1 /* linker.c -- BFD linker routines 2 Copyright (C) 1993-2024 Free Software Foundation, Inc. 3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 20 MA 02110-1301, USA. */ 21 22 #include "sysdep.h" 23 #include "bfd.h" 24 #include "libbfd.h" 25 #include "bfdlink.h" 26 #include "genlink.h" 27 28 /* 29 SECTION 30 Linker Functions 31 32 @cindex Linker 33 The linker uses three special entry points in the BFD target 34 vector. It is not necessary to write special routines for 35 these entry points when creating a new BFD back end, since 36 generic versions are provided. However, writing them can 37 speed up linking and make it use significantly less runtime 38 memory. 39 40 The first routine creates a hash table used by the other 41 routines. The second routine adds the symbols from an object 42 file to the hash table. The third routine takes all the 43 object files and links them together to create the output 44 file. These routines are designed so that the linker proper 45 does not need to know anything about the symbols in the object 46 files that it is linking. The linker merely arranges the 47 sections as directed by the linker script and lets BFD handle 48 the details of symbols and relocs. 49 50 The second routine and third routines are passed a pointer to 51 a <<struct bfd_link_info>> structure (defined in 52 <<bfdlink.h>>) which holds information relevant to the link, 53 including the linker hash table (which was created by the 54 first routine) and a set of callback functions to the linker 55 proper. 56 57 The generic linker routines are in <<linker.c>>, and use the 58 header file <<genlink.h>>. As of this writing, the only back 59 ends which have implemented versions of these routines are 60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out 61 routines are used as examples throughout this section. 62 63 @menu 64 @* Creating a Linker Hash Table:: 65 @* Adding Symbols to the Hash Table:: 66 @* Performing the Final Link:: 67 @end menu 68 69 INODE 70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions 71 SUBSECTION 72 Creating a linker hash table 73 74 @cindex _bfd_link_hash_table_create in target vector 75 @cindex target vector (_bfd_link_hash_table_create) 76 The linker routines must create a hash table, which must be 77 derived from <<struct bfd_link_hash_table>> described in 78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to 79 create a derived hash table. This entry point is called using 80 the target vector of the linker output file. 81 82 The <<_bfd_link_hash_table_create>> entry point must allocate 83 and initialize an instance of the desired hash table. If the 84 back end does not require any additional information to be 85 stored with the entries in the hash table, the entry point may 86 simply create a <<struct bfd_link_hash_table>>. Most likely, 87 however, some additional information will be needed. 88 89 For example, with each entry in the hash table the a.out 90 linker keeps the index the symbol has in the final output file 91 (this index number is used so that when doing a relocatable 92 link the symbol index used in the output file can be quickly 93 filled in when copying over a reloc). The a.out linker code 94 defines the required structures and functions for a hash table 95 derived from <<struct bfd_link_hash_table>>. The a.out linker 96 hash table is created by the function 97 <<NAME(aout,link_hash_table_create)>>; it simply allocates 98 space for the hash table, initializes it, and returns a 99 pointer to it. 100 101 When writing the linker routines for a new back end, you will 102 generally not know exactly which fields will be required until 103 you have finished. You should simply create a new hash table 104 which defines no additional fields, and then simply add fields 105 as they become necessary. 106 107 INODE 108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions 109 SUBSECTION 110 Adding symbols to the hash table 111 112 @cindex _bfd_link_add_symbols in target vector 113 @cindex target vector (_bfd_link_add_symbols) 114 The linker proper will call the <<_bfd_link_add_symbols>> 115 entry point for each object file or archive which is to be 116 linked (typically these are the files named on the command 117 line, but some may also come from the linker script). The 118 entry point is responsible for examining the file. For an 119 object file, BFD must add any relevant symbol information to 120 the hash table. For an archive, BFD must determine which 121 elements of the archive should be used and adding them to the 122 link. 123 124 The a.out version of this entry point is 125 <<NAME(aout,link_add_symbols)>>. 126 127 @menu 128 @* Differing file formats:: 129 @* Adding symbols from an object file:: 130 @* Adding symbols from an archive:: 131 @end menu 132 133 INODE 134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table 135 SUBSUBSECTION 136 Differing file formats 137 138 Normally all the files involved in a link will be of the same 139 format, but it is also possible to link together different 140 format object files, and the back end must support that. The 141 <<_bfd_link_add_symbols>> entry point is called via the target 142 vector of the file to be added. This has an important 143 consequence: the function may not assume that the hash table 144 is the type created by the corresponding 145 <<_bfd_link_hash_table_create>> vector. All the 146 <<_bfd_link_add_symbols>> function can assume about the hash 147 table is that it is derived from <<struct 148 bfd_link_hash_table>>. 149 150 Sometimes the <<_bfd_link_add_symbols>> function must store 151 some information in the hash table entry to be used by the 152 <<_bfd_final_link>> function. In such a case the output bfd 153 xvec must be checked to make sure that the hash table was 154 created by an object file of the same format. 155 156 The <<_bfd_final_link>> routine must be prepared to handle a 157 hash entry without any extra information added by the 158 <<_bfd_link_add_symbols>> function. A hash entry without 159 extra information will also occur when the linker script 160 directs the linker to create a symbol. Note that, regardless 161 of how a hash table entry is added, all the fields will be 162 initialized to some sort of null value by the hash table entry 163 initialization function. 164 165 See <<ecoff_link_add_externals>> for an example of how to 166 check the output bfd before saving information (in this 167 case, the ECOFF external symbol debugging information) in a 168 hash table entry. 169 170 INODE 171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table 172 SUBSUBSECTION 173 Adding symbols from an object file 174 175 When the <<_bfd_link_add_symbols>> routine is passed an object 176 file, it must add all externally visible symbols in that 177 object file to the hash table. The actual work of adding the 178 symbol to the hash table is normally handled by the function 179 <<_bfd_generic_link_add_one_symbol>>. The 180 <<_bfd_link_add_symbols>> routine is responsible for reading 181 all the symbols from the object file and passing the correct 182 information to <<_bfd_generic_link_add_one_symbol>>. 183 184 The <<_bfd_link_add_symbols>> routine should not use 185 <<bfd_canonicalize_symtab>> to read the symbols. The point of 186 providing this routine is to avoid the overhead of converting 187 the symbols into generic <<asymbol>> structures. 188 189 @findex _bfd_generic_link_add_one_symbol 190 <<_bfd_generic_link_add_one_symbol>> handles the details of 191 combining common symbols, warning about multiple definitions, 192 and so forth. It takes arguments which describe the symbol to 193 add, notably symbol flags, a section, and an offset. The 194 symbol flags include such things as <<BSF_WEAK>> or 195 <<BSF_INDIRECT>>. The section is a section in the object 196 file, or something like <<bfd_und_section_ptr>> for an undefined 197 symbol or <<bfd_com_section_ptr>> for a common symbol. 198 199 If the <<_bfd_final_link>> routine is also going to need to 200 read the symbol information, the <<_bfd_link_add_symbols>> 201 routine should save it somewhere attached to the object file 202 BFD. However, the information should only be saved if the 203 <<keep_memory>> field of the <<info>> argument is TRUE, so 204 that the <<-no-keep-memory>> linker switch is effective. 205 206 The a.out function which adds symbols from an object file is 207 <<aout_link_add_object_symbols>>, and most of the interesting 208 work is in <<aout_link_add_symbols>>. The latter saves 209 pointers to the hash tables entries created by 210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number, 211 so that the <<_bfd_final_link>> routine does not have to call 212 the hash table lookup routine to locate the entry. 213 214 INODE 215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table 216 SUBSUBSECTION 217 Adding symbols from an archive 218 219 When the <<_bfd_link_add_symbols>> routine is passed an 220 archive, it must look through the symbols defined by the 221 archive and decide which elements of the archive should be 222 included in the link. For each such element it must call the 223 <<add_archive_element>> linker callback, and it must add the 224 symbols from the object file to the linker hash table. (The 225 callback may in fact indicate that a replacement BFD should be 226 used, in which case the symbols from that BFD should be added 227 to the linker hash table instead.) 228 229 @findex _bfd_generic_link_add_archive_symbols 230 In most cases the work of looking through the symbols in the 231 archive should be done by the 232 <<_bfd_generic_link_add_archive_symbols>> function. 233 <<_bfd_generic_link_add_archive_symbols>> is passed a function 234 to call to make the final decision about adding an archive 235 element to the link and to do the actual work of adding the 236 symbols to the linker hash table. If the element is to 237 be included, the <<add_archive_element>> linker callback 238 routine must be called with the element as an argument, and 239 the element's symbols must be added to the linker hash table 240 just as though the element had itself been passed to the 241 <<_bfd_link_add_symbols>> function. 242 243 When the a.out <<_bfd_link_add_symbols>> function receives an 244 archive, it calls <<_bfd_generic_link_add_archive_symbols>> 245 passing <<aout_link_check_archive_element>> as the function 246 argument. <<aout_link_check_archive_element>> calls 247 <<aout_link_check_ar_symbols>>. If the latter decides to add 248 the element (an element is only added if it provides a real, 249 non-common, definition for a previously undefined or common 250 symbol) it calls the <<add_archive_element>> callback and then 251 <<aout_link_check_archive_element>> calls 252 <<aout_link_add_symbols>> to actually add the symbols to the 253 linker hash table - possibly those of a substitute BFD, if the 254 <<add_archive_element>> callback avails itself of that option. 255 256 The ECOFF back end is unusual in that it does not normally 257 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF 258 archives already contain a hash table of symbols. The ECOFF 259 back end searches the archive itself to avoid the overhead of 260 creating a new hash table. 261 262 INODE 263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions 264 SUBSECTION 265 Performing the final link 266 267 @cindex _bfd_link_final_link in target vector 268 @cindex target vector (_bfd_final_link) 269 When all the input files have been processed, the linker calls 270 the <<_bfd_final_link>> entry point of the output BFD. This 271 routine is responsible for producing the final output file, 272 which has several aspects. It must relocate the contents of 273 the input sections and copy the data into the output sections. 274 It must build an output symbol table including any local 275 symbols from the input files and the global symbols from the 276 hash table. When producing relocatable output, it must 277 modify the input relocs and write them into the output file. 278 There may also be object format dependent work to be done. 279 280 The linker will also call the <<write_object_contents>> entry 281 point when the BFD is closed. The two entry points must work 282 together in order to produce the correct output file. 283 284 The details of how this works are inevitably dependent upon 285 the specific object file format. The a.out 286 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>. 287 288 @menu 289 @* Information provided by the linker:: 290 @* Relocating the section contents:: 291 @* Writing the symbol table:: 292 @end menu 293 294 INODE 295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link 296 SUBSUBSECTION 297 Information provided by the linker 298 299 Before the linker calls the <<_bfd_final_link>> entry point, 300 it sets up some data structures for the function to use. 301 302 The <<input_bfds>> field of the <<bfd_link_info>> structure 303 will point to a list of all the input files included in the 304 link. These files are linked through the <<link.next>> field 305 of the <<bfd>> structure. 306 307 Each section in the output file will have a list of 308 <<link_order>> structures attached to the <<map_head.link_order>> 309 field (the <<link_order>> structure is defined in 310 <<bfdlink.h>>). These structures describe how to create the 311 contents of the output section in terms of the contents of 312 various input sections, fill constants, and, eventually, other 313 types of information. They also describe relocs that must be 314 created by the BFD backend, but do not correspond to any input 315 file; this is used to support -Ur, which builds constructors 316 while generating a relocatable object file. 317 318 INODE 319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link 320 SUBSUBSECTION 321 Relocating the section contents 322 323 The <<_bfd_final_link>> function should look through the 324 <<link_order>> structures attached to each section of the 325 output file. Each <<link_order>> structure should either be 326 handled specially, or it should be passed to the function 327 <<_bfd_default_link_order>> which will do the right thing 328 (<<_bfd_default_link_order>> is defined in <<linker.c>>). 