xref: /netbsd-src/external/mit/lua/dist/src/lmathlib.c (revision bdda0531de537df87feb2bf576711ab1be9b3675)
1 /*	$NetBSD: lmathlib.c,v 1.11 2023/06/08 21:12:08 nikita Exp $	*/
2 
3 /*
4 ** Id: lmathlib.c
5 ** Standard mathematical library
6 ** See Copyright Notice in lua.h
7 */
8 
9 #define lmathlib_c
10 #define LUA_LIB
11 
12 #include "lprefix.h"
13 
14 
15 #include <float.h>
16 #include <limits.h>
17 #include <math.h>
18 #include <stdlib.h>
19 #include <time.h>
20 
21 #include "lua.h"
22 
23 #include "lauxlib.h"
24 #include "lualib.h"
25 
26 
27 #undef PI
28 #define PI	(l_mathop(3.141592653589793238462643383279502884))
29 
30 
math_abs(lua_State * L)31 static int math_abs (lua_State *L) {
32   if (lua_isinteger(L, 1)) {
33     lua_Integer n = lua_tointeger(L, 1);
34     if (n < 0) n = (lua_Integer)(0u - (lua_Unsigned)n);
35     lua_pushinteger(L, n);
36   }
37   else
38     lua_pushnumber(L, l_mathop(fabs)(luaL_checknumber(L, 1)));
39   return 1;
40 }
41 
math_sin(lua_State * L)42 static int math_sin (lua_State *L) {
43   lua_pushnumber(L, l_mathop(sin)(luaL_checknumber(L, 1)));
44   return 1;
45 }
46 
math_cos(lua_State * L)47 static int math_cos (lua_State *L) {
48   lua_pushnumber(L, l_mathop(cos)(luaL_checknumber(L, 1)));
49   return 1;
50 }
51 
math_tan(lua_State * L)52 static int math_tan (lua_State *L) {
53   lua_pushnumber(L, l_mathop(tan)(luaL_checknumber(L, 1)));
54   return 1;
55 }
56 
math_asin(lua_State * L)57 static int math_asin (lua_State *L) {
58   lua_pushnumber(L, l_mathop(asin)(luaL_checknumber(L, 1)));
59   return 1;
60 }
61 
math_acos(lua_State * L)62 static int math_acos (lua_State *L) {
63   lua_pushnumber(L, l_mathop(acos)(luaL_checknumber(L, 1)));
64   return 1;
65 }
66 
math_atan(lua_State * L)67 static int math_atan (lua_State *L) {
68   lua_Number y = luaL_checknumber(L, 1);
69   lua_Number x = luaL_optnumber(L, 2, 1);
70   lua_pushnumber(L, l_mathop(atan2)(y, x));
71   return 1;
72 }
73 
74 
math_toint(lua_State * L)75 static int math_toint (lua_State *L) {
76   int valid;
77   lua_Integer n = lua_tointegerx(L, 1, &valid);
78   if (l_likely(valid))
79     lua_pushinteger(L, n);
80   else {
81     luaL_checkany(L, 1);
82     luaL_pushfail(L);  /* value is not convertible to integer */
83   }
84   return 1;
85 }
86 
87 
pushnumint(lua_State * L,lua_Number d)88 static void pushnumint (lua_State *L, lua_Number d) {
89   lua_Integer n;
90   if (lua_numbertointeger(d, &n))  /* does 'd' fit in an integer? */
91     lua_pushinteger(L, n);  /* result is integer */
92   else
93     lua_pushnumber(L, d);  /* result is float */
94 }
95 
96 
math_floor(lua_State * L)97 static int math_floor (lua_State *L) {
98   if (lua_isinteger(L, 1))
99     lua_settop(L, 1);  /* integer is its own floor */
100   else {
101     lua_Number d = l_mathop(floor)(luaL_checknumber(L, 1));
102     pushnumint(L, d);
103   }
104   return 1;
105 }
106 
107 
math_ceil(lua_State * L)108 static int math_ceil (lua_State *L) {
109   if (lua_isinteger(L, 1))
110     lua_settop(L, 1);  /* integer is its own ceil */
111   else {
112     lua_Number d = l_mathop(ceil)(luaL_checknumber(L, 1));
113     pushnumint(L, d);
114   }
115   return 1;
116 }
117 
118 
math_fmod(lua_State * L)119 static int math_fmod (lua_State *L) {
120   if (lua_isinteger(L, 1) && lua_isinteger(L, 2)) {
121     lua_Integer d = lua_tointeger(L, 2);
122     if ((lua_Unsigned)d + 1u <= 1u) {  /* special cases: -1 or 0 */
123       luaL_argcheck(L, d != 0, 2, "zero");
124       lua_pushinteger(L, 0);  /* avoid overflow with 0x80000... / -1 */
125     }
126     else
127       lua_pushinteger(L, lua_tointeger(L, 1) % d);
128   }
129   else
130     lua_pushnumber(L, l_mathop(fmod)(luaL_checknumber(L, 1),
131                                      luaL_checknumber(L, 2)));
132   return 1;
133 }
134 
135 
136 /*
137 ** next function does not use 'modf', avoiding problems with 'double*'
138 ** (which is not compatible with 'float*') when lua_Number is not
139 ** 'double'.
