xref: /netbsd-src/external/gpl3/gdb/dist/bfd/linker.c (revision a24efa7dea9f1f56c3bdb15a927d3516792ace1c)
1 /* linker.c -- BFD linker routines
2    Copyright (C) 1993-2015 Free Software Foundation, Inc.
3    Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27 
28 /*
29 SECTION
30 	Linker Functions
31 
32 @cindex Linker
33 	The linker uses three special entry points in the BFD target
34 	vector.  It is not necessary to write special routines for
35 	these entry points when creating a new BFD back end, since
36 	generic versions are provided.  However, writing them can
37 	speed up linking and make it use significantly less runtime
38 	memory.
39 
40 	The first routine creates a hash table used by the other
41 	routines.  The second routine adds the symbols from an object
42 	file to the hash table.  The third routine takes all the
43 	object files and links them together to create the output
44 	file.  These routines are designed so that the linker proper
45 	does not need to know anything about the symbols in the object
46 	files that it is linking.  The linker merely arranges the
47 	sections as directed by the linker script and lets BFD handle
48 	the details of symbols and relocs.
49 
50 	The second routine and third routines are passed a pointer to
51 	a <<struct bfd_link_info>> structure (defined in
52 	<<bfdlink.h>>) which holds information relevant to the link,
53 	including the linker hash table (which was created by the
54 	first routine) and a set of callback functions to the linker
55 	proper.
56 
57 	The generic linker routines are in <<linker.c>>, and use the
58 	header file <<genlink.h>>.  As of this writing, the only back
59 	ends which have implemented versions of these routines are
60 	a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>).  The a.out
61 	routines are used as examples throughout this section.
62 
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68 
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 	Creating a linker hash table
73 
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 	The linker routines must create a hash table, which must be
77 	derived from <<struct bfd_link_hash_table>> described in
78 	<<bfdlink.c>>.  @xref{Hash Tables}, for information on how to
79 	create a derived hash table.  This entry point is called using
80 	the target vector of the linker output file.
81 
82 	The <<_bfd_link_hash_table_create>> entry point must allocate
83 	and initialize an instance of the desired hash table.  If the
84 	back end does not require any additional information to be
85 	stored with the entries in the hash table, the entry point may
86 	simply create a <<struct bfd_link_hash_table>>.  Most likely,
87 	however, some additional information will be needed.
88 
89 	For example, with each entry in the hash table the a.out
90 	linker keeps the index the symbol has in the final output file
91 	(this index number is used so that when doing a relocatable
92 	link the symbol index used in the output file can be quickly
93 	filled in when copying over a reloc).  The a.out linker code
94 	defines the required structures and functions for a hash table
95 	derived from <<struct bfd_link_hash_table>>.  The a.out linker
96 	hash table is created by the function
97 	<<NAME(aout,link_hash_table_create)>>; it simply allocates
98 	space for the hash table, initializes it, and returns a
99 	pointer to it.
100 
101 	When writing the linker routines for a new back end, you will
102 	generally not know exactly which fields will be required until
103 	you have finished.  You should simply create a new hash table
104 	which defines no additional fields, and then simply add fields
105 	as they become necessary.
106 
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 	Adding symbols to the hash table
111 
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 	The linker proper will call the <<_bfd_link_add_symbols>>
115 	entry point for each object file or archive which is to be
116 	linked (typically these are the files named on the command
117 	line, but some may also come from the linker script).  The
118 	entry point is responsible for examining the file.  For an
119 	object file, BFD must add any relevant symbol information to
120 	the hash table.  For an archive, BFD must determine which
121 	elements of the archive should be used and adding them to the
122 	link.
123 
124 	The a.out version of this entry point is
125 	<<NAME(aout,link_add_symbols)>>.
126 
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132 
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 	Differing file formats
137 
138 	Normally all the files involved in a link will be of the same
139 	format, but it is also possible to link together different
140 	format object files, and the back end must support that.  The
141 	<<_bfd_link_add_symbols>> entry point is called via the target
142 	vector of the file to be added.  This has an important
143 	consequence: the function may not assume that the hash table
144 	is the type created by the corresponding
145 	<<_bfd_link_hash_table_create>> vector.  All the
146 	<<_bfd_link_add_symbols>> function can assume about the hash
147 	table is that it is derived from <<struct
148 	bfd_link_hash_table>>.
149 
150 	Sometimes the <<_bfd_link_add_symbols>> function must store
151 	some information in the hash table entry to be used by the
152 	<<_bfd_final_link>> function.  In such a case the output bfd
153 	xvec must be checked to make sure that the hash table was
154 	created by an object file of the same format.
155 
156 	The <<_bfd_final_link>> routine must be prepared to handle a
157 	hash entry without any extra information added by the
158 	<<_bfd_link_add_symbols>> function.  A hash entry without
159 	extra information will also occur when the linker script
160 	directs the linker to create a symbol.  Note that, regardless
161 	of how a hash table entry is added, all the fields will be
162 	initialized to some sort of null value by the hash table entry
163 	initialization function.
164 
165 	See <<ecoff_link_add_externals>> for an example of how to
166 	check the output bfd before saving information (in this
167 	case, the ECOFF external symbol debugging information) in a
168 	hash table entry.
169 
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 	Adding symbols from an object file
174 
175 	When the <<_bfd_link_add_symbols>> routine is passed an object
176 	file, it must add all externally visible symbols in that
177 	object file to the hash table.  The actual work of adding the
178 	symbol to the hash table is normally handled by the function
179 	<<_bfd_generic_link_add_one_symbol>>.  The
180 	<<_bfd_link_add_symbols>> routine is responsible for reading
181 	all the symbols from the object file and passing the correct
182 	information to <<_bfd_generic_link_add_one_symbol>>.
183 
184 	The <<_bfd_link_add_symbols>> routine should not use
185 	<<bfd_canonicalize_symtab>> to read the symbols.  The point of
186 	providing this routine is to avoid the overhead of converting
187 	the symbols into generic <<asymbol>> structures.
188 
189 @findex _bfd_generic_link_add_one_symbol
190 	<<_bfd_generic_link_add_one_symbol>> handles the details of
191 	combining common symbols, warning about multiple definitions,
192 	and so forth.  It takes arguments which describe the symbol to
193 	add, notably symbol flags, a section, and an offset.  The
194 	symbol flags include such things as <<BSF_WEAK>> or
195 	<<BSF_INDIRECT>>.  The section is a section in the object
196 	file, or something like <<bfd_und_section_ptr>> for an undefined
197 	symbol or <<bfd_com_section_ptr>> for a common symbol.
198 
199 	If the <<_bfd_final_link>> routine is also going to need to
200 	read the symbol information, the <<_bfd_link_add_symbols>>
201 	routine should save it somewhere attached to the object file
202 	BFD.  However, the information should only be saved if the
203 	<<keep_memory>> field of the <<info>> argument is TRUE, so
204 	that the <<-no-keep-memory>> linker switch is effective.
205 
206 	The a.out function which adds symbols from an object file is
207 	<<aout_link_add_object_symbols>>, and most of the interesting
208 	work is in <<aout_link_add_symbols>>.  The latter saves
209 	pointers to the hash tables entries created by
210 	<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 	so that the <<_bfd_final_link>> routine does not have to call
212 	the hash table lookup routine to locate the entry.
213 
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 	Adding symbols from an archive
218 
219 	When the <<_bfd_link_add_symbols>> routine is passed an
220 	archive, it must look through the symbols defined by the
221 	archive and decide which elements of the archive should be
222 	included in the link.  For each such element it must call the
223 	<<add_archive_element>> linker callback, and it must add the
224 	symbols from the object file to the linker hash table.  (The
225 	callback may in fact indicate that a replacement BFD should be
226 	used, in which case the symbols from that BFD should be added
227 	to the linker hash table instead.)
228 
229 @findex _bfd_generic_link_add_archive_symbols
230 	In most cases the work of looking through the symbols in the
231 	archive should be done by the
232 	<<_bfd_generic_link_add_archive_symbols>> function.
233 	<<_bfd_generic_link_add_archive_symbols>> is passed a function
234 	to call to make the final decision about adding an archive
235 	element to the link and to do the actual work of adding the
236 	symbols to the linker hash table.  If the element is to
237 	be included, the <<add_archive_element>> linker callback
238 	routine must be called with the element as an argument, and
239 	the element's symbols must be added to the linker hash table
240 	just as though the element had itself been passed to the
241 	<<_bfd_link_add_symbols>> function.
242 
243 	When the a.out <<_bfd_link_add_symbols>> function receives an
244 	archive, it calls <<_bfd_generic_link_add_archive_symbols>>
245 	passing <<aout_link_check_archive_element>> as the function
246 	argument. <<aout_link_check_archive_element>> calls
247 	<<aout_link_check_ar_symbols>>.  If the latter decides to add
248 	the element (an element is only added if it provides a real,
249 	non-common, definition for a previously undefined or common
250 	symbol) it calls the <<add_archive_element>> callback and then
251 	<<aout_link_check_archive_element>> calls
252 	<<aout_link_add_symbols>> to actually add the symbols to the
253 	linker hash table - possibly those of a substitute BFD, if the
254 	<<add_archive_element>> callback avails itself of that option.
255 
256 	The ECOFF back end is unusual in that it does not normally
257 	call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
258 	archives already contain a hash table of symbols.  The ECOFF
259 	back end searches the archive itself to avoid the overhead of
260 	creating a new hash table.
261 
262 INODE
263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
264 SUBSECTION
265 	Performing the final link
266 
267 @cindex _bfd_link_final_link in target vector
268 @cindex target vector (_bfd_final_link)
269 	When all the input files have been processed, the linker calls
270 	the <<_bfd_final_link>> entry point of the output BFD.  This
271 	routine is responsible for producing the final output file,
272 	which has several aspects.  It must relocate the contents of
273 	the input sections and copy the data into the output sections.
274 	It must build an output symbol table including any local
275 	symbols from the input files and the global symbols from the
276 	hash table.  When producing relocatable output, it must
277 	modify the input relocs and write them into the output file.
278 	There may also be object format dependent work to be done.
279 
280 	The linker will also call the <<write_object_contents>> entry
281 	point when the BFD is closed.  The two entry points must work
282 	together in order to produce the correct output file.
283 
284 	The details of how this works are inevitably dependent upon
285 	the specific object file format.  The a.out
286 	<<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
287 
288 @menu
289 @* Information provided by the linker::
290 @* Relocating the section contents::
291 @* Writing the symbol table::
292 @end menu
293 
294 INODE
295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
296 SUBSUBSECTION
297 	Information provided by the linker
298 
299 	Before the linker calls the <<_bfd_final_link>> entry point,
300 	it sets up some data structures for the function to use.
301 
302 	The <<input_bfds>> field of the <<bfd_link_info>> structure
303 	will point to a list of all the input files included in the
304 	link.  These files are linked through the <<link.next>> field
305 	of the <<bfd>> structure.
306 
307 	Each section in the output file will have a list of
308 	<<link_order>> structures attached to the <<map_head.link_order>>
309 	field (the <<link_order>> structure is defined in
310 	<<bfdlink.h>>).  These structures describe how to create the
311 	contents of the output section in terms of the contents of
312 	various input sections, fill constants, and, eventually, other
313 	types of information.  They also describe relocs that must be
314 	created by the BFD backend, but do not correspond to any input
315 	file; this is used to support -Ur, which builds constructors
316 	while generating a relocatable object file.
317 
318 INODE
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320 SUBSUBSECTION
321 	Relocating the section contents
322 
323 	The <<_bfd_final_link>> function should look through the
324 	<<link_order>> structures attached to each section of the
325 	output file.  Each <<link_order>> structure should either be
326 	handled specially, or it should be passed to the function
327 	<<_bfd_default_link_order>> which will do the right thing
328 	(<<_bfd_default_link_order>> is defined in <<linker.c>>).
329 
330 	For efficiency, a <<link_order>> of type
331 	<<bfd_indirect_link_order>> whose associated section belongs
332 	to a BFD of the same format as the output BFD must be handled
333 	specially.  This type of <<link_order>> describes part of an
334 	output section in terms of a section belonging to one of the
335 	input files.  The <<_bfd_final_link>> function should read the
336 	contents of the section and any associated relocs, apply the
337 	relocs to the section contents, and write out the modified
338 	section contents.  If performing a relocatable link, the
339 	relocs themselves must also be modified and written out.
340 
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 	The functions <<_bfd_relocate_contents>> and
344 	<<_bfd_final_link_relocate>> provide some general support for
345 	performing the actual relocations, notably overflow checking.
346 	Their arguments include information about the symbol the
347 	relocation is against and a <<reloc_howto_type>> argument
348 	which describes the relocation to perform.  These functions
349 	are defined in <<reloc.c>>.
350 
351 	The a.out function which handles reading, relocating, and
352 	writing section contents is <<aout_link_input_section>>.  The
353 	actual relocation is done in <<aout_link_input_section_std>>
354 	and <<aout_link_input_section_ext>>.
355 
356 INODE
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
358 SUBSUBSECTION
359 	Writing the symbol table
360 
361 	The <<_bfd_final_link>> function must gather all the symbols
362 	in the input files and write them out.  It must also write out
363 	all the symbols in the global hash table.  This must be
364 	controlled by the <<strip>> and <<discard>> fields of the
365 	<<bfd_link_info>> structure.
366 
367 	The local symbols of the input files will not have been
368 	entered into the linker hash table.  The <<_bfd_final_link>>
369 	routine must consider each input file and include the symbols
370 	in the output file.  It may be convenient to do this when
371 	looking through the <<link_order>> structures, or it may be
372 	done by stepping through the <<input_bfds>> list.
373 
374 	The <<_bfd_final_link>> routine must also traverse the global
375 	hash table to gather all the externally visible symbols.  It
376 	is possible that most of the externally visible symbols may be
377 	written out when considering the symbols of each input file,
378 	but it is still necessary to traverse the hash table since the
379 	linker script may have defined some symbols that are not in
380 	any of the input files.
381 
382 	The <<strip>> field of the <<bfd_link_info>> structure
383 	controls which symbols are written out.  The possible values
384 	are listed in <<bfdlink.h>>.  If the value is <<strip_some>>,
385 	then the <<keep_hash>> field of the <<bfd_link_info>>
386 	structure is a hash table of symbols to keep; each symbol
387 	should be looked up in this hash table, and only symbols which
388 	are present should be included in the output file.
