xref: /netbsd-src/external/gpl3/gdb/dist/sim/ppc/std-config.h (revision d9030711976e533fb52cfed73ebd1a865ef88911)
1 /*  This file is part of the program psim.
2 
3     Copyright 1994, 1995, 2002 Andrew Cagney <cagney@highland.com.au>
4 
5     This program is free software; you can redistribute it and/or modify
6     it under the terms of the GNU General Public License as published by
7     the Free Software Foundation; either version 3 of the License, or
8     (at your option) any later version.
9 
10     This program is distributed in the hope that it will be useful,
11     but WITHOUT ANY WARRANTY; without even the implied warranty of
12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13     GNU General Public License for more details.
14 
15     You should have received a copy of the GNU General Public License
16     along with this program; if not, see <http://www.gnu.org/licenses/>.
17 
18     */
19 
20 
21 #ifndef _PSIM_CONFIG_H_
22 #define _PSIM_CONFIG_H_
23 
24 #include "bfd.h"
25 
26 /* endianness of the host/target:
27 
28    If the build process is aware (at compile time) of the endianness
29    of the host/target it is able to eliminate slower generic endian
30    handling code.
31 
32    Possible values are BFD_ENDIAN_UNKNOWN, BFD_ENDIAN_LITTLE,
33    BFD_ENDIAN_BIG.  */
34 
35 #ifdef WORDS_BIGENDIAN
36 # define HOST_BYTE_ORDER BFD_ENDIAN_BIG
37 #else
38 # define HOST_BYTE_ORDER BFD_ENDIAN_LITTLE
39 #endif
40 
41 #ifndef WITH_TARGET_BYTE_ORDER
42 #define WITH_TARGET_BYTE_ORDER		BFD_ENDIAN_UNKNOWN
43 #endif
44 
45 extern enum bfd_endian current_target_byte_order;
46 #define CURRENT_TARGET_BYTE_ORDER \
47   (WITH_TARGET_BYTE_ORDER != BFD_ENDIAN_UNKNOWN \
48    ? WITH_TARGET_BYTE_ORDER : current_target_byte_order)
49 
50 
51 /* PowerPC XOR endian.
52 
53    In addition to the above, the simulator can support the PowerPC's
54    horrible XOR endian mode.  This feature makes it possible to
55    control the endian mode of a processor using the MSR. */
56 
57 #ifndef WITH_XOR_ENDIAN
58 #define WITH_XOR_ENDIAN		8
59 #endif
60 
61 
62 /* SMP support:
63 
64    Sets a limit on the number of processors that can be simulated.  If
65    WITH_SMP is set to zero (0), the simulator is restricted to
66    suporting only on processor (and as a consequence leaves the SMP
67    code out of the build process).
68 
69    The actual number of processors is taken from the device
70    /options/smp@<nr-cpu> */
71 
72 #ifndef WITH_SMP
73 #define WITH_SMP                        5
74 #endif
75 #if WITH_SMP
76 #define MAX_NR_PROCESSORS		WITH_SMP
77 #else
78 #define MAX_NR_PROCESSORS		1
79 #endif
80 
81 
82 /* Word size of target:
83 
84    Set these according to your target requirements.  At this
85    point in time, I've only compiled (not run) for a 64bit and never
86    built for a 64bit host.  This will always remain a compile time
87    option */
88 
89 #ifndef WITH_TARGET_WORD_BITSIZE
90 #define WITH_TARGET_WORD_BITSIZE        32 /* compiled only */
91 #endif
92 
93 #ifndef WITH_TARGET_ADDRESS_BITSIZE
94 #define WITH_TARGET_ADDRESS_BITSIZE	WITH_TARGET_WORD_BITSIZE
95 #endif
96 
97 #ifndef WITH_TARGET_CELL_BITSIZE
98 #define WITH_TARGET_CELL_BITSIZE	WITH_TARGET_WORD_BITSIZE
99 #endif
100 
101 
102 /* Program environment:
103 
104    Three environments are available - UEA (user), VEA (virtual) and
105    OEA (perating).  The former two are environment that users would
106    expect to see (VEA includes things like coherency and the time
107    base) while OEA is what an operating system expects to see.  By
108    setting these to specific values, the build process is able to
109    eliminate non relevent environment code
110 
111    CURRENT_ENVIRONMENT specifies which of vea or oea is required for
112    the current runtime. */
113 
114 #define ALL_ENVIRONMENT			0
115 #define USER_ENVIRONMENT		1
116 #define VIRTUAL_ENVIRONMENT		2
117 #define OPERATING_ENVIRONMENT		3
118 
