1 /* GNU/Linux on ARM native support. 2 Copyright (C) 1999-2024 Free Software Foundation, Inc. 3 4 This file is part of GDB. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 18 19 #include "inferior.h" 20 #include "gdbcore.h" 21 #include "regcache.h" 22 #include "target.h" 23 #include "linux-nat.h" 24 #include "target-descriptions.h" 25 #include "auxv.h" 26 #include "observable.h" 27 #include "gdbthread.h" 28 29 #include "aarch32-tdep.h" 30 #include "arm-tdep.h" 31 #include "arm-linux-tdep.h" 32 #include "aarch32-linux-nat.h" 33 34 #include <elf/common.h> 35 #include <sys/user.h> 36 #include "nat/gdb_ptrace.h" 37 #include <sys/utsname.h> 38 #include <sys/procfs.h> 39 40 #include "nat/linux-ptrace.h" 41 #include "linux-tdep.h" 42 43 /* Prototypes for supply_gregset etc. */ 44 #include "gregset.h" 45 46 /* Defines ps_err_e, struct ps_prochandle. */ 47 #include "gdb_proc_service.h" 48 49 #ifndef PTRACE_GET_THREAD_AREA 50 #define PTRACE_GET_THREAD_AREA 22 51 #endif 52 53 #ifndef PTRACE_GETWMMXREGS 54 #define PTRACE_GETWMMXREGS 18 55 #define PTRACE_SETWMMXREGS 19 56 #endif 57 58 #ifndef PTRACE_GETVFPREGS 59 #define PTRACE_GETVFPREGS 27 60 #define PTRACE_SETVFPREGS 28 61 #endif 62 63 #ifndef PTRACE_GETHBPREGS 64 #define PTRACE_GETHBPREGS 29 65 #define PTRACE_SETHBPREGS 30 66 #endif 67 68 class arm_linux_nat_target final : public linux_nat_target 69 { 70 public: 71 /* Add our register access methods. */ 72 void fetch_registers (struct regcache *, int) override; 73 void store_registers (struct regcache *, int) override; 74 75 /* Add our hardware breakpoint and watchpoint implementation. */ 76 int can_use_hw_breakpoint (enum bptype, int, int) override; 77 78 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override; 79 80 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override; 81 82 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override; 83 84 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type, 85 struct expression *) override; 86 87 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type, 88 struct expression *) override; 89 bool stopped_by_watchpoint () override; 90 91 bool stopped_data_address (CORE_ADDR *) override; 92 93 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override; 94 95 const struct target_desc *read_description () override; 96 97 /* Override linux_nat_target low methods. */ 98 99 /* Handle thread creation and exit. */ 100 void low_new_thread (struct lwp_info *lp) override; 101 void low_delete_thread (struct arch_lwp_info *lp) override; 102 void low_prepare_to_resume (struct lwp_info *lp) override; 103 104 /* Handle process creation and exit. */ 105 void low_new_fork (struct lwp_info *parent, pid_t child_pid) override; 106 void low_init_process (pid_t pid) override; 107 void low_forget_process (pid_t pid) override; 108 }; 109 110 static arm_linux_nat_target the_arm_linux_nat_target; 111 112 /* Get the whole floating point state of the process and store it 113 into regcache. */ 114 115 static void 116 fetch_fpregs (struct regcache *regcache) 117 { 118 int ret, regno, tid; 119 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE]; 120 121 /* Get the thread id for the ptrace call. */ 122 tid = regcache->ptid ().lwp (); 123 124 /* Read the floating point state. */ 125 if (have_ptrace_getregset == TRIBOOL_TRUE) 126 { 127 struct iovec iov; 128 129 iov.iov_base = &fp; 130 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE; 131 132 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov); 133 } 134 else 135 ret = ptrace (PT_GETFPREGS, tid, 0, fp); 136 137 if (ret < 0) 138 perror_with_name (_("Unable to fetch the floating point registers")); 139 140 /* Fetch fpsr. */ 141 regcache->raw_supply (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET); 142 143 /* Fetch the floating point registers. */ 144 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++) 145 supply_nwfpe_register (regcache, regno, fp); 146 } 147 148 /* Save the whole floating point state of the process using 149 the contents from regcache. */ 150 151 static void 152 store_fpregs (const struct regcache *regcache) 153 { 154 int ret, regno, tid; 155 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE]; 156 157 /* Get the thread id for the ptrace call. */ 158 tid = regcache->ptid ().lwp (); 159 160 /* Read the floating point state. */ 161 if (have_ptrace_getregset == TRIBOOL_TRUE) 162 { 163 elf_fpregset_t fpregs; 164 struct iovec iov; 165 166 iov.iov_base = &fpregs; 167 iov.iov_len = sizeof (fpregs); 168 169 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov); 170 } 171 else 172 ret = ptrace (PT_GETFPREGS, tid, 0, fp); 173 174 if (ret < 0) 175 perror_with_name (_("Unable to fetch the floating point registers")); 176 177 /* Store fpsr. */ 178 if (REG_VALID == regcache->get_register_status (ARM_FPS_REGNUM)) 179 regcache->raw_collect (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET); 180 181 /* Store the floating point registers. */ 182 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++) 183 if (REG_VALID == regcache->get_register_status (regno)) 184 collect_nwfpe_register (regcache, regno, fp); 185 186 if (have_ptrace_getregset == TRIBOOL_TRUE) 187 { 188 struct iovec iov; 189 190 iov.iov_base = &fp; 191 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE; 192 193 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iov); 194 } 195 else 196 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp); 197 198 if (ret < 0) 199 perror_with_name (_("Unable to store floating point registers")); 200 } 201 202 /* Fetch all general registers of the process and store into 203 regcache. */ 204 205 static void 206 fetch_regs (struct regcache *regcache) 207 { 208 int ret, tid; 209 elf_gregset_t regs; 210 211 /* Get the thread id for the ptrace call. */ 212 tid = regcache->ptid ().lwp (); 213 214 if (have_ptrace_getregset == TRIBOOL_TRUE) 215 { 216 struct iovec iov; 217 218 iov.iov_base = ®s; 219 iov.iov_len = sizeof (regs); 220 221 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov); 222 } 223 else 224 ret = ptrace (PTRACE_GETREGS, tid, 0, ®s); 225 226 if (ret < 0) 227 perror_with_name (_("Unable to fetch general registers")); 228 229 aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, arm_apcs_32); 230 } 231 232 static void 233 store_regs (const struct regcache *regcache) 234 { 235 int ret, tid; 236 elf_gregset_t regs; 237 238 /* Get the thread id for the ptrace call. */ 239 tid = regcache->ptid ().lwp (); 240 241 /* Fetch the general registers. */ 242 if (have_ptrace_getregset == TRIBOOL_TRUE) 243 { 244 struct iovec iov; 245 246 iov.iov_base = ®s; 247 iov.iov_len = sizeof (regs); 248 249 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov); 250 } 251 else 252 ret = ptrace (PTRACE_GETREGS, tid, 0, ®s); 253 254 if (ret < 0) 255 perror_with_name (_("Unable to fetch general registers")); 256 257 aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, arm_apcs_32); 258 259 if (have_ptrace_getregset == TRIBOOL_TRUE) 260 { 261 struct iovec iov; 262 263 iov.iov_base = ®s; 264 iov.iov_len = sizeof (regs); 265 266 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iov); 267 } 268 else 269 ret = ptrace (PTRACE_SETREGS, tid, 0, ®s); 270 271 if (ret < 0) 272 perror_with_name (_("Unable to store general registers")); 273 } 274 275 /* Fetch all WMMX registers of the process and store into 276 regcache. */ 277 278 static void 279 fetch_wmmx_regs (struct regcache *regcache) 280 { 281 char regbuf[IWMMXT_REGS_SIZE]; 282 int ret, regno, tid; 283 284 /* Get the thread id for the ptrace call. */ 285 tid = regcache->ptid ().lwp (); 286 287 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf); 288 if (ret < 0) 289 perror_with_name (_("Unable to fetch WMMX registers")); 290 291 for (regno = 0; regno < 16; regno++) 292 regcache->raw_supply (regno + ARM_WR0_REGNUM, ®buf[regno * 8]); 293 294 for (regno = 0; regno < 2; regno++) 295 regcache->raw_supply (regno + ARM_WCSSF_REGNUM, 296 ®buf[16 * 8 + regno * 4]); 297 298 for (regno = 0; regno < 4; regno++) 299 regcache->raw_supply (regno + ARM_WCGR0_REGNUM, 300 ®buf[16 * 8 + 2 * 4 + regno * 4]); 301 } 302 303 static void 304 store_wmmx_regs (const struct regcache *regcache) 305 { 306 char regbuf[IWMMXT_REGS_SIZE]; 307 int ret, regno, tid; 308 309 /* Get the thread id for the ptrace call. */ 310 tid = regcache->ptid ().lwp (); 311 312 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf); 313 if (ret < 0) 314 perror_with_name (_("Unable to fetch WMMX registers")); 315 316 for (regno = 0; regno < 16; regno++) 317 if (REG_VALID == regcache->get_register_status (regno + ARM_WR0_REGNUM)) 318 regcache->raw_collect (regno + ARM_WR0_REGNUM, ®buf[regno * 8]); 319 320 for (regno = 0; regno < 2; regno++) 321 if (REG_VALID == regcache->get_register_status (regno + ARM_WCSSF_REGNUM)) 322 regcache->raw_collect (regno + ARM_WCSSF_REGNUM, 323 ®buf[16 * 8 + regno * 4]); 324 325 for (regno = 0; regno < 4; regno++) 326 if (REG_VALID == regcache->get_register_status (regno + ARM_WCGR0_REGNUM)) 327 regcache->raw_collect (regno + ARM_WCGR0_REGNUM, 328 ®buf[16 * 8 + 2 * 4 + regno * 4]); 329 330 ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf); 331 332 if (ret < 0) 333 perror_with_name (_("Unable to store WMMX registers")); 334 } 335 336 static void 337 fetch_vfp_regs (struct regcache *regcache) 338 { 339 gdb_byte regbuf[ARM_VFP3_REGS_SIZE]; 340 int ret, tid; 341 struct gdbarch *gdbarch = regcache->arch (); 342 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); 343 344 /* Get the thread id for the ptrace call. */ 345 tid = regcache->ptid ().lwp (); 346 347 if (have_ptrace_getregset == TRIBOOL_TRUE) 348 { 349 struct iovec iov; 350 351 iov.iov_base = regbuf; 352 iov.iov_len = ARM_VFP3_REGS_SIZE; 353 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov); 354 } 355 else 356 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf); 357 358 if (ret < 0) 359 perror_with_name (_("Unable to fetch VFP registers")); 360 361 aarch32_vfp_regcache_supply (regcache, regbuf, 362 tdep->vfp_register_count); 363 } 364 365 static void 366 store_vfp_regs (const struct regcache *regcache) 367 { 368 gdb_byte regbuf[ARM_VFP3_REGS_SIZE]; 369 int ret, tid; 370 struct gdbarch *gdbarch = regcache->arch (); 371 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); 372 373 /* Get the thread id for the ptrace call. */ 374 tid = regcache->ptid ().lwp (); 375 376 if (have_ptrace_getregset == TRIBOOL_TRUE) 377 { 378 struct iovec iov; 379 380 iov.iov_base = regbuf; 381 iov.iov_len = ARM_VFP3_REGS_SIZE; 382 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov); 383 } 384 else 385 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf); 386 387 if (ret < 0) 388 perror_with_name (_("Unable to fetch VFP registers (for update)")); 389 390 aarch32_vfp_regcache_collect (regcache, regbuf, 391 tdep->vfp_register_count); 392 393 if (have_ptrace_getregset == TRIBOOL_TRUE) 394 { 395 struct iovec iov; 396 397 iov.iov_base = regbuf; 398 iov.iov_len = ARM_VFP3_REGS_SIZE; 399 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iov); 400 } 401 else 402 ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf); 403 404 if (ret < 0) 405 perror_with_name (_("Unable to store VFP registers")); 406 } 407 408 /* Fetch registers from the child process. Fetch all registers if 409 regno == -1, otherwise fetch all general registers or all floating 410 point registers depending upon the value of regno. */ 411 412 void 413 arm_linux_nat_target::fetch_registers (struct regcache *regcache, int regno) 414 { 415 struct gdbarch *gdbarch = regcache->arch (); 416 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); 417 418 if (-1 == regno) 419 { 420 fetch_regs (regcache); 421 if (tdep->have_wmmx_registers) 422 fetch_wmmx_regs (regcache); 423 if (tdep->vfp_register_count > 0) 424 fetch_vfp_regs (regcache); 425 if (tdep->have_fpa_registers) 426 fetch_fpregs (regcache); 427 } 428 else 429 { 430 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM) 431 fetch_regs (regcache); 432 else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM) 433 fetch_fpregs (regcache); 434 else if (tdep->have_wmmx_registers 435 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM) 436 fetch_wmmx_regs (regcache); 437 else if (tdep->vfp_register_count > 0 438 && regno >= ARM_D0_REGNUM 439 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count 440 || regno == ARM_FPSCR_REGNUM)) 441 fetch_vfp_regs (regcache); 442 } 443 } 444 445 /* Store registers back into the inferior. Store all registers if 446 regno == -1, otherwise store all general registers or all floating 447 point registers depending upon the value of regno. */ 448 449 void 450 arm_linux_nat_target::store_registers (struct regcache *regcache, int regno) 451 { 452 struct gdbarch *gdbarch = regcache->arch (); 453 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); 454 455 if (-1 == regno) 456 { 457 store_regs (regcache); 458 if (tdep->have_wmmx_registers) 459 store_wmmx_regs (regcache); 460 if (tdep->vfp_register_count > 0) 461 store_vfp_regs (regcache); 462 if (tdep->have_fpa_registers) 463 store_fpregs (regcache); 464 } 465 else 466 { 467 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM) 468 store_regs (regcache); 469 else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM)) 470 store_fpregs (regcache); 471 else if (tdep->have_wmmx_registers 472 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM) 473 store_wmmx_regs (regcache); 474 else if (tdep->vfp_register_count > 0 475 && regno >= ARM_D0_REGNUM 476 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count 477 || regno == ARM_FPSCR_REGNUM)) 478 store_vfp_regs (regcache); 479 } 480 } 481 482 /* Wrapper functions for the standard regset handling, used by 483 thread debugging. */ 484 485 void 486 fill_gregset (const struct regcache *regcache, 487 gdb_gregset_t *gregsetp, int regno) 488 { 489 arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0); 490 } 491 492 void 493 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp) 494 { 495 arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0); 496 } 497 498 void 499 fill_fpregset (const struct regcache *regcache, 500 gdb_fpregset_t *fpregsetp, int regno) 501 { 502 arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0); 503 } 504 505 /* Fill GDB's register array with the floating-point register values 506 in *fpregsetp. */ 507 508 void 509 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp) 