1 /* linker.c -- BFD linker routines 2 Copyright (C) 1993-2019 Free Software Foundation, Inc. 3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 20 MA 02110-1301, USA. */ 21 22 #include "sysdep.h" 23 #include "bfd.h" 24 #include "libbfd.h" 25 #include "bfdlink.h" 26 #include "genlink.h" 27 28 /* 29 SECTION 30 Linker Functions 31 32 @cindex Linker 33 The linker uses three special entry points in the BFD target 34 vector. It is not necessary to write special routines for 35 these entry points when creating a new BFD back end, since 36 generic versions are provided. However, writing them can 37 speed up linking and make it use significantly less runtime 38 memory. 39 40 The first routine creates a hash table used by the other 41 routines. The second routine adds the symbols from an object 42 file to the hash table. The third routine takes all the 43 object files and links them together to create the output 44 file. These routines are designed so that the linker proper 45 does not need to know anything about the symbols in the object 46 files that it is linking. The linker merely arranges the 47 sections as directed by the linker script and lets BFD handle 48 the details of symbols and relocs. 49 50 The second routine and third routines are passed a pointer to 51 a <<struct bfd_link_info>> structure (defined in 52 <<bfdlink.h>>) which holds information relevant to the link, 53 including the linker hash table (which was created by the 54 first routine) and a set of callback functions to the linker 55 proper. 56 57 The generic linker routines are in <<linker.c>>, and use the 58 header file <<genlink.h>>. As of this writing, the only back 59 ends which have implemented versions of these routines are 60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out 61 routines are used as examples throughout this section. 62 63 @menu 64 @* Creating a Linker Hash Table:: 65 @* Adding Symbols to the Hash Table:: 66 @* Performing the Final Link:: 67 @end menu 68 69 INODE 70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions 71 SUBSECTION 72 Creating a linker hash table 73 74 @cindex _bfd_link_hash_table_create in target vector 75 @cindex target vector (_bfd_link_hash_table_create) 76 The linker routines must create a hash table, which must be 77 derived from <<struct bfd_link_hash_table>> described in 78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to 79 create a derived hash table. This entry point is called using 80 the target vector of the linker output file. 81 82 The <<_bfd_link_hash_table_create>> entry point must allocate 83 and initialize an instance of the desired hash table. If the 84 back end does not require any additional information to be 85 stored with the entries in the hash table, the entry point may 86 simply create a <<struct bfd_link_hash_table>>. Most likely, 87 however, some additional information will be needed. 88 89 For example, with each entry in the hash table the a.out 90 linker keeps the index the symbol has in the final output file 91 (this index number is used so that when doing a relocatable 92 link the symbol index used in the output file can be quickly 93 filled in when copying over a reloc). The a.out linker code 94 defines the required structures and functions for a hash table 95 derived from <<struct bfd_link_hash_table>>. The a.out linker 96 hash table is created by the function 97 <<NAME(aout,link_hash_table_create)>>; it simply allocates 98 space for the hash table, initializes it, and returns a 99 pointer to it. 100 101 When writing the linker routines for a new back end, you will 102 generally not know exactly which fields will be required until 103 you have finished. You should simply create a new hash table 104 which defines no additional fields, and then simply add fields 105 as they become necessary. 106 107 INODE 108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions 109 SUBSECTION 110 Adding symbols to the hash table 111 112 @cindex _bfd_link_add_symbols in target vector 113 @cindex target vector (_bfd_link_add_symbols) 114 The linker proper will call the <<_bfd_link_add_symbols>> 115 entry point for each object file or archive which is to be 116 linked (typically these are the files named on the command 117 line, but some may also come from the linker script). The 118 entry point is responsible for examining the file. For an 119 object file, BFD must add any relevant symbol information to 120 the hash table. For an archive, BFD must determine which 121 elements of the archive should be used and adding them to the 122 link. 123 124 The a.out version of this entry point is 125 <<NAME(aout,link_add_symbols)>>. 126 127 @menu 128 @* Differing file formats:: 129 @* Adding symbols from an object file:: 130 @* Adding symbols from an archive:: 131 @end menu 132 133 INODE 134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table 135 SUBSUBSECTION 136 Differing file formats 137 138 Normally all the files involved in a link will be of the same 139 format, but it is also possible to link together different 140 format object files, and the back end must support that. The 141 <<_bfd_link_add_symbols>> entry point is called via the target 142 vector of the file to be added. This has an important 143 consequence: the function may not assume that the hash table 144 is the type created by the corresponding 145 <<_bfd_link_hash_table_create>> vector. All the 146 <<_bfd_link_add_symbols>> function can assume about the hash 147 table is that it is derived from <<struct 148 bfd_link_hash_table>>. 149 150 Sometimes the <<_bfd_link_add_symbols>> function must store 151 some information in the hash table entry to be used by the 152 <<_bfd_final_link>> function. In such a case the output bfd 153 xvec must be checked to make sure that the hash table was 154 created by an object file of the same format. 155 156 The <<_bfd_final_link>> routine must be prepared to handle a 157 hash entry without any extra information added by the 158 <<_bfd_link_add_symbols>> function. A hash entry without 159 extra information will also occur when the linker script 160 directs the linker to create a symbol. Note that, regardless 161 of how a hash table entry is added, all the fields will be 162 initialized to some sort of null value by the hash table entry 163 initialization function. 164 165 See <<ecoff_link_add_externals>> for an example of how to 166 check the output bfd before saving information (in this 167 case, the ECOFF external symbol debugging information) in a 168 hash table entry. 169 170 INODE 171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table 172 SUBSUBSECTION 173 Adding symbols from an object file 174 175 When the <<_bfd_link_add_symbols>> routine is passed an object 176 file, it must add all externally visible symbols in that 177 object file to the hash table. The actual work of adding the 178 symbol to the hash table is normally handled by the function 179 <<_bfd_generic_link_add_one_symbol>>. The 180 <<_bfd_link_add_symbols>> routine is responsible for reading 181 all the symbols from the object file and passing the correct 182 information to <<_bfd_generic_link_add_one_symbol>>. 183 184 The <<_bfd_link_add_symbols>> routine should not use 185 <<bfd_canonicalize_symtab>> to read the symbols. The point of 186 providing this routine is to avoid the overhead of converting 187 the symbols into generic <<asymbol>> structures. 188 189 @findex _bfd_generic_link_add_one_symbol 190 <<_bfd_generic_link_add_one_symbol>> handles the details of 191 combining common symbols, warning about multiple definitions, 192 and so forth. It takes arguments which describe the symbol to 193 add, notably symbol flags, a section, and an offset. The 194 symbol flags include such things as <<BSF_WEAK>> or 195 <<BSF_INDIRECT>>. The section is a section in the object 196 file, or something like <<bfd_und_section_ptr>> for an undefined 197 symbol or <<bfd_com_section_ptr>> for a common symbol. 198 199 If the <<_bfd_final_link>> routine is also going to need to 200 read the symbol information, the <<_bfd_link_add_symbols>> 201 routine should save it somewhere attached to the object file 202 BFD. However, the information should only be saved if the 203 <<keep_memory>> field of the <<info>> argument is TRUE, so 204 that the <<-no-keep-memory>> linker switch is effective. 205 206 The a.out function which adds symbols from an object file is 207 <<aout_link_add_object_symbols>>, and most of the interesting 208 work is in <<aout_link_add_symbols>>. The latter saves 209 pointers to the hash tables entries created by 210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number, 211 so that the <<_bfd_final_link>> routine does not have to call 212 the hash table lookup routine to locate the entry. 213 214 INODE 215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table 216 SUBSUBSECTION 217 Adding symbols from an archive 218 219 When the <<_bfd_link_add_symbols>> routine is passed an 220 archive, it must look through the symbols defined by the 221 archive and decide which elements of the archive should be 222 included in the link. For each such element it must call the 223 <<add_archive_element>> linker callback, and it must add the 224 symbols from the object file to the linker hash table. (The 225 callback may in fact indicate that a replacement BFD should be 226 used, in which case the symbols from that BFD should be added 227 to the linker hash table instead.) 228 229 @findex _bfd_generic_link_add_archive_symbols 230 In most cases the work of looking through the symbols in the 231 archive should be done by the 232 <<_bfd_generic_link_add_archive_symbols>> function. 233 <<_bfd_generic_link_add_archive_symbols>> is passed a function 234 to call to make the final decision about adding an archive 235 element to the link and to do the actual work of adding the 236 symbols to the linker hash table. If the element is to 237 be included, the <<add_archive_element>> linker callback 238 routine must be called with the element as an argument, and 239 the element's symbols must be added to the linker hash table 240 just as though the element had itself been passed to the 241 <<_bfd_link_add_symbols>> function. 242 243 When the a.out <<_bfd_link_add_symbols>> function receives an 244 archive, it calls <<_bfd_generic_link_add_archive_symbols>> 245 passing <<aout_link_check_archive_element>> as the function 246 argument. <<aout_link_check_archive_element>> calls 247 <<aout_link_check_ar_symbols>>. If the latter decides to add 248 the element (an element is only added if it provides a real, 249 non-common, definition for a previously undefined or common 250 symbol) it calls the <<add_archive_element>> callback and then 251 <<aout_link_check_archive_element>> calls 252 <<aout_link_add_symbols>> to actually add the symbols to the 253 linker hash table - possibly those of a substitute BFD, if the 254 <<add_archive_element>> callback avails itself of that option. 255 256 The ECOFF back end is unusual in that it does not normally 257 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF 258 archives already contain a hash table of symbols. The ECOFF 259 back end searches the archive itself to avoid the overhead of 260 creating a new hash table. 261 262 INODE 263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions 264 SUBSECTION 265 Performing the final link 266 267 @cindex _bfd_link_final_link in target vector 268 @cindex target vector (_bfd_final_link) 269 When all the input files have been processed, the linker calls 270 the <<_bfd_final_link>> entry point of the output BFD. This 271 routine is responsible for producing the final output file, 272 which has several aspects. It must relocate the contents of 273 the input sections and copy the data into the output sections. 274 It must build an output symbol table including any local 275 symbols from the input files and the global symbols from the 276 hash table. When producing relocatable output, it must 277 modify the input relocs and write them into the output file. 278 There may also be object format dependent work to be done. 279 280 The linker will also call the <<write_object_contents>> entry 281 point when the BFD is closed. The two entry points must work 282 together in order to produce the correct output file. 283 284 The details of how this works are inevitably dependent upon 285 the specific object file format. The a.out 286 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>. 287 288 @menu 289 @* Information provided by the linker:: 290 @* Relocating the section contents:: 291 @* Writing the symbol table:: 292 @end menu 293 294 INODE 295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link 296 SUBSUBSECTION 297 Information provided by the linker 298 299 Before the linker calls the <<_bfd_final_link>> entry point, 300 it sets up some data structures for the function to use. 301 302 The <<input_bfds>> field of the <<bfd_link_info>> structure 303 will point to a list of all the input files included in the 304 link. These files are linked through the <<link.next>> field 305 of the <<bfd>> structure. 306 307 Each section in the output file will have a list of 308 <<link_order>> structures attached to the <<map_head.link_order>> 309 field (the <<link_order>> structure is defined in 310 <<bfdlink.h>>). These structures describe how to create the 311 contents of the output section in terms of the contents of 312 various input sections, fill constants, and, eventually, other 313 types of information. They also describe relocs that must be 314 created by the BFD backend, but do not correspond to any input 315 file; this is used to support -Ur, which builds constructors 316 while generating a relocatable object file. 317 318 INODE 319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link 320 SUBSUBSECTION 321 Relocating the section contents 322 323 The <<_bfd_final_link>> function should look through the 324 <<link_order>> structures attached to each section of the 325 output file. Each <<link_order>> structure should either be 326 handled specially, or it should be passed to the function 327 <<_bfd_default_link_order>> which will do the right thing 328 (<<_bfd_default_link_order>> is defined in <<linker.c>>). 