119 extern int current_environment;
120 #define CURRENT_ENVIRONMENT (WITH_ENVIRONMENT \
121 			     ? WITH_ENVIRONMENT \
122 			     : current_environment)
123 
124 
125 /* Optional VEA/OEA code:
126 
127    The below, required for the OEA model may also be included in the
128    VEA model however, as far as I can tell only make things
129    slower... */
130 
131 
132 /* Events.  Devices modeling real H/W need to be able to efficiently
133    schedule things to do at known times in the future.  The event
134    queue implements this.  Unfortunatly this adds the need to check
135    for any events once each full instruction cycle. */
136 
137 #define WITH_EVENTS                     (WITH_ENVIRONMENT != USER_ENVIRONMENT)
138 
139 
140 /* Time base:
141 
142    The PowerPC architecture includes the addition of both a time base
143    register and a decrement timer.  Like events adds to the overhead
144    of of some instruction cycles. */
145 
146 #ifndef WITH_TIME_BASE
147 #define WITH_TIME_BASE			(WITH_ENVIRONMENT != USER_ENVIRONMENT)
148 #endif
149 
150 
151 /* Callback/Default Memory.
152 
153    Core includes a builtin memory type (raw_memory) that is
154    implemented using an array.  raw_memory does not require any
155    additional functions etc.
156 
157    Callback memory is where the core calls a core device for the data
158    it requires.
159 
160    Default memory is an extenstion of this where for addresses that do
161    not map into either a callback or core memory range a default map
162    can be used.
163 
164    The OEA model uses callback memory for devices and default memory
165    for buses.
166 
167    The VEA model uses callback memory to capture `page faults'.
168 
169    While it may be possible to eliminate callback/default memory (and
170    hence also eliminate an additional test per memory fetch) it
171    probably is not worth the effort.
172 
173    BTW, while raw_memory could have been implemented as a callback,
174    profiling has shown that there is a biger win (at least for the
175    x86) in eliminating a function call for the most common
176    (raw_memory) case. */
177 
178 #define WITH_CALLBACK_MEMORY		1
179 
180 
181 /* Alignment:
182 
183    The PowerPC may or may not handle miss aligned transfers.  An
184    implementation normally handles miss aligned transfers in big
185    endian mode but generates an exception in little endian mode.
186 
187    This model.  Instead allows both little and big endian modes to
188    either take exceptions or handle miss aligned transfers.
189 
190    If 0 is specified then for big-endian mode miss aligned accesses
191    are permitted (NONSTRICT_ALIGNMENT) while in little-endian mode the
192    processor will fault on them (STRICT_ALIGNMENT). */
193 
194 #define NONSTRICT_ALIGNMENT    		1
195 #define STRICT_ALIGNMENT	       	2
196 
197 #ifndef WITH_ALIGNMENT
198 #define WITH_ALIGNMENT     		0
199 #endif
200 
201 extern int current_alignment;
202 #define CURRENT_ALIGNMENT (WITH_ALIGNMENT \
203 			   ? WITH_ALIGNMENT \
204 			   : current_alignment)
205 
206 
207 /* Floating point suport:
208 
209    Still under development. */
210 
211 #define SOFT_FLOATING_POINT		1
212 #define HARD_FLOATING_POINT		2
213 
214 #ifndef WITH_FLOATING_POINT
215 #define WITH_FLOATING_POINT		HARD_FLOATING_POINT
216 #endif
217 extern int current_floating_point;
218 #define CURRENT_FLOATING_POINT (WITH_FLOATING_POINT \
219 				? WITH_FLOATING_POINT \
220 				: current_floating_point)
221 
222 
223 /* Debugging:
224 
225    Control the inclusion of debugging code. */
226 
227 /* include monitoring code */
228 
229 #define MONITOR_INSTRUCTION_ISSUE	1
230 #define MONITOR_LOAD_STORE_UNIT		2
231 #ifndef WITH_MON
232 #define WITH_MON			(MONITOR_LOAD_STORE_UNIT \
233 					 | MONITOR_INSTRUCTION_ISSUE)
234 #endif
235 
236 /* Current CPU model (models are in the generated models.h include file)  */
237 #ifndef WITH_MODEL
238 #define WITH_MODEL			0
