xref: /netbsd-src/external/gpl3/gdb/dist/gdb/arm-linux-nat.c (revision ccd9df534e375a4366c5b55f23782053c7a98d82)
1 /* GNU/Linux on ARM native support.
2    Copyright (C) 1999-2023 Free Software Foundation, Inc.
3 
4    This file is part of GDB.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
18 
19 #include "defs.h"
20 #include "inferior.h"
21 #include "gdbcore.h"
22 #include "regcache.h"
23 #include "target.h"
24 #include "linux-nat.h"
25 #include "target-descriptions.h"
26 #include "auxv.h"
27 #include "observable.h"
28 #include "gdbthread.h"
29 
30 #include "aarch32-tdep.h"
31 #include "arm-tdep.h"
32 #include "arm-linux-tdep.h"
33 #include "aarch32-linux-nat.h"
34 
35 #include <elf/common.h>
36 #include <sys/user.h>
37 #include "nat/gdb_ptrace.h"
38 #include <sys/utsname.h>
39 #include <sys/procfs.h>
40 
41 #include "nat/linux-ptrace.h"
42 #include "linux-tdep.h"
43 
44 /* Prototypes for supply_gregset etc.  */
45 #include "gregset.h"
46 
47 /* Defines ps_err_e, struct ps_prochandle.  */
48 #include "gdb_proc_service.h"
49 
50 #ifndef PTRACE_GET_THREAD_AREA
51 #define PTRACE_GET_THREAD_AREA 22
52 #endif
53 
54 #ifndef PTRACE_GETWMMXREGS
55 #define PTRACE_GETWMMXREGS 18
56 #define PTRACE_SETWMMXREGS 19
57 #endif
58 
59 #ifndef PTRACE_GETVFPREGS
60 #define PTRACE_GETVFPREGS 27
61 #define PTRACE_SETVFPREGS 28
62 #endif
63 
64 #ifndef PTRACE_GETHBPREGS
65 #define PTRACE_GETHBPREGS 29
66 #define PTRACE_SETHBPREGS 30
67 #endif
68 
69 class arm_linux_nat_target final : public linux_nat_target
70 {
71 public:
72   /* Add our register access methods.  */
73   void fetch_registers (struct regcache *, int) override;
74   void store_registers (struct regcache *, int) override;
75 
76   /* Add our hardware breakpoint and watchpoint implementation.  */
77   int can_use_hw_breakpoint (enum bptype, int, int) override;
78 
79   int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
80 
81   int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
82 
83   int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
84 
85   int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
86 			 struct expression *) override;
87 
88   int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
89 			 struct expression *) override;
90   bool stopped_by_watchpoint () override;
91 
92   bool stopped_data_address (CORE_ADDR *) override;
93 
94   bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
95 
96   const struct target_desc *read_description () override;
97 
98   /* Override linux_nat_target low methods.  */
99 
100   /* Handle thread creation and exit.  */
101   void low_new_thread (struct lwp_info *lp) override;
102   void low_delete_thread (struct arch_lwp_info *lp) override;
103   void low_prepare_to_resume (struct lwp_info *lp) override;
104 
105   /* Handle process creation and exit.  */
106   void low_new_fork (struct lwp_info *parent, pid_t child_pid) override;
107   void low_forget_process (pid_t pid) override;
108 };
109 
110 static arm_linux_nat_target the_arm_linux_nat_target;
111 
112 /* Get the whole floating point state of the process and store it
113    into regcache.  */
114 
115 static void
116 fetch_fpregs (struct regcache *regcache)
117 {
118   int ret, regno, tid;
119   gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
120 
121   /* Get the thread id for the ptrace call.  */
122   tid = regcache->ptid ().lwp ();
123 
124   /* Read the floating point state.  */
125   if (have_ptrace_getregset == TRIBOOL_TRUE)
126     {
127       struct iovec iov;
128 
129       iov.iov_base = &fp;
130       iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
131 
132       ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
133     }
134   else
135     ret = ptrace (PT_GETFPREGS, tid, 0, fp);
136 
137   if (ret < 0)
138     perror_with_name (_("Unable to fetch the floating point registers"));
139 
140   /* Fetch fpsr.  */
141   regcache->raw_supply (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
142 
143   /* Fetch the floating point registers.  */
144   for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
145     supply_nwfpe_register (regcache, regno, fp);
146 }
147 
148 /* Save the whole floating point state of the process using
149    the contents from regcache.  */
150 
151 static void
152 store_fpregs (const struct regcache *regcache)
153 {
154   int ret, regno, tid;
155   gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
156 
157   /* Get the thread id for the ptrace call.  */
158   tid = regcache->ptid ().lwp ();
159 
160   /* Read the floating point state.  */
161   if (have_ptrace_getregset == TRIBOOL_TRUE)
162     {
163       elf_fpregset_t fpregs;
164       struct iovec iov;
165 
166       iov.iov_base = &fpregs;
167       iov.iov_len = sizeof (fpregs);
168 
169       ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
170     }
171   else
172     ret = ptrace (PT_GETFPREGS, tid, 0, fp);
173 
174   if (ret < 0)
175     perror_with_name (_("Unable to fetch the floating point registers"));
176 
177   /* Store fpsr.  */
178   if (REG_VALID == regcache->get_register_status (ARM_FPS_REGNUM))
179     regcache->raw_collect (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
180 
181   /* Store the floating point registers.  */
182   for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
183     if (REG_VALID == regcache->get_register_status (regno))
184       collect_nwfpe_register (regcache, regno, fp);
185 
186   if (have_ptrace_getregset == TRIBOOL_TRUE)
187     {
188       struct iovec iov;
