xref: /netbsd-src/external/gpl3/gdb/dist/bfd/linker.c (revision d16b7486a53dcb8072b60ec6fcb4373a2d0c27b7)
1 /* linker.c -- BFD linker routines
2    Copyright (C) 1993-2022 Free Software Foundation, Inc.
3    Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27 
28 /*
29 SECTION
30 	Linker Functions
31 
32 @cindex Linker
33 	The linker uses three special entry points in the BFD target
34 	vector.  It is not necessary to write special routines for
35 	these entry points when creating a new BFD back end, since
36 	generic versions are provided.  However, writing them can
37 	speed up linking and make it use significantly less runtime
38 	memory.
39 
40 	The first routine creates a hash table used by the other
41 	routines.  The second routine adds the symbols from an object
42 	file to the hash table.  The third routine takes all the
43 	object files and links them together to create the output
44 	file.  These routines are designed so that the linker proper
45 	does not need to know anything about the symbols in the object
46 	files that it is linking.  The linker merely arranges the
47 	sections as directed by the linker script and lets BFD handle
48 	the details of symbols and relocs.
49 
50 	The second routine and third routines are passed a pointer to
51 	a <<struct bfd_link_info>> structure (defined in
52 	<<bfdlink.h>>) which holds information relevant to the link,
53 	including the linker hash table (which was created by the
54 	first routine) and a set of callback functions to the linker
55 	proper.
56 
57 	The generic linker routines are in <<linker.c>>, and use the
58 	header file <<genlink.h>>.  As of this writing, the only back
59 	ends which have implemented versions of these routines are
60 	a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>).  The a.out
61 	routines are used as examples throughout this section.
62 
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68 
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 	Creating a linker hash table
73 
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 	The linker routines must create a hash table, which must be
77 	derived from <<struct bfd_link_hash_table>> described in
78 	<<bfdlink.c>>.  @xref{Hash Tables}, for information on how to
79 	create a derived hash table.  This entry point is called using
80 	the target vector of the linker output file.
81 
82 	The <<_bfd_link_hash_table_create>> entry point must allocate
83 	and initialize an instance of the desired hash table.  If the
84 	back end does not require any additional information to be
85 	stored with the entries in the hash table, the entry point may
86 	simply create a <<struct bfd_link_hash_table>>.  Most likely,
87 	however, some additional information will be needed.
88 
89 	For example, with each entry in the hash table the a.out
90 	linker keeps the index the symbol has in the final output file
91 	(this index number is used so that when doing a relocatable
92 	link the symbol index used in the output file can be quickly
93 	filled in when copying over a reloc).  The a.out linker code
94 	defines the required structures and functions for a hash table
95 	derived from <<struct bfd_link_hash_table>>.  The a.out linker
96 	hash table is created by the function
97 	<<NAME(aout,link_hash_table_create)>>; it simply allocates
98 	space for the hash table, initializes it, and returns a
99 	pointer to it.
100 
101 	When writing the linker routines for a new back end, you will
102 	generally not know exactly which fields will be required until
103 	you have finished.  You should simply create a new hash table
104 	which defines no additional fields, and then simply add fields
105 	as they become necessary.
106 
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 	Adding symbols to the hash table
111 
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 	The linker proper will call the <<_bfd_link_add_symbols>>
115 	entry point for each object file or archive which is to be
116 	linked (typically these are the files named on the command
117 	line, but some may also come from the linker script).  The
118 	entry point is responsible for examining the file.  For an
119 	object file, BFD must add any relevant symbol information to
120 	the hash table.  For an archive, BFD must determine which
121 	elements of the archive should be used and adding them to the
122 	link.
123 
124 	The a.out version of this entry point is
125 	<<NAME(aout,link_add_symbols)>>.
126 
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132 
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 	Differing file formats
137 
138 	Normally all the files involved in a link will be of the same
139 	format, but it is also possible to link together different
140 	format object files, and the back end must support that.  The
141 	<<_bfd_link_add_symbols>> entry point is called via the target
142 	vector of the file to be added.  This has an important
143 	consequence: the function may not assume that the hash table
144 	is the type created by the corresponding
145 	<<_bfd_link_hash_table_create>> vector.  All the
146 	<<_bfd_link_add_symbols>> function can assume about the hash
147 	table is that it is derived from <<struct
148 	bfd_link_hash_table>>.
149 
150 	Sometimes the <<_bfd_link_add_symbols>> function must store
151 	some information in the hash table entry to be used by the
152 	<<_bfd_final_link>> function.  In such a case the output bfd
153 	xvec must be checked to make sure that the hash table was
154 	created by an object file of the same format.
155 
156 	The <<_bfd_final_link>> routine must be prepared to handle a
157 	hash entry without any extra information added by the
158 	<<_bfd_link_add_symbols>> function.  A hash entry without
159 	extra information will also occur when the linker script
160 	directs the linker to create a symbol.  Note that, regardless
161 	of how a hash table entry is added, all the fields will be
162 	initialized to some sort of null value by the hash table entry
163 	initialization function.
164 
165 	See <<ecoff_link_add_externals>> for an example of how to
166 	check the output bfd before saving information (in this
167 	case, the ECOFF external symbol debugging information) in a
168 	hash table entry.
169 
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 	Adding symbols from an object file
174 
175 	When the <<_bfd_link_add_symbols>> routine is passed an object
176 	file, it must add all externally visible symbols in that
177 	object file to the hash table.  The actual work of adding the
178 	symbol to the hash table is normally handled by the function
179 	<<_bfd_generic_link_add_one_symbol>>.  The
180 	<<_bfd_link_add_symbols>> routine is responsible for reading
181 	all the symbols from the object file and passing the correct
182 	information to <<_bfd_generic_link_add_one_symbol>>.
183 
184 	The <<_bfd_link_add_symbols>> routine should not use
185 	<<bfd_canonicalize_symtab>> to read the symbols.  The point of
186 	providing this routine is to avoid the overhead of converting
187 	the symbols into generic <<asymbol>> structures.
188 
189 @findex _bfd_generic_link_add_one_symbol
190 	<<_bfd_generic_link_add_one_symbol>> handles the details of
191 	combining common symbols, warning about multiple definitions,
192 	and so forth.  It takes arguments which describe the symbol to
193 	add, notably symbol flags, a section, and an offset.  The
194 	symbol flags include such things as <<BSF_WEAK>> or
195 	<<BSF_INDIRECT>>.  The section is a section in the object
196 	file, or something like <<bfd_und_section_ptr>> for an undefined
197 	symbol or <<bfd_com_section_ptr>> for a common symbol.
198 
199 	If the <<_bfd_final_link>> routine is also going to need to
200 	read the symbol information, the <<_bfd_link_add_symbols>>
201 	routine should save it somewhere attached to the object file
202 	BFD.  However, the information should only be saved if the
203 	<<keep_memory>> field of the <<info>> argument is TRUE, so
204 	that the <<-no-keep-memory>> linker switch is effective.
205 
206 	The a.out function which adds symbols from an object file is
207 	<<aout_link_add_object_symbols>>, and most of the interesting
208 	work is in <<aout_link_add_symbols>>.  The latter saves
209 	pointers to the hash tables entries created by
210 	<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 	so that the <<_bfd_final_link>> routine does not have to call
212 	the hash table lookup routine to locate the entry.
213 
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 	Adding symbols from an archive
218 
219 	When the <<_bfd_link_add_symbols>> routine is passed an
220 	archive, it must look through the symbols defined by the
221 	archive and decide which elements of the archive should be
222 	included in the link.  For each such element it must call the
223 	<<add_archive_element>> linker callback, and it must add the
224 	symbols from the object file to the linker hash table.  (The
225 	callback may in fact indicate that a replacement BFD should be
226 	used, in which case the symbols from that BFD should be added
227 	to the linker hash table instead.)
228 
229 @findex _bfd_generic_link_add_archive_symbols
230 	In most cases the work of looking through the symbols in the
231 	archive should be done by the
232 	<<_bfd_generic_link_add_archive_symbols>> function.
233 	<<_bfd_generic_link_add_archive_symbols>> is passed a function
234 	to call to make the final decision about adding an archive
235 	element to the link and to do the actual work of adding the
236 	symbols to the linker hash table.  If the element is to
237 	be included, the <<add_archive_element>> linker callback
238 	routine must be called with the element as an argument, and
239 	the element's symbols must be added to the linker hash table
240 	just as though the element had itself been passed to the
241 	<<_bfd_link_add_symbols>> function.
242 
243 	When the a.out <<_bfd_link_add_symbols>> function receives an
244 	archive, it calls <<_bfd_generic_link_add_archive_symbols>>
245 	passing <<aout_link_check_archive_element>> as the function
246 	argument. <<aout_link_check_archive_element>> calls
247 	<<aout_link_check_ar_symbols>>.  If the latter decides to add
248 	the element (an element is only added if it provides a real,
249 	non-common, definition for a previously undefined or common
250 	symbol) it calls the <<add_archive_element>> callback and then
251 	<<aout_link_check_archive_element>> calls
252 	<<aout_link_add_symbols>> to actually add the symbols to the
253 	linker hash table - possibly those of a substitute BFD, if the
254 	<<add_archive_element>> callback avails itself of that option.
255 
256 	The ECOFF back end is unusual in that it does not normally
257 	call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
258 	archives already contain a hash table of symbols.  The ECOFF
259 	back end searches the archive itself to avoid the overhead of
260 	creating a new hash table.
261 
262 INODE
263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
264 SUBSECTION
265 	Performing the final link
266 
267 @cindex _bfd_link_final_link in target vector
268 @cindex target vector (_bfd_final_link)
269 	When all the input files have been processed, the linker calls
270 	the <<_bfd_final_link>> entry point of the output BFD.  This
271 	routine is responsible for producing the final output file,
272 	which has several aspects.  It must relocate the contents of
273 	the input sections and copy the data into the output sections.
274 	It must build an output symbol table including any local
275 	symbols from the input files and the global symbols from the
276 	hash table.  When producing relocatable output, it must
277 	modify the input relocs and write them into the output file.
278 	There may also be object format dependent work to be done.
279 
280 	The linker will also call the <<write_object_contents>> entry
281 	point when the BFD is closed.  The two entry points must work
282 	together in order to produce the correct output file.
283 
284 	The details of how this works are inevitably dependent upon
285 	the specific object file format.  The a.out
286 	<<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
287 
288 @menu
289 @* Information provided by the linker::
290 @* Relocating the section contents::
291 @* Writing the symbol table::
292 @end menu
293 
294 INODE
295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
296 SUBSUBSECTION
297 	Information provided by the linker
298 
299 	Before the linker calls the <<_bfd_final_link>> entry point,
300 	it sets up some data structures for the function to use.
301 
302 	The <<input_bfds>> field of the <<bfd_link_info>> structure
303 	will point to a list of all the input files included in the
304 	link.  These files are linked through the <<link.next>> field
305 	of the <<bfd>> structure.
306 
307 	Each section in the output file will have a list of
308 	<<link_order>> structures attached to the <<map_head.link_order>>
309 	field (the <<link_order>> structure is defined in
310 	<<bfdlink.h>>).  These structures describe how to create the
311 	contents of the output section in terms of the contents of
312 	various input sections, fill constants, and, eventually, other
313 	types of information.  They also describe relocs that must be
314 	created by the BFD backend, but do not correspond to any input
315 	file; this is used to support -Ur, which builds constructors
316 	while generating a relocatable object file.
317 
318 INODE
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320 SUBSUBSECTION
321 	Relocating the section contents
322 
323 	The <<_bfd_final_link>> function should look through the
324 	<<link_order>> structures attached to each section of the
325 	output file.  Each <<link_order>> structure should either be
326 	handled specially, or it should be passed to the function
327 	<<_bfd_default_link_order>> which will do the right thing
328 	(<<_bfd_default_link_order>> is defined in <<linker.c>>).
329 
330 	For efficiency, a <<link_order>> of type
331 	<<bfd_indirect_link_order>> whose associated section belongs
332 	to a BFD of the same format as the output BFD must be handled
333 	specially.  This type of <<link_order>> describes part of an
334 	output section in terms of a section belonging to one of the
335 	input files.  The <<_bfd_final_link>> function should read the
336 	contents of the section and any associated relocs, apply the
337 	relocs to the section contents, and write out the modified
338 	section contents.  If performing a relocatable link, the
339 	relocs themselves must also be modified and written out.
340 
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 	The functions <<_bfd_relocate_contents>> and
344 	<<_bfd_final_link_relocate>> provide some general support for
345 	performing the actual relocations, notably overflow checking.
346 	Their arguments include information about the symbol the
347 	relocation is against and a <<reloc_howto_type>> argument
348 	which describes the relocation to perform.  These functions
349 	are defined in <<reloc.c>>.
350 
351 	The a.out function which handles reading, relocating, and
352 	writing section contents is <<aout_link_input_section>>.  The
353 	actual relocation is done in <<aout_link_input_section_std>>
354 	and <<aout_link_input_section_ext>>.
355 
356 INODE
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
358 SUBSUBSECTION
359 	Writing the symbol table
360 
361 	The <<_bfd_final_link>> function must gather all the symbols
362 	in the input files and write them out.  It must also write out
363 	all the symbols in the global hash table.  This must be
364 	controlled by the <<strip>> and <<discard>> fields of the
365 	<<bfd_link_info>> structure.
366 
367 	The local symbols of the input files will not have been
368 	entered into the linker hash table.  The <<_bfd_final_link>>
369 	routine must consider each input file and include the symbols
370 	in the output file.  It may be convenient to do this when
371 	looking through the <<link_order>> structures, or it may be
372 	done by stepping through the <<input_bfds>> list.
373 
374 	The <<_bfd_final_link>> routine must also traverse the global
375 	hash table to gather all the externally visible symbols.  It
376 	is possible that most of the externally visible symbols may be
377 	written out when considering the symbols of each input file,
378 	but it is still necessary to traverse the hash table since the
379 	linker script may have defined some symbols that are not in
380 	any of the input files.
381 
382 	The <<strip>> field of the <<bfd_link_info>> structure
383 	controls which symbols are written out.  The possible values
384 	are listed in <<bfdlink.h>>.  If the value is <<strip_some>>,
385 	then the <<keep_hash>> field of the <<bfd_link_info>>
386 	structure is a hash table of symbols to keep; each symbol
387 	should be looked up in this hash table, and only symbols which
388 	are present should be included in the output file.
389 
390 	If the <<strip>> field of the <<bfd_link_info>> structure
391 	permits local symbols to be written out, the <<discard>> field
392 	is used to further controls which local symbols are included
393 	in the output file.  If the value is <<discard_l>>, then all
394 	local symbols which begin with a certain prefix are discarded;
395 	this is controlled by the <<bfd_is_local_label_name>> entry point.
396 
397 	The a.out backend handles symbols by calling
398 	<<aout_link_write_symbols>> on each input BFD and then
399 	traversing the global hash table with the function
400 	<<aout_link_write_other_symbol>>.  It builds a string table
401 	while writing out the symbols, which is written to the output
402 	file at the end of <<NAME(aout,final_link)>>.