239 #endif
240 
241 #define CURRENT_MODEL (WITH_MODEL	\
242 		       ? WITH_MODEL	\
243 		       : current_model)
244 
245 #ifndef WITH_DEFAULT_MODEL
246 #define WITH_DEFAULT_MODEL		DEFAULT_MODEL
247 #endif
248 
249 #define MODEL_ISSUE_IGNORE		(-1)
250 #define MODEL_ISSUE_PROCESS		1
251 
252 #ifndef WITH_MODEL_ISSUE
253 #define WITH_MODEL_ISSUE		0
254 #endif
255 
256 extern int current_model_issue;
257 #define CURRENT_MODEL_ISSUE (WITH_MODEL_ISSUE	\
258 			     ? WITH_MODEL_ISSUE	\
259 			     : current_model_issue)
260 
261 /* Whether or not input/output just uses stdio, or uses printf_filtered for
262    output, and polling input for input.  */
263 
264 #define DONT_USE_STDIO			2
265 #define DO_USE_STDIO			1
266 
267 extern int current_stdio;
268 #define CURRENT_STDIO (WITH_STDIO	\
269 		       ? WITH_STDIO     \
270 		       : current_stdio)
271 
272 
273 
274 /* INLINE CODE SELECTION:
275 
276    GCC -O3 attempts to inline any function or procedure in scope.  The
277    options below facilitate fine grained control over what is and what
278    isn't made inline.  For instance it can control things down to a
279    specific modules static routines.  Doing this allows the compiler
280    to both eliminate the overhead of function calls and (as a
281    consequence) also eliminate further dead code.
282 
283    On a CISC (x86) I've found that I can achieve an order of magnitude
284    speed improvement (x3-x5).  In the case of RISC (sparc) while the
285    performance gain isn't as great it is still significant.
286 
287    Each module is controled by the macro <module>_INLINE which can
288    have the values described below
289 
290        0  Do not inline any thing for the given module
291 
292    The following additional values are `bit fields' and can be
293    combined.
294 
295       REVEAL_MODULE:
296 
297          Include the C file for the module into the file being compiled
298          but do not make the functions within the module inline.
299 
300 	 While of no apparent benefit, this makes it possible for the
301 	 included module, when compiled to inline its calls to what
302 	 would otherwize be external functions.
303 
304       INLINE_MODULE:
305 
306          Make external functions within the module `inline'.  Thus if
307          the module is included into a file being compiled, calls to
308 	 its funtions can be eliminated. 2 implies 1.
309 
310       INLINE_LOCALS:
311 
312          Make internal (static) functions within the module `inline'.
313 
314    The following abreviations are available:
315 
316       INCLUDE_MODULE == (REVEAL_MODULE | INLINE_MODULE)
317 
318       ALL_C_INLINE == (REVEAL_MODULE | INLINE_MODULE | INLINE_LOCALS)
319 
320    In addition to this, modules have been put into two categories.
321 
322          Simple modules - eg sim-endian.h bits.h
323 
324 	 Because these modules are small and simple and do not have
325 	 any complex interpendencies they are configured, if
326 	 <module>_INLINE is so enabled, to inline themselves in all
327 	 modules that include those files.
328 
329 	 For the default build, this is a real win as all byte
330 	 conversion and bit manipulation functions are inlined.
331 
332 	 Complex modules - the rest
333 
334 	 These are all handled using the files inline.h and inline.c.
335 	 psim.c includes the above which in turn include any remaining
336 	 code.
337 
338    IMPLEMENTATION:
339 
340    The inline ability is enabled by prefixing every data / function
341    declaration and definition with one of the following:
342 
343 
344        INLINE_<module>
345 
346        Prefix to any global function that is a candidate for being
347        inline.
348 
349        values - `', `static', `static INLINE'
350 
351 
352        EXTERN_<module>
353 
354        Prefix to any global data structures for the module.  Global
355        functions that are not to be inlined shall also be prefixed
356        with this.
