1 /* GNU/Linux on ARM native support. 2 Copyright (C) 1999-2017 Free Software Foundation, Inc. 3 4 This file is part of GDB. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 18 19 #include "defs.h" 20 #include "inferior.h" 21 #include "gdbcore.h" 22 #include "regcache.h" 23 #include "target.h" 24 #include "linux-nat.h" 25 #include "target-descriptions.h" 26 #include "auxv.h" 27 #include "observer.h" 28 #include "gdbthread.h" 29 30 #include "arm-tdep.h" 31 #include "arm-linux-tdep.h" 32 #include "aarch32-linux-nat.h" 33 34 #include <elf/common.h> 35 #include <sys/user.h> 36 #include "nat/gdb_ptrace.h" 37 #include <sys/utsname.h> 38 #include <sys/procfs.h> 39 40 #include "nat/linux-ptrace.h" 41 42 /* Prototypes for supply_gregset etc. */ 43 #include "gregset.h" 44 45 /* Defines ps_err_e, struct ps_prochandle. */ 46 #include "gdb_proc_service.h" 47 48 #ifndef PTRACE_GET_THREAD_AREA 49 #define PTRACE_GET_THREAD_AREA 22 50 #endif 51 52 #ifndef PTRACE_GETWMMXREGS 53 #define PTRACE_GETWMMXREGS 18 54 #define PTRACE_SETWMMXREGS 19 55 #endif 56 57 #ifndef PTRACE_GETVFPREGS 58 #define PTRACE_GETVFPREGS 27 59 #define PTRACE_SETVFPREGS 28 60 #endif 61 62 #ifndef PTRACE_GETHBPREGS 63 #define PTRACE_GETHBPREGS 29 64 #define PTRACE_SETHBPREGS 30 65 #endif 66 67 extern int arm_apcs_32; 68 69 /* Get the whole floating point state of the process and store it 70 into regcache. */ 71 72 static void 73 fetch_fpregs (struct regcache *regcache) 74 { 75 int ret, regno, tid; 76 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE]; 77 78 /* Get the thread id for the ptrace call. */ 79 tid = ptid_get_lwp (regcache_get_ptid (regcache)); 80 81 /* Read the floating point state. */ 82 if (have_ptrace_getregset == TRIBOOL_TRUE) 83 { 84 struct iovec iov; 85 86 iov.iov_base = &fp; 87 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE; 88 89 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov); 90 } 91 else 92 ret = ptrace (PT_GETFPREGS, tid, 0, fp); 93 94 if (ret < 0) 95 perror_with_name (_("Unable to fetch the floating point registers.")); 96 97 /* Fetch fpsr. */ 98 regcache_raw_supply (regcache, ARM_FPS_REGNUM, 99 fp + NWFPE_FPSR_OFFSET); 100 101 /* Fetch the floating point registers. */ 102 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++) 103 supply_nwfpe_register (regcache, regno, fp); 104 } 105 106 /* Save the whole floating point state of the process using 107 the contents from regcache. */ 108 109 static void 110 store_fpregs (const struct regcache *regcache) 111 { 112 int ret, regno, tid; 113 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE]; 114 115 /* Get the thread id for the ptrace call. */ 116 tid = ptid_get_lwp (regcache_get_ptid (regcache)); 117 118 /* Read the floating point state. */ 119 if (have_ptrace_getregset == TRIBOOL_TRUE) 120 { 121 elf_fpregset_t fpregs; 122 struct iovec iov; 123 124 iov.iov_base = &fpregs; 125 iov.iov_len = sizeof (fpregs); 126 127 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov); 128 } 129 else 130 ret = ptrace (PT_GETFPREGS, tid, 0, fp); 131 132 if (ret < 0) 133 perror_with_name (_("Unable to fetch the floating point registers.")); 134 135 /* Store fpsr. */ 136 if (REG_VALID == regcache_register_status (regcache, ARM_FPS_REGNUM)) 137 regcache_raw_collect (regcache, ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET); 138 139 /* Store the floating point registers. */ 140 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++) 141 if (REG_VALID == regcache_register_status (regcache, regno)) 142 collect_nwfpe_register (regcache, regno, fp); 143 144 if (have_ptrace_getregset == TRIBOOL_TRUE) 145 { 146 struct iovec iov; 147 148 iov.iov_base = &fp; 149 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE; 150 151 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iov); 152 } 153 else 154 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp); 155 156 if (ret < 0) 157 perror_with_name (_("Unable to store floating point registers.")); 158 } 159 160 /* Fetch all general registers of the process and store into 161 regcache. */ 162 163 static void 164 fetch_regs (struct regcache *regcache) 165 { 166 int ret, regno, tid; 167 elf_gregset_t regs; 168 169 /* Get the thread id for the ptrace call. */ 170 tid = ptid_get_lwp (regcache_get_ptid (regcache)); 171 172 if (have_ptrace_getregset == TRIBOOL_TRUE) 173 { 174 struct iovec iov; 175 176 iov.iov_base = ®s; 177 iov.iov_len = sizeof (regs); 178 179 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov); 180 } 181 else 182 ret = ptrace (PTRACE_GETREGS, tid, 0, ®s); 183 184 if (ret < 0) 185 perror_with_name (_("Unable to fetch general registers.")); 186 187 aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, arm_apcs_32); 188 } 189 190 static void 191 store_regs (const struct regcache *regcache) 192 { 193 int