329 330 For efficiency, a <<link_order>> of type 331 <<bfd_indirect_link_order>> whose associated section belongs 332 to a BFD of the same format as the output BFD must be handled 333 specially. This type of <<link_order>> describes part of an 334 output section in terms of a section belonging to one of the 335 input files. The <<_bfd_final_link>> function should read the 336 contents of the section and any associated relocs, apply the 337 relocs to the section contents, and write out the modified 338 section contents. If performing a relocatable link, the 339 relocs themselves must also be modified and written out. 340 341 @findex _bfd_relocate_contents 342 @findex _bfd_final_link_relocate 343 The functions <<_bfd_relocate_contents>> and 344 <<_bfd_final_link_relocate>> provide some general support for 345 performing the actual relocations, notably overflow checking. 346 Their arguments include information about the symbol the 347 relocation is against and a <<reloc_howto_type>> argument 348 which describes the relocation to perform. These functions 349 are defined in <<reloc.c>>. 350 351 The a.out function which handles reading, relocating, and 352 writing section contents is <<aout_link_input_section>>. The 353 actual relocation is done in <<aout_link_input_section_std>> 354 and <<aout_link_input_section_ext>>. 355 356 INODE 357 Writing the symbol table, , Relocating the section contents, Performing the Final Link 358 SUBSUBSECTION 359 Writing the symbol table 360 361 The <<_bfd_final_link>> function must gather all the symbols 362 in the input files and write them out. It must also write out 363 all the symbols in the global hash table. This must be 364 controlled by the <<strip>> and <<discard>> fields of the 365 <<bfd_link_info>> structure. 366 367 The local symbols of the input files will not have been 368 entered into the linker hash table. The <<_bfd_final_link>> 369 routine must consider each input file and include the symbols 370 in the output file. It may be convenient to do this when 371 looking through the <<link_order>> structures, or it may be 372 done by stepping through the <<input_bfds>> list. 373 374 The <<_bfd_final_link>> routine must also traverse the global 375 hash table to gather all the externally visible symbols. It 376 is possible that most of the externally visible symbols may be 377 written out when considering the symbols of each input file, 378 but it is still necessary to traverse the hash table since the 379 linker script may have defined some symbols that are not in 380 any of the input files. 381 382 The <<strip>> field of the <<bfd_link_info>> structure 383 controls which symbols are written out. The possible values 384 are listed in <<bfdlink.h>>. If the value is <<strip_some>>, 385 then the <<keep_hash>> field of the <<bfd_link_info>> 386 structure is a hash table of symbols to keep; each symbol 387 should be looked up in this hash table, and only symbols which 388 are present should be included in the output file. 389 390 If the <<strip>> field of the <<bfd_link_info>> structure 391 permits local symbols to be written out, the <<discard>> field 392 is used to further controls which local symbols are included 393 in the output file. If the value is <<discard_l>>, then all 394 local symbols which begin with a certain prefix are discarded; 395 this is controlled by the <<bfd_is_local_label_name>> entry point. 396 397 The a.out backend handles symbols by calling 398 <<aout_link_write_symbols>> on each input BFD and then 399 traversing the global hash table with the function 400 <<aout_link_write_other_symbol>>. It builds a string table 401 while writing out the symbols, which is written to the output 402 file at the end of <<NAME(aout,final_link)>>. 403 */ 404 405 static bool generic_link_add_object_symbols 406 (bfd *, struct bfd_link_info *); 407 static bool generic_link_check_archive_element 408 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *, 409 bool *); 410 static bool generic_link_add_symbol_list 411 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **); 412 static bool generic_add_output_symbol 413 (bfd *, size_t *psymalloc, asymbol *); 414 static bool default_data_link_order 415 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *); 416 static bool default_indirect_link_order 417 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *, 418 bool); 419 420 /* The link hash table structure is defined in bfdlink.h. It provides 421 a base hash table which the backend specific hash tables are built 422 upon. */ 423 424 /* Routine to create an entry in the link hash table. */ 425 426 struct bfd_hash_entry * 427 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry, 428 struct bfd_hash_table *table, 429 const char *string) 430 { 431 /* Allocate the structure if it has not already been allocated by a 432 subclass. */ 433 if (entry == NULL) 434 { 435 entry = (struct bfd_hash_entry *) 436 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry)); 437 if (entry == NULL) 438 return entry; 439 } 440 441 /* Call the allocation method of the superclass. */ 442 entry = bfd_hash_newfunc (entry, table, string); 443 if (entry) 444 { 445 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry; 446 447 /* Initialize the local fields. */ 448 memset ((char *) &h->root + sizeof (h->root), 0, 449 sizeof (*h) - sizeof (h->root)); 450 } 451 452 return entry; 453 } 454 455 /* Initialize a link hash table. The BFD argument is the one 456 responsible for creating this table. */ 457 458 bool 459 _bfd_link_hash_table_init 460 (struct bfd_link_hash_table *table, 461 bfd *abfd ATTRIBUTE_UNUSED, 462 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *, 463 struct bfd_hash_table *, 464 const char *), 465 unsigned int entsize) 466 { 467 bool ret; 468 469 BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash); 470 table->undefs = NULL; 471 table->undefs_tail = NULL; 472 table->type = bfd_link_generic_hash_table; 473 474 ret = bfd_hash_table_init (&table->table, newfunc, entsize); 475 if (ret) 476 { 477 /* Arrange for destruction of this hash table on closing ABFD. */ 478 table->hash_table_free = _bfd_generic_link_hash_table_free; 479 abfd->link.hash = table; 480 abfd->is_linker_output = true; 481 } 482 return ret; 483 } 484 485 /* Look up a symbol in a link hash table. If follow is TRUE, we 486 follow bfd_link_hash_indirect and bfd_link_hash_warning links to 487 the real symbol. 488 489 .{* Return TRUE if the symbol described by a linker hash entry H 490 . is going to be absolute. Linker-script defined symbols can be 491 . converted from absolute to section-relative ones late in the 492 . link. Use this macro to correctly determine whether the symbol 493 . will actually end up absolute in output. *} 494 .#define bfd_is_abs_symbol(H) \ 495 . (((H)->type == bfd_link_hash_defined \ 496 . || (H)->type == bfd_link_hash_defweak) \ 497 . && bfd_is_abs_section ((H)->u.def.section) \ 498 . && !(H)->rel_from_abs) 499 . 500 */ 501 502 struct bfd_link_hash_entry * 503 bfd_link_hash_lookup (struct bfd_link_hash_table *table, 504 const char *string, 505 bool create, 506 bool copy, 507 bool follow) 508 { 509 struct bfd_link_hash_entry *ret; 510 511 if (table == NULL || string == NULL) 512 return NULL; 513 514 ret = ((struct bfd_link_hash_entry *) 515 bfd_hash_lookup (&table->table, string, create, copy)); 516 517 if (follow && ret != NULL) 518 { 519 while (ret->type == bfd_link_hash_indirect 520 || ret->type == bfd_link_hash_warning) 521 ret = ret->u.i.link; 522 } 523 524 return ret; 525 } 526 527 /* Look up a symbol in the main linker hash table if the symbol might 528 be wrapped. This should only be used for references to an 529 undefined symbol, not for definitions of a symbol. */ 530 531 struct bfd_link_hash_entry * 532 bfd_wrapped_link_hash_lookup (bfd *abfd, 533 struct bfd_link_info *info, 534 const char *string, 535 bool create, 536 bool copy, 537 bool follow) 538 { 539 size_t amt; 540 541 if (info->wrap_hash != NULL) 542 { 543 const char *l; 544 char prefix = '\0'; 545 546 l = string; 547 if (*l 548 && (*l == bfd_get_symbol_leading_char (abfd) 549 || *l == info->wrap_char)) 550 { 551 prefix = *l; 552 ++l; 553 } 554 555 #undef WRAP 556 #define WRAP "__wrap_" 557 558 if (bfd_hash_lookup (info->wrap_hash, l, false, false) != NULL) 559 { 560 char *n; 561 struct bfd_link_hash_entry *h; 562 563 /* This symbol is being wrapped. We want to replace all 564 references to SYM with references to __wrap_SYM. */ 565 566 amt = strlen (l) + sizeof WRAP + 1; 567 n = (char *) bfd_malloc (amt); 568 if (n == NULL) 569 return NULL; 570 571 n[0] = prefix; 572 n[1] = '\0'; 573 strcat (n, WRAP); 574 strcat (n, l); 575 h = bfd_link_hash_lookup (info->hash, n, create, true, follow); 576 free (n); 577 return h; 578 } 579 580 #undef REAL 581 #define REAL "__real_" 582 583 if (*l == '_' 584 && startswith (l, REAL) 585 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1, 586 false, false) != NULL) 587 { 588 char *n; 589 struct bfd_link_hash_entry *h; 590 591 /* This is a reference to __real_SYM, where SYM is being 592 wrapped. We want to replace all references to __real_SYM 593 with references to SYM. */ 594 595 amt = strlen (l + sizeof REAL - 1) + 2; 596 n = (char *) bfd_malloc (amt); 597 if (n == NULL) 598 return NULL; 599 600 n[0] = prefix; 601 n[1] = '\0'; 602 strcat (n, l + sizeof REAL - 1); 603 h = bfd_link_hash_lookup (info->hash, n, create, true, follow); 604 if (h != NULL) 605 h->ref_real = 1; 606 free (n); 607 return h; 608 } 609 610 #undef REAL 611 } 612 613 return bfd_link_hash_lookup (info->hash, string, create, copy, follow); 614 } 615 616 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_" 617 and the remainder is found in wrap_hash, return the real symbol. */ 618 619 struct bfd_link_hash_entry * 620 unwrap_hash_lookup (struct bfd_link_info *info, 621 bfd *input_bfd, 622 struct bfd_link_hash_entry *h) 623 { 624 const char *l = h->root.string; 625 626 if (*l 627 && (*l == bfd_get_symbol_leading_char (input_bfd) 628 || *l == info->wrap_char)) 629 ++l; 630 631 if (startswith (l, WRAP)) 632 { 633 l += sizeof WRAP - 1; 634 635 if (bfd_hash_lookup (info->wrap_hash, l, false, false) != NULL) 636 { 637 char save = 0; 638 if (l - (sizeof WRAP - 1) != h->root.string) 639 { 640 --l; 641 save = *l; 642 *(char *) l = *h->root.string; 643 } 644 h = bfd_link_hash_lookup (info->hash, l, false, false, false); 645 if (save) 646 *(char *) l = save; 647 } 648 } 649 return h; 650 } 651 #undef WRAP 652 653 /* Traverse a generic link hash table. Differs from bfd_hash_traverse 654 in the treatment of warning symbols. When warning symbols are 655 created they replace the real symbol, so you don't get to see the 656 real symbol in a bfd_hash_traverse. This traversal calls func with 657 the real symbol. */ 658 659 void 660 bfd_link_hash_traverse 661 (struct bfd_link_hash_table *htab, 662 bool (*func) (struct bfd_link_hash_entry *, void *), 663 void *info) 664 { 665 unsigned int i; 666 667 htab->table.frozen = 1; 668 for (i = 0; i < htab->table.size; i++) 669 { 670 struct bfd_link_hash_entry *p; 671 672 p = (struct bfd_link_hash_entry *) htab->table.table[i]; 673 for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next) 674 if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info)) 675 goto out; 676 } 677 out: 678 htab->table.frozen = 0; 679 } 680 681 /* Add a symbol to the linker hash table undefs list. */ 682 683 void 684 bfd_link_add_undef (struct bfd_link_hash_table *table, 685 struct bfd_link_hash_entry *h) 686 { 687 BFD_ASSERT (h->u.undef.next == NULL); 688 if (table->undefs_tail != NULL) 689 table->undefs_tail->u.undef.next = h; 690 if (table->undefs == NULL) 691 table->undefs = h; 692 table->undefs_tail = h; 693 } 694 695 /* The undefs list was designed so that in normal use we don't need to 696 remove entries. However, if symbols on the list are changed from 697 bfd_link_hash_undefined to either bfd_link_hash_undefweak or 698 bfd_link_hash_new for some reason, then they must be removed from the 699 list. Failure to do so might result in the linker attempting to add 700 the symbol to the list again at a later stage. */ 701 702 void 703 bfd_link_repair_undef_list (struct bfd_link_hash_table *table) 704 { 705 struct bfd_link_hash_entry **pun; 706 707 pun = &table->undefs; 708 while (*pun != NULL) 709 { 710 struct bfd_link_hash_entry *h = *pun; 711 712 if (h->type == bfd_link_hash_new 713 || h->type == bfd_link_hash_undefweak) 714 { 715 *pun = h->u.undef.next; 716 h->u.undef.next = NULL; 717 if (h == table->undefs_tail) 718 { 719 if (pun == &table->undefs) 720 table->undefs_tail = NULL; 721 else 722 /* pun points at an u.undef.next field. Go back to 723 the start of the link_hash_entry. */ 724 table->undefs_tail = (struct bfd_link_hash_entry *) 725 ((char *) pun - ((char *) &h->u.undef.next - (char *) h)); 726 break; 727 } 728 } 729 else 730 pun = &h->u.undef.next; 731 } 732 } 733 734 /* Routine to create an entry in a generic link hash table. */ 735 736 struct bfd_hash_entry * 737 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry, 738 struct bfd_hash_table *table, 739 const char *string) 740 { 741 /* Allocate the structure if it has not already been allocated by a 742 subclass. */ 743 if (entry == NULL) 744 { 745 entry = (struct bfd_hash_entry *) 746 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry)); 747 if (entry == NULL) 748 return entry; 749 } 750 