403 */
404 
405 static bool generic_link_add_object_symbols
406   (bfd *, struct bfd_link_info *);
407 static bool generic_link_check_archive_element
408   (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
409    bool *);
410 static bool generic_link_add_symbol_list
411   (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **);
412 static bool generic_add_output_symbol
413   (bfd *, size_t *psymalloc, asymbol *);
414 static bool default_data_link_order
415   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
416 static bool default_indirect_link_order
417   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
418    bool);
419 
420 /* The link hash table structure is defined in bfdlink.h.  It provides
421    a base hash table which the backend specific hash tables are built
422    upon.  */
423 
424 /* Routine to create an entry in the link hash table.  */
425 
426 struct bfd_hash_entry *
427 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
428 			struct bfd_hash_table *table,
429 			const char *string)
430 {
431   /* Allocate the structure if it has not already been allocated by a
432      subclass.  */
433   if (entry == NULL)
434     {
435       entry = (struct bfd_hash_entry *)
436 	  bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
437       if (entry == NULL)
438 	return entry;
439     }
440 
441   /* Call the allocation method of the superclass.  */
442   entry = bfd_hash_newfunc (entry, table, string);
443   if (entry)
444     {
445       struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
446 
447       /* Initialize the local fields.  */
448       memset ((char *) &h->root + sizeof (h->root), 0,
449 	      sizeof (*h) - sizeof (h->root));
450     }
451 
452   return entry;
453 }
454 
455 /* Initialize a link hash table.  The BFD argument is the one
456    responsible for creating this table.  */
457 
458 bool
459 _bfd_link_hash_table_init
460   (struct bfd_link_hash_table *table,
461    bfd *abfd ATTRIBUTE_UNUSED,
462    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
463 				      struct bfd_hash_table *,
464 				      const char *),
465    unsigned int entsize)
466 {
467   bool ret;
468 
469   BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
470   table->undefs = NULL;
471   table->undefs_tail = NULL;
472   table->type = bfd_link_generic_hash_table;
473 
474   ret = bfd_hash_table_init (&table->table, newfunc, entsize);
475   if (ret)
476     {
477       /* Arrange for destruction of this hash table on closing ABFD.  */
478       table->hash_table_free = _bfd_generic_link_hash_table_free;
479       abfd->link.hash = table;
480       abfd->is_linker_output = true;
481     }
482   return ret;
483 }
484 
485 /* Look up a symbol in a link hash table.  If follow is TRUE, we
486    follow bfd_link_hash_indirect and bfd_link_hash_warning links to
487    the real symbol.
488 
489 .{* Return TRUE if the symbol described by a linker hash entry H
490 .   is going to be absolute.  Linker-script defined symbols can be
491 .   converted from absolute to section-relative ones late in the
492 .   link.  Use this macro to correctly determine whether the symbol
493 .   will actually end up absolute in output.  *}
494 .#define bfd_is_abs_symbol(H) \
495 .  (((H)->type == bfd_link_hash_defined \
496 .    || (H)->type == bfd_link_hash_defweak) \
497 .   && bfd_is_abs_section ((H)->u.def.section) \
498 .   && !(H)->rel_from_abs)
499 .
500 */
501 
502 struct bfd_link_hash_entry *
503 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
504 		      const char *string,
505 		      bool create,
506 		      bool copy,
507 		      bool follow)
508 {
509   struct bfd_link_hash_entry *ret;
510 
511   if (table == NULL || string == NULL)
512     return NULL;
513 
514   ret = ((struct bfd_link_hash_entry *)
515 	 bfd_hash_lookup (&table->table, string, create, copy));
516 
517   if (follow && ret != NULL)
518     {
519       while (ret->type == bfd_link_hash_indirect
520 	     || ret->type == bfd_link_hash_warning)
521 	ret = ret->u.i.link;
522     }
523 
524   return ret;
525 }
526 
527 /* Look up a symbol in the main linker hash table if the symbol might
528    be wrapped.  This should only be used for references to an
529    undefined symbol, not for definitions of a symbol.  */
530 
531 struct bfd_link_hash_entry *
532 bfd_wrapped_link_hash_lookup (bfd *abfd,
533 			      struct bfd_link_info *info,
534 			      const char *string,
535 			      bool create,
536 			      bool copy,
537 			      bool follow)
538 {
539   size_t amt;
540 
541   if (info->wrap_hash != NULL)
542     {
543       const char *l;
544       char prefix = '\0';
545 
546       l = string;
547       if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
548 	{
549 	  prefix = *l;
550 	  ++l;
551 	}
552 
553 #undef WRAP
554 #define WRAP "__wrap_"
555 
556       if (bfd_hash_lookup (info->wrap_hash, l, false, false) != NULL)
557 	{
558 	  char *n;
559 	  struct bfd_link_hash_entry *h;
560 
561 	  /* This symbol is being wrapped.  We want to replace all
562 	     references to SYM with references to __wrap_SYM.  */
563 
564 	  amt = strlen (l) + sizeof WRAP + 1;
565 	  n = (char *) bfd_malloc (amt);
566 	  if (n == NULL)
567 	    return NULL;
568 
569 	  n[0] = prefix;
570 	  n[1] = '\0';
571 	  strcat (n, WRAP);
572 	  strcat (n, l);
573 	  h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
574 	  free (n);
575 	  return h;
576 	}
577 
578 #undef  REAL
579 #define REAL "__real_"
580 
581       if (*l == '_'
582 	  && startswith (l, REAL)
583 	  && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
584 			      false, false) != NULL)
585 	{
586 	  char *n;
587 	  struct bfd_link_hash_entry *h;
588 
589 	  /* This is a reference to __real_SYM, where SYM is being
590 	     wrapped.  We want to replace all references to __real_SYM
591 	     with references to SYM.  */
592 
593 	  amt = strlen (l + sizeof REAL - 1) + 2;
594 	  n = (char *) bfd_malloc (amt);
595 	  if (n == NULL)
596 	    return NULL;
597 
598 	  n[0] = prefix;
599 	  n[1] = '\0';
600 	  strcat (n, l + sizeof REAL - 1);
601 	  h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
602 	  if (h != NULL)
603 	    h->ref_real = 1;
604 	  free (n);
605 	  return h;
606 	}
607 
608 #undef REAL
609     }
610 
611   return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
612 }
613 
614 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
615    and the remainder is found in wrap_hash, return the real symbol.  */
616 
617 struct bfd_link_hash_entry *
618 unwrap_hash_lookup (struct bfd_link_info *info,
619 		    bfd *input_bfd,
620 		    struct bfd_link_hash_entry *h)
621 {
622   const char *l = h->root.string;
623 
624   if (*l == bfd_get_symbol_leading_char (input_bfd)
625       || *l == info->wrap_char)
626     ++l;
627 
628   if (startswith (l, WRAP))
629     {
630       l += sizeof WRAP - 1;
631 
632       if (bfd_hash_lookup (info->wrap_hash, l, false, false) != NULL)
633 	{
634 	  char save = 0;
635 	  if (l - (sizeof WRAP - 1) != h->root.string)
636 	    {
637 	      --l;
638 	      save = *l;
639 	      *(char *) l = *h->root.string;
640 	    }
641 	  h = bfd_link_hash_lookup (info->hash, l, false, false, false);
642 	  if (save)
643 	    *(char *) l = save;
644 	}
645     }
646   return h;
647 }
648 #undef WRAP
649 
650 /* Traverse a generic link hash table.  Differs from bfd_hash_traverse
651    in the treatment of warning symbols.  When warning symbols are
652    created they replace the real symbol, so you don't get to see the
653    real symbol in a bfd_hash_traverse.  This traversal calls func with
654    the real symbol.  */
655 
656 void
657 bfd_link_hash_traverse
658   (struct bfd_link_hash_table *htab,
659    bool (*func) (struct bfd_link_hash_entry *, void *),
660    void *info)
661 {
662   unsigned int i;
663 
664   htab->table.frozen = 1;
665   for (i = 0; i < htab->table.size; i++)
666     {
667       struct bfd_link_hash_entry *p;
668 
669       p = (struct bfd_link_hash_entry *) htab->table.table[i];
670       for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
671 	if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
672 	  goto out;
673     }
674  out:
675   htab->table.frozen = 0;
676 }
677 
678 /* Add a symbol to the linker hash table undefs list.  */
679 
680 void
681 bfd_link_add_undef (struct bfd_link_hash_table *table,
682 		    struct bfd_link_hash_entry *h)
683 {
684   BFD_ASSERT (h->u.undef.next == NULL);
685   if (table->undefs_tail != NULL)
686     table->undefs_tail->u.undef.next = h;
687   if (table->undefs == NULL)
688     table->undefs = h;
689   table->undefs_tail = h;
690 }
691 
692 /* The undefs list was designed so that in normal use we don't need to
693    remove entries.  However, if symbols on the list are changed from
694    bfd_link_hash_undefined to either bfd_link_hash_undefweak or
695    bfd_link_hash_new for some reason, then they must be removed from the
696    list.  Failure to do so might result in the linker attempting to add
697    the symbol to the list again at a later stage.  */
698 
699 void
700 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
701 {
702   struct bfd_link_hash_entry **pun;
703 
704   pun = &table->undefs;
705   while (*pun != NULL)
706     {
707       struct bfd_link_hash_entry *h = *pun;
708 
709       if (h->type == bfd_link_hash_new
710 	  || h->type == bfd_link_hash_undefweak)
711 	{
712 	  *pun = h->u.undef.next;
713 	  h->u.undef.next = NULL;
714 	  if (h == table->undefs_tail)
715 	    {
716 	      if (pun == &table->undefs)
717 		table->undefs_tail = NULL;
718 	      else
719 		/* pun points at an u.undef.next field.  Go back to
720 		   the start of the link_hash_entry.  */
721 		table->undefs_tail = (struct bfd_link_hash_entry *)
722 		  ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
723 	      break;
724 	    }
725 	}
726       else
727 	pun = &h->u.undef.next;
728     }
729 }
730 
731 /* Routine to create an entry in a generic link hash table.  */
732 
733 struct bfd_hash_entry *
734 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
735 				struct bfd_hash_table *table,
736 				const char *string)
737 {
738   /* Allocate the structure if it has not already been allocated by a
739      subclass.  */
740   if (entry == NULL)
741     {
742       entry = (struct bfd_hash_entry *)
743 	bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
744       if (entry == NULL)
745 	return entry;
746     }
747 
748   /* Call the allocation method of the superclass.  */
749   entry = _bfd_link_hash_newfunc (entry, table, string);
750   if (entry)
751     {
752       struct generic_link_hash_entry *ret;
753 
754       /* Set local fields.  */
755       ret = (struct generic_link_hash_entry *) entry;
756       ret->written = false;
757       ret->sym = NULL;
758     }
759 
760   return entry;
761 }
762 
763 /* Create a generic link hash table.  */
764 
765 struct bfd_link_hash_table *
766 _bfd_generic_link_hash_table_create (bfd *abfd)
767 {
768   struct generic_link_hash_table *ret;
769   size_t amt = sizeof (struct generic_link_hash_table);
770 
771   ret = (struct generic_link_hash_table *) bfd_malloc (amt);
772   if (ret == NULL)
773     return NULL;
774   if (! _bfd_link_hash_table_init (&ret->root, abfd,
775 				   _bfd_generic_link_hash_newfunc,
776 				   sizeof (struct generic_link_hash_entry)))
777     {
778       free (ret);
779       return NULL;
780     }
781   return &ret->root;
782 }
783 
784 void
785 _bfd_generic_link_hash_table_free (bfd *obfd)
786 {
787   struct generic_link_hash_table *ret;
788 
789   BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
790   ret = (struct generic_link_hash_table *) obfd->link.hash;
791   bfd_hash_table_free (&ret->root.table);
792   free (ret);
793   obfd->link.hash = NULL;
794   obfd->is_linker_output = false;
795 }
796 
797 /* Grab the symbols for an object file when doing a generic link.  We
798    store the symbols in the outsymbols field.  We need to keep them
799    around for the entire link to ensure that we only read them once.
800    If we read them multiple times, we might wind up with relocs and
801    the hash table pointing to different instances of the symbol
802    structure.  */
803 
804 bool
805 bfd_generic_link_read_symbols (bfd *abfd)
806 {
807   if (bfd_get_outsymbols (abfd) == NULL)
808     {
809       long symsize;
810       long symcount;
811 
812       symsize = bfd_get_symtab_upper_bound (abfd);
813       if (symsize < 0)
814 	return false;
815       abfd->outsymbols = bfd_alloc (abfd, symsize);
816       if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
817 	return false;
818       symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
819       if (symcount < 0)
820 	return false;
821       abfd->symcount = symcount;
822     }
823 
824   return true;
825 }
826 
827 /* Indicate that we are only retrieving symbol values from this
828    section.  We want the symbols to act as though the values in the
829    file are absolute.  */
830 
831 void
832 _bfd_generic_link_just_syms (asection *sec,
833 			     struct bfd_link_info *info ATTRIBUTE_UNUSED)
834 {
835   sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
836   sec->output_section = bfd_abs_section_ptr;
837   sec->output_offset = sec->vma;
838 }
839 
840 /* Copy the symbol type and other attributes for a linker script
841    assignment from HSRC to HDEST.