510 { 511 arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0); 512 } 513 514 /* Fetch the thread-local storage pointer for libthread_db. */ 515 516 ps_err_e 517 ps_get_thread_area (struct ps_prochandle *ph, 518 lwpid_t lwpid, int idx, void **base) 519 { 520 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0) 521 return PS_ERR; 522 523 /* IDX is the bias from the thread pointer to the beginning of the 524 thread descriptor. It has to be subtracted due to implementation 525 quirks in libthread_db. */ 526 *base = (void *) ((char *)*base - idx); 527 528 return PS_OK; 529 } 530 531 const struct target_desc * 532 arm_linux_nat_target::read_description () 533 { 534 if (inferior_ptid == null_ptid) 535 return this->beneath ()->read_description (); 536 537 CORE_ADDR arm_hwcap = linux_get_hwcap (); 538 539 if (have_ptrace_getregset == TRIBOOL_UNKNOWN) 540 { 541 elf_gregset_t gpregs; 542 struct iovec iov; 543 int tid = inferior_ptid.pid (); 544 545 iov.iov_base = &gpregs; 546 iov.iov_len = sizeof (gpregs); 547 548 /* Check if PTRACE_GETREGSET works. */ 549 if (ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov) < 0) 550 have_ptrace_getregset = TRIBOOL_FALSE; 551 else 552 have_ptrace_getregset = TRIBOOL_TRUE; 553 } 554 555 if (arm_hwcap & HWCAP_IWMMXT) 556 return arm_read_description (ARM_FP_TYPE_IWMMXT, false); 557 558 if (arm_hwcap & HWCAP_VFP) 559 { 560 /* Make sure that the kernel supports reading VFP registers. Support was 561 added in 2.6.30. */ 562 int pid = inferior_ptid.pid (); 563 errno = 0; 564 char *buf = (char *) alloca (ARM_VFP3_REGS_SIZE); 565 if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0 && errno == EIO) 566 return nullptr; 567 568 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support 569 Neon with VFPv3-D32. */ 570 if (arm_hwcap & HWCAP_NEON) 571 return aarch32_read_description (false); 572 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3) 573 return arm_read_description (ARM_FP_TYPE_VFPV3, false); 574 575 return arm_read_description (ARM_FP_TYPE_VFPV2, false); 576 } 577 578 return this->beneath ()->read_description (); 579 } 580 581 /* Information describing the hardware breakpoint capabilities. */ 582 struct arm_linux_hwbp_cap 583 { 584 gdb_byte arch; 585 gdb_byte max_wp_length; 586 gdb_byte wp_count; 587 gdb_byte bp_count; 588 }; 589 590 /* Since we cannot dynamically allocate subfields of arm_linux_process_info, 591 assume a maximum number of supported break-/watchpoints. */ 592 #define MAX_BPTS 16 593 #define MAX_WPTS 16 594 595 /* Get hold of the Hardware Breakpoint information for the target we are 596 attached to. Returns NULL if the kernel doesn't support Hardware 597 breakpoints at all, or a pointer to the information structure. */ 598 static const struct arm_linux_hwbp_cap * 599 arm_linux_get_hwbp_cap (void) 600 { 601 /* The info structure we return. */ 602 static struct arm_linux_hwbp_cap info; 603 604 /* Is INFO in a good state? -1 means that no attempt has been made to 605 initialize INFO; 0 means an attempt has been made, but it failed; 1 606 means INFO is in an initialized state. */ 607 static int available = -1; 608 609 if (available == -1) 610 { 611 int tid; 612 unsigned int val; 613 614 tid = inferior_ptid.lwp (); 615 if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0) 616 available = 0; 617 else 618 { 619 info.arch = (gdb_byte)((val >> 24) & 0xff); 620 info.max_wp_length = (gdb_byte)((val >> 16) & 0xff); 621 info.wp_count = (gdb_byte)((val >> 8) & 0xff); 622 info.bp_count = (gdb_byte)(val & 0xff); 623 624 if (info.wp_count > MAX_WPTS) 625 { 626 warning (_("arm-linux-gdb supports %d hardware watchpoints but target \ 627 supports %d"), MAX_WPTS, info.wp_count); 628 info.wp_count = MAX_WPTS; 629 } 630 631 if (info.bp_count > MAX_BPTS) 632 { 633 warning (_("arm-linux-gdb supports %d hardware breakpoints but target \ 634 supports %d"), MAX_BPTS, info.bp_count); 635 info.bp_count = MAX_BPTS; 636 } 637 available = (info.arch != 0); 638 } 639 } 640 641 return available == 1 ? &info : NULL; 642 } 643 644 /* How many hardware breakpoints are available? */ 645 static int 646 arm_linux_get_hw_breakpoint_count (void) 647 { 648 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap (); 649 return cap != NULL ? cap->bp_count : 0; 650 } 651 652 /* How many hardware watchpoints are available? */ 653 static int 654 arm_linux_get_hw_watchpoint_count (void) 655 { 656 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap (); 657 return cap != NULL ? cap->wp_count : 0; 658 } 659 660 /* Have we got a free break-/watch-point available for use? Returns -1 if 661 there is not an appropriate resource available, otherwise returns 1. */ 662 int 663 arm_linux_nat_target::can_use_hw_breakpoint (enum bptype type, 664 int cnt, int ot) 665 { 666 