357 
358        values - `', `static', `static'
359 
360 
361        STATIC_INLINE_<module>
362 
363        Prefix to any local (static) function that is a candidate for
364        being made inline.
365 
366        values - `static', `static INLINE'
367 
368 
369        static
370 
371        Prefix all local data structures.  Local functions that are not
372        to be inlined shall also be prefixed with this.
373 
374        values - `static', `static'
375 
376        nb: will not work for modules that are being inlined for every
377        use (white lie).
378 
379 
380        extern
381        #ifndef _INLINE_C_
382        #endif
383 
384        Prefix to any declaration of a global object (function or
385        variable) that should not be inlined and should have only one
386        definition.  The #ifndef wrapper goes around the definition
387        propper to ensure that only one copy is generated.
388 
389        nb: this will not work when a module is being inlined for every
390        use.
391 
392 
393        STATIC_<module>
394 
395        Replaced by either `static' or `EXTERN_MODULE'.
396 
397 
398    REALITY CHECK:
399 
400    This is not for the faint hearted.  I've seen GCC get up to 500mb
401    trying to compile what this can create.
402 
403    Some of the modules do not yet implement the WITH_INLINE_STATIC
404    option.  Instead they use the macro STATIC_INLINE to control their
405    local function.
406 
407    Because of the way that GCC parses __attribute__(), the macro's
408    need to be adjacent to the function name rather than at the start
409    of the line vis:
410 
411    	int STATIC_INLINE_MODULE f(void);
412 	void INLINE_MODULE *g(void);
413 
414    */
415 
416 #include "../common/sim-inline.h"
417 #define REVEAL_MODULE			H_REVEALS_MODULE
418 #define INLINE_MODULE			C_REVEALS_MODULE
419 #define INCLUDE_MODULE			(INLINE_MODULE | REVEAL_MODULE)
420 
421 /* Your compilers inline reserved word */
422 
423 #ifndef INLINE
424 #if defined(__GNUC__) && defined(__OPTIMIZE__)
425 #define INLINE __inline__
426 #else
427 #define INLINE /*inline*/
428 #endif
429 #endif
430 
431 
432 /* Default prefix for static functions */
433 
434 #ifndef STATIC_INLINE
435 #define STATIC_INLINE static INLINE
436 #endif
437 
438 /* Default macro to simplify control several of key the inlines */
439 
440 #ifndef DEFAULT_INLINE
441 #define	DEFAULT_INLINE			INLINE_LOCALS
442 #endif
443 
444 /* Code that converts between hosts and target byte order.  Used on
445    every memory access (instruction and data).  See sim-endian.h for
446    additional byte swapping configuration information.  This module
447    can inline for all callers */
448 
449 #ifndef SIM_ENDIAN_INLINE
450 #define SIM_ENDIAN_INLINE		(DEFAULT_INLINE ? ALL_C_INLINE : 0)
451 #endif
452 
453 /* Low level bit manipulation routines. This module can inline for all
454    callers */
455 
456 #ifndef BITS_INLINE
457 #define BITS_INLINE			(DEFAULT_INLINE ? ALL_C_INLINE : 0)
458 #endif
459 
460 /* Code that gives access to various CPU internals such as registers.
461    Used every time an instruction is executed */
462 
463 #ifndef CPU_INLINE
464 #define CPU_INLINE			(DEFAULT_INLINE ? ALL_C_INLINE : 0)
465 #endif
466 
467 /* Code that translates between an effective and real address.  Used
468    by every load or store. */
469 
470 #ifndef VM_INLINE
471 #define VM_INLINE			DEFAULT_INLINE
472 #endif
473 
474 /* Code that loads/stores data to/from the memory data structure.
475    Used by every load or store */
476 
477 #ifndef CORE_INLINE
478 #define CORE_INLINE			DEFAULT_INLINE
479 #endif
480 
481 /* Code to check for and process any events scheduled in the future.
