25,  0x113f23def19c5a0fe396f40f1dda9.0p-141L },
193       { 0xc30000.0p-24,  0x8b5ae6.0p-25,  0x1759f6e6b37de945a049a962e66c6.0p-139L },
194       { 0xc20000.0p-24,  0x8dfccb.0p-25,  0x1ad35ca6ed5147bdb6ddcaf59c425.0p-141L },
195       { 0xc10000.0p-24,  0x90a22b.0p-25,  0x1a1d71a87deba46bae9827221dc98.0p-139L },
196       { 0xbf8000.0p-24,  0x94a0d8.0p-25, -0x139e5210c2b730e28aba001a9b5e0.0p-140L },
197       { 0xbe8000.0p-24,  0x974f16.0p-25, -0x18f6ebcff3ed72e23e13431adc4a5.0p-141L },
198       { 0xbd8000.0p-24,  0x9a00f1.0p-25, -0x1aa268be39aab7148e8d80caa10b7.0p-139L },
199       { 0xbc8000.0p-24,  0x9cb672.0p-25, -0x14c8815839c5663663d15faed7771.0p-139L },
200       { 0xbb0000.0p-24,  0xa0cda1.0p-25,  0x1eaf46390dbb2438273918db7df5c.0p-141L },
201       { 0xba0000.0p-24,  0xa38c6e.0p-25,  0x138e20d831f698298adddd7f32686.0p-141L },
202       { 0xb90000.0p-24,  0xa64f05.0p-25, -0x1e8d3c41123615b147a5d47bc208f.0p-142L },
203       { 0xb80000.0p-24,  0xa91570.0p-25,  0x1ce28f5f3840b263acb4351104631.0p-140L },
204       { 0xb70000.0p-24,  0xabdfbb.0p-25, -0x186e5c0a42423457e22d8c650b355.0p-139L },
205       { 0xb60000.0p-24,  0xaeadef.0p-25, -0x14d41a0b2a08a465dc513b13f567d.0p-143L },
206       { 0xb50000.0p-24,  0xb18018.0p-25,  0x16755892770633947ffe651e7352f.0p-139L },
207       { 0xb40000.0p-24,  0xb45642.0p-25, -0x16395ebe59b15228bfe8798d10ff0.0p-142L },
208       { 0xb30000.0p-24,  0xb73077.0p-25,  0x1abc65c8595f088b61a335f5b688c.0p-140L },
209       { 0xb20000.0p-24,  0xba0ec4.0p-25, -0x1273089d3dad88e7d353e9967d548.0p-139L },
210       { 0xb10000.0p-24,  0xbcf133.0p-25,  0x10f9f67b1f4bbf45de06ecebfaf6d.0p-139L },
211       { 0xb00000.0p-24,  0xbfd7d2.0p-25, -0x109fab904864092b34edda19a831e.0p-140L },
212       { 0xaf0000.0p-24,  0xc2c2ac.0p-25, -0x1124680aa43333221d8a9b475a6ba.0p-139L },
213       { 0xae8000.0p-24,  0xc439b3.0p-25, -0x1f360cc4710fbfe24b633f4e8d84d.0p-140L },
214       { 0xad8000.0p-24,  0xc72afd.0p-25, -0x132d91f21d89c89c45003fc5d7807.0p-140L },
215       { 0xac8000.0p-24,  0xca20a2.0p-25, -0x16bf9b4d1f8da8002f2449e174504.0p-139L },
216       { 0xab8000.0p-24,  0xcd1aae.0p-25,  0x19deb5ce6a6a8717d5626e16acc7d.0p-141L },
217       { 0xaa8000.0p-24,  0xd0192f.0p-25,  0x1a29fb48f7d3ca87dabf351aa41f4.0p-139L },
218       { 0xaa0000.0p-24,  0xd19a20.0p-25,  0x1127d3c6457f9d79f51dcc73014c9.0p-141L },
219       { 0xa90000.0p-24,  0xd49f6a.0p-25, -0x1ba930e486a0ac42d1bf9199188e7.0p-141L },
220       { 0xa80000.0p-24,  0xd7a94b.0p-25, -0x1b6e645f31549dd1160bcc45c7e2c.0p-139L },
221       { 0xa70000.0p-24,  0xdab7d0.0p-25,  0x1118a425494b610665377f15625b6.0p-140L },
222       { 0xa68000.0p-24,  0xdc40d5.0p-25,  0x1966f24d29d3a2d1b2176010478be.0p-140L },