842    The default implementation does nothing.  */
843 void
844 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
845     struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
846     struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
847 {
848 }
849 
850 /* Generic function to add symbols from an object file to the
851    global hash table.  */
852 
853 bool
854 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
855 {
856   bool ret;
857 
858   switch (bfd_get_format (abfd))
859     {
860     case bfd_object:
861       ret = generic_link_add_object_symbols (abfd, info);
862       break;
863     case bfd_archive:
864       ret = (_bfd_generic_link_add_archive_symbols
865 	     (abfd, info, generic_link_check_archive_element));
866       break;
867     default:
868       bfd_set_error (bfd_error_wrong_format);
869       ret = false;
870     }
871 
872   return ret;
873 }
874 
875 /* Add symbols from an object file to the global hash table.  */
876 
877 static bool
878 generic_link_add_object_symbols (bfd *abfd,
879 				 struct bfd_link_info *info)
880 {
881   bfd_size_type symcount;
882   struct bfd_symbol **outsyms;
883 
884   if (!bfd_generic_link_read_symbols (abfd))
885     return false;
886   symcount = _bfd_generic_link_get_symcount (abfd);
887   outsyms = _bfd_generic_link_get_symbols (abfd);
888   return generic_link_add_symbol_list (abfd, info, symcount, outsyms);
889 }
890 
891 /* Generic function to add symbols from an archive file to the global
892    hash file.  This function presumes that the archive symbol table
893    has already been read in (this is normally done by the
894    bfd_check_format entry point).  It looks through the archive symbol
895    table for symbols that are undefined or common in the linker global
896    symbol hash table.  When one is found, the CHECKFN argument is used
897    to see if an object file should be included.  This allows targets
898    to customize common symbol behaviour.  CHECKFN should set *PNEEDED
899    to TRUE if the object file should be included, and must also call
900    the bfd_link_info add_archive_element callback function and handle
901    adding the symbols to the global hash table.  CHECKFN must notice
902    if the callback indicates a substitute BFD, and arrange to add
903    those symbols instead if it does so.  CHECKFN should only return
904    FALSE if some sort of error occurs.  */
905 
906 bool
907 _bfd_generic_link_add_archive_symbols
908   (bfd *abfd,
909    struct bfd_link_info *info,
910    bool (*checkfn) (bfd *, struct bfd_link_info *,
911 		    struct bfd_link_hash_entry *, const char *, bool *))
912 {
913   bool loop;
914   bfd_size_type amt;
915   unsigned char *included;
916 
917   if (! bfd_has_map (abfd))
918     {
919       /* An empty archive is a special case.  */
920       if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
921 	return true;
922       bfd_set_error (bfd_error_no_armap);
923       return false;
924     }
925 
926   amt = bfd_ardata (abfd)->symdef_count;
927   if (amt == 0)
928     return true;
929   amt *= sizeof (*included);
930   included = (unsigned char *) bfd_zmalloc (amt);
931   if (included == NULL)
932     return false;
933 
934   do
935     {
936       carsym *arsyms;
937       carsym *arsym_end;
938       carsym *arsym;
939       unsigned int indx;
940       file_ptr last_ar_offset = -1;
941       bool needed = false;
942       bfd *element = NULL;
943 
944       loop = false;
945       arsyms = bfd_ardata (abfd)->symdefs;
946       arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
947       for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
948 	{
949 	  struct bfd_link_hash_entry *h;
950 	  struct bfd_link_hash_entry *undefs_tail;
951 
952 	  if (included[indx])
953 	    continue;
954 	  if (needed && arsym->file_offset == last_ar_offset)
955 	    {
956 	      included[indx] = 1;
957 	      continue;
958 	    }
959 
960 	  if (arsym->name == NULL)
961 	    goto error_return;
962 
963 	  h = bfd_link_hash_lookup (info->hash, arsym->name,
964 				    false, false, true);
965 
966 	  if (h == NULL
967 	      && info->pei386_auto_import
968 	      && startswith (arsym->name, "__imp_"))
969 	    h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
970 				      false, false, true);
971 	  if (h == NULL)
972 	    continue;
973 
974 	  if (h->type != bfd_link_hash_undefined
975 	      && h->type != bfd_link_hash_common)
976 	    {
977 	      if (h->type != bfd_link_hash_undefweak)
978 		/* Symbol must be defined.  Don't check it again.  */
979 		included[indx] = 1;
980 	      continue;
981 	    }
982 
983 	  if (last_ar_offset != arsym->file_offset)
984 	    {
985 	      last_ar_offset = arsym->file_offset;
986 	      element = _bfd_get_elt_at_filepos (abfd, last_ar_offset,
987 						 info);
988 	      if (element == NULL
989 		  || !bfd_check_format (element, bfd_object))
990 		goto error_return;
991 	    }
992 
993 	  undefs_tail = info->hash->undefs_tail;
994 
995 	  /* CHECKFN will see if this element should be included, and
996 	     go ahead and include it if appropriate.  */
997 	  if (! (*checkfn) (element, info, h, arsym->name, &needed))
998 	    goto error_return;
999 
1000 	  if (needed)
1001 	    {
1002 	      unsigned int mark;
1003 
1004 	      /* Look backward to mark all symbols from this object file
1005 		 which we have already seen in this pass.  */
1006 	      mark = indx;
1007 	      do
1008 		{
1009 		  included[mark] = 1;
1010 		  if (mark == 0)
1011 		    break;
1012 		  --mark;
1013 		}
1014 	      while (arsyms[mark].file_offset == last_ar_offset);
1015 
1016 	      if (undefs_tail != info->hash->undefs_tail)
1017 		loop = true;
1018 	    }
1019 	}
1020     } while (loop);
1021 
1022   free (included);
1023   return true;
1024 
1025  error_return:
1026   free (included);
1027   return false;
1028 }
1029 
1030 /* See if we should include an archive element.  */
1031 
1032 static bool
1033 generic_link_check_archive_element (bfd *abfd,
1034 				    struct bfd_link_info *info,
1035 				    struct bfd_link_hash_entry *h,
1036 				    const char *name ATTRIBUTE_UNUSED,
1037 				    bool *pneeded)
1038 {
1039   asymbol **pp, **ppend;
1040 
1041   *pneeded = false;
1042 
1043   if (!bfd_generic_link_read_symbols (abfd))
1044     return false;
1045 
1046   pp = _bfd_generic_link_get_symbols (abfd);
1047   ppend = pp + _bfd_generic_link_get_symcount (abfd);
1048   for (; pp < ppend; pp++)
1049     {
1050       asymbol *p;
1051 
1052       p = *pp;
1053 
1054       /* We are only interested in globally visible symbols.  */
1055       if (! bfd_is_com_section (p->section)
1056 	  && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1057 	continue;
1058 
1059       /* We are only interested if we know something about this
1060 	 symbol, and it is undefined or common.  An undefined weak
1061 	 symbol (type bfd_link_hash_undefweak) is not considered to be
1062 	 a reference when pulling files out of an archive.  See the
1063 	 SVR4 ABI, p. 4-27.  */
1064       h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), false,
1065 				false, true);
1066       if (h == NULL
1067 	  || (h->type != bfd_link_hash_undefined
1068 	      && h->type != bfd_link_hash_common))
1069 	continue;
1070 
1071       /* P is a symbol we are looking for.  */
1072 
1073       if (! bfd_is_com_section (p->section)
1074 	  || (h->type == bfd_link_hash_undefined
1075 	      && h->u.undef.abfd == NULL))
1076 	{
1077 	  /* P is not a common symbol, or an undefined reference was
1078 	     created from outside BFD such as from a linker -u option.
1079 	     This object file defines the symbol, so pull it in.  */
1080 	  *pneeded = true;
1081 	  if (!(*info->callbacks
1082 		->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1083 					&abfd))
1084 	    return false;
1085 	  /* Potentially, the add_archive_element hook may have set a
1086 	     substitute BFD for us.  */
1087 	  return bfd_link_add_symbols (abfd, info);
1088 	}
1089 
1090       /* P is a common symbol.  */
1091 
1092       if (h->type == bfd_link_hash_undefined)
1093 	{
1094 	  bfd *symbfd;
1095 	  bfd_vma size;
1096 	  unsigned int power;
1097 
1098 	  /* Turn the symbol into a common symbol but do not link in
1099 	     the object file.  This is how a.out works.  Object
1100 	     formats that require different semantics must implement
1101 	     this function differently.  This symbol is already on the
1102 	     undefs list.  We add the section to a common section
1103 	     attached to symbfd to ensure that it is in a BFD which
1104 	     will be linked in.  */
1105 	  symbfd = h->u.undef.abfd;
1106 	  h->type = bfd_link_hash_common;
1107 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1108 	    bfd_hash_allocate (&info->hash->table,
1109 			       sizeof (struct bfd_link_hash_common_entry));
1110 	  if (h->u.c.p == NULL)
1111 	    return false;
1112 
1113 	  size = bfd_asymbol_value (p);
1114 	  h->u.c.size = size;
1115 
1116 	  power = bfd_log2 (size);
1117 	  if (power > 4)
1118 	    power = 4;
1119 	  h->u.c.p->alignment_power = power;
1120 
1121 	  if (p->section == bfd_com_section_ptr)
1122 	    h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1123 	  else
1124 	    h->u.c.p->section = bfd_make_section_old_way (symbfd,
1125 							  p->section->name);
1126 	  h->u.c.p->section->flags |= SEC_ALLOC;
1127 	}
1128       else
1129 	{
1130 	  /* Adjust the size of the common symbol if necessary.  This
1131 	     is how a.out works.  Object formats that require
1132 	     different semantics must implement this function
1133 	     differently.  */
1134 	  if (bfd_asymbol_value (p) > h->u.c.size)
1135 	    h->u.c.size = bfd_asymbol_value (p);
1136 	}
1137     }
1138 
1139   /* This archive element is not needed.  */
1140   return true;
1141 }
1142 
1143 /* Add the symbols from an object file to the global hash table.  ABFD
1144    is the object file.  INFO is the linker information.  SYMBOL_COUNT
1145    is the number of symbols.  SYMBOLS is the list of symbols.  */
1146 
1147 static bool
1148 generic_link_add_symbol_list (bfd *abfd,
1149 			      struct bfd_link_info *info,
1150 			      bfd_size_type symbol_count,
1151 			      asymbol **symbols)
1152 {
1153   asymbol **pp, **ppend;
1154 
1155   pp = symbols;
1156   ppend = symbols + symbol_count;
1157   for (; pp < ppend; pp++)
1158     {
1159       asymbol *p;
1160 
1161       p = *pp;
1162 
1163       if ((p->flags & (BSF_INDIRECT
1164 		       | BSF_WARNING
1165 		       | BSF_GLOBAL
1166 		       | BSF_CONSTRUCTOR
1167 		       | BSF_WEAK)) != 0
1168 	  || bfd_is_und_section (bfd_asymbol_section (p))
1169 	  || bfd_is_com_section (bfd_asymbol_section (p))
1170 	  || bfd_is_ind_section (bfd_asymbol_section (p)))
1171 	{
1172 	  const char *name;
1173 	  const char *string;
1174 	  struct generic_link_hash_entry *h;
1175 	  struct bfd_link_hash_entry *bh;
1176 
1177 	  string = name = bfd_asymbol_name (p);
1178 	  if (((p->flags & BSF_INDIRECT) != 0
1179 	       || bfd_is_ind_section (p->section))
1180 	      && pp + 1 < ppend)
1181 	    {
1182 	      pp++;
1183 	      string = bfd_asymbol_name (*pp);
1184 	    }
1185 	  else if ((p->flags & BSF_WARNING) != 0
1186 		   && pp + 1 < ppend)
1187 	    {
1188 	      /* The name of P is actually the warning string, and the
1189 		 next symbol is the one to warn about.  */
1190 	      pp++;
1191 	      name = bfd_asymbol_name (*pp);
1192 	    }
1193 
1194 	  bh = NULL;
1195 	  if (! (_bfd_generic_link_add_one_symbol
1196 		 (info, abfd, name, p->flags, bfd_asymbol_section (p),
1197 		  p->value, string, false, false, &bh)))
1198 	    return false;
1199 	  h = (struct generic_link_hash_entry *) bh;
1200 
1201 	  /* If this is a constructor symbol, and the linker didn't do
1202 	     anything with it, then we want to just pass the symbol
1203 	     through to the output file.  This will happen when
1204 	     linking with -r.  */
1205 	  if ((p->flags & BSF_CONSTRUCTOR) != 0
1206 	      && (h == NULL || h->root.type == bfd_link_hash_new))
1207 	    {
1208 	      p->udata.p = NULL;
1209 	      continue;
1210 	    }
1211 
1212 	  /* Save the BFD symbol so that we don't lose any backend
1213 	     specific information that may be attached to it.  We only
1214 	     want this one if it gives more information than the
1215 	     existing one; we don't want to replace a defined symbol
1216 	     with an undefined one.  This routine may be called with a
1217 	     hash table other than the generic hash table, so we only
1218 	     do this if we are certain that the hash table is a
1219 	     generic one.  */
1220 	  if (info->output_bfd->xvec == abfd->xvec)
1221 	    {
1222 	      if (h->sym == NULL
1223 		  || (! bfd_is_und_section (bfd_asymbol_section (p))
1224 		      && (! bfd_is_com_section (bfd_asymbol_section (p))
1225 			  || bfd_is_und_section (bfd_asymbol_section (h->sym)))))
1226 		{
1227 		  h->sym = p;
1228 		  /* BSF_OLD_COMMON is a hack to support COFF reloc
1229 		     reading, and it should go away when the COFF
1230 		     linker is switched to the new version.  */
1231 		  if (bfd_is_com_section (bfd_asymbol_section (p)))
1232 		    p->flags |= BSF_OLD_COMMON;
1233 		}
1234 	    }
1235 
1236 	  /* Store a back pointer from the symbol to the hash
1237 	     table entry for the benefit of relaxation code until
1238 	     it gets rewritten to not use asymbol structures.
1239 	     Setting this is also used to check whether these
1240 	     symbols were set up by the generic linker.  */
1241 	  p->udata.p = h;
1242 	}
1243     }
1244 
1245   return true;
1246 }
1247 
1248 /* We use a state table to deal with adding symbols from an object
1249    file.  The first index into the state table describes the symbol
1250    from the object file.  The second index into the state table is the
1251    type of the symbol in the hash table.  */
1252 
1253 /* The symbol from the object file is turned into one of these row
1254    values.  */
1255 
1256 enum link_row
1257 {
1258   UNDEF_ROW,		/* Undefined.  */
1259   UNDEFW_ROW,		/* Weak undefined.  */
1260   DEF_ROW,		/* Defined.  */
1261   DEFW_ROW,		/* Weak defined.  */
1262   COMMON_ROW,		/* Common.  */
1263   INDR_ROW,		/* Indirect.  */
1264   WARN_ROW,		/* Warning.  */
1265   SET_ROW		/* Member of set.  */
1266 };
1267 
1268 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1269 #undef FAIL
1270 
1271 /* The actions to take in the state table.  */
1272 
1273 enum link_action
1274 {
1275   FAIL,		/* Abort.  */
1276   UND,		/* Mark symbol undefined.  */
1277   WEAK,		/* Mark symbol weak undefined.  */
1278   DEF,		/* Mark symbol defined.  */
1279   DEFW,		/* Mark symbol weak defined.  */
1280   COM,		/* Mark symbol common.  */
1281   REF,		/* Mark defined symbol referenced.  */
1282   CREF,		/* Possibly warn about common reference to defined symbol.  */
1283   CDEF,		/* Define existing common symbol.  */
1284   NOACT,	/* No action.  */
1285   BIG,		/* Mark symbol common using largest size.  */
1286   MDEF,		/* Multiple definition error.  */
1287   MIND,		/* Multiple indirect symbols.  */
1288   IND,		/* Make indirect symbol.  */
1289   CIND,		/* Make indirect symbol from existing common symbol.  */
1290   SET,		/* Add value to set.  */
1291   MWARN,	/* Make warning symbol.  */
1292   WARN,		/* Warn if referenced, else MWARN.  */
1293   CYCLE,	/* Repeat with symbol pointed to.  */
1294   REFC,		/* Mark indirect symbol referenced and then CYCLE.  */
1295   WARNC		/* Issue warning and then CYCLE.  */
1296 };
1297 
1298 /* The state table itself.  The first index is a link_row and the
1299    second index is a bfd_link_hash_type.  */
1300 
1301 static const enum link_action link_action[8][8] =
1302 {
1303   /* current\prev    new    undef  undefw def    defw   com    indr   warn  */
1304   /* UNDEF_ROW	*/  {UND,   NOACT, UND,   REF,   REF,   NOACT, REFC,  WARNC },
1305   /* UNDEFW_ROW	*/  {WEAK,  NOACT, NOACT, REF,   REF,   NOACT, REFC,  WARNC },
1306   /* DEF_ROW	*/  {DEF,   DEF,   DEF,   MDEF,  DEF,   CDEF,  MIND,  CYCLE },
1307   /* DEFW_ROW	*/  {DEFW,  DEFW,  DEFW,  NOACT, NOACT, NOACT, NOACT, CYCLE },
1308   /* COMMON_ROW	*/  {COM,   COM,   COM,   CREF,  COM,   BIG,   REFC,  WARNC },
1309   /* INDR_ROW	*/  {IND,   IND,   IND,   MDEF,  IND,   CIND,  MIND,  CYCLE },
1310   /* WARN_ROW   */  {MWARN, WARN,  WARN,  WARN,  WARN,  WARN,  WARN,  NOACT },
1311   /* SET_ROW	*/  {SET,   SET,   SET,   SET,   SET,   SET,   CYCLE, CYCLE }
1312 };
1313 
1314 /* Most of the entries in the LINK_ACTION table are straightforward,
1315    but a few are somewhat subtle.
