xref: /netbsd-src/external/gpl3/gdb/dist/gdb/arm-linux-nat.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* GNU/Linux on ARM native support.
2    Copyright (C) 1999-2017 Free Software Foundation, Inc.
3 
4    This file is part of GDB.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
18 
19 #include "defs.h"
20 #include "inferior.h"
21 #include "gdbcore.h"
22 #include "regcache.h"
23 #include "target.h"
24 #include "linux-nat.h"
25 #include "target-descriptions.h"
26 #include "auxv.h"
27 #include "observer.h"
28 #include "gdbthread.h"
29 
30 #include "arm-tdep.h"
31 #include "arm-linux-tdep.h"
32 #include "aarch32-linux-nat.h"
33 
34 #include <elf/common.h>
35 #include <sys/user.h>
36 #include "nat/gdb_ptrace.h"
37 #include <sys/utsname.h>
38 #include <sys/procfs.h>
39 
40 #include "nat/linux-ptrace.h"
41 
42 /* Prototypes for supply_gregset etc.  */
43 #include "gregset.h"
44 
45 /* Defines ps_err_e, struct ps_prochandle.  */
46 #include "gdb_proc_service.h"
47 
48 #ifndef PTRACE_GET_THREAD_AREA
49 #define PTRACE_GET_THREAD_AREA 22
50 #endif
51 
52 #ifndef PTRACE_GETWMMXREGS
53 #define PTRACE_GETWMMXREGS 18
54 #define PTRACE_SETWMMXREGS 19
55 #endif
56 
57 #ifndef PTRACE_GETVFPREGS
58 #define PTRACE_GETVFPREGS 27
59 #define PTRACE_SETVFPREGS 28
60 #endif
61 
62 #ifndef PTRACE_GETHBPREGS
63 #define PTRACE_GETHBPREGS 29
64 #define PTRACE_SETHBPREGS 30
65 #endif
66 
67 extern int arm_apcs_32;
68 
69 /* Get the whole floating point state of the process and store it
70    into regcache.  */
71 
72 static void
73 fetch_fpregs (struct regcache *regcache)
74 {
75   int ret, regno, tid;
76   gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
77 
78   /* Get the thread id for the ptrace call.  */
79   tid = ptid_get_lwp (regcache_get_ptid (regcache));
80 
81   /* Read the floating point state.  */
82   if (have_ptrace_getregset == TRIBOOL_TRUE)
83     {
84       struct iovec iov;
85 
86       iov.iov_base = &fp;
87       iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
88 
89       ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
90     }
91   else
92     ret = ptrace (PT_GETFPREGS, tid, 0, fp);
93 
94   if (ret < 0)
95     perror_with_name (_("Unable to fetch the floating point registers."));
96 
97   /* Fetch fpsr.  */
98   regcache_raw_supply (regcache, ARM_FPS_REGNUM,
99 		       fp + NWFPE_FPSR_OFFSET);
100 
101   /* Fetch the floating point registers.  */
102   for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
103     supply_nwfpe_register (regcache, regno, fp);
104 }
105 
106 /* Save the whole floating point state of the process using
107    the contents from regcache.  */
108 
109 static void
110 store_fpregs (const struct regcache *regcache)
111 {
112   int ret, regno, tid;
113   gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
114 
115   /* Get the thread id for the ptrace call.  */
116   tid = ptid_get_lwp (regcache_get_ptid (regcache));
117 
118   /* Read the floating point state.  */
119   if (have_ptrace_getregset == TRIBOOL_TRUE)
120     {
121       elf_fpregset_t fpregs;
122       struct iovec iov;
123 
124       iov.iov_base = &fpregs;
125       iov.iov_len = sizeof (fpregs);
126 
127       ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
128     }
129   else
130     ret = ptrace (PT_GETFPREGS, tid, 0, fp);
131 
132   if (ret < 0)
133     perror_with_name (_("Unable to fetch the floating point registers."));
134 
135   /* Store fpsr.  */
136   if (REG_VALID == regcache_register_status (regcache, ARM_FPS_REGNUM))
137     regcache_raw_collect (regcache, ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
138 
139   /* Store the floating point registers.  */
140   for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
141     if (REG_VALID == regcache_register_status (regcache, regno))
142       collect_nwfpe_register (regcache, regno, fp);
143 
144   if (have_ptrace_getregset == TRIBOOL_TRUE)
145     {
146       struct iovec iov;
147 
148       iov.iov_base = &fp;
149       iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
150 
151       ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iov);
152     }
153   else
154     ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
155 
156   if (ret < 0)
157     perror_with_name (_("Unable to store floating point registers."));
158 }
159 
160 /* Fetch all general registers of the process and store into
161    regcache.  */
162 
163 static void
164 fetch_regs (struct regcache *regcache)
165 {
166   int ret, regno, tid;
167   elf_gregset_t regs;
168 
169   /* Get the thread id for the ptrace call.  */
170   tid = ptid_get_lwp (regcache_get_ptid (regcache));
171 
172   if (have_ptrace_getregset == TRIBOOL_TRUE)
173     {
174       struct iovec iov;
175 
176       iov.iov_base = &regs;
177       iov.iov_len = sizeof (regs);
178 
179       ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
180     }
181   else
182     ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
183 
184   if (ret < 0)
185     perror_with_name (_("Unable to fetch general registers."));
186 
187   aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, arm_apcs_32);
188 }
189 
190 static void
191 store_regs (const struct regcache *regcache)
192 {
193   int ret, regno, tid;
194   elf_gregset_t regs;
195 
196   /* Get the thread id for the ptrace call.  */
197   tid = ptid_get_lwp (regcache_get_ptid (regcache));
198 
199   /* Fetch the general registers.  */
