xref: /netbsd-src/external/gpl3/gdb/dist/bfd/linker.c (revision 7d62b00eb9ad855ffcd7da46b41e23feb5476fac)
1 /* linker.c -- BFD linker routines
2    Copyright (C) 1993-2020 Free Software Foundation, Inc.
3    Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27 
28 /*
29 SECTION
30 	Linker Functions
31 
32 @cindex Linker
33 	The linker uses three special entry points in the BFD target
34 	vector.  It is not necessary to write special routines for
35 	these entry points when creating a new BFD back end, since
36 	generic versions are provided.  However, writing them can
37 	speed up linking and make it use significantly less runtime
38 	memory.
39 
40 	The first routine creates a hash table used by the other
41 	routines.  The second routine adds the symbols from an object
42 	file to the hash table.  The third routine takes all the
43 	object files and links them together to create the output
44 	file.  These routines are designed so that the linker proper
45 	does not need to know anything about the symbols in the object
46 	files that it is linking.  The linker merely arranges the
47 	sections as directed by the linker script and lets BFD handle
48 	the details of symbols and relocs.
49 
50 	The second routine and third routines are passed a pointer to
51 	a <<struct bfd_link_info>> structure (defined in
52 	<<bfdlink.h>>) which holds information relevant to the link,
53 	including the linker hash table (which was created by the
54 	first routine) and a set of callback functions to the linker
55 	proper.
56 
57 	The generic linker routines are in <<linker.c>>, and use the
58 	header file <<genlink.h>>.  As of this writing, the only back
59 	ends which have implemented versions of these routines are
60 	a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>).  The a.out
61 	routines are used as examples throughout this section.
62 
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68 
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 	Creating a linker hash table
73 
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 	The linker routines must create a hash table, which must be
77 	derived from <<struct bfd_link_hash_table>> described in
78 	<<bfdlink.c>>.  @xref{Hash Tables}, for information on how to
79 	create a derived hash table.  This entry point is called using
80 	the target vector of the linker output file.
81 
82 	The <<_bfd_link_hash_table_create>> entry point must allocate
83 	and initialize an instance of the desired hash table.  If the
84 	back end does not require any additional information to be
85 	stored with the entries in the hash table, the entry point may
86 	simply create a <<struct bfd_link_hash_table>>.  Most likely,
87 	however, some additional information will be needed.
88 
89 	For example, with each entry in the hash table the a.out
90 	linker keeps the index the symbol has in the final output file
91 	(this index number is used so that when doing a relocatable
92 	link the symbol index used in the output file can be quickly
93 	filled in when copying over a reloc).  The a.out linker code
94 	defines the required structures and functions for a hash table
95 	derived from <<struct bfd_link_hash_table>>.  The a.out linker
96 	hash table is created by the function
97 	<<NAME(aout,link_hash_table_create)>>; it simply allocates
98 	space for the hash table, initializes it, and returns a
99 	pointer to it.
100 
101 	When writing the linker routines for a new back end, you will
102 	generally not know exactly which fields will be required until
103 	you have finished.  You should simply create a new hash table
104 	which defines no additional fields, and then simply add fields
105 	as they become necessary.
106 
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 	Adding symbols to the hash table
111 
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 	The linker proper will call the <<_bfd_link_add_symbols>>
115 	entry point for each object file or archive which is to be
116 	linked (typically these are the files named on the command
117 	line, but some may also come from the linker script).  The
118 	entry point is responsible for examining the file.  For an
119 	object file, BFD must add any relevant symbol information to
120 	the hash table.  For an archive, BFD must determine which
121 	elements of the archive should be used and adding them to the
122 	link.
123 
124 	The a.out version of this entry point is
125 	<<NAME(aout,link_add_symbols)>>.
126 
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132 
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 	Differing file formats
137 
138 	Normally all the files involved in a link will be of the same
139 	format, but it is also possible to link together different
140 	format object files, and the back end must support that.  The
141 	<<_bfd_link_add_symbols>> entry point is called via the target
142 	vector of the file to be added.  This has an important
143 	consequence: the function may not assume that the hash table
144 	is the type created by the corresponding
145 	<<_bfd_link_hash_table_create>> vector.  All the
146 	<<_bfd_link_add_symbols>> function can assume about the hash
147 	table is that it is derived from <<struct
148 	bfd_link_hash_table>>.
149 
150 	Sometimes the <<_bfd_link_add_symbols>> function must store
151 	some information in the hash table entry to be used by the
152 	<<_bfd_final_link>> function.  In such a case the output bfd
153 	xvec must be checked to make sure that the hash table was
154 	created by an object file of the same format.
155 
156 	The <<_bfd_final_link>> routine must be prepared to handle a
157 	hash entry without any extra information added by the
158 	<<_bfd_link_add_symbols>> function.  A hash entry without
159 	extra information will also occur when the linker script
160 	directs the linker to create a symbol.  Note that, regardless
161 	of how a hash table entry is added, all the fields will be
162 	initialized to some sort of null value by the hash table entry
163 	initialization function.
164 
165 	See <<ecoff_link_add_externals>> for an example of how to
166 	check the output bfd before saving information (in this
167 	case, the ECOFF external symbol debugging information) in a
168 	hash table entry.
169 
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 	Adding symbols from an object file
174 
175 	When the <<_bfd_link_add_symbols>> routine is passed an object
176 	file, it must add all externally visible symbols in that
177 	object file to the hash table.  The actual work of adding the
178 	symbol to the hash table is normally handled by the function
179 	<<_bfd_generic_link_add_one_symbol>>.  The
180 	<<_bfd_link_add_symbols>> routine is responsible for reading
181 	all the symbols from the object file and passing the correct
182 	information to <<_bfd_generic_link_add_one_symbol>>.
183 
184 	The <<_bfd_link_add_symbols>> routine should not use
185 	<<bfd_canonicalize_symtab>> to read the symbols.  The point of
186 	providing this routine is to avoid the overhead of converting
187 	the symbols into generic <<asymbol>> structures.
188 
189 @findex _bfd_generic_link_add_one_symbol
190 	<<_bfd_generic_link_add_one_symbol>> handles the details of
191 	combining common symbols, warning about multiple definitions,
192 	and so forth.  It takes arguments which describe the symbol to
193 	add, notably symbol flags, a section, and an offset.  The
194 	symbol flags include such things as <<BSF_WEAK>> or
195 	<<BSF_INDIRECT>>.  The section is a section in the object
196 	file, or something like <<bfd_und_section_ptr>> for an undefined
197 	symbol or <<bfd_com_section_ptr>> for a common symbol.
198 
199 	If the <<_bfd_final_link>> routine is also going to need to
200 	read the symbol information, the <<_bfd_link_add_symbols>>
201 	routine should save it somewhere attached to the object file
202 	BFD.  However, the information should only be saved if the
203 	<<keep_memory>> field of the <<info>> argument is TRUE, so
204 	that the <<-no-keep-memory>> linker switch is effective.
205 
206 	The a.out function which adds symbols from an object file is
207 	<<aout_link_add_object_symbols>>, and most of the interesting
208 	work is in <<aout_link_add_symbols>>.  The latter saves
209 	pointers to the hash tables entries created by
210 	<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 	so that the <<_bfd_final_link>> routine does not have to call
212 	the hash table lookup routine to locate the entry.
213 
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 	Adding symbols from an archive
218 
219 	When the <<_bfd_link_add_symbols>> routine is passed an
220 	archive, it must look through the symbols defined by the
221 	archive and decide which elements of the archive should be
222 	included in the link.  For each such element it must call the
223 	<<add_archive_element>> linker callback, and it must add the
224 	symbols from the object file to the linker hash table.  (The
225 	callback may in fact indicate that a replacement BFD should be
226 	used, in which case the symbols from that BFD should be added
227 	to the linker hash table instead.)
228 
229 @findex _bfd_generic_link_add_archive_symbols
230 	In most cases the work of looking through the symbols in the
231 	archive should be done by the
232 	<<_bfd_generic_link_add_archive_symbols>> function.
233 	<<_bfd_generic_link_add_archive_symbols>> is passed a function
234 	to call to make the final decision about adding an archive
235 	element to the link and to do the actual work of adding the
236 	symbols to the linker hash table.  If the element is to
237 	be included, the <<add_archive_element>> linker callback
238 	routine must be called with the element as an argument, and
239 	the element's symbols must be added to the linker hash table
240 	just as though the element had itself been passed to the
241 	<<_bfd_link_add_symbols>> function.
242 
243 	When the a.out <<_bfd_link_add_symbols>> function receives an
244 	archive, it calls <<_bfd_generic_link_add_archive_symbols>>
245 	passing <<aout_link_check_archive_element>> as the function
246 	argument. <<aout_link_check_archive_element>> calls
247 	<<aout_link_check_ar_symbols>>.  If the latter decides to add
248 	the element (an element is only added if it provides a real,
249 	non-common, definition for a previously undefined or common
250 	symbol) it calls the <<add_archive_element>> callback and then
251 	<<aout_link_check_archive_element>> calls
252 	<<aout_link_add_symbols>> to actually add the symbols to the
253 	linker hash table - possibly those of a substitute BFD, if the
254 	<<add_archive_element>> callback avails itself of that option.
255 
256 	The ECOFF back end is unusual in that it does not normally
257 	call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
258 	archives already contain a hash table of symbols.  The ECOFF
259 	back end searches the archive itself to avoid the overhead of
260 	creating a new hash table.
261 
262 INODE
263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
264 SUBSECTION
265 	Performing the final link
266 
267 @cindex _bfd_link_final_link in target vector
268 @cindex target vector (_bfd_final_link)
269 	When all the input files have been processed, the linker calls
270 	the <<_bfd_final_link>> entry point of the output BFD.  This
271 	routine is responsible for producing the final output file,
272 	which has several aspects.  It must relocate the contents of
273 	the input sections and copy the data into the output sections.
274 	It must build an output symbol table including any local
275 	symbols from the input files and the global symbols from the
276 	hash table.  When producing relocatable output, it must
277 	modify the input relocs and write them into the output file.
278 	There may also be object format dependent work to be done.
279 
280 	The linker will also call the <<write_object_contents>> entry
281 	point when the BFD is closed.  The two entry points must work
282 	together in order to produce the correct output file.
283 
284 	The details of how this works are inevitably dependent upon
285 	the specific object file format.  The a.out
286 	<<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
287 
288 @menu
289 @* Information provided by the linker::
290 @* Relocating the section contents::
291 @* Writing the symbol table::
292 @end menu
293 
294 INODE
295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
296 SUBSUBSECTION
297 	Information provided by the linker
298 
299 	Before the linker calls the <<_bfd_final_link>> entry point,
300 	it sets up some data structures for the function to use.
301 
302 	The <<input_bfds>> field of the <<bfd_link_info>> structure
303 	will point to a list of all the input files included in the
304 	link.  These files are linked through the <<link.next>> field
305 	of the <<bfd>> structure.
306 
307 	Each section in the output file will have a list of
308 	<<link_order>> structures attached to the <<map_head.link_order>>
309 	field (the <<link_order>> structure is defined in
310 	<<bfdlink.h>>).  These structures describe how to create the
311 	contents of the output section in terms of the contents of
312 	various input sections, fill constants, and, eventually, other
313 	types of information.  They also describe relocs that must be
314 	created by the BFD backend, but do not correspond to any input
315 	file; this is used to support -Ur, which builds constructors
316 	while generating a relocatable object file.
317 
318 INODE
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320 SUBSUBSECTION
321 	Relocating the section contents
322 
323 	The <<_bfd_final_link>> function should look through the
324 	<<link_order>> structures attached to each section of the
325 	output file.  Each <<link_order>> structure should either be
326 	handled specially, or it should be passed to the function
327 	<<_bfd_default_link_order>> which will do the right thing
328 	(<<_bfd_default_link_order>> is defined in <<linker.c>>).
329 
330 	For efficiency, a <<link_order>> of type
331 	<<bfd_indirect_link_order>> whose associated section belongs
332 	to a BFD of the same format as the output BFD must be handled
333 	specially.  This type of <<link_order>> describes part of an
334 	output section in terms of a section belonging to one of the
335 	input files.  The <<_bfd_final_link>> function should read the
336 	contents of the section and any associated relocs, apply the
337 	relocs to the section contents, and write out the modified
338 	section contents.  If performing a relocatable link, the
339 	relocs themselves must also be modified and written out.
340 
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 	The functions <<_bfd_relocate_contents>> and
344 	<<_bfd_final_link_relocate>> provide some general support for
345 	performing the actual relocations, notably overflow checking.
346 	Their arguments include information about the symbol the
347 	relocation is against and a <<reloc_howto_type>> argument
348 	which describes the relocation to perform.  These functions
349 	are defined in <<reloc.c>>.
350 
351 	The a.out function which handles reading, relocating, and
352 	writing section contents is <<aout_link_input_section>>.  The
353 	actual relocation is done in <<aout_link_input_section_std>>
354 	and <<aout_link_input_section_ext>>.
355 
356 INODE
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
358 SUBSUBSECTION
359 	Writing the symbol table
360 
361 	The <<_bfd_final_link>> function must gather all the symbols
362 	in the input files and write them out.  It must also write out
363 	all the symbols in the global hash table.  This must be
364 	controlled by the <<strip>> and <<discard>> fields of the
365 	<<bfd_link_info>> structure.
366 
367 	The local symbols of the input files will not have been
368 	entered into the linker hash table.  The <<_bfd_final_link>>
369 	routine must consider each input file and include the symbols
370 	in the output file.  It may be convenient to do this when
371 	looking through the <<link_order>> structures, or it may be
372 	done by stepping through the <<input_bfds>> list.
373 
374 	The <<_bfd_final_link>> routine must also traverse the global
375 	hash table to gather all the externally visible symbols.  It
376 	is possible that most of the externally visible symbols may be
377 	written out when considering the symbols of each input file,
378 	but it is still necessary to traverse the hash table since the
379 	linker script may have defined some symbols that are not in
380 	any of the input files.
381 
382 	The <<strip>> field of the <<bfd_link_info>> structure
383 	controls which symbols are written out.  The possible values
384 	are listed in <<bfdlink.h>>.  If the value is <<strip_some>>,
385 	then the <<keep_hash>> field of the <<bfd_link_info>>
386 	structure is a hash table of symbols to keep; each symbol
387 	should be looked up in this hash table, and only symbols which
388 	are present should be included in the output file.
389 
390 	If the <<strip>> field of the <<bfd_link_info>> structure
391 	permits local symbols to be written out, the <<discard>> field
392 	is used to further controls which local symbols are included
393 	in the output file.  If the value is <<discard_l>>, then all
394 	local symbols which begin with a certain prefix are discarded;
395 	this is controlled by the <<bfd_is_local_label_name>> entry point.
396 
397 	The a.out backend handles symbols by calling
398 	<<aout_link_write_symbols>> on each input BFD and then
399 	traversing the global hash table with the function
400 	<<aout_link_write_other_symbol>>.  It builds a string table
401 	while writing out the symbols, which is written to the output
402 	file at the end of <<NAME(aout,final_link)>>.
