xref: /netbsd-src/external/lgpl3/mpc/dist/tests/tballs.c (revision 367b82799ab709709d3c3b541df56a2a14644d3e)
1 /* tballs -- test file for complex ball arithmetic.
2 
3 Copyright (C) 2018, 2020, 2021, 2022 INRIA
4 
5 This file is part of GNU MPC.
6 
7 GNU MPC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU Lesser General Public License as published by the
9 Free Software Foundation; either version 3 of the License, or (at your
10 option) any later version.
11 
12 GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16 
17 You should have received a copy of the GNU Lesser General Public License
18 along with this program. If not, see http://www.gnu.org/licenses/ .
19 */
20 
21 #include "mpc-tests.h"
22 #include "mpc-impl.h"
23    /* For the alternative AGM implementation, we need all the power of
24       this include file. */
25 
26 static int
mpc_mpcb_agm(mpc_ptr rop,mpc_srcptr opa,mpc_srcptr opb,mpc_rnd_t rnd)27 mpc_mpcb_agm (mpc_ptr rop, mpc_srcptr opa, mpc_srcptr opb, mpc_rnd_t rnd)
28    /* Alternative implementation of mpc_agm that uses complex balls. */
29 {
30    mpfr_prec_t prec;
31    mpc_t b0, diff;
32    mpcb_t a, b, an, bn, anp1, bnp1, res;
33    mpfr_exp_t exp_an, exp_diff;
34    mpcr_t rab;
35    int cmp, equal, re_zero, im_zero, ok, inex;
36 
37    if (!mpc_fin_p (opa) || !mpc_fin_p (opb)
38        || mpc_zero_p (opa) || mpc_zero_p (opb)
39        || mpc_cmp (opa, opb) == 0
40        || (   mpfr_sgn (mpc_realref (opa)) == -mpfr_sgn (mpc_realref (opb))
41            && mpfr_sgn (mpc_imagref (opa)) == -mpfr_sgn (mpc_imagref (opb))
42            && mpfr_cmpabs (mpc_realref (opa), mpc_realref (opb)) == 0
43            && mpfr_cmpabs (mpc_imagref (opa), mpc_imagref (opb)) == 0)
44        || (   mpfr_zero_p (mpc_imagref (opa))
45            && mpfr_zero_p (mpc_imagref (opb))
46            && mpfr_sgn (mpc_realref (opa)) == mpfr_sgn (mpc_realref (opb)))
47        || (   mpfr_zero_p (mpc_realref (opa))
48            && mpfr_zero_p (mpc_realref (opb))
49            && mpfr_sgn (mpc_imagref (opa)) == mpfr_sgn (mpc_imagref (opb))))
50       /* Special cases that are handled separately by mpc_agm; there is
51          no need to rewrite them. */
52       return mpc_agm (rop, opa, opb, rnd);
53 
54    /* Exclude the case of angle 0, also handled separately by mpc_agm. */
55    mpc_init2 (b0, 2);
56    mpc_div (b0, opb, opa, MPC_RNDZZ);
57    if (mpfr_zero_p (mpc_imagref (b0)) && mpfr_sgn (mpc_realref (b0)) > 0) {
58       mpc_clear (b0);
59       return mpc_agm (rop, opa, opb, rnd);
60    }
61    mpc_clear (b0);
62 
63    cmp = mpc_cmp_abs (opa, opb);
64 
65    mpcb_init (a);
66    mpcb_init (b);
67    mpcb_init (an);
68    mpcb_init (bn);
69    mpcb_init (anp1);
70    mpcb_init (bnp1);
71    mpcb_init (res);
72    prec = MPC_MAX (MPC_MAX (MPC_MAX_PREC (opa), MPC_MAX_PREC (opb)),
73       MPC_MAX_PREC (rop) + 20);
74       /* So copying opa and opb will be exact, and there is a small safety
75          margin for the result. */
76    do {
77       mpcb_set_prec (a, prec);
78       mpcb_set_prec (b, prec);
79       mpcb_set_prec (an, prec);
80       mpcb_set_prec (bn, prec);
81       mpcb_set_prec (anp1, prec);
82       mpcb_set_prec (bnp1, prec);
83       mpcb_set_prec (res, prec);
84       /* TODO: Think about the mpcb_set variants; mpcb_set_c, for instance,
85          modifies the precision. It is probably better to add a precision
86          parameter to mpcb_init and potentially round with mpcb_set_xxx. */
87       mpc_set (a->c, opa, MPC_RNDNN); /* exact */
88       mpcr_set_zero (a->r);
89       mpc_set (b->c, opb, MPC_RNDNN);
90       mpcr_set_zero (b->r);
91       mpc_set_ui_ui (an->c, 1, 0, MPC_RNDNN);
92       mpcr_set_zero (an->r);
93       if (cmp >= 0)
94          mpcb_div (bn, b, a);
95       else