200   if (have_ptrace_getregset == TRIBOOL_TRUE)
201     {
202       struct iovec iov;
203 
204       iov.iov_base = &regs;
205       iov.iov_len = sizeof (regs);
206 
207       ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
208     }
209   else
210     ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
211 
212   if (ret < 0)
213     perror_with_name (_("Unable to fetch general registers."));
214 
215   aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, arm_apcs_32);
216 
217   if (have_ptrace_getregset == TRIBOOL_TRUE)
218     {
219       struct iovec iov;
220 
221       iov.iov_base = &regs;
222       iov.iov_len = sizeof (regs);
223 
224       ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iov);
225     }
226   else
227     ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
228 
229   if (ret < 0)
230     perror_with_name (_("Unable to store general registers."));
231 }
232 
233 /* Fetch all WMMX registers of the process and store into
234    regcache.  */
235 
236 #define IWMMXT_REGS_SIZE (16 * 8 + 6 * 4)
237 
238 static void
239 fetch_wmmx_regs (struct regcache *regcache)
240 {
241   char regbuf[IWMMXT_REGS_SIZE];
242   int ret, regno, tid;
243 
244   /* Get the thread id for the ptrace call.  */
245   tid = ptid_get_lwp (regcache_get_ptid (regcache));
246 
247   ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
248   if (ret < 0)
249     perror_with_name (_("Unable to fetch WMMX registers."));
250 
251   for (regno = 0; regno < 16; regno++)
252     regcache_raw_supply (regcache, regno + ARM_WR0_REGNUM,
253 			 &regbuf[regno * 8]);
254 
255   for (regno = 0; regno < 2; regno++)
256     regcache_raw_supply (regcache, regno + ARM_WCSSF_REGNUM,
257 			 &regbuf[16 * 8 + regno * 4]);
258 
259   for (regno = 0; regno < 4; regno++)
260     regcache_raw_supply (regcache, regno + ARM_WCGR0_REGNUM,
261 			 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
262 }
263 
264 static void
265 store_wmmx_regs (const struct regcache *regcache)
266 {
267   char regbuf[IWMMXT_REGS_SIZE];
268   int ret, regno, tid;
269 
270   /* Get the thread id for the ptrace call.  */
271   tid = ptid_get_lwp (regcache_get_ptid (regcache));
272 
273   ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
274   if (ret < 0)
275     perror_with_name (_("Unable to fetch WMMX registers."));
276 
277   for (regno = 0; regno < 16; regno++)
278     if (REG_VALID == regcache_register_status (regcache,
279 					       regno + ARM_WR0_REGNUM))
280       regcache_raw_collect (regcache, regno + ARM_WR0_REGNUM,
281 			    &regbuf[regno * 8]);
282 
283   for (regno = 0; regno < 2; regno++)
284     if (REG_VALID == regcache_register_status (regcache,
285 					       regno + ARM_WCSSF_REGNUM))
286       regcache_raw_collect (regcache, regno + ARM_WCSSF_REGNUM,
287 			    &regbuf[16 * 8 + regno * 4]);
288 
289   for (regno = 0; regno < 4; regno++)
290     if (REG_VALID == regcache_register_status (regcache,
291 					       regno + ARM_WCGR0_REGNUM))
292       regcache_raw_collect (regcache, regno + ARM_WCGR0_REGNUM,
293 			    &regbuf[16 * 8 + 2 * 4 + regno * 4]);
294 
295   ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf);
296 
297   if (ret < 0)
298     perror_with_name (_("Unable to store WMMX registers."));
299 }
300 
301 static void
302 fetch_vfp_regs (struct regcache *regcache)
303 {
304   gdb_byte regbuf[VFP_REGS_SIZE];
305   int ret, regno, tid;
306   struct gdbarch *gdbarch = get_regcache_arch (regcache);
307   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
308 
309   /* Get the thread id for the ptrace call.  */
310   tid = ptid_get_lwp (regcache_get_ptid (regcache));
311 
312   if (have_ptrace_getregset == TRIBOOL_TRUE)
313     {
314       struct iovec iov;
315 
316       iov.iov_base = regbuf;
317       iov.iov_len = VFP_REGS_SIZE;
318       ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
319     }
320   else
321     ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
322 
323   if (ret < 0)
324     perror_with_name (_("Unable to fetch VFP registers."));
325 
326   aarch32_vfp_regcache_supply (regcache, regbuf,
327 			       tdep->vfp_register_count);
328 }
329 
330 static void
331 store_vfp_regs (const struct regcache *regcache)
332 {
333   gdb_byte regbuf[VFP_REGS_SIZE];
334   int ret, regno, tid;
335   struct gdbarch *gdbarch = get_regcache_arch (regcache);
336   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
337 
338   /* Get the thread id for the ptrace call.  */
339   tid = ptid_get_lwp (regcache_get_ptid (regcache));
340 
341   if (have_ptrace_getregset == TRIBOOL_TRUE)
342     {
343       struct iovec iov;
344 
345       iov.iov_base = regbuf;
346       iov.iov_len = VFP_REGS_SIZE;
347       ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
348     }
349   else
350     ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
351 
352   if (ret < 0)
353     perror_with_name (_("Unable to fetch VFP registers (for update)."));
354 
355   aarch32_vfp_regcache_collect (regcache, regbuf,
356 				tdep->vfp_register_count);
357 
358   if (have_ptrace_getregset == TRIBOOL_TRUE)
359     {
360       struct iovec iov;
361 
362       iov.iov_base = regbuf;
363       iov.iov_len = VFP_REGS_SIZE;
364       ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iov);
365     }
366   else
367     ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf);
368 
369   if (ret < 0)