189 
190       iov.iov_base = &fp;
191       iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
192 
193       ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iov);
194     }
195   else
196     ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
197 
198   if (ret < 0)
199     perror_with_name (_("Unable to store floating point registers"));
200 }
201 
202 /* Fetch all general registers of the process and store into
203    regcache.  */
204 
205 static void
206 fetch_regs (struct regcache *regcache)
207 {
208   int ret, tid;
209   elf_gregset_t regs;
210 
211   /* Get the thread id for the ptrace call.  */
212   tid = regcache->ptid ().lwp ();
213 
214   if (have_ptrace_getregset == TRIBOOL_TRUE)
215     {
216       struct iovec iov;
217 
218       iov.iov_base = &regs;
219       iov.iov_len = sizeof (regs);
220 
221       ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
222     }
223   else
224     ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
225 
226   if (ret < 0)
227     perror_with_name (_("Unable to fetch general registers"));
228 
229   aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, arm_apcs_32);
230 }
231 
232 static void
233 store_regs (const struct regcache *regcache)
234 {
235   int ret, tid;
236   elf_gregset_t regs;
237 
238   /* Get the thread id for the ptrace call.  */
239   tid = regcache->ptid ().lwp ();
240 
241   /* Fetch the general registers.  */
242   if (have_ptrace_getregset == TRIBOOL_TRUE)
243     {
244       struct iovec iov;
245 
246       iov.iov_base = &regs;
247       iov.iov_len = sizeof (regs);
248 
249       ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
250     }
251   else
252     ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
253 
254   if (ret < 0)
255     perror_with_name (_("Unable to fetch general registers"));
256 
257   aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, arm_apcs_32);
258 
259   if (have_ptrace_getregset == TRIBOOL_TRUE)
260     {
261       struct iovec iov;
262 
263       iov.iov_base = &regs;
264       iov.iov_len = sizeof (regs);
265 
266       ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iov);
267     }
268   else
269     ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
270 
271   if (ret < 0)
272     perror_with_name (_("Unable to store general registers"));
273 }
274 
275 /* Fetch all WMMX registers of the process and store into
276    regcache.  */
277 
278 static void
279 fetch_wmmx_regs (struct regcache *regcache)
280 {
281   char regbuf[IWMMXT_REGS_SIZE];
282   int ret, regno, tid;
283 
284   /* Get the thread id for the ptrace call.  */
285   tid = regcache->ptid ().lwp ();
286 
287   ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
288   if (ret < 0)
289     perror_with_name (_("Unable to fetch WMMX registers"));
290 
291   for (regno = 0; regno < 16; regno++)
292     regcache->raw_supply (regno + ARM_WR0_REGNUM, &regbuf[regno * 8]);
293 
294   for (regno = 0; regno < 2; regno++)
295     regcache->raw_supply (regno + ARM_WCSSF_REGNUM,
296 			  &regbuf[16 * 8 + regno * 4]);
297 
298   for (regno = 0; regno < 4; regno++)
299     regcache->raw_supply (regno + ARM_WCGR0_REGNUM,
300 			  &regbuf[16 * 8 + 2 * 4 + regno * 4]);
301 }
302 
303 static void
304 store_wmmx_regs (const struct regcache *regcache)
305 {
306   char regbuf[IWMMXT_REGS_SIZE];
307   int ret, regno, tid;
308 
309   /* Get the thread id for the ptrace call.  */
310   tid = regcache->ptid ().lwp ();
311 
312   ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
313   if (ret < 0)
314     perror_with_name (_("Unable to fetch WMMX registers"));
315 
316   for (regno = 0; regno < 16; regno++)
317     if (REG_VALID == regcache->get_register_status (regno + ARM_WR0_REGNUM))
318       regcache->raw_collect (regno + ARM_WR0_REGNUM, &regbuf[regno * 8]);
319 
320   for (regno = 0; regno < 2; regno++)
321     if (REG_VALID == regcache->get_register_status (regno + ARM_WCSSF_REGNUM))
322       regcache->raw_collect (regno + ARM_WCSSF_REGNUM,
323 			     &regbuf[16 * 8 + regno * 4]);
324 
325   for (regno = 0; regno < 4; regno++)
326     if (REG_VALID == regcache->get_register_status (regno + ARM_WCGR0_REGNUM))
327       regcache->raw_collect (regno + ARM_WCGR0_REGNUM,
328 			     &regbuf[16 * 8 + 2 * 4 + regno * 4]);
329 
330   ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf);
331 
332   if (ret < 0)
333     perror_with_name (_("Unable to store WMMX registers"));
334 }
335 
336 static void
337 fetch_vfp_regs (struct regcache *regcache)
338 {
339   gdb_byte regbuf[ARM_VFP3_REGS_SIZE];
340   int ret, tid;
341   struct gdbarch *gdbarch = regcache->arch ();
342   arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
343 
344   /* Get the thread id for the ptrace call.  */
345   tid = regcache->ptid ().lwp ();
346 
347   if (have_ptrace_getregset == TRIBOOL_TRUE)
348     {
349       struct iovec iov;
350 
351       iov.iov_base = regbuf;
352       iov.iov_len = ARM_VFP3_REGS_SIZE;
353       ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
354     }
355   else
356     ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
357 
358   if (ret < 0)
359     perror_with_name (_("Unable to fetch VFP registers"));
360 
361   aarch32_vfp_regcache_supply (regcache, regbuf,
362 			       tdep->vfp_register_count);
363 }
364 
365 static void
366 store_vfp_regs (const struct regcache *regcache)
367 {
368   gdb_byte regbuf[ARM_VFP3_REGS_SIZE];
369   int ret, tid;
370   struct gdbarch *gdbarch = regcache->arch ();