389 
390 	If the <<strip>> field of the <<bfd_link_info>> structure
391 	permits local symbols to be written out, the <<discard>> field
392 	is used to further controls which local symbols are included
393 	in the output file.  If the value is <<discard_l>>, then all
394 	local symbols which begin with a certain prefix are discarded;
395 	this is controlled by the <<bfd_is_local_label_name>> entry point.
396 
397 	The a.out backend handles symbols by calling
398 	<<aout_link_write_symbols>> on each input BFD and then
399 	traversing the global hash table with the function
400 	<<aout_link_write_other_symbol>>.  It builds a string table
401 	while writing out the symbols, which is written to the output
402 	file at the end of <<NAME(aout,final_link)>>.
403 */
404 
405 static bfd_boolean generic_link_add_object_symbols
406   (bfd *, struct bfd_link_info *, bfd_boolean collect);
407 static bfd_boolean generic_link_add_symbols
408   (bfd *, struct bfd_link_info *, bfd_boolean);
409 static bfd_boolean generic_link_check_archive_element_no_collect
410   (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
411    bfd_boolean *);
412 static bfd_boolean generic_link_check_archive_element_collect
413   (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
414    bfd_boolean *);
415 static bfd_boolean generic_link_check_archive_element
416   (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
417    bfd_boolean *, bfd_boolean);
418 static bfd_boolean generic_link_add_symbol_list
419   (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
420    bfd_boolean);
421 static bfd_boolean generic_add_output_symbol
422   (bfd *, size_t *psymalloc, asymbol *);
423 static bfd_boolean default_data_link_order
424   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
425 static bfd_boolean default_indirect_link_order
426   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
427    bfd_boolean);
428 
429 /* The link hash table structure is defined in bfdlink.h.  It provides
430    a base hash table which the backend specific hash tables are built
431    upon.  */
432 
433 /* Routine to create an entry in the link hash table.  */
434 
435 struct bfd_hash_entry *
436 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
437 			struct bfd_hash_table *table,
438 			const char *string)
439 {
440   /* Allocate the structure if it has not already been allocated by a
441      subclass.  */
442   if (entry == NULL)
443     {
444       entry = (struct bfd_hash_entry *)
445           bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
446       if (entry == NULL)
447 	return entry;
448     }
449 
450   /* Call the allocation method of the superclass.  */
451   entry = bfd_hash_newfunc (entry, table, string);
452   if (entry)
453     {
454       struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
455 
456       /* Initialize the local fields.  */
457       memset ((char *) &h->root + sizeof (h->root), 0,
458 	      sizeof (*h) - sizeof (h->root));
459     }
460 
461   return entry;
462 }
463 
464 /* Initialize a link hash table.  The BFD argument is the one
465    responsible for creating this table.  */
466 
467 bfd_boolean
468 _bfd_link_hash_table_init
469   (struct bfd_link_hash_table *table,
470    bfd *abfd ATTRIBUTE_UNUSED,
471    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
472 				      struct bfd_hash_table *,
473 				      const char *),
474    unsigned int entsize)
475 {
476   bfd_boolean ret;
477 
478   BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
479   table->undefs = NULL;
480   table->undefs_tail = NULL;
481   table->type = bfd_link_generic_hash_table;
482 
483   ret = bfd_hash_table_init (&table->table, newfunc, entsize);
484   if (ret)
485     {
486       /* Arrange for destruction of this hash table on closing ABFD.  */
487       table->hash_table_free = _bfd_generic_link_hash_table_free;
488       abfd->link.hash = table;
489       abfd->is_linker_output = TRUE;
490     }
491   return ret;
492 }
493 
494 /* Look up a symbol in a link hash table.  If follow is TRUE, we
495    follow bfd_link_hash_indirect and bfd_link_hash_warning links to
496    the real symbol.  */
497 
498 struct bfd_link_hash_entry *
499 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
500 		      const char *string,
501 		      bfd_boolean create,
502 		      bfd_boolean copy,
503 		      bfd_boolean follow)
504 {
505   struct bfd_link_hash_entry *ret;
506 
507   ret = ((struct bfd_link_hash_entry *)
508 	 bfd_hash_lookup (&table->table, string, create, copy));
509 
510   if (follow && ret != NULL)
511     {
512       while (ret->type == bfd_link_hash_indirect
513 	     || ret->type == bfd_link_hash_warning)
514 	ret = ret->u.i.link;
515     }
516 
517   return ret;
518 }
519 
520 /* Look up a symbol in the main linker hash table if the symbol might
521    be wrapped.  This should only be used for references to an
522    undefined symbol, not for definitions of a symbol.  */
523 
524 struct bfd_link_hash_entry *
525 bfd_wrapped_link_hash_lookup (bfd *abfd,
526 			      struct bfd_link_info *info,
527 			      const char *string,
528 			      bfd_boolean create,
529 			      bfd_boolean copy,
530 			      bfd_boolean follow)
531 {
532   bfd_size_type amt;
533 
534   if (info->wrap_hash != NULL)
535     {
536       const char *l;
537       char prefix = '\0';
538 
539       l = string;
540       if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
541 	{
542 	  prefix = *l;
543 	  ++l;
544 	}
545 
546 #undef WRAP
547 #define WRAP "__wrap_"
548 
549       if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
550 	{
551 	  char *n;
552 	  struct bfd_link_hash_entry *h;
553 
554 	  /* This symbol is being wrapped.  We want to replace all
555              references to SYM with references to __wrap_SYM.  */
556 
557 	  amt = strlen (l) + sizeof WRAP + 1;
558 	  n = (char *) bfd_malloc (amt);
559 	  if (n == NULL)
560 	    return NULL;
561 
562 	  n[0] = prefix;
563 	  n[1] = '\0';
564 	  strcat (n, WRAP);
565 	  strcat (n, l);
566 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
567 	  free (n);
568 	  return h;
569 	}
570 
571 #undef  REAL
572 #define REAL "__real_"
573 
574       if (*l == '_'
575 	  && CONST_STRNEQ (l, REAL)
576 	  && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
577 			      FALSE, FALSE) != NULL)
578 	{
579 	  char *n;
580 	  struct bfd_link_hash_entry *h;
581 
582 	  /* This is a reference to __real_SYM, where SYM is being
583              wrapped.  We want to replace all references to __real_SYM
584              with references to SYM.  */
585 
586 	  amt = strlen (l + sizeof REAL - 1) + 2;
587 	  n = (char *) bfd_malloc (amt);
588 	  if (n == NULL)
589 	    return NULL;
590 
591 	  n[0] = prefix;
592 	  n[1] = '\0';
593 	  strcat (n, l + sizeof REAL - 1);
594 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
595 	  free (n);
596 	  return h;
597 	}
598 
599 #undef REAL
600     }
601 
602   return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
603 }
604 
605 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
606    and the remainder is found in wrap_hash, return the real symbol.  */
607 
608 struct bfd_link_hash_entry *
609 unwrap_hash_lookup (struct bfd_link_info *info,
610 		    bfd *input_bfd,
611 		    struct bfd_link_hash_entry *h)
612 {
613   const char *l = h->root.string;
614 
615   if (*l == bfd_get_symbol_leading_char (input_bfd)
616       || *l == info->wrap_char)
617     ++l;
618 
619   if (CONST_STRNEQ (l, WRAP))
620     {
621       l += sizeof WRAP - 1;
622 
623       if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
624 	{
625 	  char save = 0;
626 	  if (l - (sizeof WRAP - 1) != h->root.string)
627 	    {
628 	      --l;
629 	      save = *l;
630 	      *(char *) l = *h->root.string;
631 	    }
632 	  h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE);
633 	  if (save)
634 	    *(char *) l = save;
635 	}
636     }
637   return h;
638 }
639 #undef WRAP
640 
641 /* Traverse a generic link hash table.  Differs from bfd_hash_traverse
642    in the treatment of warning symbols.  When warning symbols are
643    created they replace the real symbol, so you don't get to see the
644    real symbol in a bfd_hash_travere.  This traversal calls func with
645    the real symbol.  */
646 
647 void
648 bfd_link_hash_traverse
649   (struct bfd_link_hash_table *htab,
650    bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
651    void *info)
652 {
653   unsigned int i;
654 
655   htab->table.frozen = 1;
656   for (i = 0; i < htab->table.size; i++)
657     {
658       struct bfd_link_hash_entry *p;
659 
660       p = (struct bfd_link_hash_entry *) htab->table.table[i];
661       for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
662 	if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
663 	  goto out;
664     }
665  out:
666   htab->table.frozen = 0;
667 }
668 
669 /* Add a symbol to the linker hash table undefs list.  */
670 
671 void
672 bfd_link_add_undef (struct bfd_link_hash_table *table,
673 		    struct bfd_link_hash_entry *h)
674 {
675   BFD_ASSERT (h->u.undef.next == NULL);
676   if (table->undefs_tail != NULL)
677     table->undefs_tail->u.undef.next = h;
678   if (table->undefs == NULL)
679     table->undefs = h;
680   table->undefs_tail = h;
681 }
682 
683 /* The undefs list was designed so that in normal use we don't need to
684    remove entries.  However, if symbols on the list are changed from
685    bfd_link_hash_undefined to either bfd_link_hash_undefweak or
686    bfd_link_hash_new for some reason, then they must be removed from the
687    list.  Failure to do so might result in the linker attempting to add
688    the symbol to the list again at a later stage.  */
689 
690 void
691 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
692 {
693   struct bfd_link_hash_entry **pun;
694 
695   pun = &table->undefs;
696   while (*pun != NULL)
697     {
698       struct bfd_link_hash_entry *h = *pun;
699 
700       if (h->type == bfd_link_hash_new
701 	  || h->type == bfd_link_hash_undefweak)
702 	{
703 	  *pun = h->u.undef.next;
704 	  h->u.undef.next = NULL;
705 	  if (h == table->undefs_tail)
706 	    {
707 	      if (pun == &table->undefs)
708 		table->undefs_tail = NULL;
709 	      else
710 		/* pun points at an u.undef.next field.  Go back to
711 		   the start of the link_hash_entry.  */
712 		table->undefs_tail = (struct bfd_link_hash_entry *)
713 		  ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
714 	      break;
715 	    }
716 	}
717       else
718 	pun = &h->u.undef.next;
719     }
720 }
721 
722 /* Routine to create an entry in a generic link hash table.  */
723 
724 struct bfd_hash_entry *
725 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
726 				struct bfd_hash_table *table,
727 				const char *string)
728 {
729   /* Allocate the structure if it has not already been allocated by a
730      subclass.  */
731   if (entry == NULL)
732     {
733       entry = (struct bfd_hash_entry *)
734 	bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
735       if (entry == NULL)
736 	return entry;
737     }
738 
739   /* Call the allocation method of the superclass.  */
740   entry = _bfd_link_hash_newfunc (entry, table, string);
741   if (entry)
742     {
743       struct generic_link_hash_entry *ret;
744 
745       /* Set local fields.  */
746       ret = (struct generic_link_hash_entry *) entry;
747       ret->written = FALSE;
748       ret->sym = NULL;
749     }
750 
751   return entry;
752 }
753 
754 /* Create a generic link hash table.  */
755 
756 struct bfd_link_hash_table *
757 _bfd_generic_link_hash_table_create (bfd *abfd)
758 {
759   struct generic_link_hash_table *ret;
760   bfd_size_type amt = sizeof (struct generic_link_hash_table);
761 
762   ret = (struct generic_link_hash_table *) bfd_malloc (amt);
763   if (ret == NULL)
764     return NULL;
765   if (! _bfd_link_hash_table_init (&ret->root, abfd,
766 				   _bfd_generic_link_hash_newfunc,
767 				   sizeof (struct generic_link_hash_entry)))
768     {
769       free (ret);
770       return NULL;
771     }
772   return &ret->root;
773 }
774 
775 void
776 _bfd_generic_link_hash_table_free (bfd *obfd)
777 {
778   struct generic_link_hash_table *ret;
779 
780   BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
781   ret = (struct generic_link_hash_table *) obfd->link.hash;
782   bfd_hash_table_free (&ret->root.table);
783   free (ret);
784   obfd->link.hash = NULL;
785   obfd->is_linker_output = FALSE;
786 }
787 
788 /* Grab the symbols for an object file when doing a generic link.  We
789    store the symbols in the outsymbols field.  We need to keep them
790    around for the entire link to ensure that we only read them once.
791    If we read them multiple times, we might wind up with relocs and
792    the hash table pointing to different instances of the symbol
793    structure.  */
794 
795 bfd_boolean
796 bfd_generic_link_read_symbols (bfd *abfd)
797 {
798   if (bfd_get_outsymbols (abfd) == NULL)
799     {
800       long symsize;
801       long symcount;
802 
803       symsize = bfd_get_symtab_upper_bound (abfd);
804       if (symsize < 0)
805 	return FALSE;
806       bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
807                                                                     symsize);
808       if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
809 	return FALSE;
810       symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
811       if (symcount < 0)
812 	return FALSE;
813       bfd_get_symcount (abfd) = symcount;
814     }
815 
816   return TRUE;
817 }
818 
819 /* Generic function to add symbols to from an object file to the
820    global hash table.  This version does not automatically collect
821    constructors by name.  */
822 
823 bfd_boolean
824 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
825 {
826   return generic_link_add_symbols (abfd, info, FALSE);
827 }
828 
829 /* Generic function to add symbols from an object file to the global
830    hash table.  This version automatically collects constructors by
831    name, as the collect2 program does.  It should be used for any
832    target which does not provide some other mechanism for setting up
833    constructors and destructors; these are approximately those targets
834    for which gcc uses collect2 and do not support stabs.  */
835 
836 bfd_boolean
837 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
838 {
839   return generic_link_add_symbols (abfd, info, TRUE);
840 }
841 
842 /* Indicate that we are only retrieving symbol values from this
843    section.  We want the symbols to act as though the values in the
844    file are absolute.  */
845 
846 void
847 _bfd_generic_link_just_syms (asection *sec,
848 			     struct bfd_link_info *info ATTRIBUTE_UNUSED)
849 {
850   sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
851   sec->output_section = bfd_abs_section_ptr;
852   sec->output_offset = sec->vma;
853 }
854 
855 /* Copy the symbol type and other attributes for a linker script
856    assignment from HSRC to HDEST.
