1 /* GNU/Linux on ARM native support. 2 Copyright (C) 1999-2019 Free Software Foundation, Inc. 3 4 This file is part of GDB. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 18 19 #include "defs.h" 20 #include "inferior.h" 21 #include "gdbcore.h" 22 #include "regcache.h" 23 #include "target.h" 24 #include "linux-nat.h" 25 #include "target-descriptions.h" 26 #include "auxv.h" 27 #include "observable.h" 28 #include "gdbthread.h" 29 30 #include "arm-tdep.h" 31 #include "arm-linux-tdep.h" 32 #include "aarch32-linux-nat.h" 33 34 #include <elf/common.h> 35 #include <sys/user.h> 36 #include "nat/gdb_ptrace.h" 37 #include <sys/utsname.h> 38 #include <sys/procfs.h> 39 40 #include "nat/linux-ptrace.h" 41 42 /* Prototypes for supply_gregset etc. */ 43 #include "gregset.h" 44 45 /* Defines ps_err_e, struct ps_prochandle. */ 46 #include "gdb_proc_service.h" 47 48 #ifndef PTRACE_GET_THREAD_AREA 49 #define PTRACE_GET_THREAD_AREA 22 50 #endif 51 52 #ifndef PTRACE_GETWMMXREGS 53 #define PTRACE_GETWMMXREGS 18 54 #define PTRACE_SETWMMXREGS 19 55 #endif 56 57 #ifndef PTRACE_GETVFPREGS 58 #define PTRACE_GETVFPREGS 27 59 #define PTRACE_SETVFPREGS 28 60 #endif 61 62 #ifndef PTRACE_GETHBPREGS 63 #define PTRACE_GETHBPREGS 29 64 #define PTRACE_SETHBPREGS 30 65 #endif 66 67 extern int arm_apcs_32; 68 69 class arm_linux_nat_target final : public linux_nat_target 70 { 71 public: 72 /* Add our register access methods. */ 73 void fetch_registers (struct regcache *, int) override; 74 void store_registers (struct regcache *, int) override; 75 76 /* Add our hardware breakpoint and watchpoint implementation. */ 77 int can_use_hw_breakpoint (enum bptype, int, int) override; 78 79 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override; 80 81 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override; 82 83 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override; 84 85 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type, 86 struct expression *) override; 87 88 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type, 89 struct expression *) override; 90 bool stopped_by_watchpoint () override; 91 92 bool stopped_data_address (CORE_ADDR *) override; 93 94 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override; 95 96 const struct target_desc *read_description () override; 97 98 /* Override linux_nat_target low methods. */ 99 100 /* Handle thread creation and exit. */ 101 void low_new_thread (struct lwp_info *lp) override; 102 void low_delete_thread (struct arch_lwp_info *lp) override; 103 void low_prepare_to_resume (struct lwp_info *lp) override; 104 105 /* Handle process creation and exit. */ 106 void low_new_fork (struct lwp_info *parent, pid_t child_pid) override; 107 void low_forget_process (pid_t pid) override; 108 }; 109 110 static arm_linux_nat_target the_arm_linux_nat_target; 111 112 /* Get the whole floating point state of the process and store it 113 into regcache. */ 114 115 static void 116 fetch_fpregs (struct regcache *regcache) 117 { 118 int ret, regno, tid; 119 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE]; 120 121 /* Get the thread id for the ptrace call. */ 122 tid = regcache->ptid ().lwp (); 123 124 /* Read the floating point state. */ 125 if (have_ptrace_getregset == TRIBOOL_TRUE) 126 { 127 struct iovec iov; 128 129 iov.iov_base = &fp; 130 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE; 131 132 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov); 133 } 134 else 135 ret = ptrace (PT_GETFPREGS, tid, 0, fp); 136 137 if (ret < 0) 138 perror_with_name (_("Unable to fetch the floating point registers.")); 139 140 /* Fetch fpsr. */ 141 regcache->raw_supply (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET); 142 143 /* Fetch the floating point registers. */ 144 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++) 145 supply_nwfpe_register (regcache, regno, fp); 146 } 147 148 /* Save the whole floating point state of the process using 149 the contents from regcache. */ 150 151 static void 152 store_fpregs (const struct regcache *regcache) 153 { 154 int ret, regno, tid; 155 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE]; 156 157 /* Get the thread id for the ptrace call. */ 158 tid = regcache->ptid ().lwp (); 159 160 /* Read the floating point state. */ 161 if (have_ptrace_getregset == TRIBOOL_TRUE) 162 { 163 elf_fpregset_t fpregs; 164 struct iovec iov; 165 166 iov.iov_base = &fpregs; 167 iov.iov_len = sizeof (fpregs); 168 169 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov); 170 } 171 else 172 ret = ptrace (PT_GETFPREGS, tid, 0, fp); 173 174 if (ret < 0) 175 perror_with_name (_("Unable to fetch the floating point registers.")); 176 177 /* Store fpsr. */ 178 if (REG_VALID == regcache->get_register_status (ARM_FPS_REGNUM)) 