223       { 0xa58000.0p-24,  0xdf566d.0p-25, -0x1d8e52eb2248f0c95dd83626d7333.0p-142L },
224       { 0xa48000.0p-24,  0xe270ce.0p-25, -0x1ee370f96e6b67ccb006a5b9890ea.0p-140L },
225       { 0xa40000.0p-24,  0xe3ffce.0p-25,  0x1d155324911f56db28da4d629d00a.0p-140L },
226       { 0xa30000.0p-24,  0xe72179.0p-25, -0x1fe6e2f2f867d8f4d60c713346641.0p-140L },
227       { 0xa20000.0p-24,  0xea4812.0p-25,  0x1b7be9add7f4d3b3d406b6cbf3ce5.0p-140L },
228       { 0xa18000.0p-24,  0xebdd3d.0p-25,  0x1b3cfb3f7511dd73692609040ccc2.0p-139L },
229       { 0xa08000.0p-24,  0xef0b5b.0p-25, -0x1220de1f7301901b8ad85c25afd09.0p-139L },
230       { 0xa00000.0p-24,  0xf0a451.0p-25, -0x176364c9ac81cc8a4dfb804de6867.0p-140L },
231       { 0x9f0000.0p-24,  0xf3da16.0p-25,  0x1eed6b9aafac8d42f78d3e65d3727.0p-141L },
232       { 0x9e8000.0p-24,  0xf576e9.0p-25,  0x1d593218675af269647b783d88999.0p-139L },
233       { 0x9d8000.0p-24,  0xf8b47c.0p-25, -0x13e8eb7da053e063714615f7cc91d.0p-144L },
234       { 0x9d0000.0p-24,  0xfa553f.0p-25,  0x1c063259bcade02951686d5373aec.0p-139L },
235       { 0x9c0000.0p-24,  0xfd9ac5.0p-25,  0x1ef491085fa3c1649349630531502.0p-139L },
236       { 0x9b8000.0p-24,  0xff3f8c.0p-25,  0x1d607a7c2b8c5320619fb9433d841.0p-139L },
237       { 0x9a8000.0p-24,  0x814697.0p-24, -0x12ad3817004f3f0bdff99f932b273.0p-138L },
238       { 0x9a0000.0p-24,  0x821b06.0p-24, -0x189fc53117f9e54e78103a2bc1767.0p-141L },
239       { 0x990000.0p-24,  0x83c5f8.0p-24,  0x14cf15a048907b7d7f47ddb45c5a3.0p-139L },
240       { 0x988000.0p-24,  0x849c7d.0p-24,  0x1cbb1d35fb82873b04a9af1dd692c.0p-138L },
241       { 0x978000.0p-24,  0x864ba6.0p-24,  0x1128639b814f9b9770d8cb6573540.0p-138L },
242       { 0x970000.0p-24,  0x87244c.0p-24,  0x184733853300f002e836dfd47bd41.0p-139L },
243       { 0x968000.0p-24,  0x87fdaa.0p-24,  0x109d23aef77dd5cd7cc94306fb3ff.0p-140L },
244       { 0x958000.0p-24,  0x89b293.0p-24, -0x1a81ef367a59de2b41eeebd550702.0p-138L },
245       { 0x950000.0p-24,  0x8a8e20.0p-24, -0x121ad3dbb2f45275c917a30df4ac9.0p-138L },
246       { 0x948000.0p-24,  0x8b6a6a.0p-24, -0x1cfb981628af71a89df4e6df2e93b.0p-139L },
247       { 0x938000.0p-24,  0x8d253a.0p-24, -0x1d21730ea76cfdec367828734cae5.0p-139L },
248       { 0x930000.0p-24,  0x8e03c2.0p-24,  0x135cc00e566f76b87333891e0dec4.0p-138L },
249       { 0x928000.0p-24,  0x8ee30d.0p-24, -0x10fcb5df257a263e3bf446c6e3f69.0p-140L },
250       { 0x918000.0p-24,  0x90a3ee.0p-24, -0x16e171b15433d723a4c7380a448d8.0p-139L },
251       { 0x910000.0p-24,  0x918587.0p-24, -0x1d050da07f3236f330972da2a7a87.0p-139L },
252       { 0x908000.0p-24,  0x9267e7.0p-24,  0x1be03669a5268d21148c6002becd3.0p-139L },
253       { 0x8f8000.0p-24,  0x942f04.0p-24,  0x10b28e0e26c336af90e00533323ba.0p-139L },