857    The default implementation does nothing.  */
858 void
859 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
860     struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
861     struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
862 {
863 }
864 
865 /* Add symbols from an object file to the global hash table.  */
866 
867 static bfd_boolean
868 generic_link_add_symbols (bfd *abfd,
869 			  struct bfd_link_info *info,
870 			  bfd_boolean collect)
871 {
872   bfd_boolean ret;
873 
874   switch (bfd_get_format (abfd))
875     {
876     case bfd_object:
877       ret = generic_link_add_object_symbols (abfd, info, collect);
878       break;
879     case bfd_archive:
880       ret = (_bfd_generic_link_add_archive_symbols
881 	     (abfd, info,
882 	      (collect
883 	       ? generic_link_check_archive_element_collect
884 	       : generic_link_check_archive_element_no_collect)));
885       break;
886     default:
887       bfd_set_error (bfd_error_wrong_format);
888       ret = FALSE;
889     }
890 
891   return ret;
892 }
893 
894 /* Add symbols from an object file to the global hash table.  */
895 
896 static bfd_boolean
897 generic_link_add_object_symbols (bfd *abfd,
898 				 struct bfd_link_info *info,
899 				 bfd_boolean collect)
900 {
901   bfd_size_type symcount;
902   struct bfd_symbol **outsyms;
903 
904   if (!bfd_generic_link_read_symbols (abfd))
905     return FALSE;
906   symcount = _bfd_generic_link_get_symcount (abfd);
907   outsyms = _bfd_generic_link_get_symbols (abfd);
908   return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
909 }
910 
911 /* Generic function to add symbols from an archive file to the global
912    hash file.  This function presumes that the archive symbol table
913    has already been read in (this is normally done by the
914    bfd_check_format entry point).  It looks through the archive symbol
915    table for symbols that are undefined or common in the linker global
916    symbol hash table.  When one is found, the CHECKFN argument is used
917    to see if an object file should be included.  This allows targets
918    to customize common symbol behaviour.  CHECKFN should set *PNEEDED
919    to TRUE if the object file should be included, and must also call
920    the bfd_link_info add_archive_element callback function and handle
921    adding the symbols to the global hash table.  CHECKFN must notice
922    if the callback indicates a substitute BFD, and arrange to add
923    those symbols instead if it does so.  CHECKFN should only return
924    FALSE if some sort of error occurs.  */
925 
926 bfd_boolean
927 _bfd_generic_link_add_archive_symbols
928   (bfd *abfd,
929    struct bfd_link_info *info,
930    bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *,
931 			   struct bfd_link_hash_entry *, const char *,
932 			   bfd_boolean *))
933 {
934   bfd_boolean loop;
935   bfd_size_type amt;
936   unsigned char *included;
937 
938   if (! bfd_has_map (abfd))
939     {
940       /* An empty archive is a special case.  */
941       if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
942 	return TRUE;
943       bfd_set_error (bfd_error_no_armap);
944       return FALSE;
945     }
946 
947   amt = bfd_ardata (abfd)->symdef_count;
948   if (amt == 0)
949     return TRUE;
950   amt *= sizeof (*included);
951   included = (unsigned char *) bfd_zmalloc (amt);
952   if (included == NULL)
953     return FALSE;
954 
955   do
956     {
957       carsym *arsyms;
958       carsym *arsym_end;
959       carsym *arsym;
960       unsigned int indx;
961       file_ptr last_ar_offset = -1;
962       bfd_boolean needed = FALSE;
963       bfd *element = NULL;
964 
965       loop = FALSE;
966       arsyms = bfd_ardata (abfd)->symdefs;
967       arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
968       for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
969 	{
970 	  struct bfd_link_hash_entry *h;
971 	  struct bfd_link_hash_entry *undefs_tail;
972 
973 	  if (included[indx])
974 	    continue;
975 	  if (needed && arsym->file_offset == last_ar_offset)
976 	    {
977 	      included[indx] = 1;
978 	      continue;
979 	    }
980 
981 	  h = bfd_link_hash_lookup (info->hash, arsym->name,
982 				    FALSE, FALSE, TRUE);
983 
984 	  if (h == NULL
985 	      && info->pei386_auto_import
986 	      && CONST_STRNEQ (arsym->name, "__imp_"))
987 	    h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
988 				      FALSE, FALSE, TRUE);
989 	  if (h == NULL)
990 	    continue;
991 
992 	  if (h->type != bfd_link_hash_undefined
993 	      && h->type != bfd_link_hash_common)
994 	    {
995 	      if (h->type != bfd_link_hash_undefweak)
996 		/* Symbol must be defined.  Don't check it again.  */
997 		included[indx] = 1;
998 	      continue;
999 	    }
1000 
1001 	  if (last_ar_offset != arsym->file_offset)
1002 	    {
1003 	      last_ar_offset = arsym->file_offset;
1004 	      element = _bfd_get_elt_at_filepos (abfd, last_ar_offset);
1005 	      if (element == NULL
1006 		  || !bfd_check_format (element, bfd_object))
1007 		goto error_return;
1008 	    }
1009 
1010 	  undefs_tail = info->hash->undefs_tail;
1011 
1012 	  /* CHECKFN will see if this element should be included, and
1013 	     go ahead and include it if appropriate.  */
1014 	  if (! (*checkfn) (element, info, h, arsym->name, &needed))
1015 	    goto error_return;
1016 
1017 	  if (needed)
1018 	    {
1019 	      unsigned int mark;
1020 
1021 	      /* Look backward to mark all symbols from this object file
1022 		 which we have already seen in this pass.  */
1023 	      mark = indx;
1024 	      do
1025 		{
1026 		  included[mark] = 1;
1027 		  if (mark == 0)
1028 		    break;
1029 		  --mark;
1030 		}
1031 	      while (arsyms[mark].file_offset == last_ar_offset);
1032 
1033 	      if (undefs_tail != info->hash->undefs_tail)
1034 		loop = TRUE;
1035 	    }
1036 	}
1037     } while (loop);
1038 
1039   free (included);
1040   return TRUE;
1041 
1042  error_return:
1043   free (included);
1044   return FALSE;
1045 }
1046 
1047 /* See if we should include an archive element.  This version is used
1048    when we do not want to automatically collect constructors based on
1049    the symbol name, presumably because we have some other mechanism
1050    for finding them.  */
1051 
1052 static bfd_boolean
1053 generic_link_check_archive_element_no_collect (bfd *abfd,
1054 					       struct bfd_link_info *info,
1055 					       struct bfd_link_hash_entry *h,
1056 					       const char *name,
1057 					       bfd_boolean *pneeded)
1058 {
1059   return generic_link_check_archive_element (abfd, info, h, name, pneeded,
1060 					     FALSE);
1061 }
1062 
1063 /* See if we should include an archive element.  This version is used
1064    when we want to automatically collect constructors based on the
1065    symbol name, as collect2 does.  */
1066 
1067 static bfd_boolean
1068 generic_link_check_archive_element_collect (bfd *abfd,
1069 					    struct bfd_link_info *info,
1070 					    struct bfd_link_hash_entry *h,
1071 					    const char *name,
1072 					    bfd_boolean *pneeded)
1073 {
1074   return generic_link_check_archive_element (abfd, info, h, name, pneeded,
1075 					     TRUE);
1076 }
1077 
1078 /* See if we should include an archive element.  Optionally collect
1079    constructors.  */
1080 
1081 static bfd_boolean
1082 generic_link_check_archive_element (bfd *abfd,
1083 				    struct bfd_link_info *info,
1084 				    struct bfd_link_hash_entry *h,
1085 				    const char *name ATTRIBUTE_UNUSED,
1086 				    bfd_boolean *pneeded,
1087 				    bfd_boolean collect)
1088 {
1089   asymbol **pp, **ppend;
1090 
1091   *pneeded = FALSE;
1092 
1093   if (!bfd_generic_link_read_symbols (abfd))
1094     return FALSE;
1095 
1096   pp = _bfd_generic_link_get_symbols (abfd);
1097   ppend = pp + _bfd_generic_link_get_symcount (abfd);
1098   for (; pp < ppend; pp++)
1099     {
1100       asymbol *p;
1101 
1102       p = *pp;
1103 
1104       /* We are only interested in globally visible symbols.  */
1105       if (! bfd_is_com_section (p->section)
1106 	  && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1107 	continue;
1108 
1109       /* We are only interested if we know something about this
1110 	 symbol, and it is undefined or common.  An undefined weak
1111 	 symbol (type bfd_link_hash_undefweak) is not considered to be
1112 	 a reference when pulling files out of an archive.  See the
1113 	 SVR4 ABI, p. 4-27.  */
1114       h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1115 				FALSE, TRUE);
1116       if (h == NULL
1117 	  || (h->type != bfd_link_hash_undefined
1118 	      && h->type != bfd_link_hash_common))
1119 	continue;
1120 
1121       /* P is a symbol we are looking for.  */
1122 
1123       if (! bfd_is_com_section (p->section)
1124 	  || (h->type == bfd_link_hash_undefined
1125 	      && h->u.undef.abfd == NULL))
1126 	{
1127 	  /* P is not a common symbol, or an undefined reference was
1128 	     created from outside BFD such as from a linker -u option.
1129 	     This object file defines the symbol, so pull it in.  */
1130 	  *pneeded = TRUE;
1131 	  if (!(*info->callbacks
1132 		->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1133 					&abfd))
1134 	    return FALSE;
1135 	  /* Potentially, the add_archive_element hook may have set a
1136 	     substitute BFD for us.  */
1137 	  return generic_link_add_object_symbols (abfd, info, collect);
1138 	}
1139 
1140       /* P is a common symbol.  */
1141 
1142       if (h->type == bfd_link_hash_undefined)
1143 	{
1144 	  bfd *symbfd;
1145 	  bfd_vma size;
1146 	  unsigned int power;
1147 
1148 	  /* Turn the symbol into a common symbol but do not link in
1149 	     the object file.  This is how a.out works.  Object
1150 	     formats that require different semantics must implement
1151 	     this function differently.  This symbol is already on the
1152 	     undefs list.  We add the section to a common section
1153 	     attached to symbfd to ensure that it is in a BFD which
1154 	     will be linked in.  */
1155 	  symbfd = h->u.undef.abfd;
1156 	  h->type = bfd_link_hash_common;
1157 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1158 	    bfd_hash_allocate (&info->hash->table,
1159 			       sizeof (struct bfd_link_hash_common_entry));
1160 	  if (h->u.c.p == NULL)
1161 	    return FALSE;
1162 
1163 	  size = bfd_asymbol_value (p);
1164 	  h->u.c.size = size;
1165 
1166 	  power = bfd_log2 (size);
1167 	  if (power > 4)
1168 	    power = 4;
1169 	  h->u.c.p->alignment_power = power;
1170 
1171 	  if (p->section == bfd_com_section_ptr)
1172 	    h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1173 	  else
1174 	    h->u.c.p->section = bfd_make_section_old_way (symbfd,
1175 							  p->section->name);
1176 	  h->u.c.p->section->flags |= SEC_ALLOC;
1177 	}
1178       else
1179 	{
1180 	  /* Adjust the size of the common symbol if necessary.  This
1181 	     is how a.out works.  Object formats that require
1182 	     different semantics must implement this function
1183 	     differently.  */
1184 	  if (bfd_asymbol_value (p) > h->u.c.size)
1185 	    h->u.c.size = bfd_asymbol_value (p);
1186 	}
1187     }
1188 
1189   /* This archive element is not needed.  */
1190   return TRUE;
1191 }
1192 
1193 /* Add the symbols from an object file to the global hash table.  ABFD
1194    is the object file.  INFO is the linker information.  SYMBOL_COUNT
1195    is the number of symbols.  SYMBOLS is the list of symbols.  COLLECT
1196    is TRUE if constructors should be automatically collected by name
1197    as is done by collect2.  */
1198 
1199 static bfd_boolean
1200 generic_link_add_symbol_list (bfd *abfd,
1201 			      struct bfd_link_info *info,
1202 			      bfd_size_type symbol_count,
1203 			      asymbol **symbols,
1204 			      bfd_boolean collect)
1205 {
1206   asymbol **pp, **ppend;
1207 
1208   pp = symbols;
1209   ppend = symbols + symbol_count;
1210   for (; pp < ppend; pp++)
1211     {
1212       asymbol *p;
1213 
1214       p = *pp;
1215 
1216       if ((p->flags & (BSF_INDIRECT
1217 		       | BSF_WARNING
1218 		       | BSF_GLOBAL
1219 		       | BSF_CONSTRUCTOR
1220 		       | BSF_WEAK)) != 0
1221 	  || bfd_is_und_section (bfd_get_section (p))
1222 	  || bfd_is_com_section (bfd_get_section (p))
1223 	  || bfd_is_ind_section (bfd_get_section (p)))
1224 	{
1225 	  const char *name;
1226 	  const char *string;
1227 	  struct generic_link_hash_entry *h;
1228 	  struct bfd_link_hash_entry *bh;
1229 
1230 	  string = name = bfd_asymbol_name (p);
1231 	  if (((p->flags & BSF_INDIRECT) != 0
1232 	       || bfd_is_ind_section (p->section))
1233 	      && pp + 1 < ppend)
1234 	    {
1235 	      pp++;
1236 	      string = bfd_asymbol_name (*pp);
1237 	    }
1238 	  else if ((p->flags & BSF_WARNING) != 0
1239 		   && pp + 1 < ppend)
1240 	    {
1241 	      /* The name of P is actually the warning string, and the
1242 		 next symbol is the one to warn about.  */
1243 	      pp++;
1244 	      name = bfd_asymbol_name (*pp);
1245 	    }
1246 
1247 	  bh = NULL;
1248 	  if (! (_bfd_generic_link_add_one_symbol
1249 		 (info, abfd, name, p->flags, bfd_get_section (p),
1250 		  p->value, string, FALSE, collect, &bh)))
1251 	    return FALSE;
1252 	  h = (struct generic_link_hash_entry *) bh;
1253 
1254 	  /* If this is a constructor symbol, and the linker didn't do
1255              anything with it, then we want to just pass the symbol
1256              through to the output file.  This will happen when
1257              linking with -r.  */
1258 	  if ((p->flags & BSF_CONSTRUCTOR) != 0
1259 	      && (h == NULL || h->root.type == bfd_link_hash_new))
1260 	    {
1261 	      p->udata.p = NULL;
1262 	      continue;
1263 	    }
1264 
1265 	  /* Save the BFD symbol so that we don't lose any backend
1266 	     specific information that may be attached to it.  We only
1267 	     want this one if it gives more information than the
1268 	     existing one; we don't want to replace a defined symbol
1269 	     with an undefined one.  This routine may be called with a
1270 	     hash table other than the generic hash table, so we only
1271 	     do this if we are certain that the hash table is a
1272 	     generic one.  */
1273 	  if (info->output_bfd->xvec == abfd->xvec)
1274 	    {
1275 	      if (h->sym == NULL
1276 		  || (! bfd_is_und_section (bfd_get_section (p))
1277 		      && (! bfd_is_com_section (bfd_get_section (p))
1278 			  || bfd_is_und_section (bfd_get_section (h->sym)))))
1279 		{
1280 		  h->sym = p;
1281 		  /* BSF_OLD_COMMON is a hack to support COFF reloc
1282 		     reading, and it should go away when the COFF
1283 		     linker is switched to the new version.  */
1284 		  if (bfd_is_com_section (bfd_get_section (p)))
1285 		    p->flags |= BSF_OLD_COMMON;
1286 		}
1287 	    }
1288 
1289 	  /* Store a back pointer from the symbol to the hash
1290 	     table entry for the benefit of relaxation code until
1291 	     it gets rewritten to not use asymbol structures.