ret, regno, tid; 194 elf_gregset_t regs; 195 196 /* Get the thread id for the ptrace call. */ 197 tid = ptid_get_lwp (regcache_get_ptid (regcache)); 198 199 /* Fetch the general registers. */ 200 if (have_ptrace_getregset == TRIBOOL_TRUE) 201 { 202 struct iovec iov; 203 204 iov.iov_base = ®s; 205 iov.iov_len = sizeof (regs); 206 207 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov); 208 } 209 else 210 ret = ptrace (PTRACE_GETREGS, tid, 0, ®s); 211 212 if (ret < 0) 213 perror_with_name (_("Unable to fetch general registers.")); 214 215 aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, arm_apcs_32); 216 217 if (have_ptrace_getregset == TRIBOOL_TRUE) 218 { 219 struct iovec iov; 220 221 iov.iov_base = ®s; 222 iov.iov_len = sizeof (regs); 223 224 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iov); 225 } 226 else 227 ret = ptrace (PTRACE_SETREGS, tid, 0, ®s); 228 229 if (ret < 0) 230 perror_with_name (_("Unable to store general registers.")); 231 } 232 233 /* Fetch all WMMX registers of the process and store into 234 regcache. */ 235 236 #define IWMMXT_REGS_SIZE (16 * 8 + 6 * 4) 237 238 static void 239 fetch_wmmx_regs (struct regcache *regcache) 240 { 241 char regbuf[IWMMXT_REGS_SIZE]; 242 int ret, regno, tid; 243 244 /* Get the thread id for the ptrace call. */ 245 tid = ptid_get_lwp (regcache_get_ptid (regcache)); 246 247 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf); 248 if (ret < 0) 249 perror_with_name (_("Unable to fetch WMMX registers.")); 250 251 for (regno = 0; regno < 16; regno++) 252 regcache_raw_supply (regcache, regno + ARM_WR0_REGNUM, 253 ®buf[regno * 8]); 254 255 for (regno = 0; regno < 2; regno++) 256 regcache_raw_supply (regcache, regno + ARM_WCSSF_REGNUM, 257 ®buf[16 * 8 + regno * 4]); 258 259 for (regno = 0; regno < 4; regno++) 260 regcache_raw_supply (regcache, regno + ARM_WCGR0_REGNUM, 261 ®buf[16 * 8 + 2 * 4 + regno * 4]); 262 } 263 264 static void 265 store_wmmx_regs (const struct regcache *regcache) 266 { 267 char regbuf[IWMMXT_REGS_SIZE]; 268 int ret, regno, tid; 269 270 /* Get the thread id for the ptrace call. */ 271 tid = ptid_get_lwp (regcache_get_ptid (regcache)); 272 273 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf); 274 if (ret < 0) 275 perror_with_name (_("Unable to fetch WMMX registers.")); 276 277 for (regno = 0; regno < 16; regno++) 278 if (REG_VALID == regcache_register_status (regcache, 279 regno + ARM_WR0_REGNUM)) 280 regcache_raw_collect (regcache, regno + ARM_WR0_REGNUM, 281 ®buf[regno * 8]); 282 283 for (regno = 0; regno < 2; regno++) 284 if (REG_VALID == regcache_register_status (regcache, 285 regno + ARM_WCSSF_REGNUM)) 286 regcache_raw_collect (regcache, regno + ARM_WCSSF_REGNUM, 287 ®buf[16 * 8 + regno * 4]); 288 289 for (regno = 0; regno < 4; regno++) 290 if (REG_VALID == regcache_register_status (regcache, 291 regno + ARM_WCGR0_REGNUM)) 292 regcache_raw_collect (regcache, regno + ARM_WCGR0_REGNUM, 293 ®buf[16 * 8 + 2 * 4 + regno * 4]); 294 295 ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf); 296 297 if (ret < 0) 298 perror_with_name (_("Unable to store WMMX registers.")); 299 } 300 301 static void 302 fetch_vfp_regs (struct regcache *regcache) 303 { 304 gdb_byte regbuf[VFP_REGS_SIZE]; 305 int ret, regno, tid; 306 struct gdbarch *gdbarch = get_regcache_arch (regcache); 307 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 308 309 /* Get the thread id for the ptrace call. */ 310 tid = ptid_get_lwp (regcache_get_ptid (regcache)); 311 312 if (have_ptrace_getregset == TRIBOOL_TRUE) 313 { 314 struct iovec iov; 315 316 iov.iov_base = regbuf; 317 iov.iov_len = VFP_REGS_SIZE; 318 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov); 319 } 320 else 321 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf); 322 323 if (ret < 0) 324 perror_with_name (_("Unable to fetch VFP registers.")); 325 326 aarch32_vfp_regcache_supply (regcache, regbuf, 327 tdep->vfp_register_count); 328 } 329 330 static void 331 store_vfp_regs (const struct regcache *regcache) 332 { 333 gdb_byte regbuf[VFP_REGS_SIZE]; 334 int ret, regno, tid; 335 struct gdbarch *gdbarch = get_regcache_arch (regcache); 336 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 337 338 /* Get the thread id for the ptrace call. */ 339 tid = ptid_get_lwp (regcache_get_ptid (regcache)); 340 341 if (have_ptrace_getregset == TRIBOOL_TRUE) 342 { 343 struct iovec iov; 344 345 iov.iov_base = regbuf; 346 iov.iov_len = VFP_REGS_SIZE; 347 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov); 348 } 349 else 350 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf); 351 352 if (ret < 0) 353 perror_with_name (_("Unable to fetch VFP registers (for update).")); 354 355 aarch32_vfp_regcache_collect (regcache, regbuf, 356 tdep->vfp_register_count); 357 358 if (have_ptrace_getregset == TRIBOOL_TRUE) 