1 /* GNU/Linux on ARM native support. 2 Copyright (C) 1999-2020 Free Software Foundation, Inc. 3 4 This file is part of GDB. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 18 19 #include "defs.h" 20 #include "inferior.h" 21 #include "gdbcore.h" 22 #include "regcache.h" 23 #include "target.h" 24 #include "linux-nat.h" 25 #include "target-descriptions.h" 26 #include "auxv.h" 27 #include "observable.h" 28 #include "gdbthread.h" 29 30 #include "aarch32-tdep.h" 31 #include "arm-tdep.h" 32 #include "arm-linux-tdep.h" 33 #include "aarch32-linux-nat.h" 34 35 #include <elf/common.h> 36 #include <sys/user.h> 37 #include "nat/gdb_ptrace.h" 38 #include <sys/utsname.h> 39 #include <sys/procfs.h> 40 41 #include "nat/linux-ptrace.h" 42 #include "linux-tdep.h" 43 44 /* Prototypes for supply_gregset etc. */ 45 #include "gregset.h" 46 47 /* Defines ps_err_e, struct ps_prochandle. */ 48 #include "gdb_proc_service.h" 49 50 #ifndef PTRACE_GET_THREAD_AREA 51 #define PTRACE_GET_THREAD_AREA 22 52 #endif 53 54 #ifndef PTRACE_GETWMMXREGS 55 #define PTRACE_GETWMMXREGS 18 56 #define PTRACE_SETWMMXREGS 19 57 #endif 58 59 #ifndef PTRACE_GETVFPREGS 60 #define PTRACE_GETVFPREGS 27 61 #define PTRACE_SETVFPREGS 28 62 #endif 63 64 #ifndef PTRACE_GETHBPREGS 65 #define PTRACE_GETHBPREGS 29 66 #define PTRACE_SETHBPREGS 30 67 #endif 68 69 class arm_linux_nat_target final : public linux_nat_target 70 { 71 public: 72 /* Add our register access methods. */ 73 void fetch_registers (struct regcache *, int) override; 74 void store_registers (struct regcache *, int) override; 75 76 /* Add our hardware breakpoint and watchpoint implementation. */ 77 int can_use_hw_breakpoint (enum bptype, int, int) override; 78 79 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override; 80 81 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override; 82 83 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override; 84 85 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type, 86 struct expression *) override; 87 88 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type, 89 struct expression *) override; 90 bool stopped_by_watchpoint () override; 91 92 bool stopped_data_address (CORE_ADDR *) override; 93 94 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override; 95 96 const struct target_desc *read_description () override; 97 98 /* Override linux_nat_target low methods. */ 99 100 /* Handle thread creation and exit. */ 101 void low_new_thread (struct lwp_info *lp) override; 102 void low_delete_thread (struct arch_lwp_info *lp) override; 103 void low_prepare_to_resume (struct lwp_info *lp) override; 104 105 /* Handle process creation and exit. */ 106 void low_new_fork (struct lwp_info *parent, pid_t child_pid) override; 107 void low_forget_process (pid_t pid) override; 108 }; 109 110 static arm_linux_nat_target the_arm_linux_nat_target; 111 112 /* Get the whole floating point state of the process and store it 113 into regcache. */ 114 115 static void 116 fetch_fpregs (struct regcache *regcache) 117 { 118 int ret, regno, tid; 119 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE]; 120 121 /* Get the thread id for the ptrace call. */ 122 tid = regcache->ptid ().lwp (); 123 124 /* Read the floating point state. */ 125 if (have_ptrace_getregset == TRIBOOL_TRUE) 126 { 127 struct iovec iov; 128 129 iov.iov_base = &fp; 130 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE; 131 132 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov); 133 } 134 else 135 ret = ptrace (PT_GETFPREGS, tid, 0, fp); 136 137 if (ret < 0) 138 perror_with_name (_("Unable to fetch the floating point registers.")); 139 140 /* Fetch fpsr. */ 141 regcache->raw_supply (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET); 142 143 /* Fetch the floating point registers. */ 144 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++) 145 supply_nwfpe_register (regcache, regno, fp); 146 } 147 148 /* Save the whole floating point state of the process using 149 the contents from regcache. */ 150 151 static void 152 store_fpregs (const struct regcache *regcache) 153 { 154 int ret, regno, tid; 155 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE]; 156 157 /* Get the thread id for the ptrace call. */ 158 tid = regcache->ptid ().lwp (); 159 160 /* Read the floating point state. */ 161 if (have_ptrace_getregset == TRIBOOL_TRUE) 162 { 163 elf_fpregset_t fpregs; 164 struct iovec iov; 165 166 iov.iov_base = &fpregs; 167 iov.iov_len = sizeof (fpregs); 168 169 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov); 170 } 171 else 172 ret = ptrace (PT_GETFPREGS, tid, 0, fp); 173 174 if (ret < 0) 175 perror_with_name (_("Unable to fetch the floating point registers.")); 176 177 /* Store fpsr. */ 