370     perror_with_name (_("Unable to store VFP registers."));
371 }
372 
373 /* Fetch registers from the child process.  Fetch all registers if
374    regno == -1, otherwise fetch all general registers or all floating
375    point registers depending upon the value of regno.  */
376 
377 static void
378 arm_linux_fetch_inferior_registers (struct target_ops *ops,
379 				    struct regcache *regcache, int regno)
380 {
381   struct gdbarch *gdbarch = get_regcache_arch (regcache);
382   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
383 
384   if (-1 == regno)
385     {
386       fetch_regs (regcache);
387       if (tdep->have_wmmx_registers)
388 	fetch_wmmx_regs (regcache);
389       if (tdep->vfp_register_count > 0)
390 	fetch_vfp_regs (regcache);
391       if (tdep->have_fpa_registers)
392 	fetch_fpregs (regcache);
393     }
394   else
395     {
396       if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
397 	fetch_regs (regcache);
398       else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM)
399 	fetch_fpregs (regcache);
400       else if (tdep->have_wmmx_registers
401 	       && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
402 	fetch_wmmx_regs (regcache);
403       else if (tdep->vfp_register_count > 0
404 	       && regno >= ARM_D0_REGNUM
405 	       && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
406 		   || regno == ARM_FPSCR_REGNUM))
407 	fetch_vfp_regs (regcache);
408     }
409 }
410 
411 /* Store registers back into the inferior.  Store all registers if
412    regno == -1, otherwise store all general registers or all floating
413    point registers depending upon the value of regno.  */
414 
415 static void
416 arm_linux_store_inferior_registers (struct target_ops *ops,
417 				    struct regcache *regcache, int regno)
418 {
419   struct gdbarch *gdbarch = get_regcache_arch (regcache);
420   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
421 
422   if (-1 == regno)
423     {
424       store_regs (regcache);
425       if (tdep->have_wmmx_registers)
426 	store_wmmx_regs (regcache);
427       if (tdep->vfp_register_count > 0)
428 	store_vfp_regs (regcache);
429       if (tdep->have_fpa_registers)
430 	store_fpregs (regcache);
431     }
432   else
433     {
434       if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
435 	store_regs (regcache);
436       else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM))
437 	store_fpregs (regcache);
438       else if (tdep->have_wmmx_registers
439 	       && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
440 	store_wmmx_regs (regcache);
441       else if (tdep->vfp_register_count > 0
442 	       && regno >= ARM_D0_REGNUM
443 	       && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
444 		   || regno == ARM_FPSCR_REGNUM))
445 	store_vfp_regs (regcache);
446     }
447 }
448 
449 /* Wrapper functions for the standard regset handling, used by
450    thread debugging.  */
451 
452 void
453 fill_gregset (const struct regcache *regcache,
454 	      gdb_gregset_t *gregsetp, int regno)
455 {
456   arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0);
457 }
458 
459 void
460 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
461 {
462   arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0);
463 }
464 
465 void
466 fill_fpregset (const struct regcache *regcache,
467 	       gdb_fpregset_t *fpregsetp, int regno)
468 {
469   arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0);
470 }
471 
472 /* Fill GDB's register array with the floating-point register values
473    in *fpregsetp.  */
474 
475 void
476 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
477 {
478   arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0);
479 }
480 
481 /* Fetch the thread-local storage pointer for libthread_db.  */
482 
483 ps_err_e
484 ps_get_thread_area (struct ps_prochandle *ph,
485                     lwpid_t lwpid, int idx, void **base)
486 {
487   if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
488     return PS_ERR;
489 
490   /* IDX is the bias from the thread pointer to the beginning of the
491      thread descriptor.  It has to be subtracted due to implementation
492      quirks in libthread_db.  */
493   *base = (void *) ((char *)*base - idx);
494 
495   return PS_OK;
496 }
497 
498 static const struct target_desc *
499 arm_linux_read_description (struct target_ops *ops)
500 {
501   CORE_ADDR arm_hwcap = 0;
502 
503   if (have_ptrace_getregset == TRIBOOL_UNKNOWN)
504     {
505       elf_gregset_t gpregs;
506       struct iovec iov;
507       int tid = ptid_get_lwp (inferior_ptid);
508 
509       iov.iov_base = &gpregs;
510       iov.iov_len = sizeof (gpregs);
511 
512       /* Check if PTRACE_GETREGSET works.  */
513       if (ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov) < 0)
514 	have_ptrace_getregset = TRIBOOL_FALSE;
515       else
516 	have_ptrace_getregset = TRIBOOL_TRUE;
517     }
518 
519   if (target_auxv_search (ops, AT_HWCAP, &arm_hwcap) != 1)
520     {
521       return ops->beneath->to_read_description (ops->beneath);
522     }
523 
524   if (arm_hwcap & HWCAP_IWMMXT)
525     return tdesc_arm_with_iwmmxt;
526 
527   if (arm_hwcap & HWCAP_VFP)
528     {
529       int pid;
530       char *buf;
531       const struct target_desc * result = NULL;
532 
533       /* NEON implies VFPv3-D32 or no-VFP unit.  Say that we only support
534 	 Neon with VFPv3-D32.  */
535       if (arm_hwcap & HWCAP_NEON)