359 { 360 struct iovec iov; 361 362 iov.iov_base = regbuf; 363 iov.iov_len = VFP_REGS_SIZE; 364 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iov); 365 } 366 else 367 ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf); 368 369 if (ret < 0) 370 perror_with_name (_("Unable to store VFP registers.")); 371 } 372 373 /* Fetch registers from the child process. Fetch all registers if 374 regno == -1, otherwise fetch all general registers or all floating 375 point registers depending upon the value of regno. */ 376 377 static void 378 arm_linux_fetch_inferior_registers (struct target_ops *ops, 379 struct regcache *regcache, int regno) 380 { 381 struct gdbarch *gdbarch = get_regcache_arch (regcache); 382 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 383 384 if (-1 == regno) 385 { 386 fetch_regs (regcache); 387 if (tdep->have_wmmx_registers) 388 fetch_wmmx_regs (regcache); 389 if (tdep->vfp_register_count > 0) 390 fetch_vfp_regs (regcache); 391 if (tdep->have_fpa_registers) 392 fetch_fpregs (regcache); 393 } 394 else 395 { 396 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM) 397 fetch_regs (regcache); 398 else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM) 399 fetch_fpregs (regcache); 400 else if (tdep->have_wmmx_registers 401 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM) 402 fetch_wmmx_regs (regcache); 403 else if (tdep->vfp_register_count > 0 404 && regno >= ARM_D0_REGNUM 405 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count 406 || regno == ARM_FPSCR_REGNUM)) 407 fetch_vfp_regs (regcache); 408 } 409 } 410 411 /* Store registers back into the inferior. Store all registers if 412 regno == -1, otherwise store all general registers or all floating 413 point registers depending upon the value of regno. */ 414 415 static void 416 arm_linux_store_inferior_registers (struct target_ops *ops, 417 struct regcache *regcache, int regno) 418 { 419 struct gdbarch *gdbarch = get_regcache_arch (regcache); 420 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 421 422 if (-1 == regno) 423 { 424 store_regs (regcache); 425 if (tdep->have_wmmx_registers) 426 store_wmmx_regs (regcache); 427 if (tdep->vfp_register_count > 0) 428 store_vfp_regs (regcache); 429 if (tdep->have_fpa_registers) 430 store_fpregs (regcache); 431 } 432 else 433 { 434 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM) 435 store_regs (regcache); 436 else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM)) 437 store_fpregs (regcache); 438 else if (tdep->have_wmmx_registers 439 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM) 440 store_wmmx_regs (regcache); 441 else if (tdep->vfp_register_count > 0 442 && regno >= ARM_D0_REGNUM 443 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count 444 || regno == ARM_FPSCR_REGNUM)) 445 store_vfp_regs (regcache); 446 } 447 } 448 449 /* Wrapper functions for the standard regset handling, used by 450 thread debugging. */ 451 452 void 453 fill_gregset (const struct regcache *regcache, 454 gdb_gregset_t *gregsetp, int regno) 455 { 456 arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0); 457 } 458 459 void 460 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp) 461 { 462 arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0); 463 } 464 465 void 466 fill_fpregset (const struct regcache *regcache, 467 gdb_fpregset_t *fpregsetp, int regno) 468 { 469 arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0); 470 } 471 472 /* Fill GDB's register array with the floating-point register values 473 in *fpregsetp. */ 474 475 void 476 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp) 477 { 478 arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0); 479 } 480 481 /* Fetch the thread-local storage pointer for libthread_db. */ 482 483 ps_err_e 484 ps_get_thread_area (struct ps_prochandle *ph, 485 lwpid_t lwpid, int idx, void **base) 486 { 487 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0) 488 return PS_ERR; 489 490 /* IDX is the bias from the thread pointer to the beginning of the 491 thread descriptor. It has to be subtracted due to implementation 492 quirks in libthread_db. */ 493 *base = (void *) ((char *)*base - idx); 494 495 return PS_OK; 496 } 497 498 static const struct target_desc * 499 arm_linux_read_description (struct target_ops *ops) 500 { 501 CORE_ADDR arm_hwcap = 0; 502 503 if (have_ptrace_getregset == TRIBOOL_UNKNOWN) 504 { 505 elf_gregset_t gpregs; 506 struct iovec iov; 507 int tid = ptid_get_lwp (inferior_ptid); 508 509 iov.iov_base = &gpregs; 510 iov.iov_len = sizeof (gpregs); 511 512 /* Check if PTRACE_GETREGSET works. */ 513 if (ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov) < 0) 514 have_ptrace_getregset = TRIBOOL_FALSE; 515 else 516 have_ptrace_getregset = TRIBOOL_TRUE; 517 } 518 519 if (target_auxv_search (ops, AT_HWCAP, &arm_hwcap) != 1) 520 { 521 return ops->beneath->to_read_description (ops->beneath); 522 } 523 524 if (arm_hwcap & HWCAP_IWMMXT) 525 return tdesc_arm_with_iwmmxt; 526 527 if (arm_hwcap & HWCAP_VFP) 528 { 529 int pid; 530 char *buf; 531 const struct target_desc * result = NULL; 532 533 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support 534 Neon with VFPv3-D32. */ 535 if (arm_hwcap & HWCAP_NEON) 536 result = tdesc_arm_with_neon; 537 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3) 538 result = tdesc_arm_with_vfpv3; 539 else 540 result = tdesc_arm_with_vfpv2; 541 542 /* Now make sure that the kernel supports reading these 543 registers. Support was added in 2.6.30. */ 544 pid = ptid_get_lwp (inferior_ptid); 545 errno = 0; 546 buf = (char *) alloca (VFP_REGS_SIZE); 547 if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0 548 && errno == EIO) 549 result = NULL; 550 551 return result; 552 } 553 554 return ops->beneath->to_read_description (ops->beneath); 555 } 556 557 /* Information describing the hardware breakpoint capabilities. */ 558 struct arm_linux_hwbp_cap 559 { 560 gdb_byte arch; 561 gdb_byte max_wp_length; 562 gdb_byte wp_count; 563 gdb_byte bp_count; 564 }; 565 566 /* Since we cannot dynamically allocate subfields of arm_linux_process_info, 567 assume a maximum number of supported break-/watchpoints. */ 568 #define MAX_BPTS 16 569 #define MAX_WPTS 16 570 571 /* Get hold of the Hardware Breakpoint information for the target we are 572 attached to. Returns NULL if the kernel doesn't support Hardware 573 breakpoints at all, or a pointer to the information structure. */ 574 static const struct arm_linux_hwbp_cap * 575 arm_linux_get_hwbp_cap (void) 576 { 577 /* The info structure we return. */ 578 static struct arm_linux_hwbp_cap info; 579 580 /* Is INFO in a good state? -1 means that no attempt has been made to 581 initialize INFO; 0 means an attempt has been made, but it failed; 1 582 means INFO is in an initialized state. */ 583 static int available = -1; 584 585 if (available == -1) 586 { 587 int tid; 588 unsigned int val; 589 590 tid = ptid_get_lwp (inferior_ptid); 591 if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0) 592 available = 0; 593 else 594 { 595 info.arch = (gdb_byte)((val >> 24) & 0xff); 596 info.max_wp_length = (gdb_byte)((val >> 16) & 0xff); 597 info.wp_count = (gdb_byte)((val >> 8) & 0xff); 598 info.bp_count = (gdb_byte)(val & 0xff); 599 600 if (info.wp_count > MAX_WPTS) 601 { 602 warning (_("arm-linux-gdb supports %d hardware watchpoints but target \ 603 supports %d"), MAX_WPTS, info.wp_count); 604 info.wp_count = MAX_WPTS; 605 } 606 607 if (info.bp_count > MAX_BPTS) 608 { 609 warning (_("arm-linux-gdb supports %d hardware breakpoints but target \ 610 supports %d"), MAX_BPTS, info.bp_count); 611 info.bp_count = MAX_BPTS; 612 } 613 available = (info.arch != 0); 614 } 615 } 616 617 return available == 1 ? &info : NULL; 618 } 619 620 /* How many hardware breakpoints are available? */ 621 static int 622 arm_linux_get_hw_breakpoint_count (void) 623 { 624 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap (); 625 return cap != NULL ? cap->bp_count : 0; 626 } 627 628 /* How many hardware watchpoints are available? */ 629 static int 630 arm_linux_get_hw_watchpoint_count (void) 631 { 632 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap (); 633 return cap != NULL ? cap->wp_count : 0; 634 } 635 636 /* Have we got a free break-/watch-point available for use? Returns -1 if 637 there is not an appropriate resource available, otherwise returns 1. */ 638 static int 639 arm_linux_can_use_hw_breakpoint (struct target_ops *self, 640 enum bptype type, 641 int cnt, int ot) 642 { 643 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint 644 || type == bp_access_watchpoint || type == bp_watchpoint) 645 { 646 int count = arm_linux_get_hw_watchpoint_count (); 647 648 if (count == 0) 649 return 0; 650 else if (cnt + ot > count) 651 return -1; 652 } 653 else if (type == bp_hardware_breakpoint) 654 { 655 int count = arm_linux_get_hw_breakpoint_count (); 656 657 if (count == 0) 658 return 0; 659 else if (cnt > count) 660 return -1; 661 } 662 else 663 gdb_assert (FALSE); 664 665 return 1; 666 } 667 668 /* Enum describing the different types of ARM hardware break-/watch-points. */ 669 typedef enum 670 { 671 arm_hwbp_break = 0, 672 arm_hwbp_load = 1, 673 arm_hwbp_store = 2, 674 arm_hwbp_access = 3 675 } arm_hwbp_type; 676 677 /* Type describing an ARM Hardware Breakpoint Control register value. */ 678 typedef unsigned int arm_hwbp_control_t; 679 680 /* Structure used to keep track of hardware break-/watch-points. */ 681 struct arm_linux_hw_breakpoint 682 { 683 /* Address to break on, or being watched. */ 684 unsigned int address; 685 /* Control register for break-/watch- point. */ 686 arm_hwbp_control_t control; 687 }; 688 689 /* Structure containing arrays of per process hardware break-/watchpoints 690 for caching address and control information. 