178 if (REG_VALID == regcache->get_register_status (ARM_FPS_REGNUM)) 179 regcache->raw_collect (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET); 180 181 /* Store the floating point registers. */ 182 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++) 183 if (REG_VALID == regcache->get_register_status (regno)) 184 collect_nwfpe_register (regcache, regno, fp); 185 186 if (have_ptrace_getregset == TRIBOOL_TRUE) 187 { 188 struct iovec iov; 189 190 iov.iov_base = &fp; 191 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE; 192 193 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iov); 194 } 195 else 196 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp); 197 198 if (ret < 0) 199 perror_with_name (_("Unable to store floating point registers.")); 200 } 201 202 /* Fetch all general registers of the process and store into 203 regcache. */ 204 205 static void 206 fetch_regs (struct regcache *regcache) 207 { 208 int ret, tid; 209 elf_gregset_t regs; 210 211 /* Get the thread id for the ptrace call. */ 212 tid = regcache->ptid ().lwp (); 213 214 if (have_ptrace_getregset == TRIBOOL_TRUE) 215 { 216 struct iovec iov; 217 218 iov.iov_base = ®s; 219 iov.iov_len = sizeof (regs); 220 221 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov); 222 } 223 else 224 ret = ptrace (PTRACE_GETREGS, tid, 0, ®s); 225 226 if (ret < 0) 227 perror_with_name (_("Unable to fetch general registers.")); 228 229 aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, arm_apcs_32); 230 } 231 232 static void 233 store_regs (const struct regcache *regcache) 234 { 235 int ret, tid; 236 elf_gregset_t regs; 237 238 /* Get the thread id for the ptrace call. */ 239 tid = regcache->ptid ().lwp (); 240 241 /* Fetch the general registers. */ 242 if (have_ptrace_getregset == TRIBOOL_TRUE) 243 { 244 struct iovec iov; 245 246 iov.iov_base = ®s; 247 iov.iov_len = sizeof (regs); 248 249 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov); 250 } 251 else 252 ret = ptrace (PTRACE_GETREGS, tid, 0, ®s); 253 254 if (ret < 0) 255 perror_with_name (_("Unable to fetch general registers.")); 256 257 aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, arm_apcs_32); 258 259 if (have_ptrace_getregset == TRIBOOL_TRUE) 260 { 261 struct iovec iov; 262 263 iov.iov_base = ®s; 264 iov.iov_len = sizeof (regs); 265 266 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iov); 267 } 268 else 269 ret = ptrace (PTRACE_SETREGS, tid, 0, ®s); 270 271 if (ret < 0) 272 perror_with_name (_("Unable to store general registers.")); 273 } 274 275 /* Fetch all WMMX registers of the process and store into 276 regcache. */ 277 278 static void 279 fetch_wmmx_regs (struct regcache *regcache) 280 { 281 char regbuf[IWMMXT_REGS_SIZE]; 282 int ret, regno, tid; 283 284 /* Get the thread id for the ptrace call. */ 285 tid = regcache->ptid ().lwp (); 286 287 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf); 288 if (ret < 0) 289 perror_with_name (_("Unable to fetch WMMX registers.")); 290 291 for (regno = 0; regno < 16; regno++) 292 regcache->raw_supply (regno + ARM_WR0_REGNUM, ®buf[regno * 8]); 293 294 for (regno = 0; regno < 2; regno++) 295 regcache->raw_supply (regno + ARM_WCSSF_REGNUM, 296 ®buf[16 * 8 + regno * 4]); 297 298 for (regno = 0; regno < 4; regno++) 299 regcache->raw_supply (regno + ARM_WCGR0_REGNUM, 300 ®buf[16 * 8 + 2 * 4 + regno * 4]); 301 } 302 303 static void 304 store_wmmx_regs (const struct regcache *regcache) 305 { 306 char regbuf[IWMMXT_REGS_SIZE]; 307 int ret, regno, tid; 308 309 /* Get the thread id for the ptrace call. */ 310 tid = regcache->ptid ().lwp (); 311 312 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf); 313 if (ret < 0) 314 perror_with_name (_("Unable to fetch WMMX registers.")); 315 316 for (regno = 0; regno < 16; regno++) 317 if (REG_VALID == regcache->get_register_status (regno + ARM_WR0_REGNUM)) 318 regcache->raw_collect (regno + ARM_WR0_REGNUM, ®buf[regno * 8]); 319 320 for (regno = 0; regno < 2; regno++) 321 if (REG_VALID == regcache->get_register_status (regno + ARM_WCSSF_REGNUM)) 322 regcache->raw_collect (regno + ARM_WCSSF_REGNUM, 323 ®buf[16 * 8 + regno * 4]); 324 325 for (regno = 0; regno < 4; regno++) 326 if (REG_VALID == regcache->get_register_status (regno + ARM_WCGR0_REGNUM)) 327 regcache->raw_collect (regno + ARM_WCGR0_REGNUM, 328 ®buf[16 * 8 + 2 * 4 + regno * 4]); 329 330 ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf); 331 332 if (ret < 0) 333 perror_with_name (_("Unable to store WMMX registers.")); 334 } 335 336 static void 337 fetch_vfp_regs (struct regcache *regcache) 338 { 339 gdb_byte regbuf[ARM_VFP3_REGS_SIZE]; 340 int ret, tid; 341 struct gdbarch *gdbarch = regcache->arch (); 342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 