xref: /netbsd-src/external/gpl3/gdb.old/dist/sim/ppc/std-config.h (revision 8b657b0747480f8989760d71343d6dd33f8d4cf9)
1 /*  This file is part of the program psim.
2 
3     Copyright 1994, 1995, 2002 Andrew Cagney <cagney@highland.com.au>
4 
5     This program is free software; you can redistribute it and/or modify
6     it under the terms of the GNU General Public License as published by
7     the Free Software Foundation; either version 3 of the License, or
8     (at your option) any later version.
9 
10     This program is distributed in the hope that it will be useful,
11     but WITHOUT ANY WARRANTY; without even the implied warranty of
12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13     GNU General Public License for more details.
14 
15     You should have received a copy of the GNU General Public License
16     along with this program; if not, see <http://www.gnu.org/licenses/>.
17 
18     */
19 
20 
21 #ifndef _PSIM_CONFIG_H_
22 #define _PSIM_CONFIG_H_
23 
24 #include "bfd.h"
25 
26 /* endianness of the host/target:
27 
28    If the build process is aware (at compile time) of the endianness
29    of the host/target it is able to eliminate slower generic endian
30    handling code.
31 
32    Possible values are BFD_ENDIAN_UNKNOWN, BFD_ENDIAN_LITTLE,
33    BFD_ENDIAN_BIG.  */
34 
35 #ifdef WORDS_BIGENDIAN
36 # define HOST_BYTE_ORDER BFD_ENDIAN_BIG
37 #else
38 # define HOST_BYTE_ORDER BFD_ENDIAN_LITTLE
39 #endif
40 
41 #ifndef WITH_TARGET_BYTE_ORDER
42 #define WITH_TARGET_BYTE_ORDER		BFD_ENDIAN_UNKNOWN
43 #endif
44 
45 extern enum bfd_endian current_target_byte_order;
46 #define CURRENT_TARGET_BYTE_ORDER \
47   (WITH_TARGET_BYTE_ORDER != BFD_ENDIAN_UNKNOWN \
48    ? WITH_TARGET_BYTE_ORDER : current_target_byte_order)
49 
50 
51 /* PowerPC XOR endian.
52 
53    In addition to the above, the simulator can support the PowerPC's
54    horrible XOR endian mode.  This feature makes it possible to
55    control the endian mode of a processor using the MSR. */
56 
57 #ifndef WITH_XOR_ENDIAN
58 #define WITH_XOR_ENDIAN		8
59 #endif
60 
61 
62 /* SMP support:
63 
64    Sets a limit on the number of processors that can be simulated.  If
65    WITH_SMP is set to zero (0), the simulator is restricted to
66    suporting only on processor (and as a consequence leaves the SMP
67    code out of the build process).
68 
69    The actual number of processors is taken from the device
70    /options/smp@<nr-cpu> */
71 
72 #ifndef WITH_SMP
73 #define WITH_SMP                        5
74 #endif
75 #if WITH_SMP
76 #define MAX_NR_PROCESSORS		WITH_SMP
77 #else
78 #define MAX_NR_PROCESSORS		1
79 #endif
80 
81 
82 /* Word size of target:
83 
84    Set these according to your target requirements.  At this
85    point in time, I've only compiled (not run) for a 64bit and never
86    built for a 64bit host.  This will always remain a compile time
87    option */
88 
89 #ifndef WITH_TARGET_WORD_BITSIZE
90 #define WITH_TARGET_WORD_BITSIZE        32 /* compiled only */
91 #endif
92 
93 
94 /* Program environment:
95 
96    Three environments are available - UEA (user), VEA (virtual) and
97    OEA (perating).  The former two are environment that users would
98    expect to see (VEA includes things like coherency and the time
99    base) while OEA is what an operating system expects to see.  By
100    setting these to specific values, the build process is able to
101    eliminate non relevent environment code
102 
103    CURRENT_ENVIRONMENT specifies which of vea or oea is required for
104    the current runtime. */
105 
106 #define ALL_ENVIRONMENT			0
107 #define USER_ENVIRONMENT		1
108 #define VIRTUAL_ENVIRONMENT		2
109 #define OPERATING_ENVIRONMENT		3
110 
111 extern int current_environment;
112 #define CURRENT_ENVIRONMENT (WITH_ENVIRONMENT \
113 			     ? WITH_ENVIRONMENT \
114 			     : current_environment)
115 
116 
117 /* Optional VEA/OEA code:
118 
119    The below, required for the OEA model may also be included in the
120    VEA model however, as far as I can tell only make things
121    slower... */
122 
123 
124 /* Events.  Devices modeling real H/W need to be able to efficiently
125    schedule things to do at known times in the future.  The event
126    queue implements this.  Unfortunatly this adds the need to check
127    for any events once each full instruction cycle. */
128 
129 #define WITH_EVENTS                     (WITH_ENVIRONMENT != USER_ENVIRONMENT)
130 
131 
132 /* Time base:
133 
134    The PowerPC architecture includes the addition of both a time base
135    register and a decrement timer.  Like events adds to the overhead
136    of of some instruction cycles. */
137 
138 #ifndef WITH_TIME_BASE
139 #define WITH_TIME_BASE			(WITH_ENVIRONMENT != USER_ENVIRONMENT)
140 #endif
141 
142 
143 /* Callback/Default Memory.