691 692 The Linux ptrace interface to hardware break-/watch-points presents the 693 values in a vector centred around 0 (which is used fo generic information). 694 Positive indicies refer to breakpoint addresses/control registers, negative 695 indices to watchpoint addresses/control registers. 696 697 The Linux vector is indexed as follows: 698 -((i << 1) + 2): Control register for watchpoint i. 699 -((i << 1) + 1): Address register for watchpoint i. 700 0: Information register. 701 ((i << 1) + 1): Address register for breakpoint i. 702 ((i << 1) + 2): Control register for breakpoint i. 703 704 This structure is used as a per-thread cache of the state stored by the 705 kernel, so that we don't need to keep calling into the kernel to find a 706 free breakpoint. 707 708 We treat break-/watch-points with their enable bit clear as being deleted. 709 */ 710 struct arm_linux_debug_reg_state 711 { 712 /* Hardware breakpoints for this process. */ 713 struct arm_linux_hw_breakpoint bpts[MAX_BPTS]; 714 /* Hardware watchpoints for this process. */ 715 struct arm_linux_hw_breakpoint wpts[MAX_WPTS]; 716 }; 717 718 /* Per-process arch-specific data we want to keep. */ 719 struct arm_linux_process_info 720 { 721 /* Linked list. */ 722 struct arm_linux_process_info *next; 723 /* The process identifier. */ 724 pid_t pid; 725 /* Hardware break-/watchpoints state information. */ 726 struct arm_linux_debug_reg_state state; 727 728 }; 729 730 /* Per-thread arch-specific data we want to keep. */ 731 struct arch_lwp_info 732 { 733 /* Non-zero if our copy differs from what's recorded in the thread. */ 734 char bpts_changed[MAX_BPTS]; 735 char wpts_changed[MAX_WPTS]; 736 }; 737 738 static struct arm_linux_process_info *arm_linux_process_list = NULL; 739 740 /* Find process data for process PID. */ 741 742 static struct arm_linux_process_info * 743 arm_linux_find_process_pid (pid_t pid) 744 { 745 struct arm_linux_process_info *proc; 746 747 for (proc = arm_linux_process_list; proc; proc = proc->next) 748 if (proc->pid == pid) 749 return proc; 750 751 return NULL; 752 } 753 754 /* Add process data for process PID. Returns newly allocated info 755 object. */ 756 757 static struct arm_linux_process_info * 758 arm_linux_add_process (pid_t pid) 759 { 760 struct arm_linux_process_info *proc; 761 762 proc = XCNEW (struct arm_linux_process_info); 763 proc->pid = pid; 764 765 proc->next = arm_linux_process_list; 766 arm_linux_process_list = proc; 767 768 return proc; 769 } 770 771 /* Get data specific info for process PID, creating it if necessary. 772 Never returns NULL. */ 773 774 static struct arm_linux_process_info * 775 arm_linux_process_info_get (pid_t pid) 776 { 777 struct arm_linux_process_info *proc; 778 779 proc = arm_linux_find_process_pid (pid); 780 if (proc == NULL) 781 proc = arm_linux_add_process (pid); 782 783 return proc; 784 } 785 786 /* Called whenever GDB is no longer debugging process PID. It deletes 787 data structures that keep track of debug register state. */ 788 789 static void 790 arm_linux_forget_process (pid_t pid) 791 { 792 struct arm_linux_process_info *proc, **proc_link; 793 794 proc = arm_linux_process_list; 795 proc_link = &arm_linux_process_list; 796 797 while (proc != NULL) 798 { 799 if (proc->pid == pid) 800 { 801 *proc_link = proc->next; 802 803 xfree (proc); 804 return; 805 } 806 807 proc_link = &proc->next; 808 proc = *proc_link; 809 } 810 } 811 812 /* Get hardware break-/watchpoint state for process PID. */ 813 814 static struct arm_linux_debug_reg_state * 815 arm_linux_get_debug_reg_state (pid_t pid) 816 { 817 return &arm_linux_process_info_get (pid)->state; 818 } 819 820 /* Initialize an ARM hardware break-/watch-point control register value. 821 BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the 822 type of break-/watch-point; ENABLE indicates whether the point is enabled. 823 */ 824 static arm_hwbp_control_t 825 arm_hwbp_control_initialize (unsigned byte_address_select, 826 arm_hwbp_type hwbp_type, 827 int enable) 828 { 829 gdb_assert ((byte_address_select & ~0xffU) == 0); 830 gdb_assert (hwbp_type != arm_hwbp_break 831 || ((byte_address_select & 0xfU) != 0)); 832 833 return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable; 834 } 835 836 /* Does the breakpoint control value CONTROL have the enable bit set? */ 837 static int 838 arm_hwbp_control_is_enabled (arm_hwbp_control_t control) 839 { 840 return control & 0x1; 841 } 842 843 /* Change a breakpoint control word so that it is in the disabled state. */ 844 static arm_hwbp_control_t 845 arm_hwbp_control_disable (arm_hwbp_control_t control) 846 { 847 return