343 344 /* Get the thread id for the ptrace call. */ 345 tid = regcache->ptid ().lwp (); 346 347 if (have_ptrace_getregset == TRIBOOL_TRUE) 348 { 349 struct iovec iov; 350 351 iov.iov_base = regbuf; 352 iov.iov_len = ARM_VFP3_REGS_SIZE; 353 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov); 354 } 355 else 356 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf); 357 358 if (ret < 0) 359 perror_with_name (_("Unable to fetch VFP registers.")); 360 361 aarch32_vfp_regcache_supply (regcache, regbuf, 362 tdep->vfp_register_count); 363 } 364 365 static void 366 store_vfp_regs (const struct regcache *regcache) 367 { 368 gdb_byte regbuf[ARM_VFP3_REGS_SIZE]; 369 int ret, tid; 370 struct gdbarch *gdbarch = regcache->arch (); 371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 372 373 /* Get the thread id for the ptrace call. */ 374 tid = regcache->ptid ().lwp (); 375 376 if (have_ptrace_getregset == TRIBOOL_TRUE) 377 { 378 struct iovec iov; 379 380 iov.iov_base = regbuf; 381 iov.iov_len = ARM_VFP3_REGS_SIZE; 382 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov); 383 } 384 else 385 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf); 386 387 if (ret < 0) 388 perror_with_name (_("Unable to fetch VFP registers (for update).")); 389 390 aarch32_vfp_regcache_collect (regcache, regbuf, 391 tdep->vfp_register_count); 392 393 if (have_ptrace_getregset == TRIBOOL_TRUE) 394 { 395 struct iovec iov; 396 397 iov.iov_base = regbuf; 398 iov.iov_len = ARM_VFP3_REGS_SIZE; 399 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iov); 400 } 401 else 402 ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf); 403 404 if (ret < 0) 405 perror_with_name (_("Unable to store VFP registers.")); 406 } 407 408 /* Fetch registers from the child process. Fetch all registers if 409 regno == -1, otherwise fetch all general registers or all floating 410 point registers depending upon the value of regno. */ 411 412 void 413 arm_linux_nat_target::fetch_registers (struct regcache *regcache, int regno) 414 { 415 struct gdbarch *gdbarch = regcache->arch (); 416 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 417 418 if (-1 == regno) 419 { 420 fetch_regs (regcache); 421 if (tdep->have_wmmx_registers) 422 fetch_wmmx_regs (regcache); 423 if (tdep->vfp_register_count > 0) 424 fetch_vfp_regs (regcache); 425 if (tdep->have_fpa_registers) 426 fetch_fpregs (regcache); 427 } 428 else 429 { 430 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM) 431 fetch_regs (regcache); 432 else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM) 433 fetch_fpregs (regcache); 434 else if (tdep->have_wmmx_registers 435 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM) 436 fetch_wmmx_regs (regcache); 437 else if (tdep->vfp_register_count > 0 438 && regno >= ARM_D0_REGNUM 439 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count 440 || regno == ARM_FPSCR_REGNUM)) 441 fetch_vfp_regs (regcache); 442 } 443 } 444 445 /* Store registers back into the inferior. Store all registers if 446 regno == -1, otherwise store all general registers or all floating 447 point registers depending upon the value of regno. */ 448 449 void 450 arm_linux_nat_target::store_registers (struct regcache *regcache, int regno) 451 { 452 struct gdbarch *gdbarch = regcache->arch (); 453 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 454 455 if (-1 == regno) 456 { 457 store_regs (regcache); 458 if (tdep->have_wmmx_registers) 459 store_wmmx_regs (regcache); 460 if (tdep->vfp_register_count > 0) 461 store_vfp_regs (regcache); 462 if (tdep->have_fpa_registers) 463 store_fpregs (regcache); 464 } 465 else 466 { 467 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM) 468 store_regs (regcache); 469 else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM)) 470 store_fpregs (regcache); 471 else if (tdep->have_wmmx_registers 472 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM) 473 store_wmmx_regs (regcache); 474 else if (tdep->vfp_register_count > 0 475 && regno >= ARM_D0_REGNUM 476 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count 477 || regno == ARM_FPSCR_REGNUM)) 478 store_vfp_regs (regcache); 479 } 480 } 481 482 /* Wrapper functions for the standard regset handling, used by 483 thread debugging. */ 484 485 void 486 fill_gregset (const struct regcache *regcache, 487 gdb_gregset_t *gregsetp, int regno) 488 { 489 arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0); 490 } 491 492 void 493 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp) 494 { 495 arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0); 496 } 497 498 void 499 fill_fpregset (const struct regcache *regcache, 500 gdb_fpregset_t *fpregsetp, int regno) 501 { 502 arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0); 503 } 504 505 /* Fill GDB's register array with the floating-point register values 506 in *fpregsetp. */ 507 508 void 509 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp) 510 { 511 arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0); 512 } 513 514 /* Fetch the thread-local storage pointer for libthread_db. */ 515 516 ps_err_e 517 ps_get_thread_area (struct ps_prochandle *ph, 518 lwpid_t lwpid, int idx, void **base) 519 { 520 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0) 521 return PS_ERR; 522 523 /* IDX is the bias from the thread pointer to the beginning of the 524 thread descriptor. It has to be subtracted due to implementation 525 quirks in libthread_db. */ 526 *base = (void *) ((char *)*base - idx); 527 528 return PS_OK; 529 } 530 531 const struct target_desc * 532 arm_linux_nat_target::read_description () 533 { 534 CORE_ADDR arm_hwcap = linux_get_hwcap (this); 535 536 if (have_ptrace_getregset == TRIBOOL_UNKNOWN) 537 { 538 elf_gregset_t gpregs; 539 struct iovec iov; 540 int tid = inferior_ptid.lwp (); 541 542 iov.iov_base = &gpregs; 543 iov.iov_len = sizeof (gpregs); 544 545 /* Check if PTRACE_GETREGSET works. */ 546 if (ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov) < 0) 547 have_ptrace_getregset = TRIBOOL_FALSE; 548 else 549 have_ptrace_getregset = TRIBOOL_TRUE; 550 } 551 552 if (arm_hwcap & HWCAP_IWMMXT) 553 return arm_read_description (ARM_FP_TYPE_IWMMXT); 554 555 if (arm_hwcap & HWCAP_VFP) 556 { 557 /* Make sure that the kernel supports reading VFP registers. Support was 558 added in 2.6.30. */ 559 int pid = inferior_ptid.lwp (); 560 errno = 0; 561 char *buf = (char *) alloca (ARM_VFP3_REGS_SIZE); 562 if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0 && errno == EIO) 563 return nullptr; 564 565 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support 566 Neon with VFPv3-D32. */ 567 if (arm_hwcap & HWCAP_NEON) 568 return aarch32_read_description (); 569 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3) 570 return arm_read_description (ARM_FP_TYPE_VFPV3); 571 572 return arm_read_description (ARM_FP_TYPE_VFPV2); 573 } 574 575 return this->beneath ()->read_description (); 576 } 577 578 /* Information describing the hardware breakpoint capabilities. */ 579 struct arm_linux_hwbp_cap 580 { 581 gdb_byte arch; 582 gdb_byte max_wp_length; 583 gdb_byte wp_count; 584 gdb_byte bp_count; 585 }; 586 587 /* Since we cannot dynamically allocate subfields of arm_linux_process_info, 588 assume a maximum number of supported break-/watchpoints. */ 589 #define MAX_BPTS 16 590 #define MAX_WPTS 16 591 592 /* Get hold of the Hardware Breakpoint information for the target we are 593 attached to. Returns NULL if the kernel doesn't support Hardware 594 breakpoints at all, or a pointer to the information structure. */ 595 static const struct arm_linux_hwbp_cap * 596 arm_linux_get_hwbp_cap (void) 597 { 598 /* The info structure we return. */ 599 static struct arm_linux_hwbp_cap info; 600 601 /* Is INFO in a good state? -1 means that no attempt has been made to 602 initialize INFO; 0 means an attempt has been made, but it failed; 1 603 means INFO is in an initialized state. */ 604 static int available = -1; 605 606 if (available == -1) 607 { 608 int tid; 609 unsigned int val; 610 611 tid = inferior_ptid.lwp (); 612 if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0) 613 available = 0; 614 else 615 { 616 info.arch = (gdb_byte)((val >> 24) & 0xff); 617 info.max_wp_length = (gdb_byte)((val >> 16) & 0xff); 618 info.wp_count = (gdb_byte)((val >> 8) & 0xff); 619 info.bp_count = (gdb_byte)(val & 0xff); 620 621 if (info.wp_count > MAX_WPTS) 622 { 623 warning (_("arm-linux-gdb supports %d hardware watchpoints but target \ 624 supports %d"), MAX_WPTS, info.wp_count); 625 info.wp_count = MAX_WPTS; 626 } 627 628 if (info.bp_count > MAX_BPTS) 629 { 630 warning (_("arm-linux-gdb supports %d hardware breakpoints but target \ 631 supports %d"), MAX_BPTS, info.bp_count); 632 info.bp_count = MAX_BPTS; 633 } 634 available = (info.arch != 0); 635 } 636 } 637 638 return available == 1 ? &info : NULL; 639 } 640 641 /* How many hardware breakpoints are available? */ 642 static int 643 arm_linux_get_hw_breakpoint_count (void) 644 { 645 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap (); 646 return cap != NULL ? cap->bp_count : 0; 647 } 648 649 /* How many hardware watchpoints are available? */ 650 static int 651 arm_linux_get_hw_watchpoint_count (void) 652 { 653 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap (); 654 return cap != NULL ? cap->wp_count : 0; 655 } 656 657 /* Have we got a free break-/watch-point available for use? Returns -1 if 658 