403 */
404 
405 static bfd_boolean generic_link_add_object_symbols
406   (bfd *, struct bfd_link_info *);
407 static bfd_boolean generic_link_check_archive_element
408   (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
409    bfd_boolean *);
410 static bfd_boolean generic_link_add_symbol_list
411   (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **);
412 static bfd_boolean generic_add_output_symbol
413   (bfd *, size_t *psymalloc, asymbol *);
414 static bfd_boolean default_data_link_order
415   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
416 static bfd_boolean default_indirect_link_order
417   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
418    bfd_boolean);
419 
420 /* The link hash table structure is defined in bfdlink.h.  It provides
421    a base hash table which the backend specific hash tables are built
422    upon.  */
423 
424 /* Routine to create an entry in the link hash table.  */
425 
426 struct bfd_hash_entry *
427 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
428 			struct bfd_hash_table *table,
429 			const char *string)
430 {
431   /* Allocate the structure if it has not already been allocated by a
432      subclass.  */
433   if (entry == NULL)
434     {
435       entry = (struct bfd_hash_entry *)
436 	  bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
437       if (entry == NULL)
438 	return entry;
439     }
440 
441   /* Call the allocation method of the superclass.  */
442   entry = bfd_hash_newfunc (entry, table, string);
443   if (entry)
444     {
445       struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
446 
447       /* Initialize the local fields.  */
448       memset ((char *) &h->root + sizeof (h->root), 0,
449 	      sizeof (*h) - sizeof (h->root));
450     }
451 
452   return entry;
453 }
454 
455 /* Initialize a link hash table.  The BFD argument is the one
456    responsible for creating this table.  */
457 
458 bfd_boolean
459 _bfd_link_hash_table_init
460   (struct bfd_link_hash_table *table,
461    bfd *abfd ATTRIBUTE_UNUSED,
462    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
463 				      struct bfd_hash_table *,
464 				      const char *),
465    unsigned int entsize)
466 {
467   bfd_boolean ret;
468 
469   BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
470   table->undefs = NULL;
471   table->undefs_tail = NULL;
472   table->type = bfd_link_generic_hash_table;
473 
474   ret = bfd_hash_table_init (&table->table, newfunc, entsize);
475   if (ret)
476     {
477       /* Arrange for destruction of this hash table on closing ABFD.  */
478       table->hash_table_free = _bfd_generic_link_hash_table_free;
479       abfd->link.hash = table;
480       abfd->is_linker_output = TRUE;
481     }
482   return ret;
483 }
484 
485 /* Look up a symbol in a link hash table.  If follow is TRUE, we
486    follow bfd_link_hash_indirect and bfd_link_hash_warning links to
487    the real symbol.
488 
489 .{* Return TRUE if the symbol described by a linker hash entry H
490 .   is going to be absolute.  Linker-script defined symbols can be
491 .   converted from absolute to section-relative ones late in the
492 .   link.  Use this macro to correctly determine whether the symbol
493 .   will actually end up absolute in output.  *}
494 .#define bfd_is_abs_symbol(H) \
495 .  (((H)->type == bfd_link_hash_defined \
496 .    || (H)->type == bfd_link_hash_defweak) \
497 .   && bfd_is_abs_section ((H)->u.def.section) \
498 .   && !(H)->rel_from_abs)
499 .
500 */
501 
502 struct bfd_link_hash_entry *
503 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
504 		      const char *string,
505 		      bfd_boolean create,
506 		      bfd_boolean copy,
507 		      bfd_boolean follow)
508 {
509   struct bfd_link_hash_entry *ret;
510 
511   if (table == NULL || string == NULL)
512     return NULL;
513 
514   ret = ((struct bfd_link_hash_entry *)
515 	 bfd_hash_lookup (&table->table, string, create, copy));
516 
517   if (follow && ret != NULL)
518     {
519       while (ret->type == bfd_link_hash_indirect
520 	     || ret->type == bfd_link_hash_warning)
521 	ret = ret->u.i.link;
522     }
523 
524   return ret;
525 }
526 
527 /* Look up a symbol in the main linker hash table if the symbol might
528    be wrapped.  This should only be used for references to an
529    undefined symbol, not for definitions of a symbol.  */
530 
531 struct bfd_link_hash_entry *
532 bfd_wrapped_link_hash_lookup (bfd *abfd,
533 			      struct bfd_link_info *info,
534 			      const char *string,
535 			      bfd_boolean create,
536 			      bfd_boolean copy,
537 			      bfd_boolean follow)
538 {
539   size_t amt;
540 
541   if (info->wrap_hash != NULL)
542     {
543       const char *l;
544       char prefix = '\0';
545 
546       l = string;
547       if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
548 	{
549 	  prefix = *l;
550 	  ++l;
551 	}
552 
553 #undef WRAP
554 #define WRAP "__wrap_"
555 
556       if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
557 	{
558 	  char *n;
559 	  struct bfd_link_hash_entry *h;
560 
561 	  /* This symbol is being wrapped.  We want to replace all
562 	     references to SYM with references to __wrap_SYM.  */
563 
564 	  amt = strlen (l) + sizeof WRAP + 1;
565 	  n = (char *) bfd_malloc (amt);
566 	  if (n == NULL)
567 	    return NULL;
568 
569 	  n[0] = prefix;
570 	  n[1] = '\0';
571 	  strcat (n, WRAP);
572 	  strcat (n, l);
573 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
574 	  free (n);
575 	  return h;
576 	}
577 
578 #undef  REAL
579 #define REAL "__real_"
580 
581       if (*l == '_'
582 	  && CONST_STRNEQ (l, REAL)
583 	  && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
584 			      FALSE, FALSE) != NULL)
585 	{
586 	  char *n;
587 	  struct bfd_link_hash_entry *h;
588 
589 	  /* This is a reference to __real_SYM, where SYM is being
590 	     wrapped.  We want to replace all references to __real_SYM
591 	     with references to SYM.  */
592 
593 	  amt = strlen (l + sizeof REAL - 1) + 2;
594 	  n = (char *) bfd_malloc (amt);
595 	  if (n == NULL)
596 	    return NULL;
597 
598 	  n[0] = prefix;
599 	  n[1] = '\0';
600 	  strcat (n, l + sizeof REAL - 1);
601 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
602 	  free (n);
603 	  return h;
604 	}
605 
606 #undef REAL
607     }
608 
609   return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
610 }
611 
612 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
613    and the remainder is found in wrap_hash, return the real symbol.  */
614 
615 struct bfd_link_hash_entry *
616 unwrap_hash_lookup (struct bfd_link_info *info,
617 		    bfd *input_bfd,
618 		    struct bfd_link_hash_entry *h)
619 {
620   const char *l = h->root.string;
621 
622   if (*l == bfd_get_symbol_leading_char (input_bfd)
623       || *l == info->wrap_char)
624     ++l;
625 
626   if (CONST_STRNEQ (l, WRAP))
627     {
628       l += sizeof WRAP - 1;
629 
630       if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
631 	{
632 	  char save = 0;
633 	  if (l - (sizeof WRAP - 1) != h->root.string)
634 	    {
635 	      --l;
636 	      save = *l;
637 	      *(char *) l = *h->root.string;
638 	    }
639 	  h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE);
640 	  if (save)
641 	    *(char *) l = save;
642 	}
643     }
644   return h;
645 }
646 #undef WRAP
647 
648 /* Traverse a generic link hash table.  Differs from bfd_hash_traverse
649    in the treatment of warning symbols.  When warning symbols are
650    created they replace the real symbol, so you don't get to see the
651    real symbol in a bfd_hash_traverse.  This traversal calls func with
652    the real symbol.  */
653 
654 void
655 bfd_link_hash_traverse
656   (struct bfd_link_hash_table *htab,
657    bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
658    void *info)
659 {
660   unsigned int i;
661 
662   htab->table.frozen = 1;
663   for (i = 0; i < htab->table.size; i++)
664     {
665       struct bfd_link_hash_entry *p;
666 
667       p = (struct bfd_link_hash_entry *) htab->table.table[i];
668       for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
669 	if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
670 	  goto out;
671     }
672  out:
673   htab->table.frozen = 0;
674 }
675 
676 /* Add a symbol to the linker hash table undefs list.  */
677 
678 void
679 bfd_link_add_undef (struct bfd_link_hash_table *table,
680 		    struct bfd_link_hash_entry *h)
681 {
682   BFD_ASSERT (h->u.undef.next == NULL);
683   if (table->undefs_tail != NULL)
684     table->undefs_tail->u.undef.next = h;
685   if (table->undefs == NULL)
686     table->undefs = h;
687   table->undefs_tail = h;
688 }
689 
690 /* The undefs list was designed so that in normal use we don't need to
691    remove entries.  However, if symbols on the list are changed from
692    bfd_link_hash_undefined to either bfd_link_hash_undefweak or
693    bfd_link_hash_new for some reason, then they must be removed from the
694    list.  Failure to do so might result in the linker attempting to add
695    the symbol to the list again at a later stage.  */
696 
697 void
698 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
699 {
700   struct bfd_link_hash_entry **pun;
701 
702   pun = &table->undefs;
703   while (*pun != NULL)
704     {
705       struct bfd_link_hash_entry *h = *pun;
706 
707       if (h->type == bfd_link_hash_new
708 	  || h->type == bfd_link_hash_undefweak)
709 	{
710 	  *pun = h->u.undef.next;
711 	  h->u.undef.next = NULL;
712 	  if (h == table->undefs_tail)
713 	    {
714 	      if (pun == &table->undefs)
715 		table->undefs_tail = NULL;
716 	      else
717 		/* pun points at an u.undef.next field.  Go back to
718 		   the start of the link_hash_entry.  */
719 		table->undefs_tail = (struct bfd_link_hash_entry *)
720 		  ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
721 	      break;
722 	    }
723 	}
724       else
725 	pun = &h->u.undef.next;
726     }
727 }
728 
729 /* Routine to create an entry in a generic link hash table.  */
730 
731 struct bfd_hash_entry *
732 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
733 				struct bfd_hash_table *table,
734 				const char *string)
735 {
736   /* Allocate the structure if it has not already been allocated by a
737      subclass.  */
738   if (entry == NULL)
739     {
740       entry = (struct bfd_hash_entry *)
741 	bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
742       if (entry == NULL)
743 	return entry;
744     }
745 
746   /* Call the allocation method of the superclass.  */
747   entry = _bfd_link_hash_newfunc (entry, table, string);
748   if (entry)
749     {
750       struct generic_link_hash_entry *ret;
751 
752       /* Set local fields.  */
753       ret = (struct generic_link_hash_entry *) entry;
754       ret->written = FALSE;
755       ret->sym = NULL;
756     }
757 
758   return entry;
759 }
760 
761 /* Create a generic link hash table.  */
762 
763 struct bfd_link_hash_table *
764 _bfd_generic_link_hash_table_create (bfd *abfd)
765 {
766   struct generic_link_hash_table *ret;
767   size_t amt = sizeof (struct generic_link_hash_table);
768 
769   ret = (struct generic_link_hash_table *) bfd_malloc (amt);
770   if (ret == NULL)
771     return NULL;
772   if (! _bfd_link_hash_table_init (&ret->root, abfd,
773 				   _bfd_generic_link_hash_newfunc,
774 				   sizeof (struct generic_link_hash_entry)))
775     {
776       free (ret);
777       return NULL;
778     }
779   return &ret->root;
780 }
781 
782 void
783 _bfd_generic_link_hash_table_free (bfd *obfd)
784 {
785   struct generic_link_hash_table *ret;
786 
787   BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
788   ret = (struct generic_link_hash_table *) obfd->link.hash;
789   bfd_hash_table_free (&ret->root.table);
790   free (ret);
791   obfd->link.hash = NULL;
792   obfd->is_linker_output = FALSE;
793 }
794 
795 /* Grab the symbols for an object file when doing a generic link.  We
796    store the symbols in the outsymbols field.  We need to keep them
797    around for the entire link to ensure that we only read them once.
798    If we read them multiple times, we might wind up with relocs and
799    the hash table pointing to different instances of the symbol
800    structure.  */
801 
802 bfd_boolean
803 bfd_generic_link_read_symbols (bfd *abfd)
804 {
805   if (bfd_get_outsymbols (abfd) == NULL)
806     {
807       long symsize;
808       long symcount;
809 
810       symsize = bfd_get_symtab_upper_bound (abfd);
811       if (symsize < 0)
812 	return FALSE;
813       abfd->outsymbols = bfd_alloc (abfd, symsize);
814       if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
815 	return FALSE;
816       symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
817       if (symcount < 0)
818 	return FALSE;
819       abfd->symcount = symcount;
820     }
821 
822   return TRUE;
823 }
824 
825 /* Indicate that we are only retrieving symbol values from this
826    section.  We want the symbols to act as though the values in the
827    file are absolute.  */
828 
829 void
830 _bfd_generic_link_just_syms (asection *sec,
831 			     struct bfd_link_info *info ATTRIBUTE_UNUSED)
832 {
833   sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
834   sec->output_section = bfd_abs_section_ptr;
835   sec->output_offset = sec->vma;
836 }
837 
838 /* Copy the symbol type and other attributes for a linker script
839    assignment from HSRC to HDEST.