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint 667 || type == bp_access_watchpoint || type == bp_watchpoint) 668 { 669 int count = arm_linux_get_hw_watchpoint_count (); 670 671 if (count == 0) 672 return 0; 673 else if (cnt + ot > count) 674 return -1; 675 } 676 else if (type == bp_hardware_breakpoint) 677 { 678 int count = arm_linux_get_hw_breakpoint_count (); 679 680 if (count == 0) 681 return 0; 682 else if (cnt > count) 683 return -1; 684 } 685 else 686 gdb_assert_not_reached ("unknown breakpoint type"); 687 688 return 1; 689 } 690 691 /* Enum describing the different types of ARM hardware break-/watch-points. */ 692 typedef enum 693 { 694 arm_hwbp_break = 0, 695 arm_hwbp_load = 1, 696 arm_hwbp_store = 2, 697 arm_hwbp_access = 3 698 } arm_hwbp_type; 699 700 /* Type describing an ARM Hardware Breakpoint Control register value. */ 701 typedef unsigned int arm_hwbp_control_t; 702 703 /* Structure used to keep track of hardware break-/watch-points. */ 704 struct arm_linux_hw_breakpoint 705 { 706 /* Address to break on, or being watched. */ 707 unsigned int address; 708 /* Control register for break-/watch- point. */ 709 arm_hwbp_control_t control; 710 }; 711 712 /* Structure containing arrays of per process hardware break-/watchpoints 713 for caching address and control information. 714 715 The Linux ptrace interface to hardware break-/watch-points presents the 716 values in a vector centred around 0 (which is used fo generic information). 717 Positive indicies refer to breakpoint addresses/control registers, negative 718 indices to watchpoint addresses/control registers. 719 720 The Linux vector is indexed as follows: 721 -((i << 1) + 2): Control register for watchpoint i. 722 -((i << 1) + 1): Address register for watchpoint i. 723 0: Information register. 724 ((i << 1) + 1): Address register for breakpoint i. 725 ((i << 1) + 2): Control register for breakpoint i. 726 727 This structure is used as a per-thread cache of the state stored by the 728 kernel, so that we don't need to keep calling into the kernel to find a 729 free breakpoint. 730 731 We treat break-/watch-points with their enable bit clear as being deleted. 732 */ 733 struct arm_linux_debug_reg_state 734 { 735 /* Hardware breakpoints for this process. */ 736 struct arm_linux_hw_breakpoint bpts[MAX_BPTS]; 737 /* Hardware watchpoints for this process. */ 738 struct arm_linux_hw_breakpoint wpts[MAX_WPTS]; 739 }; 740 741 /* Per-process arch-specific data we want to keep. */ 742 struct arm_linux_process_info 743 { 744 /* Linked list. */ 745 struct arm_linux_process_info *next; 746 /* The process identifier. */ 747 pid_t pid; 748 /* Hardware break-/watchpoints state information. */ 749 struct arm_linux_debug_reg_state state; 750 751 }; 752 753 /* Per-thread arch-specific data we want to keep. */ 754 struct arch_lwp_info 755 { 756 /* Non-zero if our copy differs from what's recorded in the thread. */ 757 char bpts_changed[MAX_BPTS]; 758 char wpts_changed[MAX_WPTS]; 759 }; 760 761 static struct arm_linux_process_info *arm_linux_process_list = NULL; 762 763 /* Find process data for process PID. */ 764 765 static struct arm_linux_process_info * 766 arm_linux_find_process_pid (pid_t pid) 767 { 768 struct arm_linux_process_info *proc; 769 770 for (proc = arm_linux_process_list; proc; proc = proc->next) 771 if (proc->pid == pid) 772 return proc; 773 774 return NULL; 775 } 776 777 /* Add process data for process PID. Returns newly allocated info 778 object. */ 779 780 static struct arm_linux_process_info * 781 arm_linux_add_process (pid_t pid) 782 { 783 struct arm_linux_process_info *proc; 784 785 proc = XCNEW (struct arm_linux_process_info); 786 proc->pid = pid; 787 788 proc->next = arm_linux_process_list; 789 arm_linux_process_list = proc; 790 791 return proc; 792 } 793 794 /* Get data specific info for process PID, creating it if necessary. 795 Never returns NULL. */ 796 797 static struct arm_linux_process_info * 798 arm_linux_process_info_get (pid_t pid) 799 { 800 struct arm_linux_process_info *proc; 801 802 proc = arm_linux_find_process_pid (pid); 803 if (proc == NULL) 804 proc = arm_linux_add_process (pid); 805 806 return proc; 807 } 808 809 /* Implement the "low_init_process" target_ops method. */ 810 811 void 812 arm_linux_nat_target::low_init_process (pid_t pid) 813 { 814 /* Set the hardware debug register capacity. This requires the process to be 815 ptrace-stopped, otherwise detection will fail and software watchpoints will 816 be used instead of hardware. If we allow this to be done lazily, we 817 cannot guarantee that it's called when the process is ptrace-stopped, so 818 do it now. */ 819 arm_linux_get_hwbp_cap (); 820 } 821 822 /* Called whenever GDB is no longer debugging process PID. It deletes 823 data structures that keep track of debug register