254       { 0x8f0000.0p-24,  0x9513c3.0p-24,  0x1a1d820da57cf2f105a89060046aa.0p-138L },
255       { 0x8e8000.0p-24,  0x95f950.0p-24, -0x19ef8f13ae3cf162409d8ea99d4c0.0p-139L },
256       { 0x8e0000.0p-24,  0x96dfab.0p-24, -0x109e417a6e507b9dc10dac743ad7a.0p-138L },
257       { 0x8d0000.0p-24,  0x98aed2.0p-24,  0x10d01a2c5b0e97c4990b23d9ac1f5.0p-139L },
258       { 0x8c8000.0p-24,  0x9997a2.0p-24, -0x1d6a50d4b61ea74540bdd2aa99a42.0p-138L },
259       { 0x8c0000.0p-24,  0x9a8145.0p-24,  0x1b3b190b83f9527e6aba8f2d783c1.0p-138L },
260       { 0x8b8000.0p-24,  0x9b6bbf.0p-24,  0x13a69fad7e7abe7ba81c664c107e0.0p-138L },
261       { 0x8b0000.0p-24,  0x9c5711.0p-24, -0x11cd12316f576aad348ae79867223.0p-138L },
262       { 0x8a8000.0p-24,  0x9d433b.0p-24,  0x1c95c444b807a246726b304ccae56.0p-139L },
263       { 0x898000.0p-24,  0x9f1e22.0p-24, -0x1b9c224ea698c2f9b47466d6123fe.0p-139L },
264       { 0x890000.0p-24,  0xa00ce1.0p-24,  0x125ca93186cf0f38b4619a2483399.0p-141L },
265       { 0x888000.0p-24,  0xa0fc80.0p-24, -0x1ee38a7bc228b3597043be78eaf49.0p-139L },
266       { 0x880000.0p-24,  0xa1ed00.0p-24, -0x1a0db876613d204147dc69a07a649.0p-138L },
267       { 0x878000.0p-24,  0xa2de62.0p-24,  0x193224e8516c008d3602a7b41c6e8.0p-139L },
268       { 0x870000.0p-24,  0xa3d0a9.0p-24,  0x1fa28b4d2541aca7d5844606b2421.0p-139L },
269       { 0x868000.0p-24,  0xa4c3d6.0p-24,  0x1c1b5760fb4571acbcfb03f16daf4.0p-138L },
270       { 0x858000.0p-24,  0xa6acea.0p-24,  0x1fed5d0f65949c0a345ad743ae1ae.0p-140L },
271       { 0x850000.0p-24,  0xa7a2d4.0p-24,  0x1ad270c9d749362382a7688479e24.0p-140L },
272       { 0x848000.0p-24,  0xa899ab.0p-24,  0x199ff15ce532661ea9643a3a2d378.0p-139L },
273       { 0x840000.0p-24,  0xa99171.0p-24,  0x1a19e15ccc45d257530a682b80490.0p-139L },
274       { 0x838000.0p-24,  0xaa8a28.0p-24, -0x121a14ec532b35ba3e1f868fd0b5e.0p-140L },
275       { 0x830000.0p-24,  0xab83d1.0p-24,  0x1aee319980bff3303dd481779df69.0p-139L },
276       { 0x828000.0p-24,  0xac7e6f.0p-24, -0x18ffd9e3900345a85d2d86161742e.0p-140L },
277       { 0x820000.0p-24,  0xad7a03.0p-24, -0x1e4db102ce29f79b026b64b42caa1.0p-140L },
278       { 0x818000.0p-24,  0xae768f.0p-24,  0x17c35c55a04a82ab19f77652d977a.0p-141L },
279       { 0x810000.0p-24,  0xaf7415.0p-24,  0x1448324047019b48d7b98c1cf7234.0p-138L },
280       { 0x808000.0p-24,  0xb07298.0p-24, -0x1750ee3915a197e9c7359dd94152f.0p-138L },
281       { 0x800000.0p-24,  0xb17218.0p-24, -0x105c610ca86c3898cff81a12a17e2.0p-141L },
282 };
283 
284 #ifdef USE_UTAB
285 static const struct {
286 	float	H;			/* 1 + i/INTERVALS (exact) */
287 	float	E;			/* H(i) * G(i) - 1 (exact) */
288 } U[TSIZE] = {
289 	{ 0x800000.0p-23,  0 },
290 	{ 0x810000.0p-23, -0x800000.0p-37 },
291 	{ 0x820000.0p-23, -0x800000.0p-35 },