536 	result = tdesc_arm_with_neon;
537       else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
538 	result = tdesc_arm_with_vfpv3;
539       else
540 	result = tdesc_arm_with_vfpv2;
541 
542       /* Now make sure that the kernel supports reading these
543 	 registers.  Support was added in 2.6.30.  */
544       pid = ptid_get_lwp (inferior_ptid);
545       errno = 0;
546       buf = (char *) alloca (VFP_REGS_SIZE);
547       if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0
548 	  && errno == EIO)
549 	result = NULL;
550 
551       return result;
552     }
553 
554   return ops->beneath->to_read_description (ops->beneath);
555 }
556 
557 /* Information describing the hardware breakpoint capabilities.  */
558 struct arm_linux_hwbp_cap
559 {
560   gdb_byte arch;
561   gdb_byte max_wp_length;
562   gdb_byte wp_count;
563   gdb_byte bp_count;
564 };
565 
566 /* Since we cannot dynamically allocate subfields of arm_linux_process_info,
567    assume a maximum number of supported break-/watchpoints.  */
568 #define MAX_BPTS 16
569 #define MAX_WPTS 16
570 
571 /* Get hold of the Hardware Breakpoint information for the target we are
572    attached to.  Returns NULL if the kernel doesn't support Hardware
573    breakpoints at all, or a pointer to the information structure.  */
574 static const struct arm_linux_hwbp_cap *
575 arm_linux_get_hwbp_cap (void)
576 {
577   /* The info structure we return.  */
578   static struct arm_linux_hwbp_cap info;
579 
580   /* Is INFO in a good state?  -1 means that no attempt has been made to
581      initialize INFO; 0 means an attempt has been made, but it failed; 1
582      means INFO is in an initialized state.  */
583   static int available = -1;
584 
585   if (available == -1)
586     {
587       int tid;
588       unsigned int val;
589 
590       tid = ptid_get_lwp (inferior_ptid);
591       if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0)
592 	available = 0;
593       else
594 	{
595 	  info.arch = (gdb_byte)((val >> 24) & 0xff);
596 	  info.max_wp_length = (gdb_byte)((val >> 16) & 0xff);
597 	  info.wp_count = (gdb_byte)((val >> 8) & 0xff);
598 	  info.bp_count = (gdb_byte)(val & 0xff);
599 
600       if (info.wp_count > MAX_WPTS)
601         {
602           warning (_("arm-linux-gdb supports %d hardware watchpoints but target \
603                       supports %d"), MAX_WPTS, info.wp_count);
604           info.wp_count = MAX_WPTS;
605         }
606 
607       if (info.bp_count > MAX_BPTS)
608         {
609           warning (_("arm-linux-gdb supports %d hardware breakpoints but target \
610                       supports %d"), MAX_BPTS, info.bp_count);
611           info.bp_count = MAX_BPTS;
612         }
613 	  available = (info.arch != 0);
614 	}
615     }
616 
617   return available == 1 ? &info : NULL;
618 }
619 
620 /* How many hardware breakpoints are available?  */
621 static int
622 arm_linux_get_hw_breakpoint_count (void)
623 {
624   const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
625   return cap != NULL ? cap->bp_count : 0;
626 }
627 
628 /* How many hardware watchpoints are available?  */
629 static int
630 arm_linux_get_hw_watchpoint_count (void)
631 {
632   const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
633   return cap != NULL ? cap->wp_count : 0;
634 }
635 
636 /* Have we got a free break-/watch-point available for use?  Returns -1 if
637    there is not an appropriate resource available, otherwise returns 1.  */
638 static int
639 arm_linux_can_use_hw_breakpoint (struct target_ops *self,
640 				 enum bptype type,
641 				 int cnt, int ot)
642 {
643   if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
644       || type == bp_access_watchpoint || type == bp_watchpoint)
645     {
646       int count = arm_linux_get_hw_watchpoint_count ();
647 
648       if (count == 0)
649 	return 0;
650       else if (cnt + ot > count)
651 	return -1;
652     }
653   else if (type == bp_hardware_breakpoint)
654     {
655       int count = arm_linux_get_hw_breakpoint_count ();
656 
657       if (count == 0)
658 	return 0;
659       else if (cnt > count)
660 	return -1;
661     }
662   else
663     gdb_assert (FALSE);
664 
665   return 1;
666 }
667 
668 /* Enum describing the different types of ARM hardware break-/watch-points.  */
669 typedef enum
670 {
671   arm_hwbp_break = 0,
672   arm_hwbp_load = 1,
673   arm_hwbp_store = 2,
674   arm_hwbp_access = 3
675 } arm_hwbp_type;
676 
677 /* Type describing an ARM Hardware Breakpoint Control register value.  */
678 typedef unsigned int arm_hwbp_control_t;
679 
680 /* Structure used to keep track of hardware break-/watch-points.  */
681 struct arm_linux_hw_breakpoint
682 {
683   /* Address to break on, or being watched.  */
684   unsigned int address;
685   /* Control register for break-/watch- point.  */
686   arm_hwbp_control_t control;
687 };
688 
689 /* Structure containing arrays of per process hardware break-/watchpoints
690    for caching address and control information.
691 
692    The Linux ptrace interface to hardware break-/watch-points presents the
693    values in a vector centred around 0 (which is used fo generic information).
694    Positive indicies refer to breakpoint addresses/control registers, negative
695    indices to watchpoint addresses/control registers.
696 
697    The Linux vector is indexed as follows:
698       -((i << 1) + 2): Control register for watchpoint i.