96          mpcb_div (bn, a, b);
97 
98       /* Iterate until there is a fixed point or (often one iteration
99          earlier) the arithmetic and the geometric mean coincide. */
100       do {
101          mpcb_add (anp1, an, bn);
102          mpcb_div_2ui (anp1, anp1, 1);
103          mpcb_mul (bnp1, an, bn);
104          mpcb_sqrt (bnp1, bnp1);
105             /* Be aware of the branch cut! The current function does
106                what is needed here. */
107          equal = mpc_cmp (an->c, bn->c) == 0
108                  || (   mpc_cmp (an->c, anp1->c) == 0
109                      && mpc_cmp (bn->c, bnp1->c) == 0);
110          mpcb_set (an, anp1);
111          mpcb_set (bn, bnp1);
112       } while (!equal);
113 
114       /* Check whether we can conclude, see the error analysis in
115          algorithms.tex. */
116       if (mpcr_inf_p (anp1->r))
117          ok = 0;
118       else {
119          mpc_init2 (diff, prec);
120          mpc_sub (diff, an->c, bn->c, MPC_RNDZZ);
121             /* FIXME: We would need to round away, but this is not yet
122                implemented. */
123          re_zero = mpfr_zero_p (mpc_realref (diff));
124          if (!re_zero)
125             MPFR_ADD_ONE_ULP (mpc_realref (diff));
126          im_zero = mpfr_zero_p (mpc_imagref (diff));
127          if (!im_zero)
128             MPFR_ADD_ONE_ULP (mpc_imagref (diff));
129 
130          mpcb_set (res, anp1);
131 
132          if (re_zero && im_zero)
133             mpcr_set_zero (rab);
134          else {
135             exp_an = MPC_MIN (mpfr_get_exp (mpc_realref (an->c)),
136                               mpfr_get_exp (mpc_imagref (an->c))) - 1;
137             if (re_zero)
138                exp_diff = mpfr_get_exp (mpc_imagref (diff)) + 1;
139             else if (im_zero)
140                exp_diff = mpfr_get_exp (mpc_realref (diff)) + 1;
141             else
142                exp_diff = MPC_MAX (mpfr_get_exp (mpc_realref (diff)),
143                                    mpfr_get_exp (mpc_imagref (diff)) + 1);
144             mpcr_set_one (rab);
145             (rab->exp) += (exp_diff - exp_an);
146                /* TODO: Should be done by an mpcr function. */
147          }
148          mpcr_add (rab, rab, an->r);
149          (rab->exp)++;
150          mpcr_add (res->r, rab, bn->r);
151             /* r = 2 * (rab + an->r) + bn->r */
152          if (cmp >= 0)
153             mpcb_mul (res, res, a);
154          else
155             mpcb_mul (res, res, b);
156          ok = mpcb_can_round (res, MPC_PREC_RE (rop), MPC_PREC_IM (rop),
157             rnd);
158 
159          mpc_clear (diff);
160       }
161 
162       if (!ok)
163          prec += prec + mpcr_get_exp (res->r);
164    } while (!ok);
165 
166    inex = mpcb_round (rop, res, rnd);
167 
168    mpcb_clear (a);
169    mpcb_clear (b);
170    mpcb_clear (an);
171    mpcb_clear (bn);
172    mpcb_clear (anp1);
173    mpcb_clear (bnp1);
174    mpcb_clear (res);
175 
176    return inex;
177 }
178 
179 
180 static int
test_agm(void)181 test_agm (void)
182 {
183    mpfr_prec_t prec;
184    mpc_t a, b, agm1, agm2;
185    mpc_rnd_t rnd = MPC_RNDDU;
186    int inex, inexb, ok;
187 
188    prec = 1000;
189 
190    mpc_init2 (a, prec);
191    mpc_init2 (b, prec);
192    mpc_set_si_si (a, 100, 0, MPC_RNDNN);
193    mpc_set_si_si (b, 0, 100, MPC_RNDNN);
194    mpc_init2 (agm1, prec);
195    mpc_init2 (agm2, prec);
196 
197    inex = mpc_agm (agm1, a, b, rnd);
198    inexb = mpc_mpcb_agm (agm2, a, b, rnd);
199 
200    ok = (inex == inexb) && (mpc_cmp (agm1, agm2) == 0);
201 
202    mpc_clear (a);
203    mpc_clear (b);
204    mpc_clear (agm1);
205    mpc_clear (agm2);
206 
207    return !ok;
208 }
209 
210 
211 int
main(void)212 main (void)
213 {
214    return test_agm ();
215 }
216 
217