xref: /netbsd-src/external/gpl3/gdb.old/dist/sim/ppc/idecode_expression.h (revision 8b657b0747480f8989760d71343d6dd33f8d4cf9)
1 /*  This file is part of the program psim.
2 
3     Copyright 1994, 1995, 1996, 1997, 2003 Andrew Cagney
4 
5     This program is free software; you can redistribute it and/or modify
6     it under the terms of the GNU General Public License as published by
7     the Free Software Foundation; either version 3 of the License, or
8     (at your option) any later version.
9 
10     This program is distributed in the hope that it will be useful,
11     but WITHOUT ANY WARRANTY; without even the implied warranty of
12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13     GNU General Public License for more details.
14 
15     You should have received a copy of the GNU General Public License
16     along with this program; if not, see <http://www.gnu.org/licenses/>.
17 
18     */
19 
20 #include "ansidecl.h"
21 
22 /* Additional, and optional expressions.  */
23 #ifdef WITH_ALTIVEC
24 #include "altivec_expression.h"
25 #endif
26 #ifdef WITH_E500
27 #include "e500_expression.h"
28 #endif
29 
30 /* 32bit target expressions:
31 
32    Each calculation is performed three times using each of the
33    int64_t, uint64_t and long integer types.  The macro ALU_END
34    (in _ALU_RESULT_VAL) then selects which of the three alternative
35    results will be used in the final assignment of the target
36    register.  As this selection is determined at compile time by
37    fields in the instruction (OE, EA, Rc) the compiler has sufficient
38    information to firstly simplify the selection code into a single
39    case and then back anotate the equations and hence eliminate any
40    resulting dead code.  That dead code being the calculations that,
41    as it turned out were not in the end needed.
42 
43    64bit arrithemetic is used firstly because it allows the use of
44    gcc's efficient long long operators (typically efficiently output
45    inline) and secondly because the resultant answer will contain in
46    the low 32bits the answer while in the high 32bits is either carry
47    or status information. */
48 
49 /* 64bit target expressions:
50 
51    Unfortunatly 128bit arrithemetic isn't that common.  Consequently
52    the 32/64 bit trick can not be used.  Instead all calculations are
53    required to retain carry/overflow information in separate
54    variables.  Even with this restriction it is still possible for the
55    trick of letting the compiler discard the calculation of unneeded
56    values */
57 
58 
59 /* Macro's to type cast 32bit constants to 64bits */
60 #define SIGNED64(val)   ((int64_t)(int32_t)(val))
61 #define UNSIGNED64(val) ((uint64_t)(uint32_t)(val))
62 
63 
64 /* Start a section of ALU code */
65 
66 #define ALU_BEGIN(val) \
67 { \
68   signed_word alu_val; \
69   uint64_t alu_carry_val; \
70   int64_t alu_overflow_val; \
71   ALU_SET(val)
72 
73 
74 /* assign the result to the target register */
75 
76 #define ALU_END(TARG,CA,OE,Rc) \