329 330 For efficiency, a <<link_order>> of type 331 <<bfd_indirect_link_order>> whose associated section belongs 332 to a BFD of the same format as the output BFD must be handled 333 specially. This type of <<link_order>> describes part of an 334 output section in terms of a section belonging to one of the 335 input files. The <<_bfd_final_link>> function should read the 336 contents of the section and any associated relocs, apply the 337 relocs to the section contents, and write out the modified 338 section contents. If performing a relocatable link, the 339 relocs themselves must also be modified and written out. 340 341 @findex _bfd_relocate_contents 342 @findex _bfd_final_link_relocate 343 The functions <<_bfd_relocate_contents>> and 344 <<_bfd_final_link_relocate>> provide some general support for 345 performing the actual relocations, notably overflow checking. 346 Their arguments include information about the symbol the 347 relocation is against and a <<reloc_howto_type>> argument 348 which describes the relocation to perform. These functions 349 are defined in <<reloc.c>>. 350 351 The a.out function which handles reading, relocating, and 352 writing section contents is <<aout_link_input_section>>. The 353 actual relocation is done in <<aout_link_input_section_std>> 354 and <<aout_link_input_section_ext>>. 355 356 INODE 357 Writing the symbol table, , Relocating the section contents, Performing the Final Link 358 SUBSUBSECTION 359 Writing the symbol table 360 361 The <<_bfd_final_link>> function must gather all the symbols 362 in the input files and write them out. It must also write out 363 all the symbols in the global hash table. This must be 364 controlled by the <<strip>> and <<discard>> fields of the 365 <<bfd_link_info>> structure. 366 367 The local symbols of the input files will not have been 368 entered into the linker hash table. The <<_bfd_final_link>> 369 routine must consider each input file and include the symbols 370 in the output file. It may be convenient to do this when 371 looking through the <<link_order>> structures, or it may be 372 done by stepping through the <<input_bfds>> list. 373 374 The <<_bfd_final_link>> routine must also traverse the global 375 hash table to gather all the externally visible symbols. It 376 is possible that most of the externally visible symbols may be 377 written out when considering the symbols of each input file, 378 but it is still necessary to traverse the hash table since the 379 linker script may have defined some symbols that are not in 380 any of the input files. 381 382 The <<strip>> field of the <<bfd_link_info>> structure 383 controls which symbols are written out. The possible values 384 are listed in <<bfdlink.h>>. If the value is <<strip_some>>, 385 then the <<keep_hash>> field of the <<bfd_link_info>> 386 structure is a hash table of symbols to keep; each symbol 387 should be looked up in this hash table, and only symbols which 388 are present should be included in the output file. 389 390 If the <<strip>> field of the <<bfd_link_info>> structure 391 permits local symbols to be written out, the <<discard>> field 392 is used to further controls which local symbols are included 393 in the output file. If the value is <<discard_l>>, then all 394 local symbols which begin with a certain prefix are discarded; 395 this is controlled by the <<bfd_is_local_label_name>> entry point. 396 397 The a.out backend handles symbols by calling 398 <<aout_link_write_symbols>> on each input BFD and then 399 traversing the global hash table with the function 400 <<aout_link_write_other_symbol>>. It builds a string table 401 while writing out the symbols, which is written to the output 402 file at the end of <<NAME(aout,final_link)>>. 403 */ 404 405 static bfd_boolean generic_link_add_object_symbols 406 (bfd *, struct bfd_link_info *); 407 static bfd_boolean generic_link_check_archive_element 408 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *, 409 bfd_boolean *); 410 static bfd_boolean generic_link_add_symbol_list 411 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **); 412 static bfd_boolean generic_add_output_symbol 413 (bfd *, size_t *psymalloc, asymbol *); 414 static bfd_boolean default_data_link_order 415 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *); 416 static bfd_boolean default_indirect_link_order 417 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *, 418 bfd_boolean); 419 420 /* The link hash table structure is defined in bfdlink.h. It provides 421 a base hash table which the backend specific hash tables are built 422 upon. */ 423 424 /* Routine to create an entry in the link hash table. */ 425 426 struct bfd_hash_entry * 427 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry, 428 struct bfd_hash_table *table, 429 const char *string) 430 { 431 /* Allocate the structure if it has not already been allocated by a 432 subclass. */ 433 if (entry == NULL) 434 { 435 entry = (struct bfd_hash_entry *) 436 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry)); 437 if (entry == NULL) 438 return entry; 439 } 440 441 /* Call the allocation method of the superclass. */ 442 entry = bfd_hash_newfunc (entry, table, string); 443 if (entry) 444 { 445 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry; 446 447 /* Initialize the local fields. */ 448 memset ((char *) &h->root + sizeof (h->root), 0, 449 sizeof (*h) - sizeof (h->root)); 450 } 451 452 return entry; 453 } 454 455 /* Initialize a link hash table. The BFD argument is the one 456 responsible for creating this table. */ 457 458 bfd_boolean 459 _bfd_link_hash_table_init 460 (struct bfd_link_hash_table *table, 461 bfd *abfd ATTRIBUTE_UNUSED, 462 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *, 463 struct bfd_hash_table *, 464 const char *), 465 unsigned int entsize) 466 { 467 bfd_boolean ret; 468 469 BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash); 470 table->undefs = NULL; 471 table->undefs_tail = NULL; 472 table->type = bfd_link_generic_hash_table; 473 474 ret = bfd_hash_table_init (&table->table, newfunc, entsize); 475 if (ret) 476 { 477 /* Arrange for destruction of this hash table on closing ABFD. */ 478 table->hash_table_free = _bfd_generic_link_hash_table_free; 479 abfd->link.hash = table; 480 abfd->is_linker_output = TRUE; 481 } 482 return ret; 483 } 484 485 /* Look up a symbol in a link hash table. If follow is TRUE, we 486 follow bfd_link_hash_indirect and bfd_link_hash_warning links to 487 the real symbol. 488 489 .{* Return TRUE if the symbol described by a linker hash entry H 490 . is going to be absolute. Linker-script defined symbols can be 491 . converted from absolute to section-relative ones late in the 492 . link. Use this macro to correctly determine whether the symbol 493 . will actually end up absolute in output. *} 494 .#define bfd_is_abs_symbol(H) \ 495 . (((H)->type == bfd_link_hash_defined \ 496 . || (H)->type == bfd_link_hash_defweak) \ 497 . && bfd_is_abs_section ((H)->u.def.section) \ 498 . && !(H)->rel_from_abs) 499 . 500 */ 501 502 struct bfd_link_hash_entry * 503 bfd_link_hash_lookup (struct bfd_link_hash_table *table, 504 const char *string, 505 bfd_boolean create, 506 bfd_boolean copy, 507 bfd_boolean follow) 508 { 509 struct bfd_link_hash_entry *ret; 510 511 if (table == NULL || string == NULL) 512 return NULL; 513 514 ret = ((struct bfd_link_hash_entry *) 515 bfd_hash_lookup (&table->table, string, create, copy)); 516 517 if (follow && ret != NULL) 518 { 519 while (ret->type == bfd_link_hash_indirect 520 || ret->type == bfd_link_hash_warning) 521 ret = ret->u.i.link; 522 } 523 524 return ret; 525 } 526 527 /* Look up a symbol in the main linker hash table if the symbol might 528 be wrapped. This should only be used for references to an 529 undefined symbol, not for definitions of a symbol. */ 530 531 struct bfd_link_hash_entry * 532 bfd_wrapped_link_hash_lookup (bfd *abfd, 533 struct bfd_link_info *info, 534 const char *string, 535 bfd_boolean create, 536 bfd_boolean copy, 537 bfd_boolean follow) 538 { 539 bfd_size_type amt; 540 541 if (info->wrap_hash != NULL) 542 { 543 const char *l; 544 char prefix = '\0'; 545 546 l = string; 547 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char) 548 { 549 prefix = *l; 550 ++l; 551 } 552 553 #undef WRAP 554 #define WRAP "__wrap_" 555 556 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL) 557 { 558 char *n; 559 struct bfd_link_hash_entry *h; 560 561 /* This symbol is being wrapped. We want to replace all 562 references to SYM with references to __wrap_SYM. */ 563 564 amt = strlen (l) + sizeof WRAP + 1; 565 n = (char *) bfd_malloc (amt); 566 if (n == NULL) 567 return NULL; 568 569 n[0] = prefix; 570 n[1] = '\0'; 571 strcat (n, WRAP); 572 strcat (n, l); 573 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow); 574 free (n); 575 return h; 576 } 577 578 #undef REAL 579 #define REAL "__real_" 580 581 if (*l == '_' 582 && CONST_STRNEQ (l, REAL) 583 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1, 584 FALSE, FALSE) != NULL) 585 { 586 char *n; 587 struct bfd_link_hash_entry *h; 588 589 /* This is a reference to __real_SYM, where SYM is being 590 wrapped. We want to replace all references to __real_SYM 591 with references to SYM. */ 592 593 amt = strlen (l + sizeof REAL - 1) + 2; 594 n = (char *) bfd_malloc (amt); 595 if (n == NULL) 596 return NULL; 597 598 n[0] = prefix; 599 n[1] = '\0'; 600 strcat (n, l + sizeof REAL - 1); 601 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow); 602 free (n); 603 return h; 604 } 605 606 #undef REAL 607 } 608 609 return bfd_link_hash_lookup (info->hash, string, create, copy, follow); 610 } 611 612 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_" 613 and the remainder is found in wrap_hash, return the real symbol. */ 614 615 struct bfd_link_hash_entry * 616 unwrap_hash_lookup (struct bfd_link_info *info, 617 bfd *input_bfd, 618 struct bfd_link_hash_entry *h) 619 { 620 const char *l = h->root.string; 621 622 if (*l == bfd_get_symbol_leading_char (input_bfd) 623 || *l == info->wrap_char) 624 ++l; 625 626 if (CONST_STRNEQ (l, WRAP)) 627 { 628 l += sizeof WRAP - 1; 629 630 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL) 631 { 632 char save = 0; 633 if (l - (sizeof WRAP - 1) != h->root.string) 634 { 635 --l; 636 save = *l; 637 *(char *) l = *h->root.string; 638 } 639 h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE); 640 if (save) 641 *(char *) l = save; 642 } 643 } 644 return h; 645 } 646 #undef WRAP 647 648 /* Traverse a generic link hash table. Differs from bfd_hash_traverse 649 in the treatment of warning symbols. When warning symbols are 650 created they replace the real symbol, so you don't get to see the 651 real symbol in a bfd_hash_traverse. This traversal calls func with 652 the real symbol. */ 653 654 void 655 bfd_link_hash_traverse 656 (struct bfd_link_hash_table *htab, 657 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *), 658 void *info) 659 { 660 unsigned int i; 661 662 htab->table.frozen = 1; 663 for (i = 0; i < htab->table.size; i++) 664 { 665 struct bfd_link_hash_entry *p; 666 667 p = (struct bfd_link_hash_entry *) htab->table.table[i]; 668 for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next) 669 if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info)) 670 goto out; 671 } 672 out: 673 htab->table.frozen = 0; 674 } 675 676 /* Add a symbol to the linker hash table undefs list. */ 677 678 void 679 bfd_link_add_undef (struct bfd_link_hash_table *table, 680 struct bfd_link_hash_entry *h) 681 { 682 BFD_ASSERT (h->u.undef.next == NULL); 683 if (table->undefs_tail != NULL) 684 table->undefs_tail->u.undef.next = h; 685 if (table->undefs == NULL) 686 table->undefs = h; 687 table->undefs_tail = h; 688 } 689 690 /* The undefs list was designed so that in normal use we don't need to 691 remove entries. However, if symbols on the list are changed from 692 bfd_link_hash_undefined to either bfd_link_hash_undefweak or 693 bfd_link_hash_new for some reason, then they must be removed from the 694 list. Failure to do so might result in the linker attempting to add 695 the symbol to the list again at a later stage. */ 696 697 void 698 bfd_link_repair_undef_list (struct bfd_link_hash_table *table) 699 { 700 struct bfd_link_hash_entry **pun; 701 702 pun = &table->undefs; 703 while (*pun != NULL) 704 { 705 struct bfd_link_hash_entry *h = *pun; 706 707 if (h->type == bfd_link_hash_new 708 || h->type == bfd_link_hash_undefweak) 709 { 710 *pun = h->u.undef.next; 711 h->u.undef.next = NULL; 712 if (h == table->undefs_tail) 713 { 714 if (pun == &table->undefs) 715 table->undefs_tail = NULL; 716 else 717 /* pun points at an u.undef.next field. Go back to 718 the start of the link_hash_entry. */ 719 table->undefs_tail = (struct bfd_link_hash_entry *) 720 ((char *) pun - ((char *) &h->u.undef.next - (char *) h)); 721 break; 722 } 723 } 724 else 725 pun = &h->u.undef.next; 726 } 727 } 728 729 /* Routine to create an entry in a generic link hash table. */ 730 731 struct bfd_hash_entry * 732 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry, 733 struct bfd_hash_table *table, 734 const char *string) 735 { 736 /* Allocate the structure if it has not already been allocated by a 737 