control & ~0x1; 848 } 849 850 /* Initialise the hardware breakpoint structure P. The breakpoint will be 851 enabled, and will point to the placed address of BP_TGT. */ 852 static void 853 arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch, 854 struct bp_target_info *bp_tgt, 855 struct arm_linux_hw_breakpoint *p) 856 { 857 unsigned mask; 858 CORE_ADDR address = bp_tgt->placed_address = bp_tgt->reqstd_address; 859 860 /* We have to create a mask for the control register which says which bits 861 of the word pointed to by address to break on. */ 862 if (arm_pc_is_thumb (gdbarch, address)) 863 { 864 mask = 0x3; 865 address &= ~1; 866 } 867 else 868 { 869 mask = 0xf; 870 address &= ~3; 871 } 872 873 p->address = (unsigned int) address; 874 p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1); 875 } 876 877 /* Get the ARM hardware breakpoint type from the TYPE value we're 878 given when asked to set a watchpoint. */ 879 static arm_hwbp_type 880 arm_linux_get_hwbp_type (enum target_hw_bp_type type) 881 { 882 if (type == hw_read) 883 return arm_hwbp_load; 884 else if (type == hw_write) 885 return arm_hwbp_store; 886 else 887 return arm_hwbp_access; 888 } 889 890 /* Initialize the hardware breakpoint structure P for a watchpoint at ADDR 891 to LEN. The type of watchpoint is given in RW. */ 892 static void 893 arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len, 894 enum target_hw_bp_type type, 895 struct arm_linux_hw_breakpoint *p) 896 { 897 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap (); 898 unsigned mask; 899 900 gdb_assert (cap != NULL); 901 gdb_assert (cap->max_wp_length != 0); 902 903 mask = (1 << len) - 1; 904 905 p->address = (unsigned int) addr; 906 p->control = arm_hwbp_control_initialize (mask, 907 arm_linux_get_hwbp_type (type), 1); 908 } 909 910 /* Are two break-/watch-points equal? */ 911 static int 912 arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1, 913 const struct arm_linux_hw_breakpoint *p2) 914 { 915 return p1->address == p2->address && p1->control == p2->control; 916 } 917 918 /* Callback to mark a watch-/breakpoint to be updated in all threads of 919 the current process. */ 920 921 struct update_registers_data 922 { 923 int watch; 924 int index; 925 }; 926 927 static int 928 update_registers_callback (struct lwp_info *lwp, void *arg) 929 { 930 struct update_registers_data *data = (struct update_registers_data *) arg; 931 932 if (lwp->arch_private == NULL) 933 lwp->arch_private = XCNEW (struct arch_lwp_info); 934 935 /* The actual update is done later just before resuming the lwp, 936 we just mark that the registers need updating. */ 937 if (data->watch) 938 lwp->arch_private->wpts_changed[data->index] = 1; 939 else 940 lwp->arch_private->bpts_changed[data->index] = 1; 941 942 /* If the lwp isn't stopped, force it to momentarily pause, so 943 we can update its breakpoint registers. */ 944 if (!lwp->stopped) 945 linux_stop_lwp (lwp); 946 947 return 0; 948 } 949 950 /* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT 951 =1) BPT for thread TID. */ 952 static void 953 arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt, 954 int watchpoint) 955 { 956 int pid; 957 ptid_t pid_ptid; 958 gdb_byte count, i; 959 struct arm_linux_hw_breakpoint* bpts; 960 struct update_registers_data data; 961 962 pid = ptid_get_pid (inferior_ptid); 963 pid_ptid = pid_to_ptid (pid); 964 965 if (watchpoint) 966 { 967 count = arm_linux_get_hw_watchpoint_count (); 968 bpts = arm_linux_get_debug_reg_state (pid)->wpts; 969 } 970 else 971 { 972 count = arm_linux_get_hw_breakpoint_count (); 973 bpts = arm_linux_get_debug_reg_state (pid)->bpts; 974 } 975 976 for (i = 0; i < count; ++i) 977 if (!arm_hwbp_control_is_enabled (bpts[i].control)) 978 { 979 data.watch = watchpoint; 980 data.index = i; 981 bpts[i] = *bpt; 982 iterate_over_lwps (pid_ptid, update_registers_callback, &data); 983 break; 984 } 985 986 gdb_assert (i != count); 987 } 988 989 /* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint 990 (WATCHPOINT = 1) BPT for thread TID. */ 991 static void 992 arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt, 993 int watchpoint) 994 { 995 int pid; 996 gdb_byte count, i; 997 ptid_t pid_ptid; 998 struct arm_linux_hw_breakpoint* bpts; 999 struct update_registers_data data; 1000 1001 pid = ptid_get_pid (inferior_ptid); 1002 pid_ptid = pid_to_ptid (pid); 1003 1004 if (watchpoint) 1005 { 1006 count = arm_linux_get_hw_watchpoint_count (); 1007 bpts = arm_linux_get_debug_reg_state (pid)->wpts; 1008 } 1009 else 1010 { 1011 count = arm_linux_get_hw_breakpoint_count (); 1012 bpts = arm_linux_get_debug_reg_state (pid)->bpts; 1013 } 1014 1015 for (i = 0; i < count; ++i) 1016 if (arm_linux_hw_breakpoint_equal (bpt, bpts + i)) 1017 { 1018 data.watch = watchpoint; 1019 data.index = i; 1020 