371   arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
372 
373   /* Get the thread id for the ptrace call.  */
374   tid = regcache->ptid ().lwp ();
375 
376   if (have_ptrace_getregset == TRIBOOL_TRUE)
377     {
378       struct iovec iov;
379 
380       iov.iov_base = regbuf;
381       iov.iov_len = ARM_VFP3_REGS_SIZE;
382       ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
383     }
384   else
385     ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
386 
387   if (ret < 0)
388     perror_with_name (_("Unable to fetch VFP registers (for update)"));
389 
390   aarch32_vfp_regcache_collect (regcache, regbuf,
391 				tdep->vfp_register_count);
392 
393   if (have_ptrace_getregset == TRIBOOL_TRUE)
394     {
395       struct iovec iov;
396 
397       iov.iov_base = regbuf;
398       iov.iov_len = ARM_VFP3_REGS_SIZE;
399       ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iov);
400     }
401   else
402     ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf);
403 
404   if (ret < 0)
405     perror_with_name (_("Unable to store VFP registers"));
406 }
407 
408 /* Fetch registers from the child process.  Fetch all registers if
409    regno == -1, otherwise fetch all general registers or all floating
410    point registers depending upon the value of regno.  */
411 
412 void
413 arm_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
414 {
415   struct gdbarch *gdbarch = regcache->arch ();
416   arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
417 
418   if (-1 == regno)
419     {
420       fetch_regs (regcache);
421       if (tdep->have_wmmx_registers)
422 	fetch_wmmx_regs (regcache);
423       if (tdep->vfp_register_count > 0)
424 	fetch_vfp_regs (regcache);
425       if (tdep->have_fpa_registers)
426 	fetch_fpregs (regcache);
427     }
428   else
429     {
430       if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
431 	fetch_regs (regcache);
432       else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM)
433 	fetch_fpregs (regcache);
434       else if (tdep->have_wmmx_registers
435 	       && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
436 	fetch_wmmx_regs (regcache);
437       else if (tdep->vfp_register_count > 0
438 	       && regno >= ARM_D0_REGNUM
439 	       && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
440 		   || regno == ARM_FPSCR_REGNUM))
441 	fetch_vfp_regs (regcache);
442     }
443 }
444 
445 /* Store registers back into the inferior.  Store all registers if
446    regno == -1, otherwise store all general registers or all floating
447    point registers depending upon the value of regno.  */
448 
449 void
450 arm_linux_nat_target::store_registers (struct regcache *regcache, int regno)
451 {
452   struct gdbarch *gdbarch = regcache->arch ();
453   arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
454 
455   if (-1 == regno)
456     {
457       store_regs (regcache);
458       if (tdep->have_wmmx_registers)
459 	store_wmmx_regs (regcache);
460       if (tdep->vfp_register_count > 0)
461 	store_vfp_regs (regcache);
462       if (tdep->have_fpa_registers)
463 	store_fpregs (regcache);
464     }
465   else
466     {
467       if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
468 	store_regs (regcache);
469       else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM))
470 	store_fpregs (regcache);
471       else if (tdep->have_wmmx_registers
472 	       && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
473 	store_wmmx_regs (regcache);
474       else if (tdep->vfp_register_count > 0
475 	       && regno >= ARM_D0_REGNUM
476 	       && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
477 		   || regno == ARM_FPSCR_REGNUM))
478 	store_vfp_regs (regcache);
479     }
480 }
481 
482 /* Wrapper functions for the standard regset handling, used by
483    thread debugging.  */
484 
485 void
486 fill_gregset (const struct regcache *regcache,
487 	      gdb_gregset_t *gregsetp, int regno)
488 {
489   arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0);
490 }
491 
492 void
493 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
494 {
495   arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0);
496 }
497 
498 void
499 fill_fpregset (const struct regcache *regcache,
500 	       gdb_fpregset_t *fpregsetp, int regno)
501 {
502   arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0);
503 }
504 
505 /* Fill GDB's register array with the floating-point register values
506    in *fpregsetp.  */
507 
508 void
509 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
510 {
511   arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0);
512 }
513 
514 /* Fetch the thread-local storage pointer for libthread_db.  */
515 
516 ps_err_e
517 ps_get_thread_area (struct ps_prochandle *ph,
518 		    lwpid_t lwpid, int idx, void **base)
519 {
520   if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
521     return PS_ERR;
522 
523   /* IDX is the bias from the thread pointer to the beginning of the
524      thread descriptor.  It has to be subtracted due to implementation
525      quirks in libthread_db.  */
526   *base = (void *) ((char *)*base - idx);
527 
528   return PS_OK;
529 }
530 
531 const struct target_desc *
532 arm_linux_nat_target::read_description ()
533 {
534   CORE_ADDR arm_hwcap = linux_get_hwcap ();
535 
536   if (have_ptrace_getregset == TRIBOOL_UNKNOWN)
537     {
538       elf_gregset_t gpregs;
539       struct iovec iov;
540       int tid = inferior_ptid.pid ();
541 
542       iov.iov_base = &gpregs;
