xref: /netbsd-src/external/gpl3/gdb.old/dist/sim/mips/sim-main.h (revision 8b657b0747480f8989760d71343d6dd33f8d4cf9)
1 /* MIPS Simulator definition.
2    Copyright (C) 1997-2023 Free Software Foundation, Inc.
3    Contributed by Cygnus Support.
4 
5 This file is part of the MIPS sim.
6 
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11 
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #ifndef SIM_MAIN_H
21 #define SIM_MAIN_H
22 
23 #define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \
24 mips_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR))
25 
26 #include "sim-basics.h"
27 #include "sim-base.h"
28 #include "bfd.h"
29 #include "elf-bfd.h"
30 #include "elf/mips.h"
31 
32 /* Deprecated macros and types for manipulating 64bit values.  Use
33    ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
34 
35 typedef int64_t word64;
36 typedef uint64_t uword64;
37 
38 #define WORD64LO(t)     (unsigned int)((t)&0xFFFFFFFF)
39 #define WORD64HI(t)     (unsigned int)(((uword64)(t))>>32)
40 #define SET64LO(t)      (((uword64)(t))&0xFFFFFFFF)
41 #define SET64HI(t)	(((uword64)(t))<<32)
42 #define WORD64(h,l)     ((word64)((SET64HI(h)|SET64LO(l))))
43 #define UWORD64(h,l)     (SET64HI(h)|SET64LO(l))
44 
45 /* Check if a value will fit within a halfword: */
46 #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
47 
48 
49 typedef enum {
50   cp0_dmfc0,
51   cp0_dmtc0,
52   cp0_mfc0,
53   cp0_mtc0,
54   cp0_tlbr,
55   cp0_tlbwi,
56   cp0_tlbwr,
57   cp0_tlbp,
58   cp0_cache,
59   cp0_eret,
60   cp0_deret,
61   cp0_rfe
62 } CP0_operation;
63 
64 /* Floating-point operations: */
65 
66 #include "sim-fpu.h"
67 #include "cp1.h"
68 
69 /* FPU registers must be one of the following types. All other values
70    are reserved (and undefined). */
71 typedef enum {
72  fmt_single  = 0,
73  fmt_double  = 1,
74  fmt_word    = 4,
75  fmt_long    = 5,
76  fmt_ps      = 6,
77  /* The following is a special case for FP conditions where only
78     the lower 32bits are considered.  This is a HACK.  */
79  fmt_dc32    = 7,
80  /* The following are well outside the normal acceptable format
81     range, and are used in the register status vector. */
82  fmt_unknown       = 0x10000000,
83  fmt_uninterpreted = 0x20000000,
84  fmt_uninterpreted_32 = 0x40000000,
85  fmt_uninterpreted_64 = 0x80000000U,
86 } FP_formats;
87 
88 /* For paired word (pw) operations, the opcode representation is fmt_word,
89    but register transfers (StoreFPR, ValueFPR, etc.) are done as fmt_long.  */
90 #define fmt_pw fmt_long
91 
92 /* This should be the COC1 value at the start of the preceding
93    instruction: */
94 #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
95 
96 #ifdef TARGET_ENABLE_FR
97 /* FIXME: this should be enabled for all targets, but needs testing first. */
98 #define SizeFGR() (((WITH_TARGET_FLOATING_POINT_BITSIZE) == 64) \
99    ? ((SR & status_FR) ? 64 : 32) \
100    : (WITH_TARGET_FLOATING_POINT_BITSIZE))
101 #else
102 #define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
103 #endif
104 
105 
106 
107 
108 
109 /* HI/LO register accesses */
110 
111 /* For some MIPS targets, the HI/LO registers have certain timing
112    restrictions in that, for instance, a read of a HI register must be
113    separated by at least three instructions from a preceeding read.