subclass. */ 738 if (entry == NULL) 739 { 740 entry = (struct bfd_hash_entry *) 741 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry)); 742 if (entry == NULL) 743 return entry; 744 } 745 746 /* Call the allocation method of the superclass. */ 747 entry = _bfd_link_hash_newfunc (entry, table, string); 748 if (entry) 749 { 750 struct generic_link_hash_entry *ret; 751 752 /* Set local fields. */ 753 ret = (struct generic_link_hash_entry *) entry; 754 ret->written = FALSE; 755 ret->sym = NULL; 756 } 757 758 return entry; 759 } 760 761 /* Create a generic link hash table. */ 762 763 struct bfd_link_hash_table * 764 _bfd_generic_link_hash_table_create (bfd *abfd) 765 { 766 struct generic_link_hash_table *ret; 767 bfd_size_type amt = sizeof (struct generic_link_hash_table); 768 769 ret = (struct generic_link_hash_table *) bfd_malloc (amt); 770 if (ret == NULL) 771 return NULL; 772 if (! _bfd_link_hash_table_init (&ret->root, abfd, 773 _bfd_generic_link_hash_newfunc, 774 sizeof (struct generic_link_hash_entry))) 775 { 776 free (ret); 777 return NULL; 778 } 779 return &ret->root; 780 } 781 782 void 783 _bfd_generic_link_hash_table_free (bfd *obfd) 784 { 785 struct generic_link_hash_table *ret; 786 787 BFD_ASSERT (obfd->is_linker_output && obfd->link.hash); 788 ret = (struct generic_link_hash_table *) obfd->link.hash; 789 bfd_hash_table_free (&ret->root.table); 790 free (ret); 791 obfd->link.hash = NULL; 792 obfd->is_linker_output = FALSE; 793 } 794 795 /* Grab the symbols for an object file when doing a generic link. We 796 store the symbols in the outsymbols field. We need to keep them 797 around for the entire link to ensure that we only read them once. 798 If we read them multiple times, we might wind up with relocs and 799 the hash table pointing to different instances of the symbol 800 structure. */ 801 802 bfd_boolean 803 bfd_generic_link_read_symbols (bfd *abfd) 804 { 805 if (bfd_get_outsymbols (abfd) == NULL) 806 { 807 long symsize; 808 long symcount; 809 810 symsize = bfd_get_symtab_upper_bound (abfd); 811 if (symsize < 0) 812 return FALSE; 813 bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd, 814 symsize); 815 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0) 816 return FALSE; 817 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd)); 818 if (symcount < 0) 819 return FALSE; 820 bfd_get_symcount (abfd) = symcount; 821 } 822 823 return TRUE; 824 } 825 826 /* Indicate that we are only retrieving symbol values from this 827 section. We want the symbols to act as though the values in the 828 file are absolute. */ 829 830 void 831 _bfd_generic_link_just_syms (asection *sec, 832 struct bfd_link_info *info ATTRIBUTE_UNUSED) 833 { 834 sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS; 835 sec->output_section = bfd_abs_section_ptr; 836 sec->output_offset = sec->vma; 837 } 838 839 /* Copy the symbol type and other attributes for a linker script 840 assignment from HSRC to HDEST. 841 The default implementation does nothing. */ 842 void 843 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED, 844 struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED, 845 struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED) 846 { 847 } 848 849 /* Generic function to add symbols from an object file to the 850 global hash table. */ 851 852 bfd_boolean 853 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info) 854 { 855 bfd_boolean ret; 856 857 switch (bfd_get_format (abfd)) 858 { 859 case bfd_object: 860 ret = generic_link_add_object_symbols (abfd, info); 861 break; 862 case bfd_archive: 863 ret = (_bfd_generic_link_add_archive_symbols 864 (abfd, info, generic_link_check_archive_element)); 865 break; 866 default: 867 bfd_set_error (bfd_error_wrong_format); 868 ret = FALSE; 869 } 870 871 return ret; 872 } 873 874 /* Add symbols from an object file to the global hash table. */ 875 876 static bfd_boolean 877 generic_link_add_object_symbols (bfd *abfd, 878 struct bfd_link_info *info) 879 { 880 bfd_size_type symcount; 881 struct bfd_symbol **outsyms; 882 883 if (!bfd_generic_link_read_symbols (abfd)) 884 return FALSE; 885 symcount = _bfd_generic_link_get_symcount (abfd); 886 outsyms = _bfd_generic_link_get_symbols (abfd); 887 return generic_link_add_symbol_list (abfd, info, symcount, outsyms); 888 } 889 890 /* Generic function to add symbols from an archive file to the global 891 hash file. This function presumes that the archive symbol table 892 has already been read in (this is normally done by the 893 bfd_check_format entry point). It looks through the archive symbol 894 table for symbols that are undefined or common in the linker global 895 symbol hash table. When one is found, the CHECKFN argument is used 896 to see if an object file should be included. This allows targets 897 to customize common symbol behaviour. CHECKFN should set *PNEEDED 898 to TRUE if the object file should be included, and must also call 899 the bfd_link_info add_archive_element callback function and handle 900 adding the symbols to the global hash table. CHECKFN must notice 901 if the callback indicates a substitute BFD, and arrange to add 902 those symbols instead if it does so. CHECKFN should only return 903 FALSE if some sort of error occurs. */ 904 905 bfd_boolean 906 _bfd_generic_link_add_archive_symbols 907 (bfd *abfd, 908 struct bfd_link_info *info, 909 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, 910 struct bfd_link_hash_entry *, const char *, 911 bfd_boolean *)) 912 { 913 bfd_boolean loop; 914 bfd_size_type amt; 915 unsigned char *included; 916 917 if (! bfd_has_map (abfd)) 918 { 919 /* An empty archive is a special case. */ 920 if (bfd_openr_next_archived_file (abfd, NULL) == NULL) 921 return TRUE; 922 bfd_set_error (bfd_error_no_armap); 923 return FALSE; 924 } 925 926 amt = bfd_ardata (abfd)->symdef_count; 927 if (amt == 0) 928 return TRUE; 929 amt *= sizeof (*included); 930 included = (unsigned char *) bfd_zmalloc (amt); 931 if (included == NULL) 932 return FALSE; 933 934 do 935 { 936 carsym *arsyms; 937 carsym *arsym_end; 938 carsym *arsym; 939 unsigned int indx; 940 file_ptr last_ar_offset = -1; 941 bfd_boolean needed = FALSE; 942 bfd *element = NULL; 943 944 loop = FALSE; 945 arsyms = bfd_ardata (abfd)->symdefs; 946 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count; 947 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++) 948 { 949 struct bfd_link_hash_entry *h; 950 struct bfd_link_hash_entry *undefs_tail; 951 952 if (included[indx]) 953 continue; 954 if (needed && arsym->file_offset == last_ar_offset) 955 { 956 included[indx] = 1; 957 continue; 958 } 959 960 if (arsym->name == NULL) 961 goto error_return; 962 963 h = bfd_link_hash_lookup (info->hash, arsym->name, 964 FALSE, FALSE, TRUE); 965 966 if (h == NULL 967 && info->pei386_auto_import 968 && CONST_STRNEQ (arsym->name, "__imp_")) 969 h = bfd_link_hash_lookup (info->hash, arsym->name + 6, 970 FALSE, FALSE, TRUE); 971 if (h == NULL) 972 continue; 973 974 if (h->type != bfd_link_hash_undefined 975 && h->type != bfd_link_hash_common) 976 { 977 if (h->type != bfd_link_hash_undefweak) 978 /* Symbol must be defined. Don't check it again. */ 979 included[indx] = 1; 980 continue; 981 } 982 983 if (last_ar_offset != arsym->file_offset) 984 { 985 last_ar_offset = arsym->file_offset; 986 element = _bfd_get_elt_at_filepos (abfd, last_ar_offset); 987 if (element == NULL 988 || !bfd_check_format (element, bfd_object)) 989 goto error_return; 990 } 991 992 undefs_tail = info->hash->undefs_tail; 993 994 /* CHECKFN will see if this element should be included, and 995 go ahead and include it if appropriate. */ 996 if (! (*checkfn) (element, info, h, arsym->name, &needed)) 997 goto error_return; 998 999 if (needed) 1000 { 1001 unsigned int mark; 1002 1003 /* Look backward to mark all symbols from this object file 1004 which we have already seen in this pass. */ 1005 mark = indx; 1006 do 1007 { 1008 included[mark] = 1; 1009 if (mark == 0) 1010 break; 1011 --mark; 1012 } 1013 while (arsyms[mark].file_offset == last_ar_offset); 1014 1015 if (undefs_tail != info->hash->undefs_tail) 1016 loop = TRUE; 1017 } 1018 } 1019 } while (loop); 1020 1021 free (included); 1022 return TRUE; 1023 1024 error_return: 1025 free (included); 1026 return FALSE; 1027 } 1028 1029 /* See if we should include an archive element. */ 1030 1031 static bfd_boolean 1032 generic_link_check_archive_element (bfd *abfd, 1033 struct bfd_link_info *info, 1034 struct bfd_link_hash_entry *h, 1035 const char *name ATTRIBUTE_UNUSED, 1036 bfd_boolean *pneeded) 1037 { 1038 asymbol **pp, **ppend; 1039 1040 *pneeded = FALSE; 1041 1042 if (!bfd_generic_link_read_symbols (abfd)) 1043 return FALSE; 1044 1045 pp = _bfd_generic_link_get_symbols (abfd); 1046 ppend = pp + _bfd_generic_link_get_symcount (abfd); 1047 for (; pp < ppend; pp++) 1048 { 1049 asymbol *p; 1050 1051 p = *pp; 1052 1053 /* We are only interested in globally visible symbols. */ 1054 if (! bfd_is_com_section (p->section) 1055 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0) 1056 continue; 1057 1058 /* We are only interested if we know something about this 1059 symbol, and it is undefined or common. An undefined weak 1060 symbol (type bfd_link_hash_undefweak) is not considered to be 1061 a reference when pulling files out of an archive. See the 1062 SVR4 ABI, p. 4-27. */ 1063 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE, 1064 FALSE, TRUE); 1065 if (h == NULL 1066 || (h->type != bfd_link_hash_undefined 1067 && h->type != bfd_link_hash_common)) 1068 continue; 1069 1070 /* P is a symbol we are looking for. */ 1071 1072 if (! bfd_is_com_section (p->section) 1073 || (h->type == bfd_link_hash_undefined 1074 && h->u.undef.abfd == NULL)) 1075 { 1076 /* P is not a common symbol, or an undefined reference was 1077 created from outside BFD such as from a linker -u option. 1078 This object file defines the symbol, so pull it in. */ 1079 *pneeded = TRUE; 1080 if (!(*info->callbacks 1081 ->add_archive_element) (info, abfd, bfd_asymbol_name (p), 1082 &abfd)) 1083 return FALSE; 1084 /* Potentially, the add_archive_element hook may have set a 1085 substitute BFD for us. */ 1086 return bfd_link_add_symbols (abfd, info); 1087 } 1088 1089 /* P is a common symbol. */ 1090 1091 if (h->type == bfd_link_hash_undefined) 1092 { 1093 bfd *symbfd; 1094 bfd_vma size; 1095 unsigned int power; 1096 1097 /* Turn the symbol into a common symbol but do not link in 1098 the object file. This is how a.out works. Object 1099 formats that require different semantics must implement 1100 this function differently. This symbol is already on the 1101 undefs list. We add the section to a common section 1102 attached to symbfd to ensure that it is in a BFD which 1103 will be linked in. */ 1104 symbfd = h->u.undef.abfd; 1105 h->type = bfd_link_hash_common; 1106 h->u.c.p = (struct bfd_link_hash_common_entry *) 1107 bfd_hash_allocate (&info->hash->table, 1108 sizeof (struct bfd_link_hash_common_entry)); 1109 if (h->u.c.p == NULL) 1110 return FALSE; 1111 1112 size = bfd_asymbol_value (p); 1113 h->u.c.size = size; 1114 1115 power = bfd_log2 (size); 1116 if (power > 4) 1117 power = 4; 1118 h->u.c.p->alignment_power = power; 1119 1120 if (p->section == bfd_com_section_ptr) 1121 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON"); 1122 else 1123 h->u.c.p->section = bfd_make_section_old_way (symbfd, 1124 p->section->name); 1125 h->u.c.p->section->flags |= SEC_ALLOC; 1126 } 1127 else 1128 { 1129 /* Adjust the size of the common symbol if necessary. This 1130 is how a.out works. Object formats that require 1131 different semantics must implement this function 1132 differently. */ 1133 if (bfd_asymbol_value (p) > h->u.c.size) 1134 h->u.c.size = bfd_asymbol_value (p); 1135 } 1136 } 1137 1138 /* This archive element is not needed. */ 1139 return TRUE; 1140 } 1141 1142 /* Add the symbols from an object file to the global hash table. ABFD 1143 is the object file. INFO is the linker information. SYMBOL_COUNT 1144 is the number of symbols. SYMBOLS is the list of symbols. */ 1145 1146 static bfd_boolean 1147 generic_link_add_symbol_list (bfd *abfd, 1148 struct bfd_link_info *info, 1149 bfd_size_type symbol_count, 1150 asymbol **symbols) 1151 { 1152 asymbol **pp, **ppend; 1153 1154 pp = symbols; 1155 ppend = symbols + symbol_count; 1156 for (; pp < ppend; pp++) 1157 { 1158 asymbol *p; 1159 1160 p = *pp; 1161 1162 if ((p->flags & (BSF_INDIRECT 1163 | BSF_WARNING 1164 | BSF_GLOBAL 1165 | BSF_CONSTRUCTOR 1166 | BSF_WEAK)) != 0 1167 || bfd_is_und_section (bfd_get_section (p)) 1168 || bfd_is_com_section (bfd_get_section (p)) 1169 || bfd_is_ind_section (bfd_get_section (p))) 1170 { 1171 const char *name; 1172 const char *string; 1173 struct generic_link_hash_entry *h; 1174 struct bfd_link_hash_entry *bh; 1175 1176 string = name = bfd_asymbol_name (p); 1177 if (((p->flags & BSF_INDIRECT) != 0 1178 || bfd_is_ind_section (p->section)) 1179 && pp + 1 < ppend) 1180 { 1181 pp++; 1182 string = bfd_asymbol_name (*pp); 1183 } 1184 else if ((p->flags & BSF_WARNING) != 0 1185 && pp + 1 < ppend) 1186 { 1187 /* The name of P is actually the warning string, and the 1188 next symbol is the one to warn about. */ 1189 pp++; 1190 name = bfd_asymbol_name (*pp); 1191 } 1192 1193 bh = NULL; 1194 if (! (_bfd_generic_link_add_one_symbol 1195 (info, abfd, name, p->flags, bfd_get_section (p), 1196 p->value, string, FALSE, FALSE, &bh))) 1197 return FALSE; 1198 h = (struct generic_link_hash_entry *) bh; 1199 1200 /* If this is a constructor symbol, and the linker didn't do 1201 anything with it, then we want to just pass the symbol 1202 through to the output file. This will happen when 1203 linking with -r. */ 1204 if ((p->flags & BSF_CONSTRUCTOR) != 0 1205 && (h == NULL || h->root.type == bfd_link_hash_new)) 1206 { 1207 p->udata.p = NULL; 1208 continue; 1209 } 1210 1211 /* Save the BFD symbol so that we don't lose any backend 1212 specific information that may be attached to it. We only 1213 want this one if it gives more information than the 1214 existing one; we don't want to replace a defined symbol 1215 with an undefined one. This routine may be called with a 1216 hash table other than the generic hash table, so we only 1217 do this if we are certain that the hash table is a 1218 generic one. */ 1219 if (info->output_bfd->xvec == abfd->xvec) 1220 { 1221 if (h->sym == NULL 1222 || (! bfd_is_und_section (bfd_get_section (p)) 1223 && (! bfd_is_com_section (bfd_get_section (p)) 1224 || bfd_is_und_section (bfd_get_section (h->sym))))) 1225 { 1226 h->sym = p; 1227 /* BSF_OLD_COMMON is a hack to support COFF reloc 1228 reading, and it should go away when the COFF 1229 linker is switched to the new version. */ 1230 if (bfd_is_com_section (bfd_get_section (p))) 1231 p->flags |= BSF_OLD_COMMON; 1232 } 1233 } 1234 1235 /* Store a back pointer from the symbol to the hash 1236 table entry for the benefit of relaxation code until 1237 it gets rewritten to not use asymbol structures. 