543       iov.iov_len = sizeof (gpregs);
544 
545       /* Check if PTRACE_GETREGSET works.  */
546       if (ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov) < 0)
547 	have_ptrace_getregset = TRIBOOL_FALSE;
548       else
549 	have_ptrace_getregset = TRIBOOL_TRUE;
550     }
551 
552   if (arm_hwcap & HWCAP_IWMMXT)
553     return arm_read_description (ARM_FP_TYPE_IWMMXT, false);
554 
555   if (arm_hwcap & HWCAP_VFP)
556     {
557       /* Make sure that the kernel supports reading VFP registers.  Support was
558 	 added in 2.6.30.  */
559       int pid = inferior_ptid.pid ();
560       errno = 0;
561       char *buf = (char *) alloca (ARM_VFP3_REGS_SIZE);
562       if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0 && errno == EIO)
563 	return nullptr;
564 
565       /* NEON implies VFPv3-D32 or no-VFP unit.  Say that we only support
566 	 Neon with VFPv3-D32.  */
567       if (arm_hwcap & HWCAP_NEON)
568 	return aarch32_read_description ();
569       else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
570 	return arm_read_description (ARM_FP_TYPE_VFPV3, false);
571 
572       return arm_read_description (ARM_FP_TYPE_VFPV2, false);
573     }
574 
575   return this->beneath ()->read_description ();
576 }
577 
578 /* Information describing the hardware breakpoint capabilities.  */
579 struct arm_linux_hwbp_cap
580 {
581   gdb_byte arch;
582   gdb_byte max_wp_length;
583   gdb_byte wp_count;
584   gdb_byte bp_count;
585 };
586 
587 /* Since we cannot dynamically allocate subfields of arm_linux_process_info,
588    assume a maximum number of supported break-/watchpoints.  */
589 #define MAX_BPTS 16
590 #define MAX_WPTS 16
591 
592 /* Get hold of the Hardware Breakpoint information for the target we are
593    attached to.  Returns NULL if the kernel doesn't support Hardware
594    breakpoints at all, or a pointer to the information structure.  */
595 static const struct arm_linux_hwbp_cap *
596 arm_linux_get_hwbp_cap (void)
597 {
598   /* The info structure we return.  */
599   static struct arm_linux_hwbp_cap info;
600 
601   /* Is INFO in a good state?  -1 means that no attempt has been made to
602      initialize INFO; 0 means an attempt has been made, but it failed; 1
603      means INFO is in an initialized state.  */
604   static int available = -1;
605 
606   if (available == -1)
607     {
608       int tid;
609       unsigned int val;
610 
611       tid = inferior_ptid.lwp ();
612       if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0)
613 	available = 0;
614       else
615 	{
616 	  info.arch = (gdb_byte)((val >> 24) & 0xff);
617 	  info.max_wp_length = (gdb_byte)((val >> 16) & 0xff);
618 	  info.wp_count = (gdb_byte)((val >> 8) & 0xff);
619 	  info.bp_count = (gdb_byte)(val & 0xff);
620 
621       if (info.wp_count > MAX_WPTS)
622 	{
623 	  warning (_("arm-linux-gdb supports %d hardware watchpoints but target \
624 		      supports %d"), MAX_WPTS, info.wp_count);
625 	  info.wp_count = MAX_WPTS;
626 	}
627 
628       if (info.bp_count > MAX_BPTS)
629 	{
630 	  warning (_("arm-linux-gdb supports %d hardware breakpoints but target \
631 		      supports %d"), MAX_BPTS, info.bp_count);
632 	  info.bp_count = MAX_BPTS;
633 	}
634 	  available = (info.arch != 0);
635 	}
636     }
637 
638   return available == 1 ? &info : NULL;
639 }
640 
641 /* How many hardware breakpoints are available?  */
642 static int
643 arm_linux_get_hw_breakpoint_count (void)
644 {
645   const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
646   return cap != NULL ? cap->bp_count : 0;
647 }
648 
649 /* How many hardware watchpoints are available?  */
650 static int
651 arm_linux_get_hw_watchpoint_count (void)
652 {
653   const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
654   return cap != NULL ? cap->wp_count : 0;
655 }
656 
657 /* Have we got a free break-/watch-point available for use?  Returns -1 if
658    there is not an appropriate resource available, otherwise returns 1.  */
659 int
660 arm_linux_nat_target::can_use_hw_breakpoint (enum bptype type,
661 					     int cnt, int ot)
662 {
663   if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
664       || type == bp_access_watchpoint || type == bp_watchpoint)
665     {
666       int count = arm_linux_get_hw_watchpoint_count ();
667 
668       if (count == 0)
669 	return 0;
670       else if (cnt + ot > count)
671 	return -1;
672     }
673   else if (type == bp_hardware_breakpoint)
674     {
675       int count = arm_linux_get_hw_breakpoint_count ();
676 
677       if (count == 0)
678 	return 0;
679       else if (cnt > count)
680 	return -1;
681     }
682   else
683     gdb_assert_not_reached ("unknown breakpoint type");
684 
685   return 1;
686 }
687 
688 /* Enum describing the different types of ARM hardware break-/watch-points.  */
689 typedef enum
690 {
691   arm_hwbp_break = 0,
692   arm_hwbp_load = 1,
693   arm_hwbp_store = 2,
694   arm_hwbp_access = 3
695 } arm_hwbp_type;
696 
697 /* Type describing an ARM Hardware Breakpoint Control register value.  */
698 typedef unsigned int arm_hwbp_control_t;
699 
700 /* Structure used to keep track of hardware break-/watch-points.  */
701 struct arm_linux_hw_breakpoint
702 {
703   /* Address to break on, or being watched.  */
704   unsigned int address;
705   /* Control register for break-/watch- point.  */
706   arm_hwbp_control_t control;
707 };
708 
709 /* Structure containing arrays of per process hardware break-/watchpoints
710    for caching address and control information.