1292 	     Setting this is also used to check whether these
1293 	     symbols were set up by the generic linker.  */
1294 	  p->udata.p = h;
1295 	}
1296     }
1297 
1298   return TRUE;
1299 }
1300 
1301 /* We use a state table to deal with adding symbols from an object
1302    file.  The first index into the state table describes the symbol
1303    from the object file.  The second index into the state table is the
1304    type of the symbol in the hash table.  */
1305 
1306 /* The symbol from the object file is turned into one of these row
1307    values.  */
1308 
1309 enum link_row
1310 {
1311   UNDEF_ROW,		/* Undefined.  */
1312   UNDEFW_ROW,		/* Weak undefined.  */
1313   DEF_ROW,		/* Defined.  */
1314   DEFW_ROW,		/* Weak defined.  */
1315   COMMON_ROW,		/* Common.  */
1316   INDR_ROW,		/* Indirect.  */
1317   WARN_ROW,		/* Warning.  */
1318   SET_ROW		/* Member of set.  */
1319 };
1320 
1321 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1322 #undef FAIL
1323 
1324 /* The actions to take in the state table.  */
1325 
1326 enum link_action
1327 {
1328   FAIL,		/* Abort.  */
1329   UND,		/* Mark symbol undefined.  */
1330   WEAK,		/* Mark symbol weak undefined.  */
1331   DEF,		/* Mark symbol defined.  */
1332   DEFW,		/* Mark symbol weak defined.  */
1333   COM,		/* Mark symbol common.  */
1334   REF,		/* Mark defined symbol referenced.  */
1335   CREF,		/* Possibly warn about common reference to defined symbol.  */
1336   CDEF,		/* Define existing common symbol.  */
1337   NOACT,	/* No action.  */
1338   BIG,		/* Mark symbol common using largest size.  */
1339   MDEF,		/* Multiple definition error.  */
1340   MIND,		/* Multiple indirect symbols.  */
1341   IND,		/* Make indirect symbol.  */
1342   CIND,		/* Make indirect symbol from existing common symbol.  */
1343   SET,		/* Add value to set.  */
1344   MWARN,	/* Make warning symbol.  */
1345   WARN,		/* Warn if referenced, else MWARN.  */
1346   CYCLE,	/* Repeat with symbol pointed to.  */
1347   REFC,		/* Mark indirect symbol referenced and then CYCLE.  */
1348   WARNC		/* Issue warning and then CYCLE.  */
1349 };
1350 
1351 /* The state table itself.  The first index is a link_row and the
1352    second index is a bfd_link_hash_type.  */
1353 
1354 static const enum link_action link_action[8][8] =
1355 {
1356   /* current\prev    new    undef  undefw def    defw   com    indr   warn  */
1357   /* UNDEF_ROW 	*/  {UND,   NOACT, UND,   REF,   REF,   NOACT, REFC,  WARNC },
1358   /* UNDEFW_ROW	*/  {WEAK,  NOACT, NOACT, REF,   REF,   NOACT, REFC,  WARNC },
1359   /* DEF_ROW 	*/  {DEF,   DEF,   DEF,   MDEF,  DEF,   CDEF,  MDEF,  CYCLE },
1360   /* DEFW_ROW 	*/  {DEFW,  DEFW,  DEFW,  NOACT, NOACT, NOACT, NOACT, CYCLE },
1361   /* COMMON_ROW	*/  {COM,   COM,   COM,   CREF,  COM,   BIG,   REFC,  WARNC },
1362   /* INDR_ROW	*/  {IND,   IND,   IND,   MDEF,  IND,   CIND,  MIND,  CYCLE },
1363   /* WARN_ROW   */  {MWARN, WARN,  WARN,  WARN,  WARN,  WARN,  WARN,  NOACT },
1364   /* SET_ROW	*/  {SET,   SET,   SET,   SET,   SET,   SET,   CYCLE, CYCLE }
1365 };
1366 
1367 /* Most of the entries in the LINK_ACTION table are straightforward,
1368    but a few are somewhat subtle.
1369 
1370    A reference to an indirect symbol (UNDEF_ROW/indr or
1371    UNDEFW_ROW/indr) is counted as a reference both to the indirect
1372    symbol and to the symbol the indirect symbol points to.
1373 
1374    A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1375    causes the warning to be issued.
1376 
1377    A common definition of an indirect symbol (COMMON_ROW/indr) is
1378    treated as a multiple definition error.  Likewise for an indirect
1379    definition of a common symbol (INDR_ROW/com).
1380 
1381    An indirect definition of a warning (INDR_ROW/warn) does not cause
1382    the warning to be issued.
1383 
1384    If a warning is created for an indirect symbol (WARN_ROW/indr) no
1385    warning is created for the symbol the indirect symbol points to.
1386 
1387    Adding an entry to a set does not count as a reference to a set,
1388    and no warning is issued (SET_ROW/warn).  */
1389 
1390 /* Return the BFD in which a hash entry has been defined, if known.  */
1391 
1392 static bfd *
1393 hash_entry_bfd (struct bfd_link_hash_entry *h)
1394 {
1395   while (h->type == bfd_link_hash_warning)
1396     h = h->u.i.link;
1397   switch (h->type)
1398     {
1399     default:
1400       return NULL;
1401     case bfd_link_hash_undefined:
1402     case bfd_link_hash_undefweak:
1403       return h->u.undef.abfd;
1404     case bfd_link_hash_defined:
1405     case bfd_link_hash_defweak:
1406       return h->u.def.section->owner;
1407     case bfd_link_hash_common:
1408       return h->u.c.p->section->owner;
1409     }
1410   /*NOTREACHED*/
1411 }
1412 
1413 /* Add a symbol to the global hash table.
1414    ABFD is the BFD the symbol comes from.
1415    NAME is the name of the symbol.
1416    FLAGS is the BSF_* bits associated with the symbol.
1417    SECTION is the section in which the symbol is defined; this may be
1418      bfd_und_section_ptr or bfd_com_section_ptr.
1419    VALUE is the value of the symbol, relative to the section.
1420    STRING is used for either an indirect symbol, in which case it is
1421      the name of the symbol to indirect to, or a warning symbol, in
1422      which case it is the warning string.
1423    COPY is TRUE if NAME or STRING must be copied into locally
1424      allocated memory if they need to be saved.
1425    COLLECT is TRUE if we should automatically collect gcc constructor
1426      or destructor names as collect2 does.
1427    HASHP, if not NULL, is a place to store the created hash table
1428      entry; if *HASHP is not NULL, the caller has already looked up
1429      the hash table entry, and stored it in *HASHP.  */
1430 
1431 bfd_boolean
1432 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1433 				  bfd *abfd,
1434 				  const char *name,
1435 				  flagword flags,
1436 				  asection *section,
1437 				  bfd_vma value,
1438 				  const char *string,
1439 				  bfd_boolean copy,
1440 				  bfd_boolean collect,
1441 				  struct bfd_link_hash_entry **hashp)
1442 {
1443   enum link_row row;
1444   struct bfd_link_hash_entry *h;
1445   struct bfd_link_hash_entry *inh = NULL;
1446   bfd_boolean cycle;
1447 
1448   BFD_ASSERT (section != NULL);
1449 
1450   if (bfd_is_ind_section (section)
1451       || (flags & BSF_INDIRECT) != 0)
1452     {
1453       row = INDR_ROW;
1454       /* Create the indirect symbol here.  This is for the benefit of
1455 	 the plugin "notice" function.
1456 	 STRING is the name of the symbol we want to indirect to.  */
1457       inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1458 					  copy, FALSE);
1459       if (inh == NULL)
1460 	return FALSE;
1461     }
1462   else if ((flags & BSF_WARNING) != 0)
1463     row = WARN_ROW;
1464   else if ((flags & BSF_CONSTRUCTOR) != 0)
1465     row = SET_ROW;
1466   else if (bfd_is_und_section (section))
1467     {
1468       if ((flags & BSF_WEAK) != 0)
1469 	row = UNDEFW_ROW;
1470       else
1471 	row = UNDEF_ROW;
1472     }
1473   else if ((flags & BSF_WEAK) != 0)
1474     row = DEFW_ROW;
1475   else if (bfd_is_com_section (section))
1476     {
1477       row = COMMON_ROW;
1478       if (strcmp (name, "__gnu_lto_slim") == 0)
1479 	(*_bfd_error_handler)
1480 	  (_("%s: plugin needed to handle lto object"),
1481 	   bfd_get_filename (abfd));
1482     }
1483   else
1484     row = DEF_ROW;
1485 
1486   if (hashp != NULL && *hashp != NULL)
1487     h = *hashp;
1488   else
1489     {
1490       if (row == UNDEF_ROW || row == UNDEFW_ROW)
1491 	h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1492       else
1493 	h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1494       if (h == NULL)
1495 	{
1496 	  if (hashp != NULL)
1497 	    *hashp = NULL;
1498 	  return FALSE;
1499 	}
1500     }
1501 
1502   if (info->notice_all
1503       || (info->notice_hash != NULL
1504 	  && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1505     {
1506       if (! (*info->callbacks->notice) (info, h, inh,
1507 					abfd, section, value, flags))
1508 	return FALSE;
1509     }
1510 
1511   if (hashp != NULL)
1512     *hashp = h;
1513 
1514   do
1515     {
1516       enum link_action action;
1517 
1518       cycle = FALSE;
1519       action = link_action[(int) row][(int) h->type];
1520       switch (action)
1521 	{
1522 	case FAIL:
1523 	  abort ();
1524 
1525 	case NOACT:
1526 	  /* Do nothing.  */
1527 	  break;
1528 
1529 	case UND:
1530 	  /* Make a new undefined symbol.  */
1531 	  h->type = bfd_link_hash_undefined;
1532 	  h->u.undef.abfd = abfd;
1533 	  bfd_link_add_undef (info->hash, h);
1534 	  break;
1535 
1536 	case WEAK:
1537 	  /* Make a new weak undefined symbol.  */
1538 	  h->type = bfd_link_hash_undefweak;
1539 	  h->u.undef.abfd = abfd;
1540 	  break;
1541 
1542 	case CDEF:
1543 	  /* We have found a definition for a symbol which was
1544 	     previously common.  */
1545 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1546 	  if (! ((*info->callbacks->multiple_common)
1547 		 (info, h, abfd, bfd_link_hash_defined, 0)))
1548 	    return FALSE;
1549 	  /* Fall through.  */
1550 	case DEF:
1551 	case DEFW:
1552 	  {
1553 	    enum bfd_link_hash_type oldtype;
1554 
1555 	    /* Define a symbol.  */
1556 	    oldtype = h->type;
1557 	    if (action == DEFW)
1558 	      h->type = bfd_link_hash_defweak;
1559 	    else
1560 	      h->type = bfd_link_hash_defined;
1561 	    h->u.def.section = section;
1562 	    h->u.def.value = value;
1563 	    h->linker_def = 0;
1564 
1565 	    /* If we have been asked to, we act like collect2 and
1566 	       identify all functions that might be global
1567 	       constructors and destructors and pass them up in a
1568 	       callback.  We only do this for certain object file
1569 	       types, since many object file types can handle this
1570 	       automatically.  */
1571 	    if (collect && name[0] == '_')
1572 	      {
1573 		const char *s;
1574 
1575 		/* A constructor or destructor name starts like this:
1576 		   _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1577 		   the second are the same character (we accept any
1578 		   character there, in case a new object file format
1579 		   comes along with even worse naming restrictions).  */
1580 
1581 #define CONS_PREFIX "GLOBAL_"
1582 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1583 
1584 		s = name + 1;
1585 		while (*s == '_')
1586 		  ++s;
1587 		if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1588 		  {
1589 		    char c;
1590 
1591 		    c = s[CONS_PREFIX_LEN + 1];
1592 		    if ((c == 'I' || c == 'D')
1593 			&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1594 		      {
1595 			/* If this is a definition of a symbol which
1596                            was previously weakly defined, we are in
1597                            trouble.  We have already added a
1598                            constructor entry for the weak defined
1599                            symbol, and now we are trying to add one
1600                            for the new symbol.  Fortunately, this case
1601                            should never arise in practice.  */
1602 			if (oldtype == bfd_link_hash_defweak)
1603 			  abort ();
1604 
1605 			if (! ((*info->callbacks->constructor)
1606 			       (info, c == 'I',
1607 				h->root.string, abfd, section, value)))
1608 			  return FALSE;
1609 		      }
1610 		  }
1611 	      }
1612 	  }
1613 
1614 	  break;
1615 
1616 	case COM:
1617 	  /* We have found a common definition for a symbol.  */
1618 	  if (h->type == bfd_link_hash_new)
1619 	    bfd_link_add_undef (info->hash, h);
1620 	  h->type = bfd_link_hash_common;
1621 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1622 	    bfd_hash_allocate (&info->hash->table,
1623 			       sizeof (struct bfd_link_hash_common_entry));
1624 	  if (h->u.c.p == NULL)
1625 	    return FALSE;
1626 
1627 	  h->u.c.size = value;
1628 
1629 	  /* Select a default alignment based on the size.  This may
1630              be overridden by the caller.  */
1631 	  {
1632 	    unsigned int power;
1633 
1634 	    power = bfd_log2 (value);
1635 	    if (power > 4)
1636 	      power = 4;
1637 	    h->u.c.p->alignment_power = power;
1638 	  }
1639 
1640 	  /* The section of a common symbol is only used if the common
1641              symbol is actually allocated.  It basically provides a
1642              hook for the linker script to decide which output section
1643              the common symbols should be put in.  In most cases, the