1238 Setting this is also used to check whether these 1239 symbols were set up by the generic linker. */ 1240 p->udata.p = h; 1241 } 1242 } 1243 1244 return TRUE; 1245 } 1246 1247 /* We use a state table to deal with adding symbols from an object 1248 file. The first index into the state table describes the symbol 1249 from the object file. The second index into the state table is the 1250 type of the symbol in the hash table. */ 1251 1252 /* The symbol from the object file is turned into one of these row 1253 values. */ 1254 1255 enum link_row 1256 { 1257 UNDEF_ROW, /* Undefined. */ 1258 UNDEFW_ROW, /* Weak undefined. */ 1259 DEF_ROW, /* Defined. */ 1260 DEFW_ROW, /* Weak defined. */ 1261 COMMON_ROW, /* Common. */ 1262 INDR_ROW, /* Indirect. */ 1263 WARN_ROW, /* Warning. */ 1264 SET_ROW /* Member of set. */ 1265 }; 1266 1267 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */ 1268 #undef FAIL 1269 1270 /* The actions to take in the state table. */ 1271 1272 enum link_action 1273 { 1274 FAIL, /* Abort. */ 1275 UND, /* Mark symbol undefined. */ 1276 WEAK, /* Mark symbol weak undefined. */ 1277 DEF, /* Mark symbol defined. */ 1278 DEFW, /* Mark symbol weak defined. */ 1279 COM, /* Mark symbol common. */ 1280 REF, /* Mark defined symbol referenced. */ 1281 CREF, /* Possibly warn about common reference to defined symbol. */ 1282 CDEF, /* Define existing common symbol. */ 1283 NOACT, /* No action. */ 1284 BIG, /* Mark symbol common using largest size. */ 1285 MDEF, /* Multiple definition error. */ 1286 MIND, /* Multiple indirect symbols. */ 1287 IND, /* Make indirect symbol. */ 1288 CIND, /* Make indirect symbol from existing common symbol. */ 1289 SET, /* Add value to set. */ 1290 MWARN, /* Make warning symbol. */ 1291 WARN, /* Warn if referenced, else MWARN. */ 1292 CYCLE, /* Repeat with symbol pointed to. */ 1293 REFC, /* Mark indirect symbol referenced and then CYCLE. */ 1294 WARNC /* Issue warning and then CYCLE. */ 1295 }; 1296 1297 /* The state table itself. The first index is a link_row and the 1298 second index is a bfd_link_hash_type. */ 1299 1300 static const enum link_action link_action[8][8] = 1301 { 1302 /* current\prev new undef undefw def defw com indr warn */ 1303 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC }, 1304 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC }, 1305 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE }, 1306 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE }, 1307 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC }, 1308 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE }, 1309 /* WARN_ROW */ {MWARN, WARN, WARN, WARN, WARN, WARN, WARN, NOACT }, 1310 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE } 1311 }; 1312 1313 /* Most of the entries in the LINK_ACTION table are straightforward, 1314 but a few are somewhat subtle. 1315 1316 A reference to an indirect symbol (UNDEF_ROW/indr or 1317 UNDEFW_ROW/indr) is counted as a reference both to the indirect 1318 symbol and to the symbol the indirect symbol points to. 1319 1320 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn) 1321 causes the warning to be issued. 1322 1323 A common definition of an indirect symbol (COMMON_ROW/indr) is 1324 treated as a multiple definition error. Likewise for an indirect 1325 definition of a common symbol (INDR_ROW/com). 1326 1327 An indirect definition of a warning (INDR_ROW/warn) does not cause 1328 the warning to be issued. 1329 1330 If a warning is created for an indirect symbol (WARN_ROW/indr) no 1331 warning is created for the symbol the indirect symbol points to. 1332 1333 Adding an entry to a set does not count as a reference to a set, 1334 and no warning is issued (SET_ROW/warn). */ 1335 1336 /* Return the BFD in which a hash entry has been defined, if known. */ 1337 1338 static bfd * 1339 hash_entry_bfd (struct bfd_link_hash_entry *h) 1340 { 1341 while (h->type == bfd_link_hash_warning) 1342 h = h->u.i.link; 1343 switch (h->type) 1344 { 1345 default: 1346 return NULL; 1347 case bfd_link_hash_undefined: 1348 case bfd_link_hash_undefweak: 1349 return h->u.undef.abfd; 1350 case bfd_link_hash_defined: 1351 case bfd_link_hash_defweak: 1352 return h->u.def.section->owner; 1353 case bfd_link_hash_common: 1354 return h->u.c.p->section->owner; 1355 } 1356 /*NOTREACHED*/ 1357 } 1358 1359 /* Add a symbol to the global hash table. 1360 ABFD is the BFD the symbol comes from. 1361 NAME is the name of the symbol. 1362 FLAGS is the BSF_* bits associated with the symbol. 1363 SECTION is the section in which the symbol is defined; this may be 1364 bfd_und_section_ptr or bfd_com_section_ptr. 1365 VALUE is the value of the symbol, relative to the section. 1366 STRING is used for either an indirect symbol, in which case it is 1367 the name of the symbol to indirect to, or a warning symbol, in 1368 which case it is the warning string. 1369 COPY is TRUE if NAME or STRING must be copied into locally 1370 allocated memory if they need to be saved. 1371 COLLECT is TRUE if we should automatically collect gcc constructor 1372 or destructor names as collect2 does. 1373 HASHP, if not NULL, is a place to store the created hash table 1374 entry; if *HASHP is not NULL, the caller has already looked up 1375 the hash table entry, and stored it in *HASHP. */ 1376 1377 bfd_boolean 1378 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info, 1379 bfd *abfd, 1380 const char *name, 1381 flagword flags, 1382 asection *section, 1383 bfd_vma value, 1384 const char *string, 1385 bfd_boolean copy, 1386 bfd_boolean collect, 1387 struct bfd_link_hash_entry **hashp) 1388 { 1389 enum link_row row; 1390 struct bfd_link_hash_entry *h; 1391 struct bfd_link_hash_entry *inh = NULL; 1392 bfd_boolean cycle; 1393 1394 BFD_ASSERT (section != NULL); 1395 1396 if (bfd_is_ind_section (section) 1397 || (flags & BSF_INDIRECT) != 0) 1398 { 1399 row = INDR_ROW; 1400 /* Create the indirect symbol here. This is for the benefit of 1401 the plugin "notice" function. 1402 STRING is the name of the symbol we want to indirect to. */ 1403 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE, 1404 copy, FALSE); 1405 if (inh == NULL) 1406 return FALSE; 1407 } 1408 else if ((flags & BSF_WARNING) != 0) 1409 row = WARN_ROW; 1410 else if ((flags & BSF_CONSTRUCTOR) != 0) 1411 row = SET_ROW; 1412 else if (bfd_is_und_section (section)) 1413 { 1414 if ((flags & BSF_WEAK) != 0) 1415 row = UNDEFW_ROW; 1416 else 1417 row = UNDEF_ROW; 1418 } 1419 else if ((flags & BSF_WEAK) != 0) 1420 row = DEFW_ROW; 1421 else if (bfd_is_com_section (section)) 1422 { 1423 row = COMMON_ROW; 1424 if (!bfd_link_relocatable (info) 1425 && name[0] == '_' 1426 && name[1] == '_' 1427 && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0) 1428 _bfd_error_handler 1429 (_("%pB: plugin needed to handle lto object"), abfd); 1430 } 1431 else 1432 row = DEF_ROW; 1433 1434 if (hashp != NULL && *hashp != NULL) 1435 h = *hashp; 1436 else 1437 { 1438 if (row == UNDEF_ROW || row == UNDEFW_ROW) 1439 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE); 1440 else 1441 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE); 1442 if (h == NULL) 1443 { 1444 if (hashp != NULL) 1445 *hashp = NULL; 1446 return FALSE; 1447 } 1448 } 1449 1450 if (info->notice_all 1451 || (info->notice_hash != NULL 1452 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL)) 1453 { 1454 if (! (*info->callbacks->notice) (info, h, inh, 1455 abfd, section, value, flags)) 1456 return FALSE; 1457 } 1458 1459 if (hashp != NULL) 1460 *hashp = h; 1461 1462 do 1463 { 1464 enum link_action action; 1465 int prev; 1466 1467 prev = h->type; 1468 /* Treat symbols defined by early linker script pass as undefined. */ 1469 if (h->ldscript_def) 1470 prev = bfd_link_hash_undefined; 1471 cycle = FALSE; 1472 action = link_action[(int) row][prev]; 1473 switch (action) 1474 { 1475 case FAIL: 1476 abort (); 1477 1478 case NOACT: 1479 /* Do nothing. */ 1480 break; 1481 1482 case UND: 1483 /* Make a new undefined symbol. */ 1484 h->type = bfd_link_hash_undefined; 1485 h->u.undef.abfd = abfd; 1486 bfd_link_add_undef (info->hash, h); 1487 break; 1488 1489 case WEAK: 1490 /* Make a new weak undefined symbol. */ 1491 h->type = bfd_link_hash_undefweak; 1492 h->u.undef.abfd = abfd; 1493 break; 1494 1495 case CDEF: 1496 /* We have found a definition for a symbol which was 1497 previously common. */ 1498 BFD_ASSERT (h->type == bfd_link_hash_common); 1499 (*info->callbacks->multiple_common) (info, h, abfd, 1500 bfd_link_hash_defined, 0); 1501 /* Fall through. */ 1502 case DEF: 1503 case DEFW: 1504 { 1505 enum bfd_link_hash_type oldtype; 1506 1507 /* Define a symbol. */ 1508 oldtype = h->type; 1509 if (action == DEFW) 1510 h->type = bfd_link_hash_defweak; 1511 else 1512 h->type = bfd_link_hash_defined; 1513 h->u.def.section = section; 1514 h->u.def.value = value; 1515 h->linker_def = 0; 1516 h->ldscript_def = 0; 1517 1518 /* If we have been asked to, we act like collect2 and 1519 identify all functions that might be global 1520 constructors and destructors and pass them up in a 1521 callback. We only do this for certain object file 1522 types, since many object file types can handle this 1523 automatically. */ 1524 if (collect && name[0] == '_') 1525 { 1526 const char *s; 1527 1528 /* A constructor or destructor name starts like this: 1529 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and 1530 the second are the same character (we accept any 1531 character there, in case a new object file format 1532 comes along with even worse naming restrictions). */ 1533 1534 #define CONS_PREFIX "GLOBAL_" 1535 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1) 1536 1537 s = name + 1; 1538 while (*s == '_') 1539 ++s; 1540 if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX)) 1541 { 1542 char c; 1543 1544 c = s[CONS_PREFIX_LEN + 1]; 1545 if ((c == 'I' || c == 'D') 1546 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2]) 1547 { 1548 /* If this is a definition of a symbol which 1549 was previously weakly defined, we are in 1550 trouble. We have already added a 1551 constructor entry for the weak defined 1552 symbol, and now we are trying to add one 1553 for the new symbol. Fortunately, this case 1554 should never arise in practice. */ 1555 if (oldtype == bfd_link_hash_defweak) 1556 abort (); 1557 1558 (*info->callbacks->constructor) (info, c == 'I', 1559 h->root.string, abfd, 1560 section, value); 1561 } 1562 } 1563 } 1564 } 1565 1566 break; 1567 1568 case COM: 1569 /* We have found a common definition for a symbol. */ 1570 if (h->type == bfd_link_hash_new) 1571 bfd_link_add_undef (info->hash, h); 1572 h->type = bfd_link_hash_common; 1573 h->u.c.p = (struct bfd_link_hash_common_entry *) 1574 bfd_hash_allocate (&info->hash->table, 1575 sizeof (struct bfd_link_hash_common_entry)); 1576 if (h->u.c.p == NULL) 1577 return FALSE; 1578 1579 h->u.c.size = value; 1580 1581 /* Select a default alignment based on the size. This may 1582 be overridden by the caller. */ 1583 { 1584 unsigned int power; 1585 1586 power = bfd_log2 (value); 1587 if (power > 4) 1588 power = 4; 1589 h->u.c.p->alignment_power = power; 1590 } 1591 1592 /* The section of a common symbol is only used if the common 1593 symbol is actually allocated. It basically provides a 1594 hook for the linker script to decide which output section 1595 the common symbols should be put in. In most cases, the 1596 section of a common symbol will be bfd_com_section_ptr, 1597 the code here will choose a common symbol section named 1598 "COMMON", and the linker script will contain *(COMMON) in 1599 the appropriate place. A few targets use separate common 1600 sections for small symbols, and they require special 1601 handling. */ 1602 if (section == bfd_com_section_ptr) 1603 { 1604 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON"); 1605 h->u.c.p->section->flags |= SEC_ALLOC; 1606 } 1607 else if (section->owner != abfd) 1608 { 1609 h->u.c.p->section = bfd_make_section_old_way (abfd, 1610 section->name); 1611 h->u.c.p->section->flags |= SEC_ALLOC; 1612 } 1613 else 1614 h->u.c.p->section = section; 1615 h->linker_def = 0; 1616 h->ldscript_def = 0; 1617 break; 1618 1619 case REF: 1620 /* A reference to a defined symbol. */ 1621 if (h->u.undef.next == NULL && info->hash->undefs_tail != h) 1622 h->u.undef.next = h; 1623 break; 1624 1625 case BIG: 1626 /* We have found a common definition for a symbol which 1627 already had a common definition. Use the maximum of the 1628 two sizes, and use the section required by the larger