140 */
math_modf(lua_State * L)141 static int math_modf (lua_State *L) {
142   if (lua_isinteger(L ,1)) {
143     lua_settop(L, 1);  /* number is its own integer part */
144     lua_pushnumber(L, 0);  /* no fractional part */
145   }
146   else {
147     lua_Number n = luaL_checknumber(L, 1);
148     /* integer part (rounds toward zero) */
149     lua_Number ip = (n < 0) ? l_mathop(ceil)(n) : l_mathop(floor)(n);
150     pushnumint(L, ip);
151     /* fractional part (test needed for inf/-inf) */
152     lua_pushnumber(L, (n == ip) ? l_mathop(0.0) : (n - ip));
153   }
154   return 2;
155 }
156 
157 
math_sqrt(lua_State * L)158 static int math_sqrt (lua_State *L) {
159   lua_pushnumber(L, l_mathop(sqrt)(luaL_checknumber(L, 1)));
160   return 1;
161 }
162 
163 
math_ult(lua_State * L)164 static int math_ult (lua_State *L) {
165   lua_Integer a = luaL_checkinteger(L, 1);
166   lua_Integer b = luaL_checkinteger(L, 2);
167   lua_pushboolean(L, (lua_Unsigned)a < (lua_Unsigned)b);
168   return 1;
169 }
170 
math_log(lua_State * L)171 static int math_log (lua_State *L) {
172   lua_Number x = luaL_checknumber(L, 1);
173   lua_Number res;
174   if (lua_isnoneornil(L, 2))
175     res = l_mathop(log)(x);
176   else {
177     lua_Number base = luaL_checknumber(L, 2);
178 #if !defined(LUA_USE_C89)
179     if (base == l_mathop(2.0))
180       res = l_mathop(log2)(x);
181     else
182 #endif
183     if (base == l_mathop(10.0))
184       res = l_mathop(log10)(x);
185     else
186       res = l_mathop(log)(x)/l_mathop(log)(base);
187   }
188   lua_pushnumber(L, res);
189   return 1;
190 }
191 
math_exp(lua_State * L)192 static int math_exp (lua_State *L) {
193   lua_pushnumber(L, l_mathop(exp)(luaL_checknumber(L, 1)));
194   return 1;
195 }
196 
math_deg(lua_State * L)197 static int math_deg (lua_State *L) {
198   lua_pushnumber(L, luaL_checknumber(L, 1) * (l_mathop(180.0) / PI));
199   return 1;
200 }
201 
math_rad(lua_State * L)202 static int math_rad (lua_State *L) {
203   lua_pushnumber(L, luaL_checknumber(L, 1) * (PI / l_mathop(180.0)));
204   return 1;
205 }
206 
207 
math_min(lua_State * L)208 static int math_min (lua_State *L) {
209   int n = lua_gettop(L);  /* number of arguments */
210   int imin = 1;  /* index of current minimum value */
211   int i;
212   luaL_argcheck(L, n >= 1, 1, "value expected");
213   for (i = 2; i <= n; i++) {
214     if (lua_compare(L, i, imin, LUA_OPLT))
215       imin = i;
216   }
217   lua_pushvalue(L, imin);
218   return 1;
219 }
220 
221 
math_max(lua_State * L)222 static int math_max (lua_State *L) {
223   int n = lua_gettop(L);  /* number of arguments */
224   int imax = 1;  /* index of current maximum value */
225   int i;
226   luaL_argcheck(L, n >= 1, 1, "value expected");
227   for (i = 2; i <= n; i++) {
228     if (lua_compare(L, imax, i, LUA_OPLT))
229       imax = i;
230   }
231   lua_pushvalue(L, imax);
232   return 1;
233 }
234 
235 
math_type(lua_State * L)236 static int math_type (lua_State *L) {
237   if (lua_type(L, 1) == LUA_TNUMBER)
238     lua_pushstring(L, (lua_isinteger(L, 1)) ? "integer" : "float");
239   else {
240     luaL_checkany(L, 1);
241     luaL_pushfail(L);
242   }
243   return 1;
244 }
245 
246 
247 
248 /*
249 ** {==================================================================
250 ** Pseudo-Random Number Generator based on 'xoshiro256**'.