77 { /* select the result to use */ \
78   signed_word const alu_result = _ALU_RESULT_VAL(CA,OE,Rc); \
79   /* determine the overflow bit if needed */ \
80   if (OE) { \
81     if ((((uint64_t)(alu_overflow_val & BIT64(0))) \
82 	 >> 32) \
83         == (alu_overflow_val & BIT64(32))) \
84       XER &= (~xer_overflow); \
85     else \
86       XER |= (xer_summary_overflow | xer_overflow); \
87   } \
88   /* Update the carry bit if needed */ \
89   if (CA) { \
90     XER = ((XER & ~xer_carry) \
91            | SHUFFLED32((alu_carry_val >> 32), 31, xer_carry_bit)); \
92     /* if (alu_carry_val & BIT64(31)) \
93          XER |= (xer_carry); \
94        else \
95          XER &= (~xer_carry); */ \
96   } \
97   TRACE(trace_alu, (" Result = %ld (0x%lx), XER = %ld\n", \
98                     (long)alu_result, (long)alu_result, (long)XER)); \
99   /* Update the Result Conditions if needed */ \
100   CR0_COMPARE(alu_result, 0, Rc); \
101   /* assign targ same */ \
102   TARG = alu_result; \
103 }}
104 
105 /* select the result from the different options */
106 
107 #define _ALU_RESULT_VAL(CA,OE,Rc) (WITH_TARGET_WORD_BITSIZE == 64 \
108 				   ? alu_val \
109 				   : (OE \
110 				      ? alu_overflow_val \
111 				      : (CA \
112 					 ? alu_carry_val \
113 					 : alu_val)))
114 
115 
116 /* More basic alu operations */
117 #if (WITH_TARGET_WORD_BITSIZE == 64)
118 #define ALU_SET(val) \
119 do { \
120   alu_val = val; \
121   alu_carry_val = ((uint64_t)alu_val) >> 32; \
122   alu_overflow_val = ((int64_t)alu_val) >> 32; \
123 } while (0)
124 #endif
125 #if (WITH_TARGET_WORD_BITSIZE == 32)
126 #define ALU_SET(val) \
127 do { \
128   alu_val = val; \
129   alu_carry_val = (uint32_t)(alu_val); \
130   alu_overflow_val = (int32_t)(alu_val); \
131 } while (0)
132 #endif
133 
134 #if (WITH_TARGET_WORD_BITSIZE == 64)
135 #define ALU_ADD(val) \
136 do { \
137   uint64_t alu_lo = (UNSIGNED64(alu_val) \
138 		       + UNSIGNED64(val)); \
139   signed alu_carry = ((alu_lo & BIT(31)) != 0); \
140   alu_carry_val = (alu_carry_val \
141 		   + UNSIGNED64(EXTRACTED(val, 0, 31)) \
142 		   + alu_carry); \
143   alu_overflow_val = (alu_overflow_val \
144 		      + SIGNED64(EXTRACTED(val, 0, 31)) \
145 		      + alu_carry); \
146   alu_val = alu_val + val; \
147 } while (0)
148 #endif
149 #if (WITH_TARGET_WORD_BITSIZE == 32)
150 #define ALU_ADD(val) \
151 do { \
152   alu_val += val; \
153   alu_carry_val += (uint32_t)(val); \
154   alu_overflow_val += (int32_t)(val); \
155 } while (0)
156 #endif
157 
158 
159 #if (WITH_TARGET_WORD_BITSIZE == 64)
160 #define ALU_ADD_CA \
161 do { \
162   signed carry = MASKED32(XER, xer_carry_bit, xer_carry_bit) != 0; \
163   ALU_ADD(carry); \
164 } while (0)
165 #endif
166 #if (WITH_TARGET_WORD_BITSIZE == 32)
167 #define ALU_ADD_CA \
168 do { \
169   signed carry = MASKED32(XER, xer_carry_bit, xer_carry_bit) != 0; \
170   ALU_ADD(carry); \
171 } while (0)
172 #endif
173 
174 
175 #if 0
176 #if (WITH_TARGET_WORD_BITSIZE == 64)
177 #endif
178 #if (WITH_TARGET_WORD_BITSIZE == 32)