144 
145    Core includes a builtin memory type (raw_memory) that is
146    implemented using an array.  raw_memory does not require any
147    additional functions etc.
148 
149    Callback memory is where the core calls a core device for the data
150    it requires.
151 
152    Default memory is an extenstion of this where for addresses that do
153    not map into either a callback or core memory range a default map
154    can be used.
155 
156    The OEA model uses callback memory for devices and default memory
157    for buses.
158 
159    The VEA model uses callback memory to capture `page faults'.
160 
161    While it may be possible to eliminate callback/default memory (and
162    hence also eliminate an additional test per memory fetch) it
163    probably is not worth the effort.
164 
165    BTW, while raw_memory could have been implemented as a callback,
166    profiling has shown that there is a biger win (at least for the
167    x86) in eliminating a function call for the most common
168    (raw_memory) case. */
169 
170 #define WITH_CALLBACK_MEMORY		1
171 
172 
173 /* Alignment:
174 
175    The PowerPC may or may not handle miss aligned transfers.  An
176    implementation normally handles miss aligned transfers in big
177    endian mode but generates an exception in little endian mode.
178 
179    This model.  Instead allows both little and big endian modes to
180    either take exceptions or handle miss aligned transfers.
181 
182    If 0 is specified then for big-endian mode miss aligned accesses
183    are permitted (NONSTRICT_ALIGNMENT) while in little-endian mode the
184    processor will fault on them (STRICT_ALIGNMENT). */
185 
186 #define NONSTRICT_ALIGNMENT    		1
187 #define STRICT_ALIGNMENT	       	2
188 
189 #ifndef WITH_ALIGNMENT
190 #define WITH_ALIGNMENT     		0
191 #endif
192 
193 extern int current_alignment;
194 #define CURRENT_ALIGNMENT (WITH_ALIGNMENT \
195 			   ? WITH_ALIGNMENT \
196 			   : current_alignment)
197 
198 
199 /* Floating point suport:
200 
201    Still under development. */
202 
203 #define SOFT_FLOATING_POINT		1
204 #define HARD_FLOATING_POINT		2
205 
206 #ifndef WITH_FLOATING_POINT
207 #define WITH_FLOATING_POINT		HARD_FLOATING_POINT
208 #endif
209 extern int current_floating_point;
210 #define CURRENT_FLOATING_POINT (WITH_FLOATING_POINT \
211 				? WITH_FLOATING_POINT \
212 				: current_floating_point)
213 
214 
215 /* Debugging:
216 
217    Control the inclusion of debugging code. */
218 
219 /* include monitoring code */
220 
221 #define MONITOR_INSTRUCTION_ISSUE	1
222 #define MONITOR_LOAD_STORE_UNIT		2
223 #ifndef WITH_MON
224 #define WITH_MON			(MONITOR_LOAD_STORE_UNIT \
225 					 | MONITOR_INSTRUCTION_ISSUE)
226 #endif
227 
228 /* Current CPU model (models are in the generated models.h include file)  */
229 #ifndef WITH_MODEL
230 #define WITH_MODEL			0
231 #endif
232 
233 #define CURRENT_MODEL (WITH_MODEL	\
234 		       ? WITH_MODEL	\
235 		       : current_model)
236 
237 #ifndef WITH_DEFAULT_MODEL
238 #define WITH_DEFAULT_MODEL		DEFAULT_MODEL
239 #endif
240 
241 #define MODEL_ISSUE_IGNORE		(-1)
242 #define MODEL_ISSUE_PROCESS		1
243 
244 #ifndef WITH_MODEL_ISSUE
245 #define WITH_MODEL_ISSUE		0
246 #endif
247 
248 extern int current_model_issue;
249 #define CURRENT_MODEL_ISSUE (WITH_MODEL_ISSUE	\
250 			     ? WITH_MODEL_ISSUE	\
251 			     : current_model_issue)
252 
253 /* Whether or not input/output just uses stdio, or uses printf_filtered for
254    output, and polling input for input.  */