179 regcache->raw_collect (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET); 180 181 /* Store the floating point registers. */ 182 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++) 183 if (REG_VALID == regcache->get_register_status (regno)) 184 collect_nwfpe_register (regcache, regno, fp); 185 186 if (have_ptrace_getregset == TRIBOOL_TRUE) 187 { 188 struct iovec iov; 189 190 iov.iov_base = &fp; 191 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE; 192 193 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iov); 194 } 195 else 196 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp); 197 198 if (ret < 0) 199 perror_with_name (_("Unable to store floating point registers.")); 200 } 201 202 /* Fetch all general registers of the process and store into 203 regcache. */ 204 205 static void 206 fetch_regs (struct regcache *regcache) 207 { 208 int ret, tid; 209 elf_gregset_t regs; 210 211 /* Get the thread id for the ptrace call. */ 212 tid = regcache->ptid ().lwp (); 213 214 if (have_ptrace_getregset == TRIBOOL_TRUE) 215 { 216 struct iovec iov; 217 218 iov.iov_base = ®s; 219 iov.iov_len = sizeof (regs); 220 221 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov); 222 } 223 else 224 ret = ptrace (PTRACE_GETREGS, tid, 0, ®s); 225 226 if (ret < 0) 227 perror_with_name (_("Unable to fetch general registers.")); 228 229 aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, arm_apcs_32); 230 } 231 232 static void 233 store_regs (const struct regcache *regcache) 234 { 235 int ret, tid; 236 elf_gregset_t regs; 237 238 /* Get the thread id for the ptrace call. */ 239 tid = regcache->ptid ().lwp (); 240 241 /* Fetch the general registers. */ 242 if (have_ptrace_getregset == TRIBOOL_TRUE) 243 { 244 struct iovec iov; 245 246 iov.iov_base = ®s; 247 iov.iov_len = sizeof (regs); 248 249 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov); 250 } 251 else 252 ret = ptrace (PTRACE_GETREGS, tid, 0, ®s); 253 254 if (ret < 0) 255 perror_with_name (_("Unable to fetch general registers.")); 256 257 aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, arm_apcs_32); 258 259 if (have_ptrace_getregset == TRIBOOL_TRUE) 260 { 261 struct iovec iov; 262 263 iov.iov_base = ®s; 264 iov.iov_len = sizeof (regs); 265 266 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iov); 267 } 268 else 269 ret = ptrace (PTRACE_SETREGS, tid, 0, ®s); 270 271 if (ret < 0) 272 perror_with_name (_("Unable to store general registers.")); 273 } 274 275 /* Fetch all WMMX registers of the process and store into 276 regcache. */ 277 278 #define IWMMXT_REGS_SIZE (16 * 8 + 6 * 4) 279 280 static void 281 fetch_wmmx_regs (struct regcache *regcache) 282 { 283 char regbuf[IWMMXT_REGS_SIZE]; 284 int ret, regno, tid; 285 286 /* Get the thread id for the ptrace call. */ 287 tid = regcache->ptid ().lwp (); 288 289 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf); 290 if (ret < 0) 291 perror_with_name (_("Unable to fetch WMMX registers.")); 292 293 for (regno = 0; regno < 16; regno++) 294 regcache->raw_supply (regno + ARM_WR0_REGNUM, ®buf[regno * 8]); 295 296 for (regno = 0; regno < 2; regno++) 297 regcache->raw_supply (regno + ARM_WCSSF_REGNUM, 298 ®buf[16 * 8 + regno * 4]); 299 300 for (regno = 0; regno < 4; regno++) 301 regcache->raw_supply (regno + ARM_WCGR0_REGNUM, 302 ®buf[16 * 8 + 2 * 4 + regno * 4]); 303 } 304 305 static void 306 store_wmmx_regs (const struct regcache *regcache) 307 { 308 char regbuf[IWMMXT_REGS_SIZE]; 309 int ret, regno, tid; 310 311 /* Get the thread id for the ptrace call. */ 312 tid = regcache->ptid ().lwp (); 313 314 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf); 315 if (ret < 0) 316 perror_with_name (_("Unable to fetch WMMX registers.")); 317 318 for (regno = 0; regno < 16; regno++) 319 if (REG_VALID == regcache->get_register_status (regno + ARM_WR0_REGNUM)) 320 regcache->raw_collect (regno + ARM_WR0_REGNUM, ®buf[regno * 8]); 321 322 for (regno = 0; regno < 2; regno++) 323 if (REG_VALID == regcache->get_register_status (regno + ARM_WCSSF_REGNUM)) 324 regcache->raw_collect (regno + ARM_WCSSF_REGNUM, 325 ®buf[16 * 8 + regno * 4]); 326 327 for (regno = 0; regno < 4; regno++) 328 if (REG_VALID == regcache->get_register_status (regno + ARM_WCGR0_REGNUM)) 329 regcache->raw_collect (regno + ARM_WCGR0_REGNUM, 330 ®buf[16 * 8 + 2 * 4 + regno * 4]); 331 332 ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf); 333 334 if (ret < 0) 335 perror_with_name (_("Unable to store WMMX registers.")); 336 } 337 338 static void 339 fetch_vfp_regs (struct regcache *regcache) 340 { 341 gdb_byte regbuf[VFP_REGS_SIZE]; 342 int ret, tid; 343 struct gdbarch *gdbarch = regcache->arch (); 344 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 345 346 /* Get the thread