1644              section of a common symbol will be bfd_com_section_ptr,
1645              the code here will choose a common symbol section named
1646              "COMMON", and the linker script will contain *(COMMON) in
1647              the appropriate place.  A few targets use separate common
1648              sections for small symbols, and they require special
1649              handling.  */
1650 	  if (section == bfd_com_section_ptr)
1651 	    {
1652 	      h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1653 	      h->u.c.p->section->flags |= SEC_ALLOC;
1654 	    }
1655 	  else if (section->owner != abfd)
1656 	    {
1657 	      h->u.c.p->section = bfd_make_section_old_way (abfd,
1658 							    section->name);
1659 	      h->u.c.p->section->flags |= SEC_ALLOC;
1660 	    }
1661 	  else
1662 	    h->u.c.p->section = section;
1663 	  h->linker_def = 0;
1664 	  break;
1665 
1666 	case REF:
1667 	  /* A reference to a defined symbol.  */
1668 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1669 	    h->u.undef.next = h;
1670 	  break;
1671 
1672 	case BIG:
1673 	  /* We have found a common definition for a symbol which
1674 	     already had a common definition.  Use the maximum of the
1675 	     two sizes, and use the section required by the larger symbol.  */
1676 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1677 	  if (! ((*info->callbacks->multiple_common)
1678 		 (info, h, abfd, bfd_link_hash_common, value)))
1679 	    return FALSE;
1680 	  if (value > h->u.c.size)
1681 	    {
1682 	      unsigned int power;
1683 
1684 	      h->u.c.size = value;
1685 
1686 	      /* Select a default alignment based on the size.  This may
1687 		 be overridden by the caller.  */
1688 	      power = bfd_log2 (value);
1689 	      if (power > 4)
1690 		power = 4;
1691 	      h->u.c.p->alignment_power = power;
1692 
1693 	      /* Some systems have special treatment for small commons,
1694 		 hence we want to select the section used by the larger
1695 		 symbol.  This makes sure the symbol does not go in a
1696 		 small common section if it is now too large.  */
1697 	      if (section == bfd_com_section_ptr)
1698 		{
1699 		  h->u.c.p->section
1700 		    = bfd_make_section_old_way (abfd, "COMMON");
1701 		  h->u.c.p->section->flags |= SEC_ALLOC;
1702 		}
1703 	      else if (section->owner != abfd)
1704 		{
1705 		  h->u.c.p->section
1706 		    = bfd_make_section_old_way (abfd, section->name);
1707 		  h->u.c.p->section->flags |= SEC_ALLOC;
1708 		}
1709 	      else
1710 		h->u.c.p->section = section;
1711 	    }
1712 	  break;
1713 
1714 	case CREF:
1715 	  /* We have found a common definition for a symbol which
1716 	     was already defined.  */
1717 	  if (! ((*info->callbacks->multiple_common)
1718 		 (info, h, abfd, bfd_link_hash_common, value)))
1719 	    return FALSE;
1720 	  break;
1721 
1722 	case MIND:
1723 	  /* Multiple indirect symbols.  This is OK if they both point
1724 	     to the same symbol.  */
1725 	  if (strcmp (h->u.i.link->root.string, string) == 0)
1726 	    break;
1727 	  /* Fall through.  */
1728 	case MDEF:
1729 	  /* Handle a multiple definition.  */
1730 	  if (! ((*info->callbacks->multiple_definition)
1731 		 (info, h, abfd, section, value)))
1732 	    return FALSE;
1733 	  break;
1734 
1735 	case CIND:
1736 	  /* Create an indirect symbol from an existing common symbol.  */
1737 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1738 	  if (! ((*info->callbacks->multiple_common)
1739 		 (info, h, abfd, bfd_link_hash_indirect, 0)))
1740 	    return FALSE;
1741 	  /* Fall through.  */
1742 	case IND:
1743 	  if (inh->type == bfd_link_hash_indirect
1744 	      && inh->u.i.link == h)
1745 	    {
1746 	      (*_bfd_error_handler)
1747 		(_("%B: indirect symbol `%s' to `%s' is a loop"),
1748 		 abfd, name, string);
1749 	      bfd_set_error (bfd_error_invalid_operation);
1750 	      return FALSE;
1751 	    }
1752 	  if (inh->type == bfd_link_hash_new)
1753 	    {
1754 	      inh->type = bfd_link_hash_undefined;
1755 	      inh->u.undef.abfd = abfd;
1756 	      bfd_link_add_undef (info->hash, inh);
1757 	    }
1758 
1759 	  /* If the indirect symbol has been referenced, we need to
1760 	     push the reference down to the symbol we are referencing.  */
1761 	  if (h->type != bfd_link_hash_new)
1762 	    {
1763 	      /* ??? If inh->type == bfd_link_hash_undefweak this
1764 		 converts inh to bfd_link_hash_undefined.  */
1765 	      row = UNDEF_ROW;
1766 	      cycle = TRUE;
1767 	    }
1768 
1769 	  h->type = bfd_link_hash_indirect;
1770 	  h->u.i.link = inh;
1771 	  /* Not setting h = h->u.i.link here means that when cycle is
1772 	     set above we'll always go to REFC, and then cycle again
1773 	     to the indirected symbol.  This means that any successful
1774 	     change of an existing symbol to indirect counts as a
1775 	     reference.  ??? That may not be correct when the existing
1776 	     symbol was defweak.  */
1777 	  break;
1778 
1779 	case SET:
1780 	  /* Add an entry to a set.  */
1781 	  if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1782 						abfd, section, value))
1783 	    return FALSE;
1784 	  break;
1785 
1786 	case WARNC:
1787 	  /* Issue a warning and cycle, except when the reference is
1788 	     in LTO IR.  */
1789 	  if (h->u.i.warning != NULL
1790 	      && (abfd->flags & BFD_PLUGIN) == 0)
1791 	    {
1792 	      if (! (*info->callbacks->warning) (info, h->u.i.warning,
1793 						 h->root.string, abfd,
1794 						 NULL, 0))
1795 		return FALSE;
1796 	      /* Only issue a warning once.  */
1797 	      h->u.i.warning = NULL;
1798 	    }
1799 	  /* Fall through.  */
1800 	case CYCLE:
1801 	  /* Try again with the referenced symbol.  */
1802 	  h = h->u.i.link;
1803 	  cycle = TRUE;
1804 	  break;
1805 
1806 	case REFC:
1807 	  /* A reference to an indirect symbol.  */
1808 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1809 	    h->u.undef.next = h;
1810 	  h = h->u.i.link;
1811 	  cycle = TRUE;
1812 	  break;
1813 
1814 	case WARN:
1815 	  /* Warn if this symbol has been referenced already from non-IR,
1816 	     otherwise add a warning.  */
1817 	  if ((!info->lto_plugin_active
1818 	       && (h->u.undef.next != NULL || info->hash->undefs_tail == h))
1819 	      || h->non_ir_ref)
1820 	    {
1821 	      if (! (*info->callbacks->warning) (info, string, h->root.string,
1822 						 hash_entry_bfd (h), NULL, 0))
1823 		return FALSE;
1824 	      break;
1825 	    }
1826 	  /* Fall through.  */
1827 	case MWARN:
1828 	  /* Make a warning symbol.  */
1829 	  {
1830 	    struct bfd_link_hash_entry *sub;
1831 
1832 	    /* STRING is the warning to give.  */
1833 	    sub = ((struct bfd_link_hash_entry *)
1834 		   ((*info->hash->table.newfunc)
1835 		    (NULL, &info->hash->table, h->root.string)));
1836 	    if (sub == NULL)
1837 	      return FALSE;
1838 	    *sub = *h;
1839 	    sub->type = bfd_link_hash_warning;
1840 	    sub->u.i.link = h;
1841 	    if (! copy)
1842 	      sub->u.i.warning = string;
1843 	    else
1844 	      {
1845 		char *w;
1846 		size_t len = strlen (string) + 1;
1847 
1848 		w = (char *) bfd_hash_allocate (&info->hash->table, len);
1849 		if (w == NULL)
1850 		  return FALSE;
1851 		memcpy (w, string, len);
1852 		sub->u.i.warning = w;
1853 	      }
1854 
1855 	    bfd_hash_replace (&info->hash->table,
1856 			      (struct bfd_hash_entry *) h,
1857 			      (struct bfd_hash_entry *) sub);
1858 	    if (hashp != NULL)
1859 	      *hashp = sub;
1860 	  }
1861 	  break;
1862 	}
1863     }
1864   while (cycle);
1865 
1866   return TRUE;
1867 }
1868 
1869 /* Generic final link routine.  */
1870 
1871 bfd_boolean
1872 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1873 {
1874   bfd *sub;
1875   asection *o;
1876   struct bfd_link_order *p;
1877   size_t outsymalloc;
1878   struct generic_write_global_symbol_info wginfo;
1879 
1880   bfd_get_outsymbols (abfd) = NULL;
1881   bfd_get_symcount (abfd) = 0;
1882   outsymalloc = 0;
1883 
1884   /* Mark all sections which will be included in the output file.  */
1885   for (o = abfd->sections; o != NULL; o = o->next)
1886     for (p = o->map_head.link_order; p != NULL; p = p->next)
1887       if (p->type == bfd_indirect_link_order)
1888 	p->u.indirect.section->linker_mark = TRUE;
1889 
1890   /* Build the output symbol table.  */
1891   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
1892     if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1893       return FALSE;
1894 
1895   /* Accumulate the global symbols.  */
1896   wginfo.info = info;
1897   wginfo.output_bfd = abfd;
1898   wginfo.psymalloc = &outsymalloc;
1899   _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1900 				   _bfd_generic_link_write_global_symbol,
1901 				   &wginfo);
1902 
1903   /* Make sure we have a trailing NULL pointer on OUTSYMBOLS.  We
1904      shouldn't really need one, since we have SYMCOUNT, but some old
1905      code still expects one.  */
1906   if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1907     return FALSE;
1908 
1909   if (info->relocatable)
1910     {
1911       /* Allocate space for the output relocs for each section.  */
1912       for (o = abfd->sections; o != NULL; o = o->next)
1913 	{
1914 	  o->reloc_count = 0;
1915 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
1916 	    {
1917 	      if (p->type == bfd_section_reloc_link_order
1918 		  || p->type == bfd_symbol_reloc_link_order)
1919 		++o->reloc_count;
1920 	      else if (p->type == bfd_indirect_link_order)
1921 		{
1922 		  asection *input_section;
1923 		  bfd *input_bfd;
1924 		  long relsize;
1925 		  arelent **relocs;
1926 		  asymbol **symbols;
1927 		  long reloc_count;
1928 
1929 		  input_section = p->u.indirect.section;
1930 		  input_bfd = input_section->owner;
1931 		  relsize = bfd_get_reloc_upper_bound (input_bfd,
1932 						       input_section);
1933 		  if (relsize < 0)
1934 		    return FALSE;
1935 		  relocs = (arelent **) bfd_malloc (relsize);
1936 		  if (!relocs && relsize != 0)
1937 		    return FALSE;
1938 		  symbols = _bfd_generic_link_get_symbols (input_bfd);
1939 		  reloc_count = bfd_canonicalize_reloc (input_bfd,
1940 							input_section,
1941 							relocs,
1942 							symbols);
1943 		  free (relocs);
1944 		  if (reloc_count < 0)
1945 		    return FALSE;
1946 		  BFD_ASSERT ((unsigned long) reloc_count
1947 			      == input_section->reloc_count);
1948 		  o->reloc_count += reloc_count;
1949 		}
1950 	    }
1951 	  if (o->reloc_count > 0)
1952 	    {
1953 	      bfd_size_type amt;
1954 
1955 	      amt = o->reloc_count;
1956 	      amt *= sizeof (arelent *);
1957 	      o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
1958 	      if (!o->orelocation)
1959 		return FALSE;
1960 	      o->flags |= SEC_RELOC;
1961 	      /* Reset the count so that it can be used as an index
1962 		 when putting in the output relocs.  */
1963 	      o->reloc_count = 0;
1964 	    }
1965 	}
1966     }
1967 
1968   /* Handle all the link order information for the sections.  */
1969   for (o = abfd->sections; o != NULL; o = o->next)
1970     {
1971       for (p = o->map_head.link_order; p != NULL; p = p->next)
1972 	{
1973 	  switch (p->type)
1974 	    {
1975 	    case bfd_section_reloc_link_order:
1976 	    case bfd_symbol_reloc_link_order:
1977 	      if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1978 		return FALSE;
1979 	      break;
1980 	    case bfd_indirect_link_order:
1981 	      if (! default_indirect_link_order (abfd, info, o, p, TRUE))
1982 		return FALSE;
1983 	      break;
1984 	    default:
1985 	      if (! _bfd_default_link_order (abfd, info, o, p))
1986 		return FALSE;
1987 	      break;
1988 	    }
1989 	}
1990     }
1991 
1992   return TRUE;
1993 }
1994 
1995 /* Add an output symbol to the output BFD.  */
1996 
1997 static bfd_boolean
1998 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
1999 {
2000   if (bfd_get_symcount (output_bfd) >= *psymalloc)
2001     {
2002       asymbol **newsyms;
2003       bfd_size_type amt;
2004 
2005       if (*psymalloc == 0)
2006 	*psymalloc = 124;
2007       else
2008 	*psymalloc *= 2;
2009       amt = *psymalloc;
2010       amt *= sizeof (asymbol *);
2011       newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2012       if (newsyms == NULL)
2013 	return FALSE;
2014       bfd_get_outsymbols (output_bfd) = newsyms;
2015     }
2016 
2017   bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2018   if (sym != NULL)
2019     ++ bfd_get_symcount (output_bfd);
2020 
2021   return TRUE;
2022 }
2023 
2024 /* Handle the symbols for an input BFD.  */
2025 
2026 bfd_boolean