751 /* Call the allocation method of the superclass. */ 752 entry = _bfd_link_hash_newfunc (entry, table, string); 753 if (entry) 754 { 755 struct generic_link_hash_entry *ret; 756 757 /* Set local fields. */ 758 ret = (struct generic_link_hash_entry *) entry; 759 ret->written = false; 760 ret->sym = NULL; 761 } 762 763 return entry; 764 } 765 766 /* Create a generic link hash table. */ 767 768 struct bfd_link_hash_table * 769 _bfd_generic_link_hash_table_create (bfd *abfd) 770 { 771 struct generic_link_hash_table *ret; 772 size_t amt = sizeof (struct generic_link_hash_table); 773 774 ret = (struct generic_link_hash_table *) bfd_malloc (amt); 775 if (ret == NULL) 776 return NULL; 777 if (! _bfd_link_hash_table_init (&ret->root, abfd, 778 _bfd_generic_link_hash_newfunc, 779 sizeof (struct generic_link_hash_entry))) 780 { 781 free (ret); 782 return NULL; 783 } 784 return &ret->root; 785 } 786 787 void 788 _bfd_generic_link_hash_table_free (bfd *obfd) 789 { 790 struct generic_link_hash_table *ret; 791 792 BFD_ASSERT (obfd->is_linker_output && obfd->link.hash); 793 ret = (struct generic_link_hash_table *) obfd->link.hash; 794 bfd_hash_table_free (&ret->root.table); 795 free (ret); 796 obfd->link.hash = NULL; 797 obfd->is_linker_output = false; 798 } 799 800 /* Grab the symbols for an object file when doing a generic link. We 801 store the symbols in the outsymbols field. We need to keep them 802 around for the entire link to ensure that we only read them once. 803 If we read them multiple times, we might wind up with relocs and 804 the hash table pointing to different instances of the symbol 805 structure. */ 806 807 bool 808 bfd_generic_link_read_symbols (bfd *abfd) 809 { 810 if (bfd_get_outsymbols (abfd) == NULL) 811 { 812 long symsize; 813 long symcount; 814 815 symsize = bfd_get_symtab_upper_bound (abfd); 816 if (symsize < 0) 817 return false; 818 abfd->outsymbols = bfd_alloc (abfd, symsize); 819 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0) 820 return false; 821 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd)); 822 if (symcount < 0) 823 return false; 824 abfd->symcount = symcount; 825 } 826 827 return true; 828 } 829 830 /* Indicate that we are only retrieving symbol values from this 831 section. We want the symbols to act as though the values in the 832 file are absolute. */ 833 834 void 835 _bfd_generic_link_just_syms (asection *sec, 836 struct bfd_link_info *info ATTRIBUTE_UNUSED) 837 { 838 sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS; 839 sec->output_section = bfd_abs_section_ptr; 840 sec->output_offset = sec->vma; 841 } 842 843 /* Copy the symbol type and other attributes for a linker script 844 assignment from HSRC to HDEST. 845 The default implementation does nothing. */ 846 void 847 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED, 848 struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED, 849 struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED) 850 { 851 } 852 853 /* Generic function to add symbols from an object file to the 854 global hash table. */ 855 856 bool 857 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info) 858 { 859 bool ret; 860 861 switch (bfd_get_format (abfd)) 862 { 863 case bfd_object: 864 ret = generic_link_add_object_symbols (abfd, info); 865 break; 866 case bfd_archive: 867 ret = (_bfd_generic_link_add_archive_symbols 868 (abfd, info, generic_link_check_archive_element)); 869 break; 870 default: 871 bfd_set_error (bfd_error_wrong_format); 872 ret = false; 873 } 874 875 return ret; 876 } 877 878 /* Add symbols from an object file to the global hash table. */ 879 880 static bool 881 generic_link_add_object_symbols (bfd *abfd, 882 struct bfd_link_info *info) 883 { 884 bfd_size_type symcount; 885 struct bfd_symbol **outsyms; 886 887 if (!bfd_generic_link_read_symbols (abfd)) 888 return false; 889 symcount = _bfd_generic_link_get_symcount (abfd); 890 outsyms = _bfd_generic_link_get_symbols (abfd); 891 return generic_link_add_symbol_list (abfd, info, symcount, outsyms); 892 } 893 894 /* Generic function to add symbols from an archive file to the global 895 hash file. This function presumes that the archive symbol table 896 has already been read in (this is normally done by the 897 bfd_check_format entry point). It looks through the archive symbol 898 table for symbols that are undefined or common in the linker global 899 symbol hash table. When one is found, the CHECKFN argument is used 900 to see if an object file should be included. This allows targets 901 to customize common symbol behaviour. CHECKFN should set *PNEEDED 902 to TRUE if the object file should be included, and must also call 903 the bfd_link_info add_archive_element callback function and handle 904 adding the symbols to the global hash table. CHECKFN must notice 905 if the callback indicates a substitute BFD, and arrange to add 906 those symbols instead if it does so. CHECKFN should only return 907 FALSE if some sort of error occurs. */ 908 909 bool 910 _bfd_generic_link_add_archive_symbols 911 (bfd *abfd, 912 struct bfd_link_info *info, 913 bool (*checkfn) (bfd *, struct bfd_link_info *, 914 struct bfd_link_hash_entry *, const char *, bool *)) 915 { 916 bool loop; 917 bfd_size_type amt; 918 unsigned char *included; 919 920 if (! bfd_has_map (abfd)) 921 { 922 /* An empty archive is a special case. */ 923 if (bfd_openr_next_archived_file (abfd, NULL) == NULL) 924 return true; 925 bfd_set_error (bfd_error_no_armap); 926 return false; 927 } 928 929 amt = bfd_ardata (abfd)->symdef_count; 930 if (amt == 0) 931 return true; 932 amt *= sizeof (*included); 933 included = (unsigned char *) bfd_zmalloc (amt); 934 if (included == NULL) 935 return false; 936 937 do 938 { 939 carsym *arsyms; 940 carsym *arsym_end; 941 carsym *arsym; 942 unsigned int indx; 943 file_ptr last_ar_offset = -1; 944 bool needed = false; 945 bfd *element = NULL; 946 947 loop = false; 948 arsyms = bfd_ardata (abfd)->symdefs; 949 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count; 950 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++) 951 { 952 struct bfd_link_hash_entry *h; 953 struct bfd_link_hash_entry *undefs_tail; 954 955 if (included[indx]) 956 continue; 957 if (needed && arsym->file_offset == last_ar_offset) 958 { 959 included[indx] = 1; 960 continue; 961 } 962 963 if (arsym->name == NULL) 964 goto error_return; 965 966 h = bfd_link_hash_lookup (info->hash, arsym->name, 967 false, false, true); 968 969 if (h == NULL 970 && info->pei386_auto_import 971 && startswith (arsym->name, "__imp_")) 972 h = bfd_link_hash_lookup (info->hash, arsym->name + 6, 973 false, false, true); 974 if (h == NULL) 975 continue; 976 977 if (h->type != bfd_link_hash_undefined 978 && h->type != bfd_link_hash_common) 979 { 980 if (h->type != bfd_link_hash_undefweak) 981 /* Symbol must be defined. Don't check it again. */ 982 included[indx] = 1; 983 continue; 984 } 985 986 if (last_ar_offset != arsym->file_offset) 987 { 988 last_ar_offset = arsym->file_offset; 989 element = _bfd_get_elt_at_filepos (abfd, last_ar_offset, 990 info); 991 if (element == NULL 992 || !bfd_check_format (element, bfd_object)) 993 goto error_return; 994 } 995 996 undefs_tail = info->hash->undefs_tail; 997 998 /* CHECKFN will see if this element should be included, and 999 go ahead and include it if appropriate. */ 1000 if (! (*checkfn) (element, info, h, arsym->name, &needed)) 1001 goto error_return; 1002 1003 if (needed) 1004 { 1005 unsigned int mark; 1006 1007 /* Look backward to mark all symbols from this object file 1008 which we have already seen in this pass. */ 1009 mark = indx; 1010 do 1011 { 1012 included[mark] = 1; 1013 if (mark == 0) 1014 break; 1015 --mark; 1016 } 1017 while (arsyms[mark].file_offset == last_ar_offset); 1018 1019 if (undefs_tail != info->hash->undefs_tail) 1020 loop = true; 1021 } 1022 } 1023 } while (loop); 1024 1025 free (included); 1026 return true; 1027 1028 error_return: 1029 free (included); 1030 return false; 1031 } 1032 1033 /* See if we should include an archive element. */ 1034 1035 static bool 1036 generic_link_check_archive_element (bfd *abfd, 1037 struct bfd_link_info *info, 1038 struct bfd_link_hash_entry *h, 1039 const char *name ATTRIBUTE_UNUSED, 1040 bool *pneeded) 1041 { 1042 asymbol **pp, **ppend; 1043 1044 *pneeded = false; 1045 1046 if (!bfd_generic_link_read_symbols (abfd)) 1047 return false; 1048 1049 pp = _bfd_generic_link_get_symbols (abfd); 1050 ppend = pp + _bfd_generic_link_get_symcount (abfd); 1051 for (; pp < ppend; pp++) 1052 { 1053 asymbol *p; 1054 1055 p = *pp; 1056 1057 /* We are only interested in globally visible symbols. */ 1058 if (! bfd_is_com_section (p->section) 1059 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0) 1060 continue; 1061 1062 /* We are only interested if we know something about this 1063 symbol, and it is undefined or common. An undefined weak 1064 symbol (type bfd_link_hash_undefweak) is not considered to be 1065 a reference when pulling files out of an archive. See the 1066 SVR4 ABI, p. 4-27. */ 1067 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), false, 1068 false, true); 1069 if (h == NULL 1070 || (h->type != bfd_link_hash_undefined 1071 && h->type != bfd_link_hash_common)) 1072 continue; 1073 1074 /* P is a symbol we are looking for. */ 1075 1076 if (! bfd_is_com_section (p->section) 1077 || (h->type == bfd_link_hash_undefined 1078 && h->u.undef.abfd == NULL)) 1079 { 1080 /* P is not a common symbol, or an undefined reference was 1081 created from outside BFD such as from a linker -u option. 1082 This object file defines the symbol, so pull it in. */ 1083 *pneeded = true; 1084 if (!(*info->callbacks 1085 ->add_archive_element) (info, abfd, bfd_asymbol_name (p), 1086 &abfd)) 1087 return false; 1088 /* Potentially, the add_archive_element hook may have set a 1089 substitute BFD for us. */ 1090 return bfd_link_add_symbols (abfd, info); 1091 } 1092 1093 /* P is a common symbol. */ 1094 1095 if (h->type == bfd_link_hash_undefined) 1096 { 1097 bfd *symbfd; 1098 bfd_vma size; 1099 unsigned int power; 1100 1101 /* Turn the symbol into a common symbol but do not link in 1102 the object file. This is how a.out works. Object 1103 formats that require different semantics must implement 1104 this function differently. This symbol is already on the 1105 undefs list. We add the section to a common section 1106 attached to symbfd to ensure that it is in a BFD which 1107 will be linked in. */ 1108 symbfd = h->u.undef.abfd; 1109 h->type = bfd_link_hash_common; 1110 h->u.c.p = (struct bfd_link_hash_common_entry *) 1111 bfd_hash_allocate (&info->hash->table, 1112 sizeof (struct bfd_link_hash_common_entry)); 1113 if (h->u.c.p == NULL) 1114 return false; 1115 1116 size = bfd_asymbol_value (p); 1117 h->u.c.size = size; 1118 1119 power = bfd_log2 (size); 1120 if (power > 4) 1121 power = 4; 1122 h->u.c.p->alignment_power = power; 1123 1124 if (p->section == bfd_com_section_ptr) 1125 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON"); 1126 else 1127 h->u.c.p->section = bfd_make_section_old_way (symbfd, 1128 p->section->name); 1129 h->u.c.p->section->flags |= SEC_ALLOC; 1130 } 1131 else 1132 { 1133 /* Adjust the size of the common symbol if necessary. This 1134 is how a.out works. Object formats that require 1135 different semantics must implement this function 1136 differently. */ 1137 if (bfd_asymbol_value (p) > h->u.c.size) 1138 h->u.c.size = bfd_asymbol_value (p); 1139 } 1140 } 1141 1142 /* This archive element is not needed. */ 1143 return true; 1144 } 1145 1146 /* Add the symbols from an object file to the global hash table. ABFD 1147 is the object file. INFO is the linker information. SYMBOL_COUNT 1148 is the number of symbols. SYMBOLS is the list of symbols. */ 1149 1150 static bool 1151 generic_link_add_symbol_list (bfd *abfd, 1152 struct bfd_link_info *info, 1153 bfd_size_type symbol_count, 1154 asymbol **symbols) 1155 { 1156 asymbol **pp, **ppend; 1157 1158 pp = symbols; 1159 ppend = symbols + symbol_count; 1160 for (; pp < ppend; pp++) 1161 { 1162 asymbol *p; 1163 1164 p = *pp; 1165 1166 if ((p->flags & (BSF_INDIRECT 1167 | BSF_WARNING 1168 | BSF_GLOBAL 1169 | BSF_CONSTRUCTOR 1170 | BSF_WEAK)) != 0 1171 || bfd_is_und_section (bfd_asymbol_section (p)) 1172 || bfd_is_com_section (bfd_asymbol_section (p)) 1173 || bfd_is_ind_section (bfd_asymbol_section (p))) 1174 { 1175 const char *name; 1176 const char *string; 1177 struct generic_link_hash_entry *h; 1178 struct bfd_link_hash_entry *bh; 1179 1180 string = name = bfd_asymbol_name (p); 1181 if (((p->flags & BSF_INDIRECT) != 0 1182 || bfd_is_ind_section (p->section)) 1183 && pp + 1 < ppend) 1184 { 1185 pp++; 1186 string = bfd_asymbol_name (*pp); 1187 } 1188 else if ((p->flags & BSF_WARNING) != 0 1189 && pp + 1 < ppend) 1190 { 1191 /* The name of P is actually the warning string, and the 1192 next symbol is the one to warn about. */ 1193 pp++; 1194 name = bfd_asymbol_name (*pp); 1195 } 1196 1197 bh = NULL; 1198 if (! (_bfd_generic_link_add_one_symbol 1199 (info, abfd, name, p->flags, bfd_asymbol_section (p), 1200 p->value, string, false, false, &bh))) 1201 return false; 1202 h = (struct generic_link_hash_entry *) bh; 1203 1204 /* If this is a constructor symbol, and the linker didn't do 1205 anything with it, then we want to just pass the symbol 1206 through to the output file. This will happen when 1207 linking with -r. */ 1208 if ((p->flags & BSF_CONSTRUCTOR) != 0 1209 && (h == NULL || h->root.type == bfd_link_hash_new)) 1210 { 1211 p->udata.p = NULL; 1212 continue; 1213 } 1214 1215 /* Save the BFD symbol so that we don't lose any backend 1216 specific information that may be attached to it. We only 1217 want this one if it gives more information than the 1218 existing one; we don't want to replace a defined symbol 1219 with an undefined one. This routine may be called with a 1220 hash table other than the generic hash table, so we only 1221 do this if we are certain that the hash table is a 1222 generic one. */ 1223 if (info->output_bfd->xvec == abfd->xvec) 1224 { 1225 if (h->sym == NULL 1226 || (! bfd_is_und_section (bfd_asymbol_section (p)) 1227 && (! bfd_is_com_section (bfd_asymbol_section (p)) 1228 || bfd_is_und_section (bfd_asymbol_section (h->sym))))) 1229 { 1230 h->sym = p; 1231 /* BSF_OLD_COMMON is a hack to support COFF reloc 1232 reading, and it should go away when the COFF 1233 linker is switched to the new version. */ 1234 if (bfd_is_com_section (bfd_asymbol_section (p))) 1235 p->flags |= BSF_OLD_COMMON; 1236 } 1237 } 1238 1239 /* Store a back pointer from the symbol to the hash 1240 table entry for the benefit of relaxation code until 1241 it gets rewritten to not use asymbol structures. 