1316 
1317    A reference to an indirect symbol (UNDEF_ROW/indr or
1318    UNDEFW_ROW/indr) is counted as a reference both to the indirect
1319    symbol and to the symbol the indirect symbol points to.
1320 
1321    A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1322    causes the warning to be issued.
1323 
1324    A common definition of an indirect symbol (COMMON_ROW/indr) is
1325    treated as a multiple definition error.  Likewise for an indirect
1326    definition of a common symbol (INDR_ROW/com).
1327 
1328    An indirect definition of a warning (INDR_ROW/warn) does not cause
1329    the warning to be issued.
1330 
1331    If a warning is created for an indirect symbol (WARN_ROW/indr) no
1332    warning is created for the symbol the indirect symbol points to.
1333 
1334    Adding an entry to a set does not count as a reference to a set,
1335    and no warning is issued (SET_ROW/warn).  */
1336 
1337 /* Return the BFD in which a hash entry has been defined, if known.  */
1338 
1339 static bfd *
1340 hash_entry_bfd (struct bfd_link_hash_entry *h)
1341 {
1342   while (h->type == bfd_link_hash_warning)
1343     h = h->u.i.link;
1344   switch (h->type)
1345     {
1346     default:
1347       return NULL;
1348     case bfd_link_hash_undefined:
1349     case bfd_link_hash_undefweak:
1350       return h->u.undef.abfd;
1351     case bfd_link_hash_defined:
1352     case bfd_link_hash_defweak:
1353       return h->u.def.section->owner;
1354     case bfd_link_hash_common:
1355       return h->u.c.p->section->owner;
1356     }
1357   /*NOTREACHED*/
1358 }
1359 
1360 /* Add a symbol to the global hash table.
1361    ABFD is the BFD the symbol comes from.
1362    NAME is the name of the symbol.
1363    FLAGS is the BSF_* bits associated with the symbol.
1364    SECTION is the section in which the symbol is defined; this may be
1365      bfd_und_section_ptr or bfd_com_section_ptr.
1366    VALUE is the value of the symbol, relative to the section.
1367    STRING is used for either an indirect symbol, in which case it is
1368      the name of the symbol to indirect to, or a warning symbol, in
1369      which case it is the warning string.
1370    COPY is TRUE if NAME or STRING must be copied into locally
1371      allocated memory if they need to be saved.
1372    COLLECT is TRUE if we should automatically collect gcc constructor
1373      or destructor names as collect2 does.
1374    HASHP, if not NULL, is a place to store the created hash table
1375      entry; if *HASHP is not NULL, the caller has already looked up
1376      the hash table entry, and stored it in *HASHP.  */
1377 
1378 bool
1379 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1380 				  bfd *abfd,
1381 				  const char *name,
1382 				  flagword flags,
1383 				  asection *section,
1384 				  bfd_vma value,
1385 				  const char *string,
1386 				  bool copy,
1387 				  bool collect,
1388 				  struct bfd_link_hash_entry **hashp)
1389 {
1390   enum link_row row;
1391   struct bfd_link_hash_entry *h;
1392   struct bfd_link_hash_entry *inh = NULL;
1393   bool cycle;
1394 
1395   BFD_ASSERT (section != NULL);
1396 
1397   if (bfd_is_ind_section (section)
1398       || (flags & BSF_INDIRECT) != 0)
1399     {
1400       row = INDR_ROW;
1401       /* Create the indirect symbol here.  This is for the benefit of
1402 	 the plugin "notice" function.
1403 	 STRING is the name of the symbol we want to indirect to.  */
1404       inh = bfd_wrapped_link_hash_lookup (abfd, info, string, true,
1405 					  copy, false);
1406       if (inh == NULL)
1407 	return false;
1408     }
1409   else if ((flags & BSF_WARNING) != 0)
1410     row = WARN_ROW;
1411   else if ((flags & BSF_CONSTRUCTOR) != 0)
1412     row = SET_ROW;
1413   else if (bfd_is_und_section (section))
1414     {
1415       if ((flags & BSF_WEAK) != 0)
1416 	row = UNDEFW_ROW;
1417       else
1418 	row = UNDEF_ROW;
1419     }
1420   else if ((flags & BSF_WEAK) != 0)
1421     row = DEFW_ROW;
1422   else if (bfd_is_com_section (section))
1423     {
1424       row = COMMON_ROW;
1425       if (!bfd_link_relocatable (info)
1426 	  && name != NULL
1427 	  && name[0] == '_'
1428 	  && name[1] == '_'
1429 	  && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
1430 	_bfd_error_handler
1431 	  (_("%pB: plugin needed to handle lto object"), abfd);
1432     }
1433   else
1434     row = DEF_ROW;
1435 
1436   if (hashp != NULL && *hashp != NULL)
1437     h = *hashp;
1438   else
1439     {
1440       if (row == UNDEF_ROW || row == UNDEFW_ROW)
1441 	h = bfd_wrapped_link_hash_lookup (abfd, info, name, true, copy, false);
1442       else
1443 	h = bfd_link_hash_lookup (info->hash, name, true, copy, false);
1444       if (h == NULL)
1445 	{
1446 	  if (hashp != NULL)
1447 	    *hashp = NULL;
1448 	  return false;
1449 	}
1450     }
1451 
1452   if (info->notice_all
1453       || (info->notice_hash != NULL
1454 	  && bfd_hash_lookup (info->notice_hash, name, false, false) != NULL))
1455     {
1456       if (! (*info->callbacks->notice) (info, h, inh,
1457 					abfd, section, value, flags))
1458 	return false;
1459     }
1460 
1461   if (hashp != NULL)
1462     *hashp = h;
1463 
1464   do
1465     {
1466       enum link_action action;
1467       int prev;
1468 
1469       prev = h->type;
1470       /* Treat symbols defined by early linker script pass as undefined.  */
1471       if (h->ldscript_def)
1472 	prev = bfd_link_hash_undefined;
1473       cycle = false;
1474       action = link_action[(int) row][prev];
1475       switch (action)
1476 	{
1477 	case FAIL:
1478 	  abort ();
1479 
1480 	case NOACT:
1481 	  /* Do nothing.  */
1482 	  break;
1483 
1484 	case UND:
1485 	  /* Make a new undefined symbol.  */
1486 	  h->type = bfd_link_hash_undefined;
1487 	  h->u.undef.abfd = abfd;
1488 	  bfd_link_add_undef (info->hash, h);
1489 	  break;
1490 
1491 	case WEAK:
1492 	  /* Make a new weak undefined symbol.  */
1493 	  h->type = bfd_link_hash_undefweak;
1494 	  h->u.undef.abfd = abfd;
1495 	  break;
1496 
1497 	case CDEF:
1498 	  /* We have found a definition for a symbol which was
1499 	     previously common.  */
1500 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1501 	  (*info->callbacks->multiple_common) (info, h, abfd,
1502 					       bfd_link_hash_defined, 0);
1503 	  /* Fall through.  */
1504 	case DEF:
1505 	case DEFW:
1506 	  {
1507 	    enum bfd_link_hash_type oldtype;
1508 
1509 	    /* Define a symbol.  */
1510 	    oldtype = h->type;
1511 	    if (action == DEFW)
1512 	      h->type = bfd_link_hash_defweak;
1513 	    else
1514 	      h->type = bfd_link_hash_defined;
1515 	    h->u.def.section = section;
1516 	    h->u.def.value = value;
1517 	    h->linker_def = 0;
1518 	    h->ldscript_def = 0;
1519 
1520 	    /* If we have been asked to, we act like collect2 and
1521 	       identify all functions that might be global
1522 	       constructors and destructors and pass them up in a
1523 	       callback.  We only do this for certain object file
1524 	       types, since many object file types can handle this
1525 	       automatically.  */
1526 	    if (collect && name[0] == '_')
1527 	      {
1528 		const char *s;
1529 
1530 		/* A constructor or destructor name starts like this:
1531 		   _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1532 		   the second are the same character (we accept any
1533 		   character there, in case a new object file format
1534 		   comes along with even worse naming restrictions).  */
1535 
1536 #define CONS_PREFIX "GLOBAL_"
1537 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1538 
1539 		s = name + 1;
1540 		while (*s == '_')
1541 		  ++s;
1542 		if (s[0] == 'G' && startswith (s, CONS_PREFIX))
1543 		  {
1544 		    char c;
1545 
1546 		    c = s[CONS_PREFIX_LEN + 1];
1547 		    if ((c == 'I' || c == 'D')
1548 			&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1549 		      {
1550 			/* If this is a definition of a symbol which
1551 			   was previously weakly defined, we are in
1552 			   trouble.  We have already added a
1553 			   constructor entry for the weak defined
1554 			   symbol, and now we are trying to add one
1555 			   for the new symbol.  Fortunately, this case
1556 			   should never arise in practice.  */
1557 			if (oldtype == bfd_link_hash_defweak)
1558 			  abort ();
1559 
1560 			(*info->callbacks->constructor) (info, c == 'I',
1561 							 h->root.string, abfd,
1562 							 section, value);
1563 		      }
1564 		  }
1565 	      }
1566 	  }
1567 
1568 	  break;
1569 
1570 	case COM:
1571 	  /* We have found a common definition for a symbol.  */
1572 	  if (h->type == bfd_link_hash_new)
1573 	    bfd_link_add_undef (info->hash, h);
1574 	  h->type = bfd_link_hash_common;
1575 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1576 	    bfd_hash_allocate (&info->hash->table,
1577 			       sizeof (struct bfd_link_hash_common_entry));
1578 	  if (h->u.c.p == NULL)
1579 	    return false;
1580 
1581 	  h->u.c.size = value;
1582 
1583 	  /* Select a default alignment based on the size.  This may
1584 	     be overridden by the caller.  */
1585 	  {
1586 	    unsigned int power;
1587 
1588 	    power = bfd_log2 (value);
1589 	    if (power > 4)
1590 	      power = 4;
1591 	    h->u.c.p->alignment_power = power;
1592 	  }
1593 
1594 	  /* The section of a common symbol is only used if the common
1595 	     symbol is actually allocated.  It basically provides a
1596 	     hook for the linker script to decide which output section
1597 	     the common symbols should be put in.  In most cases, the
1598 	     section of a common symbol will be bfd_com_section_ptr,
1599 	     the code here will choose a common symbol section named
1600 	     "COMMON", and the linker script will contain *(COMMON) in
1601 	     the appropriate place.  A few targets use separate common
1602 	     sections for small symbols, and they require special
1603 	     handling.  */
1604 	  if (section == bfd_com_section_ptr)
1605 	    {
1606 	      h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1607 	      h->u.c.p->section->flags |= SEC_ALLOC;
1608 	    }
1609 	  else if (section->owner != abfd)
1610 	    {
1611 	      h->u.c.p->section = bfd_make_section_old_way (abfd,
1612 							    section->name);
1613 	      h->u.c.p->section->flags |= SEC_ALLOC;
1614 	    }
1615 	  else
1616 	    h->u.c.p->section = section;
1617 	  h->linker_def = 0;
1618 	  h->ldscript_def = 0;
1619 	  break;
1620 
1621 	case REF:
1622 	  /* A reference to a defined symbol.  */
1623 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1624 	    h->u.undef.next = h;
1625 	  break;
1626 
1627 	case BIG:
1628 	  /* We have found a common definition for a symbol which
1629 	     already had a common definition.  Use the maximum of the
1630 	     two sizes, and use the section required by the larger symbol.  */
1631 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1632 	  (*info->callbacks->multiple_common) (info, h, abfd,
1633 					       bfd_link_hash_common, value);
1634 	  if (value > h->u.c.size)
1635 	    {
1636 	      unsigned int power;
1637 
1638 	      h->u.c.size = value;
1639 
1640 	      /* Select a default alignment based on the size.  This may
1641 		 be overridden by the caller.  */
1642 	      power = bfd_log2 (value);
1643 	      if (power > 4)
1644 		power = 4;
1645 	      h->u.c.p->alignment_power = power;
1646 
1647 	      /* Some systems have special treatment for small commons,
1648 		 hence we want to select the section used by the larger
1649 		 symbol.  This makes sure the symbol does not go in a
1650 		 small common section if it is now too large.  */
1651 	      if (section == bfd_com_section_ptr)
1652 		{
1653 		  h->u.c.p->section
1654 		    = bfd_make_section_old_way (abfd, "COMMON");
1655 		  h->u.c.p->section->flags |= SEC_ALLOC;
1656 		}
1657 	      else if (section->owner != abfd)
1658 		{
1659 		  h->u.c.p->section
1660 		    = bfd_make_section_old_way (abfd, section->name);
1661 		  h->u.c.p->section->flags |= SEC_ALLOC;
1662 		}
1663 	      else
1664 		h->u.c.p->section = section;
1665 	    }
1666 	  break;
1667 
1668 	case CREF:
1669 	  /* We have found a common definition for a symbol which
1670 	     was already defined.  */
1671 	  (*info->callbacks->multiple_common) (info, h, abfd,
1672 					       bfd_link_hash_common, value);
1673 	  break;
1674 
1675 	case MIND:
1676 	  /* Multiple indirect symbols.  This is OK if they both point
1677 	     to the same symbol.  */
1678 	  if (h->u.i.link->type == bfd_link_hash_defweak)
1679 	    {
1680 	      /* It is also OK to redefine a symbol that indirects to
1681 		 a weak definition.  So for sym@ver -> sym@@ver where
1682 		 sym@@ver is weak and we have a new strong sym@ver,
1683 		 redefine sym@@ver.  Of course if there exists
1684 		 sym -> sym@@ver then this also redefines sym.  */
1685 	      h = h->u.i.link;
1686 	      cycle = true;
1687 	      break;
1688 	    }
1689 	  if (string != NULL && strcmp (h->u.i.link->root.string, string) == 0)
1690 	    break;
1691 	  /* Fall through.  */
1692 	case MDEF:
1693 	  /* Handle a multiple definition.  */
1694 	  (*info->callbacks->multiple_definition) (info, h,
1695 						   abfd, section, value);
1696 	  break;
1697 
1698 	case CIND:
1699 	  /* Create an indirect symbol from an existing common symbol.  */
1700 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1701 	  (*info->callbacks->multiple_common) (info, h, abfd,
1702 					       bfd_link_hash_indirect, 0);
1703 	  /* Fall through.  */
1704 	case IND:
1705 	  if (inh->type == bfd_link_hash_indirect
1706 	      && inh->u.i.link == h)
1707 	    {
1708 	      _bfd_error_handler
1709 		/* xgettext:c-format */
1710 		(_("%pB: indirect symbol `%s' to `%s' is a loop"),
1711 		 abfd, name, string);
1712 	      bfd_set_error (bfd_error_invalid_operation);
1713 	      return false;
1714 	    }
1715 	  if (inh->type == bfd_link_hash_new)
1716 	    {
1717 	      inh->type = bfd_link_hash_undefined;
1718 	      inh->u.undef.abfd = abfd;
1719 	      bfd_link_add_undef (info->hash, inh);
1720 	    }
1721 
1722 	  /* If the indirect symbol has been referenced, we need to
1723 	     push the reference down to the symbol we are referencing.  */
1724 	  if (h->type != bfd_link_hash_new)
1725 	    {
1726 	      /* ??? If inh->type == bfd_link_hash_undefweak this
1727 		 converts inh to bfd_link_hash_undefined.  */
1728 	      row = UNDEF_ROW;
1729 	      cycle = true;
1730 	    }
1731 
1732 	  h->type = bfd_link_hash_indirect;
1733 	  h->u.i.link = inh;
1734 	  /* Not setting h = h->u.i.link here means that when cycle is
1735 	     set above we'll always go to REFC, and then cycle again
1736 	     to the indirected symbol.  This means that any successful
1737 	     change of an existing symbol to indirect counts as a
1738 	     reference.  ??? That may not be correct when the existing
1739 	     symbol was defweak.  */
1740 	  break;
1741 
1742 	case SET:
1743 	  /* Add an entry to a set.  */
1744 	  (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1745 					  abfd, section, value);
1746 	  break;
1747 
1748 	case WARNC:
1749 	  /* Issue a warning and cycle, except when the reference is
1750 	     in LTO IR.  */
1751 	  if (h->u.i.warning != NULL
1752 	      && (abfd->flags & BFD_PLUGIN) == 0)
1753 	    {
1754 	      (*info->callbacks->warning) (info, h->u.i.warning,
1755 					   h->root.string, abfd, NULL, 0);
1756 	      /* Only issue a warning once.  */
1757 	      h->u.i.warning = NULL;
1758 	    }
1759 	  /* Fall through.  */
1760 	case CYCLE:
1761 	  /* Try again with the referenced symbol.  */
1762 	  h = h->u.i.link;
1763 	  cycle = true;
1764 	  break;
1765 
1766 	case REFC:
1767 	  /* A reference to an indirect symbol.  */
1768 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1769 	    h->u.undef.next = h;
1770 	  h = h->u.i.link;
1771 	  cycle = true;
1772 	  break;
1773 
1774 	case WARN:
1775 	  /* Warn if this symbol has been referenced already from non-IR,
1776 	     otherwise add a warning.  */
1777 	  if ((!info->lto_plugin_active
1778 	       && (h->u.undef.next != NULL || info->hash->undefs_tail == h))
1779 	      || h->non_ir_ref_regular