840    The default implementation does nothing.  */
841 void
842 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
843     struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
844     struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
845 {
846 }
847 
848 /* Generic function to add symbols from an object file to the
849    global hash table.  */
850 
851 bfd_boolean
852 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
853 {
854   bfd_boolean ret;
855 
856   switch (bfd_get_format (abfd))
857     {
858     case bfd_object:
859       ret = generic_link_add_object_symbols (abfd, info);
860       break;
861     case bfd_archive:
862       ret = (_bfd_generic_link_add_archive_symbols
863 	     (abfd, info, generic_link_check_archive_element));
864       break;
865     default:
866       bfd_set_error (bfd_error_wrong_format);
867       ret = FALSE;
868     }
869 
870   return ret;
871 }
872 
873 /* Add symbols from an object file to the global hash table.  */
874 
875 static bfd_boolean
876 generic_link_add_object_symbols (bfd *abfd,
877 				 struct bfd_link_info *info)
878 {
879   bfd_size_type symcount;
880   struct bfd_symbol **outsyms;
881 
882   if (!bfd_generic_link_read_symbols (abfd))
883     return FALSE;
884   symcount = _bfd_generic_link_get_symcount (abfd);
885   outsyms = _bfd_generic_link_get_symbols (abfd);
886   return generic_link_add_symbol_list (abfd, info, symcount, outsyms);
887 }
888 
889 /* Generic function to add symbols from an archive file to the global
890    hash file.  This function presumes that the archive symbol table
891    has already been read in (this is normally done by the
892    bfd_check_format entry point).  It looks through the archive symbol
893    table for symbols that are undefined or common in the linker global
894    symbol hash table.  When one is found, the CHECKFN argument is used
895    to see if an object file should be included.  This allows targets
896    to customize common symbol behaviour.  CHECKFN should set *PNEEDED
897    to TRUE if the object file should be included, and must also call
898    the bfd_link_info add_archive_element callback function and handle
899    adding the symbols to the global hash table.  CHECKFN must notice
900    if the callback indicates a substitute BFD, and arrange to add
901    those symbols instead if it does so.  CHECKFN should only return
902    FALSE if some sort of error occurs.  */
903 
904 bfd_boolean
905 _bfd_generic_link_add_archive_symbols
906   (bfd *abfd,
907    struct bfd_link_info *info,
908    bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *,
909 			   struct bfd_link_hash_entry *, const char *,
910 			   bfd_boolean *))
911 {
912   bfd_boolean loop;
913   bfd_size_type amt;
914   unsigned char *included;
915 
916   if (! bfd_has_map (abfd))
917     {
918       /* An empty archive is a special case.  */
919       if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
920 	return TRUE;
921       bfd_set_error (bfd_error_no_armap);
922       return FALSE;
923     }
924 
925   amt = bfd_ardata (abfd)->symdef_count;
926   if (amt == 0)
927     return TRUE;
928   amt *= sizeof (*included);
929   included = (unsigned char *) bfd_zmalloc (amt);
930   if (included == NULL)
931     return FALSE;
932 
933   do
934     {
935       carsym *arsyms;
936       carsym *arsym_end;
937       carsym *arsym;
938       unsigned int indx;
939       file_ptr last_ar_offset = -1;
940       bfd_boolean needed = FALSE;
941       bfd *element = NULL;
942 
943       loop = FALSE;
944       arsyms = bfd_ardata (abfd)->symdefs;
945       arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
946       for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
947 	{
948 	  struct bfd_link_hash_entry *h;
949 	  struct bfd_link_hash_entry *undefs_tail;
950 
951 	  if (included[indx])
952 	    continue;
953 	  if (needed && arsym->file_offset == last_ar_offset)
954 	    {
955 	      included[indx] = 1;
956 	      continue;
957 	    }
958 
959 	  if (arsym->name == NULL)
960 	    goto error_return;
961 
962 	  h = bfd_link_hash_lookup (info->hash, arsym->name,
963 				    FALSE, FALSE, TRUE);
964 
965 	  if (h == NULL
966 	      && info->pei386_auto_import
967 	      && CONST_STRNEQ (arsym->name, "__imp_"))
968 	    h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
969 				      FALSE, FALSE, TRUE);
970 	  if (h == NULL)
971 	    continue;
972 
973 	  if (h->type != bfd_link_hash_undefined
974 	      && h->type != bfd_link_hash_common)
975 	    {
976 	      if (h->type != bfd_link_hash_undefweak)
977 		/* Symbol must be defined.  Don't check it again.  */
978 		included[indx] = 1;
979 	      continue;
980 	    }
981 
982 	  if (last_ar_offset != arsym->file_offset)
983 	    {
984 	      last_ar_offset = arsym->file_offset;
985 	      element = _bfd_get_elt_at_filepos (abfd, last_ar_offset);
986 	      if (element == NULL
987 		  || !bfd_check_format (element, bfd_object))
988 		goto error_return;
989 	    }
990 
991 	  undefs_tail = info->hash->undefs_tail;
992 
993 	  /* CHECKFN will see if this element should be included, and
994 	     go ahead and include it if appropriate.  */
995 	  if (! (*checkfn) (element, info, h, arsym->name, &needed))
996 	    goto error_return;
997 
998 	  if (needed)
999 	    {
1000 	      unsigned int mark;
1001 
1002 	      /* Look backward to mark all symbols from this object file
1003 		 which we have already seen in this pass.  */
1004 	      mark = indx;
1005 	      do
1006 		{
1007 		  included[mark] = 1;
1008 		  if (mark == 0)
1009 		    break;
1010 		  --mark;
1011 		}
1012 	      while (arsyms[mark].file_offset == last_ar_offset);
1013 
1014 	      if (undefs_tail != info->hash->undefs_tail)
1015 		loop = TRUE;
1016 	    }
1017 	}
1018     } while (loop);
1019 
1020   free (included);
1021   return TRUE;
1022 
1023  error_return:
1024   free (included);
1025   return FALSE;
1026 }
1027 
1028 /* See if we should include an archive element.  */
1029 
1030 static bfd_boolean
1031 generic_link_check_archive_element (bfd *abfd,
1032 				    struct bfd_link_info *info,
1033 				    struct bfd_link_hash_entry *h,
1034 				    const char *name ATTRIBUTE_UNUSED,
1035 				    bfd_boolean *pneeded)
1036 {
1037   asymbol **pp, **ppend;
1038 
1039   *pneeded = FALSE;
1040 
1041   if (!bfd_generic_link_read_symbols (abfd))
1042     return FALSE;
1043 
1044   pp = _bfd_generic_link_get_symbols (abfd);
1045   ppend = pp + _bfd_generic_link_get_symcount (abfd);
1046   for (; pp < ppend; pp++)
1047     {
1048       asymbol *p;
1049 
1050       p = *pp;
1051 
1052       /* We are only interested in globally visible symbols.  */
1053       if (! bfd_is_com_section (p->section)
1054 	  && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1055 	continue;
1056 
1057       /* We are only interested if we know something about this
1058 	 symbol, and it is undefined or common.  An undefined weak
1059 	 symbol (type bfd_link_hash_undefweak) is not considered to be
1060 	 a reference when pulling files out of an archive.  See the
1061 	 SVR4 ABI, p. 4-27.  */
1062       h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1063 				FALSE, TRUE);
1064       if (h == NULL
1065 	  || (h->type != bfd_link_hash_undefined
1066 	      && h->type != bfd_link_hash_common))
1067 	continue;
1068 
1069       /* P is a symbol we are looking for.  */
1070 
1071       if (! bfd_is_com_section (p->section)
1072 	  || (h->type == bfd_link_hash_undefined
1073 	      && h->u.undef.abfd == NULL))
1074 	{
1075 	  /* P is not a common symbol, or an undefined reference was
1076 	     created from outside BFD such as from a linker -u option.
1077 	     This object file defines the symbol, so pull it in.  */
1078 	  *pneeded = TRUE;
1079 	  if (!(*info->callbacks
1080 		->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1081 					&abfd))
1082 	    return FALSE;
1083 	  /* Potentially, the add_archive_element hook may have set a
1084 	     substitute BFD for us.  */
1085 	  return bfd_link_add_symbols (abfd, info);
1086 	}
1087 
1088       /* P is a common symbol.  */
1089 
1090       if (h->type == bfd_link_hash_undefined)
1091 	{
1092 	  bfd *symbfd;
1093 	  bfd_vma size;
1094 	  unsigned int power;
1095 
1096 	  /* Turn the symbol into a common symbol but do not link in
1097 	     the object file.  This is how a.out works.  Object
1098 	     formats that require different semantics must implement
1099 	     this function differently.  This symbol is already on the
1100 	     undefs list.  We add the section to a common section
1101 	     attached to symbfd to ensure that it is in a BFD which
1102 	     will be linked in.  */
1103 	  symbfd = h->u.undef.abfd;
1104 	  h->type = bfd_link_hash_common;
1105 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1106 	    bfd_hash_allocate (&info->hash->table,
1107 			       sizeof (struct bfd_link_hash_common_entry));
1108 	  if (h->u.c.p == NULL)
1109 	    return FALSE;
1110 
1111 	  size = bfd_asymbol_value (p);
1112 	  h->u.c.size = size;
1113 
1114 	  power = bfd_log2 (size);
1115 	  if (power > 4)
1116 	    power = 4;
1117 	  h->u.c.p->alignment_power = power;
1118 
1119 	  if (p->section == bfd_com_section_ptr)
1120 	    h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1121 	  else
1122 	    h->u.c.p->section = bfd_make_section_old_way (symbfd,
1123 							  p->section->name);
1124 	  h->u.c.p->section->flags |= SEC_ALLOC;
1125 	}
1126       else
1127 	{
1128 	  /* Adjust the size of the common symbol if necessary.  This
1129 	     is how a.out works.  Object formats that require
1130 	     different semantics must implement this function
1131 	     differently.  */
1132 	  if (bfd_asymbol_value (p) > h->u.c.size)
1133 	    h->u.c.size = bfd_asymbol_value (p);
1134 	}
1135     }
1136 
1137   /* This archive element is not needed.  */
1138   return TRUE;
1139 }
1140 
1141 /* Add the symbols from an object file to the global hash table.  ABFD
1142    is the object file.  INFO is the linker information.  SYMBOL_COUNT
1143    is the number of symbols.  SYMBOLS is the list of symbols.  */
1144 
1145 static bfd_boolean
1146 generic_link_add_symbol_list (bfd *abfd,
1147 			      struct bfd_link_info *info,
1148 			      bfd_size_type symbol_count,
1149 			      asymbol **symbols)
1150 {
1151   asymbol **pp, **ppend;
1152 
1153   pp = symbols;
1154   ppend = symbols + symbol_count;
1155   for (; pp < ppend; pp++)
1156     {
1157       asymbol *p;
1158 
1159       p = *pp;
1160 
1161       if ((p->flags & (BSF_INDIRECT
1162 		       | BSF_WARNING
1163 		       | BSF_GLOBAL
1164 		       | BSF_CONSTRUCTOR
1165 		       | BSF_WEAK)) != 0
1166 	  || bfd_is_und_section (bfd_asymbol_section (p))
1167 	  || bfd_is_com_section (bfd_asymbol_section (p))
1168 	  || bfd_is_ind_section (bfd_asymbol_section (p)))
1169 	{
1170 	  const char *name;
1171 	  const char *string;
1172 	  struct generic_link_hash_entry *h;
1173 	  struct bfd_link_hash_entry *bh;
1174 
1175 	  string = name = bfd_asymbol_name (p);
1176 	  if (((p->flags & BSF_INDIRECT) != 0
1177 	       || bfd_is_ind_section (p->section))
1178 	      && pp + 1 < ppend)
1179 	    {
1180 	      pp++;
1181 	      string = bfd_asymbol_name (*pp);
1182 	    }
1183 	  else if ((p->flags & BSF_WARNING) != 0
1184 		   && pp + 1 < ppend)
1185 	    {
1186 	      /* The name of P is actually the warning string, and the
1187 		 next symbol is the one to warn about.  */
1188 	      pp++;
1189 	      name = bfd_asymbol_name (*pp);
1190 	    }
1191 
1192 	  bh = NULL;
1193 	  if (! (_bfd_generic_link_add_one_symbol
1194 		 (info, abfd, name, p->flags, bfd_asymbol_section (p),
1195 		  p->value, string, FALSE, FALSE, &bh)))
1196 	    return FALSE;
1197 	  h = (struct generic_link_hash_entry *) bh;
1198 
1199 	  /* If this is a constructor symbol, and the linker didn't do
1200 	     anything with it, then we want to just pass the symbol
1201 	     through to the output file.  This will happen when
1202 	     linking with -r.  */
1203 	  if ((p->flags & BSF_CONSTRUCTOR) != 0
1204 	      && (h == NULL || h->root.type == bfd_link_hash_new))
1205 	    {
1206 	      p->udata.p = NULL;
1207 	      continue;
1208 	    }
1209 
1210 	  /* Save the BFD symbol so that we don't lose any backend
1211 	     specific information that may be attached to it.  We only
1212 	     want this one if it gives more information than the
1213 	     existing one; we don't want to replace a defined symbol
1214 	     with an undefined one.  This routine may be called with a
1215 	     hash table other than the generic hash table, so we only
1216 	     do this if we are certain that the hash table is a
1217 	     generic one.  */
1218 	  if (info->output_bfd->xvec == abfd->xvec)
1219 	    {
1220 	      if (h->sym == NULL
1221 		  || (! bfd_is_und_section (bfd_asymbol_section (p))
1222 		      && (! bfd_is_com_section (bfd_asymbol_section (p))
1223 			  || bfd_is_und_section (bfd_asymbol_section (h->sym)))))
1224 		{
1225 		  h->sym = p;
1226 		  /* BSF_OLD_COMMON is a hack to support COFF reloc
1227 		     reading, and it should go away when the COFF
1228 		     linker is switched to the new version.  */
1229 		  if (bfd_is_com_section (bfd_asymbol_section (p)))
1230 		    p->flags |= BSF_OLD_COMMON;
1231 		}
1232 	    }
1233 
1234 	  /* Store a back pointer from the symbol to the hash
1235 	     table entry for the benefit of relaxation code until
1236 	     it gets rewritten to not use asymbol structures.
1237 	     Setting this is also used to check whether these
1238 	     symbols were set up by the generic linker.  */
1239 	  p->udata.p = h;
1240 	}
1241     }
1242 
1243   return TRUE;
1244 }
1245 
1246 /* We use a state table to deal with adding symbols from an object
1247    file.  The first index into the state table describes the symbol
1248    from the object file.  The second index into the state table is the
1249    type of the symbol in the hash table.  */
1250 
1251 /* The symbol from the object file is turned into one of these row
1252    values.  */
1253 
1254 enum link_row
1255 {
1256   UNDEF_ROW,		/* Undefined.  */
1257   UNDEFW_ROW,		/* Weak undefined.  */
1258   DEF_ROW,		/* Defined.  */
1259   DEFW_ROW,		/* Weak defined.  */
1260   COMMON_ROW,		/* Common.  */
1261   INDR_ROW,		/* Indirect.  */
1262   WARN_ROW,		/* Warning.  */
1263   SET_ROW		/* Member of set.  */
1264 };
1265 
1266 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1267 #undef FAIL
1268 
1269 /* The actions to take in the state table.  */
1270 
1271 enum link_action
1272 {
1273   FAIL,		/* Abort.  */
1274   UND,		/* Mark symbol undefined.  */
1275   WEAK,		/* Mark symbol weak undefined.  */
1276   DEF,		/* Mark symbol defined.  */
1277   DEFW,		/* Mark symbol weak defined.  */
1278   COM,		/* Mark symbol common.  */
1279   REF,		/* Mark defined symbol referenced.  */
1280   CREF,		/* Possibly warn about common reference to defined symbol.  */
1281   CDEF,		/* Define existing common symbol.  */
1282   NOACT,	/* No action.  */
1283   BIG,		/* Mark symbol common using largest size.  */
1284   MDEF,		/* Multiple definition error.  */
1285   MIND,		/* Multiple indirect symbols.  */
1286   IND,		/* Make indirect symbol.  */
1287   CIND,		/* Make indirect symbol from existing common symbol.  */
1288   SET,		/* Add value to set.  */
1289   MWARN,	/* Make warning symbol.  */
1290   WARN,		/* Warn if referenced, else MWARN.  */
1291   CYCLE,	/* Repeat with symbol pointed to.  */
1292   REFC,		/* Mark indirect symbol referenced and then CYCLE.  */
1293   WARNC		/* Issue warning and then CYCLE.  */
1294 };
1295 
1296 /* The state table itself.  The first index is a link_row and the
1297    second index is a bfd_link_hash_type.  */
1298 
1299 static const enum link_action link_action[8][8] =
1300 {
1301   /* current\prev    new    undef  undefw def    defw   com    indr   warn  */
1302   /* UNDEF_ROW	*/  {UND,   NOACT, UND,   REF,   REF,   NOACT, REFC,  WARNC },
1303   /* UNDEFW_ROW	*/  {WEAK,  NOACT, NOACT, REF,   REF,   NOACT, REFC,  WARNC },
1304   /* DEF_ROW	*/  {DEF,   DEF,   DEF,   MDEF,  DEF,   CDEF,  MDEF,  CYCLE },
1305   /* DEFW_ROW	*/  {DEFW,  DEFW,  DEFW,  NOACT, NOACT, NOACT, NOACT, CYCLE },
1306   /* COMMON_ROW	*/  {COM,   COM,   COM,   CREF,  COM,   BIG,   REFC,  WARNC },
1307   /* INDR_ROW	*/  {IND,   IND,   IND,   MDEF,  IND,   CIND,  MIND,  CYCLE },
1308   /* WARN_ROW   */  {MWARN, WARN,  WARN,  WARN,  WARN,  WARN,  WARN,  NOACT },
1309   /* SET_ROW	*/  {SET,   SET,   SET,   SET,   SET,   SET,   CYCLE, CYCLE }
1310 };
1311 
1312 /* Most of the entries in the LINK_ACTION table are straightforward,
1313    but a few are somewhat subtle.