179 #define ALU_SUB(val) \
180 do { \
181   alu_val -= val; \
182   alu_carry_val -= (uint32_t)(val); \
183   alu_overflow_val -= (int32_t)(val); \
184 } while (0)
185 #endif
186 #endif
187 
188 #if (WITH_TARGET_WORD_BITSIZE == 64)
189 #endif
190 #if (WITH_TARGET_WORD_BITSIZE == 32)
191 #define ALU_OR(val) \
192 do { \
193   alu_val |= val; \
194   alu_carry_val = (uint32_t)(alu_val); \
195   alu_overflow_val = (int32_t)(alu_val); \
196 } while (0)
197 #endif
198 
199 
200 #if (WITH_TARGET_WORD_BITSIZE == 64)
201 #endif
202 #if (WITH_TARGET_WORD_BITSIZE == 32)
203 #define ALU_XOR(val) \
204 do { \
205   alu_val ^= val; \
206   alu_carry_val = (uint32_t)(alu_val); \
207   alu_overflow_val = (int32_t)(alu_val); \
208 } while (0)
209 #endif
210 
211 
212 #if 0
213 #if (WITH_TARGET_WORD_BITSIZE == 64)
214 #endif
215 #if (WITH_TARGET_WORD_BITSIZE == 32)
216 #define ALU_NEGATE \
217 do { \
218   alu_val = -alu_val; \
219   alu_carry_val = -alu_carry_val; \
220   alu_overflow_val = -alu_overflow_val; \
221 } while(0)
222 #endif
223 #endif
224 
225 
226 #if (WITH_TARGET_WORD_BITSIZE == 64)
227 #endif
228 #if (WITH_TARGET_WORD_BITSIZE == 32)
229 #define ALU_AND(val) \
230 do { \
231   alu_val &= val; \
232   alu_carry_val = (uint32_t)(alu_val); \
233   alu_overflow_val = (int32_t)(alu_val); \
234 } while (0)
235 #endif
236 
237 
238 #if (WITH_TARGET_WORD_BITSIZE == 64)
239 #define ALU_NOT \
240 do { \
241   int64_t new_alu_val = ~alu_val; \
242   ALU_SET(new_alu_val); \
243 } while (0)
244 #endif
245 #if (WITH_TARGET_WORD_BITSIZE == 32)
246 #define ALU_NOT \
247 do { \
248   signed new_alu_val = ~alu_val; \
249   ALU_SET(new_alu_val); \
250 } while(0)
251 #endif
252 
253 
254 /* Macros for updating the condition register */
255 
256 #define CR1_UPDATE(Rc) \
257 do { \
258   if (Rc) { \
259     CR_SET(1, EXTRACTED32(FPSCR, fpscr_fx_bit, fpscr_ox_bit)); \
260   } \
261 } while (0)
262 
263 
264 #define _DO_CR_COMPARE(LHS, RHS) \
265 (((LHS) < (RHS)) \
266  ? cr_i_negative \
267  : (((LHS) > (RHS)) \
268     ? cr_i_positive \
269     : cr_i_zero))
270 
271 #define CR_SET(REG, VAL) MBLIT32(CR, REG*4, REG*4+3, VAL)
272 #define CR_FIELD(REG) EXTRACTED32(CR, REG*4, REG*4+3)
273 #define CR_SET_XER_SO(REG, VAL) \
274 do { \
275   creg new_bits = ((XER & xer_summary_overflow) \
276                    ? (cr_i_summary_overflow | VAL) \
277                    : VAL); \
278   CR_SET(REG, new_bits); \
279 } while(0)
280 
281 #define CR_COMPARE(REG, LHS, RHS) \
282 do { \
283   creg new_bits = ((XER & xer_summary_overflow) \
284                    ? (cr_i_summary_overflow | _DO_CR_COMPARE(LHS,RHS)) \
285                    : _DO_CR_COMPARE(LHS,RHS)); \
286   CR_SET(REG, new_bits); \
287 } while (0)
288 
289 #define CR0_COMPARE(LHS, RHS, Rc) \
290 do { \
291   if (Rc) { \
292     CR_COMPARE(0, LHS, RHS); \
293     TRACE(trace_alu, \
294 	  ("CR=0x%08lx, LHS=%ld, RHS=%ld\n", \
295 	   (unsigned long)CR, (long)LHS, (long)RHS)); \
296   } \
297 } while (0)
298 
299 
300 
301 /* Bring data in from the cold */