id for the ptrace call. */ 347 tid = regcache->ptid ().lwp (); 348 349 if (have_ptrace_getregset == TRIBOOL_TRUE) 350 { 351 struct iovec iov; 352 353 iov.iov_base = regbuf; 354 iov.iov_len = VFP_REGS_SIZE; 355 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov); 356 } 357 else 358 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf); 359 360 if (ret < 0) 361 perror_with_name (_("Unable to fetch VFP registers.")); 362 363 aarch32_vfp_regcache_supply (regcache, regbuf, 364 tdep->vfp_register_count); 365 } 366 367 static void 368 store_vfp_regs (const struct regcache *regcache) 369 { 370 gdb_byte regbuf[VFP_REGS_SIZE]; 371 int ret, tid; 372 struct gdbarch *gdbarch = regcache->arch (); 373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 374 375 /* Get the thread id for the ptrace call. */ 376 tid = regcache->ptid ().lwp (); 377 378 if (have_ptrace_getregset == TRIBOOL_TRUE) 379 { 380 struct iovec iov; 381 382 iov.iov_base = regbuf; 383 iov.iov_len = VFP_REGS_SIZE; 384 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov); 385 } 386 else 387 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf); 388 389 if (ret < 0) 390 perror_with_name (_("Unable to fetch VFP registers (for update).")); 391 392 aarch32_vfp_regcache_collect (regcache, regbuf, 393 tdep->vfp_register_count); 394 395 if (have_ptrace_getregset == TRIBOOL_TRUE) 396 { 397 struct iovec iov; 398 399 iov.iov_base = regbuf; 400 iov.iov_len = VFP_REGS_SIZE; 401 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iov); 402 } 403 else 404 ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf); 405 406 if (ret < 0) 407 perror_with_name (_("Unable to store VFP registers.")); 408 } 409 410 /* Fetch registers from the child process. Fetch all registers if 411 regno == -1, otherwise fetch all general registers or all floating 412 point registers depending upon the value of regno. */ 413 414 void 415 arm_linux_nat_target::fetch_registers (struct regcache *regcache, int regno) 416 { 417 struct gdbarch *gdbarch = regcache->arch (); 418 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 419 420 if (-1 == regno) 421 { 422 fetch_regs (regcache); 423 if (tdep->have_wmmx_registers) 424 fetch_wmmx_regs (regcache); 425 if (tdep->vfp_register_count > 0) 426 fetch_vfp_regs (regcache); 427 if (tdep->have_fpa_registers) 428 fetch_fpregs (regcache); 429 } 430 else 431 { 432 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM) 433 fetch_regs (regcache); 434 else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM) 435 fetch_fpregs (regcache); 436 else if (tdep->have_wmmx_registers 437 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM) 438 fetch_wmmx_regs (regcache); 439 else if (tdep->vfp_register_count > 0 440 && regno >= ARM_D0_REGNUM 441 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count 442 || regno == ARM_FPSCR_REGNUM)) 443 fetch_vfp_regs (regcache); 444 } 445 } 446 447 /* Store registers back into the inferior. Store all registers if 448 regno == -1, otherwise store all general registers or all floating 449 point registers depending upon the value of regno. */ 450 451 void 452 arm_linux_nat_target::store_registers (struct regcache *regcache, int regno) 453 { 454 struct gdbarch *gdbarch = regcache->arch (); 455 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 456 457 if (-1 == regno) 458 { 459 store_regs (regcache); 460 if (tdep->have_wmmx_registers) 461 store_wmmx_regs (regcache); 462 if (tdep->vfp_register_count > 0) 463 store_vfp_regs (regcache); 464 if (tdep->have_fpa_registers) 465 store_fpregs (regcache); 466 } 467 else 468 { 469 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM) 470 store_regs (regcache); 471 else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM)) 472 store_fpregs (regcache); 473 else if (tdep->have_wmmx_registers 474 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM) 475 store_wmmx_regs (regcache); 476 else if (tdep->vfp_register_count > 0 477 && regno >= ARM_D0_REGNUM 478 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count 479 || regno == ARM_FPSCR_REGNUM)) 480 store_vfp_regs (regcache); 481 } 482 } 483 484 /* Wrapper functions for the standard regset handling, used by 485 thread debugging. */ 486 487 void 488 fill_gregset (const struct regcache *regcache, 489 gdb_gregset_t *gregsetp, int regno) 490 { 491 arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0); 492 } 493 494 void 495 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp) 496 { 497 arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0); 498 } 499 500 void 501 fill_fpregset (const struct regcache *regcache, 502 gdb_fpregset_t *fpregsetp, int regno) 503 { 504 arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0); 505 } 506 507 /* Fill GDB's register array with the