251 ** ===================================================================
252 */
253 
254 /* number of binary digits in the mantissa of a float */
255 #define FIGS	l_floatatt(MANT_DIG)
256 
257 #if FIGS > 64
258 /* there are only 64 random bits; use them all */
259 #undef FIGS
260 #define FIGS	64
261 #endif
262 
263 
264 /*
265 ** LUA_RAND32 forces the use of 32-bit integers in the implementation
266 ** of the PRN generator (mainly for testing).
267 */
268 #if !defined(LUA_RAND32) && !defined(Rand64)
269 
270 /* try to find an integer type with at least 64 bits */
271 
272 #if ((ULONG_MAX >> 31) >> 31) >= 3
273 
274 /* 'long' has at least 64 bits */
275 #define Rand64		unsigned long
276 
277 #elif !defined(LUA_USE_C89) && defined(LLONG_MAX)
278 
279 /* there is a 'long long' type (which must have at least 64 bits) */
280 #define Rand64		unsigned long long
281 
282 #elif ((LUA_MAXUNSIGNED >> 31) >> 31) >= 3
283 
284 /* 'lua_Unsigned' has at least 64 bits */
285 #define Rand64		lua_Unsigned
286 
287 #endif
288 
289 #endif
290 
291 
292 #if defined(Rand64)  /* { */
293 
294 /*
295 ** Standard implementation, using 64-bit integers.
296 ** If 'Rand64' has more than 64 bits, the extra bits do not interfere
297 ** with the 64 initial bits, except in a right shift. Moreover, the
298 ** final result has to discard the extra bits.
299 */
300 
301 /* avoid using extra bits when needed */
302 #define trim64(x)	((x) & 0xffffffffffffffffu)
303 
304 
305 /* rotate left 'x' by 'n' bits */
rotl(Rand64 x,int n)306 static Rand64 rotl (Rand64 x, int n) {
307   return (x << n) | (trim64(x) >> (64 - n));
308 }
309 
nextrand(Rand64 * state)310 static Rand64 nextrand (Rand64 *state) {
311   Rand64 state0 = state[0];
312   Rand64 state1 = state[1];
313   Rand64 state2 = state[2] ^ state0;
314   Rand64 state3 = state[3] ^ state1;
315   Rand64 res = rotl(state1 * 5, 7) * 9;
316   state[0] = state0 ^ state3;
317   state[1] = state1 ^ state2;
318   state[2] = state2 ^ (state1 << 17);
319   state[3] = rotl(state3, 45);
320   return res;
321 }
322 
323 
324 /* must take care to not shift stuff by more than 63 slots */
325 
326 
327 /*
328 ** Convert bits from a random integer into a float in the
329 ** interval [0,1), getting the higher FIG bits from the
330 ** random unsigned integer and converting that to a float.