302 
303 #define MEM(SIGN, EA, NR_BYTES) \
304 ((SIGN##_##NR_BYTES) vm_data_map_read_##NR_BYTES(cpu_data_map(processor), EA, \
305 						 processor, cia)) \
306 
307 #define STORE(EA, NR_BYTES, VAL) \
308 do { \
309   vm_data_map_write_##NR_BYTES(cpu_data_map(processor), EA, VAL, \
310 			       processor, cia); \
311 } while (0)
312 
313 
314 
315 /* some FPSCR update macros. */
316 
317 #define FPSCR_BEGIN \
318 { \
319   fpscreg old_fpscr ATTRIBUTE_UNUSED = FPSCR
320 
321 #define FPSCR_END(Rc) { \
322   /* always update VX */ \
323   if ((FPSCR & fpscr_vx_bits)) \
324     FPSCR |= fpscr_vx; \
325   else \
326     FPSCR &= ~fpscr_vx; \
327   /* always update FEX */ \
328   if (((FPSCR & fpscr_vx) && (FPSCR & fpscr_ve)) \
329       || ((FPSCR & fpscr_ox) && (FPSCR & fpscr_oe)) \
330       || ((FPSCR & fpscr_ux) && (FPSCR & fpscr_ue)) \
331       || ((FPSCR & fpscr_zx) && (FPSCR & fpscr_ze)) \
332       || ((FPSCR & fpscr_xx) && (FPSCR & fpscr_xe))) \
333     FPSCR |= fpscr_fex; \
334   else \
335     FPSCR &= ~fpscr_fex; \
336   CR1_UPDATE(Rc); \
337   /* interrupt enabled? */ \
338   if ((MSR & (msr_floating_point_exception_mode_0 \
339               | msr_floating_point_exception_mode_1)) \
340       && (FPSCR & fpscr_fex)) \
341     program_interrupt(processor, cia, \
342                       floating_point_enabled_program_interrupt); \
343 }}
344 
345 #define FPSCR_SET(REG, VAL) MBLIT32(FPSCR, REG*4, REG*4+3, VAL)
346 #define FPSCR_FIELD(REG) EXTRACTED32(FPSCR, REG*4, REG*4+3)
347 
348 #define FPSCR_SET_FPCC(VAL) MBLIT32(FPSCR, fpscr_fpcc_bit, fpscr_fpcc_bit+3, VAL)
349 
350 /* Handle various exceptions */
351 
352 #define FPSCR_OR_VX(VAL) \
353 do { \
354   /* NOTE: VAL != 0 */ \
355   FPSCR |= (VAL); \
356   FPSCR |= fpscr_fx; \
357 } while (0)
358 
359 #define FPSCR_SET_OX(COND) \
360 do { \
361   if (COND) { \
362     FPSCR |= fpscr_ox; \
363     FPSCR |= fpscr_fx; \
364   } \
365   else \
366     FPSCR &= ~fpscr_ox; \
367 } while (0)
368 
369 #define FPSCR_SET_UX(COND) \
370 do { \
371   if (COND) { \
372     FPSCR |= fpscr_ux; \
373     FPSCR |= fpscr_fx; \
374   } \
375   else \
376     FPSCR &= ~fpscr_ux; \
377 } while (0)
378 
379 #define FPSCR_SET_ZX(COND) \
380 do { \
381   if (COND) { \
382     FPSCR |= fpscr_zx; \
383     FPSCR |= fpscr_fx; \
384   } \
385   else \
386     FPSCR &= ~fpscr_zx; \
387 } while (0)
388 
389 #define FPSCR_SET_XX(COND) \
390 do { \
391   if (COND) { \
392     FPSCR |= fpscr_xx; \
393     FPSCR |= fpscr_fx; \
394   } \
395 } while (0)
396 
397 /* Note: code using SET_FI must also explicitly call SET_XX */
398 
399 #define FPSCR_SET_FR(COND) do { \
400   if (COND) \
401     FPSCR |= fpscr_fr; \
402   else \
403     FPSCR &= ~fpscr_fr; \
404 } while (0)
405 
406 #define FPSCR_SET_FI(COND) \
407 do { \
408   if (COND) { \
409     FPSCR |= fpscr_fi; \
410   } \
411   else \
412     FPSCR &= ~fpscr_fi; \
413 } while (0)
414 
415 #define FPSCR_SET_FPRF(VAL) \
416 do { \
417   FPSCR = (FPSCR & ~fpscr_fprf) | (VAL); \
418 } while (0)
419