114 
115    The struct below is used to record the last access by each of A MT,
116    MF or other OP instruction to a HI/LO register.  See mips.igen for
117    more details. */
118 
119 typedef struct _hilo_access {
120   int64_t timestamp;
121   address_word cia;
122 } hilo_access;
123 
124 typedef struct _hilo_history {
125   hilo_access mt;
126   hilo_access mf;
127   hilo_access op;
128 } hilo_history;
129 
130 
131 
132 
133 /* Integer ALU operations: */
134 
135 #include "sim-alu.h"
136 
137 #define ALU32_END(ANS) \
138   if (ALU32_HAD_OVERFLOW) \
139     SignalExceptionIntegerOverflow (); \
140   (ANS) = (int32_t) ALU32_OVERFLOW_RESULT
141 
142 
143 #define ALU64_END(ANS) \
144   if (ALU64_HAD_OVERFLOW) \
145     SignalExceptionIntegerOverflow (); \
146   (ANS) = ALU64_OVERFLOW_RESULT;
147 
148 
149 
150 
151 
152 /* The following is probably not used for MIPS IV onwards: */
153 /* Slots for delayed register updates. For the moment we just have a
154    fixed number of slots (rather than a more generic, dynamic
155    system). This keeps the simulator fast. However, we only allow
156    for the register update to be delayed for a single instruction
157    cycle. */
158 #define PSLOTS (8) /* Maximum number of instruction cycles */
159 
160 typedef struct _pending_write_queue {
161   int in;
162   int out;
163   int total;
164   int slot_delay[PSLOTS];
165   int slot_size[PSLOTS];
166   int slot_bit[PSLOTS];
167   void *slot_dest[PSLOTS];
168   uint64_t slot_value[PSLOTS];
169 } pending_write_queue;
170 
171 #ifndef PENDING_TRACE
172 #define PENDING_TRACE 0
173 #endif
174 #define PENDING_IN ((CPU)->pending.in)
175 #define PENDING_OUT ((CPU)->pending.out)
176 #define PENDING_TOTAL ((CPU)->pending.total)
177 #define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
178 #define PENDING_SLOT_BIT ((CPU)->pending.slot_bit)
179 #define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
180 #define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
181 #define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
182 
183 /* Invalidate the pending write queue, all pending writes are
184    discarded. */
185 
186 #define PENDING_INVALIDATE() \
187 memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
188 
189 /* Schedule a write to DEST for N cycles time.  For 64 bit
190    destinations, schedule two writes.  For floating point registers,
191    the caller should schedule a write to both the dest register and
192    the FPR_STATE register.  When BIT is non-negative, only BIT of DEST
193    is updated. */
194 
195 #define PENDING_SCHED(DEST,VAL,DELAY,BIT)				\
196   do {									\
197     if (PENDING_SLOT_DEST[PENDING_IN] != NULL)				\
198       sim_engine_abort (SD, CPU, cia,					\
199 		        "PENDING_SCHED - buffer overflow\n");		\
200     if (PENDING_TRACE)							\
201       sim_io_eprintf (SD, "PENDING_SCHED - 0x%lx - dest 0x%lx, val 0x%lx, bit %d, size %d, pending_in %d, pending_out %d, pending_total %d\n",			\
202 		      (unsigned long) cia, (unsigned long) &(DEST),	\
203 		      (unsigned long) (VAL), (BIT), (int) sizeof (DEST),\
204 		      PENDING_IN, PENDING_OUT, PENDING_TOTAL);		\
205     PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1;			\
206     PENDING_SLOT_DEST[PENDING_IN] = &(DEST);				\
207     PENDING_SLOT_VALUE[PENDING_IN] = (VAL);				\
208     PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST);			\
209     PENDING_SLOT_BIT[PENDING_IN] = (BIT);				\
210     PENDING_IN = (PENDING_IN + 1) % PSLOTS;                             \
211     PENDING_TOTAL += 1;			                                \
212   } while (0)
213 
214 #define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
215 #define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
216 
217 #define PENDING_TICK() pending_tick (SD, CPU, cia)
218 
219 #define PENDING_FLUSH() abort () /* think about this one */
220 #define PENDING_FP() abort () /* think about this one */
221 
222 /* For backward compatibility */
223 #define PENDING_FILL(R,VAL) 						\
224 do {									\
225   if ((R) >= FGR_BASE && (R) < FGR_BASE + NR_FGR)			\
226     {									\
227       PENDING_SCHED(FGR[(R) - FGR_BASE], VAL, 1, -1);			\
228       PENDING_SCHED(FPR_STATE[(R) - FGR_BASE], fmt_uninterpreted, 1, -1); \
229     }									\
230   else									\
231     PENDING_SCHED(GPR[(R)], VAL, 1, -1);				\
232 } while (0)
233 
234 
235 enum float_operation
236   {
237     FLOP_ADD,    FLOP_SUB,    FLOP_MUL,    FLOP_MADD,
238     FLOP_MSUB,   FLOP_MAX=10, FLOP_MIN,    FLOP_ABS,
239     FLOP_ITOF0=14, FLOP_FTOI0=18, FLOP_NEG=23
240   };
241 
242 
243 /* The internal representation of an MDMX accumulator.