1314 
1315    A reference to an indirect symbol (UNDEF_ROW/indr or
1316    UNDEFW_ROW/indr) is counted as a reference both to the indirect
1317    symbol and to the symbol the indirect symbol points to.
1318 
1319    A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1320    causes the warning to be issued.
1321 
1322    A common definition of an indirect symbol (COMMON_ROW/indr) is
1323    treated as a multiple definition error.  Likewise for an indirect
1324    definition of a common symbol (INDR_ROW/com).
1325 
1326    An indirect definition of a warning (INDR_ROW/warn) does not cause
1327    the warning to be issued.
1328 
1329    If a warning is created for an indirect symbol (WARN_ROW/indr) no
1330    warning is created for the symbol the indirect symbol points to.
1331 
1332    Adding an entry to a set does not count as a reference to a set,
1333    and no warning is issued (SET_ROW/warn).  */
1334 
1335 /* Return the BFD in which a hash entry has been defined, if known.  */
1336 
1337 static bfd *
1338 hash_entry_bfd (struct bfd_link_hash_entry *h)
1339 {
1340   while (h->type == bfd_link_hash_warning)
1341     h = h->u.i.link;
1342   switch (h->type)
1343     {
1344     default:
1345       return NULL;
1346     case bfd_link_hash_undefined:
1347     case bfd_link_hash_undefweak:
1348       return h->u.undef.abfd;
1349     case bfd_link_hash_defined:
1350     case bfd_link_hash_defweak:
1351       return h->u.def.section->owner;
1352     case bfd_link_hash_common:
1353       return h->u.c.p->section->owner;
1354     }
1355   /*NOTREACHED*/
1356 }
1357 
1358 /* Add a symbol to the global hash table.
1359    ABFD is the BFD the symbol comes from.
1360    NAME is the name of the symbol.
1361    FLAGS is the BSF_* bits associated with the symbol.
1362    SECTION is the section in which the symbol is defined; this may be
1363      bfd_und_section_ptr or bfd_com_section_ptr.
1364    VALUE is the value of the symbol, relative to the section.
1365    STRING is used for either an indirect symbol, in which case it is
1366      the name of the symbol to indirect to, or a warning symbol, in
1367      which case it is the warning string.
1368    COPY is TRUE if NAME or STRING must be copied into locally
1369      allocated memory if they need to be saved.
1370    COLLECT is TRUE if we should automatically collect gcc constructor
1371      or destructor names as collect2 does.
1372    HASHP, if not NULL, is a place to store the created hash table
1373      entry; if *HASHP is not NULL, the caller has already looked up
1374      the hash table entry, and stored it in *HASHP.  */
1375 
1376 bfd_boolean
1377 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1378 				  bfd *abfd,
1379 				  const char *name,
1380 				  flagword flags,
1381 				  asection *section,
1382 				  bfd_vma value,
1383 				  const char *string,
1384 				  bfd_boolean copy,
1385 				  bfd_boolean collect,
1386 				  struct bfd_link_hash_entry **hashp)
1387 {
1388   enum link_row row;
1389   struct bfd_link_hash_entry *h;
1390   struct bfd_link_hash_entry *inh = NULL;
1391   bfd_boolean cycle;
1392 
1393   BFD_ASSERT (section != NULL);
1394 
1395   if (bfd_is_ind_section (section)
1396       || (flags & BSF_INDIRECT) != 0)
1397     {
1398       row = INDR_ROW;
1399       /* Create the indirect symbol here.  This is for the benefit of
1400 	 the plugin "notice" function.
1401 	 STRING is the name of the symbol we want to indirect to.  */
1402       inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1403 					  copy, FALSE);
1404       if (inh == NULL)
1405 	return FALSE;
1406     }
1407   else if ((flags & BSF_WARNING) != 0)
1408     row = WARN_ROW;
1409   else if ((flags & BSF_CONSTRUCTOR) != 0)
1410     row = SET_ROW;
1411   else if (bfd_is_und_section (section))
1412     {
1413       if ((flags & BSF_WEAK) != 0)
1414 	row = UNDEFW_ROW;
1415       else
1416 	row = UNDEF_ROW;
1417     }
1418   else if ((flags & BSF_WEAK) != 0)
1419     row = DEFW_ROW;
1420   else if (bfd_is_com_section (section))
1421     {
1422       row = COMMON_ROW;
1423       if (!bfd_link_relocatable (info)
1424 	  && name[0] == '_'
1425 	  && name[1] == '_'
1426 	  && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
1427 	_bfd_error_handler
1428 	  (_("%pB: plugin needed to handle lto object"), abfd);
1429     }
1430   else
1431     row = DEF_ROW;
1432 
1433   if (hashp != NULL && *hashp != NULL)
1434     h = *hashp;
1435   else
1436     {
1437       if (row == UNDEF_ROW || row == UNDEFW_ROW)
1438 	h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1439       else
1440 	h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1441       if (h == NULL)
1442 	{
1443 	  if (hashp != NULL)
1444 	    *hashp = NULL;
1445 	  return FALSE;
1446 	}
1447     }
1448 
1449   if (info->notice_all
1450       || (info->notice_hash != NULL
1451 	  && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1452     {
1453       if (! (*info->callbacks->notice) (info, h, inh,
1454 					abfd, section, value, flags))
1455 	return FALSE;
1456     }
1457 
1458   if (hashp != NULL)
1459     *hashp = h;
1460 
1461   do
1462     {
1463       enum link_action action;
1464       int prev;
1465 
1466       prev = h->type;
1467       /* Treat symbols defined by early linker script pass as undefined.  */
1468       if (h->ldscript_def)
1469 	prev = bfd_link_hash_undefined;
1470       cycle = FALSE;
1471       action = link_action[(int) row][prev];
1472       switch (action)
1473 	{
1474 	case FAIL:
1475 	  abort ();
1476 
1477 	case NOACT:
1478 	  /* Do nothing.  */
1479 	  break;
1480 
1481 	case UND:
1482 	  /* Make a new undefined symbol.  */
1483 	  h->type = bfd_link_hash_undefined;
1484 	  h->u.undef.abfd = abfd;
1485 	  bfd_link_add_undef (info->hash, h);
1486 	  break;
1487 
1488 	case WEAK:
1489 	  /* Make a new weak undefined symbol.  */
1490 	  h->type = bfd_link_hash_undefweak;
1491 	  h->u.undef.abfd = abfd;
1492 	  break;
1493 
1494 	case CDEF:
1495 	  /* We have found a definition for a symbol which was
1496 	     previously common.  */
1497 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1498 	  (*info->callbacks->multiple_common) (info, h, abfd,
1499 					       bfd_link_hash_defined, 0);
1500 	  /* Fall through.  */
1501 	case DEF:
1502 	case DEFW:
1503 	  {
1504 	    enum bfd_link_hash_type oldtype;
1505 
1506 	    /* Define a symbol.  */
1507 	    oldtype = h->type;
1508 	    if (action == DEFW)
1509 	      h->type = bfd_link_hash_defweak;
1510 	    else
1511 	      h->type = bfd_link_hash_defined;
1512 	    h->u.def.section = section;
1513 	    h->u.def.value = value;
1514 	    h->linker_def = 0;
1515 	    h->ldscript_def = 0;
1516 
1517 	    /* If we have been asked to, we act like collect2 and
1518 	       identify all functions that might be global
1519 	       constructors and destructors and pass them up in a
1520 	       callback.  We only do this for certain object file
1521 	       types, since many object file types can handle this
1522 	       automatically.  */
1523 	    if (collect && name[0] == '_')
1524 	      {
1525 		const char *s;
1526 
1527 		/* A constructor or destructor name starts like this:
1528 		   _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1529 		   the second are the same character (we accept any
1530 		   character there, in case a new object file format
1531 		   comes along with even worse naming restrictions).  */
1532 
1533 #define CONS_PREFIX "GLOBAL_"
1534 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1535 
1536 		s = name + 1;
1537 		while (*s == '_')
1538 		  ++s;
1539 		if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1540 		  {
1541 		    char c;
1542 
1543 		    c = s[CONS_PREFIX_LEN + 1];
1544 		    if ((c == 'I' || c == 'D')
1545 			&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1546 		      {
1547 			/* If this is a definition of a symbol which
1548 			   was previously weakly defined, we are in
1549 			   trouble.  We have already added a
1550 			   constructor entry for the weak defined
1551 			   symbol, and now we are trying to add one
1552 			   for the new symbol.  Fortunately, this case
1553 			   should never arise in practice.  */
1554 			if (oldtype == bfd_link_hash_defweak)
1555 			  abort ();
1556 
1557 			(*info->callbacks->constructor) (info, c == 'I',
1558 							 h->root.string, abfd,
1559 							 section, value);
1560 		      }
1561 		  }
1562 	      }
1563 	  }
1564 
1565 	  break;
1566 
1567 	case COM:
1568 	  /* We have found a common definition for a symbol.  */
1569 	  if (h->type == bfd_link_hash_new)
1570 	    bfd_link_add_undef (info->hash, h);
1571 	  h->type = bfd_link_hash_common;
1572 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1573 	    bfd_hash_allocate (&info->hash->table,
1574 			       sizeof (struct bfd_link_hash_common_entry));
1575 	  if (h->u.c.p == NULL)
1576 	    return FALSE;
1577 
1578 	  h->u.c.size = value;
1579 
1580 	  /* Select a default alignment based on the size.  This may
1581 	     be overridden by the caller.  */
1582 	  {
1583 	    unsigned int power;
1584 
1585 	    power = bfd_log2 (value);
1586 	    if (power > 4)
1587 	      power = 4;
1588 	    h->u.c.p->alignment_power = power;
1589 	  }
1590 
1591 	  /* The section of a common symbol is only used if the common
1592 	     symbol is actually allocated.  It basically provides a
1593 	     hook for the linker script to decide which output section
1594 	     the common symbols should be put in.  In most cases, the
1595 	     section of a common symbol will be bfd_com_section_ptr,
1596 	     the code here will choose a common symbol section named
1597 	     "COMMON", and the linker script will contain *(COMMON) in
1598 	     the appropriate place.  A few targets use separate common
1599 	     sections for small symbols, and they require special
1600 	     handling.  */
1601 	  if (section == bfd_com_section_ptr)
1602 	    {
1603 	      h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1604 	      h->u.c.p->section->flags |= SEC_ALLOC;
1605 	    }
1606 	  else if (section->owner != abfd)
1607 	    {
1608 	      h->u.c.p->section = bfd_make_section_old_way (abfd,
1609 							    section->name);
1610 	      h->u.c.p->section->flags |= SEC_ALLOC;
1611 	    }
1612 	  else
1613 	    h->u.c.p->section = section;
1614 	  h->linker_def = 0;
1615 	  h->ldscript_def = 0;
1616 	  break;
1617 
1618 	case REF:
1619 	  /* A reference to a defined symbol.  */
1620 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1621 	    h->u.undef.next = h;
1622 	  break;
1623 
1624 	case BIG:
1625 	  /* We have found a common definition for a symbol which
1626 	     already had a common definition.  Use the maximum of the
1627 	     two sizes, and use the section required by the larger symbol.  */
1628 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1629 	  (*info->callbacks->multiple_common) (info, h, abfd,
1630 					       bfd_link_hash_common, value);
1631 	  if (value > h->u.c.size)
1632 	    {
1633 	      unsigned int power;
1634 
1635 	      h->u.c.size = value;
1636 
1637 	      /* Select a default alignment based on the size.  This may
1638 		 be overridden by the caller.  */
1639 	      power = bfd_log2 (value);
1640 	      if (power > 4)
1641 		power = 4;
1642 	      h->u.c.p->alignment_power = power;
1643 
1644 	      /* Some systems have special treatment for small commons,
1645 		 hence we want to select the section used by the larger
1646 		 symbol.  This makes sure the symbol does not go in a
1647 		 small common section if it is now too large.  */
1648 	      if (section == bfd_com_section_ptr)
1649 		{
1650 		  h->u.c.p->section
1651 		    = bfd_make_section_old_way (abfd, "COMMON");
1652 		  h->u.c.p->section->flags |= SEC_ALLOC;
1653 		}
1654 	      else if (section->owner != abfd)
1655 		{
1656 		  h->u.c.p->section
1657 		    = bfd_make_section_old_way (abfd, section->name);
1658 		  h->u.c.p->section->flags |= SEC_ALLOC;
1659 		}
1660 	      else
1661 		h->u.c.p->section = section;
1662 	    }
1663 	  break;
1664 
1665 	case CREF:
1666 	  /* We have found a common definition for a symbol which
1667 	     was already defined.  */
1668 	  (*info->callbacks->multiple_common) (info, h, abfd,
1669 					       bfd_link_hash_common, value);
1670 	  break;
1671 
1672 	case MIND:
1673 	  /* Multiple indirect symbols.  This is OK if they both point
1674 	     to the same symbol.  */
1675 	  if (strcmp (h->u.i.link->root.string, string) == 0)
1676 	    break;
1677 	  /* Fall through.  */
1678 	case MDEF:
1679 	  /* Handle a multiple definition.  */
1680 	  (*info->callbacks->multiple_definition) (info, h,
1681 						   abfd, section, value);
1682 	  break;
1683 
1684 	case CIND:
1685 	  /* Create an indirect symbol from an existing common symbol.  */
1686 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1687 	  (*info->callbacks->multiple_common) (info, h, abfd,
1688 					       bfd_link_hash_indirect, 0);
1689 	  /* Fall through.  */
1690 	case IND:
1691 	  if (inh->type == bfd_link_hash_indirect
1692 	      && inh->u.i.link == h)
1693 	    {
1694 	      _bfd_error_handler
1695 		/* xgettext:c-format */
1696 		(_("%pB: indirect symbol `%s' to `%s' is a loop"),
1697 		 abfd, name, string);
1698 	      bfd_set_error (bfd_error_invalid_operation);
1699 	      return FALSE;
1700 	    }
1701 	  if (inh->type == bfd_link_hash_new)
1702 	    {
1703 	      inh->type = bfd_link_hash_undefined;
1704 	      inh->u.undef.abfd = abfd;
1705 	      bfd_link_add_undef (info->hash, inh);
1706 	    }
1707 
1708 	  /* If the indirect symbol has been referenced, we need to
1709 	     push the reference down to the symbol we are referencing.  */
1710 	  if (h->type != bfd_link_hash_new)
1711 	    {
1712 	      /* ??? If inh->type == bfd_link_hash_undefweak this
1713 		 converts inh to bfd_link_hash_undefined.  */
1714 	      row = UNDEF_ROW;
1715 	      cycle = TRUE;
1716 	    }
1717 
1718 	  h->type = bfd_link_hash_indirect;
1719 	  h->u.i.link = inh;
1720 	  /* Not setting h = h->u.i.link here means that when cycle is
1721 	     set above we'll always go to REFC, and then cycle again
1722 	     to the indirected symbol.  This means that any successful
1723 	     change of an existing symbol to indirect counts as a
1724 	     reference.  ??? That may not be correct when the existing
1725 	     symbol was defweak.  */
1726 	  break;
1727 
1728 	case SET:
1729 	  /* Add an entry to a set.  */
1730 	  (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1731 					  abfd, section, value);
1732 	  break;
1733 
1734 	case WARNC:
1735 	  /* Issue a warning and cycle, except when the reference is
1736 	     in LTO IR.  */
1737 	  if (h->u.i.warning != NULL
1738 	      && (abfd->flags & BFD_PLUGIN) == 0)
1739 	    {
1740 	      (*info->callbacks->warning) (info, h->u.i.warning,
1741 					   h->root.string, abfd, NULL, 0);
1742 	      /* Only issue a warning once.  */
1743 	      h->u.i.warning = NULL;
1744 	    }
1745 	  /* Fall through.  */
1746 	case CYCLE:
1747 	  /* Try again with the referenced symbol.  */
1748 	  h = h->u.i.link;
1749 	  cycle = TRUE;
1750 	  break;
1751 
1752 	case REFC:
1753 	  /* A reference to an indirect symbol.  */
1754 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1755 	    h->u.undef.next = h;
1756 	  h = h->u.i.link;
1757 	  cycle = TRUE;
1758 	  break;
1759 
1760 	case WARN:
1761 	  /* Warn if this symbol has been referenced already from non-IR,
1762 	     otherwise add a warning.  */
1763 	  if ((!info->lto_plugin_active
1764 	       && (h->u.undef.next != NULL || info->hash->undefs_tail == h))
1765 	      || h->non_ir_ref_regular
1766 	      || h->non_ir_ref_dynamic)
1767 	    {
1768 	      (*info->callbacks->warning) (info, string, h->root.string,
1769 					   hash_entry_bfd (h), NULL, 0);
1770 	      break;
1771 	    }
1772 	  /* Fall through.  */
1773 	case MWARN:
1774 	  /* Make a warning symbol.  */
1775 	  {
1776 	    struct bfd_link_hash_entry *sub;
1777 
1778 	    /* STRING is the warning to give.  */
1779 	    sub = ((struct bfd_link_hash_entry *)
1780 		   ((*info->hash->table.newfunc)
1781 		    (NULL, &info->hash->table, h->root.string)));
1782 	    if (sub == NULL)
1783 	      return FALSE;
1784 	    *sub = *h;
1785 	    sub->type = bfd_link_hash_warning;
1786 	    sub->u.i.link = h;
1787 	    if (! copy)
1788 	      sub->u.i.warning = string;
1789 	    else
1790 	      {
1791 		char *w;
1792 		size_t len = strlen (string) + 1;
1793 
1794 		w = (char *) bfd_hash_allocate (&info->hash->table, len);
1795 		if (w == NULL)
1796 		  return FALSE;
1797 		memcpy (w, string, len);
1798 		sub->u.i.warning = w;
1799 	      }
1800 
1801 	    bfd_hash_replace (&info->hash->table,
1802 			      (struct bfd_hash_entry *) h,
1803 			      (struct bfd_hash_entry *) sub);
1804 	    if (hashp != NULL)
1805 	      *hashp = sub;
1806 	  }
1807 	  break;
1808 	}
1809     }
1810   while (cycle);
1811 
1812   return TRUE;
1813 }
1814 
1815 /* Generic final link routine.  */
1816 
1817 bfd_boolean
1818 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1819 {
1820   bfd *sub;
1821   asection *o;
1822   struct bfd_link_order *p;
1823   size_t outsymalloc;
1824   struct generic_write_global_symbol_info wginfo;
1825 
1826   abfd->outsymbols = NULL;
1827   abfd->symcount = 0;
1828   outsymalloc = 0;
1829 
1830   /* Mark all sections which will be included in the output file.  */
1831   for (o = abfd->sections; o != NULL; o = o->next)
1832     for (p = o->map_head.link_order; p != NULL; p = p->next)
1833       if (p->type == bfd_indirect_link_order)
1834 	p->u.indirect.section->linker_mark = TRUE;
1835 
1836   /* Build the output symbol table.  */
1837   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
1838     if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1839       return FALSE;
1840 
1841   /* Accumulate the global symbols.  */
1842   wginfo.info = info;
1843   wginfo.output_bfd = abfd;
1844   wginfo.psymalloc = &outsymalloc;
1845   _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1846 				   _bfd_generic_link_write_global_symbol,
1847 				   &wginfo);
1848 
1849   /* Make sure we have a trailing NULL pointer on OUTSYMBOLS.  We
1850      shouldn't really need one, since we have SYMCOUNT, but some old
1851      code still expects one.  */
1852   if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1853     return FALSE;
1854 
1855   if (bfd_link_relocatable (info))
1856     {
1857       /* Allocate space for the output relocs for each section.  */
1858       for (o = abfd->sections; o != NULL; o = o->next)
1859 	{
1860 	  o->reloc_count = 0;
1861 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
1862 	    {
1863 	      if (p->type == bfd_section_reloc_link_order
1864 		  || p->type == bfd_symbol_reloc_link_order)
1865 		++o->reloc_count;
1866 	      else if (p->type == bfd_indirect_link_order)
1867 		{
1868 		  asection *input_section;
1869 		  bfd *input_bfd;
1870 		  long relsize;
1871 		  arelent **relocs;
1872 		  asymbol **symbols;
1873 		  long reloc_count;
1874 
1875 		  input_section = p->u.indirect.section;
1876 		  input_bfd = input_section->owner;
1877 		  relsize = bfd_get_reloc_upper_bound (input_bfd,
1878 						       input_section);
1879 		  if (relsize < 0)
1880 		    return FALSE;
1881 		  relocs = (arelent **) bfd_malloc (relsize);
1882 		  if (!relocs && relsize != 0)
1883 		    return FALSE;
1884 		  symbols = _bfd_generic_link_get_symbols (input_bfd);
1885 		  reloc_count = bfd_canonicalize_reloc (input_bfd,
1886 							input_section,
1887 							relocs,
1888 							symbols);
1889 		  free (relocs);
1890 		  if (reloc_count < 0)
1891 		    return FALSE;
1892 		  BFD_ASSERT ((unsigned long) reloc_count
1893 			      == input_section->reloc_count);
1894 		  o->reloc_count += reloc_count;
1895 		}
1896 	    }
1897 	  if (o->reloc_count > 0)
1898 	    {
1899 	      bfd_size_type amt;
1900 
1901 	      amt = o->reloc_count;
1902 	      amt *= sizeof (arelent *);
1903 	      o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
1904 	      if (!o->orelocation)
1905 		return FALSE;
1906 	      o->flags |= SEC_RELOC;
1907 	      /* Reset the count so that it can be used as an index
1908 		 when putting in the output relocs.  */
1909 	      o->reloc_count = 0;
1910 	    }
1911 	}
1912     }
1913 
1914   /* Handle all the link order information for the sections.  */
1915   for (o = abfd->sections; o != NULL; o = o->next)
1916     {
1917       for (p = o->map_head.link_order; p != NULL; p = p->next)
1918 	{
1919 	  switch (p->type)
1920 	    {
1921 	    case bfd_section_reloc_link_order:
1922 	    case bfd_symbol_reloc_link_order:
1923 	      if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1924 		return FALSE;
1925 	      break;
1926 	    case bfd_indirect_link_order:
1927 	      if (! default_indirect_link_order (abfd, info, o, p, TRUE))
1928 		return FALSE;
1929 	      break;
1930 	    default:
1931 	      if (! _bfd_default_link_order (abfd, info, o, p))
1932 		return FALSE;
1933 	      break;
1934 	    }
1935 	}
1936     }
1937 
1938   return TRUE;
1939 }
1940 
1941 /* Add an output symbol to the output BFD.  */
1942 
1943 static bfd_boolean
1944 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
1945 {
1946   if (bfd_get_symcount (output_bfd) >= *psymalloc)
1947     {
1948       asymbol **newsyms;
1949       bfd_size_type amt;
1950 
1951       if (*psymalloc == 0)
1952 	*psymalloc = 124;
1953       else
1954 	*psymalloc *= 2;
1955       amt = *psymalloc;
1956       amt *= sizeof (asymbol *);
1957       newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
1958       if (newsyms == NULL)
1959 	return FALSE;
1960       output_bfd->outsymbols = newsyms;
1961     }
1962 
1963   output_bfd->outsymbols[output_bfd->symcount] = sym;
1964   if (sym != NULL)
1965     ++output_bfd->symcount;
1966 
1967   return TRUE;
1968 }
1969 
1970 /* Handle the symbols for an input BFD.  */
1971 
1972 bfd_boolean
1973 _bfd_generic_link_output_symbols (bfd *output_bfd,
1974 				  bfd *input_bfd,
1975 				  struct bfd_link_info *info,
1976 				  size_t *psymalloc)
1977 {
1978   asymbol **sym_ptr;
1979   asymbol **sym_end;
1980 
1981   if (!bfd_generic_link_read_symbols (input_bfd))
1982     return FALSE;
1983 
1984   /* Create a filename symbol if we are supposed to.  */
1985   if (info->create_object_symbols_section != NULL)
1986     {
1987       asection *sec;
1988 
1989       for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
1990 	{
1991 	  if (sec->output_section == info->create_object_symbols_section)
1992 	    {
1993 	      asymbol *newsym;
1994 
1995 	      newsym = bfd_make_empty_symbol (input_bfd);
1996 	      if (!newsym)
1997 		return FALSE;
1998 	      newsym->name = bfd_get_filename (input_bfd);
1999 	      newsym->value = 0;
2000 	      newsym->flags = BSF_LOCAL | BSF_FILE;
2001 	      newsym->section = sec;
2002 
2003 	      if (! generic_add_output_symbol (output_bfd, psymalloc,
2004 					       newsym))
2005 		return FALSE;
2006 
2007 	      break;
2008 	    }
2009 	}
2010     }
2011 
2012   /* Adjust the values of the globally visible symbols, and write out
2013      local symbols.  */
2014   sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2015   sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2016   for (; sym_ptr < sym_end; sym_ptr++)
2017     {
2018       asymbol *sym;
2019       struct generic_link_hash_entry *h;
2020       bfd_boolean output;
2021 
2022       h = NULL;
2023       sym = *sym_ptr;
2024       if ((sym->flags & (BSF_INDIRECT
2025 			 | BSF_WARNING
2026 			 | BSF_GLOBAL
2027 			 | BSF_CONSTRUCTOR
2028 			 | BSF_WEAK)) != 0
2029 	  || bfd_is_und_section (bfd_asymbol_section (sym))
2030 	  || bfd_is_com_section (bfd_asymbol_section (sym))
2031 	  || bfd_is_ind_section (bfd_asymbol_section (sym)))
2032 	{
2033 	  if (sym->udata.p != NULL)
2034 	    h = (struct generic_link_hash_entry *) sym->udata.p;
2035 	  else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2036 	    {
2037 	      /* This case normally means that the main linker code
2038 		 deliberately ignored this constructor symbol.  We
2039 		 should just pass it through.  This will screw up if
2040 		 the constructor symbol is from a different,
2041 		 non-generic, object file format, but the case will
2042 		 only arise when linking with -r, which will probably
2043 		 fail anyhow, since there will be no way to represent
2044 		 the relocs in the output format being used.  */
2045 	      h = NULL;
2046 	    }
2047 	  else if (bfd_is_und_section (bfd_asymbol_section (sym)))
2048 	    h = ((struct generic_link_hash_entry *)
2049 		 bfd_wrapped_link_hash_lookup (output_bfd, info,
2050 					       bfd_asymbol_name (sym),
2051 					       FALSE, FALSE, TRUE));
2052 	  else
2053 	    h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2054 					       bfd_asymbol_name (sym),
2055 					       FALSE, FALSE, TRUE);
2056 
2057 	  if (h != NULL)
2058 	    {
2059 	      /* Force all references to this symbol to point to
2060 		 the same area in memory.  It is possible that
2061 		 this routine will be called with a hash table
2062 		 other than a generic hash table, so we double
2063 		 check that.  */
2064 	      if (info->output_bfd->xvec == input_bfd->xvec)
2065 		{
2066 		  if (h->sym != NULL)
2067 		    *sym_ptr = sym = h->sym;
2068 		}
2069 
2070 	      switch (h->root.type)
2071 		{
2072 		default:
2073 		case bfd_link_hash_new:
2074 		  abort ();
2075 		case bfd_link_hash_undefined:
2076 		  break;
2077 		case bfd_link_hash_undefweak:
2078 		  sym->flags |= BSF_WEAK;
2079 		  break;
2080 		case bfd_link_hash_indirect:
2081 		  h = (struct generic_link_hash_entry *) h->root.u.i.link;
2082 		  /* fall through */
2083 		case bfd_link_hash_defined:
2084 		  sym->flags |= BSF_GLOBAL;
2085 		  sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR);
2086 		  sym->value = h->root.u.def.value;
2087 		  sym->section = h->root.u.def.section;
2088 		  break;
2089 		case bfd_link_hash_defweak:
2090 		  sym->flags |= BSF_WEAK;
2091 		  sym->flags &=~ BSF_CONSTRUCTOR;
2092 		  sym->value = h->root.u.def.value;
2093 		  sym->section = h->root.u.def.section;
2094 		  break;
2095 		case bfd_link_hash_common:
2096 		  sym->value = h->root.u.c.size;
2097 		  sym->flags |= BSF_GLOBAL;
2098 		  if (! bfd_is_com_section (sym->section))
2099 		    {
2100 		      BFD_ASSERT (bfd_is_und_section (sym->section));
2101 		      sym->section = bfd_com_section_ptr;
2102 		    }
2103 		  /* We do not set the section of the symbol to
2104 		     h->root.u.c.p->section.  That value was saved so
2105 		     that we would know where to allocate the symbol
2106 		     if it was defined.  In this case the type is
2107 		     still bfd_link_hash_common, so we did not define
2108 		     it, so we do not want to use that section.  */
2109 		  break;
2110 		}
2111 	    }
2112 	}
2113 
2114       if ((sym->flags & BSF_KEEP) == 0
2115 	  && (info->strip == strip_all
2116 	      || (info->strip == strip_some
2117 		  && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2118 				      FALSE, FALSE) == NULL)))
2119 	output = FALSE;
2120       else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0)
2121 	{
2122 	  /* If this symbol is marked as occurring now, rather
2123 	     than at the end, output it now.  This is used for
2124 	     COFF C_EXT FCN symbols.  FIXME: There must be a
2125 	     better way.  */
2126 	  if (bfd_asymbol_bfd (sym) == input_bfd
2127 	      && (sym->flags & BSF_NOT_AT_END) != 0)
2128 	    output = TRUE;
2129 	  else
2130 	    output = FALSE;
2131 	}
2132       else if ((sym->flags & BSF_KEEP) != 0)
2133 	output = TRUE;
2134       else if (bfd_is_ind_section (sym->section))
2135 	output = FALSE;
2136       else if ((sym->flags & BSF_DEBUGGING) != 0)
2137 	{
2138 	  if (info->strip == strip_none)
2139 	    output = TRUE;
2140 	  else
2141 	    output = FALSE;
2142 	}
2143       else if (bfd_is_und_section (sym->section)
2144 	       || bfd_is_com_section (sym->section))
2145 	output = FALSE;
2146       else if ((sym->flags & BSF_LOCAL) != 0)
2147 	{
2148 	  if ((sym->flags & BSF_WARNING) != 0)
2149 	    output = FALSE;
2150 	  else
2151 	    {
2152 	      switch (info->discard)
2153 		{
2154 		default:
2155 		case discard_all:
2156 		  output = FALSE;
2157 		  break;
2158 		case discard_sec_merge:
2159 		  output = TRUE;
2160 		  if (bfd_link_relocatable (info)
2161 		      || ! (sym->section->flags & SEC_MERGE))
2162 		    break;
2163 		  /* FALLTHROUGH */
2164 		case discard_l:
2165 		  if (bfd_is_local_label (input_bfd, sym))
2166 		    output = FALSE;
2167 		  else
2168 		    output = TRUE;
2169 		  break;
2170 		case discard_none:
2171 		  output = TRUE;
2172 		  break;
2173 		}
2174 	    }
2175 	}
2176       else if ((sym->flags & BSF_CONSTRUCTOR))
2177 	{
2178 	  if (info->strip != strip_all)
2179 	    output = TRUE;
2180 	  else
2181 	    output = FALSE;
2182 	}
2183       else if (sym->flags == 0
2184 	       && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2185 	/* LTO doesn't set symbol information.  We get here with the
2186 	   generic linker for a symbol that was "common" but no longer
2187 	   needs to be global.  */
2188 	output = FALSE;
2189       else
2190 	abort ();
2191 
2192       /* If this symbol is in a section which is not being included
2193 	 in the output file, then we don't want to output the
2194 	 symbol.  */
2195       if (!bfd_is_abs_section (sym->section)
2196 	  && bfd_section_removed_from_list (output_bfd,
2197 					    sym->section->output_section))
2198 	output = FALSE;
2199 
2200       if (output)
2201 	{
2202 	  if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2203 	    return FALSE;
2204 	  if (h != NULL)
2205 	    h->written = TRUE;
2206 	}
2207     }
2208 
2209   return TRUE;
2210 }
2211 
2212 /* Set the section and value of a generic BFD symbol based on a linker
2213    hash table entry.  */
2214 
2215 static void
2216 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2217 {
2218   switch (h->type)
2219     {
2220     default:
2221       abort ();
2222       break;
2223     case bfd_link_hash_new:
2224       /* This can happen when a constructor symbol is seen but we are
2225 	 not building constructors.  */
2226       if (sym->section != NULL)
2227 	{
2228 	  BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2229 	}
2230       else
2231 	{
2232 	  sym->flags |= BSF_CONSTRUCTOR;
2233 	  sym->section = bfd_abs_section_ptr;
2234 	  sym->value = 0;
2235 	}
2236       break;
2237     case bfd_link_hash_undefined:
2238       sym->section = bfd_und_section_ptr;
2239       sym->value = 0;
2240       break;
2241     case bfd_link_hash_undefweak:
2242       sym->section = bfd_und_section_ptr;
2243       sym->value = 0;
2244       sym->flags |= BSF_WEAK;
2245       break;
2246     case bfd_link_hash_defined:
2247       sym->section = h->u.def.section;
2248       sym->value = h->u.def.value;
2249       break;
2250     case bfd_link_hash_defweak:
2251       sym->flags |= BSF_WEAK;
2252       sym->section = h->u.def.section;
2253       sym->value = h->u.def.value;
2254       break;
2255     case bfd_link_hash_common:
2256       sym->value = h->u.c.size;
2257       if (sym->section == NULL)
2258 	sym->section = bfd_com_section_ptr;
2259       else if (! bfd_is_com_section (sym->section))
2260 	{
2261 	  BFD_ASSERT (bfd_is_und_section (sym->section));
2262 	  sym->section = bfd_com_section_ptr;
2263 	}
2264       /* Do not set the section; see _bfd_generic_link_output_symbols.  */
2265       break;
2266     case bfd_link_hash_indirect:
2267     case bfd_link_hash_warning:
2268       /* FIXME: What should we do here?  */
2269       break;
2270     }
2271 }
2272 
2273 /* Write out a global symbol, if it hasn't already been written out.