292 	{ 0x830000.0p-23, -0x900000.0p-34 },
293 	{ 0x840000.0p-23, -0x800000.0p-33 },
294 	{ 0x850000.0p-23, -0xc80000.0p-33 },
295 	{ 0x860000.0p-23, -0xa00000.0p-36 },
296 	{ 0x870000.0p-23,  0x940000.0p-33 },
297 	{ 0x880000.0p-23,  0x800000.0p-35 },
298 	{ 0x890000.0p-23, -0xc80000.0p-34 },
299 	{ 0x8a0000.0p-23,  0xe00000.0p-36 },
300 	{ 0x8b0000.0p-23,  0x900000.0p-33 },
301 	{ 0x8c0000.0p-23, -0x800000.0p-35 },
302 	{ 0x8d0000.0p-23, -0xe00000.0p-33 },
303 	{ 0x8e0000.0p-23,  0x880000.0p-33 },
304 	{ 0x8f0000.0p-23, -0xa80000.0p-34 },
305 	{ 0x900000.0p-23, -0x800000.0p-35 },
306 	{ 0x910000.0p-23,  0x800000.0p-37 },
307 	{ 0x920000.0p-23,  0x900000.0p-35 },
308 	{ 0x930000.0p-23,  0xd00000.0p-35 },
309 	{ 0x940000.0p-23,  0xe00000.0p-35 },
310 	{ 0x950000.0p-23,  0xc00000.0p-35 },
311 	{ 0x960000.0p-23,  0xe00000.0p-36 },
312 	{ 0x970000.0p-23, -0x800000.0p-38 },
313 	{ 0x980000.0p-23, -0xc00000.0p-35 },
314 	{ 0x990000.0p-23, -0xd00000.0p-34 },
315 	{ 0x9a0000.0p-23,  0x880000.0p-33 },
316 	{ 0x9b0000.0p-23,  0xe80000.0p-35 },
317 	{ 0x9c0000.0p-23, -0x800000.0p-35 },
318 	{ 0x9d0000.0p-23,  0xb40000.0p-33 },
319 	{ 0x9e0000.0p-23,  0x880000.0p-34 },
320 	{ 0x9f0000.0p-23, -0xe00000.0p-35 },
321 	{ 0xa00000.0p-23,  0x800000.0p-33 },
322 	{ 0xa10000.0p-23, -0x900000.0p-36 },
323 	{ 0xa20000.0p-23, -0xb00000.0p-33 },
324 	{ 0xa30000.0p-23, -0xa00000.0p-36 },
325 	{ 0xa40000.0p-23,  0x800000.0p-33 },
326 	{ 0xa50000.0p-23, -0xf80000.0p-35 },
327 	{ 0xa60000.0p-23,  0x880000.0p-34 },
328 	{ 0xa70000.0p-23, -0x900000.0p-33 },
329 	{ 0xa80000.0p-23, -0x800000.0p-35 },
330 	{ 0xa90000.0p-23,  0x900000.0p-34 },
331 	{ 0xaa0000.0p-23,  0xa80000.0p-33 },
332 	{ 0xab0000.0p-23, -0xac0000.0p-34 },
333 	{ 0xac0000.0p-23, -0x800000.0p-37 },
334 	{ 0xad0000.0p-23,  0xf80000.0p-35 },
335 	{ 0xae0000.0p-23,  0xf80000.0p-34 },
336 	{ 0xaf0000.0p-23, -0xac0000.0p-33 },
337 	{ 0xb00000.0p-23, -0x800000.0p-33 },
338 	{ 0xb10000.0p-23, -0xb80000.0p-34 },
339 	{ 0xb20000.0p-23, -0x800000.0p-34 },
340 	{ 0xb30000.0p-23, -0xb00000.0p-35 },
341 	{ 0xb40000.0p-23, -0x800000.0p-35 },
342 	{ 0xb50000.0p-23, -0xe00000.0p-36 },
343 	{ 0xb60000.0p-23, -0x800000.0p-35 },
344 	{ 0xb70000.0p-23, -0xb00000.0p-35 },
345 	{ 0xb80000.0p-23, -0x800000.0p-34 },
346 	{ 0xb90000.0p-23, -0xb80000.0p-34 },
347 	{ 0xba0000.0p-23, -0x800000.0p-33 },
348 	{ 0xbb0000.0p-23, -0xac0000.0p-33 },
349 	{ 0xbc0000.0p-23,  0x980000.0p-33 },
350 	{ 0xbd0000.0p-23,  0xbc0000.0p-34 },
351 	{ 0xbe0000.0p-23,  0xe00000.0p-36 },
352 	{ 0xbf0000.0p-23, -0xb80000.0p-35 },
353 	{ 0xc00000.0p-23, -0x800000.0p-33 },
354 	{ 0xc10000.0p-23,  0xa80000.0p-33 },
355 	{ 0xc20000.0p-23,  0x900000.0p-34 },
356 	{ 0xc30000.0p-23, -0x800000.0p-35 },
357 	{ 0xc40000.0p-23, -0x900000.0p-33 },