2027 _bfd_generic_link_output_symbols (bfd *output_bfd,
2028 				  bfd *input_bfd,
2029 				  struct bfd_link_info *info,
2030 				  size_t *psymalloc)
2031 {
2032   asymbol **sym_ptr;
2033   asymbol **sym_end;
2034 
2035   if (!bfd_generic_link_read_symbols (input_bfd))
2036     return FALSE;
2037 
2038   /* Create a filename symbol if we are supposed to.  */
2039   if (info->create_object_symbols_section != NULL)
2040     {
2041       asection *sec;
2042 
2043       for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2044 	{
2045 	  if (sec->output_section == info->create_object_symbols_section)
2046 	    {
2047 	      asymbol *newsym;
2048 
2049 	      newsym = bfd_make_empty_symbol (input_bfd);
2050 	      if (!newsym)
2051 		return FALSE;
2052 	      newsym->name = input_bfd->filename;
2053 	      newsym->value = 0;
2054 	      newsym->flags = BSF_LOCAL | BSF_FILE;
2055 	      newsym->section = sec;
2056 
2057 	      if (! generic_add_output_symbol (output_bfd, psymalloc,
2058 					       newsym))
2059 		return FALSE;
2060 
2061 	      break;
2062 	    }
2063 	}
2064     }
2065 
2066   /* Adjust the values of the globally visible symbols, and write out
2067      local symbols.  */
2068   sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2069   sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2070   for (; sym_ptr < sym_end; sym_ptr++)
2071     {
2072       asymbol *sym;
2073       struct generic_link_hash_entry *h;
2074       bfd_boolean output;
2075 
2076       h = NULL;
2077       sym = *sym_ptr;
2078       if ((sym->flags & (BSF_INDIRECT
2079 			 | BSF_WARNING
2080 			 | BSF_GLOBAL
2081 			 | BSF_CONSTRUCTOR
2082 			 | BSF_WEAK)) != 0
2083 	  || bfd_is_und_section (bfd_get_section (sym))
2084 	  || bfd_is_com_section (bfd_get_section (sym))
2085 	  || bfd_is_ind_section (bfd_get_section (sym)))
2086 	{
2087 	  if (sym->udata.p != NULL)
2088 	    h = (struct generic_link_hash_entry *) sym->udata.p;
2089 	  else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2090 	    {
2091 	      /* This case normally means that the main linker code
2092                  deliberately ignored this constructor symbol.  We
2093                  should just pass it through.  This will screw up if
2094                  the constructor symbol is from a different,
2095                  non-generic, object file format, but the case will
2096                  only arise when linking with -r, which will probably
2097                  fail anyhow, since there will be no way to represent
2098                  the relocs in the output format being used.  */
2099 	      h = NULL;
2100 	    }
2101 	  else if (bfd_is_und_section (bfd_get_section (sym)))
2102 	    h = ((struct generic_link_hash_entry *)
2103 		 bfd_wrapped_link_hash_lookup (output_bfd, info,
2104 					       bfd_asymbol_name (sym),
2105 					       FALSE, FALSE, TRUE));
2106 	  else
2107 	    h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2108 					       bfd_asymbol_name (sym),
2109 					       FALSE, FALSE, TRUE);
2110 
2111 	  if (h != NULL)
2112 	    {
2113 	      /* Force all references to this symbol to point to
2114 		 the same area in memory.  It is possible that
2115 		 this routine will be called with a hash table
2116 		 other than a generic hash table, so we double
2117 		 check that.  */
2118 	      if (info->output_bfd->xvec == input_bfd->xvec)
2119 		{
2120 		  if (h->sym != NULL)
2121 		    *sym_ptr = sym = h->sym;
2122 		}
2123 
2124 	      switch (h->root.type)
2125 		{
2126 		default:
2127 		case bfd_link_hash_new:
2128 		  abort ();
2129 		case bfd_link_hash_undefined:
2130 		  break;
2131 		case bfd_link_hash_undefweak:
2132 		  sym->flags |= BSF_WEAK;
2133 		  break;
2134 		case bfd_link_hash_indirect:
2135 		  h = (struct generic_link_hash_entry *) h->root.u.i.link;
2136 		  /* fall through */
2137 		case bfd_link_hash_defined:
2138 		  sym->flags |= BSF_GLOBAL;
2139 		  sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR);
2140 		  sym->value = h->root.u.def.value;
2141 		  sym->section = h->root.u.def.section;
2142 		  break;
2143 		case bfd_link_hash_defweak:
2144 		  sym->flags |= BSF_WEAK;
2145 		  sym->flags &=~ BSF_CONSTRUCTOR;
2146 		  sym->value = h->root.u.def.value;
2147 		  sym->section = h->root.u.def.section;
2148 		  break;
2149 		case bfd_link_hash_common:
2150 		  sym->value = h->root.u.c.size;
2151 		  sym->flags |= BSF_GLOBAL;
2152 		  if (! bfd_is_com_section (sym->section))
2153 		    {
2154 		      BFD_ASSERT (bfd_is_und_section (sym->section));
2155 		      sym->section = bfd_com_section_ptr;
2156 		    }
2157 		  /* We do not set the section of the symbol to
2158 		     h->root.u.c.p->section.  That value was saved so
2159 		     that we would know where to allocate the symbol
2160 		     if it was defined.  In this case the type is
2161 		     still bfd_link_hash_common, so we did not define
2162 		     it, so we do not want to use that section.  */
2163 		  break;
2164 		}
2165 	    }
2166 	}
2167 
2168       /* This switch is straight from the old code in
2169 	 write_file_locals in ldsym.c.  */
2170       if (info->strip == strip_all
2171 	  || (info->strip == strip_some
2172 	      && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2173 				  FALSE, FALSE) == NULL))
2174 	output = FALSE;
2175       else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2176 	{
2177 	  /* If this symbol is marked as occurring now, rather
2178 	     than at the end, output it now.  This is used for
2179 	     COFF C_EXT FCN symbols.  FIXME: There must be a
2180 	     better way.  */
2181 	  if (bfd_asymbol_bfd (sym) == input_bfd
2182 	      && (sym->flags & BSF_NOT_AT_END) != 0)
2183 	    output = TRUE;
2184 	  else
2185 	    output = FALSE;
2186 	}
2187       else if (bfd_is_ind_section (sym->section))
2188 	output = FALSE;
2189       else if ((sym->flags & BSF_DEBUGGING) != 0)
2190 	{
2191 	  if (info->strip == strip_none)
2192 	    output = TRUE;
2193 	  else
2194 	    output = FALSE;
2195 	}
2196       else if (bfd_is_und_section (sym->section)
2197 	       || bfd_is_com_section (sym->section))
2198 	output = FALSE;
2199       else if ((sym->flags & BSF_LOCAL) != 0)
2200 	{
2201 	  if ((sym->flags & BSF_WARNING) != 0)
2202 	    output = FALSE;
2203 	  else
2204 	    {
2205 	      switch (info->discard)
2206 		{
2207 		default:
2208 		case discard_all:
2209 		  output = FALSE;
2210 		  break;
2211 		case discard_sec_merge:
2212 		  output = TRUE;
2213 		  if (info->relocatable
2214 		      || ! (sym->section->flags & SEC_MERGE))
2215 		    break;
2216 		  /* FALLTHROUGH */
2217 		case discard_l:
2218 		  if (bfd_is_local_label (input_bfd, sym))
2219 		    output = FALSE;
2220 		  else
2221 		    output = TRUE;
2222 		  break;
2223 		case discard_none:
2224 		  output = TRUE;
2225 		  break;
2226 		}
2227 	    }
2228 	}
2229       else if ((sym->flags & BSF_CONSTRUCTOR))
2230 	{
2231 	  if (info->strip != strip_all)
2232 	    output = TRUE;
2233 	  else
2234 	    output = FALSE;
2235 	}
2236       else if (sym->flags == 0
2237 	       && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2238 	/* LTO doesn't set symbol information.  We get here with the
2239 	   generic linker for a symbol that was "common" but no longer
2240 	   needs to be global.  */
2241 	output = FALSE;
2242       else
2243 	abort ();
2244 
2245       /* If this symbol is in a section which is not being included
2246 	 in the output file, then we don't want to output the
2247 	 symbol.  */
2248       if (!bfd_is_abs_section (sym->section)
2249 	  && bfd_section_removed_from_list (output_bfd,
2250 					    sym->section->output_section))
2251 	output = FALSE;
2252 
2253       if (output)
2254 	{
2255 	  if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2256 	    return FALSE;
2257 	  if (h != NULL)
2258 	    h->written = TRUE;
2259 	}
2260     }
2261 
2262   return TRUE;
2263 }
2264 
2265 /* Set the section and value of a generic BFD symbol based on a linker
2266    hash table entry.  */
2267 
2268 static void
2269 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2270 {
2271   switch (h->type)
2272     {
2273     default:
2274       abort ();
2275       break;
2276     case bfd_link_hash_new:
2277       /* This can happen when a constructor symbol is seen but we are
2278          not building constructors.  */
2279       if (sym->section != NULL)
2280 	{
2281 	  BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2282 	}
2283       else
2284 	{
2285 	  sym->flags |= BSF_CONSTRUCTOR;
2286 	  sym->section = bfd_abs_section_ptr;
2287 	  sym->value = 0;
2288 	}
2289       break;
2290     case bfd_link_hash_undefined:
2291       sym->section = bfd_und_section_ptr;
2292       sym->value = 0;
2293       break;
2294     case bfd_link_hash_undefweak:
2295       sym->section = bfd_und_section_ptr;
2296       sym->value = 0;
2297       sym->flags |= BSF_WEAK;
2298       break;
2299     case bfd_link_hash_defined:
2300       sym->section = h->u.def.section;
2301       sym->value = h->u.def.value;
2302       break;
2303     case bfd_link_hash_defweak:
2304       sym->flags |= BSF_WEAK;
2305       sym->section = h->u.def.section;
2306       sym->value = h->u.def.value;
2307       break;
2308     case bfd_link_hash_common:
2309       sym->value = h->u.c.size;
2310       if (sym->section == NULL)
2311 	sym->section = bfd_com_section_ptr;
2312       else if (! bfd_is_com_section (sym->section))
2313 	{
2314 	  BFD_ASSERT (bfd_is_und_section (sym->section));
2315 	  sym->section = bfd_com_section_ptr;
2316 	}
2317       /* Do not set the section; see _bfd_generic_link_output_symbols.  */
2318       break;
2319     case bfd_link_hash_indirect:
2320     case bfd_link_hash_warning:
2321       /* FIXME: What should we do here?  */
2322       break;
2323     }
2324 }
2325 
2326 /* Write out a global symbol, if it hasn't already been written out.
2327    This is called for each symbol in the hash table.  */
2328 
2329 bfd_boolean
2330 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2331 				       void *data)
2332 {
2333   struct generic_write_global_symbol_info *wginfo =
2334       (struct generic_write_global_symbol_info *) data;
2335   asymbol *sym;
2336 
2337   if (h->written)
2338     return TRUE;
2339 
2340   h->written = TRUE;
2341 
2342   if (wginfo->info->strip == strip_all
2343       || (wginfo->info->strip == strip_some
2344 	  && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2345 			      FALSE, FALSE) == NULL))
2346     return TRUE;
2347 
2348   if (h->sym != NULL)
2349     sym = h->sym;
2350   else
2351     {
2352       sym = bfd_make_empty_symbol (wginfo->output_bfd);
2353       if (!sym)
2354 	return FALSE;
2355       sym->name = h->root.root.string;
2356       sym->flags = 0;
2357     }
2358 
2359   set_symbol_from_hash (sym, &h->root);
2360 
2361   sym->flags |= BSF_GLOBAL;
2362 
2363   if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2364 				   sym))
2365     {
2366       /* FIXME: No way to return failure.  */
2367       abort ();
2368     }
2369 
2370   return TRUE;
2371 }
2372 
2373 /* Create a relocation.  */
2374 
2375 bfd_boolean
2376 _bfd_generic_reloc_link_order (bfd *abfd,
2377 			       struct bfd_link_info *info,
2378 			       asection *sec,
2379 			       struct bfd_link_order *link_order)
2380 {
2381   arelent *r;
2382 
2383   if (! info->relocatable)
2384     abort ();
2385   if (sec->orelocation == NULL)
2386     abort ();
2387 
2388   r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2389   if (r == NULL)
2390     return FALSE;
2391 
2392   r->address = link_order->offset;
2393   r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2394   if (r->howto == 0)
2395     {
2396       bfd_set_error (bfd_error_bad_value);
2397       return FALSE;
2398     }
2399 
2400   /* Get the symbol to use for the relocation.  */
2401   if (link_order->type == bfd_section_reloc_link_order)
2402     r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2403   else
2404     {
2405       struct generic_link_hash_entry *h;
2406 
2407       h = ((struct generic_link_hash_entry *)
2408 	   bfd_wrapped_link_hash_lookup (abfd, info,
2409 					 link_order->u.reloc.p->u.name,
2410 					 FALSE, FALSE, TRUE));
2411       if (h == NULL
2412 	  || ! h->written)
2413 	{
2414 	  if (! ((*info->callbacks->unattached_reloc)
2415 		 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2416 	    return FALSE;
2417 	  bfd_set_error (bfd_error_bad_value);
2418 	  return FALSE;
2419 	}
2420       r->sym_ptr_ptr = &h->sym;
2421     }
2422 
2423   /* If this is an inplace reloc, write the addend to the object file.