symbol. */ 1629 BFD_ASSERT (h->type == bfd_link_hash_common); 1630 (*info->callbacks->multiple_common) (info, h, abfd, 1631 bfd_link_hash_common, value); 1632 if (value > h->u.c.size) 1633 { 1634 unsigned int power; 1635 1636 h->u.c.size = value; 1637 1638 /* Select a default alignment based on the size. This may 1639 be overridden by the caller. */ 1640 power = bfd_log2 (value); 1641 if (power > 4) 1642 power = 4; 1643 h->u.c.p->alignment_power = power; 1644 1645 /* Some systems have special treatment for small commons, 1646 hence we want to select the section used by the larger 1647 symbol. This makes sure the symbol does not go in a 1648 small common section if it is now too large. */ 1649 if (section == bfd_com_section_ptr) 1650 { 1651 h->u.c.p->section 1652 = bfd_make_section_old_way (abfd, "COMMON"); 1653 h->u.c.p->section->flags |= SEC_ALLOC; 1654 } 1655 else if (section->owner != abfd) 1656 { 1657 h->u.c.p->section 1658 = bfd_make_section_old_way (abfd, section->name); 1659 h->u.c.p->section->flags |= SEC_ALLOC; 1660 } 1661 else 1662 h->u.c.p->section = section; 1663 } 1664 break; 1665 1666 case CREF: 1667 /* We have found a common definition for a symbol which 1668 was already defined. */ 1669 (*info->callbacks->multiple_common) (info, h, abfd, 1670 bfd_link_hash_common, value); 1671 break; 1672 1673 case MIND: 1674 /* Multiple indirect symbols. This is OK if they both point 1675 to the same symbol. */ 1676 if (strcmp (h->u.i.link->root.string, string) == 0) 1677 break; 1678 /* Fall through. */ 1679 case MDEF: 1680 /* Handle a multiple definition. */ 1681 (*info->callbacks->multiple_definition) (info, h, 1682 abfd, section, value); 1683 break; 1684 1685 case CIND: 1686 /* Create an indirect symbol from an existing common symbol. */ 1687 BFD_ASSERT (h->type == bfd_link_hash_common); 1688 (*info->callbacks->multiple_common) (info, h, abfd, 1689 bfd_link_hash_indirect, 0); 1690 /* Fall through. */ 1691 case IND: 1692 if (inh->type == bfd_link_hash_indirect 1693 && inh->u.i.link == h) 1694 { 1695 _bfd_error_handler 1696 /* xgettext:c-format */ 1697 (_("%pB: indirect symbol `%s' to `%s' is a loop"), 1698 abfd, name, string); 1699 bfd_set_error (bfd_error_invalid_operation); 1700 return FALSE; 1701 } 1702 if (inh->type == bfd_link_hash_new) 1703 { 1704 inh->type = bfd_link_hash_undefined; 1705 inh->u.undef.abfd = abfd; 1706 bfd_link_add_undef (info->hash, inh); 1707 } 1708 1709 /* If the indirect symbol has been referenced, we need to 1710 push the reference down to the symbol we are referencing. */ 1711 if (h->type != bfd_link_hash_new) 1712 { 1713 /* ??? If inh->type == bfd_link_hash_undefweak this 1714 converts inh to bfd_link_hash_undefined. */ 1715 row = UNDEF_ROW; 1716 cycle = TRUE; 1717 } 1718 1719 h->type = bfd_link_hash_indirect; 1720 h->u.i.link = inh; 1721 /* Not setting h = h->u.i.link here means that when cycle is 1722 set above we'll always go to REFC, and then cycle again 1723 to the indirected symbol. This means that any successful 1724 change of an existing symbol to indirect counts as a 1725 reference. ??? That may not be correct when the existing 1726 symbol was defweak. */ 1727 break; 1728 1729 case SET: 1730 /* Add an entry to a set. */ 1731 (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR, 1732 abfd, section, value); 1733 break; 1734 1735 case WARNC: 1736 /* Issue a warning and cycle, except when the reference is 1737 in LTO IR. */ 1738 if (h->u.i.warning != NULL 1739 && (abfd->flags & BFD_PLUGIN) == 0) 1740 { 1741 (*info->callbacks->warning) (info, h->u.i.warning, 1742 h->root.string, abfd, NULL, 0); 1743 /* Only issue a warning once. */ 1744 h->u.i.warning = NULL; 1745 } 1746 /* Fall through. */ 1747 case CYCLE: 1748 /* Try again with the referenced symbol. */ 1749 h = h->u.i.link; 1750 cycle = TRUE; 1751 break; 1752 1753 case REFC: 1754 /* A reference to an indirect symbol. */ 1755 if (h->u.undef.next == NULL && info->hash->undefs_tail != h) 1756 h->u.undef.next = h; 1757 h = h->u.i.link; 1758 cycle = TRUE; 1759 break; 1760 1761 case WARN: 1762 /* Warn if this symbol has been referenced already from non-IR, 1763 otherwise add a warning. */ 1764 if ((!info->lto_plugin_active 1765 && (h->u.undef.next != NULL || info->hash->undefs_tail == h)) 1766 || h->non_ir_ref_regular 1767 || h->non_ir_ref_dynamic) 1768 { 1769 (*info->callbacks->warning) (info, string, h->root.string, 1770 hash_entry_bfd (h), NULL, 0); 1771 break; 1772 } 1773 /* Fall through. */ 1774 case MWARN: 1775 /* Make a warning symbol. */ 1776 { 1777 struct bfd_link_hash_entry *sub; 1778 1779 /* STRING is the warning to give. */ 1780 sub = ((struct bfd_link_hash_entry *) 1781 ((*info->hash->table.newfunc) 1782 (NULL, &info->hash->table, h->root.string))); 1783 if (sub == NULL) 1784 return FALSE; 1785 *sub = *h; 1786 sub->type = bfd_link_hash_warning; 1787 sub->u.i.link = h; 1788 if (! copy) 1789 sub->u.i.warning = string; 1790 else 1791 { 1792 char *w; 1793 size_t len = strlen (string) + 1; 1794 1795 w = (char *) bfd_hash_allocate (&info->hash->table, len); 1796 if (w == NULL) 1797 return FALSE; 1798 memcpy (w, string, len); 1799 sub->u.i.warning = w; 1800 } 1801 1802 bfd_hash_replace (&info->hash->table, 1803 (struct bfd_hash_entry *) h, 1804 (struct bfd_hash_entry *) sub); 1805 if (hashp != NULL) 1806 *hashp = sub; 1807 } 1808 break; 1809 } 1810 } 1811 while (cycle); 1812 1813 return TRUE; 1814 } 1815 1816 /* Generic final link routine. */ 1817 1818 bfd_boolean 1819 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info) 1820 { 1821 bfd *sub; 1822 asection *o; 1823 struct bfd_link_order *p; 1824 size_t outsymalloc; 1825 struct generic_write_global_symbol_info wginfo; 1826 1827 bfd_get_outsymbols (abfd) = NULL; 1828 bfd_get_symcount (abfd) = 0; 1829 outsymalloc = 0; 1830 1831 /* Mark all sections which will be included in the output file. */ 1832 for (o = abfd->sections; o != NULL; o = o->next) 1833 for (p = o->map_head.link_order; p != NULL; p = p->next) 1834 if (p->type == bfd_indirect_link_order) 1835 p->u.indirect.section->linker_mark = TRUE; 1836 1837 /* Build the output symbol table. */ 1838 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 1839 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc)) 1840 return FALSE; 1841 1842 /* Accumulate the global symbols. */ 1843 wginfo.info = info; 1844 wginfo.output_bfd = abfd; 1845 wginfo.psymalloc = &outsymalloc; 1846 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info), 1847 _bfd_generic_link_write_global_symbol, 1848 &wginfo); 1849 1850 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We 1851 shouldn't really need one, since we have SYMCOUNT, but some old 1852 code still expects one. */ 1853 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL)) 1854 return FALSE; 1855 1856 if (bfd_link_relocatable (info)) 1857 { 1858 /* Allocate space for the output relocs for each section. */ 1859 for (o = abfd->sections; o != NULL; o = o->next) 1860 { 1861 o->reloc_count = 0; 1862 for (p = o->map_head.link_order; p != NULL; p = p->next) 1863 { 1864 if (p->type == bfd_section_reloc_link_order 1865 || p->type == bfd_symbol_reloc_link_order) 1866 ++o->reloc_count; 1867 else if (p->type == bfd_indirect_link_order) 1868 { 1869 asection *input_section; 1870 bfd *input_bfd; 1871 long relsize; 1872 arelent **relocs; 1873 asymbol **symbols; 1874 long reloc_count; 1875 1876 input_section = p->u.indirect.section; 1877 input_bfd = input_section->owner; 1878 relsize = bfd_get_reloc_upper_bound (input_bfd, 1879 input_section); 1880 if (relsize < 0) 1881 return FALSE; 1882 relocs = (arelent **) bfd_malloc (relsize); 1883 if (!relocs && relsize != 0) 1884 return FALSE; 1885 symbols = _bfd_generic_link_get_symbols (input_bfd); 1886 reloc_count = bfd_canonicalize_reloc (input_bfd, 1887 input_section, 1888 relocs, 1889 symbols); 1890 free (relocs); 1891 if (reloc_count < 0) 1892 return FALSE; 1893 BFD_ASSERT ((unsigned long) reloc_count 1894 == input_section->reloc_count); 1895 o->reloc_count += reloc_count; 1896 } 1897 } 1898 if (o->reloc_count > 0) 1899 { 1900 bfd_size_type amt; 1901 1902 amt = o->reloc_count; 1903 amt *= sizeof (arelent *); 1904 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt); 1905 if (!o->orelocation) 1906 return FALSE; 1907 o->flags |= SEC_RELOC; 1908 /* Reset the count so that it can be used as an index 1909 when putting in the output relocs. */ 1910 o->reloc_count = 0; 1911 } 1912 } 1913 } 1914 1915 /* Handle all the link order information for the sections. */ 1916 for (o = abfd->sections; o != NULL; o = o->next) 1917 { 1918 for (p = o->map_head.link_order; p != NULL; p = p->next) 1919 { 1920 switch (p->type) 1921 { 1922 case bfd_section_reloc_link_order: 1923 case bfd_symbol_reloc_link_order: 1924 if (! _bfd_generic_reloc_link_order (abfd, info, o, p)) 1925 return FALSE; 1926 break; 1927 case bfd_indirect_link_order: 1928 if (! default_indirect_link_order (abfd, info, o, p, TRUE)) 1929 return FALSE; 1930 break; 1931 default: 1932 if (! _bfd_default_link_order (abfd, info, o, p)) 1933 return FALSE; 1934 break; 1935 } 1936 } 1937 } 1938 1939 return TRUE; 1940 } 1941 1942 /* Add an output symbol to the output BFD. */ 1943 1944 static bfd_boolean 1945 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym) 1946 { 1947 if (bfd_get_symcount (output_bfd) >= *psymalloc) 1948 { 1949 asymbol **newsyms; 1950 bfd_size_type amt; 1951 1952 if (*psymalloc == 0) 1953 *psymalloc = 124; 1954 else 1955 *psymalloc *= 2; 1956 amt = *psymalloc; 1957 amt *= sizeof (asymbol *); 1958 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt); 1959 if (newsyms == NULL) 1960 return FALSE; 1961 bfd_get_outsymbols (output_bfd) = newsyms; 1962 } 1963 1964 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym; 1965 if (sym != NULL) 1966 ++ bfd_get_symcount (output_bfd); 1967 1968 return TRUE; 1969 } 1970 1971 /* Handle the symbols for an input BFD. */ 1972 1973 bfd_boolean 1974 _bfd_generic_link_output_symbols (bfd *output_bfd, 1975 bfd *input_bfd, 1976 struct bfd_link_info *info, 1977 size_t *psymalloc) 1978 { 1979 asymbol **sym_ptr; 1980 asymbol **sym_end; 1981 1982 if (!bfd_generic_link_read_symbols (input_bfd)) 1983 return FALSE; 1984 1985 /* Create a filename symbol if we are supposed to. */ 1986 if (info->create_object_symbols_section != NULL) 1987 { 1988 asection *sec; 1989 1990 for (sec = input_bfd->sections; sec != NULL; sec = sec->next) 1991 { 1992 if (sec->output_section == info->create_object_symbols_section) 1993 { 1994 asymbol *newsym; 1995 1996 newsym = bfd_make_empty_symbol (input_bfd); 1997 if (!newsym) 1998 return FALSE; 1999 newsym->name = input_bfd->filename; 2000 newsym->value = 0; 2001 newsym->flags = BSF_LOCAL | BSF_FILE; 2002 newsym->section = sec; 2003 2004 if (! generic_add_output_symbol (output_bfd, psymalloc, 2005 newsym)) 2006 return FALSE; 2007 2008 break; 2009 } 2010 } 2011 } 2012 2013 /* Adjust the values of the globally visible symbols, and write out 2014 local symbols. */ 2015 sym_ptr = _bfd_generic_link_get_symbols (input_bfd); 2016 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd); 2017 for (; sym_ptr < sym_end; sym_ptr++) 2018 { 2019 asymbol *sym; 2020 struct generic_link_hash_entry *h; 2021 bfd_boolean output; 2022 2023 h = NULL; 2024 sym = *sym_ptr; 2025 if ((sym->flags & (BSF_INDIRECT 2026 | BSF_WARNING 2027 | BSF_GLOBAL 2028 | BSF_CONSTRUCTOR 2029 | BSF_WEAK)) != 0 2030 || bfd_is_und_section (bfd_get_section (sym)) 2031 || bfd_is_com_section (bfd_get_section (sym)) 2032 || bfd_is_ind_section (bfd_get_section (sym))) 2033 { 2034 if (sym->udata.p != NULL) 2035 h = (struct generic_link_hash_entry *) sym->udata.p; 2036 else if ((sym->flags & BSF_CONSTRUCTOR) != 0) 2037 { 2038 /* This case normally means that the main linker code 2039 deliberately ignored this constructor symbol. We 2040 should just pass it through. This will screw up if 2041 the constructor symbol is from a different, 2042 non-generic, object file format, but the case will 2043 only arise when linking with -r, which will probably 2044 fail anyhow, since there will be no way to represent 2045 the relocs in the output format being used. */ 2046 h = NULL; 2047 } 2048 else if (bfd_is_und_section (bfd_get_section (sym))) 2049 h = ((struct generic_link_hash_entry *) 2050 bfd_wrapped_link_hash_lookup (output_bfd, info, 2051 bfd_asymbol_name (sym), 2052 FALSE, FALSE, TRUE)); 2053 else 2054 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info), 2055 bfd_asymbol_name (sym), 2056 FALSE, FALSE, TRUE); 2057 2058 if (h != NULL) 2059 { 2060 /* Force all references to this symbol to point to 2061 the same area in memory. It is possible that 2062 this routine will be called with a hash table 2063 other than a generic hash table, so we double 2064 check that. */ 2065 if (info->output_bfd->xvec == input_bfd->xvec) 2066 { 2067 if (h->sym != NULL) 2068 *sym_ptr = sym = h->sym; 2069 } 2070 2071 switch (h->root.type) 2072 { 2073 default: 2074 case bfd_link_hash_new: 2075 abort (); 2076 case bfd_link_hash_undefined: 2077 break; 2078 case bfd_link_hash_undefweak: 2079 sym->flags |= BSF_WEAK; 2080 break; 2081 case bfd_link_hash_indirect: 2082 h = (struct generic_link_hash_entry *) h->root.u.i.link; 2083 /* fall through */ 2084 case bfd_link_hash_defined: 2085 sym->flags |= BSF_GLOBAL; 2086 sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR); 2087 sym->value = h->root.u.def.value; 2088 sym->section = h->root.u.def.section; 2089 break; 2090 case bfd_link_hash_defweak: 2091 sym->flags |= BSF_WEAK; 2092 sym->flags &=~ BSF_CONSTRUCTOR; 2093 sym->value = h->root.u.def.value; 2094 sym->section = h->root.u.def.section; 2095 break; 2096 case bfd_link_hash_common: 2097 sym->value = h->root.u.c.size; 2098 sym->flags |= BSF_GLOBAL; 2099 if (! bfd_is_com_section (sym->section)) 2100 { 2101 BFD_ASSERT (bfd_is_und_section (sym->section)); 2102 sym->section = bfd_com_section_ptr; 2103 } 2104 /* We do not set the section of the symbol to 2105 h->root.u.c.p->section. That value was saved so 2106 that we would know where to allocate the symbol 2107 if it was defined. In this case the type is 2108 still bfd_link_hash_common, so we did not define 2109 it, so we do not want to use that section. */ 2110 break; 2111 } 2112 } 2113 } 2114 2115 /* This switch is straight from the old code in 2116 write_file_locals in ldsym.c. */ 2117 if (info->strip == strip_all 2118 || (info->strip == strip_some 2119 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym), 2120 FALSE, FALSE) == NULL)) 2121 output = FALSE; 2122 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0) 2123 { 2124 /* If this symbol is marked as occurring now, rather 2125 than at the end, output it now. This is used for 2126 COFF C_EXT FCN symbols. FIXME: There must be a 2127 better way. */ 2128 if (bfd_asymbol_bfd (sym) == input_bfd 2129 && (sym->flags & BSF_NOT_AT_END) != 0) 2130 output = TRUE; 2131 else 2132 output = FALSE; 2133 } 2134 else if (bfd_is_ind_section (sym->section)) 2135 output = FALSE; 2136 else if ((sym->flags & BSF_DEBUGGING) != 0) 2137 { 2138 if (info->strip == strip_none) 2139 output = TRUE; 2140 else 2141 output = FALSE; 2142 } 2143 else if (bfd_is_und_section (sym->section) 2144 || bfd_is_com_section (sym->section)) 2145 output = FALSE; 2146 else if ((sym->flags & BSF_LOCAL) != 0) 2147 { 2148 if ((sym->flags & BSF_WARNING) != 0) 2149 output = FALSE; 2150 else 2151 { 2152 switch (info->discard) 2153 { 2154 default: 2155 case discard_all: 2156 output = FALSE; 2157 break; 2158 case discard_sec_merge: 2159 output = TRUE; 2160 if (bfd_link_relocatable (info) 2161 || ! (sym->section->flags & SEC_MERGE)) 2162 break; 2163 /* FALLTHROUGH */ 2164 case discard_l: 2165 if (bfd_is_local_label (input_bfd, sym)) 2166 output = FALSE; 2167 else 2168 output = TRUE; 2169 break; 2170 case discard_none: 2171 output = TRUE; 2172 break; 2173 } 2174 } 2175 } 2176 else if ((sym->flags & BSF_CONSTRUCTOR)) 2177 { 2178 if (info->strip != strip_all) 2179 output = TRUE; 2180 else 2181 output = FALSE; 2182 } 2183 else if (sym->flags == 0 2184 && (sym->section->owner->flags & BFD_PLUGIN) != 0) 2185 /* LTO doesn't set symbol information. We get here with the 2186 generic linker for a symbol that was "common" but no longer 2187 needs to be global. */ 2188 output = FALSE; 2189 else 2190 abort (); 2191 2192 /* If this symbol is in a section which is not being included 2193 in the output file, then we don't want to output the 2194 symbol. */ 2195 if (!bfd_is_abs_section (sym->section) 2196 && bfd_section_removed_from_list (output_bfd, 2197 sym->section->output_section)) 2198 output = FALSE; 2199 2200 if (output) 2201 { 2202 if (! generic_add_output_symbol (output_bfd, psymalloc, sym)) 2203 return FALSE; 2204 if (h != NULL) 2205 h->written = TRUE; 2206 } 2207 } 2208 2209 return TRUE; 2210 } 2211 2212 /* Set the section and value of a generic BFD symbol based on a linker 2213 hash table entry. */ 2214 2215 static void 2216 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h) 2217 { 2218 switch (h->type) 2219 { 2220 default: 2221 abort (); 2222 break; 2223 case bfd_link_hash_new: 2224 /* This can happen when a constructor symbol is seen but we are 2225 not building constructors. */ 2226 if (sym->section != NULL) 2227 { 2228 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0); 2229 } 2230 else 2231 { 2232 sym->flags |= BSF_CONSTRUCTOR; 2233 sym->section = bfd_abs_section_ptr; 2234 sym->value = 0; 2235 } 2236 break; 2237 case bfd_link_hash_undefined: 2238 sym->section = bfd_und_section_ptr; 2239 sym->value = 0; 2240 break; 2241 case bfd_link_hash_undefweak: 2242 sym->section = bfd_und_section_ptr; 2243 sym->value = 0; 2244 sym->flags |= BSF_WEAK; 2245 break; 2246 case bfd_link_hash_defined: 2247 sym->section = h->u.def.section; 2248 sym->value = h->u.def.value; 2249 break; 2250 case bfd_link_hash_defweak: 2251 sym->flags |= BSF_WEAK; 2252 sym->section = h->u.def.section; 2253 sym->value = h->u.def.value; 2254 break; 2255 case bfd_link_hash_common: 2256 sym->value = h->u.c.size; 2257 if (sym->section == NULL) 2258 sym->section = bfd_com_section_ptr; 2259 else if (! bfd_is_com_section (sym->section)) 2260 { 2261 BFD_ASSERT (bfd_is_und_section (sym->section)); 2262 sym->section = bfd_com_section_ptr; 2263 } 2264 /* Do not set the section; see _bfd_generic_link_output_symbols. */ 2265 break; 2266 case bfd_link_hash_indirect: 2267 case bfd_link_hash_warning: 2268 /* FIXME: What should we do here? */ 2269 break; 2270 } 2271 } 2272 2273 /* Write out a global symbol, if it hasn't already been written out. 2274 This is called for each symbol in the hash table. */ 2275 2276 bfd_boolean 2277 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h, 2278 void *data) 2279 { 2280 struct generic_write_global_symbol_info *wginfo = 2281 (struct generic_write_global_symbol_info *) data; 2282 asymbol *sym; 2283 2284 if (h->written) 2285 return TRUE; 2286 2287 h->written = TRUE; 2288 2289 if (wginfo->info->strip == strip_all 2290 || (wginfo->info->strip == strip_some 2291 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string, 2292 FALSE, FALSE) == NULL)) 2293 return TRUE; 2294 2295 if (h->sym != NULL) 2296 sym = h->sym; 2297 else 2298 { 2299 sym = bfd_make_empty_symbol (wginfo->output_bfd); 2300 if (!sym) 2301 return FALSE; 2302 sym->name = h->root.root.string; 2303 sym->flags = 0; 2304 } 2305 2306 set_symbol_from_hash (sym, &h->root); 2307 2308 sym->flags |= BSF_GLOBAL; 2309 2310 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc, 2311 sym)) 2312 { 2313 /* FIXME: No way to return failure. */ 2314 abort (); 2315 } 2316 2317 return TRUE; 2318 } 2319 2320 /* Create a relocation. */ 2321 2322 bfd_boolean 2323 _bfd_generic_reloc_link_order (bfd *abfd, 2324 struct bfd_link_info *info, 2325 asection *sec, 2326 struct bfd_link_order *link_order) 2327 { 2328 arelent *r; 2329 2330 if (! bfd_link_relocatable (info)) 2331 abort (); 2332 if (sec->orelocation == NULL) 2333 abort (); 2334 2335 r = (arelent *) bfd_alloc (abfd, sizeof (arelent)); 2336 if (r == NULL) 2337 return FALSE; 2338 2339 r->address = link_order->offset; 2340 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc); 2341 if (r->howto == 0) 2342 { 2343 bfd_set_error (bfd_error_bad_value); 2344 return FALSE; 2345 } 2346 2347 /* Get the symbol to use for the relocation. */ 2348 if (link_order->type == bfd_section_reloc_link_order) 2349 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr; 2350 else 2351 { 2352 struct generic_link_hash_entry *h; 2353 2354 h = ((struct generic_link_hash_entry *) 2355 bfd_wrapped_link_hash_lookup (abfd, info, 2356 link_order->u.reloc.p->u.name, 2357 FALSE, FALSE, TRUE)); 2358 if (h == NULL 2359 || ! h->written) 2360 { 2361 (*info->callbacks->unattached_reloc) 2362 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0); 2363 bfd_set_error (bfd_error_bad_value); 2364 return FALSE; 2365 } 2366 r->sym_ptr_ptr = &h->sym; 2367 } 2368 2369 /* If this is an inplace reloc, write the addend to the object file. 2370 Otherwise, store it in the reloc addend. */ 2371 if (! r->howto->partial_inplace) 2372 r->addend = link_order->u.reloc.p->addend; 2373 else 2374 { 2375 bfd_size_type size; 2376 bfd_reloc_status_type rstat; 2377 bfd_byte *buf; 2378 bfd_boolean ok; 2379 file_ptr loc; 2380 2381 size = bfd_get_reloc_size (r->howto); 2382 buf = (bfd_byte *) bfd_zmalloc (size); 2383 if (buf == NULL && size != 0) 2384 return FALSE; 2385 rstat = _bfd_relocate_contents (r->howto, abfd, 2386 (bfd_vma) link_order->u.reloc.p->addend, 2387 buf); 2388 switch (rstat) 2389 { 2390 case bfd_reloc_ok: 2391 break; 2392 default: 2393 case bfd_reloc_outofrange: 2394 abort (); 2395 case bfd_reloc_overflow: 2396 (*info->callbacks->reloc_overflow) 2397 (info, NULL, 2398 (link_order->type == bfd_section_reloc_link_order 2399 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section) 2400 : link_order->u.reloc.p->u.name), 2401 r->howto->name, link_order->u.reloc.p->addend, 2402 NULL, NULL, 0); 2403 break; 2404 } 2405 loc = link_order->offset * bfd_octets_per_byte (abfd); 2406 ok = bfd_set_section_contents (abfd, sec, buf, loc, size); 2407 free (buf); 2408 if (! ok) 2409 return FALSE; 2410 2411 r->addend = 0; 2412 } 2413 2414 sec->orelocation[sec->reloc_count] = r; 2415 ++sec->reloc_count; 2416 2417 return TRUE; 2418 } 2419 2420 /* Allocate a new link_order for a section. */ 2421 2422 struct bfd_link_order * 2423 bfd_new_link_order (bfd *abfd, asection *section) 2424 { 2425 bfd_size_type amt = sizeof (struct bfd_link_order); 2426 struct bfd_link_order *new_lo; 2427 2428 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt); 2429 if (!new_lo) 2430 return NULL; 2431 2432 new_lo->type = bfd_undefined_link_order; 2433 2434 if (section->map_tail.link_order != NULL) 2435 section->map_tail.link_order->next = new_lo; 2436 else 2437 section->map_head.link_order = new_lo; 2438 section->map_tail.link_order = new_lo; 2439 2440 return new_lo; 2441 } 2442 2443 /* Default link order processing routine. Note that we can not handle 2444 the reloc_link_order types here, since they depend upon the details 2445 of how the particular backends generates relocs. */ 2446 2447 bfd_boolean 2448 _bfd_default_link_order (bfd *abfd, 2449 struct bfd_link_info *info, 2450 asection *sec, 2451 struct bfd_link_order *link_order) 2452 { 2453 switch (link_order->type) 2454 { 2455 case bfd_undefined_link_order: 2456 case bfd_section_reloc_link_order: 2457 case bfd_symbol_reloc_link_order: 2458 default: 2459 abort (); 2460 case bfd_indirect_link_order: 2461 return default_indirect_link_order (abfd, info, sec, link_order, 2462 FALSE); 2463 case bfd_data_link_order: 2464 return default_data_link_order (abfd, info, sec, link_order); 2465 } 2466 } 2467 2468 /* Default routine to handle a bfd_data_link_order. */ 2469 2470 static bfd_boolean 2471 default_data_link_order (bfd *abfd, 2472 struct bfd_link_info *info ATTRIBUTE_UNUSED, 2473 asection *sec, 2474 struct bfd_link_order *link_order) 2475 { 2476 bfd_size_type size; 2477 size_t fill_size; 2478 bfd_byte *fill; 2479 file_ptr loc; 2480 bfd_boolean result; 2481 2482 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0); 2483 2484 size = link_order->size; 2485 if (size == 0) 2486 return TRUE; 2487 2488 fill = link_order->u.data.contents; 2489 fill_size = link_order->u.data.size; 2490 if (fill_size == 0) 2491 { 2492 fill = abfd->arch_info->fill (size, bfd_big_endian (abfd), 2493 (sec->flags & SEC_CODE) != 0); 2494 if (fill == NULL) 2495 return FALSE; 2496 } 2497 else if (fill_size < size) 2498 { 2499 bfd_byte *p; 2500 fill = (bfd_byte *) bfd_malloc (size); 2501 if (fill == NULL) 2502 return FALSE; 2503 p = fill; 2504 if (fill_size == 1) 2505 memset (p, (int) link_order->u.data.contents[0], (size_t) size); 2506 else 2507 { 2508 do 2509 { 2510 memcpy (p, link_order->u.data.contents, fill_size); 2511 p += fill_size; 2512 size -= fill_size; 2513 } 2514 while (size >= fill_size); 2515 if (size != 0) 2516 memcpy (p, link_order->u.data.contents, (size_t) size); 2517 size = link_order->size; 2518 } 2519 } 2520 2521 loc = link_order->offset * bfd_octets_per_byte (abfd); 2522 result = bfd_set_section_contents (abfd, sec, fill, loc, size); 2523 2524 if (fill != link_order->u.data.contents) 2525 free (fill); 2526 return result; 2527 } 2528 2529 /* Default routine to handle a bfd_indirect_link_order. */ 2530 2531 static bfd_boolean 2532 default_indirect_link_order (bfd *output_bfd, 2533 struct bfd_link_info *info, 2534 asection *output_section, 2535 struct bfd_link_order *link_order, 2536 bfd_boolean generic_linker) 2537 { 2538 asection *input_section; 2539 bfd *input_bfd; 2540 bfd_byte *contents = NULL; 2541 bfd_byte *new_contents; 2542 bfd_size_type sec_size; 2543 file_ptr loc; 2544 2545 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0); 2546 2547 input_section = link_order->u.indirect.section; 2548 input_bfd = input_section->owner; 2549 if (input_section->size == 0) 2550 return TRUE; 2551 2552 BFD_ASSERT (input_section->output_section == output_section); 2553 BFD_ASSERT (input_section->output_offset == link_order->offset); 2554 BFD_ASSERT (input_section->size == link_order->size); 2555 2556 if (bfd_link_relocatable (info) 2557 && input_section->reloc_count > 0 2558 && output_section->orelocation == NULL) 2559 { 2560 /* Space has not been allocated for the output relocations. 