358 	{ 0xc50000.0p-23,  0x820000.0p-33 },
359 	{ 0xc60000.0p-23,  0x800000.0p-38 },
360 	{ 0xc70000.0p-23, -0x820000.0p-33 },
361 	{ 0xc80000.0p-23,  0x800000.0p-33 },
362 	{ 0xc90000.0p-23, -0xa00000.0p-36 },
363 	{ 0xca0000.0p-23, -0xb00000.0p-33 },
364 	{ 0xcb0000.0p-23,  0x840000.0p-34 },
365 	{ 0xcc0000.0p-23, -0xd00000.0p-34 },
366 	{ 0xcd0000.0p-23,  0x800000.0p-33 },
367 	{ 0xce0000.0p-23, -0xe00000.0p-35 },
368 	{ 0xcf0000.0p-23,  0xa60000.0p-33 },
369 	{ 0xd00000.0p-23, -0x800000.0p-35 },
370 	{ 0xd10000.0p-23,  0xb40000.0p-33 },
371 	{ 0xd20000.0p-23, -0x800000.0p-35 },
372 	{ 0xd30000.0p-23,  0xaa0000.0p-33 },
373 	{ 0xd40000.0p-23, -0xe00000.0p-35 },
374 	{ 0xd50000.0p-23,  0x880000.0p-33 },
375 	{ 0xd60000.0p-23, -0xd00000.0p-34 },
376 	{ 0xd70000.0p-23,  0x9c0000.0p-34 },
377 	{ 0xd80000.0p-23, -0xb00000.0p-33 },
378 	{ 0xd90000.0p-23, -0x800000.0p-38 },
379 	{ 0xda0000.0p-23,  0xa40000.0p-33 },
380 	{ 0xdb0000.0p-23, -0xdc0000.0p-34 },
381 	{ 0xdc0000.0p-23,  0xc00000.0p-35 },
382 	{ 0xdd0000.0p-23,  0xca0000.0p-33 },
383 	{ 0xde0000.0p-23, -0xb80000.0p-34 },
384 	{ 0xdf0000.0p-23,  0xd00000.0p-35 },
385 	{ 0xe00000.0p-23,  0xc00000.0p-33 },
386 	{ 0xe10000.0p-23, -0xf40000.0p-34 },
387 	{ 0xe20000.0p-23,  0x800000.0p-37 },
388 	{ 0xe30000.0p-23,  0x860000.0p-33 },
389 	{ 0xe40000.0p-23, -0xc80000.0p-33 },
390 	{ 0xe50000.0p-23, -0xa80000.0p-34 },
391 	{ 0xe60000.0p-23,  0xe00000.0p-36 },
392 	{ 0xe70000.0p-23,  0x880000.0p-33 },
393 	{ 0xe80000.0p-23, -0xe00000.0p-33 },
394 	{ 0xe90000.0p-23, -0xfc0000.0p-34 },
395 	{ 0xea0000.0p-23, -0x800000.0p-35 },
396 	{ 0xeb0000.0p-23,  0xe80000.0p-35 },
397 	{ 0xec0000.0p-23,  0x900000.0p-33 },
398 	{ 0xed0000.0p-23,  0xe20000.0p-33 },
399 	{ 0xee0000.0p-23, -0xac0000.0p-33 },
400 	{ 0xef0000.0p-23, -0xc80000.0p-34 },
401 	{ 0xf00000.0p-23, -0x800000.0p-35 },
402 	{ 0xf10000.0p-23,  0x800000.0p-35 },
403 	{ 0xf20000.0p-23,  0xb80000.0p-34 },
404 	{ 0xf30000.0p-23,  0x940000.0p-33 },
405 	{ 0xf40000.0p-23,  0xc80000.0p-33 },
406 	{ 0xf50000.0p-23, -0xf20000.0p-33 },
407 	{ 0xf60000.0p-23, -0xc80000.0p-33 },
408 	{ 0xf70000.0p-23, -0xa20000.0p-33 },
409 	{ 0xf80000.0p-23, -0x800000.0p-33 },
410 	{ 0xf90000.0p-23, -0xc40000.0p-34 },
411 	{ 0xfa0000.0p-23, -0x900000.0p-34 },
412 	{ 0xfb0000.0p-23, -0xc80000.0p-35 },
413 	{ 0xfc0000.0p-23, -0x800000.0p-35 },
414 	{ 0xfd0000.0p-23, -0x900000.0p-36 },
415 	{ 0xfe0000.0p-23, -0x800000.0p-37 },
416 	{ 0xff0000.0p-23, -0x800000.0p-39 },
417 	{ 0x800000.0p-22,  0 },
418 };
419 #endif /* USE_UTAB */
420 
421 #ifdef STRUCT_RETURN
422 #define	RETURN1(rp, v) do {	\
423 	(rp)->hi = (v);		\
424 	(rp)->lo_set = 0;	\
425 	return;			\
426 } while (0)
427 
428 #define	RETURN2(rp, h, l) do {	\
429 	(rp)->hi = (h);		\