bpts[i].control = arm_hwbp_control_disable (bpts[i].control); 1021 iterate_over_lwps (pid_ptid, update_registers_callback, &data); 1022 break; 1023 } 1024 1025 gdb_assert (i != count); 1026 } 1027 1028 /* Insert a Hardware breakpoint. */ 1029 static int 1030 arm_linux_insert_hw_breakpoint (struct target_ops *self, 1031 struct gdbarch *gdbarch, 1032 struct bp_target_info *bp_tgt) 1033 { 1034 struct lwp_info *lp; 1035 struct arm_linux_hw_breakpoint p; 1036 1037 if (arm_linux_get_hw_breakpoint_count () == 0) 1038 return -1; 1039 1040 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p); 1041 1042 arm_linux_insert_hw_breakpoint1 (&p, 0); 1043 1044 return 0; 1045 } 1046 1047 /* Remove a hardware breakpoint. */ 1048 static int 1049 arm_linux_remove_hw_breakpoint (struct target_ops *self, 1050 struct gdbarch *gdbarch, 1051 struct bp_target_info *bp_tgt) 1052 { 1053 struct lwp_info *lp; 1054 struct arm_linux_hw_breakpoint p; 1055 1056 if (arm_linux_get_hw_breakpoint_count () == 0) 1057 return -1; 1058 1059 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p); 1060 1061 arm_linux_remove_hw_breakpoint1 (&p, 0); 1062 1063 return 0; 1064 } 1065 1066 /* Are we able to use a hardware watchpoint for the LEN bytes starting at 1067 ADDR? */ 1068 static int 1069 arm_linux_region_ok_for_hw_watchpoint (struct target_ops *self, 1070 CORE_ADDR addr, int len) 1071 { 1072 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap (); 1073 CORE_ADDR max_wp_length, aligned_addr; 1074 1075 /* Can not set watchpoints for zero or negative lengths. */ 1076 if (len <= 0) 1077 return 0; 1078 1079 /* Need to be able to use the ptrace interface. */ 1080 if (cap == NULL || cap->wp_count == 0) 1081 return 0; 1082 1083 /* Test that the range [ADDR, ADDR + LEN) fits into the largest address 1084 range covered by a watchpoint. */ 1085 max_wp_length = (CORE_ADDR)cap->max_wp_length; 1086 aligned_addr = addr & ~(max_wp_length - 1); 1087 1088 if (aligned_addr + max_wp_length < addr + len) 1089 return 0; 1090 1091 /* The current ptrace interface can only handle watchpoints that are a 1092 power of 2. */ 1093 if ((len & (len - 1)) != 0) 1094 return 0; 1095 1096 /* All tests passed so we must be able to set a watchpoint. */ 1097 return 1; 1098 } 1099 1100 /* Insert a Hardware breakpoint. */ 1101 static int 1102 arm_linux_insert_watchpoint (struct target_ops *self, 1103 CORE_ADDR addr, int len, 1104 enum target_hw_bp_type rw, 1105 struct expression *cond) 1106 { 1107 struct lwp_info *lp; 1108 struct arm_linux_hw_breakpoint p; 1109 1110 if (arm_linux_get_hw_watchpoint_count () == 0) 1111 return -1; 1112 1113 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p); 1114 1115 arm_linux_insert_hw_breakpoint1 (&p, 1); 1116 1117 return 0; 1118 } 1119 1120 /* Remove a hardware breakpoint. */ 1121 static int 1122 arm_linux_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, 1123 int len, enum target_hw_bp_type rw, 1124 struct expression *cond) 1125 { 1126 struct lwp_info *lp; 1127 struct arm_linux_hw_breakpoint p; 1128 1129 if (arm_linux_get_hw_watchpoint_count () == 0) 1130 return -1; 1131 1132 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p); 1133 1134 arm_linux_remove_hw_breakpoint1 (&p, 1); 1135 1136 return 0; 1137 } 1138 1139 /* What was the data address the target was stopped on accessing. */ 1140 static int 1141 arm_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p) 1142 { 1143 siginfo_t siginfo; 1144 int slot; 1145 1146 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo)) 1147 return 0; 1148 1149 /* This must be a hardware breakpoint. */ 1150 if (siginfo.si_signo != SIGTRAP 1151 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */) 1152 return 0; 1153 1154 /* We must be able to set hardware watchpoints. */ 1155 if (arm_linux_get_hw_watchpoint_count () == 0) 1156 return 0; 1157 1158 slot = siginfo.si_errno; 1159 1160 /* If we are in a positive slot then we're looking at a breakpoint and not 1161 a watchpoint. */ 1162 if (slot >= 0) 1163 return 0; 1164 1165 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr; 1166 return 1; 1167 } 1168 1169 /* Has the target been stopped by hitting a watchpoint? */ 1170 static int 1171 arm_linux_stopped_by_watchpoint (struct target_ops *ops) 1172 { 1173 CORE_ADDR addr; 1174 return arm_linux_stopped_data_address (ops, &addr); 1175 } 1176 1177 static int 1178 arm_linux_watchpoint_addr_within_range (struct target_ops *target, 1179 CORE_ADDR addr, 1180 CORE_ADDR start, int length) 1181 { 1182 return start <= addr && start + length - 1 >= addr; 1183 } 1184 1185 /* Handle thread creation. We need to copy the breakpoints and watchpoints 1186 in the parent thread to the child thread. */ 1187 static void 1188 arm_linux_new_thread (struct lwp_info *lp) 1189 { 1190 int i; 1191 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info); 1192 1193 /* Mark that all the hardware breakpoint/watchpoint register pairs 1194 for this thread need to be initialized. */ 1195 1196 for (i = 0; i < MAX_BPTS; i++) 1197 { 1198 info->bpts_changed[i] = 1; 1199 info->wpts_changed[i] = 1; 1200 } 1201 1202 lp->arch_private = info; 1203 } 1204 1205 /* Called when resuming a thread. 