1242 Setting this is also used to check whether these 1243 symbols were set up by the generic linker. */ 1244 p->udata.p = h; 1245 } 1246 } 1247 1248 return true; 1249 } 1250 1251 /* We use a state table to deal with adding symbols from an object 1252 file. The first index into the state table describes the symbol 1253 from the object file. The second index into the state table is the 1254 type of the symbol in the hash table. */ 1255 1256 /* The symbol from the object file is turned into one of these row 1257 values. */ 1258 1259 enum link_row 1260 { 1261 UNDEF_ROW, /* Undefined. */ 1262 UNDEFW_ROW, /* Weak undefined. */ 1263 DEF_ROW, /* Defined. */ 1264 DEFW_ROW, /* Weak defined. */ 1265 COMMON_ROW, /* Common. */ 1266 INDR_ROW, /* Indirect. */ 1267 WARN_ROW, /* Warning. */ 1268 SET_ROW /* Member of set. */ 1269 }; 1270 1271 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */ 1272 #undef FAIL 1273 1274 /* The actions to take in the state table. */ 1275 1276 enum link_action 1277 { 1278 FAIL, /* Abort. */ 1279 UND, /* Mark symbol undefined. */ 1280 WEAK, /* Mark symbol weak undefined. */ 1281 DEF, /* Mark symbol defined. */ 1282 DEFW, /* Mark symbol weak defined. */ 1283 COM, /* Mark symbol common. */ 1284 REF, /* Mark defined symbol referenced. */ 1285 CREF, /* Possibly warn about common reference to defined symbol. */ 1286 CDEF, /* Define existing common symbol. */ 1287 NOACT, /* No action. */ 1288 BIG, /* Mark symbol common using largest size. */ 1289 MDEF, /* Multiple definition error. */ 1290 MIND, /* Multiple indirect symbols. */ 1291 IND, /* Make indirect symbol. */ 1292 CIND, /* Make indirect symbol from existing common symbol. */ 1293 SET, /* Add value to set. */ 1294 MWARN, /* Make warning symbol. */ 1295 WARN, /* Warn if referenced, else MWARN. */ 1296 CYCLE, /* Repeat with symbol pointed to. */ 1297 REFC, /* Mark indirect symbol referenced and then CYCLE. */ 1298 WARNC /* Issue warning and then CYCLE. */ 1299 }; 1300 1301 /* The state table itself. The first index is a link_row and the 1302 second index is a bfd_link_hash_type. */ 1303 1304 static const enum link_action link_action[8][8] = 1305 { 1306 /* current\prev new undef undefw def defw com indr warn */ 1307 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC }, 1308 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC }, 1309 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MIND, CYCLE }, 1310 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE }, 1311 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC }, 1312 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE }, 1313 /* WARN_ROW */ {MWARN, WARN, WARN, WARN, WARN, WARN, WARN, NOACT }, 1314 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE } 1315 }; 1316 1317 /* Most of the entries in the LINK_ACTION table are straightforward, 1318 but a few are somewhat subtle. 1319 1320 A reference to an indirect symbol (UNDEF_ROW/indr or 1321 UNDEFW_ROW/indr) is counted as a reference both to the indirect 1322 symbol and to the symbol the indirect symbol points to. 1323 1324 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn) 1325 causes the warning to be issued. 1326 1327 A common definition of an indirect symbol (COMMON_ROW/indr) is 1328 treated as a multiple definition error. Likewise for an indirect 1329 definition of a common symbol (INDR_ROW/com). 1330 1331 An indirect definition of a warning (INDR_ROW/warn) does not cause 1332 the warning to be issued. 1333 1334 If a warning is created for an indirect symbol (WARN_ROW/indr) no 1335 warning is created for the symbol the indirect symbol points to. 1336 1337 Adding an entry to a set does not count as a reference to a set, 1338 and no warning is issued (SET_ROW/warn). */ 1339 1340 /* Return the BFD in which a hash entry has been defined, if known. */ 1341 1342 static bfd * 1343 hash_entry_bfd (struct bfd_link_hash_entry *h) 1344 { 1345 while (h->type == bfd_link_hash_warning) 1346 h = h->u.i.link; 1347 switch (h->type) 1348 { 1349 default: 1350 return NULL; 1351 case bfd_link_hash_undefined: 1352 case bfd_link_hash_undefweak: 1353 return h->u.undef.abfd; 1354 case bfd_link_hash_defined: 1355 case bfd_link_hash_defweak: 1356 return h->u.def.section->owner; 1357 case bfd_link_hash_common: 1358 return h->u.c.p->section->owner; 1359 } 1360 /*NOTREACHED*/ 1361 } 1362 1363 /* Add a symbol to the global hash table. 1364 ABFD is the BFD the symbol comes from. 1365 NAME is the name of the symbol. 1366 FLAGS is the BSF_* bits associated with the symbol. 1367 SECTION is the section in which the symbol is defined; this may be 1368 bfd_und_section_ptr or bfd_com_section_ptr. 1369 VALUE is the value of the symbol, relative to the section. 1370 STRING is used for either an indirect symbol, in which case it is 1371 the name of the symbol to indirect to, or a warning symbol, in 1372 which case it is the warning string. 1373 COPY is TRUE if NAME or STRING must be copied into locally 1374 allocated memory if they need to be saved. 1375 COLLECT is TRUE if we should automatically collect gcc constructor 1376 or destructor names as collect2 does. 1377 HASHP, if not NULL, is a place to store the created hash table 1378 entry; if *HASHP is not NULL, the caller has already looked up 1379 the hash table entry, and stored it in *HASHP. */ 1380 1381 bool 1382 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info, 1383 bfd *abfd, 1384 const char *name, 1385 flagword flags, 1386 asection *section, 1387 bfd_vma value, 1388 const char *string, 1389 bool copy, 1390 bool collect, 1391 struct bfd_link_hash_entry **hashp) 1392 { 1393 enum link_row row; 1394 struct bfd_link_hash_entry *h; 1395 struct bfd_link_hash_entry *inh = NULL; 1396 bool cycle; 1397 1398 BFD_ASSERT (section != NULL); 1399 1400 if (bfd_is_ind_section (section) 1401 || (flags & BSF_INDIRECT) != 0) 1402 { 1403 row = INDR_ROW; 1404 /* Create the indirect symbol here. This is for the benefit of 1405 the plugin "notice" function. 1406 STRING is the name of the symbol we want to indirect to. */ 1407 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, true, 1408 copy, false); 1409 if (inh == NULL) 1410 return false; 1411 } 1412 else if ((flags & BSF_WARNING) != 0) 1413 row = WARN_ROW; 1414 else if ((flags & BSF_CONSTRUCTOR) != 0) 1415 row = SET_ROW; 1416 else if (bfd_is_und_section (section)) 1417 { 1418 if ((flags & BSF_WEAK) != 0) 1419 row = UNDEFW_ROW; 1420 else 1421 row = UNDEF_ROW; 1422 } 1423 else if ((flags & BSF_WEAK) != 0) 1424 row = DEFW_ROW; 1425 else if (bfd_is_com_section (section)) 1426 { 1427 row = COMMON_ROW; 1428 if (!bfd_link_relocatable (info) 1429 && name != NULL 1430 && name[0] == '_' 1431 && name[1] == '_' 1432 && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0) 1433 _bfd_error_handler 1434 (_("%pB: plugin needed to handle lto object"), abfd); 1435 } 1436 else 1437 row = DEF_ROW; 1438 1439 if (hashp != NULL && *hashp != NULL) 1440 h = *hashp; 1441 else 1442 { 1443 if (row == UNDEF_ROW || row == UNDEFW_ROW) 1444 h = bfd_wrapped_link_hash_lookup (abfd, info, name, true, copy, false); 1445 else 1446 h = bfd_link_hash_lookup (info->hash, name, true, copy, false); 1447 if (h == NULL) 1448 { 1449 if (hashp != NULL) 1450 *hashp = NULL; 1451 return false; 1452 } 1453 } 1454 1455 if (info->notice_all 1456 || (info->notice_hash != NULL 1457 && bfd_hash_lookup (info->notice_hash, name, false, false) != NULL)) 1458 { 1459 if (! (*info->callbacks->notice) (info, h, inh, 1460 abfd, section, value, flags)) 1461 return false; 1462 } 1463 1464 if (hashp != NULL) 1465 *hashp = h; 1466 1467 do 1468 { 1469 enum link_action action; 1470 int prev; 1471 1472 prev = h->type; 1473 /* Treat symbols defined by early linker script pass as undefined. */ 1474 if (h->ldscript_def) 1475 prev = bfd_link_hash_undefined; 1476 cycle = false; 1477 action = link_action[(int) row][prev]; 1478 switch (action) 1479 { 1480 case FAIL: 1481 abort (); 1482 1483 case NOACT: 1484 /* Do nothing. */ 1485 break; 1486 1487 case UND: 1488 /* Make a new undefined symbol. */ 1489 h->type = bfd_link_hash_undefined; 1490 h->u.undef.abfd = abfd; 1491 bfd_link_add_undef (info->hash, h); 1492 break; 1493 1494 case WEAK: 1495 /* Make a new weak undefined symbol. */ 1496 h->type = bfd_link_hash_undefweak; 1497 h->u.undef.abfd = abfd; 1498 break; 1499 1500 case CDEF: 1501 /* We have found a definition for a symbol which was 1502 previously common. */ 1503 BFD_ASSERT (h->type == bfd_link_hash_common); 1504 (*info->callbacks->multiple_common) (info, h, abfd, 1505 bfd_link_hash_defined, 0); 1506 /* Fall through. */ 1507 case DEF: 1508 case DEFW: 1509 { 1510 enum bfd_link_hash_type oldtype; 1511 1512 /* Define a symbol. */ 1513 oldtype = h->type; 1514 if (action == DEFW) 1515 h->type = bfd_link_hash_defweak; 1516 else 1517 h->type = bfd_link_hash_defined; 1518 h->u.def.section = section; 1519 h->u.def.value = value; 1520 h->linker_def = 0; 1521 h->ldscript_def = 0; 1522 1523 /* If we have been asked to, we act like collect2 and 1524 identify all functions that might be global 1525 constructors and destructors and pass them up in a 1526 callback. We only do this for certain object file 1527 types, since many object file types can handle this 1528 automatically. */ 1529 if (collect && name[0] == '_') 1530 { 1531 const char *s; 1532 1533 /* A constructor or destructor name starts like this: 1534 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and 1535 the second are the same character (we accept any 1536 character there, in case a new object file format 1537 comes along with even worse naming restrictions). */ 1538 1539 #define CONS_PREFIX "GLOBAL_" 1540 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1) 1541 1542 s = name + 1; 1543 while (*s == '_') 1544 ++s; 1545 if (s[0] == 'G' && startswith (s, CONS_PREFIX)) 1546 { 1547 char c; 1548 1549 c = s[CONS_PREFIX_LEN + 1]; 1550 if ((c == 'I' || c == 'D') 1551 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2]) 1552 { 1553 /* If this is a definition of a symbol which 1554 was previously weakly defined, we are in 1555 trouble. We have already added a 1556 constructor entry for the weak defined 1557 symbol, and now we are trying to add one 1558 for the new symbol. Fortunately, this case 1559 should never arise in practice. */ 1560 if (oldtype == bfd_link_hash_defweak) 1561 abort (); 1562 1563 (*info->callbacks->constructor) (info, c == 'I', 1564 h->root.string, abfd, 1565 section, value); 1566 } 1567 } 1568 } 1569 } 1570 1571 break; 1572 1573 case COM: 1574 /* We have found a common definition for a symbol. */ 1575 if (h->type == bfd_link_hash_new) 1576 bfd_link_add_undef (info->hash, h); 1577 h->type = bfd_link_hash_common; 1578 h->u.c.p = (struct bfd_link_hash_common_entry *) 1579 bfd_hash_allocate (&info->hash->table, 1580 sizeof (struct bfd_link_hash_common_entry)); 1581 if (h->u.c.p == NULL) 1582 return false; 1583 1584 h->u.c.size = value; 1585 1586 /* Select a default alignment based on the size. This may 1587 be overridden by the caller. */ 1588 { 1589 unsigned int power; 1590 1591 power = bfd_log2 (value); 1592 if (power > 4) 1593 power = 4; 1594 h->u.c.p->alignment_power = power; 1595 } 1596 1597 /* The section of a common symbol is only used if the common 1598 symbol is actually allocated. It basically provides a 1599 hook for the linker script to decide which output section 1600 the common symbols should be put in. In most cases, the 1601 section of a common symbol will be bfd_com_section_ptr, 1602 the code here will choose a common symbol section named 1603 "COMMON", and the linker script will contain *(COMMON) in 1604 the appropriate place. A few targets use separate common 1605 sections for small symbols, and they require special 1606 handling. */ 1607 if (section == bfd_com_section_ptr) 1608 { 1609 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON"); 1610 h->u.c.p->section->flags |= SEC_ALLOC; 1611 } 1612 else if (section->owner != abfd) 1613 { 1614 h->u.c.p->section = bfd_make_section_old_way (abfd, 1615 section->name); 1616 h->u.c.p->section->flags |= SEC_ALLOC; 1617 } 1618 else 1619 h->u.c.p->section = section; 1620 h->linker_def = 0; 1621 h->ldscript_def = 0; 1622 break; 1623 1624 case REF: 1625 /* A reference to a defined symbol. */ 1626 if (h->u.undef.next == NULL && info->hash->undefs_tail != h) 1627 h->u.undef.next = h; 1628 break; 1629 1630 case BIG: 1631 /* We have found a common definition for a symbol which 1632 already had a common definition. Use the maximum of the 1633 two sizes, and use the section required by the larger symbol. */ 1634 BFD_ASSERT (h->type == bfd_link_hash_common); 1635 (*info->callbacks->multiple_common) (info, h, abfd, 1636 bfd_link_hash_common, value); 1637 if (value > h->u.c.size) 1638 { 1639 unsigned int power; 1640 1641 h->u.c.size = value; 1642 1643 /* Select a default alignment based on the size. This may 1644 be overridden by the caller. */ 1645 power = bfd_log2 (value); 1646 if (power > 4) 1647 power = 4; 1648 h->u.c.p->alignment_power = power; 1649 1650 /* Some systems have special treatment for small commons, 1651 hence we want to select the section used by the larger 1652 symbol. This makes sure the symbol does not go in a 1653 small common section if it is now too large. */ 1654 if (section == bfd_com_section_ptr) 1655 { 1656 h->u.c.p->section 1657 = bfd_make_section_old_way (abfd, "COMMON"); 1658 h->u.c.p->section->flags |= SEC_ALLOC; 1659 } 1660 else if (section->owner != abfd) 1661 { 1662 h->u.c.p->section 1663 = bfd_make_section_old_way (abfd, section->name); 1664 h->u.c.p->section->flags |= SEC_ALLOC; 1665 } 1666 else 1667 h->u.c.p->section = section; 1668 } 1669 break; 1670 1671 case CREF: 1672 /* We have found a common definition for a symbol which 1673 was already defined. */ 1674 (*info->callbacks->multiple_common) (info, h, abfd, 1675 bfd_link_hash_common, value); 1676 break; 1677 1678 case MIND: 1679 /* Multiple indirect symbols. This is OK if they both point 1680 to the same symbol. */ 1681 if (h->u.i.link == inh) 1682 break; 1683 if (h->u.i.link->type == bfd_link_hash_defweak) 1684 { 1685 /* It is also OK to redefine a symbol that indirects to 1686 a weak definition. So for sym@ver -> sym@@ver where 1687 sym@@ver is weak and we have a new strong sym@ver, 1688 redefine sym@@ver. Of course if there exists 1689 sym -> sym@@ver then this also redefines sym. */ 1690 h = h->u.i.link; 1691 cycle = true; 1692 break; 1693 } 1694 /* Fall through. */ 1695 case MDEF: 1696 /* Handle a multiple definition. */ 1697 (*info->callbacks->multiple_definition) (info, h, 1698 abfd, section, value); 1699 break; 1700 1701 case CIND: 1702 /* Create an indirect symbol from an existing common symbol. */ 1703 BFD_ASSERT (h->type == bfd_link_hash_common); 1704 (*info->callbacks->multiple_common) (info, h, abfd, 1705 bfd_link_hash_indirect, 0); 1706 /* Fall through. */ 1707 case IND: 1708 if (inh->type == bfd_link_hash_indirect 1709 && inh->u.i.link == h) 1710 { 1711 _bfd_error_handler 1712 /* xgettext:c-format */ 1713 (_("%pB: indirect symbol `%s' to `%s' is a loop"), 1714 abfd, name, string); 1715 bfd_set_error (bfd_error_invalid_operation); 1716 return false; 1717 } 1718 if (inh->type == bfd_link_hash_new) 1719 { 1720 inh->type = bfd_link_hash_undefined; 1721 inh->u.undef.abfd = abfd; 1722 bfd_link_add_undef (info->hash, inh); 1723 } 1724 1725 /* If the indirect symbol has been referenced, we need to 1726 push the reference down to the symbol we are referencing. */ 1727 if (h->type != bfd_link_hash_new) 1728 { 1729 /* ??? If inh->type == bfd_link_hash_undefweak this 1730 converts inh to bfd_link_hash_undefined. */ 1731 row = UNDEF_ROW; 1732 cycle = true; 1733 } 1734 1735 h->type = bfd_link_hash_indirect; 1736 h->u.i.link = inh; 1737 /* Not setting h = h->u.i.link here means that when cycle is 1738 set above we'll always go to REFC, and then cycle again 1739 to the indirected symbol. This means that any successful 1740 change of an existing symbol to indirect counts as a 1741 reference. ??? That may not be correct when the existing 1742 symbol was defweak. */ 1743 break; 1744 1745 case SET: 1746 /* Add an entry to a set. */ 1747 (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR, 1748 abfd, section, value); 1749 break; 1750 1751 case WARNC: 1752 /* Issue a warning and cycle, except when the reference is 1753 in LTO IR. */ 1754 if (h->u.i.warning != NULL 1755 && (abfd->flags & BFD_PLUGIN) == 0) 1756 { 1757 (*info->callbacks->warning) (info, h->u.i.warning, 1758 h->root.string, abfd, NULL, 0); 1759 /* Only issue a warning once. */ 1760 h->u.i.warning = NULL; 1761 } 1762 /* Fall through. */ 1763 case CYCLE: 1764 /* Try again with the referenced symbol. */ 1765 h = h->u.i.link; 1766 cycle = true; 1767 break; 1768 1769 case REFC: 1770 /* A reference to an indirect symbol. */ 1771 if (h->u.undef.next == NULL && info->hash->undefs_tail != h) 1772 h->u.undef.next = h; 1773 h = h->u.i.link; 1774 cycle = true; 1775 break; 1776 1777 case WARN: 1778 /* Warn if this symbol has been referenced already from non-IR, 1779 otherwise add a warning. */ 1780 if ((!info->lto_plugin_active 1781 && (h->u.undef.next != NULL || info->hash->undefs_tail == h)) 1782 || h->non_ir_ref_regular 1783 || h->non_ir_ref_dynamic) 1784 { 1785 (*info->callbacks->warning) (info, string, h->root.string, 1786 hash_entry_bfd (h), NULL, 0); 1787 /* PR 31067: If garbage collection is enabled then the 1788 referenced symbol may actually be discarded later on. 1789 This could be very confusing to the user. So give them 1790 a hint as to what might be happening. */ 1791 if (info->gc_sections) 1792 (*info->callbacks->info) 1793 (_("%P: %pB: note: the message above does not take linker garbage collection into account\n"), 1794 hash_entry_bfd (h)); 1795 break; 1796 } 1797 /* Fall through. */ 1798 case MWARN: 1799 /* Make a warning symbol. */ 1800 { 1801 struct bfd_link_hash_entry *sub; 1802 1803 /* STRING is the warning to give. */ 1804 sub = ((struct bfd_link_hash_entry *) 1805 ((*info->hash->table.newfunc) 1806 (NULL, &info->hash->table, h->root.string))); 1807 if (sub == NULL) 1808 return false; 1809 *sub = *h; 1810 sub->type = bfd_link_hash_warning; 1811 sub->u.i.link = h; 1812 if (! copy) 1813 sub->u.i.warning = string; 1814 else 1815 { 1816 char *w; 1817 size_t len = strlen (string) + 1; 1818 1819 w = (char *) bfd_hash_allocate (&info->hash->table, len); 1820 if (w == NULL) 1821 return false; 1822 memcpy (w, string, len); 1823 sub->u.i.warning = w; 1824 } 1825 1826 bfd_hash_replace (&info->hash->table, 1827 (struct bfd_hash_entry *) h, 1828 (struct bfd_hash_entry *) sub); 1829 if (hashp != NULL) 1830 *hashp = sub; 1831 } 1832 break; 1833 } 1834 } 1835 while (cycle); 1836 1837 return true; 1838 } 1839 1840 /* Generic final link routine. */ 1841 1842 bool 1843 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info) 1844 { 1845 bfd *sub; 1846 asection *o; 1847 struct bfd_link_order *p; 1848 size_t outsymalloc; 1849 struct generic_write_global_symbol_info wginfo; 1850 1851 abfd->outsymbols = NULL; 1852 abfd->symcount = 0; 1853 outsymalloc = 0; 1854 1855 /* Mark all sections which will be included in the output file. */ 1856 for (o = abfd->sections; o != NULL; o = o->next) 1857 for (p = o->map_head.link_order; p != NULL; p = p->next) 1858 if (p->type == bfd_indirect_link_order) 1859 p->u.indirect.section->linker_mark = true; 1860 1861 /* Build the output symbol table. */ 1862 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 1863 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc)) 1864 return false; 1865 1866 /* Accumulate the global symbols. */ 1867 wginfo.info = info; 1868 wginfo.output_bfd = abfd; 1869 wginfo.psymalloc = &outsymalloc; 1870 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info), 1871 _bfd_generic_link_write_global_symbol, 1872 &wginfo); 1873 1874 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We 1875 shouldn't really need one, since we have SYMCOUNT, but some old 1876 code still expects one. */ 1877 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL)) 1878 return false; 1879 1880 if (bfd_link_relocatable (info)) 1881 { 1882 /* Allocate space for the output relocs for each section. */ 1883 for (o = abfd->sections; o != NULL; o = o->next) 1884 { 1885 o->reloc_count = 0; 1886 for (p = o->map_head.link_order; p != NULL; p = p->next) 1887 { 1888 if (p->type == bfd_section_reloc_link_order 1889 || p->type == bfd_symbol_reloc_link_order) 1890 ++o->reloc_count; 1891 else if (p->type == bfd_indirect_link_order) 1892 { 1893 asection *input_section; 1894 bfd *input_bfd; 1895 long relsize; 1896 arelent **relocs; 1897 asymbol **symbols; 1898 long reloc_count; 1899 1900 input_section = p->u.indirect.section; 1901 input_bfd = input_section->owner; 1902 relsize = bfd_get_reloc_upper_bound (input_bfd, 1903 input_section); 1904 if (relsize < 0) 1905 return false; 1906 relocs = (arelent **) bfd_malloc (relsize); 1907 if (!relocs && relsize != 0) 1908 return false; 1909 symbols = _bfd_generic_link_get_symbols (input_bfd); 1910 reloc_count = bfd_canonicalize_reloc (input_bfd, 1911 input_section, 1912 relocs, 1913 symbols); 1914 free (relocs); 1915 if (reloc_count < 0) 1916 return false; 1917 BFD_ASSERT ((unsigned long) reloc_count 1918 == input_section->reloc_count); 1919 o->reloc_count += reloc_count; 1920 } 1921 } 1922 if (o->reloc_count > 0) 1923 { 1924 bfd_size_type amt; 1925 1926 amt = o->reloc_count; 1927 amt *= sizeof (arelent *); 1928 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt); 1929 if (!o->orelocation) 1930 return false; 1931 o->flags |= SEC_RELOC; 1932 /* Reset the count so that it can be used as an index 1933 when putting in the output relocs. */ 1934 o->reloc_count = 0; 1935 } 1936 } 1937 } 1938 1939 /* Handle all the link order information for the sections. */ 1940 for (o = abfd->sections; o != NULL; o = o->next) 1941 { 1942 for (p = o->map_head.link_order; p != NULL; p = p->next) 1943 { 1944 switch (p->type) 1945 { 1946 case bfd_section_reloc_link_order: 1947 case bfd_symbol_reloc_link_order: 1948 if (! _bfd_generic_reloc_link_order (abfd, info, o, p)) 1949 return false; 1950 break; 1951 case bfd_indirect_link_order: 1952 if (! default_indirect_link_order (abfd, info, o, p, true)) 1953 return false; 1954 break; 1955 default: 1956 if (! _bfd_default_link_order (abfd, info, o, p)) 1957 return false; 1958 break; 1959 } 1960 } 1961 } 1962 1963 return true; 1964 } 1965 1966 /* Add an output symbol to the output BFD. */ 1967 1968 static bool 1969 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym) 1970 { 1971 if (bfd_get_symcount (output_bfd) >= *psymalloc) 1972 { 1973 asymbol **newsyms; 1974 bfd_size_type amt; 1975 1976 if (*psymalloc == 0) 1977 *psymalloc = 124; 1978 else 1979 *psymalloc *= 2; 1980 amt = *psymalloc; 1981 amt *= sizeof (asymbol *); 1982 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt); 1983 if (newsyms == NULL) 1984 return false; 1985 output_bfd->outsymbols = newsyms; 1986 } 1987 1988 output_bfd->outsymbols[output_bfd->symcount] = sym; 1989 if (sym != NULL) 1990 ++output_bfd->symcount; 1991 1992 return true; 1993 } 1994 1995 /* Handle the symbols for an input BFD. */ 1996 1997 bool 1998 _bfd_generic_link_output_symbols (bfd *output_bfd, 1999 bfd *input_bfd, 2000 struct bfd_link_info *info, 2001 size_t *psymalloc) 2002 { 2003 asymbol **sym_ptr; 2004 asymbol **sym_end; 2005 2006 if (!bfd_generic_link_read_symbols (input_bfd)) 2007 return false; 2008 2009 /* Create a filename symbol if we are supposed to. */ 2010 if (info->create_object_symbols_section != NULL) 2011 { 2012 asection *sec; 2013 2014 for (sec = input_bfd->sections; sec != NULL; sec = sec->next) 2015 { 2016 if (sec->output_section == info->create_object_symbols_section) 2017 { 2018 asymbol *newsym; 2019 2020 newsym = bfd_make_empty_symbol (input_bfd); 2021 if (!newsym) 2022 return false; 2023 newsym->name = bfd_get_filename (input_bfd); 2024 newsym->value = 0; 2025 newsym->flags = BSF_LOCAL | BSF_FILE; 2026 newsym->section = sec; 2027 2028 if (! generic_add_output_symbol (output_bfd, psymalloc, 2029 newsym)) 2030 return false; 2031 2032 break; 2033 } 2034 } 2035 } 2036 2037 /* Adjust the values of the globally visible symbols, and write out 2038 local symbols. */ 2039 sym_ptr = _bfd_generic_link_get_symbols (input_bfd); 2040 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd); 2041 for (; sym_ptr < sym_end; sym_ptr++) 2042 { 2043 asymbol *sym; 2044 struct generic_link_hash_entry *h; 2045 bool output; 2046 2047 h = NULL; 2048 sym = *sym_ptr; 2049 if ((sym->flags & (BSF_INDIRECT 2050 | BSF_WARNING 2051 | BSF_GLOBAL 2052 | BSF_CONSTRUCTOR 2053 | BSF_WEAK)) != 0 2054 || bfd_is_und_section (bfd_asymbol_section (sym)) 2055 || bfd_is_com_section (bfd_asymbol_section (sym)) 2056 || bfd_is_ind_section (bfd_asymbol_section (sym))) 2057 { 2058 if (sym->udata.p != NULL) 2059 h = (struct generic_link_hash_entry *) sym->udata.p; 2060 else if ((sym->flags & BSF_CONSTRUCTOR) != 0) 2061 { 2062 /* This case normally means that the main linker code 2063 deliberately ignored this constructor symbol. We 2064 should just pass it through. This will screw up if 2065 the constructor symbol is from a different, 2066 non-generic, object file format, but the case will 2067 only arise when linking with -r, which will probably 2068 fail anyhow, since there will be no way to represent 2069 the relocs in the output format being used. */ 2070 h = NULL; 2071 } 2072 else if (bfd_is_und_section (bfd_asymbol_section (sym))) 2073 h = ((struct generic_link_hash_entry *) 2074 bfd_wrapped_link_hash_lookup (output_bfd, info, 2075 bfd_asymbol_name (sym), 2076 false, false, true)); 2077 else 2078 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info), 2079 bfd_asymbol_name (sym), 2080 false, false, true); 2081 2082 if (h != NULL) 2083 { 2084 /* Force all references to this symbol to point to 2085 the same area in memory. It is possible that 2086 this routine will be called with a hash table 2087 other than a generic hash table, so we double 2088 check that. */ 2089 if (info->output_bfd->xvec == input_bfd->xvec) 2090 { 2091 if (h->sym != NULL) 2092 *sym_ptr = sym = h->sym; 2093 } 2094 2095 switch (h->root.type) 2096 { 2097 default: 2098 case bfd_link_hash_new: 2099 abort (); 2100 case bfd_link_hash_undefined: 2101 break; 2102 case bfd_link_hash_undefweak: 2103 sym->flags |= BSF_WEAK; 2104 break; 2105 case bfd_link_hash_indirect: 2106 h = (struct generic_link_hash_entry *) h->root.u.i.link; 2107 /* fall through */ 2108 case bfd_link_hash_defined: 2109 sym->flags |= BSF_GLOBAL; 2110 sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR); 2111 sym->value = h->root.u.def.value; 2112 sym->section = h->root.u.def.section; 2113 break; 2114 case bfd_link_hash_defweak: 2115 sym->flags |= BSF_WEAK; 2116 sym->flags &=~ BSF_CONSTRUCTOR; 2117 sym->value = h->root.u.def.value; 2118 sym->section = h->root.u.def.section; 2119 break; 2120 case bfd_link_hash_common: 2121 sym->value = h->root.u.c.size; 2122 sym->flags |= BSF_GLOBAL; 2123 if (! bfd_is_com_section (sym->section)) 2124 { 2125 BFD_ASSERT (bfd_is_und_section (sym->section)); 2126 sym->section = bfd_com_section_ptr; 2127 } 2128 /* We do not set the section of the symbol to 2129 h->root.u.c.p->section. That value was saved so 2130 that we would know where to allocate the symbol 2131 if it was defined. In this case the type is 2132 still bfd_link_hash_common, so we did not define 2133 it, so we do not want to use that section. */ 2134 break; 2135 } 2136 } 2137 } 2138 2139 if ((sym->flags & BSF_KEEP) == 0 2140 && (info->strip == strip_all 2141 || (info->strip == strip_some 2142 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym), 2143 false, false) == NULL))) 2144 output = false; 2145 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0) 2146 { 2147 /* If this symbol is marked as occurring now, rather 2148 than at the end, output it now. This is used for 2149 COFF C_EXT FCN symbols. FIXME: There must be a 2150 better way. */ 2151 if (bfd_asymbol_bfd (sym) == input_bfd 2152 && (sym->flags & BSF_NOT_AT_END) != 0) 2153 output = true; 2154 else 2155 output = false; 2156 } 2157 else if ((sym->flags & BSF_KEEP) != 0) 2158 output = true; 2159 else if (bfd_is_ind_section (sym->section)) 2160 output = false; 2161 else if ((sym->flags & BSF_DEBUGGING) != 0) 2162 { 2163 if (info->strip == strip_none) 2164 output = true; 2165 else 2166 output = false; 2167 } 2168 else if (bfd_is_und_section (sym->section) 2169 || bfd_is_com_section (sym->section)) 2170 output = false; 2171 else if ((sym->flags & BSF_LOCAL) != 0) 2172 { 2173 if ((sym->flags & BSF_WARNING) != 0) 2174 output = false; 2175 else 2176 { 2177 switch (info->discard) 2178 { 2179 default: 2180 case discard_all: 2181 output = false; 2182 break; 2183 case discard_sec_merge: 2184 output = true; 2185 if (bfd_link_relocatable (info) 2186 || ! (sym->section->flags & SEC_MERGE)) 2187 break; 2188 /* FALLTHROUGH */ 2189 case discard_l: 2190 if (bfd_is_local_label (input_bfd, sym)) 2191 output = false; 2192 else 2193 output = true; 2194 break; 2195 case discard_none: 2196 output = true; 2197 break; 2198 } 2199 } 2200 } 2201 else if ((sym->flags & BSF_CONSTRUCTOR)) 2202 { 2203 if (info->strip != strip_all) 2204 output = true; 2205 else 2206 output = false; 2207 } 2208 else if (sym->flags == 0 2209 && (sym->section->owner->flags & BFD_PLUGIN) != 0) 2210 /* LTO doesn't set symbol information. We get here with the 2211 generic linker for a symbol that was "common" but no longer 2212 needs to be global. */ 2213 output = false; 2214 else 2215 abort (); 2216 2217 /* If this symbol is in a section which is not being included 2218 in the output file, then we don't want to output the 2219 symbol. */ 2220 if (!bfd_is_abs_section (sym->section) 2221 && bfd_section_removed_from_list (output_bfd, 2222 sym->section->output_section)) 2223 output = false; 2224 2225 if (output) 2226 { 2227 if (! generic_add_output_symbol (output_bfd, psymalloc, sym)) 2228 return false; 2229 if (h != NULL) 2230 h->written = true; 2231 } 2232 } 2233 2234 return true; 2235 } 2236 2237 /* Set the section and value of a generic BFD symbol based on a linker 2238 hash table entry. */ 2239 2240 static void 2241 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h) 2242 { 2243 switch (h->type) 2244 { 2245 default: 2246 abort (); 2247 break; 2248 case bfd_link_hash_new: 2249 /* This can happen when a constructor symbol is seen but we are 2250 not building constructors. */ 2251 if (sym->section != NULL) 2252 { 2253 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0); 2254 } 2255 else 2256 { 2257 sym->flags |= BSF_CONSTRUCTOR; 2258 sym->section = bfd_abs_section_ptr; 2259 sym->value = 0; 2260 } 2261 break; 2262 case bfd_link_hash_undefined: 2263 sym->section = bfd_und_section_ptr; 2264 sym->value = 0; 2265 break; 2266 case bfd_link_hash_undefweak: 2267 sym->section = bfd_und_section_ptr; 2268 sym->value = 0; 2269 sym->flags |= BSF_WEAK; 2270 break; 2271 case bfd_link_hash_defined: 2272 sym->section = h->u.def.section; 2273 sym->value = h->u.def.value; 2274 break; 2275 case bfd_link_hash_defweak: 2276 sym->flags |= BSF_WEAK; 2277 sym->section = h->u.def.section; 2278 sym->value = h->u.def.value; 2279 break; 2280 case bfd_link_hash_common: 2281 sym->value = h->u.c.size; 2282 if (sym->section == NULL) 2283 sym->section = bfd_com_section_ptr; 2284 else if (! bfd_is_com_section (sym->section)) 2285 { 2286 BFD_ASSERT (bfd_is_und_section (sym->section)); 2287 sym->section = bfd_com_section_ptr; 2288 } 2289 /* Do not set the section; see _bfd_generic_link_output_symbols. */ 2290 break; 2291 case bfd_link_hash_indirect: 2292 case bfd_link_hash_warning: 2293 /* FIXME: What should we do here? */ 2294 break; 2295 } 2296 } 2297 2298 /* Write out a global symbol, if it hasn't already been written out. 2299 This is called for each symbol in the hash table. */ 2300 2301 bool 2302 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h, 2303 void *data) 2304 { 2305 struct generic_write_global_symbol_info *wginfo = 2306 (struct generic_write_global_symbol_info *) data; 2307 asymbol *sym; 2308 2309 if (h->written) 2310 return true; 2311 2312 h->written = true; 2313 2314 if (wginfo->info->strip == strip_all 2315 || (wginfo->info->strip == strip_some 2316 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string, 2317 false, false) == NULL)) 2318 return true; 2319 2320 if (h->sym != NULL) 2321 sym = h->sym; 2322 else 2323 { 2324 sym = bfd_make_empty_symbol (wginfo->output_bfd); 2325 if (!sym) 2326 return false; 2327 sym->name = h->root.root.string; 2328 sym->flags = 0; 2329 } 2330 2331 set_symbol_from_hash (sym, &h->root); 2332 2333 sym->flags |= BSF_GLOBAL; 2334 2335 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc, 2336 sym)) 2337 { 2338 /* FIXME: No way to return failure. */ 2339 abort (); 2340 } 2341 2342 return true; 2343 } 2344 2345 /* Create a relocation. */ 2346 2347 bool 2348 _bfd_generic_reloc_link_order (bfd *abfd, 2349 struct bfd_link_info *info, 2350 asection *sec, 2351 struct bfd_link_order *link_order) 2352 { 2353 arelent *r; 2354 2355 if (! bfd_link_relocatable (info)) 2356 abort (); 2357 if (sec->orelocation == NULL) 2358 abort (); 2359 2360 r = (arelent *) bfd_alloc (abfd, sizeof (arelent)); 2361 if (r == NULL) 2362 return false; 2363 2364 r->address = link_order->offset; 2365 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc); 2366 if (r->howto == 0) 2367 { 2368 bfd_set_error (bfd_error_bad_value); 2369 return false; 2370 } 2371 2372 /* Get the symbol to use for the relocation. */ 2373 if (link_order->type == bfd_section_reloc_link_order) 2374 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr; 2375 else 2376 { 2377 struct generic_link_hash_entry *h; 2378 2379 h = ((struct generic_link_hash_entry *) 2380 bfd_wrapped_link_hash_lookup (abfd, info, 2381 link_order->u.reloc.p->u.name, 2382 false, false, true)); 2383 if (h == NULL 2384 || ! h->written) 2385 { 2386 (*info->callbacks->unattached_reloc) 2387 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0); 2388 bfd_set_error (bfd_error_bad_value); 2389 return false; 2390 } 2391 r->sym_ptr_ptr = &h->sym; 2392 } 2393 2394 /* If this is an inplace reloc, write the addend to the object file. 2395 Otherwise, store it in the reloc addend. */ 2396 if (! r->howto->partial_inplace) 2397 r->addend = link_order->u.reloc.p->addend; 2398 else 2399 { 2400 bfd_size_type size; 2401 bfd_reloc_status_type rstat; 2402 bfd_byte *buf; 2403 bool ok; 2404 file_ptr loc; 2405 2406 size = bfd_get_reloc_size (r->howto); 2407 buf = (bfd_byte *) bfd_zmalloc (size); 2408 if (buf == NULL && size != 0) 2409 return false; 2410 rstat = _bfd_relocate_contents (r->howto, abfd, 2411 (bfd_vma) link_order->u.reloc.p->addend, 2412 buf); 2413 switch (rstat) 2414 { 2415 case bfd_reloc_ok: 2416 break; 2417 default: 2418 case bfd_reloc_outofrange: 2419 abort (); 2420 case bfd_reloc_overflow: 2421 (*info->callbacks->reloc_overflow) 2422 (info, NULL, 2423 (link_order->type == bfd_section_reloc_link_order 2424 ? bfd_section_name (link_order->u.reloc.p->u.section) 2425 : link_order->u.reloc.p->u.name), 2426 r->howto->name, link_order->u.reloc.p->addend, 2427 NULL, NULL, 0); 2428 break; 2429 } 2430 loc = link_order->offset * bfd_octets_per_byte (abfd, sec); 2431 ok = bfd_set_section_contents (abfd, sec, buf, loc, size); 2432 free (buf); 2433 if (! ok) 2434 return false; 2435 2436 r->addend = 0; 2437 } 2438 2439 sec->orelocation[sec->reloc_count] = r; 2440 ++sec->reloc_count; 2441 2442 return true; 2443 } 2444 2445 /* Allocate a new link_order for a section. */ 2446 2447 struct bfd_link_order * 2448 bfd_new_link_order (bfd *abfd, asection *section) 2449 { 2450 size_t amt = sizeof (struct bfd_link_order); 2451 struct bfd_link_order *new_lo; 2452 2453 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt); 2454 if (!new_lo) 2455 return NULL; 2456 2457 new_lo->type = bfd_undefined_link_order; 2458 2459 if (section->map_tail.link_order != NULL) 2460 section->map_tail.link_order->next = new_lo; 2461 else 2462 section->map_head.link_order = new_lo; 2463 section->map_tail.link_order = new_lo; 2464 2465 return new_lo; 2466 } 2467 2468 /* Default link order processing routine. Note that we can not handle 2469 the reloc_link_order types here, since they depend upon the details 2470 of how the particular backends generates relocs. */ 2471 2472 bool 2473 _bfd_default_link_order (bfd *abfd, 2474 struct bfd_link_info *info, 2475 asection *sec, 2476 struct bfd_link_order *link_order) 2477 { 2478 switch (link_order->type) 2479 { 2480 case bfd_undefined_link_order: 2481 case bfd_section_reloc_link_order: 2482 case bfd_symbol_reloc_link_order: 2483 default: 2484 abort (); 2485 case bfd_indirect_link_order: 2486 return default_indirect_link_order (abfd, info, sec, link_order, 2487 false); 2488 case bfd_data_link_order: 2489 return default_data_link_order (abfd, info, sec, link_order); 2490 } 2491 } 2492 2493 /* Default routine to handle a bfd_data_link_order. */ 2494 2495 static bool 2496 default_data_link_order (bfd *abfd, 2497 struct bfd_link_info *info, 2498 asection *sec, 2499 struct bfd_link_order *link_order) 2500 { 2501 bfd_size_type size; 2502 size_t fill_size; 2503 bfd_byte *fill; 2504 file_ptr loc; 2505 bool result; 2506 2507 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0); 2508 2509 size = link_order->size; 2510 if (size == 0) 2511 return true; 2512 2513 fill = link_order->u.data.contents; 2514 fill_size = link_order->u.data.size; 2515 if (fill_size == 0) 2516 { 2517 fill = abfd->arch_info->fill (size, info->big_endian, 2518 (sec->flags & SEC_CODE) != 0); 2519 if (fill == NULL) 2520 return false; 2521 } 2522 else if (fill_size < size) 2523 { 2524 bfd_byte *p; 2525 fill = (bfd_byte *) bfd_malloc (size); 2526 if (fill == NULL) 2527 return false; 2528 p = fill; 2529 if (fill_size == 1) 2530 memset (p, (int) link_order->u.data.contents[0], (size_t) size); 2531 else 2532 { 2533 do 2534 { 2535 memcpy (p, link_order->u.data.contents, fill_size); 2536 p += fill_size; 2537 size -= fill_size; 2538 } 2539 while (size >= fill_size); 2540 if (size != 0) 2541 memcpy (p, link_order->u.data.contents, (size_t) size); 2542 size = link_order->size; 2543 } 2544 } 2545 2546 loc = link_order->offset * bfd_octets_per_byte (abfd, sec); 2547 result = bfd_set_section_contents (abfd, sec, fill, loc, size); 2548 2549 if (fill != link_order->u.data.contents) 2550 free (fill); 2551 return result; 2552 } 2553 2554 /* Default routine to handle a bfd_indirect_link_order. */ 2555 2556 static bool 2557 default_indirect_link_order (bfd *output_bfd, 2558 struct bfd_link_info *info, 2559 asection *output_section, 2560 struct bfd_link_order *link_order, 2561 bool generic_linker) 2562 { 2563 asection *input_section; 2564 bfd *input_bfd; 2565 bfd_byte *alloced = NULL; 2566 bfd_byte *new_contents; 2567 file_ptr loc; 2568 2569 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0); 2570 2571 input_section = link_order->u.indirect.section; 2572 input_bfd = input_section->owner; 2573 if (input_section->size == 0) 2574 return true; 2575 2576 BFD_ASSERT (input_section->output_section == output_section); 2577 BFD_ASSERT (input_section->output_offset == link_order->offset); 2578 BFD_ASSERT (input_section->size == link_order->size); 2579 2580 if (bfd_link_relocatable (info) 2581 && input_section->reloc_count > 0 2582 && output_section->orelocation == NULL) 2583 { 2584 /* Space has not been allocated for the output relocations. 