331 */
332 
333 /* must throw out the extra (64 - FIGS) bits */
334 #define shift64_FIG	(64 - FIGS)
335 
336 /* to scale to [0, 1), multiply by scaleFIG = 2^(-FIGS) */
337 #define scaleFIG	(l_mathop(0.5) / ((Rand64)1 << (FIGS - 1)))
338 
I2d(Rand64 x)339 static lua_Number I2d (Rand64 x) {
340   return (lua_Number)(trim64(x) >> shift64_FIG) * scaleFIG;
341 }
342 
343 /* convert a 'Rand64' to a 'lua_Unsigned' */
344 #define I2UInt(x)	((lua_Unsigned)trim64(x))
345 
346 /* convert a 'lua_Unsigned' to a 'Rand64' */
347 #define Int2I(x)	((Rand64)(x))
348 
349 
350 #else	/* no 'Rand64'   }{ */
351 
352 /* get an integer with at least 32 bits */
353 #if LUAI_IS32INT
354 typedef unsigned int lu_int32;
355 #else
356 typedef unsigned long lu_int32;
357 #endif
358 
359 
360 /*
361 ** Use two 32-bit integers to represent a 64-bit quantity.
362 */
363 typedef struct Rand64 {
364   lu_int32 h;  /* higher half */
365   lu_int32 l;  /* lower half */
366 } Rand64;
367 
368 
369 /*
370 ** If 'lu_int32' has more than 32 bits, the extra bits do not interfere
371 ** with the 32 initial bits, except in a right shift and comparisons.
372 ** Moreover, the final result has to discard the extra bits.
373 */
374 
375 /* avoid using extra bits when needed */
376 #define trim32(x)	((x) & 0xffffffffu)
377 
378 
379 /*
380 ** basic operations on 'Rand64' values
381 */
382 
383 /* build a new Rand64 value */
packI(lu_int32 h,lu_int32 l)384 static Rand64 packI (lu_int32 h, lu_int32 l) {
385   Rand64 result;
386   result.h = h;
387   result.l = l;
388   return result;
389 }
390 
391 /* return i << n */
Ishl(Rand64 i,int n)392 static Rand64 Ishl (Rand64 i, int n) {
393   lua_assert(n > 0 && n < 32);
394   return packI((i.h << n) | (trim32(i.l) >> (32 - n)), i.l << n);
395 }
396 
397 /* i1 ^= i2 */
Ixor(Rand64 * i1,Rand64 i2)398 static void Ixor (Rand64 *i1, Rand64 i2) {
399   i1->h ^= i2.h;
400   i1->l ^= i2.l;
401 }
402 
403 /* return i1 + i2 */
Iadd(Rand64 i1,Rand64 i2)404 static Rand64 Iadd (Rand64 i1, Rand64 i2) {
405   Rand64 result = packI(i1.h + i2.h, i1.l + i2.l);
406   if (trim32(result.l) < trim32(i1.l))  /* carry? */
407     result.h++;
408   return result;
409 }
410 
411 /* return i * 5 */
times5(Rand64 i)412 static Rand64 times5 (Rand64 i) {
413   return Iadd(Ishl(i, 2), i);  /* i * 5 == (i << 2) + i */
414 }
415 
416 /* return i * 9 */
times9(Rand64 i)417 static Rand64 times9 (Rand64 i) {
418   return Iadd(Ishl(i, 3), i);  /* i * 9 == (i << 3) + i */
419 }
420 
421 /* return 'i' rotated left 'n' bits */
rotl(Rand64 i,int n)422 static Rand64 rotl (Rand64 i, int n) {
423   lua_assert(n > 0 && n < 32);
424   return packI((i.h << n) | (trim32(i.l) >> (32 - n)),
425                (trim32(i.h) >> (32 - n)) | (i.l << n));
426 }
427 
428 /* for offsets larger than 32, rotate right by 64 - offset */
rotl1(Rand64 i,int n)429 static Rand64 rotl1 (Rand64 i, int n) {
430   lua_assert(n > 32 && n < 64);
431   n = 64 - n;
432   return packI((trim32(i.h) >> n) | (i.l << (32 - n)),
433                (i.h << (32 - n)) | (trim32(i.l) >> n));
434 }
435 
436 /*
437 ** implementation of 'xoshiro256**' algorithm on 'Rand64' values
438 */
nextrand(Rand64 * state)439 static Rand64 nextrand (Rand64 *state) {
440   Rand64 res = times9(rotl(times5(state[1]), 7));
441   Rand64 t = Ishl(state[1], 17);
442   Ixor(&state[2], state[0]);
443   Ixor(&state[3], state[1]);
444   Ixor(&state[1], state[2]);
445   Ixor(&state[0], state[3]);
446   Ixor(&state[2], t);
447   state[3] = rotl1(state[3], 45);
448   return res;
449 }
450 
451 
452 /*
453 ** Converts a 'Rand64' into a float.