2274    This is called for each symbol in the hash table.  */
2275 
2276 bfd_boolean
2277 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2278 				       void *data)
2279 {
2280   struct generic_write_global_symbol_info *wginfo =
2281       (struct generic_write_global_symbol_info *) data;
2282   asymbol *sym;
2283 
2284   if (h->written)
2285     return TRUE;
2286 
2287   h->written = TRUE;
2288 
2289   if (wginfo->info->strip == strip_all
2290       || (wginfo->info->strip == strip_some
2291 	  && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2292 			      FALSE, FALSE) == NULL))
2293     return TRUE;
2294 
2295   if (h->sym != NULL)
2296     sym = h->sym;
2297   else
2298     {
2299       sym = bfd_make_empty_symbol (wginfo->output_bfd);
2300       if (!sym)
2301 	return FALSE;
2302       sym->name = h->root.root.string;
2303       sym->flags = 0;
2304     }
2305 
2306   set_symbol_from_hash (sym, &h->root);
2307 
2308   sym->flags |= BSF_GLOBAL;
2309 
2310   if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2311 				   sym))
2312     {
2313       /* FIXME: No way to return failure.  */
2314       abort ();
2315     }
2316 
2317   return TRUE;
2318 }
2319 
2320 /* Create a relocation.  */
2321 
2322 bfd_boolean
2323 _bfd_generic_reloc_link_order (bfd *abfd,
2324 			       struct bfd_link_info *info,
2325 			       asection *sec,
2326 			       struct bfd_link_order *link_order)
2327 {
2328   arelent *r;
2329 
2330   if (! bfd_link_relocatable (info))
2331     abort ();
2332   if (sec->orelocation == NULL)
2333     abort ();
2334 
2335   r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2336   if (r == NULL)
2337     return FALSE;
2338 
2339   r->address = link_order->offset;
2340   r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2341   if (r->howto == 0)
2342     {
2343       bfd_set_error (bfd_error_bad_value);
2344       return FALSE;
2345     }
2346 
2347   /* Get the symbol to use for the relocation.  */
2348   if (link_order->type == bfd_section_reloc_link_order)
2349     r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2350   else
2351     {
2352       struct generic_link_hash_entry *h;
2353 
2354       h = ((struct generic_link_hash_entry *)
2355 	   bfd_wrapped_link_hash_lookup (abfd, info,
2356 					 link_order->u.reloc.p->u.name,
2357 					 FALSE, FALSE, TRUE));
2358       if (h == NULL
2359 	  || ! h->written)
2360 	{
2361 	  (*info->callbacks->unattached_reloc)
2362 	    (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
2363 	  bfd_set_error (bfd_error_bad_value);
2364 	  return FALSE;
2365 	}
2366       r->sym_ptr_ptr = &h->sym;
2367     }
2368 
2369   /* If this is an inplace reloc, write the addend to the object file.
2370      Otherwise, store it in the reloc addend.  */
2371   if (! r->howto->partial_inplace)
2372     r->addend = link_order->u.reloc.p->addend;
2373   else
2374     {
2375       bfd_size_type size;
2376       bfd_reloc_status_type rstat;
2377       bfd_byte *buf;
2378       bfd_boolean ok;
2379       file_ptr loc;
2380 
2381       size = bfd_get_reloc_size (r->howto);
2382       buf = (bfd_byte *) bfd_zmalloc (size);
2383       if (buf == NULL && size != 0)
2384 	return FALSE;
2385       rstat = _bfd_relocate_contents (r->howto, abfd,
2386 				      (bfd_vma) link_order->u.reloc.p->addend,
2387 				      buf);
2388       switch (rstat)
2389 	{
2390 	case bfd_reloc_ok:
2391 	  break;
2392 	default:
2393 	case bfd_reloc_outofrange:
2394 	  abort ();
2395 	case bfd_reloc_overflow:
2396 	  (*info->callbacks->reloc_overflow)
2397 	    (info, NULL,
2398 	     (link_order->type == bfd_section_reloc_link_order
2399 	      ? bfd_section_name (link_order->u.reloc.p->u.section)
2400 	      : link_order->u.reloc.p->u.name),
2401 	     r->howto->name, link_order->u.reloc.p->addend,
2402 	     NULL, NULL, 0);
2403 	  break;
2404 	}
2405       loc = link_order->offset * bfd_octets_per_byte (abfd, sec);
2406       ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2407       free (buf);
2408       if (! ok)
2409 	return FALSE;
2410 
2411       r->addend = 0;
2412     }
2413 
2414   sec->orelocation[sec->reloc_count] = r;
2415   ++sec->reloc_count;
2416 
2417   return TRUE;
2418 }
2419 
2420 /* Allocate a new link_order for a section.  */
2421 
2422 struct bfd_link_order *
2423 bfd_new_link_order (bfd *abfd, asection *section)
2424 {
2425   size_t amt = sizeof (struct bfd_link_order);
2426   struct bfd_link_order *new_lo;
2427 
2428   new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2429   if (!new_lo)
2430     return NULL;
2431 
2432   new_lo->type = bfd_undefined_link_order;
2433 
2434   if (section->map_tail.link_order != NULL)
2435     section->map_tail.link_order->next = new_lo;
2436   else
2437     section->map_head.link_order = new_lo;
2438   section->map_tail.link_order = new_lo;
2439 
2440   return new_lo;
2441 }
2442 
2443 /* Default link order processing routine.  Note that we can not handle
2444    the reloc_link_order types here, since they depend upon the details
2445    of how the particular backends generates relocs.  */
2446 
2447 bfd_boolean
2448 _bfd_default_link_order (bfd *abfd,
2449 			 struct bfd_link_info *info,
2450 			 asection *sec,
2451 			 struct bfd_link_order *link_order)
2452 {
2453   switch (link_order->type)
2454     {
2455     case bfd_undefined_link_order:
2456     case bfd_section_reloc_link_order:
2457     case bfd_symbol_reloc_link_order:
2458     default:
2459       abort ();
2460     case bfd_indirect_link_order:
2461       return default_indirect_link_order (abfd, info, sec, link_order,
2462 					  FALSE);
2463     case bfd_data_link_order:
2464       return default_data_link_order (abfd, info, sec, link_order);
2465     }
2466 }
2467 
2468 /* Default routine to handle a bfd_data_link_order.  */
2469 
2470 static bfd_boolean
2471 default_data_link_order (bfd *abfd,
2472 			 struct bfd_link_info *info,
2473 			 asection *sec,
2474 			 struct bfd_link_order *link_order)
2475 {
2476   bfd_size_type size;
2477   size_t fill_size;
2478   bfd_byte *fill;
2479   file_ptr loc;
2480   bfd_boolean result;
2481 
2482   BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2483 
2484   size = link_order->size;
2485   if (size == 0)
2486     return TRUE;
2487 
2488   fill = link_order->u.data.contents;
2489   fill_size = link_order->u.data.size;
2490   if (fill_size == 0)
2491     {
2492       fill = abfd->arch_info->fill (size, info->big_endian,
2493 				    (sec->flags & SEC_CODE) != 0);
2494       if (fill == NULL)
2495 	return FALSE;
2496     }
2497   else if (fill_size < size)
2498     {
2499       bfd_byte *p;
2500       fill = (bfd_byte *) bfd_malloc (size);
2501       if (fill == NULL)
2502 	return FALSE;
2503       p = fill;
2504       if (fill_size == 1)
2505 	memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2506       else
2507 	{
2508 	  do
2509 	    {
2510 	      memcpy (p, link_order->u.data.contents, fill_size);
2511 	      p += fill_size;
2512 	      size -= fill_size;
2513 	    }
2514 	  while (size >= fill_size);
2515 	  if (size != 0)
2516 	    memcpy (p, link_order->u.data.contents, (size_t) size);
2517 	  size = link_order->size;
2518 	}
2519     }
2520 
2521   loc = link_order->offset * bfd_octets_per_byte (abfd, sec);
2522   result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2523 
2524   if (fill != link_order->u.data.contents)
2525     free (fill);
2526   return result;
2527 }
2528 
2529 /* Default routine to handle a bfd_indirect_link_order.  */
2530 
2531 static bfd_boolean
2532 default_indirect_link_order (bfd *output_bfd,
2533 			     struct bfd_link_info *info,
2534 			     asection *output_section,
2535 			     struct bfd_link_order *link_order,
2536 			     bfd_boolean generic_linker)
2537 {
2538   asection *input_section;
2539   bfd *input_bfd;
2540   bfd_byte *contents = NULL;
2541   bfd_byte *new_contents;
2542   bfd_size_type sec_size;
2543   file_ptr loc;
2544 
2545   BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2546 
2547   input_section = link_order->u.indirect.section;
2548   input_bfd = input_section->owner;
2549   if (input_section->size == 0)
2550     return TRUE;
2551 
2552   BFD_ASSERT (input_section->output_section == output_section);
2553   BFD_ASSERT (input_section->output_offset == link_order->offset);
2554   BFD_ASSERT (input_section->size == link_order->size);
2555 
2556   if (bfd_link_relocatable (info)
2557       && input_section->reloc_count > 0
2558       && output_section->orelocation == NULL)
2559     {
2560       /* Space has not been allocated for the output relocations.