2585 This can happen when we are called by a specific backend 2586 because somebody is attempting to link together different 2587 types of object files. Handling this case correctly is 2588 difficult, and sometimes impossible. */ 2589 _bfd_error_handler 2590 /* xgettext:c-format */ 2591 (_("attempt to do relocatable link with %s input and %s output"), 2592 bfd_get_target (input_bfd), bfd_get_target (output_bfd)); 2593 bfd_set_error (bfd_error_wrong_format); 2594 return false; 2595 } 2596 2597 if (! generic_linker) 2598 { 2599 asymbol **sympp; 2600 asymbol **symppend; 2601 2602 /* Get the canonical symbols. The generic linker will always 2603 have retrieved them by this point, but we are being called by 2604 a specific linker, presumably because we are linking 2605 different types of object files together. */ 2606 if (!bfd_generic_link_read_symbols (input_bfd)) 2607 return false; 2608 2609 /* Since we have been called by a specific linker, rather than 2610 the generic linker, the values of the symbols will not be 2611 right. They will be the values as seen in the input file, 2612 not the values of the final link. We need to fix them up 2613 before we can relocate the section. */ 2614 sympp = _bfd_generic_link_get_symbols (input_bfd); 2615 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd); 2616 for (; sympp < symppend; sympp++) 2617 { 2618 asymbol *sym; 2619 struct bfd_link_hash_entry *h; 2620 2621 sym = *sympp; 2622 2623 if ((sym->flags & (BSF_INDIRECT 2624 | BSF_WARNING 2625 | BSF_GLOBAL 2626 | BSF_CONSTRUCTOR 2627 | BSF_WEAK)) != 0 2628 || bfd_is_und_section (bfd_asymbol_section (sym)) 2629 || bfd_is_com_section (bfd_asymbol_section (sym)) 2630 || bfd_is_ind_section (bfd_asymbol_section (sym))) 2631 { 2632 /* sym->udata may have been set by 2633 generic_link_add_symbol_list. */ 2634 if (sym->udata.p != NULL) 2635 h = (struct bfd_link_hash_entry *) sym->udata.p; 2636 else if (bfd_is_und_section (bfd_asymbol_section (sym))) 2637 h = bfd_wrapped_link_hash_lookup (output_bfd, info, 2638 bfd_asymbol_name (sym), 2639 false, false, true); 2640 else 2641 h = bfd_link_hash_lookup (info->hash, 2642 bfd_asymbol_name (sym), 2643 false, false, true); 2644 if (h != NULL) 2645 set_symbol_from_hash (sym, h); 2646 } 2647 } 2648 } 2649 2650 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP 2651 && input_section->size != 0) 2652 { 2653 /* Group section contents are set by bfd_elf_set_group_contents. */ 2654 if (!output_bfd->output_has_begun) 2655 { 2656 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */ 2657 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1)) 2658 goto error_return; 2659 } 2660 new_contents = output_section->contents; 2661 BFD_ASSERT (new_contents != NULL); 2662 BFD_ASSERT (input_section->output_offset == 0); 2663 } 2664 else 2665 { 2666 /* Get and relocate the section contents. */ 2667 new_contents = (bfd_get_relocated_section_contents 2668 (output_bfd, info, link_order, NULL, 2669 bfd_link_relocatable (info), 2670 _bfd_generic_link_get_symbols (input_bfd))); 2671 alloced = new_contents; 2672 if (!new_contents) 2673 goto error_return; 2674 } 2675 2676 /* Output the section contents. */ 2677 loc = (input_section->output_offset 2678 * bfd_octets_per_byte (output_bfd, output_section)); 2679 if (! bfd_set_section_contents (output_bfd, output_section, 2680 new_contents, loc, input_section->size)) 2681 goto error_return; 2682 2683 free (alloced); 2684 return true; 2685 2686 error_return: 2687 free (alloced); 2688 return false; 2689 } 2690 2691 /* A little routine to count the number of relocs in a link_order 2692 list. */ 2693 2694 unsigned int 2695 _bfd_count_link_order_relocs (struct bfd_link_order *link_order) 2696 { 2697 register unsigned int c; 2698 register struct bfd_link_order *l; 2699 2700 c = 0; 2701 for (l = link_order; l != NULL; l = l->next) 2702 { 2703 if (l->type == bfd_section_reloc_link_order 2704 || l->type == bfd_symbol_reloc_link_order) 2705 ++c; 2706 } 2707 2708 return c; 2709 } 2710 2711 /* 2712 FUNCTION 2713 bfd_link_split_section 2714 2715 SYNOPSIS 2716 bool bfd_link_split_section (bfd *abfd, asection *sec); 2717 2718 DESCRIPTION 2719 Return nonzero if @var{sec} should be split during a 2720 reloceatable or final link. 2721 2722 .#define bfd_link_split_section(abfd, sec) \ 2723 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec)) 2724 . 2725 2726 */ 2727 2728 bool 2729 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED, 2730 asection *sec ATTRIBUTE_UNUSED) 2731 { 2732 return false; 2733 } 2734 2735 /* 2736 FUNCTION 2737 bfd_section_already_linked 2738 2739 SYNOPSIS 2740 bool bfd_section_already_linked (bfd *abfd, 2741 asection *sec, 2742 struct bfd_link_info *info); 2743 2744 DESCRIPTION 2745 Check if @var{data} has been already linked during a reloceatable 2746 or final link. Return TRUE if it has. 2747 2748 .#define bfd_section_already_linked(abfd, sec, info) \ 2749 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info)) 2750 . 2751 2752 */ 2753 2754 /* Sections marked with the SEC_LINK_ONCE flag should only be linked 2755 once into the output. This routine checks each section, and 2756 arrange to discard it if a section of the same name has already 2757 been linked. This code assumes that all relevant sections have the 2758 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the 2759 section name. bfd_section_already_linked is called via 2760 bfd_map_over_sections. */ 2761 2762 /* The hash table. */ 2763 2764 static struct bfd_hash_table _bfd_section_already_linked_table; 2765 2766 /* Support routines for the hash table used by section_already_linked, 2767 initialize the table, traverse, lookup, fill in an entry and remove 2768 the table. */ 2769 2770 void 2771 bfd_section_already_linked_table_traverse 2772 (bool (*func) (struct bfd_section_already_linked_hash_entry *, void *), 2773 void *info) 2774 { 2775 bfd_hash_traverse (&_bfd_section_already_linked_table, 2776 (bool (*) (struct bfd_hash_entry *, void *)) func, 2777 info); 2778 } 2779 2780 struct bfd_section_already_linked_hash_entry * 2781 bfd_section_already_linked_table_lookup (const char *name) 2782 { 2783 return ((struct bfd_section_already_linked_hash_entry *) 2784 bfd_hash_lookup (&_bfd_section_already_linked_table, name, 2785 true, false)); 2786 } 2787 2788 bool 2789 bfd_section_already_linked_table_insert 2790 (struct bfd_section_already_linked_hash_entry *already_linked_list, 2791 asection *sec) 2792 { 2793 struct bfd_section_already_linked *l; 2794 2795 /* Allocate the memory from the same obstack as the hash table is 2796 kept in. */ 2797 l = (struct bfd_section_already_linked *) 2798 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l); 2799 if (l == NULL) 2800 return false; 2801 l->sec = sec; 2802 l->next = already_linked_list->entry; 2803 already_linked_list->entry = l; 2804 return true; 2805 } 2806 2807 static struct bfd_hash_entry * 2808 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED, 2809 struct bfd_hash_table *table, 2810 const char *string ATTRIBUTE_UNUSED) 2811 { 2812 struct bfd_section_already_linked_hash_entry *ret = 2813 (struct bfd_section_already_linked_hash_entry *) 2814 bfd_hash_allocate (table, sizeof *ret); 2815 2816 if (ret == NULL) 2817 return NULL; 2818 2819 ret->entry = NULL; 2820 2821 return &ret->root; 2822 } 2823 2824 bool 2825 bfd_section_already_linked_table_init (void) 2826 { 2827 return bfd_hash_table_init_n (&_bfd_section_already_linked_table, 2828 already_linked_newfunc, 2829 sizeof (struct bfd_section_already_linked_hash_entry), 2830 42); 2831 } 2832 2833 void 2834 bfd_section_already_linked_table_free (void) 2835 { 2836 bfd_hash_table_free (&_bfd_section_already_linked_table); 2837 } 2838 2839 /* Report warnings as appropriate for duplicate section SEC. 2840 Return FALSE if we decide to keep SEC after all. */ 2841 2842 bool 2843 _bfd_handle_already_linked (asection *sec, 2844 struct bfd_section_already_linked *l, 2845 struct bfd_link_info *info) 2846 { 2847 switch (sec->flags & SEC_LINK_DUPLICATES) 2848 { 2849 default: 2850 abort (); 2851 2852 case SEC_LINK_DUPLICATES_DISCARD: 2853 /* If we found an LTO IR match for this comdat group on 2854 the first pass, replace it with the LTO output on the 2855 second pass. We can't simply choose real object 2856 files over IR because the first pass may contain a 2857 mix of LTO and normal objects and we must keep the 2858 first match, be it IR or real. */ 2859 if (sec->owner->lto_output 2860 && (l->sec->owner->flags & BFD_PLUGIN) != 0) 2861 { 2862 l->sec = sec; 2863 return false; 2864 } 2865 break; 2866 2867 case SEC_LINK_DUPLICATES_ONE_ONLY: 2868 info->callbacks->einfo 2869 /* xgettext:c-format */ 2870 (_("%pB: ignoring duplicate section `%pA'\n"), 2871 sec->owner, sec); 2872 break; 2873 2874 case SEC_LINK_DUPLICATES_SAME_SIZE: 2875 if ((l->sec->owner->flags & BFD_PLUGIN) != 0) 2876 ; 2877 else if (sec->size != l->sec->size) 2878 info->callbacks->einfo 2879 /* xgettext:c-format */ 2880 (_("%pB: duplicate section `%pA' has different size\n"), 2881 sec->owner, sec); 2882 break; 2883 2884 case SEC_LINK_DUPLICATES_SAME_CONTENTS: 2885 if ((l->sec->owner->flags & BFD_PLUGIN) != 0) 2886 ; 2887 else if (sec->size != l->sec->size) 2888 info->callbacks->einfo 2889 /* xgettext:c-format */ 2890 (_("%pB: duplicate section `%pA' has different size\n"), 2891 sec->owner, sec); 2892 else if (sec->size != 0) 2893 { 2894 bfd_byte *sec_contents, *l_sec_contents; 2895 2896 if ((sec->flags & SEC_HAS_CONTENTS) == 0 2897 && (l->sec->flags & SEC_HAS_CONTENTS) == 0) 2898 ; 2899 else if ((sec->flags & SEC_HAS_CONTENTS) == 0 2900 || !bfd_malloc_and_get_section (sec->owner, sec, 2901 &sec_contents)) 2902 info->callbacks->einfo 2903 /* xgettext:c-format */ 2904 (_("%pB: could not read contents of section `%pA'\n"), 2905 sec->owner, sec); 2906 else if ((l->sec->flags & SEC_HAS_CONTENTS) == 0 2907 || !bfd_malloc_and_get_section (l->sec->owner, l->sec, 2908 &l_sec_contents)) 2909 { 2910 info->callbacks->einfo 2911 /* xgettext:c-format */ 2912 (_("%pB: could not read contents of section `%pA'\n"), 2913 l->sec->owner, l->sec); 2914 free (sec_contents); 2915 } 2916 else 2917 { 2918 if (memcmp (sec_contents, l_sec_contents, sec->size) != 0) 2919 info->callbacks->einfo 2920 /* xgettext:c-format */ 2921 (_("%pB: duplicate section `%pA' has different contents\n"), 2922 sec->owner, sec); 2923 free (l_sec_contents); 2924 free (sec_contents); 2925 } 2926 } 2927 break; 2928 } 2929 2930 /* Set the output_section field so that lang_add_section 2931 does not create a lang_input_section structure for this 2932 section. Since there might be a symbol in the section 2933 being discarded, we must retain a pointer to the section 2934 which we are really going to use. */ 2935 sec->output_section = bfd_abs_section_ptr; 2936 sec->kept_section = l->sec; 2937 return true; 2938 } 2939 2940 /* This is used on non-ELF inputs. */ 2941 2942 bool 2943 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED, 2944 asection *sec, 2945 struct bfd_link_info *info) 2946 { 2947 const char *name; 2948 struct bfd_section_already_linked *l; 2949 struct bfd_section_already_linked_hash_entry *already_linked_list; 2950 2951 if ((sec->flags & SEC_LINK_ONCE) == 0) 2952 return false; 2953 2954 /* The generic linker doesn't handle section groups. */ 2955 if ((sec->flags & SEC_GROUP) != 0) 2956 return false; 2957 2958 /* FIXME: When doing a relocatable link, we may have trouble 2959 copying relocations in other sections that refer to local symbols 2960 in the section being discarded. Those relocations will have to 2961 be converted somehow; as of this writing I'm not sure that any of 2962 the backends handle that correctly. 2963 2964 It is tempting to instead not discard link once sections when 2965 doing a relocatable link (technically, they should be discarded 2966 whenever we are building constructors). However, that fails, 2967 because the linker winds up combining all the link once sections 2968 into a single large link once section, which defeats the purpose 2969 of having link once sections in the first place. */ 2970 2971 name = bfd_section_name (sec); 2972 2973 already_linked_list = bfd_section_already_linked_table_lookup (name); 2974 2975 l = already_linked_list->entry; 2976 if (l != NULL) 2977 { 2978 /* The section has already been linked. See if we should 2979 issue a warning. */ 2980 return _bfd_handle_already_linked (sec, l, info); 2981 } 2982 2983 /* This is the first section with this name. Record it. */ 2984 if (!bfd_section_already_linked_table_insert (already_linked_list, sec)) 2985 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n")); 2986 return false; 2987 } 2988 2989 /* Choose a neighbouring section to S in OBFD that will be output, or 2990 the absolute section if ADDR is out of bounds of the neighbours. */ 2991 2992 asection * 2993 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr) 2994 { 2995 asection *next, *prev, *best; 2996 2997 /* Find preceding kept section. */ 2998 for (prev = s->prev; prev != NULL; prev = prev->prev) 2999 if ((prev->flags & SEC_EXCLUDE) == 0 3000 && !bfd_section_removed_from_list (obfd, prev)) 3001 break; 3002 3003 /* Find following kept section. Start at prev->next because 3004 other sections may have been added after S was removed. */ 3005 if (s->prev != NULL) 3006 next = s->prev->next; 3007 else 3008 next = s->owner->sections; 3009 for (; next != NULL; next = next->next) 3010 if ((next->flags & SEC_EXCLUDE) == 0 3011 && !bfd_section_removed_from_list (obfd, next)) 3012 break; 3013 3014 /* Choose better of two sections, based on flags. The idea 3015 is to choose a section that will be in the same segment 3016 as S would have been if it was kept. */ 3017 best = next; 3018 if (prev == NULL) 3019 { 3020 if (next == NULL) 3021 best = bfd_abs_section_ptr; 3022 } 3023 else if (next == NULL) 3024 best = prev; 3025 else if (((prev->flags ^ next->flags) 3026 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0) 3027 { 3028 if (((next->flags ^ s->flags) 3029 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0 3030 /* We prefer to choose a loaded section. Section S 3031 doesn't have SEC_LOAD set (it being excluded, that 3032 part of the flag processing didn't happen) so we 3033 can't compare that flag to those of NEXT and PREV. */ 3034 || ((prev->flags & SEC_LOAD) != 0 3035 && (next->flags & SEC_LOAD) == 0)) 3036 best = prev; 3037 } 3038 else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0) 3039 { 3040 if (((next->flags ^ s->flags) & SEC_READONLY) != 0) 3041 best = prev; 3042 } 3043 else if (((prev->flags ^ next->flags) & SEC_CODE) != 0) 3044 { 3045 if (((next->flags ^ s->flags) & SEC_CODE) != 0) 3046 best = prev; 3047 } 3048 else 3049 { 3050 /* Flags we care about are the same. Prefer the following 3051 section if that will result in a positive valued sym. */ 3052 if (addr < next->vma) 3053 best = prev; 3054 } 3055 3056 return best; 3057 } 3058 3059 /* Convert symbols in excluded output sections to use a kept section. */ 3060 3061 static bool 3062 fix_syms (struct bfd_link_hash_entry *h, void *data) 3063 { 3064 bfd *obfd = (bfd *) data; 3065 3066 if (h->type == bfd_link_hash_defined 3067 || h->type == bfd_link_hash_defweak) 3068 { 3069 asection *s = h->u.def.section; 3070 if (s != NULL 3071 && s->output_section != NULL 3072 && (s->output_section->flags & SEC_EXCLUDE) != 0 3073 && bfd_section_removed_from_list (obfd, s->output_section)) 3074 { 3075 asection *op; 3076 3077 h->u.def.value += s->output_offset + s->output_section->vma; 3078 op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value); 3079 h->u.def.value -= op->vma; 3080 h->u.def.section = op; 3081 } 3082 } 3083 3084 return true; 3085 } 3086 3087 void 3088 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info) 3089 { 3090 bfd_link_hash_traverse (info->hash, fix_syms, obfd); 3091 } 3092 3093 /* 3094 FUNCTION 3095 bfd_generic_define_common_symbol 3096 3097 SYNOPSIS 3098 bool bfd_generic_define_common_symbol 3099 (bfd *output_bfd, struct bfd_link_info *info, 3100 struct bfd_link_hash_entry *h); 3101 3102 DESCRIPTION 3103 Convert common symbol @var{h} into a defined symbol. 