430 	(rp)->lo = (l);		\
431 	(rp)->lo_set = 1;	\
432 	return;			\
433 } while (0)
434 
435 struct ld {
436 	long double hi;
437 	long double lo;
438 	int	lo_set;
439 };
440 #else
441 #define	RETURN1(rp, v)	RETURNF(v)
442 #define	RETURN2(rp, h, l)	RETURNI((h) + (l))
443 #endif
444 
445 #ifdef STRUCT_RETURN
446 static inline __always_inline void
k_logl(long double x,struct ld * rp)447 k_logl(long double x, struct ld *rp)
448 #else
449 long double
450 logl(long double x)
451 #endif
452 {
453 	long double d, val_hi, val_lo;
454 	double dd, dk;
455 	uint64_t lx, llx;
456 	int i, k;
457 	uint16_t hx;
458 
459 	EXTRACT_LDBL128_WORDS(hx, lx, llx, x);
460 	k = -16383;
461 #if 0 /* Hard to do efficiently.  Don't do it until we support all modes. */
462 	if (x == 1)
463 		RETURN1(rp, 0);		/* log(1) = +0 in all rounding modes */
464 #endif
465 	if (hx == 0 || hx >= 0x8000) {	/* zero, negative or subnormal? */
466 		if (((hx & 0x7fff) | lx | llx) == 0)
467 			RETURN1(rp, -1 / zero);	/* log(+-0) = -Inf */
468 		if (hx != 0)
469 			/* log(neg or NaN) = qNaN: */
470 			RETURN1(rp, (x - x) / zero);
471 		x *= 0x1.0p113;		/* subnormal; scale up x */
472 		EXTRACT_LDBL128_WORDS(hx, lx, llx, x);
473 		k = -16383 - 113;
474 	} else if (hx >= 0x7fff)
475 		RETURN1(rp, x + x);	/* log(Inf or NaN) = Inf or qNaN */
476 #ifndef STRUCT_RETURN
477 	ENTERI();
478 #endif
479 	k += hx;
480 	dk = k;
481 
482 	/* Scale x to be in [1, 2). */
483 	SET_LDBL_EXPSIGN(x, 0x3fff);
484 
485 	/* 0 <= i <= INTERVALS: */
486 #define	L2I	(49 - LOG2_INTERVALS)
487 	i = (lx + (1LL << (L2I - 2))) >> (L2I - 1);
488 
489 	/*
490 	 * -0.005280 < d < 0.004838.  In particular, the infinite-
491 	 * precision |d| is <= 2**-7.  Rounding of G(i) to 8 bits
492 	 * ensures that d is representable without extra precision for
493 	 * this bound on |d| (since when this calculation is expressed
494 	 * as x*G(i)-1, the multiplication needs as many extra bits as
495 	 * G(i) has and the subtraction cancels 8 bits).  But for
496 	 * most i (107 cases out of 129), the infinite-precision |d|
497 	 * is <= 2**-8.  G(i) is rounded to 9 bits for such i to give
498 	 * better accuracy (this works by improving the bound on |d|,
499 	 * which in turn allows rounding to 9 bits in more cases).
500 	 * This is only important when the original x is near 1 -- it
501 	 * lets us avoid using a special method to give the desired
502 	 * accuracy for such x.
503 	 */
504 	if (0)
505 		d = x * G(i) - 1;
506 	else {
507 #ifdef USE_UTAB
508 		d = (x - H(i)) * G(i) + E(i);
509 #else
510 		long double x_hi;
511 		double x_lo;
512 
513 		/*
514 		 * Split x into x_hi + x_lo to calculate x*G(i)-1 exactly.
515 		 * G(i) has at most 9 bits, so the splitting point is not
516 		 * critical.