there is not an appropriate resource available, otherwise returns 1. */ 659 int 660 arm_linux_nat_target::can_use_hw_breakpoint (enum bptype type, 661 int cnt, int ot) 662 { 663 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint 664 || type == bp_access_watchpoint || type == bp_watchpoint) 665 { 666 int count = arm_linux_get_hw_watchpoint_count (); 667 668 if (count == 0) 669 return 0; 670 else if (cnt + ot > count) 671 return -1; 672 } 673 else if (type == bp_hardware_breakpoint) 674 { 675 int count = arm_linux_get_hw_breakpoint_count (); 676 677 if (count == 0) 678 return 0; 679 else if (cnt > count) 680 return -1; 681 } 682 else 683 gdb_assert_not_reached ("unknown breakpoint type"); 684 685 return 1; 686 } 687 688 /* Enum describing the different types of ARM hardware break-/watch-points. */ 689 typedef enum 690 { 691 arm_hwbp_break = 0, 692 arm_hwbp_load = 1, 693 arm_hwbp_store = 2, 694 arm_hwbp_access = 3 695 } arm_hwbp_type; 696 697 /* Type describing an ARM Hardware Breakpoint Control register value. */ 698 typedef unsigned int arm_hwbp_control_t; 699 700 /* Structure used to keep track of hardware break-/watch-points. */ 701 struct arm_linux_hw_breakpoint 702 { 703 /* Address to break on, or being watched. */ 704 unsigned int address; 705 /* Control register for break-/watch- point. */ 706 arm_hwbp_control_t control; 707 }; 708 709 /* Structure containing arrays of per process hardware break-/watchpoints 710 for caching address and control information. 711 712 The Linux ptrace interface to hardware break-/watch-points presents the 713 values in a vector centred around 0 (which is used fo generic information). 714 Positive indicies refer to breakpoint addresses/control registers, negative 715 indices to watchpoint addresses/control registers. 716 717 The Linux vector is indexed as follows: 718 -((i << 1) + 2): Control register for watchpoint i. 719 -((i << 1) + 1): Address register for watchpoint i. 720 0: Information register. 721 ((i << 1) + 1): Address register for breakpoint i. 722 ((i << 1) + 2): Control register for breakpoint i. 723 724 This structure is used as a per-thread cache of the state stored by the 725 kernel, so that we don't need to keep calling into the kernel to find a 726 free breakpoint. 727 728 We treat break-/watch-points with their enable bit clear as being deleted. 729 */ 730 struct arm_linux_debug_reg_state 731 { 732 /* Hardware breakpoints for this process. */ 733 struct arm_linux_hw_breakpoint bpts[MAX_BPTS]; 734 /* Hardware watchpoints for this process. */ 735 struct arm_linux_hw_breakpoint wpts[MAX_WPTS]; 736 }; 737 738 /* Per-process arch-specific data we want to keep. */ 739 struct arm_linux_process_info 740 { 741 /* Linked list. */ 742 struct arm_linux_process_info *next; 743 /* The process identifier. */ 744 pid_t pid; 745 /* Hardware break-/watchpoints state information. */ 746 struct arm_linux_debug_reg_state state; 747 748 }; 749 750 /* Per-thread arch-specific data we want to keep. */ 751 struct arch_lwp_info 752 { 753 /* Non-zero if our copy differs from what's recorded in the thread. */ 754 char bpts_changed[MAX_BPTS]; 755 char wpts_changed[MAX_WPTS]; 756 }; 757 758 static struct arm_linux_process_info *arm_linux_process_list = NULL; 759 760 /* Find process data for process PID. */ 761 762 static struct arm_linux_process_info * 763 arm_linux_find_process_pid (pid_t pid) 764 { 765 struct arm_linux_process_info *proc; 766 767 for (proc = arm_linux_process_list; proc; proc = proc->next) 768 if (proc->pid == pid) 769 return proc; 770 771 return NULL; 772 } 773 774 /* Add process data for process PID. Returns newly allocated info 775 object. */ 776 777 static struct arm_linux_process_info * 778 arm_linux_add_process (pid_t pid) 779 { 780 struct arm_linux_process_info *proc; 781 782 proc = XCNEW (struct arm_linux_process_info); 783 proc->pid = pid; 784 785 proc->next = arm_linux_process_list; 786 arm_linux_process_list = proc; 787 788 return proc; 789 } 790 791 /* Get data specific info for process PID, creating it if necessary. 792 Never returns NULL. */ 793 794 static struct arm_linux_process_info * 795 arm_linux_process_info_get (pid_t pid) 796 { 797 struct arm_linux_process_info *proc; 798 799 proc = arm_linux_find_process_pid (pid); 800 if (proc == NULL) 801 proc = arm_linux_add_process (pid); 802 803 return proc; 804 } 805 806 /* Called whenever GDB is no longer debugging process PID. It deletes 807 data structures that keep track of debug register state. */ 808 809 void 810 arm_linux_nat_target::low_forget_process (pid_t pid) 811 { 812 struct arm_linux_process_info *proc, **proc_link; 813 814 proc = arm_linux_process_list; 815 proc_link = &arm_linux_process_list; 816 817 while (proc != NULL) 818 { 819 if (proc->pid == pid) 820 { 821 *proc_link = proc->next; 822 823 xfree (proc); 824 return; 825 } 826 827 proc_link = &proc->next; 828 proc = *proc_link; 829 } 830 } 831 832 /* Get hardware break-/watchpoint state for process PID. */ 833 834 static struct arm_linux_debug_reg_state * 835 arm_linux_get_debug_reg_state (pid_t pid) 836 { 837 return &arm_linux_process_info_get (pid)->state; 838 } 839 840 /* Initialize an ARM hardware break-/watch-point control register value. 