2561 This can happen when we are called by a specific backend 2562 because somebody is attempting to link together different 2563 types of object files. Handling this case correctly is 2564 difficult, and sometimes impossible. */ 2565 _bfd_error_handler 2566 /* xgettext:c-format */ 2567 (_("attempt to do relocatable link with %s input and %s output"), 2568 bfd_get_target (input_bfd), bfd_get_target (output_bfd)); 2569 bfd_set_error (bfd_error_wrong_format); 2570 return FALSE; 2571 } 2572 2573 if (! generic_linker) 2574 { 2575 asymbol **sympp; 2576 asymbol **symppend; 2577 2578 /* Get the canonical symbols. The generic linker will always 2579 have retrieved them by this point, but we are being called by 2580 a specific linker, presumably because we are linking 2581 different types of object files together. */ 2582 if (!bfd_generic_link_read_symbols (input_bfd)) 2583 return FALSE; 2584 2585 /* Since we have been called by a specific linker, rather than 2586 the generic linker, the values of the symbols will not be 2587 right. They will be the values as seen in the input file, 2588 not the values of the final link. We need to fix them up 2589 before we can relocate the section. */ 2590 sympp = _bfd_generic_link_get_symbols (input_bfd); 2591 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd); 2592 for (; sympp < symppend; sympp++) 2593 { 2594 asymbol *sym; 2595 struct bfd_link_hash_entry *h; 2596 2597 sym = *sympp; 2598 2599 if ((sym->flags & (BSF_INDIRECT 2600 | BSF_WARNING 2601 | BSF_GLOBAL 2602 | BSF_CONSTRUCTOR 2603 | BSF_WEAK)) != 0 2604 || bfd_is_und_section (bfd_get_section (sym)) 2605 || bfd_is_com_section (bfd_get_section (sym)) 2606 || bfd_is_ind_section (bfd_get_section (sym))) 2607 { 2608 /* sym->udata may have been set by 2609 generic_link_add_symbol_list. */ 2610 if (sym->udata.p != NULL) 2611 h = (struct bfd_link_hash_entry *) sym->udata.p; 2612 else if (bfd_is_und_section (bfd_get_section (sym))) 2613 h = bfd_wrapped_link_hash_lookup (output_bfd, info, 2614 bfd_asymbol_name (sym), 2615 FALSE, FALSE, TRUE); 2616 else 2617 h = bfd_link_hash_lookup (info->hash, 2618 bfd_asymbol_name (sym), 2619 FALSE, FALSE, TRUE); 2620 if (h != NULL) 2621 set_symbol_from_hash (sym, h); 2622 } 2623 } 2624 } 2625 2626 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP 2627 && input_section->size != 0) 2628 { 2629 /* Group section contents are set by bfd_elf_set_group_contents. */ 2630 if (!output_bfd->output_has_begun) 2631 { 2632 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */ 2633 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1)) 2634 goto error_return; 2635 } 2636 new_contents = output_section->contents; 2637 BFD_ASSERT (new_contents != NULL); 2638 BFD_ASSERT (input_section->output_offset == 0); 2639 } 2640 else 2641 { 2642 /* Get and relocate the section contents. */ 2643 sec_size = (input_section->rawsize > input_section->size 2644 ? input_section->rawsize 2645 : input_section->size); 2646 contents = (bfd_byte *) bfd_malloc (sec_size); 2647 if (contents == NULL && sec_size != 0) 2648 goto error_return; 2649 new_contents = (bfd_get_relocated_section_contents 2650 (output_bfd, info, link_order, contents, 2651 bfd_link_relocatable (info), 2652 _bfd_generic_link_get_symbols (input_bfd))); 2653 if (!new_contents) 2654 goto error_return; 2655 } 2656 2657 /* Output the section contents. */ 2658 loc = input_section->output_offset * bfd_octets_per_byte (output_bfd); 2659 if (! bfd_set_section_contents (output_bfd, output_section, 2660 new_contents, loc, input_section->size)) 2661 goto error_return; 2662 2663 if (contents != NULL) 2664 free (contents); 2665 return TRUE; 2666 2667 error_return: 2668 if (contents != NULL) 2669 free (contents); 2670 return FALSE; 2671 } 2672 2673 /* A little routine to count the number of relocs in a link_order 2674 list. */ 2675 2676 unsigned int 2677 _bfd_count_link_order_relocs (struct bfd_link_order *link_order) 2678 { 2679 register unsigned int c; 2680 register struct bfd_link_order *l; 2681 2682 c = 0; 2683 for (l = link_order; l != NULL; l = l->next) 2684 { 2685 if (l->type == bfd_section_reloc_link_order 2686 || l->type == bfd_symbol_reloc_link_order) 2687 ++c; 2688 } 2689 2690 return c; 2691 } 2692 2693 /* 2694 FUNCTION 2695 bfd_link_split_section 2696 2697 SYNOPSIS 2698 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec); 2699 2700 DESCRIPTION 2701 Return nonzero if @var{sec} should be split during a 2702 reloceatable or final link. 2703 2704 .#define bfd_link_split_section(abfd, sec) \ 2705 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec)) 2706 . 2707 2708 */ 2709 2710 bfd_boolean 2711 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED, 2712 asection *sec ATTRIBUTE_UNUSED) 2713 { 2714 return FALSE; 2715 } 2716 2717 /* 2718 FUNCTION 2719 bfd_section_already_linked 2720 2721 SYNOPSIS 2722 bfd_boolean bfd_section_already_linked (bfd *abfd, 2723 asection *sec, 2724 struct bfd_link_info *info); 2725 2726 DESCRIPTION 2727 Check if @var{data} has been already linked during a reloceatable 2728 or final link. Return TRUE if it has. 2729 2730 .#define bfd_section_already_linked(abfd, sec, info) \ 2731 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info)) 2732 . 2733 2734 */ 2735 2736 /* Sections marked with the SEC_LINK_ONCE flag should only be linked 2737 once into the output. This routine checks each section, and 2738 arrange to discard it if a section of the same name has already 2739 been linked. This code assumes that all relevant sections have the 2740 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the 2741 section name. bfd_section_already_linked is called via 2742 bfd_map_over_sections. */ 2743 2744 /* The hash table. */ 2745 2746 static struct bfd_hash_table _bfd_section_already_linked_table; 2747 2748 /* Support routines for the hash table used by section_already_linked, 2749 initialize the table, traverse, lookup, fill in an entry and remove 2750 the table. */ 2751 2752 void 2753 bfd_section_already_linked_table_traverse 2754 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *, 2755 void *), void *info) 2756 { 2757 bfd_hash_traverse (&_bfd_section_already_linked_table, 2758 (bfd_boolean (*) (struct bfd_hash_entry *, 2759 void *)) func, 2760 info); 2761 } 2762 2763 struct bfd_section_already_linked_hash_entry * 2764 bfd_section_already_linked_table_lookup (const char *name) 2765 { 2766 return ((struct bfd_section_already_linked_hash_entry *) 2767 bfd_hash_lookup (&_bfd_section_already_linked_table, name, 2768 TRUE, FALSE)); 2769 } 2770 2771 bfd_boolean 2772 bfd_section_already_linked_table_insert 2773 (struct bfd_section_already_linked_hash_entry *already_linked_list, 2774 asection *sec) 2775 { 2776 struct bfd_section_already_linked *l; 2777 2778 /* Allocate the memory from the same obstack as the hash table is 2779 kept in. */ 2780 l = (struct bfd_section_already_linked *) 2781 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l); 2782 if (l == NULL) 2783 return FALSE; 2784 l->sec = sec; 2785 l->next = already_linked_list->entry; 2786 already_linked_list->entry = l; 2787 return TRUE; 2788 } 2789 2790 static struct bfd_hash_entry * 2791 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED, 2792 struct bfd_hash_table *table, 2793 const char *string ATTRIBUTE_UNUSED) 2794 { 2795 struct bfd_section_already_linked_hash_entry *ret = 2796 (struct bfd_section_already_linked_hash_entry *) 2797 bfd_hash_allocate (table, sizeof *ret); 2798 2799 if (ret == NULL) 2800 return NULL; 2801 2802 ret->entry = NULL; 2803 2804 return &ret->root; 2805 } 2806 2807 bfd_boolean 2808 bfd_section_already_linked_table_init (void) 2809 { 2810 return bfd_hash_table_init_n (&_bfd_section_already_linked_table, 2811 already_linked_newfunc, 2812 sizeof (struct bfd_section_already_linked_hash_entry), 2813 42); 2814 } 2815 2816 void 2817 bfd_section_already_linked_table_free (void) 2818 { 2819 bfd_hash_table_free (&_bfd_section_already_linked_table); 2820 } 2821 2822 /* Report warnings as appropriate for duplicate section SEC. 2823 Return FALSE if we decide to keep SEC after all. */ 2824 2825 bfd_boolean 2826 _bfd_handle_already_linked (asection *sec, 2827 struct bfd_section_already_linked *l, 2828 struct bfd_link_info *info) 2829 { 2830 switch (sec->flags & SEC_LINK_DUPLICATES) 2831 { 2832 default: 2833 abort (); 2834 2835 case SEC_LINK_DUPLICATES_DISCARD: 2836 /* If we found an LTO IR match for this comdat group on 2837 the first pass, replace it with the LTO output on the 2838 second pass. We can't simply choose real object 2839 files over IR because the first pass may contain a 2840 mix of LTO and normal objects and we must keep the 2841 first match, be it IR or real. */ 2842 if (sec->owner->lto_output 2843 && (l->sec->owner->flags & BFD_PLUGIN) != 0) 2844 { 2845 l->sec = sec; 2846 return FALSE; 2847 } 2848 break; 2849 2850 case SEC_LINK_DUPLICATES_ONE_ONLY: 2851 info->callbacks->einfo 2852 /* xgettext:c-format */ 2853 (_("%pB: ignoring duplicate section `%pA'\n"), 2854 sec->owner, sec); 2855 break; 2856 2857 case SEC_LINK_DUPLICATES_SAME_SIZE: 2858 if ((l->sec->owner->flags & BFD_PLUGIN) != 0) 2859 ; 2860 else if (sec->size != l->sec->size) 2861 info->callbacks->einfo 2862 /* xgettext:c-format */ 2863 (_("%pB: duplicate section `%pA' has different size\n"), 2864 sec->owner, sec); 2865 break; 2866 2867 case SEC_LINK_DUPLICATES_SAME_CONTENTS: 2868 if ((l->sec->owner->flags & BFD_PLUGIN) != 0) 2869 ; 2870 else if (sec->size != l->sec->size) 2871 info->callbacks->einfo 2872 /* xgettext:c-format */ 2873 (_("%pB: duplicate section `%pA' has different size\n"), 2874 sec->owner, sec); 2875 else if (sec->size != 0) 2876 { 2877 bfd_byte *sec_contents, *l_sec_contents = NULL; 2878 2879 if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents)) 2880 info->callbacks->einfo 2881 /* xgettext:c-format */ 2882 (_("%pB: could not read contents of section `%pA'\n"), 2883 sec->owner, sec); 2884 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec, 2885 &l_sec_contents)) 2886 info->callbacks->einfo 2887 /* xgettext:c-format */ 2888 (_("%pB: could not read contents of section `%pA'\n"), 2889 l->sec->owner, l->sec); 2890 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0) 2891 info->callbacks->einfo 2892 /* xgettext:c-format */ 2893 (_("%pB: duplicate section `%pA' has different contents\n"), 2894 sec->owner, sec); 2895 2896 if (sec_contents) 2897 free (sec_contents); 2898 if (l_sec_contents) 2899 free (l_sec_contents); 2900 } 2901 break; 2902 } 2903 2904 /* Set the output_section field so that lang_add_section 2905 does not create a lang_input_section structure for this 2906 section. Since there might be a symbol in the section 2907 being discarded, we must retain a pointer to the section 2908 which we are really going to use. */ 2909 sec->output_section = bfd_abs_section_ptr; 2910 sec->kept_section = l->sec; 2911 return TRUE; 2912 } 2913 2914 /* This is used on non-ELF inputs. */ 2915 2916 bfd_boolean 2917 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED, 2918 asection *sec, 2919 struct bfd_link_info *info) 2920 { 2921 const char *name; 2922 struct bfd_section_already_linked *l; 2923 struct bfd_section_already_linked_hash_entry *already_linked_list; 2924 2925 if ((sec->flags & SEC_LINK_ONCE) == 0) 2926 return FALSE; 2927 2928 /* The generic linker doesn't handle section groups. */ 2929 if ((sec->flags & SEC_GROUP) != 0) 2930 return FALSE; 2931 2932 /* FIXME: When doing a relocatable link, we may have trouble 2933 copying relocations in other sections that refer to local symbols 2934 in the section being discarded. Those relocations will have to 2935 be converted somehow; as of this writing I'm not sure that any of 2936 the backends handle that correctly. 2937 2938 It is tempting to instead not discard link once sections when 2939 doing a relocatable link (technically, they should be discarded 2940 whenever we are building constructors). However, that fails, 2941 because the linker winds up combining all the link once sections 2942 into a single large link once section, which defeats the purpose 2943 of having link once sections in the first place. */ 2944 2945 name = bfd_get_section_name (abfd, sec); 2946 2947 already_linked_list = bfd_section_already_linked_table_lookup (name); 2948 2949 l = already_linked_list->entry; 2950 if (l != NULL) 2951 { 2952 /* The section has already been linked. See if we should 2953 issue a warning. */ 2954 return _bfd_handle_already_linked (sec, l, info); 2955 } 2956 2957 /* This is the first section with this name. Record it. */ 2958 if (!bfd_section_already_linked_table_insert (already_linked_list, sec)) 2959 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n")); 2960 return FALSE; 2961 } 2962 2963 /* Choose a neighbouring section to S in OBFD that will be output, or 2964 the absolute section if ADDR is out of bounds of the neighbours. */ 2965 2966 asection * 2967 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr) 2968 { 2969 asection *next, *prev, *best; 2970 2971 /* Find preceding kept section. */ 2972 for (prev = s->prev; prev != NULL; prev = prev->prev) 2973 if ((prev->flags & SEC_EXCLUDE) == 0 2974 && !bfd_section_removed_from_list (obfd, prev)) 2975 break; 2976 2977 /* Find following kept section. Start at prev->next because 2978 other sections may have been added after S was removed. */ 2979 if (s->prev != NULL) 2980 next = s->prev->next; 2981 else 2982 next = s->owner->sections; 2983 for (; next != NULL; next = next->next) 2984 if ((next->flags & SEC_EXCLUDE) == 0 2985 && !bfd_section_removed_from_list (obfd, next)) 2986 break; 2987 2988 /* Choose better of two sections, based on flags. The idea 2989 is to choose a section that will be in the same segment 2990 as S would have been if it was kept. */ 2991 best = next; 2992 if (prev == NULL) 2993 { 2994 if (next == NULL) 2995 best = bfd_abs_section_ptr; 2996 } 2997 else if (next == NULL) 2998 best = prev; 2999 else if (((prev->flags ^ next->flags) 3000 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0) 3001 { 3002 if (((next->flags ^ s->flags) 3003 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0 3004 /* We prefer to choose a loaded section. Section S 3005 doesn't have SEC_LOAD set (it being excluded, that 3006 part of the flag processing didn't happen) so we 3007 can't compare that flag to those of NEXT and PREV. */ 3008 || ((prev->flags & SEC_LOAD) != 0 3009 && (next->flags & SEC_LOAD) == 0)) 3010 best = prev; 3011 } 3012 else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0) 3013 { 3014 if (((next->flags ^ s->flags) & SEC_READONLY) != 0) 3015 best = prev; 3016 } 3017 else if (((prev->flags ^ next->flags) & SEC_CODE) != 0) 3018 { 3019 if (((next->flags ^ s->flags) & SEC_CODE) != 0) 3020 best = prev; 3021 } 3022 else 3023 { 3024 /* Flags we care about are the same. Prefer the following 3025 section if that will result in a positive valued sym. */ 3026 if (addr < next->vma) 3027 best = prev; 3028 } 3029 3030 return best; 3031 } 3032 3033 /* Convert symbols in excluded output sections to use a kept section. */ 3034 3035 static bfd_boolean 3036 fix_syms (struct bfd_link_hash_entry *h, void *data) 3037 { 3038 bfd *obfd = (bfd *) data; 3039 3040 if (h->type == bfd_link_hash_defined 3041 || h->type == bfd_link_hash_defweak) 3042 { 3043 asection *s = h->u.def.section; 3044 if (s != NULL 3045 && s->output_section != NULL 3046 && (s->output_section->flags & SEC_EXCLUDE) != 0 3047 && bfd_section_removed_from_list (obfd, s->output_section)) 3048 { 3049 asection *op; 3050 3051 h->u.def.value += s->output_offset + s->output_section->vma; 3052 op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value); 3053 h->u.def.value -= op->vma; 3054 h->u.def.section = op; 3055 } 3056 } 3057 3058 return TRUE; 3059 } 3060 3061 void 3062 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info) 3063 { 3064 bfd_link_hash_traverse (info->hash, fix_syms, obfd); 3065 } 3066 3067 /* 3068 FUNCTION 3069 bfd_generic_define_common_symbol 3070 3071 SYNOPSIS 3072 bfd_boolean bfd_generic_define_common_symbol 3073 (bfd *output_bfd, struct bfd_link_info *info, 3074 struct bfd_link_hash_entry *h); 3075 3076 DESCRIPTION 3077 Convert common symbol @var{h} into a defined symbol. 