699       -((i << 1) + 1): Address register for watchpoint i.
700                     0: Information register.
701        ((i << 1) + 1): Address register for breakpoint i.
702        ((i << 1) + 2): Control register for breakpoint i.
703 
704    This structure is used as a per-thread cache of the state stored by the
705    kernel, so that we don't need to keep calling into the kernel to find a
706    free breakpoint.
707 
708    We treat break-/watch-points with their enable bit clear as being deleted.
709    */
710 struct arm_linux_debug_reg_state
711 {
712   /* Hardware breakpoints for this process.  */
713   struct arm_linux_hw_breakpoint bpts[MAX_BPTS];
714   /* Hardware watchpoints for this process.  */
715   struct arm_linux_hw_breakpoint wpts[MAX_WPTS];
716 };
717 
718 /* Per-process arch-specific data we want to keep.  */
719 struct arm_linux_process_info
720 {
721   /* Linked list.  */
722   struct arm_linux_process_info *next;
723   /* The process identifier.  */
724   pid_t pid;
725   /* Hardware break-/watchpoints state information.  */
726   struct arm_linux_debug_reg_state state;
727 
728 };
729 
730 /* Per-thread arch-specific data we want to keep.  */
731 struct arch_lwp_info
732 {
733   /* Non-zero if our copy differs from what's recorded in the thread.  */
734   char bpts_changed[MAX_BPTS];
735   char wpts_changed[MAX_WPTS];
736 };
737 
738 static struct arm_linux_process_info *arm_linux_process_list = NULL;
739 
740 /* Find process data for process PID.  */
741 
742 static struct arm_linux_process_info *
743 arm_linux_find_process_pid (pid_t pid)
744 {
745   struct arm_linux_process_info *proc;
746 
747   for (proc = arm_linux_process_list; proc; proc = proc->next)
748     if (proc->pid == pid)
749       return proc;
750 
751   return NULL;
752 }
753 
754 /* Add process data for process PID.  Returns newly allocated info
755    object.  */
756 
757 static struct arm_linux_process_info *
758 arm_linux_add_process (pid_t pid)
759 {
760   struct arm_linux_process_info *proc;
761 
762   proc = XCNEW (struct arm_linux_process_info);
763   proc->pid = pid;
764 
765   proc->next = arm_linux_process_list;
766   arm_linux_process_list = proc;
767 
768   return proc;
769 }
770 
771 /* Get data specific info for process PID, creating it if necessary.
772    Never returns NULL.  */
773 
774 static struct arm_linux_process_info *
775 arm_linux_process_info_get (pid_t pid)
776 {
777   struct arm_linux_process_info *proc;
778 
779   proc = arm_linux_find_process_pid (pid);
780   if (proc == NULL)
781     proc = arm_linux_add_process (pid);
782 
783   return proc;
784 }
785 
786 /* Called whenever GDB is no longer debugging process PID.  It deletes
787    data structures that keep track of debug register state.  */
788 
789 static void
790 arm_linux_forget_process (pid_t pid)
791 {
792   struct arm_linux_process_info *proc, **proc_link;
793 
794   proc = arm_linux_process_list;
795   proc_link = &arm_linux_process_list;
796 
797   while (proc != NULL)
798     {
799       if (proc->pid == pid)
800     {
801       *proc_link = proc->next;
802 
803       xfree (proc);
804       return;
805     }
806 
807       proc_link = &proc->next;
808       proc = *proc_link;
809     }
810 }
811 
812 /* Get hardware break-/watchpoint state for process PID.  */
813 
814 static struct arm_linux_debug_reg_state *
815 arm_linux_get_debug_reg_state (pid_t pid)
816 {
817   return &arm_linux_process_info_get (pid)->state;
818 }
819 
820 /* Initialize an ARM hardware break-/watch-point control register value.
821    BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the
822    type of break-/watch-point; ENABLE indicates whether the point is enabled.