244    Note that 24 and 48 bit accumulator elements are represented in
245    32 or 64 bits.  Since the accumulators are 2's complement with
246    overflow suppressed, high-order bits can be ignored in most contexts.  */
247 
248 typedef int32_t signed24;
249 typedef int64_t signed48;
250 
251 typedef union {
252   signed24  ob[8];
253   signed48  qh[4];
254 } MDMX_accumulator;
255 
256 
257 /* Conventional system arguments.  */
258 #define SIM_STATE  sim_cpu *cpu, address_word cia
259 #define SIM_ARGS   CPU, cia
260 
261 struct _sim_cpu {
262 
263 
264   /* The following are internal simulator state variables: */
265   address_word dspc;  /* delay-slot PC */
266 #define DSPC ((CPU)->dspc)
267 
268 #define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET))
269 #define FORBIDDEN_SLOT() { NIA = forbiddenslot32 (SD_); }
270 #define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_)
271 
272 
273   /* State of the simulator */
274   unsigned int state;
275   unsigned int dsstate;
276 #define STATE ((CPU)->state)
277 #define DSSTATE ((CPU)->dsstate)
278 
279 /* Flags in the "state" variable: */
280 #define simHALTEX        (1 << 2)  /* 0 = run; 1 = halt on exception */
281 #define simHALTIN        (1 << 3)  /* 0 = run; 1 = halt on interrupt */
282 #define simTRACE         (1 << 8)  /* 1 = trace address activity */
283 #define simPCOC0         (1 << 17) /* COC[1] from current */
284 #define simPCOC1         (1 << 18) /* COC[1] from previous */
285 #define simDELAYSLOT     (1 << 24) /* 1 = delay slot entry exists */
286 #define simSKIPNEXT      (1 << 25) /* 0 = do nothing; 1 = skip instruction */
287 #define simSIGINT        (1 << 28)  /* 0 = do nothing; 1 = SIGINT has occured */
288 #define simJALDELAYSLOT  (1 << 29) /* 1 = in jal delay slot */
289 #define simFORBIDDENSLOT (1 << 30) /* 1 = n forbidden slot */
290 
291 #ifndef ENGINE_ISSUE_PREFIX_HOOK
292 #define ENGINE_ISSUE_PREFIX_HOOK() \
293   { \
294     /* Perform any pending writes */ \
295     PENDING_TICK(); \
296     /* Set previous flag, depending on current: */ \
297     if (STATE & simPCOC0) \
298      STATE |= simPCOC1; \
299     else \
300      STATE &= ~simPCOC1; \
301     /* and update the current value: */ \
302     if (GETFCC(0)) \
303      STATE |= simPCOC0; \
304     else \
305      STATE &= ~simPCOC0; \
306   }
307 #endif /* ENGINE_ISSUE_PREFIX_HOOK */
308 
309 
310 /* This is nasty, since we have to rely on matching the register
311    numbers used by GDB. Unfortunately, depending on the MIPS target
312    GDB uses different register numbers. We cannot just include the
313    relevant "gdb/tm.h" link, since GDB may not be configured before
314    the sim world, and also the GDB header file requires too much other
315    state. */
316 
317 #ifndef TM_MIPS_H
318 #define LAST_EMBED_REGNUM (96)
319 #define NUM_REGS (LAST_EMBED_REGNUM + 1)
320 
321 #define FP0_REGNUM 38           /* Floating point register 0 (single float) */
322 #define FCRCS_REGNUM 70         /* FP control/status */
323 #define FCRIR_REGNUM 71         /* FP implementation/revision */
324 #endif
325 
326 