floating-point register values 508 in *fpregsetp. */ 509 510 void 511 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp) 512 { 513 arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0); 514 } 515 516 /* Fetch the thread-local storage pointer for libthread_db. */ 517 518 ps_err_e 519 ps_get_thread_area (struct ps_prochandle *ph, 520 lwpid_t lwpid, int idx, void **base) 521 { 522 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0) 523 return PS_ERR; 524 525 /* IDX is the bias from the thread pointer to the beginning of the 526 thread descriptor. It has to be subtracted due to implementation 527 quirks in libthread_db. */ 528 *base = (void *) ((char *)*base - idx); 529 530 return PS_OK; 531 } 532 533 const struct target_desc * 534 arm_linux_nat_target::read_description () 535 { 536 CORE_ADDR arm_hwcap = 0; 537 538 if (have_ptrace_getregset == TRIBOOL_UNKNOWN) 539 { 540 elf_gregset_t gpregs; 541 struct iovec iov; 542 int tid = inferior_ptid.lwp (); 543 544 iov.iov_base = &gpregs; 545 iov.iov_len = sizeof (gpregs); 546 547 /* Check if PTRACE_GETREGSET works. */ 548 if (ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov) < 0) 549 have_ptrace_getregset = TRIBOOL_FALSE; 550 else 551 have_ptrace_getregset = TRIBOOL_TRUE; 552 } 553 554 if (target_auxv_search (this, AT_HWCAP, &arm_hwcap) != 1) 555 { 556 return this->beneath ()->read_description (); 557 } 558 559 if (arm_hwcap & HWCAP_IWMMXT) 560 return tdesc_arm_with_iwmmxt; 561 562 if (arm_hwcap & HWCAP_VFP) 563 { 564 int pid; 565 char *buf; 566 const struct target_desc * result = NULL; 567 568 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support 569 Neon with VFPv3-D32. */ 570 if (arm_hwcap & HWCAP_NEON) 571 result = tdesc_arm_with_neon; 572 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3) 573 result = tdesc_arm_with_vfpv3; 574 else 575 result = tdesc_arm_with_vfpv2; 576 577 /* Now make sure that the kernel supports reading these 578 registers. Support was added in 2.6.30. */ 579 pid = inferior_ptid.lwp (); 580 errno = 0; 581 buf = (char *) alloca (VFP_REGS_SIZE); 582 if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0 583 && errno == EIO) 584 result = NULL; 585 586 return result; 587 } 588 589 return this->beneath ()->read_description (); 590 } 591 592 /* Information describing the hardware breakpoint capabilities. */ 593 struct arm_linux_hwbp_cap 594 { 595 gdb_byte arch; 596 gdb_byte max_wp_length; 597 gdb_byte wp_count; 598 gdb_byte bp_count; 599 }; 600 601 /* Since we cannot dynamically allocate subfields of arm_linux_process_info, 602 assume a maximum number of supported break-/watchpoints. */ 603 #define MAX_BPTS 16 604 #define MAX_WPTS 16 605 606 /* Get hold of the Hardware Breakpoint information for the target we are 607 attached to. Returns NULL if the kernel doesn't support Hardware 608 breakpoints at all, or a pointer to the information structure. */ 609 static const struct arm_linux_hwbp_cap * 610 arm_linux_get_hwbp_cap (void) 611 { 612 /* The info structure we return. */ 613 static struct arm_linux_hwbp_cap info; 614 615 /* Is INFO in a good state? -1 means that no attempt has been made to 616 initialize INFO; 0 means an attempt has been made, but it failed; 1 617 means INFO is in an initialized state. */ 618 static int available = -1; 619 620 if (available == -1) 621 { 622 int tid; 623 unsigned int val; 624 625 tid = inferior_ptid.lwp (); 626 if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0) 627 available = 0; 628 else 629 { 630 info.arch = (gdb_byte)((val >> 24) & 0xff); 631 info.max_wp_length = (gdb_byte)((val >> 16) & 0xff); 632 info.wp_count = (gdb_byte)((val >> 8) & 0xff); 633 info.bp_count = (gdb_byte)(val & 0xff); 634 635 if (info.wp_count > MAX_WPTS) 636 { 637 warning (_("arm-linux-gdb supports %d hardware watchpoints but target \ 638 supports %d"), MAX_WPTS, info.wp_count); 639 info.wp_count = MAX_WPTS; 640 } 641 642 if (info.bp_count > MAX_BPTS) 643 { 644 warning (_("arm-linux-gdb supports %d hardware breakpoints but target \ 645 supports %d"), MAX_BPTS, info.bp_count); 646 info.bp_count = MAX_BPTS; 647 } 648 available = (info.arch != 0); 649 } 650 } 651 652 return available == 1 ? &info : NULL; 653 } 654 655 /* How many hardware breakpoints are available? */ 656 static int 657 arm_linux_get_hw_breakpoint_count (void) 658 { 659 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap (); 660 return cap != NULL ? cap->bp_count : 0; 661 } 662 663 /* How many hardware watchpoints are available? */ 664 static int 665 arm_linux_get_hw_watchpoint_count (void) 666 { 667 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap (); 668 return cap != NULL ? cap->wp_count : 0; 669 } 670 671 /* Have we got a free break-/watch-point available for use? Returns -1 if 672 