3078 Return TRUE on success and FALSE on failure. 3079 3080 .#define bfd_define_common_symbol(output_bfd, info, h) \ 3081 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h)) 3082 . 3083 */ 3084 3085 bfd_boolean 3086 bfd_generic_define_common_symbol (bfd *output_bfd, 3087 struct bfd_link_info *info ATTRIBUTE_UNUSED, 3088 struct bfd_link_hash_entry *h) 3089 { 3090 unsigned int power_of_two; 3091 bfd_vma alignment, size; 3092 asection *section; 3093 3094 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common); 3095 3096 size = h->u.c.size; 3097 power_of_two = h->u.c.p->alignment_power; 3098 section = h->u.c.p->section; 3099 3100 /* Increase the size of the section to align the common symbol. 3101 The alignment must be a power of two. */ 3102 alignment = bfd_octets_per_byte (output_bfd) << power_of_two; 3103 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment); 3104 section->size += alignment - 1; 3105 section->size &= -alignment; 3106 3107 /* Adjust the section's overall alignment if necessary. */ 3108 if (power_of_two > section->alignment_power) 3109 section->alignment_power = power_of_two; 3110 3111 /* Change the symbol from common to defined. */ 3112 h->type = bfd_link_hash_defined; 3113 h->u.def.section = section; 3114 h->u.def.value = section->size; 3115 3116 /* Increase the size of the section. */ 3117 section->size += size; 3118 3119 /* Make sure the section is allocated in memory, and make sure that 3120 it is no longer a common section. */ 3121 section->flags |= SEC_ALLOC; 3122 section->flags &= ~(SEC_IS_COMMON | SEC_HAS_CONTENTS); 3123 return TRUE; 3124 } 3125 3126 /* 3127 FUNCTION 3128 _bfd_generic_link_hide_symbol 3129 3130 SYNOPSIS 3131 void _bfd_generic_link_hide_symbol 3132 (bfd *output_bfd, struct bfd_link_info *info, 3133 struct bfd_link_hash_entry *h); 3134 3135 DESCRIPTION 3136 Hide symbol @var{h}. 3137 This is an internal function. It should not be called from 3138 outside the BFD library. 3139 3140 .#define bfd_link_hide_symbol(output_bfd, info, h) \ 3141 . BFD_SEND (output_bfd, _bfd_link_hide_symbol, (output_bfd, info, h)) 3142 . 3143 */ 3144 3145 void 3146 _bfd_generic_link_hide_symbol (bfd *output_bfd ATTRIBUTE_UNUSED, 3147 struct bfd_link_info *info ATTRIBUTE_UNUSED, 3148 struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED) 3149 { 3150 } 3151 3152 /* 3153 FUNCTION 3154 bfd_generic_define_start_stop 3155 3156 SYNOPSIS 3157 struct bfd_link_hash_entry *bfd_generic_define_start_stop 3158 (struct bfd_link_info *info, 3159 const char *symbol, asection *sec); 3160 3161 DESCRIPTION 3162 Define a __start, __stop, .startof. or .sizeof. symbol. 3163 Return the symbol or NULL if no such undefined symbol exists. 3164 3165 .#define bfd_define_start_stop(output_bfd, info, symbol, sec) \ 3166 . BFD_SEND (output_bfd, _bfd_define_start_stop, (info, symbol, sec)) 3167 . 3168 */ 3169 3170 struct bfd_link_hash_entry * 3171 bfd_generic_define_start_stop (struct bfd_link_info *info, 3172 const char *symbol, asection *sec) 3173 { 3174 struct bfd_link_hash_entry *h; 3175 3176 h = bfd_link_hash_lookup (info->hash, symbol, FALSE, FALSE, TRUE); 3177 if (h != NULL 3178 && (h->type == bfd_link_hash_undefined 3179 || h->type == bfd_link_hash_undefweak)) 3180 { 3181 h->type = bfd_link_hash_defined; 3182 h->u.def.section = sec; 3183 h->u.def.value = 0; 3184 return h; 3185 } 3186 return NULL; 3187 } 3188 3189 /* 3190 FUNCTION 3191 bfd_find_version_for_sym 3192 3193 SYNOPSIS 3194 struct bfd_elf_version_tree * bfd_find_version_for_sym 3195 (struct bfd_elf_version_tree *verdefs, 3196 const char *sym_name, bfd_boolean *hide); 3197 3198 DESCRIPTION 3199 Search an elf version script tree for symbol versioning 3200 info and export / don't-export status for a given symbol. 3201 Return non-NULL on success and NULL on failure; also sets 3202 the output @samp{hide} boolean parameter. 3203 3204 */ 3205 3206 struct bfd_elf_version_tree * 3207 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs, 3208 const char *sym_name, 3209 bfd_boolean *hide) 3210 { 3211 struct bfd_elf_version_tree *t; 3212 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver; 3213 struct bfd_elf_version_tree *star_local_ver, *star_global_ver; 3214 3215 local_ver = NULL; 3216 global_ver = NULL; 3217 star_local_ver = NULL; 3218 star_global_ver = NULL; 3219 exist_ver = NULL; 3220 for (t = verdefs; t != NULL; t = t->next) 3221 { 3222 if (t->globals.list != NULL) 3223 { 3224 struct bfd_elf_version_expr *d = NULL; 3225 3226 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL) 3227 { 3228 if (d->literal || strcmp (d->pattern, "*") != 0) 3229 global_ver = t; 3230 else 3231 star_global_ver = t; 3232 if (d->symver) 3233 exist_ver = t; 3234 d->script = 1; 3235 /* If the match is a wildcard pattern, keep looking for 3236 a more explicit, perhaps even local, match. */ 3237 if (d->literal) 3238 break; 3239 } 3240 3241 if (d != NULL) 3242 break; 3243 } 3244 3245 if (t->locals.list != NULL) 3246 { 3247 struct bfd_elf_version_expr *d = NULL; 3248 3249 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL) 3250 { 3251 if (d->literal || strcmp (d->pattern, "*") != 0) 3252 local_ver = t; 3253 else 3254 star_local_ver = t; 3255 /* If the match is a wildcard pattern, keep looking for 3256 a more explicit, perhaps even global, match. */ 3257 if (d->literal) 3258 { 3259 /* An exact match overrides a global wildcard. */ 3260 global_ver = NULL; 3261 star_global_ver = NULL; 3262 break; 3263 } 3264 } 3265 3266 if (d != NULL) 3267 break; 3268 } 3269 } 3270 3271 if (global_ver == NULL && local_ver == NULL) 3272 global_ver = star_global_ver; 3273 3274 if (global_ver != NULL) 3275 { 3276 /* If we already have a versioned symbol that matches the 3277 node for this symbol, then we don't want to create a 3278 duplicate from the unversioned symbol. Instead hide the 3279 unversioned symbol. */ 3280 *hide = exist_ver == global_ver; 3281 return global_ver; 3282 } 3283 3284 if (local_ver == NULL) 3285 local_ver = star_local_ver; 3286 3287 if (local_ver != NULL) 3288 { 3289 *hide = TRUE; 3290 return local_ver; 3291 } 3292 3293 return NULL; 3294 } 3295 3296 /* 3297 FUNCTION 3298 bfd_hide_sym_by_version 3299 3300 SYNOPSIS 3301 bfd_boolean bfd_hide_sym_by_version 3302 (struct bfd_elf_version_tree *verdefs, const char *sym_name); 3303 3304 DESCRIPTION 3305 Search an elf version script tree for symbol versioning 3306 info for a given symbol. Return TRUE if the symbol is hidden. 3307 3308 */ 3309 3310 bfd_boolean 3311 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs, 3312 const char *sym_name) 3313 { 3314 bfd_boolean hidden = FALSE; 3315 bfd_find_version_for_sym (verdefs, sym_name, &hidden); 3316 return hidden; 3317 } 3318 3319 /* 3320 FUNCTION 3321 bfd_link_check_relocs 3322 3323 SYNOPSIS 3324 bfd_boolean bfd_link_check_relocs 3325 (bfd *abfd, struct bfd_link_info *info); 3326 3327 DESCRIPTION 3328 Checks the relocs in ABFD for validity. 3329 Does not execute the relocs. 3330 Return TRUE if everything is OK, FALSE otherwise. 3331 This is the external entry point to this code. 3332 */ 3333 3334 bfd_boolean 3335 bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info) 3336 { 3337 return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info)); 3338 } 3339 3340 /* 3341 FUNCTION 3342 _bfd_generic_link_check_relocs 3343 3344 SYNOPSIS 3345 bfd_boolean _bfd_generic_link_check_relocs 3346 (bfd *abfd, struct bfd_link_info *info); 3347 3348 DESCRIPTION 3349 Stub function for targets that do not implement reloc checking. 3350 Return TRUE. 3351 This is an internal function. It should not be called from 3352 outside the BFD library. 3353 */ 3354 3355 bfd_boolean 3356 _bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED, 3357 struct bfd_link_info *info ATTRIBUTE_UNUSED) 3358 { 3359 return TRUE; 3360 } 3361 3362 /* 3363 FUNCTION 3364 bfd_merge_private_bfd_data 3365 3366 SYNOPSIS 3367 bfd_boolean bfd_merge_private_bfd_data 3368 (bfd *ibfd, struct bfd_link_info *info); 3369 3370 DESCRIPTION 3371 Merge private BFD information from the BFD @var{ibfd} to the 3372 the output file BFD when linking. Return <<TRUE>> on success, 3373 <<FALSE>> on error. Possible error returns are: 3374 3375 o <<bfd_error_no_memory>> - 3376 Not enough memory exists to create private data for @var{obfd}. 3377 3378 .#define bfd_merge_private_bfd_data(ibfd, info) \ 3379 . BFD_SEND ((info)->output_bfd, _bfd_merge_private_bfd_data, \ 3380 . (ibfd, info)) 3381 */ 3382 3383 /* 3384 INTERNAL_FUNCTION 3385 _bfd_generic_verify_endian_match 3386 3387 SYNOPSIS 3388 bfd_boolean _bfd_generic_verify_endian_match 3389 (bfd *ibfd, struct bfd_link_info *info); 3390 3391 DESCRIPTION 3392 Can be used from / for bfd_merge_private_bfd_data to check that 3393 endianness matches between input and output file. Returns 3394 TRUE for a match, otherwise returns FALSE and emits an error. 3395 */ 3396 3397 bfd_boolean 3398 _bfd_generic_verify_endian_match (bfd *ibfd, struct bfd_link_info *info) 3399 { 3400 bfd *obfd = info->output_bfd; 3401 3402 if (ibfd->xvec->byteorder != obfd->xvec->byteorder 3403 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN 3404 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN) 3405 { 3406 if (bfd_big_endian (ibfd)) 3407 _bfd_error_handler (_("%pB: compiled for a big endian system " 3408 "and target is little endian"), ibfd); 3409 else 3410 _bfd_error_handler (_("%pB: compiled for a little endian system " 3411 "and target is big endian"), ibfd); 3412 bfd_set_error (bfd_error_wrong_format); 3413 return FALSE; 3414 } 3415 3416 return TRUE; 3417 } 3418 3419 int 3420 _bfd_nolink_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED, 3421 struct bfd_link_info *info ATTRIBUTE_UNUSED) 3422 { 3423 return 0; 3424 } 3425 3426 bfd_boolean 3427 _bfd_nolink_bfd_relax_section (bfd *abfd, 3428 asection *section ATTRIBUTE_UNUSED, 3429 struct bfd_link_info *link_info ATTRIBUTE_UNUSED, 3430 bfd_boolean *again ATTRIBUTE_UNUSED) 3431 { 3432 return _bfd_bool_bfd_false_error (abfd); 3433 } 3434 3435 bfd_byte * 3436 _bfd_nolink_bfd_get_relocated_section_contents 3437 (bfd *abfd, 3438 struct bfd_link_info *link_info ATTRIBUTE_UNUSED, 3439 struct bfd_link_order *link_order ATTRIBUTE_UNUSED, 3440 bfd_byte *data ATTRIBUTE_UNUSED, 3441 bfd_boolean relocatable ATTRIBUTE_UNUSED, 3442 asymbol **symbols ATTRIBUTE_UNUSED) 3443 { 3444 return (bfd_byte *) _bfd_ptr_bfd_null_error (abfd); 3445 } 3446 3447 bfd_boolean 3448 _bfd_nolink_bfd_lookup_section_flags 3449 (struct bfd_link_info *info ATTRIBUTE_UNUSED, 3450 struct flag_info *flaginfo ATTRIBUTE_UNUSED, 3451 asection *section) 3452 { 3453 return _bfd_bool_bfd_false_error (section->owner); 3454 } 3455 3456 bfd_boolean 3457 _bfd_nolink_bfd_is_group_section (bfd *abfd, 3458 const asection *sec ATTRIBUTE_UNUSED) 3459 { 3460 return _bfd_bool_bfd_false_error (abfd); 3461 } 3462 3463 bfd_boolean 3464 _bfd_nolink_bfd_discard_group (bfd *abfd, asection *sec ATTRIBUTE_UNUSED) 3465 { 3466 return _bfd_bool_bfd_false_error (abfd); 3467 } 3468 3469 struct bfd_link_hash_table * 3470 _bfd_nolink_bfd_link_hash_table_create (bfd *abfd) 3471 { 3472 return (struct bfd_link_hash_table *) _bfd_ptr_bfd_null_error (abfd); 3473 } 3474 3475 void 3476 _bfd_nolink_bfd_link_just_syms (asection *sec ATTRIBUTE_UNUSED, 3477 struct bfd_link_info *info ATTRIBUTE_UNUSED) 3478 { 3479 } 3480 3481 void 3482 _bfd_nolink_bfd_copy_link_hash_symbol_type 3483 (bfd *abfd ATTRIBUTE_UNUSED, 3484 struct bfd_link_hash_entry *from ATTRIBUTE_UNUSED, 3485 struct bfd_link_hash_entry *to ATTRIBUTE_UNUSED) 3486 { 3487 } 3488 3489 bfd_boolean 3490 _bfd_nolink_bfd_link_split_section (bfd *abfd, asection *sec ATTRIBUTE_UNUSED) 3491 { 3492 return _bfd_bool_bfd_false_error (abfd); 3493 } 3494 3495 bfd_boolean 3496 _bfd_nolink_section_already_linked (bfd *abfd, 3497 asection *sec ATTRIBUTE_UNUSED, 3498 struct bfd_link_info *info ATTRIBUTE_UNUSED) 3499 { 3500 return _bfd_bool_bfd_false_error (abfd); 3501 } 3502 3503 bfd_boolean 3504 _bfd_nolink_bfd_define_common_symbol 3505 (bfd *abfd, 3506 struct bfd_link_info *info ATTRIBUTE_UNUSED, 3507 struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED) 3508 { 3509 return _bfd_bool_bfd_false_error (abfd); 3510 } 3511 3512 struct bfd_link_hash_entry * 3513 _bfd_nolink_bfd_define_start_stop (struct bfd_link_info *info ATTRIBUTE_UNUSED, 3514 const char *name ATTRIBUTE_UNUSED, 3515 asection *sec) 3516 { 3517 return (struct bfd_link_hash_entry *) _bfd_ptr_bfd_null_error (sec->owner); 3518 } 3519