327 /* To keep this default simulator simple, and fast, we use a direct
328    vector of registers. The internal simulator engine then uses
329    manifests to access the correct slot. */
330 
331   unsigned_word registers[LAST_EMBED_REGNUM + 1];
332 
333   int register_widths[NUM_REGS];
334 #define REGISTERS       ((CPU)->registers)
335 
336 #define GPR     (&REGISTERS[0])
337 #define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
338 
339 #define LO      (REGISTERS[33])
340 #define HI      (REGISTERS[34])
341 #define PCIDX	37
342 #define PC      (REGISTERS[PCIDX])
343 #define CAUSE   (REGISTERS[36])
344 #define SRIDX   (32)
345 #define SR      (REGISTERS[SRIDX])      /* CPU status register */
346 #define FCR0IDX  (71)
347 #define FCR0    (REGISTERS[FCR0IDX])    /* really a 32bit register */
348 #define FCR31IDX (70)
349 #define FCR31   (REGISTERS[FCR31IDX])   /* really a 32bit register */
350 #define FCSR    (FCR31)
351 #define Debug	(REGISTERS[86])
352 #define DEPC	(REGISTERS[87])
353 #define EPC	(REGISTERS[88])
354 #define ACX	(REGISTERS[89])
355 
356 #define AC0LOIDX	(33)	/* Must be the same register as LO */
357 #define AC0HIIDX	(34)	/* Must be the same register as HI */
358 #define AC1LOIDX	(90)
359 #define AC1HIIDX	(91)
360 #define AC2LOIDX	(92)
361 #define AC2HIIDX	(93)
362 #define AC3LOIDX	(94)
363 #define AC3HIIDX	(95)
364 
365 #define DSPLO(N)	(REGISTERS[DSPLO_REGNUM[N]])
366 #define DSPHI(N)	(REGISTERS[DSPHI_REGNUM[N]])
367 
368 #define DSPCRIDX	(96)	/* DSP control register */
369 #define DSPCR		(REGISTERS[DSPCRIDX])
370 
371 #define DSPCR_POS_SHIFT		(0)
372 #define DSPCR_POS_MASK		(0x3f)
373 #define DSPCR_POS_SMASK		(DSPCR_POS_MASK << DSPCR_POS_SHIFT)
374 
375 #define DSPCR_SCOUNT_SHIFT	(7)
376 #define DSPCR_SCOUNT_MASK	(0x3f)
377 #define DSPCR_SCOUNT_SMASK	(DSPCR_SCOUNT_MASK << DSPCR_SCOUNT_SHIFT)
378 
379 #define DSPCR_CARRY_SHIFT	(13)
380 #define DSPCR_CARRY_MASK	(1)
381 #define DSPCR_CARRY_SMASK	(DSPCR_CARRY_MASK << DSPCR_CARRY_SHIFT)
382 #define DSPCR_CARRY		(1 << DSPCR_CARRY_SHIFT)
383 
384 #define DSPCR_EFI_SHIFT		(14)
385 #define DSPCR_EFI_MASK		(1)
386 #define DSPCR_EFI_SMASK		(DSPCR_EFI_MASK << DSPCR_EFI_SHIFT)
387 #define DSPCR_EFI		(1 << DSPCR_EFI_MASK)
388 
389 #define DSPCR_OUFLAG_SHIFT	(16)
390 #define DSPCR_OUFLAG_MASK	(0xff)
391 #define DSPCR_OUFLAG_SMASK	(DSPCR_OUFLAG_MASK << DSPCR_OUFLAG_SHIFT)
392 #define DSPCR_OUFLAG4		(1 << (DSPCR_OUFLAG_SHIFT + 4))
393 #define DSPCR_OUFLAG5		(1 << (DSPCR_OUFLAG_SHIFT + 5))
394 #define DSPCR_OUFLAG6		(1 << (DSPCR_OUFLAG_SHIFT + 6))
395 #define DSPCR_OUFLAG7		(1 << (DSPCR_OUFLAG_SHIFT + 7))
396 
397 #define DSPCR_CCOND_SHIFT	(24)
398 #define DSPCR_CCOND_MASK	(0xf)
399 #define DSPCR_CCOND_SMASK	(DSPCR_CCOND_MASK << DSPCR_CCOND_SHIFT)
400 
401   /* All internal state modified by signal_exception() that may need to be
402      rolled back for passing moment-of-exception image back to gdb. */
403   unsigned_word exc_trigger_registers[LAST_EMBED_REGNUM + 1];
404   unsigned_word exc_suspend_registers[LAST_EMBED_REGNUM + 1];
405   int exc_suspended;
406 
407 #define SIM_CPU_EXCEPTION_TRIGGER(SD,CPU,CIA) mips_cpu_exception_trigger(SD,CPU,CIA)