454 */
455 
456 /* an unsigned 1 with proper type */
457 #define UONE		((lu_int32)1)
458 
459 
460 #if FIGS <= 32
461 
462 /* 2^(-FIGS) */
463 #define scaleFIG       (l_mathop(0.5) / (UONE << (FIGS - 1)))
464 
465 /*
466 ** get up to 32 bits from higher half, shifting right to
467 ** throw out the extra bits.
468 */
I2d(Rand64 x)469 static lua_Number I2d (Rand64 x) {
470   lua_Number h = (lua_Number)(trim32(x.h) >> (32 - FIGS));
471   return h * scaleFIG;
472 }
473 
474 #else	/* 32 < FIGS <= 64 */
475 
476 /* must take care to not shift stuff by more than 31 slots */
477 
478 /* 2^(-FIGS) = 1.0 / 2^30 / 2^3 / 2^(FIGS-33) */
479 #define scaleFIG  \
480     (l_mathop(1.0) / (UONE << 30) / l_mathop(8.0) / (UONE << (FIGS - 33)))
481 
482 /*
483 ** use FIGS - 32 bits from lower half, throwing out the other
484 ** (32 - (FIGS - 32)) = (64 - FIGS) bits
485 */
486 #define shiftLOW	(64 - FIGS)
487 
488 /*
489 ** higher 32 bits go after those (FIGS - 32) bits: shiftHI = 2^(FIGS - 32)
490 */
491 #define shiftHI		((lua_Number)(UONE << (FIGS - 33)) * l_mathop(2.0))
492 
493 
I2d(Rand64 x)494 static lua_Number I2d (Rand64 x) {
495   lua_Number h = (lua_Number)trim32(x.h) * shiftHI;
496   lua_Number l = (lua_Number)(trim32(x.l) >> shiftLOW);
497   return (h + l) * scaleFIG;
498 }
499 
500 #endif
501 
502 
503 /* convert a 'Rand64' to a 'lua_Unsigned' */
I2UInt(Rand64 x)504 static lua_Unsigned I2UInt (Rand64 x) {
505   return (((lua_Unsigned)trim32(x.h) << 31) << 1) | (lua_Unsigned)trim32(x.l);
506 }
507 
508 /* convert a 'lua_Unsigned' to a 'Rand64' */
Int2I(lua_Unsigned n)509 static Rand64 Int2I (lua_Unsigned n) {
510   return packI((lu_int32)((n >> 31) >> 1), (lu_int32)n);
511 }
512 
513 #endif  /* } */
514 
515 
516 /*
517 ** A state uses four 'Rand64' values.
518 */
519 typedef struct {
520   Rand64 s[4];
521 } RanState;
522 
523 
524 /*
525 ** Project the random integer 'ran' into the interval [0, n].
526 ** Because 'ran' has 2^B possible values, the projection can only be
527 ** uniform when the size of the interval is a power of 2 (exact
528 ** division). Otherwise, to get a uniform projection into [0, n], we
529 ** first compute 'lim', the smallest Mersenne number not smaller than
530 ** 'n'. We then project 'ran' into the interval [0, lim].  If the result
531 ** is inside [0, n], we are done. Otherwise, we try with another 'ran',
532 ** until we have a result inside the interval.