255 
256 #define DONT_USE_STDIO			2
257 #define DO_USE_STDIO			1
258 
259 extern int current_stdio;
260 #define CURRENT_STDIO (WITH_STDIO	\
261 		       ? WITH_STDIO     \
262 		       : current_stdio)
263 
264 
265 
266 /* INLINE CODE SELECTION:
267 
268    GCC -O3 attempts to inline any function or procedure in scope.  The
269    options below facilitate fine grained control over what is and what
270    isn't made inline.  For instance it can control things down to a
271    specific modules static routines.  Doing this allows the compiler
272    to both eliminate the overhead of function calls and (as a
273    consequence) also eliminate further dead code.
274 
275    On a CISC (x86) I've found that I can achieve an order of magnitude
276    speed improvement (x3-x5).  In the case of RISC (sparc) while the
277    performance gain isn't as great it is still significant.
278 
279    Each module is controled by the macro <module>_INLINE which can
280    have the values described below
281 
282        0  Do not inline any thing for the given module
283 
284    The following additional values are `bit fields' and can be
285    combined.
286 
287       REVEAL_MODULE:
288 
289          Include the C file for the module into the file being compiled
290          but do not make the functions within the module inline.
291 
292 	 While of no apparent benefit, this makes it possible for the
293 	 included module, when compiled to inline its calls to what
294 	 would otherwize be external functions.
295 
296       INLINE_MODULE:
297 
298          Make external functions within the module `inline'.  Thus if
299          the module is included into a file being compiled, calls to
300 	 its funtions can be eliminated. 2 implies 1.
301 
302       INLINE_LOCALS:
303 
304          Make internal (static) functions within the module `inline'.
305 
306    The following abreviations are available:
307 
308       INCLUDE_MODULE == (REVEAL_MODULE | INLINE_MODULE)
309 
310       ALL_C_INLINE == (REVEAL_MODULE | INLINE_MODULE | INLINE_LOCALS)
311 
312    In addition to this, modules have been put into two categories.
313 
314          Simple modules - eg sim-endian.h bits.h
315 
316 	 Because these modules are small and simple and do not have
317 	 any complex interpendencies they are configured, if
318 	 <module>_INLINE is so enabled, to inline themselves in all
319 	 modules that include those files.
320 
321 	 For the default build, this is a real win as all byte
322 	 conversion and bit manipulation functions are inlined.
323 
324 	 Complex modules - the rest
325 
326 	 These are all handled using the files inline.h and inline.c.
327 	 psim.c includes the above which in turn include any remaining
328 	 code.
329 
330    IMPLEMENTATION:
331 
332    The inline ability is enabled by prefixing every data / function
333    declaration and definition with one of the following:
334 
335 
336        INLINE_<module>
337 
338        Prefix to any global function that is a candidate for being
339        inline.
340 
341        values - `', `static', `static INLINE'
342 
343 
344        EXTERN_<module>
345 
346        Prefix to any global data structures for the module.  Global
347        functions that are not to be inlined shall also be prefixed
348        with this.
349 
350        values - `', `static', `static'
351 
352 
353        STATIC_INLINE_<module>
354 
355        Prefix to any local (static) function that is a candidate for
356        being made inline.