3104 Return TRUE on success and FALSE on failure. 3105 3106 .#define bfd_define_common_symbol(output_bfd, info, h) \ 3107 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h)) 3108 . 3109 */ 3110 3111 bool 3112 bfd_generic_define_common_symbol (bfd *output_bfd, 3113 struct bfd_link_info *info ATTRIBUTE_UNUSED, 3114 struct bfd_link_hash_entry *h) 3115 { 3116 unsigned int power_of_two; 3117 bfd_vma alignment, size; 3118 asection *section; 3119 3120 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common); 3121 3122 size = h->u.c.size; 3123 power_of_two = h->u.c.p->alignment_power; 3124 section = h->u.c.p->section; 3125 3126 /* Increase the size of the section to align the common symbol. 3127 The alignment must be a power of two. But if the section does 3128 not have any alignment requirement then do not increase the 3129 alignment unnecessarily. */ 3130 if (power_of_two) 3131 alignment = bfd_octets_per_byte (output_bfd, section) << power_of_two; 3132 else 3133 alignment = 1; 3134 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment); 3135 section->size += alignment - 1; 3136 section->size &= -alignment; 3137 3138 /* Adjust the section's overall alignment if necessary. */ 3139 if (power_of_two > section->alignment_power) 3140 section->alignment_power = power_of_two; 3141 3142 /* Change the symbol from common to defined. */ 3143 h->type = bfd_link_hash_defined; 3144 h->u.def.section = section; 3145 h->u.def.value = section->size; 3146 3147 /* Increase the size of the section. */ 3148 section->size += size; 3149 3150 /* Make sure the section is allocated in memory, and make sure that 3151 it is no longer a common section. */ 3152 section->flags |= SEC_ALLOC; 3153 section->flags &= ~(SEC_IS_COMMON | SEC_HAS_CONTENTS); 3154 return true; 3155 } 3156 3157 /* 3158 FUNCTION 3159 _bfd_generic_link_hide_symbol 3160 3161 SYNOPSIS 3162 void _bfd_generic_link_hide_symbol 3163 (bfd *output_bfd, struct bfd_link_info *info, 3164 struct bfd_link_hash_entry *h); 3165 3166 DESCRIPTION 3167 Hide symbol @var{h}. 3168 This is an internal function. It should not be called from 3169 outside the BFD library. 3170 3171 .#define bfd_link_hide_symbol(output_bfd, info, h) \ 3172 . BFD_SEND (output_bfd, _bfd_link_hide_symbol, (output_bfd, info, h)) 3173 . 3174 */ 3175 3176 void 3177 _bfd_generic_link_hide_symbol (bfd *output_bfd ATTRIBUTE_UNUSED, 3178 struct bfd_link_info *info ATTRIBUTE_UNUSED, 3179 struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED) 3180 { 3181 } 3182 3183 /* 3184 FUNCTION 3185 bfd_generic_define_start_stop 3186 3187 SYNOPSIS 3188 struct bfd_link_hash_entry *bfd_generic_define_start_stop 3189 (struct bfd_link_info *info, 3190 const char *symbol, asection *sec); 3191 3192 DESCRIPTION 3193 Define a __start, __stop, .startof. or .sizeof. symbol. 3194 Return the symbol or NULL if no such undefined symbol exists. 3195 3196 .#define bfd_define_start_stop(output_bfd, info, symbol, sec) \ 3197 . BFD_SEND (output_bfd, _bfd_define_start_stop, (info, symbol, sec)) 3198 . 3199 */ 3200 3201 struct bfd_link_hash_entry * 3202 bfd_generic_define_start_stop (struct bfd_link_info *info, 3203 const char *symbol, asection *sec) 3204 { 3205 struct bfd_link_hash_entry *h; 3206 3207 h = bfd_link_hash_lookup (info->hash, symbol, false, false, true); 3208 if (h != NULL 3209 && !h->ldscript_def 3210 && (h->type == bfd_link_hash_undefined 3211 || h->type == bfd_link_hash_undefweak)) 3212 { 3213 h->type = bfd_link_hash_defined; 3214 h->u.def.section = sec; 3215 h->u.def.value = 0; 3216 return h; 3217 } 3218 return NULL; 3219 } 3220 3221 /* 3222 FUNCTION 3223 bfd_find_version_for_sym 3224 3225 SYNOPSIS 3226 struct bfd_elf_version_tree * bfd_find_version_for_sym 3227 (struct bfd_elf_version_tree *verdefs, 3228 const char *sym_name, bool *hide); 3229 3230 DESCRIPTION 3231 Search an elf version script tree for symbol versioning 3232 info and export / don't-export status for a given symbol. 3233 Return non-NULL on success and NULL on failure; also sets 3234 the output @samp{hide} boolean parameter. 3235 3236 */ 3237 3238 struct bfd_elf_version_tree * 3239 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs, 3240 const char *sym_name, 3241 bool *hide) 3242 { 3243 struct bfd_elf_version_tree *t; 3244 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver; 3245 struct bfd_elf_version_tree *star_local_ver, *star_global_ver; 3246 3247 local_ver = NULL; 3248 global_ver = NULL; 3249 star_local_ver = NULL; 3250 star_global_ver = NULL; 3251 exist_ver = NULL; 3252 for (t = verdefs; t != NULL; t = t->next) 3253 { 3254 if (t->globals.list != NULL) 3255 { 3256 struct bfd_elf_version_expr *d = NULL; 3257 3258 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL) 3259 { 3260 if (d->literal || strcmp (d->pattern, "*") != 0) 3261 global_ver = t; 3262 else 3263 star_global_ver = t; 3264 if (d->symver) 3265 exist_ver = t; 3266 d->script = 1; 3267 /* If the match is a wildcard pattern, keep looking for 3268 a more explicit, perhaps even local, match. */ 3269 if (d->literal) 3270 break; 3271 } 3272 3273 if (d != NULL) 3274 break; 3275 } 3276 3277 if (t->locals.list != NULL) 3278 { 3279 struct bfd_elf_version_expr *d = NULL; 3280 3281 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL) 3282 { 3283 if (d->literal || strcmp (d->pattern, "*") != 0) 3284 local_ver = t; 3285 else 3286 star_local_ver = t; 3287 /* If the match is a wildcard pattern, keep looking for 3288 a more explicit, perhaps even global, match. */ 3289 if (d->literal) 3290 { 3291 /* An exact match overrides a global wildcard. */ 3292 global_ver = NULL; 3293 star_global_ver = NULL; 3294 break; 3295 } 3296 } 3297 3298 if (d != NULL) 3299 break; 3300 } 3301 } 3302 3303 if (global_ver == NULL && local_ver == NULL) 3304 global_ver = star_global_ver; 3305 3306 if (global_ver != NULL) 3307 { 3308 /* If we already have a versioned symbol that matches the 3309 node for this symbol, then we don't want to create a 3310 duplicate from the unversioned symbol. Instead hide the 3311 unversioned symbol. */ 3312 *hide = exist_ver == global_ver; 3313 return global_ver; 3314 } 3315 3316 if (local_ver == NULL) 3317 local_ver = star_local_ver; 3318 3319 if (local_ver != NULL) 3320 { 3321 *hide = true; 3322 return local_ver; 3323 } 3324 3325 return NULL; 3326 } 3327 3328 /* 3329 FUNCTION 3330 bfd_hide_sym_by_version 3331 3332 SYNOPSIS 3333 bool bfd_hide_sym_by_version 3334 (struct bfd_elf_version_tree *verdefs, const char *sym_name); 3335 3336 DESCRIPTION 3337 Search an elf version script tree for symbol versioning 3338 info for a given symbol. Return TRUE if the symbol is hidden. 3339 3340 */ 3341 3342 bool 3343 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs, 3344 const char *sym_name) 3345 { 3346 bool hidden = false; 3347 bfd_find_version_for_sym (verdefs, sym_name, &hidden); 3348 return hidden; 3349 } 3350 3351 /* 3352 FUNCTION 3353 bfd_link_check_relocs 3354 3355 SYNOPSIS 3356 bool bfd_link_check_relocs 3357 (bfd *abfd, struct bfd_link_info *info); 3358 3359 DESCRIPTION 3360 Checks the relocs in ABFD for validity. 3361 Does not execute the relocs. 3362 Return TRUE if everything is OK, FALSE otherwise. 3363 This is the external entry point to this code. 3364 */ 3365 3366 bool 3367 bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info) 3368 { 3369 return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info)); 3370 } 3371 3372 /* 3373 FUNCTION 3374 _bfd_generic_link_check_relocs 3375 3376 SYNOPSIS 3377 bool _bfd_generic_link_check_relocs 3378 (bfd *abfd, struct bfd_link_info *info); 3379 3380 DESCRIPTION 3381 Stub function for targets that do not implement reloc checking. 3382 Return TRUE. 3383 This is an internal function. It should not be called from 3384 outside the BFD library. 3385 */ 3386 3387 bool 3388 _bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED, 3389 struct bfd_link_info *info ATTRIBUTE_UNUSED) 3390 { 3391 return true; 3392 } 3393 3394 /* 3395 FUNCTION 3396 bfd_merge_private_bfd_data 3397 3398 SYNOPSIS 3399 bool bfd_merge_private_bfd_data 3400 (bfd *ibfd, struct bfd_link_info *info); 3401 3402 DESCRIPTION 3403 Merge private BFD information from the BFD @var{ibfd} to the 3404 the output file BFD when linking. Return <<TRUE>> on success, 3405 <<FALSE>> on error. Possible error returns are: 3406 3407 o <<bfd_error_no_memory>> - 3408 Not enough memory exists to create private data for @var{obfd}. 3409 3410 .#define bfd_merge_private_bfd_data(ibfd, info) \ 3411 . BFD_SEND ((info)->output_bfd, _bfd_merge_private_bfd_data, \ 3412 . (ibfd, info)) 3413 . 3414 */ 3415 3416 /* 3417 INTERNAL_FUNCTION 3418 _bfd_generic_verify_endian_match 3419 3420 SYNOPSIS 3421 bool _bfd_generic_verify_endian_match 3422 (bfd *ibfd, struct bfd_link_info *info); 3423 3424 DESCRIPTION 3425 Can be used from / for bfd_merge_private_bfd_data to check that 3426 endianness matches between input and output file. Returns 3427 TRUE for a match, otherwise returns FALSE and emits an error. 3428 */ 3429 3430 bool 3431 _bfd_generic_verify_endian_match (bfd *ibfd, struct bfd_link_info *info) 3432 { 3433 bfd *obfd = info->output_bfd; 3434 3435 if (ibfd->xvec->byteorder != obfd->xvec->byteorder 3436 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN 3437 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN) 3438 { 3439 if (bfd_big_endian (ibfd)) 3440 _bfd_error_handler (_("%pB: compiled for a big endian system " 3441 "and target is little endian"), ibfd); 3442 else 3443 _bfd_error_handler (_("%pB: compiled for a little endian system " 3444 "and target is big endian"), ibfd); 3445 bfd_set_error (bfd_error_wrong_format); 3446 return false; 3447 } 3448 3449 return true; 3450 } 3451 3452 int 3453 _bfd_nolink_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED, 3454 struct bfd_link_info *info ATTRIBUTE_UNUSED) 3455 { 3456 return 0; 3457 } 3458 3459 bool 3460 _bfd_nolink_bfd_relax_section (bfd *abfd, 3461 asection *section ATTRIBUTE_UNUSED, 3462 struct bfd_link_info *link_info ATTRIBUTE_UNUSED, 3463 bool *again ATTRIBUTE_UNUSED) 3464 { 3465 return _bfd_bool_bfd_false_error (abfd); 3466 } 3467 3468 bfd_byte * 3469 _bfd_nolink_bfd_get_relocated_section_contents 3470 (bfd *abfd, 3471 struct bfd_link_info *link_info ATTRIBUTE_UNUSED, 3472 struct bfd_link_order *link_order ATTRIBUTE_UNUSED, 3473 bfd_byte *data ATTRIBUTE_UNUSED, 3474 bool relocatable ATTRIBUTE_UNUSED, 3475 asymbol **symbols ATTRIBUTE_UNUSED) 3476 { 3477 return (bfd_byte *) _bfd_ptr_bfd_null_error (abfd); 3478 } 3479 3480 bool 3481 _bfd_nolink_bfd_lookup_section_flags 3482 (struct bfd_link_info *info ATTRIBUTE_UNUSED, 3483 struct flag_info *flaginfo ATTRIBUTE_UNUSED, 3484 asection *section) 3485 { 3486 return _bfd_bool_bfd_false_error (section->owner); 3487 } 3488 3489 bool 3490 _bfd_nolink_bfd_is_group_section (bfd *abfd, 3491 const asection *sec ATTRIBUTE_UNUSED) 3492 { 3493 return _bfd_bool_bfd_false_error (abfd); 3494 } 3495 3496 const char * 3497 _bfd_nolink_bfd_group_name (bfd *abfd, 3498 const asection *sec ATTRIBUTE_UNUSED) 3499 { 3500 return _bfd_ptr_bfd_null_error (abfd); 3501 } 3502 3503 bool 3504 _bfd_nolink_bfd_discard_group (bfd *abfd, asection *sec ATTRIBUTE_UNUSED) 3505 { 3506 return _bfd_bool_bfd_false_error (abfd); 3507 } 3508 3509 struct bfd_link_hash_table * 3510 _bfd_nolink_bfd_link_hash_table_create (bfd *abfd) 3511 { 3512 return (struct bfd_link_hash_table *) _bfd_ptr_bfd_null_error (abfd); 3513 } 3514 3515 void 3516 _bfd_nolink_bfd_link_just_syms (asection *sec ATTRIBUTE_UNUSED, 3517 struct bfd_link_info *info ATTRIBUTE_UNUSED) 3518 { 3519 } 3520 3521 void 3522 _bfd_nolink_bfd_copy_link_hash_symbol_type 3523 (bfd *abfd ATTRIBUTE_UNUSED, 3524 struct bfd_link_hash_entry *from ATTRIBUTE_UNUSED, 3525 struct bfd_link_hash_entry *to ATTRIBUTE_UNUSED) 3526 { 3527 } 3528 3529 bool 3530 _bfd_nolink_bfd_link_split_section (bfd *abfd, asection *sec ATTRIBUTE_UNUSED) 3531 { 3532 return _bfd_bool_bfd_false_error (abfd); 3533 } 3534 3535 bool 3536 _bfd_nolink_section_already_linked (bfd *abfd, 3537 asection *sec ATTRIBUTE_UNUSED, 3538 struct bfd_link_info *info ATTRIBUTE_UNUSED) 3539 { 3540 return _bfd_bool_bfd_false_error (abfd); 3541 } 3542 3543 bool 3544 _bfd_nolink_bfd_define_common_symbol 3545 (bfd *abfd, 3546 struct bfd_link_info *info ATTRIBUTE_UNUSED, 3547 struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED) 3548 { 3549 return _bfd_bool_bfd_false_error (abfd); 3550 } 3551 3552 struct bfd_link_hash_entry * 3553 _bfd_nolink_bfd_define_start_stop (struct bfd_link_info *info ATTRIBUTE_UNUSED, 3554 const char *name ATTRIBUTE_UNUSED, 3555 asection *sec) 3556 { 3557 return (struct bfd_link_hash_entry *) _bfd_ptr_bfd_null_error (sec->owner); 3558 } 3559