state. */ 824 825 void 826 arm_linux_nat_target::low_forget_process (pid_t pid) 827 { 828 struct arm_linux_process_info *proc, **proc_link; 829 830 proc = arm_linux_process_list; 831 proc_link = &arm_linux_process_list; 832 833 while (proc != NULL) 834 { 835 if (proc->pid == pid) 836 { 837 *proc_link = proc->next; 838 839 xfree (proc); 840 return; 841 } 842 843 proc_link = &proc->next; 844 proc = *proc_link; 845 } 846 } 847 848 /* Get hardware break-/watchpoint state for process PID. */ 849 850 static struct arm_linux_debug_reg_state * 851 arm_linux_get_debug_reg_state (pid_t pid) 852 { 853 return &arm_linux_process_info_get (pid)->state; 854 } 855 856 /* Initialize an ARM hardware break-/watch-point control register value. 857 BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the 858 type of break-/watch-point; ENABLE indicates whether the point is enabled. 859 */ 860 static arm_hwbp_control_t 861 arm_hwbp_control_initialize (unsigned byte_address_select, 862 arm_hwbp_type hwbp_type, 863 int enable) 864 { 865 gdb_assert ((byte_address_select & ~0xffU) == 0); 866 gdb_assert (hwbp_type != arm_hwbp_break 867 || ((byte_address_select & 0xfU) != 0)); 868 869 return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable; 870 } 871 872 /* Does the breakpoint control value CONTROL have the enable bit set? */ 873 static int 874 arm_hwbp_control_is_enabled (arm_hwbp_control_t control) 875 { 876 return control & 0x1; 877 } 878 879 /* Change a breakpoint control word so that it is in the disabled state. */ 880 static arm_hwbp_control_t 881 arm_hwbp_control_disable (arm_hwbp_control_t control) 882 { 883 return control & ~0x1; 884 } 885 886 /* Initialise the hardware breakpoint structure P. The breakpoint will be 887 enabled, and will point to the placed address of BP_TGT. */ 888 static void 889 arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch, 890 struct bp_target_info *bp_tgt, 891 struct arm_linux_hw_breakpoint *p) 892 { 893 unsigned mask; 894 CORE_ADDR address = bp_tgt->placed_address = bp_tgt->reqstd_address; 895 896 /* We have to create a mask for the control register which says which bits 897 of the word pointed to by address to break on. */ 898 if (arm_pc_is_thumb (gdbarch, address)) 899 { 900 mask = 0x3; 901 address &= ~1; 902 } 903 else 904 { 905 mask = 0xf; 906 address &= ~3; 907 } 908 909 p->address = (unsigned int) address; 910 p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1); 911 } 912 913 /* Get the ARM hardware breakpoint type from the TYPE value we're 914 given when asked to set a watchpoint. */ 915 static arm_hwbp_type 916 arm_linux_get_hwbp_type (enum target_hw_bp_type type) 917 { 918 if (type == hw_read) 919 return arm_hwbp_load; 920 else if (type == hw_write) 921 return arm_hwbp_store; 922 else 923 return arm_hwbp_access; 924 } 925 926 /* Initialize the hardware breakpoint structure P for a watchpoint at ADDR 927 to LEN. The type of watchpoint is given in RW. */ 928 static void 929 arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len, 930 enum target_hw_bp_type type, 931 struct arm_linux_hw_breakpoint *p) 932 { 933 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap (); 934 unsigned mask; 935 936 gdb_assert (cap != NULL); 937 gdb_assert (cap->max_wp_length != 0); 938 939 mask = (1 << len) - 1; 940 941 p->address = (unsigned int) addr; 942 p->control = arm_hwbp_control_initialize (mask, 943 arm_linux_get_hwbp_type (type), 1); 944 } 945 946 /* Are two break-/watch-points equal? */ 947 static int 948 arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1, 949 const struct arm_linux_hw_breakpoint *p2) 950 { 951 return p1->address == p2->address && p1->control == p2->control; 952 } 953 954 /* Callback to mark a watch-/breakpoint to be updated in all threads of 955 the current process. */ 956 957 static int 958 update_registers_callback (struct lwp_info *lwp, int watch, int index) 959 { 960 if (lwp->arch_private == NULL) 961 lwp->arch_private = XCNEW (struct arch_lwp_info); 962 963 /* The actual update is done later just before resuming the lwp, 964 we just mark that the registers need updating. */ 965 if (watch) 966 lwp->arch_private->wpts_changed[index] = 1; 967 else 968 lwp->arch_private->bpts_changed[index] = 1; 969 970 /* If the lwp isn't stopped, force it to momentarily pause, so 971 we can update its breakpoint registers. */ 972 if (!lwp->stopped) 973 linux_stop_lwp (lwp); 974 975 return 0; 976 } 977 978 /* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT 979 =1) BPT for thread TID. */ 980 static void 981 arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt, 982 int watchpoint) 983 { 984 int pid; 985 ptid_t pid_ptid; 986 gdb_byte count, i; 987 struct arm_linux_hw_breakpoint* bpts; 988 989 pid = inferior_ptid.pid (); 990 pid_ptid = ptid_t (pid); 991 992 if (watchpoint) 