357 
358        values - `static', `static INLINE'
359 
360 
361        static
362 
363        Prefix all local data structures.  Local functions that are not
364        to be inlined shall also be prefixed with this.
365 
366        values - `static', `static'
367 
368        nb: will not work for modules that are being inlined for every
369        use (white lie).
370 
371 
372        extern
373        #ifndef _INLINE_C_
374        #endif
375 
376        Prefix to any declaration of a global object (function or
377        variable) that should not be inlined and should have only one
378        definition.  The #ifndef wrapper goes around the definition
379        propper to ensure that only one copy is generated.
380 
381        nb: this will not work when a module is being inlined for every
382        use.
383 
384 
385        STATIC_<module>
386 
387        Replaced by either `static' or `EXTERN_MODULE'.
388 
389 
390    REALITY CHECK:
391 
392    This is not for the faint hearted.  I've seen GCC get up to 500mb
393    trying to compile what this can create.
394 
395    Some of the modules do not yet implement the WITH_INLINE_STATIC
396    option.  Instead they use the macro STATIC_INLINE to control their
397    local function.
398 
399    Because of the way that GCC parses __attribute__(), the macro's
400    need to be adjacent to the function name rather than at the start
401    of the line vis:
402 
403    	int STATIC_INLINE_MODULE f(void);
404 	void INLINE_MODULE *g(void);
405 
406    */
407 
408 #include "../common/sim-inline.h"
409 #define REVEAL_MODULE			H_REVEALS_MODULE
410 #define INLINE_MODULE			C_REVEALS_MODULE
411 #define INCLUDE_MODULE			(INLINE_MODULE | REVEAL_MODULE)
412 
413 /* Your compilers inline reserved word */
414 
415 #ifndef INLINE
416 #if defined(__GNUC__) && defined(__OPTIMIZE__)
417 #define INLINE __inline__
418 #else
419 #define INLINE /*inline*/
420 #endif
421 #endif
422 
423 
424 /* Default prefix for static functions */
425 
426 #ifndef STATIC_INLINE
427 #define STATIC_INLINE static INLINE
428 #endif
429 
430 /* Default macro to simplify control several of key the inlines */
431 
432 #ifndef DEFAULT_INLINE
433 #define	DEFAULT_INLINE			INLINE_LOCALS
434 #endif
435 
436 /* Code that converts between hosts and target byte order.  Used on
437    every memory access (instruction and data).  See sim-endian.h for
438    additional byte swapping configuration information.  This module
439    can inline for all callers */
440 
441 #ifndef SIM_ENDIAN_INLINE
442 #define SIM_ENDIAN_INLINE		(DEFAULT_INLINE ? ALL_C_INLINE : 0)
443 #endif
444 
445 /* Low level bit manipulation routines. This module can inline for all
446    callers */
447 
448 #ifndef BITS_INLINE
449 #define BITS_INLINE			(DEFAULT_INLINE ? ALL_C_INLINE : 0)
450 #endif
451 
452 /* Code that gives access to various CPU internals such as registers.
453    Used every time an instruction is executed */
454 
455 #ifndef CPU_INLINE
456 #define CPU_INLINE			(DEFAULT_INLINE ? ALL_C_INLINE : 0)
457 #endif
458 
459 /* Code that translates between an effective and real address.  Used
460    by every load or store. */
461 
462 #ifndef VM_INLINE
463 #define VM_INLINE			DEFAULT_INLINE
464 #endif
465 
466 /* Code that loads/stores data to/from the memory data structure.
467    Used by every load or store */
468 
469 #ifndef CORE_INLINE
470 #define CORE_INLINE			DEFAULT_INLINE
471 #endif
472 
473 /* Code to check for and process any events scheduled in the future.
474    Called once per instruction cycle */
475 
476 #ifndef EVENTS_INLINE
477 #define EVENTS_INLINE			(DEFAULT_INLINE ? ALL_C_INLINE : 0)
478 #endif
479 
480 /* Code monotoring the processors performance.  It counts events on
481    every instruction cycle */
482 
483 #ifndef MON_INLINE
484 #define MON_INLINE			(DEFAULT_INLINE ? ALL_C_INLINE : 0)
485 #endif
486 
487 /* Code called on the rare occasions that an interrupt occures. */
488 
489 #ifndef INTERRUPTS_INLINE
490 #define INTERRUPTS_INLINE		DEFAULT_INLINE
491 #endif
492 
493 /* Code called on the rare occasion that either gdb or the device tree
494    need to manipulate a register within a processor */
495 
496 #ifndef REGISTERS_INLINE
497 #define REGISTERS_INLINE		DEFAULT_INLINE
498 #endif
499 
500 /* Code called on the rare occasion that a processor is manipulating
501    real hardware instead of RAM.