there is not an appropriate resource available, otherwise returns 1. */ 673 int 674 arm_linux_nat_target::can_use_hw_breakpoint (enum bptype type, 675 int cnt, int ot) 676 { 677 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint 678 || type == bp_access_watchpoint || type == bp_watchpoint) 679 { 680 int count = arm_linux_get_hw_watchpoint_count (); 681 682 if (count == 0) 683 return 0; 684 else if (cnt + ot > count) 685 return -1; 686 } 687 else if (type == bp_hardware_breakpoint) 688 { 689 int count = arm_linux_get_hw_breakpoint_count (); 690 691 if (count == 0) 692 return 0; 693 else if (cnt > count) 694 return -1; 695 } 696 else 697 gdb_assert (FALSE); 698 699 return 1; 700 } 701 702 /* Enum describing the different types of ARM hardware break-/watch-points. */ 703 typedef enum 704 { 705 arm_hwbp_break = 0, 706 arm_hwbp_load = 1, 707 arm_hwbp_store = 2, 708 arm_hwbp_access = 3 709 } arm_hwbp_type; 710 711 /* Type describing an ARM Hardware Breakpoint Control register value. */ 712 typedef unsigned int arm_hwbp_control_t; 713 714 /* Structure used to keep track of hardware break-/watch-points. */ 715 struct arm_linux_hw_breakpoint 716 { 717 /* Address to break on, or being watched. */ 718 unsigned int address; 719 /* Control register for break-/watch- point. */ 720 arm_hwbp_control_t control; 721 }; 722 723 /* Structure containing arrays of per process hardware break-/watchpoints 724 for caching address and control information. 725 726 The Linux ptrace interface to hardware break-/watch-points presents the 727 values in a vector centred around 0 (which is used fo generic information). 728 Positive indicies refer to breakpoint addresses/control registers, negative 729 indices to watchpoint addresses/control registers. 730 731 The Linux vector is indexed as follows: 732 -((i << 1) + 2): Control register for watchpoint i. 733 -((i << 1) + 1): Address register for watchpoint i. 734 0: Information register. 735 ((i << 1) + 1): Address register for breakpoint i. 736 ((i << 1) + 2): Control register for breakpoint i. 737 738 This structure is used as a per-thread cache of the state stored by the 739 kernel, so that we don't need to keep calling into the kernel to find a 740 free breakpoint. 741 742 We treat break-/watch-points with their enable bit clear as being deleted. 743 */ 744 struct arm_linux_debug_reg_state 745 { 746 /* Hardware breakpoints for this process. */ 747 struct arm_linux_hw_breakpoint bpts[MAX_BPTS]; 748 /* Hardware watchpoints for this process. */ 749 struct arm_linux_hw_breakpoint wpts[MAX_WPTS]; 750 }; 751 752 /* Per-process arch-specific data we want to keep. */ 753 struct arm_linux_process_info 754 { 755 /* Linked list. */ 756 struct arm_linux_process_info *next; 757 /* The process identifier. */ 758 pid_t pid; 759 /* Hardware break-/watchpoints state information. */ 760 struct arm_linux_debug_reg_state state; 761 762 }; 763 764 /* Per-thread arch-specific data we want to keep. */ 765 struct arch_lwp_info 766 { 767 /* Non-zero if our copy differs from what's recorded in the thread. */ 768 char bpts_changed[MAX_BPTS]; 769 char wpts_changed[MAX_WPTS]; 770 }; 771 772 static struct arm_linux_process_info *arm_linux_process_list = NULL; 773 774 /* Find process data for process PID. */ 775 776 static struct arm_linux_process_info * 777 arm_linux_find_process_pid (pid_t pid) 778 { 779 struct arm_linux_process_info *proc; 780 781 for (proc = arm_linux_process_list; proc; proc = proc->next) 782 if (proc->pid == pid) 783 return proc; 784 785 return NULL; 786 } 787 788 /* Add process data for process PID. Returns newly allocated info 789 object. */ 790 791 static struct arm_linux_process_info * 792 arm_linux_add_process (pid_t pid) 793 { 794 struct arm_linux_process_info *proc; 795 796 proc = XCNEW (struct arm_linux_process_info); 797 proc->pid = pid; 798 799 proc->next = arm_linux_process_list; 800 arm_linux_process_list = proc; 801 802 return proc; 803 } 804 805 /* Get data specific info for process PID, creating it if necessary. 806 Never returns NULL. */ 807 808 static struct arm_linux_process_info * 809 arm_linux_process_info_get (pid_t pid) 810 { 811 struct arm_linux_process_info *proc; 812 813 proc = arm_linux_find_process_pid (pid); 814 if (proc == NULL) 815 proc = arm_linux_add_process (pid); 816 817 return proc; 818 } 819 820 /* Called whenever GDB is no longer debugging process PID. It deletes 821 data structures that keep track of debug register state. */ 822 823 void 824 arm_linux_nat_target::low_forget_process (pid_t pid) 825 { 826 struct arm_linux_process_info *proc, **proc_link; 827 828 proc = arm_linux_process_list; 829 proc_link = &arm_linux_process_list; 830 831 while (proc != NULL) 832 { 833 if (proc->pid == pid) 834 { 835 *proc_link = proc->next; 836 837 xfree (proc); 838 return; 839 } 840 841 proc_link = &proc->next; 842 proc = *proc_link; 843 } 844 } 845 846 /* Get hardware break-/watchpoint state for process PID. */ 847 848 static struct arm_linux_debug_reg_state * 849 arm_linux_get_debug_reg_state (pid_t pid) 850 { 851 return &arm_linux_process_info_get (pid)->state; 852 } 853 854 /* Initialize an ARM hardware break-/watch-point control register value. 