408 #define SIM_CPU_EXCEPTION_SUSPEND(SD,CPU,EXC) mips_cpu_exception_suspend(SD,CPU,EXC)
409 #define SIM_CPU_EXCEPTION_RESUME(SD,CPU,EXC) mips_cpu_exception_resume(SD,CPU,EXC)
410 
411   unsigned_word c0_config_reg;
412 #define C0_CONFIG ((CPU)->c0_config_reg)
413 
414 /* The following are pseudonyms for standard registers */
415 #define ZERO    (REGISTERS[0])
416 #define V0      (REGISTERS[2])
417 #define A0      (REGISTERS[4])
418 #define A1      (REGISTERS[5])
419 #define A2      (REGISTERS[6])
420 #define A3      (REGISTERS[7])
421 #define T8IDX   24
422 #define T8	(REGISTERS[T8IDX])
423 #define SPIDX   29
424 #define SP      (REGISTERS[SPIDX])
425 #define RAIDX   31
426 #define RA      (REGISTERS[RAIDX])
427 
428   /* While space is allocated in the main registers arrray for some of
429      the COP0 registers, that space isn't sufficient.  Unknown COP0
430      registers overflow into the array below */
431 
432 #define NR_COP0_GPR	32
433   unsigned_word cop0_gpr[NR_COP0_GPR];
434 #define COP0_GPR	((CPU)->cop0_gpr)
435 #define COP0_BADVADDR	(COP0_GPR[8])
436 
437   /* While space is allocated for the floating point registers in the
438      main registers array, they are stored separatly.  This is because
439      their size may not necessarily match the size of either the
440      general-purpose or system specific registers.  */
441 #define NR_FGR    (32)
442 #define FGR_BASE  FP0_REGNUM
443   fp_word fgr[NR_FGR];
444 #define FGR       ((CPU)->fgr)
445 
446   /* Keep the current format state for each register: */
447   FP_formats fpr_state[32];
448 #define FPR_STATE ((CPU)->fpr_state)
449 
450   pending_write_queue pending;
451 
452   /* The MDMX accumulator (used only for MDMX ASE).  */
453   MDMX_accumulator acc;
454 #define ACC             ((CPU)->acc)
455 
456   /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
457      read-write instructions. It is set when a linked load occurs. It
458      is tested and cleared by the conditional store. It is cleared
459      (during other CPU operations) when a store to the location would
460      no longer be atomic. In particular, it is cleared by exception
461      return instructions. */
462   int llbit;
463 #define LLBIT ((CPU)->llbit)
464 
465 
466 /* The HIHISTORY and LOHISTORY timestamps are used to ensure that
467    corruptions caused by using the HI or LO register too close to a
468    following operation is spotted. See mips.igen for more details. */
469 
470   hilo_history hi_history;
471 #define HIHISTORY (&(CPU)->hi_history)
472   hilo_history lo_history;
473 #define LOHISTORY (&(CPU)->lo_history)
474 
475 
476   sim_cpu_base base;
477 };
478 
479 extern void mips_sim_close (SIM_DESC sd, int quitting);
480 #define SIM_CLOSE_HOOK(...) mips_sim_close (__VA_ARGS__)
481 
482 /* FIXME: At present much of the simulator is still static */
483 struct mips_sim_state {
484   /* microMIPS ISA mode.  */
485   int isa_mode;
486 };
487 #define MIPS_SIM_STATE(sd) ((struct mips_sim_state *) STATE_ARCH_DATA (sd))
488 
489 
490 /* Status information: */
491 