517 		 */
518 		INSERT_LDBL128_WORDS(x_hi, 0x3fff, lx,
519 		    llx & 0xffffffffff000000ULL);
520 		x_lo = x - x_hi;
521 		d = x_hi * G(i) - 1 + x_lo * G(i);
522 #endif
523 	}
524 
525 	/*
526 	 * Our algorithm depends on exact cancellation of F_lo(i) and
527 	 * F_hi(i) with dk*ln_2_lo and dk*ln2_hi when k is -1 and i is
528 	 * at the end of the table.  This and other technical complications
529 	 * make it difficult to avoid the double scaling in (dk*ln2) *
530 	 * log(base) for base != e without losing more accuracy and/or
531 	 * efficiency than is gained.
532 	 */
533 	/*
534 	 * Use double precision operations wherever possible, since
535 	 * long double operations are emulated and were very slow on
536 	 * the old sparc64 and unknown on the newer aarch64 and riscv
537 	 * machines.  Also, don't try to improve parallelism by
538 	 * increasing the number of operations, since any parallelism
539 	 * on such machines is needed for the emulation.  Horner's
540 	 * method is good for this, and is also good for accuracy.
541 	 * Horner's method doesn't handle the `lo' term well, either
542 	 * for efficiency or accuracy.  However, for accuracy we
543 	 * evaluate d * d * P2 separately to take advantage of by P2
544 	 * being exact, and this gives a good place to sum the 'lo'
545 	 * term too.
546 	 */
547 	dd = (double)d;
548 	val_lo = d * d * d * (P3 +
549 	    d * (P4 + d * (P5 + d * (P6 + d * (P7 + d * (P8 +
550 	    dd * (P9 + dd * (P10 + dd * (P11 + dd * (P12 + dd * (P13 +
551 	    dd * P14))))))))))) + (F_lo(i) + dk * ln2_lo) + d * d * P2;
552 	val_hi = d;
553 #ifdef DEBUG
554 	if (fetestexcept(FE_UNDERFLOW))
555 		breakpoint();
556 #endif
557 
558 	_3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi);
559 	RETURN2(rp, val_hi, val_lo);
560 }
561 
562 long double
log1pl(long double x)563 log1pl(long double x)
564 {
565 	long double d, d_hi, f_lo, val_hi, val_lo;
566 	long double f_hi, twopminusk;
567 	double d_lo, dd, dk;
568 	uint64_t lx, llx;
569 	int i, k;
570 	int16_t ax, hx;
571 
572 	EXTRACT_LDBL128_WORDS(hx, lx, llx, x);
573 	if (hx < 0x3fff) {		/* x < 1, or x neg NaN */
574 		ax = hx & 0x7fff;
575 		if (ax >= 0x3fff) {	/* x <= -1, or x neg NaN */
576 			if (ax == 0x3fff && (lx | llx) == 0)
577 				RETURNF(-1 / zero);	/* log1p(-1) = -Inf */
578 			/* log1p(x < 1, or x NaN) = qNaN: */
579 			RETURNF((x - x) / (x - x));
580 		}
581 		if (ax <= 0x3f8d) {	/* |x| < 2**-113 */
582 			if ((int)x == 0)
583 				RETURNF(x);	/* x with inexact if x != 0 */
584 		}
585 		f_hi = 1;
586 		f_lo = x;
587 	} else if (hx >= 0x7fff) {	/* x +Inf or non-neg NaN */
588 		RETURNF(x + x);		/* log1p(Inf or NaN) = Inf or qNaN */
589 	} else if (hx < 0x40e1) {	/* 1 <= x < 2**226 */
590 		f_hi = x;
591 		f_lo = 1;
592 	} else {			/* 2**226 <= x < +Inf */
593 		f_hi = x;
594 		f_lo = 0;		/* avoid underflow of the P3 term */
595 	}
596 	ENTERI();
597 	x = f_hi + f_lo;
598 	f_lo = (f_hi - x) + f_lo;
599 
600 	EXTRACT_LDBL128_WORDS(hx, lx, llx, x);
601 	k = -16383;
602 
603 	k += hx;
604 	dk = k;
605 
606 	SET_LDBL_EXPSIGN(x, 0x3fff);
607 	twopminusk = 1;
608 	SET_LDBL_EXPSIGN(twopminusk, 0x7ffe - (hx & 0x7fff));
609 	f_lo *= twopminusk;
610 
611 	i = (lx + (1LL << (L2I - 2))) >> (L2I - 1);
612 
613 	/*
614 	 * x*G(i)-1 (with a reduced x) can be represented exactly, as
615 	 * above, but now we need to evaluate the polynomial on d =
616 	 * (x+f_lo)*G(i)-1 and extra precision is needed for that.
617 	 * Since x+x_lo is a hi+lo decomposition and subtracting 1
618 	 * doesn't lose too many bits, an inexact calculation for
619 	 * f_lo*G(i) is good enough.