711 
712    The Linux ptrace interface to hardware break-/watch-points presents the
713    values in a vector centred around 0 (which is used fo generic information).
714    Positive indicies refer to breakpoint addresses/control registers, negative
715    indices to watchpoint addresses/control registers.
716 
717    The Linux vector is indexed as follows:
718       -((i << 1) + 2): Control register for watchpoint i.
719       -((i << 1) + 1): Address register for watchpoint i.
720 		    0: Information register.
721        ((i << 1) + 1): Address register for breakpoint i.
722        ((i << 1) + 2): Control register for breakpoint i.
723 
724    This structure is used as a per-thread cache of the state stored by the
725    kernel, so that we don't need to keep calling into the kernel to find a
726    free breakpoint.
727 
728    We treat break-/watch-points with their enable bit clear as being deleted.
729    */
730 struct arm_linux_debug_reg_state
731 {
732   /* Hardware breakpoints for this process.  */
733   struct arm_linux_hw_breakpoint bpts[MAX_BPTS];
734   /* Hardware watchpoints for this process.  */
735   struct arm_linux_hw_breakpoint wpts[MAX_WPTS];
736 };
737 
738 /* Per-process arch-specific data we want to keep.  */
739 struct arm_linux_process_info
740 {
741   /* Linked list.  */
742   struct arm_linux_process_info *next;
743   /* The process identifier.  */
744   pid_t pid;
745   /* Hardware break-/watchpoints state information.  */
746   struct arm_linux_debug_reg_state state;
747 
748 };
749 
750 /* Per-thread arch-specific data we want to keep.  */
751 struct arch_lwp_info
752 {
753   /* Non-zero if our copy differs from what's recorded in the thread.  */
754   char bpts_changed[MAX_BPTS];
755   char wpts_changed[MAX_WPTS];
756 };
757 
758 static struct arm_linux_process_info *arm_linux_process_list = NULL;
759 
760 /* Find process data for process PID.  */
761 
762 static struct arm_linux_process_info *
763 arm_linux_find_process_pid (pid_t pid)
764 {
765   struct arm_linux_process_info *proc;
766 
767   for (proc = arm_linux_process_list; proc; proc = proc->next)
768     if (proc->pid == pid)
769       return proc;
770 
771   return NULL;
772 }
773 
774 /* Add process data for process PID.  Returns newly allocated info
775    object.  */
776 
777 static struct arm_linux_process_info *
778 arm_linux_add_process (pid_t pid)
779 {
780   struct arm_linux_process_info *proc;
781 
782   proc = XCNEW (struct arm_linux_process_info);
783   proc->pid = pid;
784 
785   proc->next = arm_linux_process_list;
786   arm_linux_process_list = proc;
787 
788   return proc;
789 }
790 
791 /* Get data specific info for process PID, creating it if necessary.
792    Never returns NULL.  */
793 
794 static struct arm_linux_process_info *
795 arm_linux_process_info_get (pid_t pid)
796 {
797   struct arm_linux_process_info *proc;
798 
799   proc = arm_linux_find_process_pid (pid);
800   if (proc == NULL)
801     proc = arm_linux_add_process (pid);
802 
803   return proc;
804 }
805 
806 /* Called whenever GDB is no longer debugging process PID.  It deletes
807    data structures that keep track of debug register state.  */
808 
809 void
810 arm_linux_nat_target::low_forget_process (pid_t pid)
811 {
812   struct arm_linux_process_info *proc, **proc_link;
813 
814   proc = arm_linux_process_list;
815   proc_link = &arm_linux_process_list;
816 
817   while (proc != NULL)
818     {
819       if (proc->pid == pid)
820     {
821       *proc_link = proc->next;
822 
823       xfree (proc);
824       return;
825     }
826 
827       proc_link = &proc->next;
828       proc = *proc_link;
829     }
830 }
831 
832 /* Get hardware break-/watchpoint state for process PID.  */
833 
834 static struct arm_linux_debug_reg_state *
835 arm_linux_get_debug_reg_state (pid_t pid)
836 {
837   return &arm_linux_process_info_get (pid)->state;
838 }
839 
840 /* Initialize an ARM hardware break-/watch-point control register value.