2561 	 This can happen when we are called by a specific backend
2562 	 because somebody is attempting to link together different
2563 	 types of object files.  Handling this case correctly is
2564 	 difficult, and sometimes impossible.  */
2565       _bfd_error_handler
2566 	/* xgettext:c-format */
2567 	(_("attempt to do relocatable link with %s input and %s output"),
2568 	 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2569       bfd_set_error (bfd_error_wrong_format);
2570       return FALSE;
2571     }
2572 
2573   if (! generic_linker)
2574     {
2575       asymbol **sympp;
2576       asymbol **symppend;
2577 
2578       /* Get the canonical symbols.  The generic linker will always
2579 	 have retrieved them by this point, but we are being called by
2580 	 a specific linker, presumably because we are linking
2581 	 different types of object files together.  */
2582       if (!bfd_generic_link_read_symbols (input_bfd))
2583 	return FALSE;
2584 
2585       /* Since we have been called by a specific linker, rather than
2586 	 the generic linker, the values of the symbols will not be
2587 	 right.  They will be the values as seen in the input file,
2588 	 not the values of the final link.  We need to fix them up
2589 	 before we can relocate the section.  */
2590       sympp = _bfd_generic_link_get_symbols (input_bfd);
2591       symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2592       for (; sympp < symppend; sympp++)
2593 	{
2594 	  asymbol *sym;
2595 	  struct bfd_link_hash_entry *h;
2596 
2597 	  sym = *sympp;
2598 
2599 	  if ((sym->flags & (BSF_INDIRECT
2600 			     | BSF_WARNING
2601 			     | BSF_GLOBAL
2602 			     | BSF_CONSTRUCTOR
2603 			     | BSF_WEAK)) != 0
2604 	      || bfd_is_und_section (bfd_asymbol_section (sym))
2605 	      || bfd_is_com_section (bfd_asymbol_section (sym))
2606 	      || bfd_is_ind_section (bfd_asymbol_section (sym)))
2607 	    {
2608 	      /* sym->udata may have been set by
2609 		 generic_link_add_symbol_list.  */
2610 	      if (sym->udata.p != NULL)
2611 		h = (struct bfd_link_hash_entry *) sym->udata.p;
2612 	      else if (bfd_is_und_section (bfd_asymbol_section (sym)))
2613 		h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2614 						  bfd_asymbol_name (sym),
2615 						  FALSE, FALSE, TRUE);
2616 	      else
2617 		h = bfd_link_hash_lookup (info->hash,
2618 					  bfd_asymbol_name (sym),
2619 					  FALSE, FALSE, TRUE);
2620 	      if (h != NULL)
2621 		set_symbol_from_hash (sym, h);
2622 	    }
2623 	}
2624     }
2625 
2626   if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2627       && input_section->size != 0)
2628     {
2629       /* Group section contents are set by bfd_elf_set_group_contents.  */
2630       if (!output_bfd->output_has_begun)
2631 	{
2632 	  /* FIXME: This hack ensures bfd_elf_set_group_contents is called.  */
2633 	  if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2634 	    goto error_return;
2635 	}
2636       new_contents = output_section->contents;
2637       BFD_ASSERT (new_contents != NULL);
2638       BFD_ASSERT (input_section->output_offset == 0);
2639     }
2640   else
2641     {
2642       /* Get and relocate the section contents.  */
2643       sec_size = (input_section->rawsize > input_section->size
2644 		  ? input_section->rawsize
2645 		  : input_section->size);
2646       contents = (bfd_byte *) bfd_malloc (sec_size);
2647       if (contents == NULL && sec_size != 0)
2648 	goto error_return;
2649       new_contents = (bfd_get_relocated_section_contents
2650 		      (output_bfd, info, link_order, contents,
2651 		       bfd_link_relocatable (info),
2652 		       _bfd_generic_link_get_symbols (input_bfd)));
2653       if (!new_contents)
2654 	goto error_return;
2655     }
2656 
2657   /* Output the section contents.  */
2658   loc = (input_section->output_offset
2659 	 * bfd_octets_per_byte (output_bfd, output_section));
2660   if (! bfd_set_section_contents (output_bfd, output_section,
2661 				  new_contents, loc, input_section->size))
2662     goto error_return;
2663 
2664   free (contents);
2665   return TRUE;
2666 
2667  error_return:
2668   free (contents);
2669   return FALSE;
2670 }
2671 
2672 /* A little routine to count the number of relocs in a link_order
2673    list.  */
2674 
2675 unsigned int
2676 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2677 {
2678   register unsigned int c;
2679   register struct bfd_link_order *l;
2680 
2681   c = 0;
2682   for (l = link_order; l != NULL; l = l->next)
2683     {
2684       if (l->type == bfd_section_reloc_link_order
2685 	  || l->type == bfd_symbol_reloc_link_order)
2686 	++c;
2687     }
2688 
2689   return c;
2690 }
2691 
2692 /*
2693 FUNCTION
2694 	bfd_link_split_section
2695 
2696 SYNOPSIS
2697 	bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2698 
2699 DESCRIPTION
2700 	Return nonzero if @var{sec} should be split during a
2701 	reloceatable or final link.
2702 
2703 .#define bfd_link_split_section(abfd, sec) \
2704 .	BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2705 .
2706 
2707 */
2708 
2709 bfd_boolean
2710 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2711 				 asection *sec ATTRIBUTE_UNUSED)
2712 {
2713   return FALSE;
2714 }
2715 
2716 /*
2717 FUNCTION
2718 	bfd_section_already_linked
2719 
2720 SYNOPSIS
2721 	bfd_boolean bfd_section_already_linked (bfd *abfd,
2722 						asection *sec,
2723 						struct bfd_link_info *info);
2724 
2725 DESCRIPTION
2726 	Check if @var{data} has been already linked during a reloceatable
2727 	or final link.  Return TRUE if it has.
2728 
2729 .#define bfd_section_already_linked(abfd, sec, info) \
2730 .	BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2731 .
2732 
2733 */
2734 
2735 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2736    once into the output.  This routine checks each section, and
2737    arrange to discard it if a section of the same name has already
2738    been linked.  This code assumes that all relevant sections have the
2739    SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2740    section name.  bfd_section_already_linked is called via
2741    bfd_map_over_sections.  */
2742 
2743 /* The hash table.  */
2744 
2745 static struct bfd_hash_table _bfd_section_already_linked_table;
2746 
2747 /* Support routines for the hash table used by section_already_linked,
2748    initialize the table, traverse, lookup, fill in an entry and remove
2749    the table.  */
2750 
2751 void
2752 bfd_section_already_linked_table_traverse
2753   (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2754 			void *), void *info)
2755 {
2756   bfd_hash_traverse (&_bfd_section_already_linked_table,
2757 		     (bfd_boolean (*) (struct bfd_hash_entry *,
2758 				       void *)) func,
2759 		     info);
2760 }
2761 
2762 struct bfd_section_already_linked_hash_entry *
2763 bfd_section_already_linked_table_lookup (const char *name)
2764 {
2765   return ((struct bfd_section_already_linked_hash_entry *)
2766 	  bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2767 			   TRUE, FALSE));
2768 }
2769 
2770 bfd_boolean
2771 bfd_section_already_linked_table_insert
2772   (struct bfd_section_already_linked_hash_entry *already_linked_list,
2773    asection *sec)
2774 {
2775   struct bfd_section_already_linked *l;
2776 
2777   /* Allocate the memory from the same obstack as the hash table is
2778      kept in.  */
2779   l = (struct bfd_section_already_linked *)
2780       bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2781   if (l == NULL)
2782     return FALSE;
2783   l->sec = sec;
2784   l->next = already_linked_list->entry;
2785   already_linked_list->entry = l;
2786   return TRUE;
2787 }
2788 
2789 static struct bfd_hash_entry *
2790 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2791 			struct bfd_hash_table *table,
2792 			const char *string ATTRIBUTE_UNUSED)
2793 {
2794   struct bfd_section_already_linked_hash_entry *ret =
2795     (struct bfd_section_already_linked_hash_entry *)
2796       bfd_hash_allocate (table, sizeof *ret);
2797 
2798   if (ret == NULL)
2799     return NULL;
2800 
2801   ret->entry = NULL;
2802 
2803   return &ret->root;
2804 }
2805 
2806 bfd_boolean
2807 bfd_section_already_linked_table_init (void)
2808 {
2809   return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2810 				already_linked_newfunc,
2811 				sizeof (struct bfd_section_already_linked_hash_entry),
2812 				42);
2813 }
2814 
2815 void
2816 bfd_section_already_linked_table_free (void)
2817 {
2818   bfd_hash_table_free (&_bfd_section_already_linked_table);
2819 }
2820 
2821 /* Report warnings as appropriate for duplicate section SEC.
2822    Return FALSE if we decide to keep SEC after all.  */
2823 
2824 bfd_boolean
2825 _bfd_handle_already_linked (asection *sec,
2826 			    struct bfd_section_already_linked *l,
2827 			    struct bfd_link_info *info)
2828 {
2829   switch (sec->flags & SEC_LINK_DUPLICATES)
2830     {
2831     default:
2832       abort ();
2833 
2834     case SEC_LINK_DUPLICATES_DISCARD:
2835       /* If we found an LTO IR match for this comdat group on
2836 	 the first pass, replace it with the LTO output on the
2837 	 second pass.  We can't simply choose real object
2838 	 files over IR because the first pass may contain a
2839 	 mix of LTO and normal objects and we must keep the
2840 	 first match, be it IR or real.  */
2841       if (sec->owner->lto_output
2842 	  && (l->sec->owner->flags & BFD_PLUGIN) != 0)
2843 	{
2844 	  l->sec = sec;
2845 	  return FALSE;
2846 	}
2847       break;
2848 
2849     case SEC_LINK_DUPLICATES_ONE_ONLY:
2850       info->callbacks->einfo
2851 	/* xgettext:c-format */
2852 	(_("%pB: ignoring duplicate section `%pA'\n"),
2853 	 sec->owner, sec);
2854       break;
2855 
2856     case SEC_LINK_DUPLICATES_SAME_SIZE:
2857       if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2858 	;
2859       else if (sec->size != l->sec->size)
2860 	info->callbacks->einfo
2861 	  /* xgettext:c-format */
2862 	  (_("%pB: duplicate section `%pA' has different size\n"),
2863 	   sec->owner, sec);
2864       break;
2865 
2866     case SEC_LINK_DUPLICATES_SAME_CONTENTS:
2867       if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2868 	;
2869       else if (sec->size != l->sec->size)
2870 	info->callbacks->einfo
2871 	  /* xgettext:c-format */
2872 	  (_("%pB: duplicate section `%pA' has different size\n"),
2873 	   sec->owner, sec);
2874       else if (sec->size != 0)
2875 	{
2876 	  bfd_byte *sec_contents, *l_sec_contents = NULL;
2877 
2878 	  if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
2879 	    info->callbacks->einfo
2880 	      /* xgettext:c-format */
2881 	      (_("%pB: could not read contents of section `%pA'\n"),
2882 	       sec->owner, sec);
2883 	  else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
2884 						&l_sec_contents))
2885 	    info->callbacks->einfo
2886 	      /* xgettext:c-format */
2887 	      (_("%pB: could not read contents of section `%pA'\n"),
2888 	       l->sec->owner, l->sec);
2889 	  else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
2890 	    info->callbacks->einfo
2891 	      /* xgettext:c-format */
2892 	      (_("%pB: duplicate section `%pA' has different contents\n"),
2893 	       sec->owner, sec);
2894 
2895 	  free (sec_contents);
2896 	  free (l_sec_contents);
2897 	}
2898       break;
2899     }
2900 
2901   /* Set the output_section field so that lang_add_section
2902      does not create a lang_input_section structure for this
2903      section.  Since there might be a symbol in the section
2904      being discarded, we must retain a pointer to the section
2905      which we are really going to use.  */
2906   sec->output_section = bfd_abs_section_ptr;
2907   sec->kept_section = l->sec;
2908   return TRUE;
2909 }
2910 
2911 /* This is used on non-ELF inputs.  */
2912 
2913 bfd_boolean
2914 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
2915 				     asection *sec,
2916 				     struct bfd_link_info *info)
2917 {
2918   const char *name;
2919   struct bfd_section_already_linked *l;
2920   struct bfd_section_already_linked_hash_entry *already_linked_list;
2921 
2922   if ((sec->flags & SEC_LINK_ONCE) == 0)
2923     return FALSE;
2924 
2925   /* The generic linker doesn't handle section groups.  */
2926   if ((sec->flags & SEC_GROUP) != 0)
2927     return FALSE;
2928 
2929   /* FIXME: When doing a relocatable link, we may have trouble
2930      copying relocations in other sections that refer to local symbols
2931      in the section being discarded.  Those relocations will have to
2932      be converted somehow; as of this writing I'm not sure that any of
2933      the backends handle that correctly.
2934 
2935      It is tempting to instead not discard link once sections when
2936      doing a relocatable link (technically, they should be discarded
2937      whenever we are building constructors).  However, that fails,
2938      because the linker winds up combining all the link once sections
2939      into a single large link once section, which defeats the purpose
2940      of having link once sections in the first place.  */
2941 
2942   name = bfd_section_name (sec);
2943 
2944   already_linked_list = bfd_section_already_linked_table_lookup (name);
2945 
2946   l = already_linked_list->entry;
2947   if (l != NULL)
2948     {
2949       /* The section has already been linked.  See if we should
2950 	 issue a warning.  */
2951       return _bfd_handle_already_linked (sec, l, info);
2952     }
2953 
2954   /* This is the first section with this name.  Record it.  */
2955   if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
2956     info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
2957   return FALSE;
2958 }
2959 
2960 /* Choose a neighbouring section to S in OBFD that will be output, or
2961    the absolute section if ADDR is out of bounds of the neighbours.  */
2962 
2963 asection *
2964 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
2965 {
2966   asection *next, *prev, *best;
2967 
2968   /* Find preceding kept section.  */
2969   for (prev = s->prev; prev != NULL; prev = prev->prev)
2970     if ((prev->flags & SEC_EXCLUDE) == 0
2971 	&& !bfd_section_removed_from_list (obfd, prev))
2972       break;
2973 
2974   /* Find following kept section.  Start at prev->next because
2975      other sections may have been added after S was removed.  */
2976   if (s->prev != NULL)
2977     next = s->prev->next;
2978   else
2979     next = s->owner->sections;
2980   for (; next != NULL; next = next->next)
2981     if ((next->flags & SEC_EXCLUDE) == 0
2982 	&& !bfd_section_removed_from_list (obfd, next))
2983       break;
2984 
2985   /* Choose better of two sections, based on flags.  The idea
2986      is to choose a section that will be in the same segment
2987      as S would have been if it was kept.  */
2988   best = next;
2989   if (prev == NULL)
2990     {
2991       if (next == NULL)
2992 	best = bfd_abs_section_ptr;
2993     }
2994   else if (next == NULL)
2995     best = prev;
2996   else if (((prev->flags ^ next->flags)
2997 	    & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
2998     {
2999       if (((next->flags ^ s->flags)
3000 	   & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3001 	  /* We prefer to choose a loaded section.  Section S
3002 	     doesn't have SEC_LOAD set (it being excluded, that
3003 	     part of the flag processing didn't happen) so we
3004 	     can't compare that flag to those of NEXT and PREV.  */
3005 	  || ((prev->flags & SEC_LOAD) != 0
3006 	      && (next->flags & SEC_LOAD) == 0))
3007 	best = prev;
3008     }
3009   else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
3010     {
3011       if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
3012 	best = prev;
3013     }
3014   else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
3015     {
3016       if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3017 	best = prev;
3018     }
3019   else
3020     {
3021       /* Flags we care about are the same.  Prefer the following
3022 	 section if that will result in a positive valued sym.  */
3023       if (addr < next->vma)
3024 	best = prev;
3025     }
3026 
3027   return best;
3028 }
3029 
3030 /* Convert symbols in excluded output sections to use a kept section.  */
3031 
3032 static bfd_boolean
3033 fix_syms (struct bfd_link_hash_entry *h, void *data)
3034 {
3035   bfd *obfd = (bfd *) data;
3036 
3037   if (h->type == bfd_link_hash_defined
3038       || h->type == bfd_link_hash_defweak)
3039     {
3040       asection *s = h->u.def.section;
3041       if (s != NULL
3042 	  && s->output_section != NULL
3043 	  && (s->output_section->flags & SEC_EXCLUDE) != 0
3044 	  && bfd_section_removed_from_list (obfd, s->output_section))
3045 	{
3046 	  asection *op;
3047 
3048 	  h->u.def.value += s->output_offset + s->output_section->vma;
3049 	  op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3050 	  h->u.def.value -= op->vma;
3051 	  h->u.def.section = op;
3052 	}
3053     }
3054 
3055   return TRUE;
3056 }
3057 
3058 void
3059 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3060 {
3061   bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3062 }
3063 
3064 /*
3065 FUNCTION
3066 	bfd_generic_define_common_symbol
3067 
3068 SYNOPSIS
3069 	bfd_boolean bfd_generic_define_common_symbol
3070 	  (bfd *output_bfd, struct bfd_link_info *info,
3071 	   struct bfd_link_hash_entry *h);
3072 
3073 DESCRIPTION
3074 	Convert common symbol @var{h} into a defined symbol.
3075 	Return TRUE on success and FALSE on failure.
3076 
3077 .#define bfd_define_common_symbol(output_bfd, info, h) \
3078 .	BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3079 .