620 	 */
621 	if (0)
622 		d_hi = x * G(i) - 1;
623 	else {
624 #ifdef USE_UTAB
625 		d_hi = (x - H(i)) * G(i) + E(i);
626 #else
627 		long double x_hi;
628 		double x_lo;
629 
630 		INSERT_LDBL128_WORDS(x_hi, 0x3fff, lx,
631 		    llx & 0xffffffffff000000ULL);
632 		x_lo = x - x_hi;
633 		d_hi = x_hi * G(i) - 1 + x_lo * G(i);
634 #endif
635 	}
636 	d_lo = f_lo * G(i);
637 
638 	/*
639 	 * This is _2sumF(d_hi, d_lo) inlined.  The condition
640 	 * (d_hi == 0 || |d_hi| >= |d_lo|) for using _2sumF() is not
641 	 * always satisifed, so it is not clear that this works, but
642 	 * it works in practice.  It works even if it gives a wrong
643 	 * normalized d_lo, since |d_lo| > |d_hi| implies that i is
644 	 * nonzero and d is tiny, so the F(i) term dominates d_lo.
645 	 * In float precision:
646 	 * (By exhaustive testing, the worst case is d_hi = 0x1.bp-25.
647 	 * And if d is only a little tinier than that, we would have
648 	 * another underflow problem for the P3 term; this is also ruled
649 	 * out by exhaustive testing.)
650 	 */
651 	d = d_hi + d_lo;
652 	d_lo = d_hi - d + d_lo;
653 	d_hi = d;
654 
655 	dd = (double)d;
656 	val_lo = d * d * d * (P3 +
657 	    d * (P4 + d * (P5 + d * (P6 + d * (P7 + d * (P8 +
658 	    dd * (P9 + dd * (P10 + dd * (P11 + dd * (P12 + dd * (P13 +
659 	    dd * P14))))))))))) + (F_lo(i) + dk * ln2_lo + d_lo) + d * d * P2;
660 	val_hi = d_hi;
661 #ifdef DEBUG
662 	if (fetestexcept(FE_UNDERFLOW))
663 		breakpoint();
664 #endif
665 
666 	_3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi);
667 	RETURNI(val_hi + val_lo);
668 }
669 
670 #ifdef STRUCT_RETURN
671 
672 long double
logl(long double x)673 logl(long double x)
674 {
675 	struct ld r;
676 
677 	ENTERI();
678 	k_logl(x, &r);
679 	RETURNSPI(&r);
680 }
681 
682 /*
683  * 29+113 bit decompositions.  The bits are distributed so that the products
684  * of the hi terms are exact in double precision.  The types are chosen so
685  * that the products of the hi terms are done in at least double precision,
686  * without any explicit conversions.  More natural choices would require a
687  * slow long double precision multiplication.
688  */
689 static const double
690 invln10_hi =  4.3429448176175356e-1,		/*  0x1bcb7b15000000.0p-54 */
691 invln2_hi =  1.4426950402557850e0;		/*  0x17154765000000.0p-52 */
692 static const long double
693 invln10_lo =  1.41498268538580090791605082294397000e-10L,	/*  0x137287195355baaafad33dc323ee3.0p-145L */
694 invln2_lo =  6.33178418956604368501892137426645911e-10L,	/*  0x15c17f0bbbe87fed0691d3e88eb57.0p-143L */
695 invln10_lo_plus_hi = invln10_lo + invln10_hi,
696 invln2_lo_plus_hi = invln2_lo + invln2_hi;
697 
698 long double
log10l(long double x)699 log10l(long double x)
700 {
701 	struct ld r;
702 	long double hi, lo;
703 
704 	ENTERI();
705 	k_logl(x, &r);
706 	if (!r.lo_set)
707 		RETURNI(r.hi);
708 	_2sumF(r.hi, r.lo);
709 	hi = (float)r.hi;
710 	lo = r.lo + (r.hi - hi);
711 	RETURNI(invln10_hi * hi + (invln10_lo_plus_hi * lo + invln10_lo * hi));
712 }
713 
714 long double
log2l(long double x)715 log2l(long double x)
716 {
717 	struct ld r;
718 	long double hi, lo;
719 
720 	ENTERI();
721 	k_logl(x, &r);
722 	if (!r.lo_set)
723 		RETURNI(r.hi);
724 	_2sumF(r.hi, r.lo);
725 	hi = (float)r.hi;
726 	lo = r.lo + (r.hi - hi);
727 	RETURNI(invln2_hi * hi + (invln2_lo_plus_hi * lo + invln2_lo * hi));
728 }
729 
730 #endif /* STRUCT_RETURN */
731