841    BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the
842    type of break-/watch-point; ENABLE indicates whether the point is enabled.
843    */
844 static arm_hwbp_control_t
845 arm_hwbp_control_initialize (unsigned byte_address_select,
846 			     arm_hwbp_type hwbp_type,
847 			     int enable)
848 {
849   gdb_assert ((byte_address_select & ~0xffU) == 0);
850   gdb_assert (hwbp_type != arm_hwbp_break
851 	      || ((byte_address_select & 0xfU) != 0));
852 
853   return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable;
854 }
855 
856 /* Does the breakpoint control value CONTROL have the enable bit set?  */
857 static int
858 arm_hwbp_control_is_enabled (arm_hwbp_control_t control)
859 {
860   return control & 0x1;
861 }
862 
863 /* Change a breakpoint control word so that it is in the disabled state.  */
864 static arm_hwbp_control_t
865 arm_hwbp_control_disable (arm_hwbp_control_t control)
866 {
867   return control & ~0x1;
868 }
869 
870 /* Initialise the hardware breakpoint structure P.  The breakpoint will be
871    enabled, and will point to the placed address of BP_TGT.  */
872 static void
873 arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch,
874 				    struct bp_target_info *bp_tgt,
875 				    struct arm_linux_hw_breakpoint *p)
876 {
877   unsigned mask;
878   CORE_ADDR address = bp_tgt->placed_address = bp_tgt->reqstd_address;
879 
880   /* We have to create a mask for the control register which says which bits
881      of the word pointed to by address to break on.  */
882   if (arm_pc_is_thumb (gdbarch, address))
883     {
884       mask = 0x3;
885       address &= ~1;
886     }
887   else
888     {
889       mask = 0xf;
890       address &= ~3;
891     }
892 
893   p->address = (unsigned int) address;
894   p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1);
895 }
896 
897 /* Get the ARM hardware breakpoint type from the TYPE value we're
898    given when asked to set a watchpoint.  */
899 static arm_hwbp_type
900 arm_linux_get_hwbp_type (enum target_hw_bp_type type)
901 {
902   if (type == hw_read)
903     return arm_hwbp_load;
904   else if (type == hw_write)
905     return arm_hwbp_store;
906   else
907     return arm_hwbp_access;
908 }
909 
910 /* Initialize the hardware breakpoint structure P for a watchpoint at ADDR
911    to LEN.  The type of watchpoint is given in RW.  */
912 static void
913 arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len,
914 				    enum target_hw_bp_type type,
915 				    struct arm_linux_hw_breakpoint *p)
916 {
917   const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
918   unsigned mask;
919 
920   gdb_assert (cap != NULL);
921   gdb_assert (cap->max_wp_length != 0);
922 
923   mask = (1 << len) - 1;
924 
925   p->address = (unsigned int) addr;
926   p->control = arm_hwbp_control_initialize (mask,
927 					    arm_linux_get_hwbp_type (type), 1);
928 }
929 
930 /* Are two break-/watch-points equal?  */
931 static int
932 arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1,
933 			       const struct arm_linux_hw_breakpoint *p2)
934 {
935   return p1->address == p2->address && p1->control == p2->control;
936 }
937 
938 /* Callback to mark a watch-/breakpoint to be updated in all threads of
939    the current process.  */
940 
941 static int
942 update_registers_callback (struct lwp_info *lwp, int watch, int index)
943 {
944   if (lwp->arch_private == NULL)
945     lwp->arch_private = XCNEW (struct arch_lwp_info);
946 
947   /* The actual update is done later just before resuming the lwp,
948      we just mark that the registers need updating.  */
949   if (watch)
950     lwp->arch_private->wpts_changed[index] = 1;
951   else
952     lwp->arch_private->bpts_changed[index] = 1;
953 
954   /* If the lwp isn't stopped, force it to momentarily pause, so
955      we can update its breakpoint registers.  */
956   if (!lwp->stopped)
957     linux_stop_lwp (lwp);
958 
959   return 0;
960 }
961 
962 /* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT
963    =1) BPT for thread TID.  */
964 static void
965 arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt,
966 				 int watchpoint)
967 {
968   int pid;
969   ptid_t pid_ptid;
970   gdb_byte count, i;
971   struct arm_linux_hw_breakpoint* bpts;
972 
973   pid = inferior_ptid.pid ();
974   pid_ptid = ptid_t (pid);
975 
976   if (watchpoint)
977     {
978       count = arm_linux_get_hw_watchpoint_count ();
979       bpts = arm_linux_get_debug_reg_state (pid)->wpts;
980     }
981   else
982     {
983       count = arm_linux_get_hw_breakpoint_count ();
984       bpts = arm_linux_get_debug_reg_state (pid)->bpts;
985     }
986 
987   for (i = 0; i < count; ++i)
988     if (!arm_hwbp_control_is_enabled (bpts[i].control))
989       {
990 	bpts[i] = *bpt;
991 	iterate_over_lwps (pid_ptid,
992 			   [=] (struct lwp_info *info)
993 			   {
994 			     return update_registers_callback (info, watchpoint,
995 							       i);
996 			   });
997 	break;
998       }
999 
1000   gdb_assert (i != count);
1001 }
1002 
1003 /* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint
1004    (WATCHPOINT = 1) BPT for thread TID.  */
1005 static void
1006 arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt,
1007 				 int watchpoint)
1008 {
1009   int pid;
1010   gdb_byte count, i;
1011   ptid_t pid_ptid;
1012   struct arm_linux_hw_breakpoint* bpts;
1013 
1014   pid = inferior_ptid.pid ();
1015   pid_ptid = ptid_t (pid);
1016 
1017   if (watchpoint)
1018     {
1019       count = arm_linux_get_hw_watchpoint_count ();
1020       bpts = arm_linux_get_debug_reg_state (pid)->wpts;
1021     }
1022   else
1023     {
1024       count = arm_linux_get_hw_breakpoint_count ();