841 BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the 842 type of break-/watch-point; ENABLE indicates whether the point is enabled. 843 */ 844 static arm_hwbp_control_t 845 arm_hwbp_control_initialize (unsigned byte_address_select, 846 arm_hwbp_type hwbp_type, 847 int enable) 848 { 849 gdb_assert ((byte_address_select & ~0xffU) == 0); 850 gdb_assert (hwbp_type != arm_hwbp_break 851 || ((byte_address_select & 0xfU) != 0)); 852 853 return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable; 854 } 855 856 /* Does the breakpoint control value CONTROL have the enable bit set? */ 857 static int 858 arm_hwbp_control_is_enabled (arm_hwbp_control_t control) 859 { 860 return control & 0x1; 861 } 862 863 /* Change a breakpoint control word so that it is in the disabled state. */ 864 static arm_hwbp_control_t 865 arm_hwbp_control_disable (arm_hwbp_control_t control) 866 { 867 return control & ~0x1; 868 } 869 870 /* Initialise the hardware breakpoint structure P. The breakpoint will be 871 enabled, and will point to the placed address of BP_TGT. */ 872 static void 873 arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch, 874 struct bp_target_info *bp_tgt, 875 struct arm_linux_hw_breakpoint *p) 876 { 877 unsigned mask; 878 CORE_ADDR address = bp_tgt->placed_address = bp_tgt->reqstd_address; 879 880 /* We have to create a mask for the control register which says which bits 881 of the word pointed to by address to break on. */ 882 if (arm_pc_is_thumb (gdbarch, address)) 883 { 884 mask = 0x3; 885 address &= ~1; 886 } 887 else 888 { 889 mask = 0xf; 890 address &= ~3; 891 } 892 893 p->address = (unsigned int) address; 894 p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1); 895 } 896 897 /* Get the ARM hardware breakpoint type from the TYPE value we're 898 given when asked to set a watchpoint. */ 899 static arm_hwbp_type 900 arm_linux_get_hwbp_type (enum target_hw_bp_type type) 901 { 902 if (type == hw_read) 903 return arm_hwbp_load; 904 else if (type == hw_write) 905 return arm_hwbp_store; 906 else 907 return arm_hwbp_access; 908 } 909 910 /* Initialize the hardware breakpoint structure P for a watchpoint at ADDR 911 to LEN. The type of watchpoint is given in RW. */ 912 static void 913 arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len, 914 enum target_hw_bp_type type, 915 struct arm_linux_hw_breakpoint *p) 916 { 917 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap (); 918 unsigned mask; 919 920 gdb_assert (cap != NULL); 921 gdb_assert (cap->max_wp_length != 0); 922 923 mask = (1 << len) - 1; 924 925 p->address = (unsigned int) addr; 926 p->control = arm_hwbp_control_initialize (mask, 927 arm_linux_get_hwbp_type (type), 1); 928 } 929 930 /* Are two break-/watch-points equal? */ 931 static int 932 arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1, 933 const struct arm_linux_hw_breakpoint *p2) 934 { 935 return p1->address == p2->address && p1->control == p2->control; 936 } 937 938 /* Callback to mark a watch-/breakpoint to be updated in all threads of 939 the current process. */ 940 941 static int 942 update_registers_callback (struct lwp_info *lwp, int watch, int index) 943 { 944 if (lwp->arch_private == NULL) 945 lwp->arch_private = XCNEW (struct arch_lwp_info); 946 947 /* The actual update is done later just before resuming the lwp, 948 we just mark that the registers need updating. */ 949 if (watch) 950 lwp->arch_private->wpts_changed[index] = 1; 951 else 952 lwp->arch_private->bpts_changed[index] = 1; 953 954 /* If the lwp isn't stopped, force it to momentarily pause, so 955 we can update its breakpoint registers. */ 956 if (!lwp->stopped) 957 linux_stop_lwp (lwp); 958 959 return 0; 960 } 961 962 /* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT 963 =1) BPT for thread TID. */ 964 static void 965 arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt, 966 int watchpoint) 967 { 968 int pid; 969 ptid_t pid_ptid; 970 gdb_byte count, i; 971 struct arm_linux_hw_breakpoint* bpts; 972 973 pid = inferior_ptid.pid (); 974 pid_ptid = ptid_t (pid); 975 976 if (watchpoint) 977 { 978 count = arm_linux_get_hw_watchpoint_count (); 979 bpts = arm_linux_get_debug_reg_state (pid)->wpts; 980 } 981 else 982 { 983 count = arm_linux_get_hw_breakpoint_count (); 984 bpts = arm_linux_get_debug_reg_state (pid)->bpts; 985 } 986 987 for (i = 0; i < count; ++i) 988 if (!arm_hwbp_control_is_enabled (bpts[i].control)) 989 { 990 bpts[i] = *bpt; 991 iterate_over_lwps (pid_ptid, 992 [=] (struct lwp_info *info) 993 { 994 return update_registers_callback (info, watchpoint, 995 i); 996 }); 997 break; 998 } 999 1000 gdb_assert (i != count); 1001 } 1002 1003 /* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint 1004 (WATCHPOINT = 1) BPT for thread TID. */ 1005 static void 1006 arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt, 1007 int watchpoint) 1008 { 1009 int pid; 1010 gdb_byte count, i; 1011 ptid_t pid_ptid; 1012 struct arm_linux_hw_breakpoint* bpts; 1013 1014 pid = inferior_ptid.pid (); 1015 pid_ptid = ptid_t (pid); 1016 1017 if (watchpoint) 1018 { 1019 count = arm_linux_get_hw_watchpoint_count (); 1020 bpts = arm_linux_get_debug_reg_state (pid)->wpts; 1021 } 1022 else 1023 { 1024 count = arm_linux_get_hw_breakpoint_count (); 1025 bpts = arm_linux_get_debug_reg_state (pid)->bpts; 1026 } 1027 1028 for (i = 0; i < count; ++i) 1029 if (arm_linux_hw_breakpoint_equal (bpt, bpts + i)) 1030 { 1031 bpts[i].control = arm_hwbp_control_disable (bpts[i].control); 1032 iterate_over_lwps (pid_ptid, 1033 [=] (struct lwp_info *info) 1034 { 1035 return update_registers_callback (info, watchpoint, 1036 i); 1037 }); 1038 break; 1039 } 1040 1041 gdb_assert (i != count); 1042 } 1043 1044 /* Insert a Hardware breakpoint. */ 1045 int 1046 arm_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch, 1047 struct bp_target_info *bp_tgt) 1048 { 1049 struct arm_linux_hw_breakpoint p; 1050 1051 if (arm_linux_get_hw_breakpoint_count () == 0) 1052 return -1; 1053 1054 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p); 1055 1056 arm_linux_insert_hw_breakpoint1 (&p, 0); 1057 1058 return 0; 1059 } 1060 1061 /* Remove a hardware breakpoint. */ 1062 int 1063 arm_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch, 1064 struct bp_target_info *bp_tgt) 1065 { 1066 struct arm_linux_hw_breakpoint p; 1067 1068 if (arm_linux_get_hw_breakpoint_count () == 0) 1069 return -1; 1070 1071 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p); 1072 1073 arm_linux_remove_hw_breakpoint1 (&p, 0); 1074 1075 return 0; 1076 } 1077 1078 /* Are we able to use a hardware watchpoint for the LEN bytes starting at 1079 ADDR? */ 1080 int 1081 arm_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len) 1082 { 1083 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap (); 1084 CORE_ADDR max_wp_length, aligned_addr; 1085 1086 /* Can not set watchpoints for zero or negative lengths. */ 1087 if (len <= 0) 1088 return 0; 1089 1090 /* Need to be able to use the ptrace interface. */ 1091 if (cap == NULL || cap->wp_count == 0) 1092 return 0; 1093 1094 /* Test that the range [ADDR, ADDR + LEN) fits into the largest address 1095 range covered by a watchpoint. */ 1096 max_wp_length = (CORE_ADDR)cap->max_wp_length; 1097 aligned_addr = addr & ~(max_wp_length - 1); 1098 1099 if (aligned_addr + max_wp_length < addr + len) 1100 return 0; 1101 1102 /* The current ptrace interface can only handle watchpoints that are a 1103 power of 2. */ 1104 if ((len & (len - 1)) != 0) 1105 return 0; 1106 1107 /* All tests passed so we must be able to set a watchpoint. */ 1108 return 1; 1109 } 1110 1111 /* Insert a Hardware breakpoint. */ 1112 int 1113 arm_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len, 1114 enum target_hw_bp_type rw, 1115 struct expression *cond) 1116 { 1117 struct arm_linux_hw_breakpoint p; 1118 1119 if (arm_linux_get_hw_watchpoint_count () == 0) 1120 return -1; 1121 1122 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p); 1123 1124 arm_linux_insert_hw_breakpoint1 (&p, 1); 1125 1126 return 0; 1127 } 1128 1129 /* Remove a hardware breakpoint. */ 1130 int 1131 arm_linux_nat_target::remove_watchpoint (CORE_ADDR addr, 1132 int len, enum target_hw_bp_type rw, 1133 struct expression *cond) 1134 { 1135 struct arm_linux_hw_breakpoint p; 1136 1137 if (arm_linux_get_hw_watchpoint_count () == 0) 1138 return -1; 1139 1140 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p); 1141 1142 arm_linux_remove_hw_breakpoint1 (&p, 1); 1143 1144 return 0; 1145 } 1146 1147 /* What was the data address the target was stopped on accessing. */ 1148 bool 1149 arm_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p) 1150 { 1151 siginfo_t siginfo; 1152 int slot; 1153 1154 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo)) 1155 return false; 1156 1157 /* This must be a hardware breakpoint. */ 1158 if (siginfo.si_signo != SIGTRAP 1159 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */) 1160 return false; 1161 