533 */
project(lua_Unsigned ran,lua_Unsigned n,RanState * state)534 static lua_Unsigned project (lua_Unsigned ran, lua_Unsigned n,
535                              RanState *state) {
536   if ((n & (n + 1)) == 0)  /* is 'n + 1' a power of 2? */
537     return ran & n;  /* no bias */
538   else {
539     lua_Unsigned lim = n;
540     /* compute the smallest (2^b - 1) not smaller than 'n' */
541     lim |= (lim >> 1);
542     lim |= (lim >> 2);
543     lim |= (lim >> 4);
544     lim |= (lim >> 8);
545     lim |= (lim >> 16);
546 #if (LUA_MAXUNSIGNED >> 31) >= 3
547     lim |= (lim >> 32);  /* integer type has more than 32 bits */
548 #endif
549     lua_assert((lim & (lim + 1)) == 0  /* 'lim + 1' is a power of 2, */
550       && lim >= n  /* not smaller than 'n', */
551       && (lim >> 1) < n);  /* and it is the smallest one */
552     while ((ran &= lim) > n)  /* project 'ran' into [0..lim] */
553       ran = I2UInt(nextrand(state->s));  /* not inside [0..n]? try again */
554     return ran;
555   }
556 }
557 
558 
math_random(lua_State * L)559 static int math_random (lua_State *L) {
560   lua_Integer low, up;
561   lua_Unsigned p;
562   RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1));
563   Rand64 rv = nextrand(state->s);  /* next pseudo-random value */
564   switch (lua_gettop(L)) {  /* check number of arguments */
565     case 0: {  /* no arguments */
566       lua_pushnumber(L, I2d(rv));  /* float between 0 and 1 */
567       return 1;
568     }
569     case 1: {  /* only upper limit */
570       low = 1;
571       up = luaL_checkinteger(L, 1);
572       if (up == 0) {  /* single 0 as argument? */
573         lua_pushinteger(L, I2UInt(rv));  /* full random integer */
574         return 1;
575       }
576       break;
577     }
578     case 2: {  /* lower and upper limits */
579       low = luaL_checkinteger(L, 1);
580       up = luaL_checkinteger(L, 2);
581       break;
582     }
583     default: return luaL_error(L, "wrong number of arguments");
584   }
585   /* random integer in the interval [low, up] */
586   luaL_argcheck(L, low <= up, 1, "interval is empty");
587   /* project random integer into the interval [0, up - low] */
588   p = project(I2UInt(rv), (lua_Unsigned)up - (lua_Unsigned)low, state);
589   lua_pushinteger(L, p + (lua_Unsigned)low);
590   return 1;
591 }
592 
593 
setseed(lua_State * L,Rand64 * state,lua_Unsigned n1,lua_Unsigned n2)594 static void setseed (lua_State *L, Rand64 *state,
595                      lua_Unsigned n1, lua_Unsigned n2) {
596   int i;
597   state[0] = Int2I(n1);
598   state[1] = Int2I(0xff);  /* avoid a zero state */
599   state[2] = Int2I(n2);
600   state[3] = Int2I(0);
601   for (i = 0; i < 16; i++)
602     nextrand(state);  /* discard initial values to "spread" seed */
603   lua_pushinteger(L, n1);
604   lua_pushinteger(L, n2);
605 }
606 
607 
608 /*
609 ** Set a "random" seed. To get some randomness, use the current time
610 ** and the address of 'L' (in case the machine does address space layout
611 ** randomization).
612 */
randseed(lua_State * L,RanState * state)613 static void randseed (lua_State *L, RanState *state) {
614   lua_Unsigned seed1 = (lua_Unsigned)time(NULL);
615   lua_Unsigned seed2 = (lua_Unsigned)(size_t)L;
616   setseed(L, state->s, seed1, seed2);
617 }
618 
619 
math_randomseed(lua_State * L)620 static int math_randomseed (lua_State *L) {
621   RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1));
622   if (lua_isnone(L, 1)) {
623     randseed(L, state);
624   }
625   else {
626     lua_Integer n1 = luaL_checkinteger(L, 1);
627     lua_Integer n2 = luaL_optinteger(L, 2, 0);
628     setseed(L, state->s, n1, n2);
629   }
630   return 2;  /* return seeds */
631 }
632 
633 
634 static const luaL_Reg randfuncs[] = {
635   {"random", math_random},
636   {"randomseed", math_randomseed},
637   {NULL, NULL}
638 };
639 
640 
641 /*
642 ** Register the random functions and initialize their state.