1780 	      || h->non_ir_ref_dynamic)
1781 	    {
1782 	      (*info->callbacks->warning) (info, string, h->root.string,
1783 					   hash_entry_bfd (h), NULL, 0);
1784 	      break;
1785 	    }
1786 	  /* Fall through.  */
1787 	case MWARN:
1788 	  /* Make a warning symbol.  */
1789 	  {
1790 	    struct bfd_link_hash_entry *sub;
1791 
1792 	    /* STRING is the warning to give.  */
1793 	    sub = ((struct bfd_link_hash_entry *)
1794 		   ((*info->hash->table.newfunc)
1795 		    (NULL, &info->hash->table, h->root.string)));
1796 	    if (sub == NULL)
1797 	      return false;
1798 	    *sub = *h;
1799 	    sub->type = bfd_link_hash_warning;
1800 	    sub->u.i.link = h;
1801 	    if (! copy)
1802 	      sub->u.i.warning = string;
1803 	    else
1804 	      {
1805 		char *w;
1806 		size_t len = strlen (string) + 1;
1807 
1808 		w = (char *) bfd_hash_allocate (&info->hash->table, len);
1809 		if (w == NULL)
1810 		  return false;
1811 		memcpy (w, string, len);
1812 		sub->u.i.warning = w;
1813 	      }
1814 
1815 	    bfd_hash_replace (&info->hash->table,
1816 			      (struct bfd_hash_entry *) h,
1817 			      (struct bfd_hash_entry *) sub);
1818 	    if (hashp != NULL)
1819 	      *hashp = sub;
1820 	  }
1821 	  break;
1822 	}
1823     }
1824   while (cycle);
1825 
1826   return true;
1827 }
1828 
1829 /* Generic final link routine.  */
1830 
1831 bool
1832 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1833 {
1834   bfd *sub;
1835   asection *o;
1836   struct bfd_link_order *p;
1837   size_t outsymalloc;
1838   struct generic_write_global_symbol_info wginfo;
1839 
1840   abfd->outsymbols = NULL;
1841   abfd->symcount = 0;
1842   outsymalloc = 0;
1843 
1844   /* Mark all sections which will be included in the output file.  */
1845   for (o = abfd->sections; o != NULL; o = o->next)
1846     for (p = o->map_head.link_order; p != NULL; p = p->next)
1847       if (p->type == bfd_indirect_link_order)
1848 	p->u.indirect.section->linker_mark = true;
1849 
1850   /* Build the output symbol table.  */
1851   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
1852     if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1853       return false;
1854 
1855   /* Accumulate the global symbols.  */
1856   wginfo.info = info;
1857   wginfo.output_bfd = abfd;
1858   wginfo.psymalloc = &outsymalloc;
1859   _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1860 				   _bfd_generic_link_write_global_symbol,
1861 				   &wginfo);
1862 
1863   /* Make sure we have a trailing NULL pointer on OUTSYMBOLS.  We
1864      shouldn't really need one, since we have SYMCOUNT, but some old
1865      code still expects one.  */
1866   if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1867     return false;
1868 
1869   if (bfd_link_relocatable (info))
1870     {
1871       /* Allocate space for the output relocs for each section.  */
1872       for (o = abfd->sections; o != NULL; o = o->next)
1873 	{
1874 	  o->reloc_count = 0;
1875 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
1876 	    {
1877 	      if (p->type == bfd_section_reloc_link_order
1878 		  || p->type == bfd_symbol_reloc_link_order)
1879 		++o->reloc_count;
1880 	      else if (p->type == bfd_indirect_link_order)
1881 		{
1882 		  asection *input_section;
1883 		  bfd *input_bfd;
1884 		  long relsize;
1885 		  arelent **relocs;
1886 		  asymbol **symbols;
1887 		  long reloc_count;
1888 
1889 		  input_section = p->u.indirect.section;
1890 		  input_bfd = input_section->owner;
1891 		  relsize = bfd_get_reloc_upper_bound (input_bfd,
1892 						       input_section);
1893 		  if (relsize < 0)
1894 		    return false;
1895 		  relocs = (arelent **) bfd_malloc (relsize);
1896 		  if (!relocs && relsize != 0)
1897 		    return false;
1898 		  symbols = _bfd_generic_link_get_symbols (input_bfd);
1899 		  reloc_count = bfd_canonicalize_reloc (input_bfd,
1900 							input_section,
1901 							relocs,
1902 							symbols);
1903 		  free (relocs);
1904 		  if (reloc_count < 0)
1905 		    return false;
1906 		  BFD_ASSERT ((unsigned long) reloc_count
1907 			      == input_section->reloc_count);
1908 		  o->reloc_count += reloc_count;
1909 		}
1910 	    }
1911 	  if (o->reloc_count > 0)
1912 	    {
1913 	      bfd_size_type amt;
1914 
1915 	      amt = o->reloc_count;
1916 	      amt *= sizeof (arelent *);
1917 	      o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
1918 	      if (!o->orelocation)
1919 		return false;
1920 	      o->flags |= SEC_RELOC;
1921 	      /* Reset the count so that it can be used as an index
1922 		 when putting in the output relocs.  */
1923 	      o->reloc_count = 0;
1924 	    }
1925 	}
1926     }
1927 
1928   /* Handle all the link order information for the sections.  */
1929   for (o = abfd->sections; o != NULL; o = o->next)
1930     {
1931       for (p = o->map_head.link_order; p != NULL; p = p->next)
1932 	{
1933 	  switch (p->type)
1934 	    {
1935 	    case bfd_section_reloc_link_order:
1936 	    case bfd_symbol_reloc_link_order:
1937 	      if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1938 		return false;
1939 	      break;
1940 	    case bfd_indirect_link_order:
1941 	      if (! default_indirect_link_order (abfd, info, o, p, true))
1942 		return false;
1943 	      break;
1944 	    default:
1945 	      if (! _bfd_default_link_order (abfd, info, o, p))
1946 		return false;
1947 	      break;
1948 	    }
1949 	}
1950     }
1951 
1952   return true;
1953 }
1954 
1955 /* Add an output symbol to the output BFD.  */
1956 
1957 static bool
1958 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
1959 {
1960   if (bfd_get_symcount (output_bfd) >= *psymalloc)
1961     {
1962       asymbol **newsyms;
1963       bfd_size_type amt;
1964 
1965       if (*psymalloc == 0)
1966 	*psymalloc = 124;
1967       else
1968 	*psymalloc *= 2;
1969       amt = *psymalloc;
1970       amt *= sizeof (asymbol *);
1971       newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
1972       if (newsyms == NULL)
1973 	return false;
1974       output_bfd->outsymbols = newsyms;
1975     }
1976 
1977   output_bfd->outsymbols[output_bfd->symcount] = sym;
1978   if (sym != NULL)
1979     ++output_bfd->symcount;
1980 
1981   return true;
1982 }
1983 
1984 /* Handle the symbols for an input BFD.  */
1985 
1986 bool
1987 _bfd_generic_link_output_symbols (bfd *output_bfd,
1988 				  bfd *input_bfd,
1989 				  struct bfd_link_info *info,
1990 				  size_t *psymalloc)
1991 {
1992   asymbol **sym_ptr;
1993   asymbol **sym_end;
1994 
1995   if (!bfd_generic_link_read_symbols (input_bfd))
1996     return false;
1997 
1998   /* Create a filename symbol if we are supposed to.  */
1999   if (info->create_object_symbols_section != NULL)
2000     {
2001       asection *sec;
2002 
2003       for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2004 	{
2005 	  if (sec->output_section == info->create_object_symbols_section)
2006 	    {
2007 	      asymbol *newsym;
2008 
2009 	      newsym = bfd_make_empty_symbol (input_bfd);
2010 	      if (!newsym)
2011 		return false;
2012 	      newsym->name = bfd_get_filename (input_bfd);
2013 	      newsym->value = 0;
2014 	      newsym->flags = BSF_LOCAL | BSF_FILE;
2015 	      newsym->section = sec;
2016 
2017 	      if (! generic_add_output_symbol (output_bfd, psymalloc,
2018 					       newsym))
2019 		return false;
2020 
2021 	      break;
2022 	    }
2023 	}
2024     }
2025 
2026   /* Adjust the values of the globally visible symbols, and write out
2027      local symbols.  */
2028   sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2029   sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2030   for (; sym_ptr < sym_end; sym_ptr++)
2031     {
2032       asymbol *sym;
2033       struct generic_link_hash_entry *h;
2034       bool output;
2035 
2036       h = NULL;
2037       sym = *sym_ptr;
2038       if ((sym->flags & (BSF_INDIRECT
2039 			 | BSF_WARNING
2040 			 | BSF_GLOBAL
2041 			 | BSF_CONSTRUCTOR
2042 			 | BSF_WEAK)) != 0
2043 	  || bfd_is_und_section (bfd_asymbol_section (sym))
2044 	  || bfd_is_com_section (bfd_asymbol_section (sym))
2045 	  || bfd_is_ind_section (bfd_asymbol_section (sym)))
2046 	{
2047 	  if (sym->udata.p != NULL)
2048 	    h = (struct generic_link_hash_entry *) sym->udata.p;
2049 	  else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2050 	    {
2051 	      /* This case normally means that the main linker code
2052 		 deliberately ignored this constructor symbol.  We
2053 		 should just pass it through.  This will screw up if
2054 		 the constructor symbol is from a different,
2055 		 non-generic, object file format, but the case will
2056 		 only arise when linking with -r, which will probably
2057 		 fail anyhow, since there will be no way to represent
2058 		 the relocs in the output format being used.  */
2059 	      h = NULL;
2060 	    }
2061 	  else if (bfd_is_und_section (bfd_asymbol_section (sym)))
2062 	    h = ((struct generic_link_hash_entry *)
2063 		 bfd_wrapped_link_hash_lookup (output_bfd, info,
2064 					       bfd_asymbol_name (sym),
2065 					       false, false, true));
2066 	  else
2067 	    h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2068 					       bfd_asymbol_name (sym),
2069 					       false, false, true);
2070 
2071 	  if (h != NULL)
2072 	    {
2073 	      /* Force all references to this symbol to point to
2074 		 the same area in memory.  It is possible that
2075 		 this routine will be called with a hash table
2076 		 other than a generic hash table, so we double
2077 		 check that.  */
2078 	      if (info->output_bfd->xvec == input_bfd->xvec)
2079 		{
2080 		  if (h->sym != NULL)
2081 		    *sym_ptr = sym = h->sym;
2082 		}
2083 
2084 	      switch (h->root.type)
2085 		{
2086 		default:
2087 		case bfd_link_hash_new:
2088 		  abort ();
2089 		case bfd_link_hash_undefined:
2090 		  break;
2091 		case bfd_link_hash_undefweak:
2092 		  sym->flags |= BSF_WEAK;
2093 		  break;
2094 		case bfd_link_hash_indirect:
2095 		  h = (struct generic_link_hash_entry *) h->root.u.i.link;
2096 		  /* fall through */
2097 		case bfd_link_hash_defined:
2098 		  sym->flags |= BSF_GLOBAL;
2099 		  sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR);
2100 		  sym->value = h->root.u.def.value;
2101 		  sym->section = h->root.u.def.section;
2102 		  break;
2103 		case bfd_link_hash_defweak:
2104 		  sym->flags |= BSF_WEAK;
2105 		  sym->flags &=~ BSF_CONSTRUCTOR;
2106 		  sym->value = h->root.u.def.value;
2107 		  sym->section = h->root.u.def.section;
2108 		  break;
2109 		case bfd_link_hash_common:
2110 		  sym->value = h->root.u.c.size;
2111 		  sym->flags |= BSF_GLOBAL;
2112 		  if (! bfd_is_com_section (sym->section))
2113 		    {
2114 		      BFD_ASSERT (bfd_is_und_section (sym->section));
2115 		      sym->section = bfd_com_section_ptr;
2116 		    }
2117 		  /* We do not set the section of the symbol to
2118 		     h->root.u.c.p->section.  That value was saved so
2119 		     that we would know where to allocate the symbol
2120 		     if it was defined.  In this case the type is
2121 		     still bfd_link_hash_common, so we did not define
2122 		     it, so we do not want to use that section.  */
2123 		  break;
2124 		}
2125 	    }
2126 	}
2127 
2128       if ((sym->flags & BSF_KEEP) == 0
2129 	  && (info->strip == strip_all
2130 	      || (info->strip == strip_some
2131 		  && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2132 				      false, false) == NULL)))
2133 	output = false;
2134       else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0)
2135 	{
2136 	  /* If this symbol is marked as occurring now, rather
2137 	     than at the end, output it now.  This is used for
2138 	     COFF C_EXT FCN symbols.  FIXME: There must be a
2139 	     better way.  */
2140 	  if (bfd_asymbol_bfd (sym) == input_bfd
2141 	      && (sym->flags & BSF_NOT_AT_END) != 0)
2142 	    output = true;
2143 	  else
2144 	    output = false;
2145 	}
2146       else if ((sym->flags & BSF_KEEP) != 0)
2147 	output = true;
2148       else if (bfd_is_ind_section (sym->section))
2149 	output = false;
2150       else if ((sym->flags & BSF_DEBUGGING) != 0)
2151 	{
2152 	  if (info->strip == strip_none)
2153 	    output = true;
2154 	  else
2155 	    output = false;
2156 	}
2157       else if (bfd_is_und_section (sym->section)
2158 	       || bfd_is_com_section (sym->section))
2159 	output = false;
2160       else if ((sym->flags & BSF_LOCAL) != 0)
2161 	{
2162 	  if ((sym->flags & BSF_WARNING) != 0)
2163 	    output = false;
2164 	  else
2165 	    {
2166 	      switch (info->discard)
2167 		{
2168 		default:
2169 		case discard_all:
2170 		  output = false;
2171 		  break;
2172 		case discard_sec_merge:
2173 		  output = true;
2174 		  if (bfd_link_relocatable (info)
2175 		      || ! (sym->section->flags & SEC_MERGE))
2176 		    break;
2177 		  /* FALLTHROUGH */
2178 		case discard_l:
2179 		  if (bfd_is_local_label (input_bfd, sym))
2180 		    output = false;
2181 		  else
2182 		    output = true;
2183 		  break;
2184 		case discard_none:
2185 		  output = true;
2186 		  break;
2187 		}
2188 	    }
2189 	}
2190       else if ((sym->flags & BSF_CONSTRUCTOR))
2191 	{
2192 	  if (info->strip != strip_all)
2193 	    output = true;
2194 	  else
2195 	    output = false;
2196 	}
2197       else if (sym->flags == 0
2198 	       && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2199 	/* LTO doesn't set symbol information.  We get here with the
2200 	   generic linker for a symbol that was "common" but no longer
2201 	   needs to be global.  */
2202 	output = false;
2203       else
2204 	abort ();
2205 
2206       /* If this symbol is in a section which is not being included
2207 	 in the output file, then we don't want to output the
2208 	 symbol.  */
2209       if (!bfd_is_abs_section (sym->section)
2210 	  && bfd_section_removed_from_list (output_bfd,
2211 					    sym->section->output_section))
2212 	output = false;
2213 
2214       if (output)
2215 	{
2216 	  if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2217 	    return false;
2218 	  if (h != NULL)
2219 	    h->written = true;
2220 	}
2221     }
2222 
2223   return true;
2224 }
2225 
2226 /* Set the section and value of a generic BFD symbol based on a linker
2227    hash table entry.  */
2228 
2229 static void
2230 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2231 {
2232   switch (h->type)
2233     {
2234     default:
2235       abort ();
2236       break;
2237     case bfd_link_hash_new:
2238       /* This can happen when a constructor symbol is seen but we are
2239 	 not building constructors.  */
2240       if (sym->section != NULL)
2241 	{
2242 	  BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2243 	}
2244       else
2245 	{
2246 	  sym->flags |= BSF_CONSTRUCTOR;
2247 	  sym->section = bfd_abs_section_ptr;
2248 	  sym->value = 0;
2249 	}
2250       break;
2251     case bfd_link_hash_undefined:
2252       sym->section = bfd_und_section_ptr;
2253       sym->value = 0;
2254       break;
2255     case bfd_link_hash_undefweak:
2256       sym->section = bfd_und_section_ptr;
2257       sym->value = 0;
2258       sym->flags |= BSF_WEAK;
2259       break;
2260     case bfd_link_hash_defined:
2261       sym->section = h->u.def.section;
2262       sym->value = h->u.def.value;
2263       break;
2264     case bfd_link_hash_defweak:
2265       sym->flags |= BSF_WEAK;
2266       sym->section = h->u.def.section;
2267       sym->value = h->u.def.value;
2268       break;
2269     case bfd_link_hash_common:
2270       sym->value = h->u.c.size;
2271       if (sym->section == NULL)
2272 	sym->section = bfd_com_section_ptr;
2273       else if (! bfd_is_com_section (sym->section))
2274 	{
2275 	  BFD_ASSERT (bfd_is_und_section (sym->section));
2276 	  sym->section = bfd_com_section_ptr;
2277 	}
2278       /* Do not set the section; see _bfd_generic_link_output_symbols.  */
2279       break;
2280     case bfd_link_hash_indirect:
2281     case bfd_link_hash_warning:
2282       /* FIXME: What should we do here?  */
2283       break;
2284     }
2285 }
2286 
2287 /* Write out a global symbol, if it hasn't already been written out.