993 { 994 count = arm_linux_get_hw_watchpoint_count (); 995 bpts = arm_linux_get_debug_reg_state (pid)->wpts; 996 } 997 else 998 { 999 count = arm_linux_get_hw_breakpoint_count (); 1000 bpts = arm_linux_get_debug_reg_state (pid)->bpts; 1001 } 1002 1003 for (i = 0; i < count; ++i) 1004 if (!arm_hwbp_control_is_enabled (bpts[i].control)) 1005 { 1006 bpts[i] = *bpt; 1007 iterate_over_lwps (pid_ptid, 1008 [=] (struct lwp_info *info) 1009 { 1010 return update_registers_callback (info, watchpoint, 1011 i); 1012 }); 1013 break; 1014 } 1015 1016 gdb_assert (i != count); 1017 } 1018 1019 /* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint 1020 (WATCHPOINT = 1) BPT for thread TID. */ 1021 static void 1022 arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt, 1023 int watchpoint) 1024 { 1025 int pid; 1026 gdb_byte count, i; 1027 ptid_t pid_ptid; 1028 struct arm_linux_hw_breakpoint* bpts; 1029 1030 pid = inferior_ptid.pid (); 1031 pid_ptid = ptid_t (pid); 1032 1033 if (watchpoint) 1034 { 1035 count = arm_linux_get_hw_watchpoint_count (); 1036 bpts = arm_linux_get_debug_reg_state (pid)->wpts; 1037 } 1038 else 1039 { 1040 count = arm_linux_get_hw_breakpoint_count (); 1041 bpts = arm_linux_get_debug_reg_state (pid)->bpts; 1042 } 1043 1044 for (i = 0; i < count; ++i) 1045 if (arm_linux_hw_breakpoint_equal (bpt, bpts + i)) 1046 { 1047 bpts[i].control = arm_hwbp_control_disable (bpts[i].control); 1048 iterate_over_lwps (pid_ptid, 1049 [=] (struct lwp_info *info) 1050 { 1051 return update_registers_callback (info, watchpoint, 1052 i); 1053 }); 1054 break; 1055 } 1056 1057 gdb_assert (i != count); 1058 } 1059 1060 /* Insert a Hardware breakpoint. */ 1061 int 1062 arm_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch, 1063 struct bp_target_info *bp_tgt) 1064 { 1065 struct arm_linux_hw_breakpoint p; 1066 1067 if (arm_linux_get_hw_breakpoint_count () == 0) 1068 return -1; 1069 1070 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p); 1071 1072 arm_linux_insert_hw_breakpoint1 (&p, 0); 1073 1074 return 0; 1075 } 1076 1077 /* Remove a hardware breakpoint. */ 1078 int 1079 arm_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch, 1080 struct bp_target_info *bp_tgt) 1081 { 1082 struct arm_linux_hw_breakpoint p; 1083 1084 if (arm_linux_get_hw_breakpoint_count () == 0) 1085 return -1; 1086 1087 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p); 1088 1089 arm_linux_remove_hw_breakpoint1 (&p, 0); 1090 1091 return 0; 1092 } 1093 1094 /* Are we able to use a hardware watchpoint for the LEN bytes starting at 1095 ADDR? */ 1096 int 1097 arm_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len) 1098 { 1099 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap (); 1100 CORE_ADDR max_wp_length, aligned_addr; 1101 1102 /* Can not set watchpoints for zero or negative lengths. */ 1103 if (len <= 0) 1104 return 0; 1105 1106 /* Need to be able to use the ptrace interface. */ 1107 if (cap == NULL || cap->wp_count == 0) 1108 return 0; 1109 1110 /* Test that the range [ADDR, ADDR + LEN) fits into the largest address 1111 range covered by a watchpoint. */ 1112 max_wp_length = (CORE_ADDR)cap->max_wp_length; 1113 aligned_addr = addr & ~(max_wp_length - 1); 1114 1115 if (aligned_addr + max_wp_length < addr + len) 1116 return 0; 1117 1118 /* The current ptrace interface can only handle watchpoints that are a 1119 power of 2. */ 1120 if ((len & (len - 1)) != 0) 1121 return 0; 1122 1123 /* All tests passed so we must be able to set a watchpoint. */ 1124 return 1; 1125 } 1126 1127 /* Insert a Hardware breakpoint. */ 1128 int 1129 arm_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len, 1130 enum target_hw_bp_type rw, 1131 struct expression *cond) 1132 { 1133 struct arm_linux_hw_breakpoint p; 1134 1135 if (arm_linux_get_hw_watchpoint_count () == 0) 1136 return -1; 1137 1138 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p); 1139 1140 arm_linux_insert_hw_breakpoint1 (&p, 1); 1141 1142 return 0; 1143 } 1144 1145 /* Remove a hardware breakpoint. */ 1146 int 1147 arm_linux_nat_target::remove_watchpoint (CORE_ADDR addr, 1148 int len, enum target_hw_bp_type rw, 1149 struct expression *cond) 1150 { 1151 struct arm_linux_hw_breakpoint p; 1152 1153 if (arm_linux_get_hw_watchpoint_count () == 0) 1154 return -1; 1155 1156 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p); 1157 1158 arm_linux_remove_hw_breakpoint1 (&p, 1); 1159 1160 return 0; 1161 } 1162 1163 /* What was the data address the target was stopped on accessing. */ 1164 bool 1165 arm_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p) 1166 { 1167 siginfo_t siginfo; 1168 int slot; 1169 1170 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo)) 1171 return false; 1172 1173 /* This must be a hardware breakpoint. */ 1174 if (siginfo.si_signo != SIGTRAP 