3080 */
3081 
3082 bfd_boolean
3083 bfd_generic_define_common_symbol (bfd *output_bfd,
3084 				  struct bfd_link_info *info ATTRIBUTE_UNUSED,
3085 				  struct bfd_link_hash_entry *h)
3086 {
3087   unsigned int power_of_two;
3088   bfd_vma alignment, size;
3089   asection *section;
3090 
3091   BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3092 
3093   size = h->u.c.size;
3094   power_of_two = h->u.c.p->alignment_power;
3095   section = h->u.c.p->section;
3096 
3097   /* Increase the size of the section to align the common symbol.
3098      The alignment must be a power of two.  But if the section does
3099      not have any alignment requirement then do not increase the
3100      alignment unnecessarily.  */
3101   if (power_of_two)
3102     alignment = bfd_octets_per_byte (output_bfd, section) << power_of_two;
3103   else
3104     alignment = 1;
3105   BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3106   section->size += alignment - 1;
3107   section->size &= -alignment;
3108 
3109   /* Adjust the section's overall alignment if necessary.  */
3110   if (power_of_two > section->alignment_power)
3111     section->alignment_power = power_of_two;
3112 
3113   /* Change the symbol from common to defined.  */
3114   h->type = bfd_link_hash_defined;
3115   h->u.def.section = section;
3116   h->u.def.value = section->size;
3117 
3118   /* Increase the size of the section.  */
3119   section->size += size;
3120 
3121   /* Make sure the section is allocated in memory, and make sure that
3122      it is no longer a common section.  */
3123   section->flags |= SEC_ALLOC;
3124   section->flags &= ~(SEC_IS_COMMON | SEC_HAS_CONTENTS);
3125   return TRUE;
3126 }
3127 
3128 /*
3129 FUNCTION
3130 	_bfd_generic_link_hide_symbol
3131 
3132 SYNOPSIS
3133 	void _bfd_generic_link_hide_symbol
3134 	  (bfd *output_bfd, struct bfd_link_info *info,
3135 	   struct bfd_link_hash_entry *h);
3136 
3137 DESCRIPTION
3138 	Hide symbol @var{h}.
3139 	This is an internal function.  It should not be called from
3140 	outside the BFD library.
3141 
3142 .#define bfd_link_hide_symbol(output_bfd, info, h) \
3143 .	BFD_SEND (output_bfd, _bfd_link_hide_symbol, (output_bfd, info, h))
3144 .
3145 */
3146 
3147 void
3148 _bfd_generic_link_hide_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3149 			       struct bfd_link_info *info ATTRIBUTE_UNUSED,
3150 			       struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED)
3151 {
3152 }
3153 
3154 /*
3155 FUNCTION
3156 	bfd_generic_define_start_stop
3157 
3158 SYNOPSIS
3159 	struct bfd_link_hash_entry *bfd_generic_define_start_stop
3160 	  (struct bfd_link_info *info,
3161 	   const char *symbol, asection *sec);
3162 
3163 DESCRIPTION
3164 	Define a __start, __stop, .startof. or .sizeof. symbol.
3165 	Return the symbol or NULL if no such undefined symbol exists.
3166 
3167 .#define bfd_define_start_stop(output_bfd, info, symbol, sec) \
3168 .	BFD_SEND (output_bfd, _bfd_define_start_stop, (info, symbol, sec))
3169 .
3170 */
3171 
3172 struct bfd_link_hash_entry *
3173 bfd_generic_define_start_stop (struct bfd_link_info *info,
3174 			       const char *symbol, asection *sec)
3175 {
3176   struct bfd_link_hash_entry *h;
3177 
3178   h = bfd_link_hash_lookup (info->hash, symbol, FALSE, FALSE, TRUE);
3179   if (h != NULL
3180       && (h->type == bfd_link_hash_undefined
3181 	  || h->type == bfd_link_hash_undefweak))
3182     {
3183       h->type = bfd_link_hash_defined;
3184       h->u.def.section = sec;
3185       h->u.def.value = 0;
3186       return h;
3187     }
3188   return NULL;
3189 }
3190 
3191 /*
3192 FUNCTION
3193 	bfd_find_version_for_sym
3194 
3195 SYNOPSIS
3196 	struct bfd_elf_version_tree * bfd_find_version_for_sym
3197 	  (struct bfd_elf_version_tree *verdefs,
3198 	   const char *sym_name, bfd_boolean *hide);
3199 
3200 DESCRIPTION
3201 	Search an elf version script tree for symbol versioning
3202 	info and export / don't-export status for a given symbol.
3203 	Return non-NULL on success and NULL on failure; also sets
3204 	the output @samp{hide} boolean parameter.
3205 
3206 */
3207 
3208 struct bfd_elf_version_tree *
3209 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3210 			  const char *sym_name,
3211 			  bfd_boolean *hide)
3212 {
3213   struct bfd_elf_version_tree *t;
3214   struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3215   struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3216 
3217   local_ver = NULL;
3218   global_ver = NULL;
3219   star_local_ver = NULL;
3220   star_global_ver = NULL;
3221   exist_ver = NULL;
3222   for (t = verdefs; t != NULL; t = t->next)
3223     {
3224       if (t->globals.list != NULL)
3225 	{
3226 	  struct bfd_elf_version_expr *d = NULL;
3227 
3228 	  while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3229 	    {
3230 	      if (d->literal || strcmp (d->pattern, "*") != 0)
3231 		global_ver = t;
3232 	      else
3233 		star_global_ver = t;
3234 	      if (d->symver)
3235 		exist_ver = t;
3236 	      d->script = 1;
3237 	      /* If the match is a wildcard pattern, keep looking for
3238 		 a more explicit, perhaps even local, match.  */
3239 	      if (d->literal)
3240 		break;
3241 	    }
3242 
3243 	  if (d != NULL)
3244 	    break;
3245 	}
3246 
3247       if (t->locals.list != NULL)
3248 	{
3249 	  struct bfd_elf_version_expr *d = NULL;
3250 
3251 	  while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3252 	    {
3253 	      if (d->literal || strcmp (d->pattern, "*") != 0)
3254 		local_ver = t;
3255 	      else
3256 		star_local_ver = t;
3257 	      /* If the match is a wildcard pattern, keep looking for
3258 		 a more explicit, perhaps even global, match.  */
3259 	      if (d->literal)
3260 		{
3261 		  /* An exact match overrides a global wildcard.  */
3262 		  global_ver = NULL;
3263 		  star_global_ver = NULL;
3264 		  break;
3265 		}
3266 	    }
3267 
3268 	  if (d != NULL)
3269 	    break;
3270 	}
3271     }
3272 
3273   if (global_ver == NULL && local_ver == NULL)
3274     global_ver = star_global_ver;
3275 
3276   if (global_ver != NULL)
3277     {
3278       /* If we already have a versioned symbol that matches the
3279 	 node for this symbol, then we don't want to create a
3280 	 duplicate from the unversioned symbol.  Instead hide the
3281 	 unversioned symbol.  */
3282       *hide = exist_ver == global_ver;
3283       return global_ver;
3284     }
3285 
3286   if (local_ver == NULL)
3287     local_ver = star_local_ver;
3288 
3289   if (local_ver != NULL)
3290     {
3291       *hide = TRUE;
3292       return local_ver;
3293     }
3294 
3295   return NULL;
3296 }
3297 
3298 /*
3299 FUNCTION
3300 	bfd_hide_sym_by_version
3301 
3302 SYNOPSIS
3303 	bfd_boolean bfd_hide_sym_by_version
3304 	  (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3305 
3306 DESCRIPTION
3307 	Search an elf version script tree for symbol versioning
3308 	info for a given symbol.  Return TRUE if the symbol is hidden.
3309 
3310 */
3311 
3312 bfd_boolean
3313 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3314 			 const char *sym_name)
3315 {
3316   bfd_boolean hidden = FALSE;
3317   bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3318   return hidden;
3319 }
3320 
3321 /*
3322 FUNCTION
3323 	bfd_link_check_relocs
3324 
3325 SYNOPSIS
3326 	bfd_boolean bfd_link_check_relocs
3327 	  (bfd *abfd, struct bfd_link_info *info);
3328 
3329 DESCRIPTION
3330 	Checks the relocs in ABFD for validity.
3331 	Does not execute the relocs.
3332 	Return TRUE if everything is OK, FALSE otherwise.
3333 	This is the external entry point to this code.
3334 */
3335 
3336 bfd_boolean
3337 bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3338 {
3339   return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info));
3340 }
3341 
3342 /*
3343 FUNCTION
3344 	_bfd_generic_link_check_relocs
3345 
3346 SYNOPSIS
3347 	bfd_boolean _bfd_generic_link_check_relocs
3348 	  (bfd *abfd, struct bfd_link_info *info);
3349 
3350 DESCRIPTION
3351 	Stub function for targets that do not implement reloc checking.
3352 	Return TRUE.
3353 	This is an internal function.  It should not be called from
3354 	outside the BFD library.
3355 */
3356 
3357 bfd_boolean
3358 _bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED,
3359 				struct bfd_link_info *info ATTRIBUTE_UNUSED)
3360 {
3361   return TRUE;
3362 }
3363 
3364 /*
3365 FUNCTION
3366 	bfd_merge_private_bfd_data
3367 
3368 SYNOPSIS
3369 	bfd_boolean bfd_merge_private_bfd_data
3370 	  (bfd *ibfd, struct bfd_link_info *info);
3371 
3372 DESCRIPTION
3373 	Merge private BFD information from the BFD @var{ibfd} to the
3374 	the output file BFD when linking.  Return <<TRUE>> on success,
3375 	<<FALSE>> on error.  Possible error returns are:
3376 
3377 	o <<bfd_error_no_memory>> -
3378 	Not enough memory exists to create private data for @var{obfd}.
3379 
3380 .#define bfd_merge_private_bfd_data(ibfd, info) \
3381 .	BFD_SEND ((info)->output_bfd, _bfd_merge_private_bfd_data, \
3382 .		  (ibfd, info))
3383 */
3384 
3385 /*
3386 INTERNAL_FUNCTION
3387 	_bfd_generic_verify_endian_match
3388 
3389 SYNOPSIS
3390 	bfd_boolean _bfd_generic_verify_endian_match
3391 	  (bfd *ibfd, struct bfd_link_info *info);
3392 
3393 DESCRIPTION
3394 	Can be used from / for bfd_merge_private_bfd_data to check that
3395 	endianness matches between input and output file.  Returns
3396 	TRUE for a match, otherwise returns FALSE and emits an error.
3397 */
3398 
3399 bfd_boolean
3400 _bfd_generic_verify_endian_match (bfd *ibfd, struct bfd_link_info *info)
3401 {
3402   bfd *obfd = info->output_bfd;
3403 
3404   if (ibfd->xvec->byteorder != obfd->xvec->byteorder
3405       && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
3406       && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
3407     {
3408       if (bfd_big_endian (ibfd))
3409 	_bfd_error_handler (_("%pB: compiled for a big endian system "
3410 			      "and target is little endian"), ibfd);
3411       else
3412 	_bfd_error_handler (_("%pB: compiled for a little endian system "
3413 			      "and target is big endian"), ibfd);
3414       bfd_set_error (bfd_error_wrong_format);
3415       return FALSE;
3416     }
3417 
3418   return TRUE;
3419 }
3420 
3421 int
3422 _bfd_nolink_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED,
3423 			    struct bfd_link_info *info ATTRIBUTE_UNUSED)
3424 {
3425   return 0;
3426 }
3427 
3428 bfd_boolean
3429 _bfd_nolink_bfd_relax_section (bfd *abfd,
3430 			       asection *section ATTRIBUTE_UNUSED,
3431 			       struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3432 			       bfd_boolean *again ATTRIBUTE_UNUSED)
3433 {
3434   return _bfd_bool_bfd_false_error (abfd);
3435 }
3436 
3437 bfd_byte *
3438 _bfd_nolink_bfd_get_relocated_section_contents
3439     (bfd *abfd,
3440      struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3441      struct bfd_link_order *link_order ATTRIBUTE_UNUSED,
3442      bfd_byte *data ATTRIBUTE_UNUSED,
3443      bfd_boolean relocatable ATTRIBUTE_UNUSED,
3444      asymbol **symbols ATTRIBUTE_UNUSED)
3445 {
3446   return (bfd_byte *) _bfd_ptr_bfd_null_error (abfd);
3447 }
3448 
3449 bfd_boolean
3450 _bfd_nolink_bfd_lookup_section_flags
3451     (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3452      struct flag_info *flaginfo ATTRIBUTE_UNUSED,
3453      asection *section)
3454 {
3455   return _bfd_bool_bfd_false_error (section->owner);
3456 }
3457 
3458 bfd_boolean
3459 _bfd_nolink_bfd_is_group_section (bfd *abfd,
3460 				  const asection *sec ATTRIBUTE_UNUSED)
3461 {
3462   return _bfd_bool_bfd_false_error (abfd);
3463 }
3464 
3465 const char *
3466 _bfd_nolink_bfd_group_name (bfd *abfd,
3467 			    const asection *sec ATTRIBUTE_UNUSED)
3468 {
3469   return _bfd_ptr_bfd_null_error (abfd);
3470 }
3471 
3472 bfd_boolean
3473 _bfd_nolink_bfd_discard_group (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
3474 {
3475   return _bfd_bool_bfd_false_error (abfd);
3476 }
3477 
3478 struct bfd_link_hash_table *
3479 _bfd_nolink_bfd_link_hash_table_create (bfd *abfd)
3480 {
3481   return (struct bfd_link_hash_table *) _bfd_ptr_bfd_null_error (abfd);
3482 }
3483 
3484 void
3485 _bfd_nolink_bfd_link_just_syms (asection *sec ATTRIBUTE_UNUSED,
3486 				struct bfd_link_info *info ATTRIBUTE_UNUSED)
3487 {
3488 }
3489 
3490 void
3491 _bfd_nolink_bfd_copy_link_hash_symbol_type
3492     (bfd *abfd ATTRIBUTE_UNUSED,
3493      struct bfd_link_hash_entry *from ATTRIBUTE_UNUSED,
3494      struct bfd_link_hash_entry *to ATTRIBUTE_UNUSED)
3495 {
3496 }
3497 
3498 bfd_boolean
3499 _bfd_nolink_bfd_link_split_section (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
3500 {
3501   return _bfd_bool_bfd_false_error (abfd);
3502 }
3503 
3504 bfd_boolean
3505 _bfd_nolink_section_already_linked (bfd *abfd,
3506 				    asection *sec ATTRIBUTE_UNUSED,
3507 				    struct bfd_link_info *info ATTRIBUTE_UNUSED)
3508 {
3509   return _bfd_bool_bfd_false_error (abfd);
3510 }
3511 
3512 bfd_boolean
3513 _bfd_nolink_bfd_define_common_symbol
3514     (bfd *abfd,
3515      struct bfd_link_info *info ATTRIBUTE_UNUSED,
3516      struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED)
3517 {
3518   return _bfd_bool_bfd_false_error (abfd);
3519 }
3520 
3521 struct bfd_link_hash_entry *
3522 _bfd_nolink_bfd_define_start_stop (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3523 				   const char *name ATTRIBUTE_UNUSED,
3524 				   asection *sec)
3525 {
3526   return (struct bfd_link_hash_entry *) _bfd_ptr_bfd_null_error (sec->owner);
3527 }
3528