2288    This is called for each symbol in the hash table.  */
2289 
2290 bool
2291 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2292 				       void *data)
2293 {
2294   struct generic_write_global_symbol_info *wginfo =
2295       (struct generic_write_global_symbol_info *) data;
2296   asymbol *sym;
2297 
2298   if (h->written)
2299     return true;
2300 
2301   h->written = true;
2302 
2303   if (wginfo->info->strip == strip_all
2304       || (wginfo->info->strip == strip_some
2305 	  && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2306 			      false, false) == NULL))
2307     return true;
2308 
2309   if (h->sym != NULL)
2310     sym = h->sym;
2311   else
2312     {
2313       sym = bfd_make_empty_symbol (wginfo->output_bfd);
2314       if (!sym)
2315 	return false;
2316       sym->name = h->root.root.string;
2317       sym->flags = 0;
2318     }
2319 
2320   set_symbol_from_hash (sym, &h->root);
2321 
2322   sym->flags |= BSF_GLOBAL;
2323 
2324   if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2325 				   sym))
2326     {
2327       /* FIXME: No way to return failure.  */
2328       abort ();
2329     }
2330 
2331   return true;
2332 }
2333 
2334 /* Create a relocation.  */
2335 
2336 bool
2337 _bfd_generic_reloc_link_order (bfd *abfd,
2338 			       struct bfd_link_info *info,
2339 			       asection *sec,
2340 			       struct bfd_link_order *link_order)
2341 {
2342   arelent *r;
2343 
2344   if (! bfd_link_relocatable (info))
2345     abort ();
2346   if (sec->orelocation == NULL)
2347     abort ();
2348 
2349   r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2350   if (r == NULL)
2351     return false;
2352 
2353   r->address = link_order->offset;
2354   r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2355   if (r->howto == 0)
2356     {
2357       bfd_set_error (bfd_error_bad_value);
2358       return false;
2359     }
2360 
2361   /* Get the symbol to use for the relocation.  */
2362   if (link_order->type == bfd_section_reloc_link_order)
2363     r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2364   else
2365     {
2366       struct generic_link_hash_entry *h;
2367 
2368       h = ((struct generic_link_hash_entry *)
2369 	   bfd_wrapped_link_hash_lookup (abfd, info,
2370 					 link_order->u.reloc.p->u.name,
2371 					 false, false, true));
2372       if (h == NULL
2373 	  || ! h->written)
2374 	{
2375 	  (*info->callbacks->unattached_reloc)
2376 	    (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
2377 	  bfd_set_error (bfd_error_bad_value);
2378 	  return false;
2379 	}
2380       r->sym_ptr_ptr = &h->sym;
2381     }
2382 
2383   /* If this is an inplace reloc, write the addend to the object file.
2384      Otherwise, store it in the reloc addend.  */
2385   if (! r->howto->partial_inplace)
2386     r->addend = link_order->u.reloc.p->addend;
2387   else
2388     {
2389       bfd_size_type size;
2390       bfd_reloc_status_type rstat;
2391       bfd_byte *buf;
2392       bool ok;
2393       file_ptr loc;
2394 
2395       size = bfd_get_reloc_size (r->howto);
2396       buf = (bfd_byte *) bfd_zmalloc (size);
2397       if (buf == NULL && size != 0)
2398 	return false;
2399       rstat = _bfd_relocate_contents (r->howto, abfd,
2400 				      (bfd_vma) link_order->u.reloc.p->addend,
2401 				      buf);
2402       switch (rstat)
2403 	{
2404 	case bfd_reloc_ok:
2405 	  break;
2406 	default:
2407 	case bfd_reloc_outofrange:
2408 	  abort ();
2409 	case bfd_reloc_overflow:
2410 	  (*info->callbacks->reloc_overflow)
2411 	    (info, NULL,
2412 	     (link_order->type == bfd_section_reloc_link_order
2413 	      ? bfd_section_name (link_order->u.reloc.p->u.section)
2414 	      : link_order->u.reloc.p->u.name),
2415 	     r->howto->name, link_order->u.reloc.p->addend,
2416 	     NULL, NULL, 0);
2417 	  break;
2418 	}
2419       loc = link_order->offset * bfd_octets_per_byte (abfd, sec);
2420       ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2421       free (buf);
2422       if (! ok)
2423 	return false;
2424 
2425       r->addend = 0;
2426     }
2427 
2428   sec->orelocation[sec->reloc_count] = r;
2429   ++sec->reloc_count;
2430 
2431   return true;
2432 }
2433 
2434 /* Allocate a new link_order for a section.  */
2435 
2436 struct bfd_link_order *
2437 bfd_new_link_order (bfd *abfd, asection *section)
2438 {
2439   size_t amt = sizeof (struct bfd_link_order);
2440   struct bfd_link_order *new_lo;
2441 
2442   new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2443   if (!new_lo)
2444     return NULL;
2445 
2446   new_lo->type = bfd_undefined_link_order;
2447 
2448   if (section->map_tail.link_order != NULL)
2449     section->map_tail.link_order->next = new_lo;
2450   else
2451     section->map_head.link_order = new_lo;
2452   section->map_tail.link_order = new_lo;
2453 
2454   return new_lo;
2455 }
2456 
2457 /* Default link order processing routine.  Note that we can not handle
2458    the reloc_link_order types here, since they depend upon the details
2459    of how the particular backends generates relocs.  */
2460 
2461 bool
2462 _bfd_default_link_order (bfd *abfd,
2463 			 struct bfd_link_info *info,
2464 			 asection *sec,
2465 			 struct bfd_link_order *link_order)
2466 {
2467   switch (link_order->type)
2468     {
2469     case bfd_undefined_link_order:
2470     case bfd_section_reloc_link_order:
2471     case bfd_symbol_reloc_link_order:
2472     default:
2473       abort ();
2474     case bfd_indirect_link_order:
2475       return default_indirect_link_order (abfd, info, sec, link_order,
2476 					  false);
2477     case bfd_data_link_order:
2478       return default_data_link_order (abfd, info, sec, link_order);
2479     }
2480 }
2481 
2482 /* Default routine to handle a bfd_data_link_order.  */
2483 
2484 static bool
2485 default_data_link_order (bfd *abfd,
2486 			 struct bfd_link_info *info,
2487 			 asection *sec,
2488 			 struct bfd_link_order *link_order)
2489 {
2490   bfd_size_type size;
2491   size_t fill_size;
2492   bfd_byte *fill;
2493   file_ptr loc;
2494   bool result;
2495 
2496   BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2497 
2498   size = link_order->size;
2499   if (size == 0)
2500     return true;
2501 
2502   fill = link_order->u.data.contents;
2503   fill_size = link_order->u.data.size;
2504   if (fill_size == 0)
2505     {
2506       fill = abfd->arch_info->fill (size, info->big_endian,
2507 				    (sec->flags & SEC_CODE) != 0);
2508       if (fill == NULL)
2509 	return false;
2510     }
2511   else if (fill_size < size)
2512     {
2513       bfd_byte *p;
2514       fill = (bfd_byte *) bfd_malloc (size);
2515       if (fill == NULL)
2516 	return false;
2517       p = fill;
2518       if (fill_size == 1)
2519 	memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2520       else
2521 	{
2522 	  do
2523 	    {
2524 	      memcpy (p, link_order->u.data.contents, fill_size);
2525 	      p += fill_size;
2526 	      size -= fill_size;
2527 	    }
2528 	  while (size >= fill_size);
2529 	  if (size != 0)
2530 	    memcpy (p, link_order->u.data.contents, (size_t) size);
2531 	  size = link_order->size;
2532 	}
2533     }
2534 
2535   loc = link_order->offset * bfd_octets_per_byte (abfd, sec);
2536   result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2537 
2538   if (fill != link_order->u.data.contents)
2539     free (fill);
2540   return result;
2541 }
2542 
2543 /* Default routine to handle a bfd_indirect_link_order.  */
2544 
2545 static bool
2546 default_indirect_link_order (bfd *output_bfd,
2547 			     struct bfd_link_info *info,
2548 			     asection *output_section,
2549 			     struct bfd_link_order *link_order,
2550 			     bool generic_linker)
2551 {
2552   asection *input_section;
2553   bfd *input_bfd;
2554   bfd_byte *alloced = NULL;
2555   bfd_byte *new_contents;
2556   file_ptr loc;
2557 
2558   BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2559 
2560   input_section = link_order->u.indirect.section;
2561   input_bfd = input_section->owner;
2562   if (input_section->size == 0)
2563     return true;
2564 
2565   BFD_ASSERT (input_section->output_section == output_section);
2566   BFD_ASSERT (input_section->output_offset == link_order->offset);
2567   BFD_ASSERT (input_section->size == link_order->size);
2568 
2569   if (bfd_link_relocatable (info)
2570       && input_section->reloc_count > 0
2571       && output_section->orelocation == NULL)
2572     {
2573       /* Space has not been allocated for the output relocations.
2574 	 This can happen when we are called by a specific backend
2575 	 because somebody is attempting to link together different
2576 	 types of object files.  Handling this case correctly is
2577 	 difficult, and sometimes impossible.  */
2578       _bfd_error_handler
2579 	/* xgettext:c-format */
2580 	(_("attempt to do relocatable link with %s input and %s output"),
2581 	 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2582       bfd_set_error (bfd_error_wrong_format);
2583       return false;
2584     }
2585 
2586   if (! generic_linker)
2587     {
2588       asymbol **sympp;
2589       asymbol **symppend;
2590 
2591       /* Get the canonical symbols.  The generic linker will always
2592 	 have retrieved them by this point, but we are being called by
2593 	 a specific linker, presumably because we are linking
2594 	 different types of object files together.  */
2595       if (!bfd_generic_link_read_symbols (input_bfd))
2596 	return false;
2597 
2598       /* Since we have been called by a specific linker, rather than
2599 	 the generic linker, the values of the symbols will not be
2600 	 right.  They will be the values as seen in the input file,
2601 	 not the values of the final link.  We need to fix them up
2602 	 before we can relocate the section.  */
2603       sympp = _bfd_generic_link_get_symbols (input_bfd);
2604       symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2605       for (; sympp < symppend; sympp++)
2606 	{
2607 	  asymbol *sym;
2608 	  struct bfd_link_hash_entry *h;
2609 
2610 	  sym = *sympp;
2611 
2612 	  if ((sym->flags & (BSF_INDIRECT
2613 			     | BSF_WARNING
2614 			     | BSF_GLOBAL
2615 			     | BSF_CONSTRUCTOR
2616 			     | BSF_WEAK)) != 0
2617 	      || bfd_is_und_section (bfd_asymbol_section (sym))
2618 	      || bfd_is_com_section (bfd_asymbol_section (sym))
2619 	      || bfd_is_ind_section (bfd_asymbol_section (sym)))
2620 	    {
2621 	      /* sym->udata may have been set by
2622 		 generic_link_add_symbol_list.  */
2623 	      if (sym->udata.p != NULL)
2624 		h = (struct bfd_link_hash_entry *) sym->udata.p;
2625 	      else if (bfd_is_und_section (bfd_asymbol_section (sym)))
2626 		h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2627 						  bfd_asymbol_name (sym),
2628 						  false, false, true);
2629 	      else
2630 		h = bfd_link_hash_lookup (info->hash,
2631 					  bfd_asymbol_name (sym),
2632 					  false, false, true);
2633 	      if (h != NULL)
2634 		set_symbol_from_hash (sym, h);
2635 	    }
2636 	}
2637     }
2638 
2639   if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2640       && input_section->size != 0)
2641     {
2642       /* Group section contents are set by bfd_elf_set_group_contents.  */
2643       if (!output_bfd->output_has_begun)
2644 	{
2645 	  /* FIXME: This hack ensures bfd_elf_set_group_contents is called.  */
2646 	  if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2647 	    goto error_return;
2648 	}
2649       new_contents = output_section->contents;
2650       BFD_ASSERT (new_contents != NULL);
2651       BFD_ASSERT (input_section->output_offset == 0);
2652     }
2653   else
2654     {
2655       /* Get and relocate the section contents.  */
2656       new_contents = (bfd_get_relocated_section_contents
2657 		      (output_bfd, info, link_order, NULL,
2658 		       bfd_link_relocatable (info),
2659 		       _bfd_generic_link_get_symbols (input_bfd)));
2660       alloced = new_contents;
2661       if (!new_contents)
2662 	goto error_return;
2663     }
2664 
2665   /* Output the section contents.  */
2666   loc = (input_section->output_offset
2667 	 * bfd_octets_per_byte (output_bfd, output_section));
2668   if (! bfd_set_section_contents (output_bfd, output_section,
2669 				  new_contents, loc, input_section->size))
2670     goto error_return;
2671 
2672   free (alloced);
2673   return true;
2674 
2675  error_return:
2676   free (alloced);
2677   return false;
2678 }
2679 
2680 /* A little routine to count the number of relocs in a link_order
2681    list.  */
2682 
2683 unsigned int
2684 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2685 {
2686   register unsigned int c;
2687   register struct bfd_link_order *l;
2688 
2689   c = 0;
2690   for (l = link_order; l != NULL; l = l->next)
2691     {
2692       if (l->type == bfd_section_reloc_link_order
2693 	  || l->type == bfd_symbol_reloc_link_order)
2694 	++c;
2695     }
2696 
2697   return c;
2698 }
2699 
2700 /*
2701 FUNCTION
2702 	bfd_link_split_section
2703 
2704 SYNOPSIS
2705 	bool bfd_link_split_section (bfd *abfd, asection *sec);
2706 
2707 DESCRIPTION
2708 	Return nonzero if @var{sec} should be split during a
2709 	reloceatable or final link.