823    */
824 static arm_hwbp_control_t
825 arm_hwbp_control_initialize (unsigned byte_address_select,
826 			     arm_hwbp_type hwbp_type,
827 			     int enable)
828 {
829   gdb_assert ((byte_address_select & ~0xffU) == 0);
830   gdb_assert (hwbp_type != arm_hwbp_break
831 	      || ((byte_address_select & 0xfU) != 0));
832 
833   return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable;
834 }
835 
836 /* Does the breakpoint control value CONTROL have the enable bit set?  */
837 static int
838 arm_hwbp_control_is_enabled (arm_hwbp_control_t control)
839 {
840   return control & 0x1;
841 }
842 
843 /* Change a breakpoint control word so that it is in the disabled state.  */
844 static arm_hwbp_control_t
845 arm_hwbp_control_disable (arm_hwbp_control_t control)
846 {
847   return control & ~0x1;
848 }
849 
850 /* Initialise the hardware breakpoint structure P.  The breakpoint will be
851    enabled, and will point to the placed address of BP_TGT.  */
852 static void
853 arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch,
854 				    struct bp_target_info *bp_tgt,
855 				    struct arm_linux_hw_breakpoint *p)
856 {
857   unsigned mask;
858   CORE_ADDR address = bp_tgt->placed_address = bp_tgt->reqstd_address;
859 
860   /* We have to create a mask for the control register which says which bits
861      of the word pointed to by address to break on.  */
862   if (arm_pc_is_thumb (gdbarch, address))
863     {
864       mask = 0x3;
865       address &= ~1;
866     }
867   else
868     {
869       mask = 0xf;
870       address &= ~3;
871     }
872 
873   p->address = (unsigned int) address;
874   p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1);
875 }
876 
877 /* Get the ARM hardware breakpoint type from the TYPE value we're
878    given when asked to set a watchpoint.  */
879 static arm_hwbp_type
880 arm_linux_get_hwbp_type (enum target_hw_bp_type type)
881 {
882   if (type == hw_read)
883     return arm_hwbp_load;
884   else if (type == hw_write)
885     return arm_hwbp_store;
886   else
887     return arm_hwbp_access;
888 }
889 
890 /* Initialize the hardware breakpoint structure P for a watchpoint at ADDR
891    to LEN.  The type of watchpoint is given in RW.  */
892 static void
893 arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len,
894 				    enum target_hw_bp_type type,
895 				    struct arm_linux_hw_breakpoint *p)
896 {
897   const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
898   unsigned mask;
899 
900   gdb_assert (cap != NULL);
901   gdb_assert (cap->max_wp_length != 0);
902 
903   mask = (1 << len) - 1;
904 
905   p->address = (unsigned int) addr;
906   p->control = arm_hwbp_control_initialize (mask,
907 					    arm_linux_get_hwbp_type (type), 1);
908 }
909 
910 /* Are two break-/watch-points equal?  */
911 static int
912 arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1,
913 			       const struct arm_linux_hw_breakpoint *p2)
914 {
915   return p1->address == p2->address && p1->control == p2->control;
916 }
917 
918 /* Callback to mark a watch-/breakpoint to be updated in all threads of
919    the current process.  */
920 
921 struct update_registers_data
922 {
923   int watch;
924   int index;
925 };
926 
927 static int
928 update_registers_callback (struct lwp_info *lwp, void *arg)
929 {
930   struct update_registers_data *data = (struct update_registers_data *) arg;
931 
932   if (lwp->arch_private == NULL)
933     lwp->arch_private = XCNEW (struct arch_lwp_info);
934 
935   /* The actual update is done later just before resuming the lwp,
936      we just mark that the registers need updating.  */
937   if (data->watch)
938     lwp->arch_private->wpts_changed[data->index] = 1;
939   else
940     lwp->arch_private->bpts_changed[data->index] = 1;
941 
942   /* If the lwp isn't stopped, force it to momentarily pause, so
943      we can update its breakpoint registers.  */
944   if (!lwp->stopped)
945     linux_stop_lwp (lwp);
946 
947   return 0;
948 }
949 
950 /* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT
951    =1) BPT for thread TID.  */
952 static void
953 arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt,
954                                  int watchpoint)
955 {
956   int pid;
957   ptid_t pid_ptid;
958   gdb_byte count, i;
959   struct arm_linux_hw_breakpoint* bpts;
960   struct update_registers_data data;
961 
962   pid = ptid_get_pid (inferior_ptid);
963   pid_ptid = pid_to_ptid (pid);
964 
965   if (watchpoint)
966     {
967       count = arm_linux_get_hw_watchpoint_count ();
968       bpts = arm_linux_get_debug_reg_state (pid)->wpts;
969     }
970   else
971     {
972       count = arm_linux_get_hw_breakpoint_count ();
973       bpts = arm_linux_get_debug_reg_state (pid)->bpts;
974     }
975 
976   for (i = 0; i < count; ++i)
977     if (!arm_hwbp_control_is_enabled (bpts[i].control))
978       {
979         data.watch = watchpoint;
980         data.index = i;
981         bpts[i] = *bpt;
982         iterate_over_lwps (pid_ptid, update_registers_callback, &data);
983         break;
984       }
985 
986   gdb_assert (i != count);
987 }
988 
989 /* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint
990    (WATCHPOINT = 1) BPT for thread TID.  */
991 static void
992 arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt,
993                                  int watchpoint)
994 {
995   int pid;
996   gdb_byte count, i;
997   ptid_t pid_ptid;
998   struct arm_linux_hw_breakpoint* bpts;
999   struct update_registers_data data;
1000 
1001   pid = ptid_get_pid (inferior_ptid);
1002   pid_ptid = pid_to_ptid (pid);
1003 
1004   if (watchpoint)
1005     {
1006       count = arm_linux_get_hw_watchpoint_count ();
1007       bpts = arm_linux_get_debug_reg_state (pid)->wpts;
1008     }
1009   else
1010     {