2424      Otherwise, store it in the reloc addend.  */
2425   if (! r->howto->partial_inplace)
2426     r->addend = link_order->u.reloc.p->addend;
2427   else
2428     {
2429       bfd_size_type size;
2430       bfd_reloc_status_type rstat;
2431       bfd_byte *buf;
2432       bfd_boolean ok;
2433       file_ptr loc;
2434 
2435       size = bfd_get_reloc_size (r->howto);
2436       buf = (bfd_byte *) bfd_zmalloc (size);
2437       if (buf == NULL && size != 0)
2438 	return FALSE;
2439       rstat = _bfd_relocate_contents (r->howto, abfd,
2440 				      (bfd_vma) link_order->u.reloc.p->addend,
2441 				      buf);
2442       switch (rstat)
2443 	{
2444 	case bfd_reloc_ok:
2445 	  break;
2446 	default:
2447 	case bfd_reloc_outofrange:
2448 	  abort ();
2449 	case bfd_reloc_overflow:
2450 	  if (! ((*info->callbacks->reloc_overflow)
2451 		 (info, NULL,
2452 		  (link_order->type == bfd_section_reloc_link_order
2453 		   ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2454 		   : link_order->u.reloc.p->u.name),
2455 		  r->howto->name, link_order->u.reloc.p->addend,
2456 		  NULL, NULL, 0)))
2457 	    {
2458 	      free (buf);
2459 	      return FALSE;
2460 	    }
2461 	  break;
2462 	}
2463       loc = link_order->offset * bfd_octets_per_byte (abfd);
2464       ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2465       free (buf);
2466       if (! ok)
2467 	return FALSE;
2468 
2469       r->addend = 0;
2470     }
2471 
2472   sec->orelocation[sec->reloc_count] = r;
2473   ++sec->reloc_count;
2474 
2475   return TRUE;
2476 }
2477 
2478 /* Allocate a new link_order for a section.  */
2479 
2480 struct bfd_link_order *
2481 bfd_new_link_order (bfd *abfd, asection *section)
2482 {
2483   bfd_size_type amt = sizeof (struct bfd_link_order);
2484   struct bfd_link_order *new_lo;
2485 
2486   new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2487   if (!new_lo)
2488     return NULL;
2489 
2490   new_lo->type = bfd_undefined_link_order;
2491 
2492   if (section->map_tail.link_order != NULL)
2493     section->map_tail.link_order->next = new_lo;
2494   else
2495     section->map_head.link_order = new_lo;
2496   section->map_tail.link_order = new_lo;
2497 
2498   return new_lo;
2499 }
2500 
2501 /* Default link order processing routine.  Note that we can not handle
2502    the reloc_link_order types here, since they depend upon the details
2503    of how the particular backends generates relocs.  */
2504 
2505 bfd_boolean
2506 _bfd_default_link_order (bfd *abfd,
2507 			 struct bfd_link_info *info,
2508 			 asection *sec,
2509 			 struct bfd_link_order *link_order)
2510 {
2511   switch (link_order->type)
2512     {
2513     case bfd_undefined_link_order:
2514     case bfd_section_reloc_link_order:
2515     case bfd_symbol_reloc_link_order:
2516     default:
2517       abort ();
2518     case bfd_indirect_link_order:
2519       return default_indirect_link_order (abfd, info, sec, link_order,
2520 					  FALSE);
2521     case bfd_data_link_order:
2522       return default_data_link_order (abfd, info, sec, link_order);
2523     }
2524 }
2525 
2526 /* Default routine to handle a bfd_data_link_order.  */
2527 
2528 static bfd_boolean
2529 default_data_link_order (bfd *abfd,
2530 			 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2531 			 asection *sec,
2532 			 struct bfd_link_order *link_order)
2533 {
2534   bfd_size_type size;
2535   size_t fill_size;
2536   bfd_byte *fill;
2537   file_ptr loc;
2538   bfd_boolean result;
2539 
2540   BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2541 
2542   size = link_order->size;
2543   if (size == 0)
2544     return TRUE;
2545 
2546   fill = link_order->u.data.contents;
2547   fill_size = link_order->u.data.size;
2548   if (fill_size == 0)
2549     {
2550       fill = abfd->arch_info->fill (size, bfd_big_endian (abfd),
2551 				    (sec->flags & SEC_CODE) != 0);
2552       if (fill == NULL)
2553 	return FALSE;
2554     }
2555   else if (fill_size < size)
2556     {
2557       bfd_byte *p;
2558       fill = (bfd_byte *) bfd_malloc (size);
2559       if (fill == NULL)
2560 	return FALSE;
2561       p = fill;
2562       if (fill_size == 1)
2563 	memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2564       else
2565 	{
2566 	  do
2567 	    {
2568 	      memcpy (p, link_order->u.data.contents, fill_size);
2569 	      p += fill_size;
2570 	      size -= fill_size;
2571 	    }
2572 	  while (size >= fill_size);
2573 	  if (size != 0)
2574 	    memcpy (p, link_order->u.data.contents, (size_t) size);
2575 	  size = link_order->size;
2576 	}
2577     }
2578 
2579   loc = link_order->offset * bfd_octets_per_byte (abfd);
2580   result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2581 
2582   if (fill != link_order->u.data.contents)
2583     free (fill);
2584   return result;
2585 }
2586 
2587 /* Default routine to handle a bfd_indirect_link_order.  */
2588 
2589 static bfd_boolean
2590 default_indirect_link_order (bfd *output_bfd,
2591 			     struct bfd_link_info *info,
2592 			     asection *output_section,
2593 			     struct bfd_link_order *link_order,
2594 			     bfd_boolean generic_linker)
2595 {
2596   asection *input_section;
2597   bfd *input_bfd;
2598   bfd_byte *contents = NULL;
2599   bfd_byte *new_contents;
2600   bfd_size_type sec_size;
2601   file_ptr loc;
2602 
2603   BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2604 
2605   input_section = link_order->u.indirect.section;
2606   input_bfd = input_section->owner;
2607   if (input_section->size == 0)
2608     return TRUE;
2609 
2610   BFD_ASSERT (input_section->output_section == output_section);
2611   BFD_ASSERT (input_section->output_offset == link_order->offset);
2612   BFD_ASSERT (input_section->size == link_order->size);
2613 
2614   if (info->relocatable
2615       && input_section->reloc_count > 0
2616       && output_section->orelocation == NULL)
2617     {
2618       /* Space has not been allocated for the output relocations.
2619 	 This can happen when we are called by a specific backend
2620 	 because somebody is attempting to link together different
2621 	 types of object files.  Handling this case correctly is
2622 	 difficult, and sometimes impossible.  */
2623       (*_bfd_error_handler)
2624 	(_("Attempt to do relocatable link with %s input and %s output"),
2625 	 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2626       bfd_set_error (bfd_error_wrong_format);
2627       return FALSE;
2628     }
2629 
2630   if (! generic_linker)
2631     {
2632       asymbol **sympp;
2633       asymbol **symppend;
2634 
2635       /* Get the canonical symbols.  The generic linker will always
2636 	 have retrieved them by this point, but we are being called by
2637 	 a specific linker, presumably because we are linking
2638 	 different types of object files together.  */
2639       if (!bfd_generic_link_read_symbols (input_bfd))
2640 	return FALSE;
2641 
2642       /* Since we have been called by a specific linker, rather than
2643 	 the generic linker, the values of the symbols will not be
2644 	 right.  They will be the values as seen in the input file,
2645 	 not the values of the final link.  We need to fix them up
2646 	 before we can relocate the section.  */
2647       sympp = _bfd_generic_link_get_symbols (input_bfd);
2648       symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2649       for (; sympp < symppend; sympp++)
2650 	{
2651 	  asymbol *sym;
2652 	  struct bfd_link_hash_entry *h;
2653 
2654 	  sym = *sympp;
2655 
2656 	  if ((sym->flags & (BSF_INDIRECT
2657 			     | BSF_WARNING
2658 			     | BSF_GLOBAL
2659 			     | BSF_CONSTRUCTOR
2660 			     | BSF_WEAK)) != 0
2661 	      || bfd_is_und_section (bfd_get_section (sym))
2662 	      || bfd_is_com_section (bfd_get_section (sym))
2663 	      || bfd_is_ind_section (bfd_get_section (sym)))
2664 	    {
2665 	      /* sym->udata may have been set by
2666 		 generic_link_add_symbol_list.  */
2667 	      if (sym->udata.p != NULL)
2668 		h = (struct bfd_link_hash_entry *) sym->udata.p;
2669 	      else if (bfd_is_und_section (bfd_get_section (sym)))
2670 		h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2671 						  bfd_asymbol_name (sym),
2672 						  FALSE, FALSE, TRUE);
2673 	      else
2674 		h = bfd_link_hash_lookup (info->hash,
2675 					  bfd_asymbol_name (sym),
2676 					  FALSE, FALSE, TRUE);
2677 	      if (h != NULL)
2678 		set_symbol_from_hash (sym, h);
2679 	    }
2680 	}
2681     }
2682 
2683   if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2684       && input_section->size != 0)
2685     {
2686       /* Group section contents are set by bfd_elf_set_group_contents.  */
2687       if (!output_bfd->output_has_begun)
2688 	{
2689 	  /* FIXME: This hack ensures bfd_elf_set_group_contents is called.  */
2690 	  if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2691 	    goto error_return;
2692 	}
2693       new_contents = output_section->contents;
2694       BFD_ASSERT (new_contents != NULL);
2695       BFD_ASSERT (input_section->output_offset == 0);
2696     }
2697   else
2698     {
2699       /* Get and relocate the section contents.  */
2700       sec_size = (input_section->rawsize > input_section->size
2701 		  ? input_section->rawsize
2702 		  : input_section->size);
2703       contents = (bfd_byte *) bfd_malloc (sec_size);
2704       if (contents == NULL && sec_size != 0)
2705 	goto error_return;
2706       new_contents = (bfd_get_relocated_section_contents
2707 		      (output_bfd, info, link_order, contents,
2708 		       info->relocatable,
2709 		       _bfd_generic_link_get_symbols (input_bfd)));
2710       if (!new_contents)
2711 	goto error_return;
2712     }
2713 
2714   /* Output the section contents.  */
2715   loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2716   if (! bfd_set_section_contents (output_bfd, output_section,
2717 				  new_contents, loc, input_section->size))
2718     goto error_return;
2719 
2720   if (contents != NULL)
2721     free (contents);
2722   return TRUE;
2723 
2724  error_return:
2725   if (contents != NULL)
2726     free (contents);
2727   return FALSE;
2728 }
2729 
2730 /* A little routine to count the number of relocs in a link_order
2731    list.  */
2732 
2733 unsigned int
2734 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2735 {
2736   register unsigned int c;
2737   register struct bfd_link_order *l;
2738 
2739   c = 0;
2740   for (l = link_order; l != NULL; l = l->next)
2741     {
2742       if (l->type == bfd_section_reloc_link_order
2743 	  || l->type == bfd_symbol_reloc_link_order)
2744 	++c;
2745     }
2746 
2747   return c;
2748 }
2749 
2750 /*
2751 FUNCTION
2752 	bfd_link_split_section
2753 
2754 SYNOPSIS
2755         bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2756 
2757 DESCRIPTION
2758 	Return nonzero if @var{sec} should be split during a
2759 	reloceatable or final link.
2760 
2761 .#define bfd_link_split_section(abfd, sec) \
2762 .       BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2763 .
2764 
2765 */
2766 
2767 bfd_boolean
2768 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2769 				 asection *sec ATTRIBUTE_UNUSED)
2770 {
2771   return FALSE;
2772 }
2773 
2774 /*
2775 FUNCTION
2776 	bfd_section_already_linked
2777 
2778 SYNOPSIS
2779         bfd_boolean bfd_section_already_linked (bfd *abfd,
2780 						asection *sec,
2781 						struct bfd_link_info *info);
2782 
2783 DESCRIPTION
2784 	Check if @var{data} has been already linked during a reloceatable
2785 	or final link.  Return TRUE if it has.
2786 
2787 .#define bfd_section_already_linked(abfd, sec, info) \
2788 .       BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2789 .
2790 
2791 */
2792 
2793 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2794    once into the output.  This routine checks each section, and
2795    arrange to discard it if a section of the same name has already
2796    been linked.  This code assumes that all relevant sections have the
2797    SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2798    section name.  bfd_section_already_linked is called via
2799    bfd_map_over_sections.  */
2800 
2801 /* The hash table.  */
2802 
2803 static struct bfd_hash_table _bfd_section_already_linked_table;
2804 
2805 /* Support routines for the hash table used by section_already_linked,
2806    initialize the table, traverse, lookup, fill in an entry and remove
2807    the table.  */
2808 
2809 void
2810 bfd_section_already_linked_table_traverse
2811   (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2812 			void *), void *info)
2813 {
2814   bfd_hash_traverse (&_bfd_section_already_linked_table,
2815 		     (bfd_boolean (*) (struct bfd_hash_entry *,
2816 				       void *)) func,
2817 		     info);
2818 }
2819 
2820 struct bfd_section_already_linked_hash_entry *
2821 bfd_section_already_linked_table_lookup (const char *name)
2822 {
2823   return ((struct bfd_section_already_linked_hash_entry *)
2824 	  bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2825 			   TRUE, FALSE));
2826 }
2827 
2828 bfd_boolean
2829 bfd_section_already_linked_table_insert
2830   (struct bfd_section_already_linked_hash_entry *already_linked_list,
2831    asection *sec)
2832 {
2833   struct bfd_section_already_linked *l;
2834 
2835   /* Allocate the memory from the same obstack as the hash table is
2836      kept in.  */
2837   l = (struct bfd_section_already_linked *)
2838       bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2839   if (l == NULL)
2840     return FALSE;
2841   l->sec = sec;
2842   l->next = already_linked_list->entry;
2843   already_linked_list->entry = l;
2844   return TRUE;
2845 }
2846 
2847 static struct bfd_hash_entry *
2848 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2849 			struct bfd_hash_table *table,
2850 			const char *string ATTRIBUTE_UNUSED)
2851 {
2852   struct bfd_section_already_linked_hash_entry *ret =
2853     (struct bfd_section_already_linked_hash_entry *)
2854       bfd_hash_allocate (table, sizeof *ret);
2855 
2856   if (ret == NULL)
2857     return NULL;
2858 
2859   ret->entry = NULL;
2860 
2861   return &ret->root;
2862 }
2863 
2864 bfd_boolean
2865 bfd_section_already_linked_table_init (void)
2866 {
2867   return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2868 				already_linked_newfunc,
2869 				sizeof (struct bfd_section_already_linked_hash_entry),
2870 				42);
2871 }
2872 
2873 void
2874 bfd_section_already_linked_table_free (void)
2875 {
2876   bfd_hash_table_free (&_bfd_section_already_linked_table);
2877 }
2878 
2879 /* Report warnings as appropriate for duplicate section SEC.