855 BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the 856 type of break-/watch-point; ENABLE indicates whether the point is enabled. 857 */ 858 static arm_hwbp_control_t 859 arm_hwbp_control_initialize (unsigned byte_address_select, 860 arm_hwbp_type hwbp_type, 861 int enable) 862 { 863 gdb_assert ((byte_address_select & ~0xffU) == 0); 864 gdb_assert (hwbp_type != arm_hwbp_break 865 || ((byte_address_select & 0xfU) != 0)); 866 867 return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable; 868 } 869 870 /* Does the breakpoint control value CONTROL have the enable bit set? */ 871 static int 872 arm_hwbp_control_is_enabled (arm_hwbp_control_t control) 873 { 874 return control & 0x1; 875 } 876 877 /* Change a breakpoint control word so that it is in the disabled state. */ 878 static arm_hwbp_control_t 879 arm_hwbp_control_disable (arm_hwbp_control_t control) 880 { 881 return control & ~0x1; 882 } 883 884 /* Initialise the hardware breakpoint structure P. The breakpoint will be 885 enabled, and will point to the placed address of BP_TGT. */ 886 static void 887 arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch, 888 struct bp_target_info *bp_tgt, 889 struct arm_linux_hw_breakpoint *p) 890 { 891 unsigned mask; 892 CORE_ADDR address = bp_tgt->placed_address = bp_tgt->reqstd_address; 893 894 /* We have to create a mask for the control register which says which bits 895 of the word pointed to by address to break on. */ 896 if (arm_pc_is_thumb (gdbarch, address)) 897 { 898 mask = 0x3; 899 address &= ~1; 900 } 901 else 902 { 903 mask = 0xf; 904 address &= ~3; 905 } 906 907 p->address = (unsigned int) address; 908 p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1); 909 } 910 911 /* Get the ARM hardware breakpoint type from the TYPE value we're 912 given when asked to set a watchpoint. */ 913 static arm_hwbp_type 914 arm_linux_get_hwbp_type (enum target_hw_bp_type type) 915 { 916 if (type == hw_read) 917 return arm_hwbp_load; 918 else if (type == hw_write) 919 return arm_hwbp_store; 920 else 921 return arm_hwbp_access; 922 } 923 924 /* Initialize the hardware breakpoint structure P for a watchpoint at ADDR 925 to LEN. The type of watchpoint is given in RW. */ 926 static void 927 arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len, 928 enum target_hw_bp_type type, 929 struct arm_linux_hw_breakpoint *p) 930 { 931 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap (); 932 unsigned mask; 933 934 gdb_assert (cap != NULL); 935 gdb_assert (cap->max_wp_length != 0); 936 937 mask = (1 << len) - 1; 938 939 p->address = (unsigned int) addr; 940 p->control = arm_hwbp_control_initialize (mask, 941 arm_linux_get_hwbp_type (type), 1); 942 } 943 944 /* Are two break-/watch-points equal? */ 945 static int 946 arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1, 947 const struct arm_linux_hw_breakpoint *p2) 948 { 949 return p1->address == p2->address && p1->control == p2->control; 950 } 951 952 /* Callback to mark a watch-/breakpoint to be updated in all threads of 953 the current process. */ 954 955 struct update_registers_data 956 { 957 int watch; 958 int index; 959 }; 960 961 static int 962 update_registers_callback (struct lwp_info *lwp, void *arg) 963 { 964 struct update_registers_data *data = (struct update_registers_data *) arg; 965 966 if (lwp->arch_private == NULL) 967 lwp->arch_private = XCNEW (struct arch_lwp_info); 968 969 /* The actual update is done later just before resuming the lwp, 970 we just mark that the registers need updating. */ 971 if (data->watch) 972 lwp->arch_private->wpts_changed[data->index] = 1; 973 else 974 lwp->arch_private->bpts_changed[data->index] = 1; 975 976 /* If the lwp isn't stopped, force it to momentarily pause, so 977 we can update its breakpoint registers. */ 978 if (!lwp->stopped) 979 linux_stop_lwp (lwp); 980 981 return 0; 982 } 983 984 /* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT 985 =1) BPT for thread TID. */ 986 static void 987 arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt, 988 int watchpoint) 989 { 990 int pid; 991 ptid_t pid_ptid; 992 gdb_byte count, i; 993 struct arm_linux_hw_breakpoint* bpts; 994 struct update_registers_data data; 995 996 pid = inferior_ptid.pid (); 997 pid_ptid = ptid_t (pid); 998 999 if (watchpoint) 1000 { 1001 count = arm_linux_get_hw_watchpoint_count (); 1002 bpts = arm_linux_get_debug_reg_state (pid)->wpts; 1003 } 1004 else 1005 { 1006 count = arm_linux_get_hw_breakpoint_count (); 1007 bpts = arm_linux_get_debug_reg_state (pid)->bpts; 1008 } 1009 1010 for (i = 0; i < count; ++i) 1011 if (!arm_hwbp_control_is_enabled (bpts[i].control)) 1012 { 1013 data.watch = watchpoint; 1014 data.index = i; 1015 bpts[i] = *bpt; 1016 iterate_over_lwps (pid_ptid, update_registers_callback, &data); 1017 break; 1018 } 1019 1020 gdb_assert (i != count); 1021 } 1022 1023 /* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint 1024 (WATCHPOINT = 1) BPT for thread TID. */ 1025 static void 1026 arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt, 1027 int watchpoint) 1028 { 1029 int pid; 1030 gdb_byte count, i; 1031 ptid_t pid_ptid; 1032 struct arm_linux_hw_breakpoint* bpts; 1033 struct update_registers_data data; 1034 1035 pid = inferior_ptid.pid (); 1036 pid_ptid = ptid_t (pid); 1037 1038 if (watchpoint) 1039 { 1040 count = arm_linux_get_hw_watchpoint_count (); 1041 bpts = arm_linux_get_debug_reg_state (pid)->wpts; 1042 } 1043 else 1044 { 1045 count = arm_linux_get_hw_breakpoint_count (); 1046 bpts = arm_linux_get_debug_reg_state (pid)->bpts; 1047 } 1048 1049 for (i = 0; i < count; ++i) 1050 if (arm_linux_hw_breakpoint_equal (bpt, bpts + i)) 1051 { 1052 data.watch = watchpoint; 1053 data.index = i; 1054 bpts[i].control = arm_hwbp_control_disable (bpts[i].control); 1055 iterate_over_lwps (pid_ptid, update_registers_callback, &data); 1056 break; 1057 } 1058 1059 gdb_assert (i != count); 1060 } 1061 1062 /* Insert a Hardware breakpoint. */ 1063 int 1064 arm_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch, 1065 struct bp_target_info *bp_tgt) 1066 { 1067 struct arm_linux_hw_breakpoint p; 1068 1069 if (arm_linux_get_hw_breakpoint_count () == 0) 1070 return -1; 1071 1072 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p); 1073 1074 arm_linux_insert_hw_breakpoint1 (&p, 0); 1075 1076 return 0; 1077 } 1078 1079 /* Remove a hardware breakpoint. */ 1080 int 1081 arm_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch, 1082 struct bp_target_info *bp_tgt) 1083 { 1084 struct arm_linux_hw_breakpoint p; 1085 1086 if (arm_linux_get_hw_breakpoint_count () == 0) 1087 return -1; 1088 1089 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p); 1090 1091 arm_linux_remove_hw_breakpoint1 (&p, 0); 1092 1093 return 0; 1094 } 1095 1096 /* Are we able to use a hardware watchpoint for the LEN bytes starting at 1097 ADDR? */ 1098 int 1099 arm_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len) 1100 { 1101 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap (); 1102 CORE_ADDR max_wp_length, aligned_addr; 1103 1104 /* Can not set watchpoints for zero or negative lengths. */ 1105 if (len <= 0) 1106 return 0; 1107 1108 /* Need to be able to use the ptrace interface. */ 1109 if (cap == NULL || cap->wp_count == 0) 1110 return 0; 1111 1112 /* Test that the range [ADDR, ADDR + LEN) fits into the largest address 1113 range covered by a watchpoint. */ 1114 max_wp_length = (CORE_ADDR)cap->max_wp_length; 1115 aligned_addr = addr & ~(max_wp_length - 1); 1116 1117 if (aligned_addr + max_wp_length < addr + len) 1118 return 0; 1119 1120 /* The current ptrace interface can only handle watchpoints that are a 1121 power of 2. */ 1122 if ((len & (len - 1)) != 0) 1123 return 0; 1124 1125 /* All tests passed so we must be able to set a watchpoint. */ 1126 return 1; 1127 } 1128 1129 /* Insert a Hardware breakpoint. */ 1130 int 1131 arm_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len, 1132 enum target_hw_bp_type rw, 1133 struct expression *cond) 1134 { 1135 struct arm_linux_hw_breakpoint p; 1136 1137 if (arm_linux_get_hw_watchpoint_count () == 0) 1138 return -1; 1139 1140 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p); 1141 1142 arm_linux_insert_hw_breakpoint1 (&p, 1); 1143 1144 return 0; 1145 } 1146 1147 /* Remove a hardware breakpoint. */ 1148 int 1149 arm_linux_nat_target::remove_watchpoint (CORE_ADDR addr, 1150 int len, enum target_hw_bp_type rw, 1151 struct expression *cond) 1152 { 1153 struct arm_linux_hw_breakpoint p; 1154 1155 if (arm_linux_get_hw_watchpoint_count () == 0) 1156 return -1; 1157 1158 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p); 1159 1160 arm_linux_remove_hw_breakpoint1 (&p, 1); 1161 1162 return 0; 1163 } 1164 1165 /* What was the data address the target was stopped on accessing. */ 1166 bool 1167 arm_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p) 1168 { 1169 siginfo_t siginfo; 1170 int slot; 1171 1172 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo)) 1173 return false; 1174 1175 /* This must be a hardware breakpoint. */ 1176 if (siginfo.si_signo != SIGTRAP 1177 