2710 
2711 .#define bfd_link_split_section(abfd, sec) \
2712 .	BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2713 .
2714 
2715 */
2716 
2717 bool
2718 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2719 				 asection *sec ATTRIBUTE_UNUSED)
2720 {
2721   return false;
2722 }
2723 
2724 /*
2725 FUNCTION
2726 	bfd_section_already_linked
2727 
2728 SYNOPSIS
2729 	bool bfd_section_already_linked (bfd *abfd,
2730 					 asection *sec,
2731 					 struct bfd_link_info *info);
2732 
2733 DESCRIPTION
2734 	Check if @var{data} has been already linked during a reloceatable
2735 	or final link.  Return TRUE if it has.
2736 
2737 .#define bfd_section_already_linked(abfd, sec, info) \
2738 .	BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2739 .
2740 
2741 */
2742 
2743 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2744    once into the output.  This routine checks each section, and
2745    arrange to discard it if a section of the same name has already
2746    been linked.  This code assumes that all relevant sections have the
2747    SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2748    section name.  bfd_section_already_linked is called via
2749    bfd_map_over_sections.  */
2750 
2751 /* The hash table.  */
2752 
2753 static struct bfd_hash_table _bfd_section_already_linked_table;
2754 
2755 /* Support routines for the hash table used by section_already_linked,
2756    initialize the table, traverse, lookup, fill in an entry and remove
2757    the table.  */
2758 
2759 void
2760 bfd_section_already_linked_table_traverse
2761   (bool (*func) (struct bfd_section_already_linked_hash_entry *, void *),
2762    void *info)
2763 {
2764   bfd_hash_traverse (&_bfd_section_already_linked_table,
2765 		     (bool (*) (struct bfd_hash_entry *, void *)) func,
2766 		     info);
2767 }
2768 
2769 struct bfd_section_already_linked_hash_entry *
2770 bfd_section_already_linked_table_lookup (const char *name)
2771 {
2772   return ((struct bfd_section_already_linked_hash_entry *)
2773 	  bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2774 			   true, false));
2775 }
2776 
2777 bool
2778 bfd_section_already_linked_table_insert
2779   (struct bfd_section_already_linked_hash_entry *already_linked_list,
2780    asection *sec)
2781 {
2782   struct bfd_section_already_linked *l;
2783 
2784   /* Allocate the memory from the same obstack as the hash table is
2785      kept in.  */
2786   l = (struct bfd_section_already_linked *)
2787       bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2788   if (l == NULL)
2789     return false;
2790   l->sec = sec;
2791   l->next = already_linked_list->entry;
2792   already_linked_list->entry = l;
2793   return true;
2794 }
2795 
2796 static struct bfd_hash_entry *
2797 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2798 			struct bfd_hash_table *table,
2799 			const char *string ATTRIBUTE_UNUSED)
2800 {
2801   struct bfd_section_already_linked_hash_entry *ret =
2802     (struct bfd_section_already_linked_hash_entry *)
2803       bfd_hash_allocate (table, sizeof *ret);
2804 
2805   if (ret == NULL)
2806     return NULL;
2807 
2808   ret->entry = NULL;
2809 
2810   return &ret->root;
2811 }
2812 
2813 bool
2814 bfd_section_already_linked_table_init (void)
2815 {
2816   return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2817 				already_linked_newfunc,
2818 				sizeof (struct bfd_section_already_linked_hash_entry),
2819 				42);
2820 }
2821 
2822 void
2823 bfd_section_already_linked_table_free (void)
2824 {
2825   bfd_hash_table_free (&_bfd_section_already_linked_table);
2826 }
2827 
2828 /* Report warnings as appropriate for duplicate section SEC.
2829    Return FALSE if we decide to keep SEC after all.  */
2830 
2831 bool
2832 _bfd_handle_already_linked (asection *sec,
2833 			    struct bfd_section_already_linked *l,
2834 			    struct bfd_link_info *info)
2835 {
2836   switch (sec->flags & SEC_LINK_DUPLICATES)
2837     {
2838     default:
2839       abort ();
2840 
2841     case SEC_LINK_DUPLICATES_DISCARD:
2842       /* If we found an LTO IR match for this comdat group on
2843 	 the first pass, replace it with the LTO output on the
2844 	 second pass.  We can't simply choose real object
2845 	 files over IR because the first pass may contain a
2846 	 mix of LTO and normal objects and we must keep the
2847 	 first match, be it IR or real.  */
2848       if (sec->owner->lto_output
2849 	  && (l->sec->owner->flags & BFD_PLUGIN) != 0)
2850 	{
2851 	  l->sec = sec;
2852 	  return false;
2853 	}
2854       break;
2855 
2856     case SEC_LINK_DUPLICATES_ONE_ONLY:
2857       info->callbacks->einfo
2858 	/* xgettext:c-format */
2859 	(_("%pB: ignoring duplicate section `%pA'\n"),
2860 	 sec->owner, sec);
2861       break;
2862 
2863     case SEC_LINK_DUPLICATES_SAME_SIZE:
2864       if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2865 	;
2866       else if (sec->size != l->sec->size)
2867 	info->callbacks->einfo
2868 	  /* xgettext:c-format */
2869 	  (_("%pB: duplicate section `%pA' has different size\n"),
2870 	   sec->owner, sec);
2871       break;
2872 
2873     case SEC_LINK_DUPLICATES_SAME_CONTENTS:
2874       if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2875 	;
2876       else if (sec->size != l->sec->size)
2877 	info->callbacks->einfo
2878 	  /* xgettext:c-format */
2879 	  (_("%pB: duplicate section `%pA' has different size\n"),
2880 	   sec->owner, sec);
2881       else if (sec->size != 0)
2882 	{
2883 	  bfd_byte *sec_contents, *l_sec_contents = NULL;
2884 
2885 	  if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
2886 	    info->callbacks->einfo
2887 	      /* xgettext:c-format */
2888 	      (_("%pB: could not read contents of section `%pA'\n"),
2889 	       sec->owner, sec);
2890 	  else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
2891 						&l_sec_contents))
2892 	    info->callbacks->einfo
2893 	      /* xgettext:c-format */
2894 	      (_("%pB: could not read contents of section `%pA'\n"),
2895 	       l->sec->owner, l->sec);
2896 	  else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
2897 	    info->callbacks->einfo
2898 	      /* xgettext:c-format */
2899 	      (_("%pB: duplicate section `%pA' has different contents\n"),
2900 	       sec->owner, sec);
2901 
2902 	  free (sec_contents);
2903 	  free (l_sec_contents);
2904 	}
2905       break;
2906     }
2907 
2908   /* Set the output_section field so that lang_add_section
2909      does not create a lang_input_section structure for this
2910      section.  Since there might be a symbol in the section
2911      being discarded, we must retain a pointer to the section
2912      which we are really going to use.  */
2913   sec->output_section = bfd_abs_section_ptr;
2914   sec->kept_section = l->sec;
2915   return true;
2916 }
2917 
2918 /* This is used on non-ELF inputs.  */
2919 
2920 bool
2921 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
2922 				     asection *sec,
2923 				     struct bfd_link_info *info)
2924 {
2925   const char *name;
2926   struct bfd_section_already_linked *l;
2927   struct bfd_section_already_linked_hash_entry *already_linked_list;
2928 
2929   if ((sec->flags & SEC_LINK_ONCE) == 0)
2930     return false;
2931 
2932   /* The generic linker doesn't handle section groups.  */
2933   if ((sec->flags & SEC_GROUP) != 0)
2934     return false;
2935 
2936   /* FIXME: When doing a relocatable link, we may have trouble
2937      copying relocations in other sections that refer to local symbols
2938      in the section being discarded.  Those relocations will have to
2939      be converted somehow; as of this writing I'm not sure that any of
2940      the backends handle that correctly.
2941 
2942      It is tempting to instead not discard link once sections when
2943      doing a relocatable link (technically, they should be discarded
2944      whenever we are building constructors).  However, that fails,
2945      because the linker winds up combining all the link once sections
2946      into a single large link once section, which defeats the purpose
2947      of having link once sections in the first place.  */
2948 
2949   name = bfd_section_name (sec);
2950 
2951   already_linked_list = bfd_section_already_linked_table_lookup (name);
2952 
2953   l = already_linked_list->entry;
2954   if (l != NULL)
2955     {
2956       /* The section has already been linked.  See if we should
2957 	 issue a warning.  */
2958       return _bfd_handle_already_linked (sec, l, info);
2959     }
2960 
2961   /* This is the first section with this name.  Record it.  */
2962   if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
2963     info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
2964   return false;
2965 }
2966 
2967 /* Choose a neighbouring section to S in OBFD that will be output, or
2968    the absolute section if ADDR is out of bounds of the neighbours.  */
2969 
2970 asection *
2971 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
2972 {
2973   asection *next, *prev, *best;
2974 
2975   /* Find preceding kept section.  */
2976   for (prev = s->prev; prev != NULL; prev = prev->prev)
2977     if ((prev->flags & SEC_EXCLUDE) == 0
2978 	&& !bfd_section_removed_from_list (obfd, prev))
2979       break;
2980 
2981   /* Find following kept section.  Start at prev->next because
2982      other sections may have been added after S was removed.  */
2983   if (s->prev != NULL)
2984     next = s->prev->next;
2985   else
2986     next = s->owner->sections;
2987   for (; next != NULL; next = next->next)
2988     if ((next->flags & SEC_EXCLUDE) == 0
2989 	&& !bfd_section_removed_from_list (obfd, next))
2990       break;
2991 
2992   /* Choose better of two sections, based on flags.  The idea
2993      is to choose a section that will be in the same segment
2994      as S would have been if it was kept.  */
2995   best = next;
2996   if (prev == NULL)
2997     {
2998       if (next == NULL)
2999 	best = bfd_abs_section_ptr;
3000     }
3001   else if (next == NULL)
3002     best = prev;
3003   else if (((prev->flags ^ next->flags)
3004 	    & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3005     {
3006       if (((next->flags ^ s->flags)
3007 	   & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3008 	  /* We prefer to choose a loaded section.  Section S
3009 	     doesn't have SEC_LOAD set (it being excluded, that
3010 	     part of the flag processing didn't happen) so we
3011 	     can't compare that flag to those of NEXT and PREV.  */
3012 	  || ((prev->flags & SEC_LOAD) != 0
3013 	      && (next->flags & SEC_LOAD) == 0))
3014 	best = prev;
3015     }
3016   else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
3017     {
3018       if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
3019 	best = prev;
3020     }
3021   else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
3022     {
3023       if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3024 	best = prev;
3025     }
3026   else
3027     {
3028       /* Flags we care about are the same.  Prefer the following
3029 	 section if that will result in a positive valued sym.  */
3030       if (addr < next->vma)
3031 	best = prev;
3032     }
3033 
3034   return best;
3035 }
3036 
3037 /* Convert symbols in excluded output sections to use a kept section.  */
3038 
3039 static bool
3040 fix_syms (struct bfd_link_hash_entry *h, void *data)
3041 {
3042   bfd *obfd = (bfd *) data;
3043 
3044   if (h->type == bfd_link_hash_defined
3045       || h->type == bfd_link_hash_defweak)
3046     {
3047       asection *s = h->u.def.section;
3048       if (s != NULL
3049 	  && s->output_section != NULL
3050 	  && (s->output_section->flags & SEC_EXCLUDE) != 0
3051 	  && bfd_section_removed_from_list (obfd, s->output_section))
3052 	{
3053 	  asection *op;
3054 
3055 	  h->u.def.value += s->output_offset + s->output_section->vma;
3056 	  op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3057 	  h->u.def.value -= op->vma;
3058 	  h->u.def.section = op;
3059 	}
3060     }
3061 
3062   return true;
3063 }
3064 
3065 void
3066 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3067 {
3068   bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3069 }
3070 
3071 /*
3072 FUNCTION
3073 	bfd_generic_define_common_symbol
3074 
3075 SYNOPSIS
3076 	bool bfd_generic_define_common_symbol
3077 	  (bfd *output_bfd, struct bfd_link_info *info,
3078 	   struct bfd_link_hash_entry *h);
3079 
3080 DESCRIPTION
3081 	Convert common symbol @var{h} into a defined symbol.
3082 	Return TRUE on success and FALSE on failure.
3083 
3084 .#define bfd_define_common_symbol(output_bfd, info, h) \
3085 .	BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3086 .
3087 */
3088 
3089 bool
3090 bfd_generic_define_common_symbol (bfd *output_bfd,
3091 				  struct bfd_link_info *info ATTRIBUTE_UNUSED,
3092 				  struct bfd_link_hash_entry *h)
3093 {
3094   unsigned int power_of_two;
3095   bfd_vma alignment, size;
3096   asection *section;
3097 
3098   BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3099 
3100   size = h->u.c.size;
3101   power_of_two = h->u.c.p->alignment_power;
3102   section = h->u.c.p->section;
3103 
3104   /* Increase the size of the section to align the common symbol.