2880    Return FALSE if we decide to keep SEC after all.  */
2881 
2882 bfd_boolean
2883 _bfd_handle_already_linked (asection *sec,
2884 			    struct bfd_section_already_linked *l,
2885 			    struct bfd_link_info *info)
2886 {
2887   switch (sec->flags & SEC_LINK_DUPLICATES)
2888     {
2889     default:
2890       abort ();
2891 
2892     case SEC_LINK_DUPLICATES_DISCARD:
2893       /* If we found an LTO IR match for this comdat group on
2894 	 the first pass, replace it with the LTO output on the
2895 	 second pass.  We can't simply choose real object
2896 	 files over IR because the first pass may contain a
2897 	 mix of LTO and normal objects and we must keep the
2898 	 first match, be it IR or real.  */
2899       if (sec->owner->lto_output
2900 	  && (l->sec->owner->flags & BFD_PLUGIN) != 0)
2901 	{
2902 	  l->sec = sec;
2903 	  return FALSE;
2904 	}
2905       break;
2906 
2907     case SEC_LINK_DUPLICATES_ONE_ONLY:
2908       info->callbacks->einfo
2909 	(_("%B: ignoring duplicate section `%A'\n"),
2910 	 sec->owner, sec);
2911       break;
2912 
2913     case SEC_LINK_DUPLICATES_SAME_SIZE:
2914       if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2915 	;
2916       else if (sec->size != l->sec->size)
2917 	info->callbacks->einfo
2918 	  (_("%B: duplicate section `%A' has different size\n"),
2919 	   sec->owner, sec);
2920       break;
2921 
2922     case SEC_LINK_DUPLICATES_SAME_CONTENTS:
2923       if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2924 	;
2925       else if (sec->size != l->sec->size)
2926 	info->callbacks->einfo
2927 	  (_("%B: duplicate section `%A' has different size\n"),
2928 	   sec->owner, sec);
2929       else if (sec->size != 0)
2930 	{
2931 	  bfd_byte *sec_contents, *l_sec_contents = NULL;
2932 
2933 	  if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
2934 	    info->callbacks->einfo
2935 	      (_("%B: could not read contents of section `%A'\n"),
2936 	       sec->owner, sec);
2937 	  else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
2938 						&l_sec_contents))
2939 	    info->callbacks->einfo
2940 	      (_("%B: could not read contents of section `%A'\n"),
2941 	       l->sec->owner, l->sec);
2942 	  else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
2943 	    info->callbacks->einfo
2944 	      (_("%B: duplicate section `%A' has different contents\n"),
2945 	       sec->owner, sec);
2946 
2947 	  if (sec_contents)
2948 	    free (sec_contents);
2949 	  if (l_sec_contents)
2950 	    free (l_sec_contents);
2951 	}
2952       break;
2953     }
2954 
2955   /* Set the output_section field so that lang_add_section
2956      does not create a lang_input_section structure for this
2957      section.  Since there might be a symbol in the section
2958      being discarded, we must retain a pointer to the section
2959      which we are really going to use.  */
2960   sec->output_section = bfd_abs_section_ptr;
2961   sec->kept_section = l->sec;
2962   return TRUE;
2963 }
2964 
2965 /* This is used on non-ELF inputs.  */
2966 
2967 bfd_boolean
2968 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
2969 				     asection *sec,
2970 				     struct bfd_link_info *info)
2971 {
2972   const char *name;
2973   struct bfd_section_already_linked *l;
2974   struct bfd_section_already_linked_hash_entry *already_linked_list;
2975 
2976   if ((sec->flags & SEC_LINK_ONCE) == 0)
2977     return FALSE;
2978 
2979   /* The generic linker doesn't handle section groups.  */
2980   if ((sec->flags & SEC_GROUP) != 0)
2981     return FALSE;
2982 
2983   /* FIXME: When doing a relocatable link, we may have trouble
2984      copying relocations in other sections that refer to local symbols
2985      in the section being discarded.  Those relocations will have to
2986      be converted somehow; as of this writing I'm not sure that any of
2987      the backends handle that correctly.
2988 
2989      It is tempting to instead not discard link once sections when
2990      doing a relocatable link (technically, they should be discarded
2991      whenever we are building constructors).  However, that fails,
2992      because the linker winds up combining all the link once sections
2993      into a single large link once section, which defeats the purpose
2994      of having link once sections in the first place.  */
2995 
2996   name = bfd_get_section_name (abfd, sec);
2997 
2998   already_linked_list = bfd_section_already_linked_table_lookup (name);
2999 
3000   l = already_linked_list->entry;
3001   if (l != NULL)
3002     {
3003       /* The section has already been linked.  See if we should
3004 	 issue a warning.  */
3005       return _bfd_handle_already_linked (sec, l, info);
3006     }
3007 
3008   /* This is the first section with this name.  Record it.  */
3009   if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
3010     info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
3011   return FALSE;
3012 }
3013 
3014 /* Choose a neighbouring section to S in OBFD that will be output, or
3015    the absolute section if ADDR is out of bounds of the neighbours.  */
3016 
3017 asection *
3018 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
3019 {
3020   asection *next, *prev, *best;
3021 
3022   /* Find preceding kept section.  */
3023   for (prev = s->prev; prev != NULL; prev = prev->prev)
3024     if ((prev->flags & SEC_EXCLUDE) == 0
3025 	&& !bfd_section_removed_from_list (obfd, prev))
3026       break;
3027 
3028   /* Find following kept section.  Start at prev->next because
3029      other sections may have been added after S was removed.  */
3030   if (s->prev != NULL)
3031     next = s->prev->next;
3032   else
3033     next = s->owner->sections;
3034   for (; next != NULL; next = next->next)
3035     if ((next->flags & SEC_EXCLUDE) == 0
3036 	&& !bfd_section_removed_from_list (obfd, next))
3037       break;
3038 
3039   /* Choose better of two sections, based on flags.  The idea
3040      is to choose a section that will be in the same segment
3041      as S would have been if it was kept.  */
3042   best = next;
3043   if (prev == NULL)
3044     {
3045       if (next == NULL)
3046 	best = bfd_abs_section_ptr;
3047     }
3048   else if (next == NULL)
3049     best = prev;
3050   else if (((prev->flags ^ next->flags)
3051 	    & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3052     {
3053       if (((next->flags ^ s->flags)
3054 	   & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3055 	  /* We prefer to choose a loaded section.  Section S
3056 	     doesn't have SEC_LOAD set (it being excluded, that
3057 	     part of the flag processing didn't happen) so we
3058 	     can't compare that flag to those of NEXT and PREV.  */
3059 	  || ((prev->flags & SEC_LOAD) != 0
3060 	      && (next->flags & SEC_LOAD) == 0))
3061 	best = prev;
3062     }
3063   else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
3064     {
3065       if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
3066 	best = prev;
3067     }
3068   else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
3069     {
3070       if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3071 	best = prev;
3072     }
3073   else
3074     {
3075       /* Flags we care about are the same.  Prefer the following
3076 	 section if that will result in a positive valued sym.  */
3077       if (addr < next->vma)
3078 	best = prev;
3079     }
3080 
3081   return best;
3082 }
3083 
3084 /* Convert symbols in excluded output sections to use a kept section.  */
3085 
3086 static bfd_boolean
3087 fix_syms (struct bfd_link_hash_entry *h, void *data)
3088 {
3089   bfd *obfd = (bfd *) data;
3090 
3091   if (h->type == bfd_link_hash_defined
3092       || h->type == bfd_link_hash_defweak)
3093     {
3094       asection *s = h->u.def.section;
3095       if (s != NULL
3096 	  && s->output_section != NULL
3097 	  && (s->output_section->flags & SEC_EXCLUDE) != 0
3098 	  && bfd_section_removed_from_list (obfd, s->output_section))
3099 	{
3100 	  asection *op;
3101 
3102 	  h->u.def.value += s->output_offset + s->output_section->vma;
3103 	  op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3104 	  h->u.def.value -= op->vma;
3105 	  h->u.def.section = op;
3106 	}
3107     }
3108 
3109   return TRUE;
3110 }
3111 
3112 void
3113 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3114 {
3115   bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3116 }
3117 
3118 /*
3119 FUNCTION
3120 	bfd_generic_define_common_symbol
3121 
3122 SYNOPSIS
3123 	bfd_boolean bfd_generic_define_common_symbol
3124 	  (bfd *output_bfd, struct bfd_link_info *info,
3125 	   struct bfd_link_hash_entry *h);
3126 
3127 DESCRIPTION
3128 	Convert common symbol @var{h} into a defined symbol.
3129 	Return TRUE on success and FALSE on failure.
3130 
3131 .#define bfd_define_common_symbol(output_bfd, info, h) \
3132 .       BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3133 .
3134 */
3135 
3136 bfd_boolean
3137 bfd_generic_define_common_symbol (bfd *output_bfd,
3138 				  struct bfd_link_info *info ATTRIBUTE_UNUSED,
3139 				  struct bfd_link_hash_entry *h)
3140 {
3141   unsigned int power_of_two;
3142   bfd_vma alignment, size;
3143   asection *section;
3144 
3145   BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3146 
3147   size = h->u.c.size;
3148   power_of_two = h->u.c.p->alignment_power;
3149   section = h->u.c.p->section;
3150 
3151   /* Increase the size of the section to align the common symbol.
3152      The alignment must be a power of two.  */
3153   alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3154   BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3155   section->size += alignment - 1;
3156   section->size &= -alignment;
3157 
3158   /* Adjust the section's overall alignment if necessary.  */
3159   if (power_of_two > section->alignment_power)
3160     section->alignment_power = power_of_two;
3161 
3162   /* Change the symbol from common to defined.  */
3163   h->type = bfd_link_hash_defined;
3164   h->u.def.section = section;
3165   h->u.def.value = section->size;
3166 
3167   /* Increase the size of the section.  */
3168   section->size += size;
3169 
3170   /* Make sure the section is allocated in memory, and make sure that
3171      it is no longer a common section.  */
3172   section->flags |= SEC_ALLOC;
3173   section->flags &= ~SEC_IS_COMMON;
3174   return TRUE;
3175 }
3176 
3177 /*
3178 FUNCTION
3179 	bfd_find_version_for_sym
3180 
3181 SYNOPSIS
3182 	struct bfd_elf_version_tree * bfd_find_version_for_sym
3183 	  (struct bfd_elf_version_tree *verdefs,
3184 	   const char *sym_name, bfd_boolean *hide);
3185 
3186 DESCRIPTION
3187 	Search an elf version script tree for symbol versioning
3188 	info and export / don't-export status for a given symbol.
3189 	Return non-NULL on success and NULL on failure; also sets
3190 	the output @samp{hide} boolean parameter.
3191 
3192 */
3193 
3194 struct bfd_elf_version_tree *
3195 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3196 			  const char *sym_name,
3197 			  bfd_boolean *hide)
3198 {
3199   struct bfd_elf_version_tree *t;
3200   struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3201   struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3202 
3203   local_ver = NULL;
3204   global_ver = NULL;
3205   star_local_ver = NULL;
3206   star_global_ver = NULL;
3207   exist_ver = NULL;
3208   for (t = verdefs; t != NULL; t = t->next)
3209     {
3210       if (t->globals.list != NULL)
3211 	{
3212 	  struct bfd_elf_version_expr *d = NULL;
3213 
3214 	  while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3215 	    {
3216 	      if (d->literal || strcmp (d->pattern, "*") != 0)
3217 		global_ver = t;
3218 	      else
3219 		star_global_ver = t;
3220 	      if (d->symver)
3221 		exist_ver = t;
3222 	      d->script = 1;
3223 	      /* If the match is a wildcard pattern, keep looking for
3224 		 a more explicit, perhaps even local, match.  */
3225 	      if (d->literal)
3226 		break;
3227 	    }
3228 
3229 	  if (d != NULL)
3230 	    break;
3231 	}
3232 
3233       if (t->locals.list != NULL)
3234 	{
3235 	  struct bfd_elf_version_expr *d = NULL;
3236 
3237 	  while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3238 	    {
3239 	      if (d->literal || strcmp (d->pattern, "*") != 0)
3240 		local_ver = t;
3241 	      else
3242 		star_local_ver = t;
3243 	      /* If the match is a wildcard pattern, keep looking for
3244 		 a more explicit, perhaps even global, match.  */
3245 	      if (d->literal)
3246 		{
3247 		  /* An exact match overrides a global wildcard.  */
3248 		  global_ver = NULL;
3249 		  star_global_ver = NULL;
3250 		  break;
3251 		}
3252 	    }
3253 
3254 	  if (d != NULL)
3255 	    break;
3256 	}
3257     }
3258 
3259   if (global_ver == NULL && local_ver == NULL)
3260     global_ver = star_global_ver;
3261 
3262   if (global_ver != NULL)
3263     {
3264       /* If we already have a versioned symbol that matches the
3265 	 node for this symbol, then we don't want to create a
3266 	 duplicate from the unversioned symbol.  Instead hide the
3267 	 unversioned symbol.  */
3268       *hide = exist_ver == global_ver;
3269       return global_ver;
3270     }
3271 
3272   if (local_ver == NULL)
3273     local_ver = star_local_ver;
3274 
3275   if (local_ver != NULL)
3276     {
3277       *hide = TRUE;
3278       return local_ver;
3279     }
3280 
3281   return NULL;
3282 }
3283 
3284 /*
3285 FUNCTION
3286 	bfd_hide_sym_by_version
3287 
3288 SYNOPSIS
3289 	bfd_boolean bfd_hide_sym_by_version
3290 	  (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3291 
3292 DESCRIPTION
3293 	Search an elf version script tree for symbol versioning
3294 	info for a given symbol.  Return TRUE if the symbol is hidden.
3295 
3296 */
3297 
3298 bfd_boolean
3299 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3300 			 const char *sym_name)
3301 {
3302   bfd_boolean hidden = FALSE;
3303   bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3304   return hidden;
3305 }
3306