1011       count = arm_linux_get_hw_breakpoint_count ();
1012       bpts = arm_linux_get_debug_reg_state (pid)->bpts;
1013     }
1014 
1015   for (i = 0; i < count; ++i)
1016     if (arm_linux_hw_breakpoint_equal (bpt, bpts + i))
1017       {
1018         data.watch = watchpoint;
1019         data.index = i;
1020         bpts[i].control = arm_hwbp_control_disable (bpts[i].control);
1021         iterate_over_lwps (pid_ptid, update_registers_callback, &data);
1022         break;
1023       }
1024 
1025   gdb_assert (i != count);
1026 }
1027 
1028 /* Insert a Hardware breakpoint.  */
1029 static int
1030 arm_linux_insert_hw_breakpoint (struct target_ops *self,
1031 				struct gdbarch *gdbarch,
1032 				struct bp_target_info *bp_tgt)
1033 {
1034   struct lwp_info *lp;
1035   struct arm_linux_hw_breakpoint p;
1036 
1037   if (arm_linux_get_hw_breakpoint_count () == 0)
1038     return -1;
1039 
1040   arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1041 
1042   arm_linux_insert_hw_breakpoint1 (&p, 0);
1043 
1044   return 0;
1045 }
1046 
1047 /* Remove a hardware breakpoint.  */
1048 static int
1049 arm_linux_remove_hw_breakpoint (struct target_ops *self,
1050 				struct gdbarch *gdbarch,
1051 				struct bp_target_info *bp_tgt)
1052 {
1053   struct lwp_info *lp;
1054   struct arm_linux_hw_breakpoint p;
1055 
1056   if (arm_linux_get_hw_breakpoint_count () == 0)
1057     return -1;
1058 
1059   arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1060 
1061   arm_linux_remove_hw_breakpoint1 (&p, 0);
1062 
1063   return 0;
1064 }
1065 
1066 /* Are we able to use a hardware watchpoint for the LEN bytes starting at
1067    ADDR?  */
1068 static int
1069 arm_linux_region_ok_for_hw_watchpoint (struct target_ops *self,
1070 				       CORE_ADDR addr, int len)
1071 {
1072   const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
1073   CORE_ADDR max_wp_length, aligned_addr;
1074 
1075   /* Can not set watchpoints for zero or negative lengths.  */
1076   if (len <= 0)
1077     return 0;
1078 
1079   /* Need to be able to use the ptrace interface.  */
1080   if (cap == NULL || cap->wp_count == 0)
1081     return 0;
1082 
1083   /* Test that the range [ADDR, ADDR + LEN) fits into the largest address
1084      range covered by a watchpoint.  */
1085   max_wp_length = (CORE_ADDR)cap->max_wp_length;
1086   aligned_addr = addr & ~(max_wp_length - 1);
1087 
1088   if (aligned_addr + max_wp_length < addr + len)
1089     return 0;
1090 
1091   /* The current ptrace interface can only handle watchpoints that are a
1092      power of 2.  */
1093   if ((len & (len - 1)) != 0)
1094     return 0;
1095 
1096   /* All tests passed so we must be able to set a watchpoint.  */
1097   return 1;
1098 }
1099 
1100 /* Insert a Hardware breakpoint.  */
1101 static int
1102 arm_linux_insert_watchpoint (struct target_ops *self,
1103 			     CORE_ADDR addr, int len,
1104 			     enum target_hw_bp_type rw,
1105 			     struct expression *cond)
1106 {
1107   struct lwp_info *lp;
1108   struct arm_linux_hw_breakpoint p;
1109 
1110   if (arm_linux_get_hw_watchpoint_count () == 0)
1111     return -1;
1112 
1113   arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1114 
1115   arm_linux_insert_hw_breakpoint1 (&p, 1);
1116 
1117   return 0;
1118 }
1119 
1120 /* Remove a hardware breakpoint.  */
1121 static int
1122 arm_linux_remove_watchpoint (struct target_ops *self, CORE_ADDR addr,
1123 			     int len, enum target_hw_bp_type rw,
1124 			     struct expression *cond)
1125 {
1126   struct lwp_info *lp;
1127   struct arm_linux_hw_breakpoint p;
1128 
1129   if (arm_linux_get_hw_watchpoint_count () == 0)
1130     return -1;
1131 
1132   arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1133 
1134   arm_linux_remove_hw_breakpoint1 (&p, 1);
1135 
1136   return 0;
1137 }
1138 
1139 /* What was the data address the target was stopped on accessing.  */
1140 static int
1141 arm_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
1142 {
1143   siginfo_t siginfo;
1144   int slot;
1145 
1146   if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1147     return 0;
1148 
1149   /* This must be a hardware breakpoint.  */
1150   if (siginfo.si_signo != SIGTRAP
1151       || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
1152     return 0;
1153 
1154   /* We must be able to set hardware watchpoints.  */
1155   if (arm_linux_get_hw_watchpoint_count () == 0)
1156     return 0;
1157 
1158   slot = siginfo.si_errno;
1159 
1160   /* If we are in a positive slot then we're looking at a breakpoint and not
1161      a watchpoint.  */
1162   if (slot >= 0)
1163     return 0;
1164 
1165   *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
1166   return 1;
1167 }
1168 
1169 /* Has the target been stopped by hitting a watchpoint?  */
1170 static int
1171 arm_linux_stopped_by_watchpoint (struct target_ops *ops)
1172 {
1173   CORE_ADDR addr;
1174   return arm_linux_stopped_data_address (ops, &addr);
1175 }
1176 
1177 static int
1178 arm_linux_watchpoint_addr_within_range (struct target_ops *target,
1179 					CORE_ADDR addr,
1180 					CORE_ADDR start, int length)
1181 {
1182   return start <= addr && start + length - 1 >= addr;
1183 }
1184 
1185 /* Handle thread creation.  We need to copy the breakpoints and watchpoints
1186    in the parent thread to the child thread.  */
1187 static void
1188 arm_linux_new_thread (struct lwp_info *lp)
1189 {
1190   int i;
1191   struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
1192 
1193   /* Mark that all the hardware breakpoint/watchpoint register pairs
1194      for this thread need to be initialized.  */
1195 
1196   for (i = 0; i < MAX_BPTS; i++)
1197     {
1198       info->bpts_changed[i] = 1;
1199       info->wpts_changed[i] = 1;
1200     }
1201 
1202   lp->arch_private = info;
1203 }
1204 
1205 /* Called when resuming a thread.