1175 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */) 1176 return false; 1177 1178 /* We must be able to set hardware watchpoints. */ 1179 if (arm_linux_get_hw_watchpoint_count () == 0) 1180 return 0; 1181 1182 slot = siginfo.si_errno; 1183 1184 /* If we are in a positive slot then we're looking at a breakpoint and not 1185 a watchpoint. */ 1186 if (slot >= 0) 1187 return false; 1188 1189 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr; 1190 return true; 1191 } 1192 1193 /* Has the target been stopped by hitting a watchpoint? */ 1194 bool 1195 arm_linux_nat_target::stopped_by_watchpoint () 1196 { 1197 CORE_ADDR addr; 1198 return stopped_data_address (&addr); 1199 } 1200 1201 bool 1202 arm_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr, 1203 CORE_ADDR start, 1204 int length) 1205 { 1206 return start <= addr && start + length - 1 >= addr; 1207 } 1208 1209 /* Handle thread creation. We need to copy the breakpoints and watchpoints 1210 in the parent thread to the child thread. */ 1211 void 1212 arm_linux_nat_target::low_new_thread (struct lwp_info *lp) 1213 { 1214 int i; 1215 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info); 1216 1217 /* Mark that all the hardware breakpoint/watchpoint register pairs 1218 for this thread need to be initialized. */ 1219 1220 for (i = 0; i < MAX_BPTS; i++) 1221 { 1222 info->bpts_changed[i] = 1; 1223 info->wpts_changed[i] = 1; 1224 } 1225 1226 lp->arch_private = info; 1227 } 1228 1229 /* Function to call when a thread is being deleted. */ 1230 1231 void 1232 arm_linux_nat_target::low_delete_thread (struct arch_lwp_info *arch_lwp) 1233 { 1234 xfree (arch_lwp); 1235 } 1236 1237 /* Called when resuming a thread. 1238 The hardware debug registers are updated when there is any change. */ 1239 1240 void 1241 arm_linux_nat_target::low_prepare_to_resume (struct lwp_info *lwp) 1242 { 1243 int pid, i; 1244 struct arm_linux_hw_breakpoint *bpts, *wpts; 1245 struct arch_lwp_info *arm_lwp_info = lwp->arch_private; 1246 1247 pid = lwp->ptid.lwp (); 1248 bpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->bpts; 1249 wpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->wpts; 1250 1251 /* NULL means this is the main thread still going through the shell, 1252 or, no watchpoint has been set yet. In that case, there's 1253 nothing to do. */ 1254 if (arm_lwp_info == NULL) 1255 return; 1256 1257 for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++) 1258 if (arm_lwp_info->bpts_changed[i]) 1259 { 1260 errno = 0; 1261 if (arm_hwbp_control_is_enabled (bpts[i].control)) 1262 if (ptrace (PTRACE_SETHBPREGS, pid, 1263 (PTRACE_TYPE_ARG3) ((i << 1) + 1), &bpts[i].address) < 0) 1264 perror_with_name (_("Unexpected error setting breakpoint")); 1265 1266 if (bpts[i].control != 0) 1267 if (ptrace (PTRACE_SETHBPREGS, pid, 1268 (PTRACE_TYPE_ARG3) ((i << 1) + 2), &bpts[i].control) < 0) 1269 perror_with_name (_("Unexpected error setting breakpoint")); 1270 1271 arm_lwp_info->bpts_changed[i] = 0; 1272 } 1273 1274 for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++) 1275 if (arm_lwp_info->wpts_changed[i]) 1276 { 1277 errno = 0; 1278 if (arm_hwbp_control_is_enabled (wpts[i].control)) 1279 if (ptrace (PTRACE_SETHBPREGS, pid, 1280 (PTRACE_TYPE_ARG3) -((i << 1) + 1), &wpts[i].address) < 0) 1281 perror_with_name (_("Unexpected error setting watchpoint")); 1282 1283 if (wpts[i].control != 0) 1284 if (ptrace (PTRACE_SETHBPREGS, pid, 1285 (PTRACE_TYPE_ARG3) -((i << 1) + 2), &wpts[i].control) < 0) 1286 perror_with_name (_("Unexpected error setting watchpoint")); 1287 1288 arm_lwp_info->wpts_changed[i] = 0; 1289 } 1290 } 1291 1292 /* linux_nat_new_fork hook. */ 1293 1294 void 1295 arm_linux_nat_target::low_new_fork (struct lwp_info *parent, pid_t child_pid) 1296 { 1297 pid_t parent_pid; 1298 struct arm_linux_debug_reg_state *parent_state; 1299 struct arm_linux_debug_reg_state *child_state; 1300 1301 /* NULL means no watchpoint has ever been set in the parent. In 1302 that case, there's nothing to do. */ 1303 if (parent->arch_private == NULL) 1304 return; 1305 1306 /* GDB core assumes the child inherits the watchpoints/hw 1307 breakpoints of the parent, and will remove them all from the 1308 forked off process. Copy the debug registers mirrors into the 1309 new process so that all breakpoints and watchpoints can be 1310 removed together. */ 1311 1312 parent_pid = parent->ptid.pid (); 1313 parent_state = arm_linux_get_debug_reg_state (parent_pid); 1314 child_state = arm_linux_get_debug_reg_state (child_pid); 1315 *child_state = *parent_state; 1316 } 1317 1318 void _initialize_arm_linux_nat (); 1319 void 1320 _initialize_arm_linux_nat () 1321 { 1322 /* Register the target. */ 1323 linux_target = &the_arm_linux_nat_target; 1324 add_inf_child_target (&the_arm_linux_nat_target); 1325 } 1326