482    Called once per instruction cycle */
483 
484 #ifndef EVENTS_INLINE
485 #define EVENTS_INLINE			(DEFAULT_INLINE ? ALL_C_INLINE : 0)
486 #endif
487 
488 /* Code monotoring the processors performance.  It counts events on
489    every instruction cycle */
490 
491 #ifndef MON_INLINE
492 #define MON_INLINE			(DEFAULT_INLINE ? ALL_C_INLINE : 0)
493 #endif
494 
495 /* Code called on the rare occasions that an interrupt occures. */
496 
497 #ifndef INTERRUPTS_INLINE
498 #define INTERRUPTS_INLINE		DEFAULT_INLINE
499 #endif
500 
501 /* Code called on the rare occasion that either gdb or the device tree
502    need to manipulate a register within a processor */
503 
504 #ifndef REGISTERS_INLINE
505 #define REGISTERS_INLINE		DEFAULT_INLINE
506 #endif
507 
508 /* Code called on the rare occasion that a processor is manipulating
509    real hardware instead of RAM.
510 
511    Also, most of the functions in devices.c are always called through
512    a jump table. */
513 
514 #ifndef DEVICE_INLINE
515 #define DEVICE_INLINE			(DEFAULT_INLINE ? INLINE_LOCALS : 0)
516 #endif
517 
518 /* Code called used while the device tree is being built.
519 
520    Inlining this is of no benefit */
521 
522 #ifndef TREE_INLINE
523 #define TREE_INLINE			(DEFAULT_INLINE ? INLINE_LOCALS : 0)
524 #endif
525 
526 /* Code called whenever information on a Special Purpose Register is
527    required.  Called by the mflr/mtlr pseudo instructions */
528 
529 #ifndef SPREG_INLINE
530 #define SPREG_INLINE			DEFAULT_INLINE
531 #endif
532 
533 /* Functions modeling the semantics of each instruction.  Two cases to
534    consider, firstly of idecode is implemented with a switch then this
535    allows the idecode function to inline each semantic function
536    (avoiding a call).  The second case is when idecode is using a
537    table, even then while the semantic functions can't be inlined,
538    setting it to one still enables each semantic function to inline
539    anything they call (if that code is marked for being inlined).
540 
541    WARNING: you need lots (like 200mb of swap) of swap.  Setting this
542    to 1 is useful when using a table as it enables the sematic code to
543    inline all of their called functions */
544 
545 #ifndef SEMANTICS_INLINE
546 #define SEMANTICS_INLINE		(DEFAULT_INLINE & ~INLINE_MODULE)
547 #endif
548 
549 /* When using the instruction cache, code to decode an instruction and
550    install it into the cache.  Normally called when ever there is a
551    miss in the instruction cache. */
552 
553 #ifndef ICACHE_INLINE
554 #define ICACHE_INLINE			(DEFAULT_INLINE & ~INLINE_MODULE)
555 #endif
556 
557 /* General functions called by semantics functions but part of the
558    instruction table.  Although called by the semantic functions the
559    frequency of calls is low.  Consequently the need to inline this
560    code is reduced. */
561 
562 #ifndef SUPPORT_INLINE
563 #define SUPPORT_INLINE			INLINE_LOCALS
564 #endif
565 
566 /* Model specific code used in simulating functional units.  Note, it actaully
567    pays NOT to inline the PowerPC model functions (at least on the x86).  This
568    is because if it is inlined, each PowerPC instruction gets a separate copy
569    of the code, which is not friendly to the cache.  */
570 
571 #ifndef MODEL_INLINE
572 #define	MODEL_INLINE			(DEFAULT_INLINE & ~INLINE_MODULE)
573 #endif
574 
575 /* Code to print out what options we were compiled with.  Because this
576    is called at process startup, it doesn't have to be inlined, but
577    if it isn't brought in and the model routines are inline, the model
578    routines will be pulled in twice.  */
579 
580 #ifndef OPTIONS_INLINE
581 #define OPTIONS_INLINE			MODEL_INLINE
582 #endif
583 
584 /* idecode acts as the hub of the system, everything else is imported
585    into this file */
586 
587 #ifndef IDECOCE_INLINE
588 #define IDECODE_INLINE			INLINE_LOCALS
589 #endif
590 
591 /* psim, isn't actually inlined */
592 
593 #ifndef PSIM_INLINE
594 #define PSIM_INLINE			INLINE_LOCALS
595 #endif
596 
597 /* Code to emulate os or rom compatibility.  This code is called via a
598    table and hence there is little benefit in making it inline */
599 
600 #ifndef OS_EMUL_INLINE
601 #define OS_EMUL_INLINE			0
602 #endif
603 
604 #endif /* _PSIM_CONFIG_H */
605