1206    The hardware debug registers are updated when there is any change.  */
1207 
1208 static void
1209 arm_linux_prepare_to_resume (struct lwp_info *lwp)
1210 {
1211   int pid, i;
1212   struct arm_linux_hw_breakpoint *bpts, *wpts;
1213   struct arch_lwp_info *arm_lwp_info = lwp->arch_private;
1214 
1215   pid = ptid_get_lwp (lwp->ptid);
1216   bpts = arm_linux_get_debug_reg_state (ptid_get_pid (lwp->ptid))->bpts;
1217   wpts = arm_linux_get_debug_reg_state (ptid_get_pid (lwp->ptid))->wpts;
1218 
1219   /* NULL means this is the main thread still going through the shell,
1220      or, no watchpoint has been set yet.  In that case, there's
1221      nothing to do.  */
1222   if (arm_lwp_info == NULL)
1223     return;
1224 
1225   for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++)
1226     if (arm_lwp_info->bpts_changed[i])
1227       {
1228         errno = 0;
1229         if (arm_hwbp_control_is_enabled (bpts[i].control))
1230           if (ptrace (PTRACE_SETHBPREGS, pid,
1231               (PTRACE_TYPE_ARG3) ((i << 1) + 1), &bpts[i].address) < 0)
1232             perror_with_name (_("Unexpected error setting breakpoint"));
1233 
1234         if (bpts[i].control != 0)
1235           if (ptrace (PTRACE_SETHBPREGS, pid,
1236               (PTRACE_TYPE_ARG3) ((i << 1) + 2), &bpts[i].control) < 0)
1237             perror_with_name (_("Unexpected error setting breakpoint"));
1238 
1239         arm_lwp_info->bpts_changed[i] = 0;
1240       }
1241 
1242   for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++)
1243     if (arm_lwp_info->wpts_changed[i])
1244       {
1245         errno = 0;
1246         if (arm_hwbp_control_is_enabled (wpts[i].control))
1247           if (ptrace (PTRACE_SETHBPREGS, pid,
1248               (PTRACE_TYPE_ARG3) -((i << 1) + 1), &wpts[i].address) < 0)
1249             perror_with_name (_("Unexpected error setting watchpoint"));
1250 
1251         if (wpts[i].control != 0)
1252           if (ptrace (PTRACE_SETHBPREGS, pid,
1253               (PTRACE_TYPE_ARG3) -((i << 1) + 2), &wpts[i].control) < 0)
1254             perror_with_name (_("Unexpected error setting watchpoint"));
1255 
1256         arm_lwp_info->wpts_changed[i] = 0;
1257       }
1258 }
1259 
1260 /* linux_nat_new_fork hook.  */
1261 
1262 static void
1263 arm_linux_new_fork (struct lwp_info *parent, pid_t child_pid)
1264 {
1265   pid_t parent_pid;
1266   struct arm_linux_debug_reg_state *parent_state;
1267   struct arm_linux_debug_reg_state *child_state;
1268 
1269   /* NULL means no watchpoint has ever been set in the parent.  In
1270      that case, there's nothing to do.  */
1271   if (parent->arch_private == NULL)
1272     return;
1273 
1274   /* GDB core assumes the child inherits the watchpoints/hw
1275      breakpoints of the parent, and will remove them all from the
1276      forked off process.  Copy the debug registers mirrors into the
1277      new process so that all breakpoints and watchpoints can be
1278      removed together.  */
1279 
1280   parent_pid = ptid_get_pid (parent->ptid);
1281   parent_state = arm_linux_get_debug_reg_state (parent_pid);
1282   child_state = arm_linux_get_debug_reg_state (child_pid);
1283   *child_state = *parent_state;
1284 }
1285 
1286 void _initialize_arm_linux_nat (void);
1287 
1288 void
1289 _initialize_arm_linux_nat (void)
1290 {
1291   struct target_ops *t;
1292 
1293   /* Fill in the generic GNU/Linux methods.  */
1294   t = linux_target ();
1295 
1296   /* Add our register access methods.  */
1297   t->to_fetch_registers = arm_linux_fetch_inferior_registers;
1298   t->to_store_registers = arm_linux_store_inferior_registers;
1299 
1300   /* Add our hardware breakpoint and watchpoint implementation.  */
1301   t->to_can_use_hw_breakpoint = arm_linux_can_use_hw_breakpoint;
1302   t->to_insert_hw_breakpoint = arm_linux_insert_hw_breakpoint;
1303   t->to_remove_hw_breakpoint = arm_linux_remove_hw_breakpoint;
1304   t->to_region_ok_for_hw_watchpoint = arm_linux_region_ok_for_hw_watchpoint;
1305   t->to_insert_watchpoint = arm_linux_insert_watchpoint;
1306   t->to_remove_watchpoint = arm_linux_remove_watchpoint;
1307   t->to_stopped_by_watchpoint = arm_linux_stopped_by_watchpoint;
1308   t->to_stopped_data_address = arm_linux_stopped_data_address;
1309   t->to_watchpoint_addr_within_range = arm_linux_watchpoint_addr_within_range;
1310 
1311   t->to_read_description = arm_linux_read_description;
1312 
1313   /* Register the target.  */
1314   linux_nat_add_target (t);
1315 
1316   /* Handle thread creation and exit.  */
1317   linux_nat_set_new_thread (t, arm_linux_new_thread);
1318   linux_nat_set_prepare_to_resume (t, arm_linux_prepare_to_resume);
1319 
1320   /* Handle process creation and exit.  */
1321   linux_nat_set_new_fork (t, arm_linux_new_fork);
1322   linux_nat_set_forget_process (t, arm_linux_forget_process);
1323 }
1324