1206 The hardware debug registers are updated when there is any change. */ 1207 1208 static void 1209 arm_linux_prepare_to_resume (struct lwp_info *lwp) 1210 { 1211 int pid, i; 1212 struct arm_linux_hw_breakpoint *bpts, *wpts; 1213 struct arch_lwp_info *arm_lwp_info = lwp->arch_private; 1214 1215 pid = ptid_get_lwp (lwp->ptid); 1216 bpts = arm_linux_get_debug_reg_state (ptid_get_pid (lwp->ptid))->bpts; 1217 wpts = arm_linux_get_debug_reg_state (ptid_get_pid (lwp->ptid))->wpts; 1218 1219 /* NULL means this is the main thread still going through the shell, 1220 or, no watchpoint has been set yet. In that case, there's 1221 nothing to do. */ 1222 if (arm_lwp_info == NULL) 1223 return; 1224 1225 for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++) 1226 if (arm_lwp_info->bpts_changed[i]) 1227 { 1228 errno = 0; 1229 if (arm_hwbp_control_is_enabled (bpts[i].control)) 1230 if (ptrace (PTRACE_SETHBPREGS, pid, 1231 (PTRACE_TYPE_ARG3) ((i << 1) + 1), &bpts[i].address) < 0) 1232 perror_with_name (_("Unexpected error setting breakpoint")); 1233 1234 if (bpts[i].control != 0) 1235 if (ptrace (PTRACE_SETHBPREGS, pid, 1236 (PTRACE_TYPE_ARG3) ((i << 1) + 2), &bpts[i].control) < 0) 1237 perror_with_name (_("Unexpected error setting breakpoint")); 1238 1239 arm_lwp_info->bpts_changed[i] = 0; 1240 } 1241 1242 for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++) 1243 if (arm_lwp_info->wpts_changed[i]) 1244 { 1245 errno = 0; 1246 if (arm_hwbp_control_is_enabled (wpts[i].control)) 1247 if (ptrace (PTRACE_SETHBPREGS, pid, 1248 (PTRACE_TYPE_ARG3) -((i << 1) + 1), &wpts[i].address) < 0) 1249 perror_with_name (_("Unexpected error setting watchpoint")); 1250 1251 if (wpts[i].control != 0) 1252 if (ptrace (PTRACE_SETHBPREGS, pid, 1253 (PTRACE_TYPE_ARG3) -((i << 1) + 2), &wpts[i].control) < 0) 1254 perror_with_name (_("Unexpected error setting watchpoint")); 1255 1256 arm_lwp_info->wpts_changed[i] = 0; 1257 } 1258 } 1259 1260 /* linux_nat_new_fork hook. */ 1261 1262 static void 1263 arm_linux_new_fork (struct lwp_info *parent, pid_t child_pid) 1264 { 1265 pid_t parent_pid; 1266 struct arm_linux_debug_reg_state *parent_state; 1267 struct arm_linux_debug_reg_state *child_state; 1268 1269 /* NULL means no watchpoint has ever been set in the parent. In 1270 that case, there's nothing to do. */ 1271 if (parent->arch_private == NULL) 1272 return; 1273 1274 /* GDB core assumes the child inherits the watchpoints/hw 1275 breakpoints of the parent, and will remove them all from the 1276 forked off process. Copy the debug registers mirrors into the 1277 new process so that all breakpoints and watchpoints can be 1278 removed together. */ 1279 1280 parent_pid = ptid_get_pid (parent->ptid); 1281 parent_state = arm_linux_get_debug_reg_state (parent_pid); 1282 child_state = arm_linux_get_debug_reg_state (child_pid); 1283 *child_state = *parent_state; 1284 } 1285 1286 void _initialize_arm_linux_nat (void); 1287 1288 void 1289 _initialize_arm_linux_nat (void) 1290 { 1291 struct target_ops *t; 1292 1293 /* Fill in the generic GNU/Linux methods. */ 1294 t = linux_target (); 1295 1296 /* Add our register access methods. */ 1297 t->to_fetch_registers = arm_linux_fetch_inferior_registers; 1298 t->to_store_registers = arm_linux_store_inferior_registers; 1299 1300 /* Add our hardware breakpoint and watchpoint implementation. */ 1301 t->to_can_use_hw_breakpoint = arm_linux_can_use_hw_breakpoint; 1302 t->to_insert_hw_breakpoint = arm_linux_insert_hw_breakpoint; 1303 t->to_remove_hw_breakpoint = arm_linux_remove_hw_breakpoint; 1304 t->to_region_ok_for_hw_watchpoint = arm_linux_region_ok_for_hw_watchpoint; 1305 t->to_insert_watchpoint = arm_linux_insert_watchpoint; 1306 t->to_remove_watchpoint = arm_linux_remove_watchpoint; 1307 t->to_stopped_by_watchpoint = arm_linux_stopped_by_watchpoint; 1308 t->to_stopped_data_address = arm_linux_stopped_data_address; 1309 t->to_watchpoint_addr_within_range = arm_linux_watchpoint_addr_within_range; 1310 1311 t->to_read_description = arm_linux_read_description; 1312 1313 /* Register the target. */ 1314 linux_nat_add_target (t); 1315 1316 /* Handle thread creation and exit. */ 1317 linux_nat_set_new_thread (t, arm_linux_new_thread); 1318 linux_nat_set_prepare_to_resume (t, arm_linux_prepare_to_resume); 1319 1320 /* Handle process creation and exit. */ 1321 linux_nat_set_new_fork (t, arm_linux_new_fork); 1322 linux_nat_set_forget_process (t, arm_linux_forget_process); 1323 } 1324