1025       bpts = arm_linux_get_debug_reg_state (pid)->bpts;
1026     }
1027 
1028   for (i = 0; i < count; ++i)
1029     if (arm_linux_hw_breakpoint_equal (bpt, bpts + i))
1030       {
1031 	bpts[i].control = arm_hwbp_control_disable (bpts[i].control);
1032 	iterate_over_lwps (pid_ptid,
1033 			   [=] (struct lwp_info *info)
1034 			   {
1035 			     return update_registers_callback (info, watchpoint,
1036 							       i);
1037 			   });
1038 	break;
1039       }
1040 
1041   gdb_assert (i != count);
1042 }
1043 
1044 /* Insert a Hardware breakpoint.  */
1045 int
1046 arm_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
1047 					    struct bp_target_info *bp_tgt)
1048 {
1049   struct arm_linux_hw_breakpoint p;
1050 
1051   if (arm_linux_get_hw_breakpoint_count () == 0)
1052     return -1;
1053 
1054   arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1055 
1056   arm_linux_insert_hw_breakpoint1 (&p, 0);
1057 
1058   return 0;
1059 }
1060 
1061 /* Remove a hardware breakpoint.  */
1062 int
1063 arm_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
1064 					    struct bp_target_info *bp_tgt)
1065 {
1066   struct arm_linux_hw_breakpoint p;
1067 
1068   if (arm_linux_get_hw_breakpoint_count () == 0)
1069     return -1;
1070 
1071   arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1072 
1073   arm_linux_remove_hw_breakpoint1 (&p, 0);
1074 
1075   return 0;
1076 }
1077 
1078 /* Are we able to use a hardware watchpoint for the LEN bytes starting at
1079    ADDR?  */
1080 int
1081 arm_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1082 {
1083   const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
1084   CORE_ADDR max_wp_length, aligned_addr;
1085 
1086   /* Can not set watchpoints for zero or negative lengths.  */
1087   if (len <= 0)
1088     return 0;
1089 
1090   /* Need to be able to use the ptrace interface.  */
1091   if (cap == NULL || cap->wp_count == 0)
1092     return 0;
1093 
1094   /* Test that the range [ADDR, ADDR + LEN) fits into the largest address
1095      range covered by a watchpoint.  */
1096   max_wp_length = (CORE_ADDR)cap->max_wp_length;
1097   aligned_addr = addr & ~(max_wp_length - 1);
1098 
1099   if (aligned_addr + max_wp_length < addr + len)
1100     return 0;
1101 
1102   /* The current ptrace interface can only handle watchpoints that are a
1103      power of 2.  */
1104   if ((len & (len - 1)) != 0)
1105     return 0;
1106 
1107   /* All tests passed so we must be able to set a watchpoint.  */
1108   return 1;
1109 }
1110 
1111 /* Insert a Hardware breakpoint.  */
1112 int
1113 arm_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
1114 					 enum target_hw_bp_type rw,
1115 					 struct expression *cond)
1116 {
1117   struct arm_linux_hw_breakpoint p;
1118 
1119   if (arm_linux_get_hw_watchpoint_count () == 0)
1120     return -1;
1121 
1122   arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1123 
1124   arm_linux_insert_hw_breakpoint1 (&p, 1);
1125 
1126   return 0;
1127 }
1128 
1129 /* Remove a hardware breakpoint.  */
1130 int
1131 arm_linux_nat_target::remove_watchpoint (CORE_ADDR addr,
1132 					 int len, enum target_hw_bp_type rw,
1133 					 struct expression *cond)
1134 {
1135   struct arm_linux_hw_breakpoint p;
1136 
1137   if (arm_linux_get_hw_watchpoint_count () == 0)
1138     return -1;
1139 
1140   arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1141 
1142   arm_linux_remove_hw_breakpoint1 (&p, 1);
1143 
1144   return 0;
1145 }
1146 
1147 /* What was the data address the target was stopped on accessing.  */
1148 bool
1149 arm_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
1150 {
1151   siginfo_t siginfo;
1152   int slot;
1153 
1154   if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1155     return false;
1156 
1157   /* This must be a hardware breakpoint.  */
1158   if (siginfo.si_signo != SIGTRAP
1159       || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
1160     return false;
1161 
1162   /* We must be able to set hardware watchpoints.  */
1163   if (arm_linux_get_hw_watchpoint_count () == 0)
1164     return 0;
1165 
1166   slot = siginfo.si_errno;
1167 
1168   /* If we are in a positive slot then we're looking at a breakpoint and not
1169      a watchpoint.  */
1170   if (slot >= 0)
1171     return false;
1172 
1173   *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
1174   return true;
1175 }
1176 
1177 /* Has the target been stopped by hitting a watchpoint?  */
1178 bool
1179 arm_linux_nat_target::stopped_by_watchpoint ()
1180 {
1181   CORE_ADDR addr;
1182   return stopped_data_address (&addr);
1183 }
1184 
1185 bool
1186 arm_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
1187 						    CORE_ADDR start,
1188 						    int length)
1189 {
1190   return start <= addr && start + length - 1 >= addr;
1191 }
1192 
1193 /* Handle thread creation.  We need to copy the breakpoints and watchpoints
1194    in the parent thread to the child thread.  */
1195 void
1196 arm_linux_nat_target::low_new_thread (struct lwp_info *lp)
1197 {
1198   int i;
1199   struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
1200 
1201   /* Mark that all the hardware breakpoint/watchpoint register pairs
1202      for this thread need to be initialized.  */
1203 
1204   for (i = 0; i < MAX_BPTS; i++)
1205     {
1206       info->bpts_changed[i] = 1;
1207       info->wpts_changed[i] = 1;
1208     }
1209 
1210   lp->arch_private = info;
1211 }
1212 
1213 /* Function to call when a thread is being deleted.  */
1214 
1215 void
1216 arm_linux_nat_target::low_delete_thread (struct arch_lwp_info *arch_lwp)
1217 {
1218   xfree (arch_lwp);
1219 }
1220 
1221 /* Called when resuming a thread.