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */) 1178 return false; 1179 1180 /* We must be able to set hardware watchpoints. */ 1181 if (arm_linux_get_hw_watchpoint_count () == 0) 1182 return 0; 1183 1184 slot = siginfo.si_errno; 1185 1186 /* If we are in a positive slot then we're looking at a breakpoint and not 1187 a watchpoint. */ 1188 if (slot >= 0) 1189 return false; 1190 1191 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr; 1192 return true; 1193 } 1194 1195 /* Has the target been stopped by hitting a watchpoint? */ 1196 bool 1197 arm_linux_nat_target::stopped_by_watchpoint () 1198 { 1199 CORE_ADDR addr; 1200 return stopped_data_address (&addr); 1201 } 1202 1203 bool 1204 arm_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr, 1205 CORE_ADDR start, 1206 int length) 1207 { 1208 return start <= addr && start + length - 1 >= addr; 1209 } 1210 1211 /* Handle thread creation. We need to copy the breakpoints and watchpoints 1212 in the parent thread to the child thread. */ 1213 void 1214 arm_linux_nat_target::low_new_thread (struct lwp_info *lp) 1215 { 1216 int i; 1217 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info); 1218 1219 /* Mark that all the hardware breakpoint/watchpoint register pairs 1220 for this thread need to be initialized. */ 1221 1222 for (i = 0; i < MAX_BPTS; i++) 1223 { 1224 info->bpts_changed[i] = 1; 1225 info->wpts_changed[i] = 1; 1226 } 1227 1228 lp->arch_private = info; 1229 } 1230 1231 /* Function to call when a thread is being deleted. */ 1232 1233 void 1234 arm_linux_nat_target::low_delete_thread (struct arch_lwp_info *arch_lwp) 1235 { 1236 xfree (arch_lwp); 1237 } 1238 1239 /* Called when resuming a thread. 1240 The hardware debug registers are updated when there is any change. */ 1241 1242 void 1243 arm_linux_nat_target::low_prepare_to_resume (struct lwp_info *lwp) 1244 { 1245 int pid, i; 1246 struct arm_linux_hw_breakpoint *bpts, *wpts; 1247 struct arch_lwp_info *arm_lwp_info = lwp->arch_private; 1248 1249 pid = lwp->ptid.lwp (); 1250 bpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->bpts; 1251 wpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->wpts; 1252 1253 /* NULL means this is the main thread still going through the shell, 1254 or, no watchpoint has been set yet. In that case, there's 1255 nothing to do. */ 1256 if (arm_lwp_info == NULL) 1257 return; 1258 1259 for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++) 1260 if (arm_lwp_info->bpts_changed[i]) 1261 { 1262 errno = 0; 1263 if (arm_hwbp_control_is_enabled (bpts[i].control)) 1264 if (ptrace (PTRACE_SETHBPREGS, pid, 1265 (PTRACE_TYPE_ARG3) ((i << 1) + 1), &bpts[i].address) < 0) 1266 perror_with_name (_("Unexpected error setting breakpoint")); 1267 1268 if (bpts[i].control != 0) 1269 if (ptrace (PTRACE_SETHBPREGS, pid, 1270 (PTRACE_TYPE_ARG3) ((i << 1) + 2), &bpts[i].control) < 0) 1271 perror_with_name (_("Unexpected error setting breakpoint")); 1272 1273 arm_lwp_info->bpts_changed[i] = 0; 1274 } 1275 1276 for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++) 1277 if (arm_lwp_info->wpts_changed[i]) 1278 { 1279 errno = 0; 1280 if (arm_hwbp_control_is_enabled (wpts[i].control)) 1281 if (ptrace (PTRACE_SETHBPREGS, pid, 1282 (PTRACE_TYPE_ARG3) -((i << 1) + 1), &wpts[i].address) < 0) 1283 perror_with_name (_("Unexpected error setting watchpoint")); 1284 1285 if (wpts[i].control != 0) 1286 if (ptrace (PTRACE_SETHBPREGS, pid, 1287 (PTRACE_TYPE_ARG3) -((i << 1) + 2), &wpts[i].control) < 0) 1288 perror_with_name (_("Unexpected error setting watchpoint")); 1289 1290 arm_lwp_info->wpts_changed[i] = 0; 1291 } 1292 } 1293 1294 /* linux_nat_new_fork hook. */ 1295 1296 void 1297 arm_linux_nat_target::low_new_fork (struct lwp_info *parent, pid_t child_pid) 1298 { 1299 pid_t parent_pid; 1300 struct arm_linux_debug_reg_state *parent_state; 1301 struct arm_linux_debug_reg_state *child_state; 1302 1303 /* NULL means no watchpoint has ever been set in the parent. In 1304 that case, there's nothing to do. */ 1305 if (parent->arch_private == NULL) 1306 return; 1307 1308 /* GDB core assumes the child inherits the watchpoints/hw 1309 breakpoints of the parent, and will remove them all from the 1310 forked off process. Copy the debug registers mirrors into the 1311 new process so that all breakpoints and watchpoints can be 1312 removed together. */ 1313 1314 parent_pid = parent->ptid.pid (); 1315 parent_state = arm_linux_get_debug_reg_state (parent_pid); 1316 child_state = arm_linux_get_debug_reg_state (child_pid); 1317 *child_state = *parent_state; 1318 } 1319 1320 void 1321 _initialize_arm_linux_nat (void) 1322 { 1323 /* Register the target. */ 1324 linux_target = &the_arm_linux_nat_target; 1325 add_inf_child_target (&the_arm_linux_nat_target); 1326 } 1327