502 
503    Also, most of the functions in devices.c are always called through
504    a jump table. */
505 
506 #ifndef DEVICE_INLINE
507 #define DEVICE_INLINE			(DEFAULT_INLINE ? INLINE_LOCALS : 0)
508 #endif
509 
510 /* Code called used while the device tree is being built.
511 
512    Inlining this is of no benefit */
513 
514 #ifndef TREE_INLINE
515 #define TREE_INLINE			(DEFAULT_INLINE ? INLINE_LOCALS : 0)
516 #endif
517 
518 /* Code called whenever information on a Special Purpose Register is
519    required.  Called by the mflr/mtlr pseudo instructions */
520 
521 #ifndef SPREG_INLINE
522 #define SPREG_INLINE			DEFAULT_INLINE
523 #endif
524 
525 /* Functions modeling the semantics of each instruction.  Two cases to
526    consider, firstly of idecode is implemented with a switch then this
527    allows the idecode function to inline each semantic function
528    (avoiding a call).  The second case is when idecode is using a
529    table, even then while the semantic functions can't be inlined,
530    setting it to one still enables each semantic function to inline
531    anything they call (if that code is marked for being inlined).
532 
533    WARNING: you need lots (like 200mb of swap) of swap.  Setting this
534    to 1 is useful when using a table as it enables the sematic code to
535    inline all of their called functions */
536 
537 #ifndef SEMANTICS_INLINE
538 #define SEMANTICS_INLINE		(DEFAULT_INLINE & ~INLINE_MODULE)
539 #endif
540 
541 /* When using the instruction cache, code to decode an instruction and
542    install it into the cache.  Normally called when ever there is a
543    miss in the instruction cache. */
544 
545 #ifndef ICACHE_INLINE
546 #define ICACHE_INLINE			(DEFAULT_INLINE & ~INLINE_MODULE)
547 #endif
548 
549 /* General functions called by semantics functions but part of the
550    instruction table.  Although called by the semantic functions the
551    frequency of calls is low.  Consequently the need to inline this
552    code is reduced. */
553 
554 #ifndef SUPPORT_INLINE
555 #define SUPPORT_INLINE			INLINE_LOCALS
556 #endif
557 
558 /* Model specific code used in simulating functional units.  Note, it actaully
559    pays NOT to inline the PowerPC model functions (at least on the x86).  This
560    is because if it is inlined, each PowerPC instruction gets a separate copy
561    of the code, which is not friendly to the cache.  */
562 
563 #ifndef MODEL_INLINE
564 #define	MODEL_INLINE			(DEFAULT_INLINE & ~INLINE_MODULE)
565 #endif
566 
567 /* Code to print out what options we were compiled with.  Because this
568    is called at process startup, it doesn't have to be inlined, but
569    if it isn't brought in and the model routines are inline, the model
570    routines will be pulled in twice.  */
571 
572 #ifndef OPTIONS_INLINE
573 #define OPTIONS_INLINE			MODEL_INLINE
574 #endif
575 
576 /* idecode acts as the hub of the system, everything else is imported
577    into this file */
578 
579 #ifndef IDECOCE_INLINE
580 #define IDECODE_INLINE			INLINE_LOCALS
581 #endif
582 
583 /* psim, isn't actually inlined */
584 
585 #ifndef PSIM_INLINE
586 #define PSIM_INLINE			INLINE_LOCALS
587 #endif
588 
589 /* Code to emulate os or rom compatibility.  This code is called via a
590    table and hence there is little benefit in making it inline */
591 
592 #ifndef OS_EMUL_INLINE
593 #define OS_EMUL_INLINE			0
594 #endif
595 
596 #endif /* _PSIM_CONFIG_H */
597