1222    The hardware debug registers are updated when there is any change.  */
1223 
1224 void
1225 arm_linux_nat_target::low_prepare_to_resume (struct lwp_info *lwp)
1226 {
1227   int pid, i;
1228   struct arm_linux_hw_breakpoint *bpts, *wpts;
1229   struct arch_lwp_info *arm_lwp_info = lwp->arch_private;
1230 
1231   pid = lwp->ptid.lwp ();
1232   bpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->bpts;
1233   wpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->wpts;
1234 
1235   /* NULL means this is the main thread still going through the shell,
1236      or, no watchpoint has been set yet.  In that case, there's
1237      nothing to do.  */
1238   if (arm_lwp_info == NULL)
1239     return;
1240 
1241   for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++)
1242     if (arm_lwp_info->bpts_changed[i])
1243       {
1244 	errno = 0;
1245 	if (arm_hwbp_control_is_enabled (bpts[i].control))
1246 	  if (ptrace (PTRACE_SETHBPREGS, pid,
1247 	      (PTRACE_TYPE_ARG3) ((i << 1) + 1), &bpts[i].address) < 0)
1248 	    perror_with_name (_("Unexpected error setting breakpoint"));
1249 
1250 	if (bpts[i].control != 0)
1251 	  if (ptrace (PTRACE_SETHBPREGS, pid,
1252 	      (PTRACE_TYPE_ARG3) ((i << 1) + 2), &bpts[i].control) < 0)
1253 	    perror_with_name (_("Unexpected error setting breakpoint"));
1254 
1255 	arm_lwp_info->bpts_changed[i] = 0;
1256       }
1257 
1258   for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++)
1259     if (arm_lwp_info->wpts_changed[i])
1260       {
1261 	errno = 0;
1262 	if (arm_hwbp_control_is_enabled (wpts[i].control))
1263 	  if (ptrace (PTRACE_SETHBPREGS, pid,
1264 	      (PTRACE_TYPE_ARG3) -((i << 1) + 1), &wpts[i].address) < 0)
1265 	    perror_with_name (_("Unexpected error setting watchpoint"));
1266 
1267 	if (wpts[i].control != 0)
1268 	  if (ptrace (PTRACE_SETHBPREGS, pid,
1269 	      (PTRACE_TYPE_ARG3) -((i << 1) + 2), &wpts[i].control) < 0)
1270 	    perror_with_name (_("Unexpected error setting watchpoint"));
1271 
1272 	arm_lwp_info->wpts_changed[i] = 0;
1273       }
1274 }
1275 
1276 /* linux_nat_new_fork hook.  */
1277 
1278 void
1279 arm_linux_nat_target::low_new_fork (struct lwp_info *parent, pid_t child_pid)
1280 {
1281   pid_t parent_pid;
1282   struct arm_linux_debug_reg_state *parent_state;
1283   struct arm_linux_debug_reg_state *child_state;
1284 
1285   /* NULL means no watchpoint has ever been set in the parent.  In
1286      that case, there's nothing to do.  */
1287   if (parent->arch_private == NULL)
1288     return;
1289 
1290   /* GDB core assumes the child inherits the watchpoints/hw
1291      breakpoints of the parent, and will remove them all from the
1292      forked off process.  Copy the debug registers mirrors into the
1293      new process so that all breakpoints and watchpoints can be
1294      removed together.  */
1295 
1296   parent_pid = parent->ptid.pid ();
1297   parent_state = arm_linux_get_debug_reg_state (parent_pid);
1298   child_state = arm_linux_get_debug_reg_state (child_pid);
1299   *child_state = *parent_state;
1300 }
1301 
1302 void _initialize_arm_linux_nat ();
1303 void
1304 _initialize_arm_linux_nat ()
1305 {
1306   /* Register the target.  */
1307   linux_target = &the_arm_linux_nat_target;
1308   add_inf_child_target (&the_arm_linux_nat_target);
1309 }
1310