1162 /* We must be able to set hardware watchpoints. */ 1163 if (arm_linux_get_hw_watchpoint_count () == 0) 1164 return 0; 1165 1166 slot = siginfo.si_errno; 1167 1168 /* If we are in a positive slot then we're looking at a breakpoint and not 1169 a watchpoint. */ 1170 if (slot >= 0) 1171 return false; 1172 1173 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr; 1174 return true; 1175 } 1176 1177 /* Has the target been stopped by hitting a watchpoint? */ 1178 bool 1179 arm_linux_nat_target::stopped_by_watchpoint () 1180 { 1181 CORE_ADDR addr; 1182 return stopped_data_address (&addr); 1183 } 1184 1185 bool 1186 arm_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr, 1187 CORE_ADDR start, 1188 int length) 1189 { 1190 return start <= addr && start + length - 1 >= addr; 1191 } 1192 1193 /* Handle thread creation. We need to copy the breakpoints and watchpoints 1194 in the parent thread to the child thread. */ 1195 void 1196 arm_linux_nat_target::low_new_thread (struct lwp_info *lp) 1197 { 1198 int i; 1199 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info); 1200 1201 /* Mark that all the hardware breakpoint/watchpoint register pairs 1202 for this thread need to be initialized. */ 1203 1204 for (i = 0; i < MAX_BPTS; i++) 1205 { 1206 info->bpts_changed[i] = 1; 1207 info->wpts_changed[i] = 1; 1208 } 1209 1210 lp->arch_private = info; 1211 } 1212 1213 /* Function to call when a thread is being deleted. */ 1214 1215 void 1216 arm_linux_nat_target::low_delete_thread (struct arch_lwp_info *arch_lwp) 1217 { 1218 xfree (arch_lwp); 1219 } 1220 1221 /* Called when resuming a thread. 1222 The hardware debug registers are updated when there is any change. */ 1223 1224 void 1225 arm_linux_nat_target::low_prepare_to_resume (struct lwp_info *lwp) 1226 { 1227 int pid, i; 1228 struct arm_linux_hw_breakpoint *bpts, *wpts; 1229 struct arch_lwp_info *arm_lwp_info = lwp->arch_private; 1230 1231 pid = lwp->ptid.lwp (); 1232 bpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->bpts; 1233 wpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->wpts; 1234 1235 /* NULL means this is the main thread still going through the shell, 1236 or, no watchpoint has been set yet. In that case, there's 1237 nothing to do. */ 1238 if (arm_lwp_info == NULL) 1239 return; 1240 1241 for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++) 1242 if (arm_lwp_info->bpts_changed[i]) 1243 { 1244 errno = 0; 1245 if (arm_hwbp_control_is_enabled (bpts[i].control)) 1246 if (ptrace (PTRACE_SETHBPREGS, pid, 1247 (PTRACE_TYPE_ARG3) ((i << 1) + 1), &bpts[i].address) < 0) 1248 perror_with_name (_("Unexpected error setting breakpoint")); 1249 1250 if (bpts[i].control != 0) 1251 if (ptrace (PTRACE_SETHBPREGS, pid, 1252 (PTRACE_TYPE_ARG3) ((i << 1) + 2), &bpts[i].control) < 0) 1253 perror_with_name (_("Unexpected error setting breakpoint")); 1254 1255 arm_lwp_info->bpts_changed[i] = 0; 1256 } 1257 1258 for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++) 1259 if (arm_lwp_info->wpts_changed[i]) 1260 { 1261 errno = 0; 1262 if (arm_hwbp_control_is_enabled (wpts[i].control)) 1263 if (ptrace (PTRACE_SETHBPREGS, pid, 1264 (PTRACE_TYPE_ARG3) -((i << 1) + 1), &wpts[i].address) < 0) 1265 perror_with_name (_("Unexpected error setting watchpoint")); 1266 1267 if (wpts[i].control != 0) 1268 if (ptrace (PTRACE_SETHBPREGS, pid, 1269 (PTRACE_TYPE_ARG3) -((i << 1) + 2), &wpts[i].control) < 0) 1270 perror_with_name (_("Unexpected error setting watchpoint")); 1271 1272 arm_lwp_info->wpts_changed[i] = 0; 1273 } 1274 } 1275 1276 /* linux_nat_new_fork hook. */ 1277 1278 void 1279 arm_linux_nat_target::low_new_fork (struct lwp_info *parent, pid_t child_pid) 1280 { 1281 pid_t parent_pid; 1282 struct arm_linux_debug_reg_state *parent_state; 1283 struct arm_linux_debug_reg_state *child_state; 1284 1285 /* NULL means no watchpoint has ever been set in the parent. In 1286 that case, there's nothing to do. */ 1287 if (parent->arch_private == NULL) 1288 return; 1289 1290 /* GDB core assumes the child inherits the watchpoints/hw 1291 breakpoints of the parent, and will remove them all from the 1292 forked off process. Copy the debug registers mirrors into the 1293 new process so that all breakpoints and watchpoints can be 1294 removed together. */ 1295 1296 parent_pid = parent->ptid.pid (); 1297 parent_state = arm_linux_get_debug_reg_state (parent_pid); 1298 child_state = arm_linux_get_debug_reg_state (child_pid); 1299 *child_state = *parent_state; 1300 } 1301 1302 void _initialize_arm_linux_nat (); 1303 void 1304 _initialize_arm_linux_nat () 1305 { 1306 /* Register the target. */ 1307 linux_target = &the_arm_linux_nat_target; 1308 add_inf_child_target (&the_arm_linux_nat_target); 1309 } 1310