3105      The alignment must be a power of two.  But if the section does
3106      not have any alignment requirement then do not increase the
3107      alignment unnecessarily.  */
3108   if (power_of_two)
3109     alignment = bfd_octets_per_byte (output_bfd, section) << power_of_two;
3110   else
3111     alignment = 1;
3112   BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3113   section->size += alignment - 1;
3114   section->size &= -alignment;
3115 
3116   /* Adjust the section's overall alignment if necessary.  */
3117   if (power_of_two > section->alignment_power)
3118     section->alignment_power = power_of_two;
3119 
3120   /* Change the symbol from common to defined.  */
3121   h->type = bfd_link_hash_defined;
3122   h->u.def.section = section;
3123   h->u.def.value = section->size;
3124 
3125   /* Increase the size of the section.  */
3126   section->size += size;
3127 
3128   /* Make sure the section is allocated in memory, and make sure that
3129      it is no longer a common section.  */
3130   section->flags |= SEC_ALLOC;
3131   section->flags &= ~(SEC_IS_COMMON | SEC_HAS_CONTENTS);
3132   return true;
3133 }
3134 
3135 /*
3136 FUNCTION
3137 	_bfd_generic_link_hide_symbol
3138 
3139 SYNOPSIS
3140 	void _bfd_generic_link_hide_symbol
3141 	  (bfd *output_bfd, struct bfd_link_info *info,
3142 	   struct bfd_link_hash_entry *h);
3143 
3144 DESCRIPTION
3145 	Hide symbol @var{h}.
3146 	This is an internal function.  It should not be called from
3147 	outside the BFD library.
3148 
3149 .#define bfd_link_hide_symbol(output_bfd, info, h) \
3150 .	BFD_SEND (output_bfd, _bfd_link_hide_symbol, (output_bfd, info, h))
3151 .
3152 */
3153 
3154 void
3155 _bfd_generic_link_hide_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3156 			       struct bfd_link_info *info ATTRIBUTE_UNUSED,
3157 			       struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED)
3158 {
3159 }
3160 
3161 /*
3162 FUNCTION
3163 	bfd_generic_define_start_stop
3164 
3165 SYNOPSIS
3166 	struct bfd_link_hash_entry *bfd_generic_define_start_stop
3167 	  (struct bfd_link_info *info,
3168 	   const char *symbol, asection *sec);
3169 
3170 DESCRIPTION
3171 	Define a __start, __stop, .startof. or .sizeof. symbol.
3172 	Return the symbol or NULL if no such undefined symbol exists.
3173 
3174 .#define bfd_define_start_stop(output_bfd, info, symbol, sec) \
3175 .	BFD_SEND (output_bfd, _bfd_define_start_stop, (info, symbol, sec))
3176 .
3177 */
3178 
3179 struct bfd_link_hash_entry *
3180 bfd_generic_define_start_stop (struct bfd_link_info *info,
3181 			       const char *symbol, asection *sec)
3182 {
3183   struct bfd_link_hash_entry *h;
3184 
3185   h = bfd_link_hash_lookup (info->hash, symbol, false, false, true);
3186   if (h != NULL
3187       && !h->ldscript_def
3188       && (h->type == bfd_link_hash_undefined
3189 	  || h->type == bfd_link_hash_undefweak))
3190     {
3191       h->type = bfd_link_hash_defined;
3192       h->u.def.section = sec;
3193       h->u.def.value = 0;
3194       return h;
3195     }
3196   return NULL;
3197 }
3198 
3199 /*
3200 FUNCTION
3201 	bfd_find_version_for_sym
3202 
3203 SYNOPSIS
3204 	struct bfd_elf_version_tree * bfd_find_version_for_sym
3205 	  (struct bfd_elf_version_tree *verdefs,
3206 	   const char *sym_name, bool *hide);
3207 
3208 DESCRIPTION
3209 	Search an elf version script tree for symbol versioning
3210 	info and export / don't-export status for a given symbol.
3211 	Return non-NULL on success and NULL on failure; also sets
3212 	the output @samp{hide} boolean parameter.
3213 
3214 */
3215 
3216 struct bfd_elf_version_tree *
3217 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3218 			  const char *sym_name,
3219 			  bool *hide)
3220 {
3221   struct bfd_elf_version_tree *t;
3222   struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3223   struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3224 
3225   local_ver = NULL;
3226   global_ver = NULL;
3227   star_local_ver = NULL;
3228   star_global_ver = NULL;
3229   exist_ver = NULL;
3230   for (t = verdefs; t != NULL; t = t->next)
3231     {
3232       if (t->globals.list != NULL)
3233 	{
3234 	  struct bfd_elf_version_expr *d = NULL;
3235 
3236 	  while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3237 	    {
3238 	      if (d->literal || strcmp (d->pattern, "*") != 0)
3239 		global_ver = t;
3240 	      else
3241 		star_global_ver = t;
3242 	      if (d->symver)
3243 		exist_ver = t;
3244 	      d->script = 1;
3245 	      /* If the match is a wildcard pattern, keep looking for
3246 		 a more explicit, perhaps even local, match.  */
3247 	      if (d->literal)
3248 		break;
3249 	    }
3250 
3251 	  if (d != NULL)
3252 	    break;
3253 	}
3254 
3255       if (t->locals.list != NULL)
3256 	{
3257 	  struct bfd_elf_version_expr *d = NULL;
3258 
3259 	  while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3260 	    {
3261 	      if (d->literal || strcmp (d->pattern, "*") != 0)
3262 		local_ver = t;
3263 	      else
3264 		star_local_ver = t;
3265 	      /* If the match is a wildcard pattern, keep looking for
3266 		 a more explicit, perhaps even global, match.  */
3267 	      if (d->literal)
3268 		{
3269 		  /* An exact match overrides a global wildcard.  */
3270 		  global_ver = NULL;
3271 		  star_global_ver = NULL;
3272 		  break;
3273 		}
3274 	    }
3275 
3276 	  if (d != NULL)
3277 	    break;
3278 	}
3279     }
3280 
3281   if (global_ver == NULL && local_ver == NULL)
3282     global_ver = star_global_ver;
3283 
3284   if (global_ver != NULL)
3285     {
3286       /* If we already have a versioned symbol that matches the
3287 	 node for this symbol, then we don't want to create a
3288 	 duplicate from the unversioned symbol.  Instead hide the
3289 	 unversioned symbol.  */
3290       *hide = exist_ver == global_ver;
3291       return global_ver;
3292     }
3293 
3294   if (local_ver == NULL)
3295     local_ver = star_local_ver;
3296 
3297   if (local_ver != NULL)
3298     {
3299       *hide = true;
3300       return local_ver;
3301     }
3302 
3303   return NULL;
3304 }
3305 
3306 /*
3307 FUNCTION
3308 	bfd_hide_sym_by_version
3309 
3310 SYNOPSIS
3311 	bool bfd_hide_sym_by_version
3312 	  (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3313 
3314 DESCRIPTION
3315 	Search an elf version script tree for symbol versioning
3316 	info for a given symbol.  Return TRUE if the symbol is hidden.
3317 
3318 */
3319 
3320 bool
3321 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3322 			 const char *sym_name)
3323 {
3324   bool hidden = false;
3325   bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3326   return hidden;
3327 }
3328 
3329 /*
3330 FUNCTION
3331 	bfd_link_check_relocs
3332 
3333 SYNOPSIS
3334 	bool bfd_link_check_relocs
3335 	  (bfd *abfd, struct bfd_link_info *info);
3336 
3337 DESCRIPTION
3338 	Checks the relocs in ABFD for validity.
3339 	Does not execute the relocs.
3340 	Return TRUE if everything is OK, FALSE otherwise.
3341 	This is the external entry point to this code.
3342 */
3343 
3344 bool
3345 bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3346 {
3347   return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info));
3348 }
3349 
3350 /*
3351 FUNCTION
3352 	_bfd_generic_link_check_relocs
3353 
3354 SYNOPSIS
3355 	bool _bfd_generic_link_check_relocs
3356 	  (bfd *abfd, struct bfd_link_info *info);
3357 
3358 DESCRIPTION
3359 	Stub function for targets that do not implement reloc checking.
3360 	Return TRUE.
3361 	This is an internal function.  It should not be called from
3362 	outside the BFD library.
3363 */
3364 
3365 bool
3366 _bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED,
3367 				struct bfd_link_info *info ATTRIBUTE_UNUSED)
3368 {
3369   return true;
3370 }
3371 
3372 /*
3373 FUNCTION
3374 	bfd_merge_private_bfd_data
3375 
3376 SYNOPSIS
3377 	bool bfd_merge_private_bfd_data
3378 	  (bfd *ibfd, struct bfd_link_info *info);
3379 
3380 DESCRIPTION
3381 	Merge private BFD information from the BFD @var{ibfd} to the
3382 	the output file BFD when linking.  Return <<TRUE>> on success,
3383 	<<FALSE>> on error.  Possible error returns are:
3384 
3385 	o <<bfd_error_no_memory>> -
3386 	Not enough memory exists to create private data for @var{obfd}.
3387 
3388 .#define bfd_merge_private_bfd_data(ibfd, info) \
3389 .	BFD_SEND ((info)->output_bfd, _bfd_merge_private_bfd_data, \
3390 .		  (ibfd, info))
3391 */
3392 
3393 /*
3394 INTERNAL_FUNCTION
3395 	_bfd_generic_verify_endian_match
3396 
3397 SYNOPSIS
3398 	bool _bfd_generic_verify_endian_match
3399 	  (bfd *ibfd, struct bfd_link_info *info);
3400 
3401 DESCRIPTION
3402 	Can be used from / for bfd_merge_private_bfd_data to check that
3403 	endianness matches between input and output file.  Returns
3404 	TRUE for a match, otherwise returns FALSE and emits an error.
3405 */
3406 
3407 bool
3408 _bfd_generic_verify_endian_match (bfd *ibfd, struct bfd_link_info *info)
3409 {
3410   bfd *obfd = info->output_bfd;
3411 
3412   if (ibfd->xvec->byteorder != obfd->xvec->byteorder
3413       && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
3414       && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
3415     {
3416       if (bfd_big_endian (ibfd))
3417 	_bfd_error_handler (_("%pB: compiled for a big endian system "
3418 			      "and target is little endian"), ibfd);
3419       else
3420 	_bfd_error_handler (_("%pB: compiled for a little endian system "
3421 			      "and target is big endian"), ibfd);
3422       bfd_set_error (bfd_error_wrong_format);
3423       return false;
3424     }
3425 
3426   return true;
3427 }
3428 
3429 int
3430 _bfd_nolink_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED,
3431 			    struct bfd_link_info *info ATTRIBUTE_UNUSED)
3432 {
3433   return 0;
3434 }
3435 
3436 bool
3437 _bfd_nolink_bfd_relax_section (bfd *abfd,
3438 			       asection *section ATTRIBUTE_UNUSED,
3439 			       struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3440 			       bool *again ATTRIBUTE_UNUSED)
3441 {
3442   return _bfd_bool_bfd_false_error (abfd);
3443 }
3444 
3445 bfd_byte *
3446 _bfd_nolink_bfd_get_relocated_section_contents
3447     (bfd *abfd,
3448      struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3449      struct bfd_link_order *link_order ATTRIBUTE_UNUSED,
3450      bfd_byte *data ATTRIBUTE_UNUSED,
3451      bool relocatable ATTRIBUTE_UNUSED,
3452      asymbol **symbols ATTRIBUTE_UNUSED)
3453 {
3454   return (bfd_byte *) _bfd_ptr_bfd_null_error (abfd);
3455 }
3456 
3457 bool
3458 _bfd_nolink_bfd_lookup_section_flags
3459     (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3460      struct flag_info *flaginfo ATTRIBUTE_UNUSED,
3461      asection *section)
3462 {
3463   return _bfd_bool_bfd_false_error (section->owner);
3464 }
3465 
3466 bool
3467 _bfd_nolink_bfd_is_group_section (bfd *abfd,
3468 				  const asection *sec ATTRIBUTE_UNUSED)
3469 {
3470   return _bfd_bool_bfd_false_error (abfd);
3471 }
3472 
3473 const char *
3474 _bfd_nolink_bfd_group_name (bfd *abfd,
3475 			    const asection *sec ATTRIBUTE_UNUSED)
3476 {
3477   return _bfd_ptr_bfd_null_error (abfd);
3478 }
3479 
3480 bool
3481 _bfd_nolink_bfd_discard_group (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
3482 {
3483   return _bfd_bool_bfd_false_error (abfd);
3484 }
3485 
3486 struct bfd_link_hash_table *
3487 _bfd_nolink_bfd_link_hash_table_create (bfd *abfd)
3488 {
3489   return (struct bfd_link_hash_table *) _bfd_ptr_bfd_null_error (abfd);
3490 }
3491 
3492 void
3493 _bfd_nolink_bfd_link_just_syms (asection *sec ATTRIBUTE_UNUSED,
3494 				struct bfd_link_info *info ATTRIBUTE_UNUSED)
3495 {
3496 }
3497 
3498 void
3499 _bfd_nolink_bfd_copy_link_hash_symbol_type
3500     (bfd *abfd ATTRIBUTE_UNUSED,
3501      struct bfd_link_hash_entry *from ATTRIBUTE_UNUSED,
3502      struct bfd_link_hash_entry *to ATTRIBUTE_UNUSED)
3503 {
3504 }
3505 
3506 bool
3507 _bfd_nolink_bfd_link_split_section (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
3508 {
3509   return _bfd_bool_bfd_false_error (abfd);
3510 }
3511 
3512 bool
3513 _bfd_nolink_section_already_linked (bfd *abfd,
3514 				    asection *sec ATTRIBUTE_UNUSED,
3515 				    struct bfd_link_info *info ATTRIBUTE_UNUSED)
3516 {
3517   return _bfd_bool_bfd_false_error (abfd);
3518 }
3519 
3520 bool
3521 _bfd_nolink_bfd_define_common_symbol
3522     (bfd *abfd,
3523      struct bfd_link_info *info ATTRIBUTE_UNUSED,
3524      struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED)
3525 {
3526   return _bfd_bool_bfd_false_error (abfd);
3527 }
3528 
3529 struct bfd_link_hash_entry *
3530 _bfd_nolink_bfd_define_start_stop (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3531 				   const char *name ATTRIBUTE_UNUSED,
3532 				   asection *sec)
3533 {
3534   return (struct bfd_link_hash_entry *) _bfd_ptr_bfd_null_error (sec->owner);
3535 }
3536 
3537 /* Return false if linker should avoid caching relocation infomation
3538    and symbol tables of input files in memory.  */
3539 
3540 bool
3541 _bfd_link_keep_memory (struct bfd_link_info * info)
3542 {
3543   bfd *abfd;
3544   bfd_size_type size;
3545 
3546   if (!info->keep_memory)
3547     return false;
3548 
3549   if (info->max_cache_size == (bfd_size_type) -1)
3550     return true;
3551 
3552   abfd = info->input_bfds;
3553   size = info->cache_size;
3554   do
3555     {
3556       if (size >= info->max_cache_size)
3557 	{
3558 	  /* Over the limit.  Reduce the memory usage.  */
3559 	  info->keep_memory = false;
3560 	  return false;
3561 	}
3562       if (!abfd)
3563 	break;
3564       size += abfd->alloc_size;
3565       abfd = abfd->link.next;
3566     }
3567   while (1);
3568 
3569   return true;
3570 }
3571