643 */
setrandfunc(lua_State * L)644 static void setrandfunc (lua_State *L) {
645   RanState *state = (RanState *)lua_newuserdatauv(L, sizeof(RanState), 0);
646   randseed(L, state);  /* initialize with a "random" seed */
647   lua_pop(L, 2);  /* remove pushed seeds */
648   luaL_setfuncs(L, randfuncs, 1);
649 }
650 
651 /* }================================================================== */
652 
653 
654 /*
655 ** {==================================================================
656 ** Deprecated functions (for compatibility only)
657 ** ===================================================================
658 */
659 #if defined(LUA_COMPAT_MATHLIB)
660 
math_cosh(lua_State * L)661 static int math_cosh (lua_State *L) {
662   lua_pushnumber(L, l_mathop(cosh)(luaL_checknumber(L, 1)));
663   return 1;
664 }
665 
math_sinh(lua_State * L)666 static int math_sinh (lua_State *L) {
667   lua_pushnumber(L, l_mathop(sinh)(luaL_checknumber(L, 1)));
668   return 1;
669 }
670 
math_tanh(lua_State * L)671 static int math_tanh (lua_State *L) {
672   lua_pushnumber(L, l_mathop(tanh)(luaL_checknumber(L, 1)));
673   return 1;
674 }
675 
math_pow(lua_State * L)676 static int math_pow (lua_State *L) {
677   lua_Number x = luaL_checknumber(L, 1);
678   lua_Number y = luaL_checknumber(L, 2);
679   lua_pushnumber(L, l_mathop(pow)(x, y));
680   return 1;
681 }
682 
math_frexp(lua_State * L)683 static int math_frexp (lua_State *L) {
684   int e;
685   lua_pushnumber(L, l_mathop(frexp)(luaL_checknumber(L, 1), &e));
686   lua_pushinteger(L, e);
687   return 2;
688 }
689 
math_ldexp(lua_State * L)690 static int math_ldexp (lua_State *L) {
691   lua_Number x = luaL_checknumber(L, 1);
692   int ep = (int)luaL_checkinteger(L, 2);
693   lua_pushnumber(L, l_mathop(ldexp)(x, ep));
694   return 1;
695 }
696 
math_log10(lua_State * L)697 static int math_log10 (lua_State *L) {
698   lua_pushnumber(L, l_mathop(log10)(luaL_checknumber(L, 1)));
699   return 1;
700 }
701 
702 #endif
703 /* }================================================================== */
704 
705 
706 
707 static const luaL_Reg mathlib[] = {
708   {"abs",   math_abs},
709   {"acos",  math_acos},
710   {"asin",  math_asin},
711   {"atan",  math_atan},
712   {"ceil",  math_ceil},
713   {"cos",   math_cos},
714   {"deg",   math_deg},
715   {"exp",   math_exp},
716   {"tointeger", math_toint},
717   {"floor", math_floor},
718   {"fmod",   math_fmod},
719   {"ult",   math_ult},
720   {"log",   math_log},
721   {"max",   math_max},
722   {"min",   math_min},
723   {"modf",   math_modf},
724   {"rad",   math_rad},
725   {"sin",   math_sin},
726   {"sqrt",  math_sqrt},
727   {"tan",   math_tan},
728   {"type", math_type},
729 #if defined(LUA_COMPAT_MATHLIB)
730   {"atan2", math_atan},
731   {"cosh",   math_cosh},
732   {"sinh",   math_sinh},
733   {"tanh",   math_tanh},
734   {"pow",   math_pow},
735   {"frexp", math_frexp},
736   {"ldexp", math_ldexp},
737   {"log10", math_log10},
738 #endif
739   /* placeholders */
740   {"random", NULL},
741   {"randomseed", NULL},
742   {"pi", NULL},
743   {"huge", NULL},
744   {"maxinteger", NULL},
745   {"mininteger", NULL},
746   {NULL, NULL}
747 };
748 
749 
750 /*
751 ** Open math library
752 */
luaopen_math(lua_State * L)753 LUAMOD_API int luaopen_math (lua_State *L) {
754   luaL_newlib(L, mathlib);
755   lua_pushnumber(L, PI);
756   lua_setfield(L, -2, "pi");
757   lua_pushnumber(L, (lua_Number)HUGE_VAL);
758   lua_setfield(L, -2, "huge");
759   lua_pushinteger(L, LUA_MAXINTEGER);
760   lua_setfield(L, -2, "maxinteger");
761   lua_pushinteger(L, LUA_MININTEGER);
762   lua_setfield(L, -2, "mininteger");
763   setrandfunc(L);
764   return 1;
765 }
766 
767