492 /* TODO : these should be the bitmasks for these bits within the
493    status register. At the moment the following are VR4300
494    bit-positions: */
495 #define status_KSU_mask  (0x18)         /* mask for KSU bits */
496 #define status_KSU_shift (3)            /* shift for field */
497 #define ksu_kernel       (0x0)
498 #define ksu_supervisor   (0x1)
499 #define ksu_user         (0x2)
500 #define ksu_unknown      (0x3)
501 
502 #define SR_KSU		 ((SR & status_KSU_mask) >> status_KSU_shift)
503 
504 #define status_IE	 (1 <<  0)      /* Interrupt enable */
505 #define status_EIE	 (1 << 16)      /* Enable Interrupt Enable */
506 #define status_EXL	 (1 <<  1)	/* Exception level */
507 #define status_RE        (1 << 25)      /* Reverse Endian in user mode */
508 #define status_FR        (1 << 26)      /* enables MIPS III additional FP registers */
509 #define status_SR        (1 << 20)      /* soft reset or NMI */
510 #define status_BEV       (1 << 22)      /* Location of general exception vectors */
511 #define status_TS        (1 << 21)      /* TLB shutdown has occurred */
512 #define status_ERL       (1 <<  2)      /* Error level */
513 #define status_IM7       (1 << 15)      /* Timer Interrupt Mask */
514 #define status_RP        (1 << 27)      /* Reduced Power mode */
515 
516 /* Specializations for TX39 family */
517 #define status_IEc       (1 << 0)       /* Interrupt enable (current) */
518 #define status_KUc       (1 << 1)       /* Kernel/User mode */
519 #define status_IEp       (1 << 2)       /* Interrupt enable (previous) */
520 #define status_KUp       (1 << 3)       /* Kernel/User mode */
521 #define status_IEo       (1 << 4)       /* Interrupt enable (old) */
522 #define status_KUo       (1 << 5)       /* Kernel/User mode */
523 #define status_IM_mask   (0xff)         /* Interrupt mask */
524 #define status_IM_shift  (8)
525 #define status_NMI       (1 << 20)      /* NMI */
526 #define status_NMI       (1 << 20)      /* NMI */
527 
528 /* Status bits used by MIPS32/MIPS64.  */
529 #define status_UX        (1 <<  5)      /* 64-bit user addrs */
530 #define status_SX        (1 <<  6)      /* 64-bit supervisor addrs */
531 #define status_KX        (1 <<  7)      /* 64-bit kernel addrs */
532 #define status_TS        (1 << 21)      /* TLB shutdown has occurred */
533 #define status_PX        (1 << 23)      /* Enable 64 bit operations */
534 #define status_MX        (1 << 24)      /* Enable MDMX resources */
535 #define status_CU0       (1 << 28)      /* Coprocessor 0 usable */
536 #define status_CU1       (1 << 29)      /* Coprocessor 1 usable */
537 #define status_CU2       (1 << 30)      /* Coprocessor 2 usable */
538 #define status_CU3       (1 << 31)      /* Coprocessor 3 usable */
539 /* Bits reserved for implementations:  */
540 #define status_SBX       (1 << 16)      /* Enable SiByte SB-1 extensions.  */
541 
542 /* From R6 onwards, some instructions (e.g. ADDIUPC) change behaviour based
543  * on the Status.UX bits to either sign extend, or act as full 64 bit. */
544 #define status_optional_EXTEND32(x) ((SR & status_UX) ? x : EXTEND32(x))
545 
546 #define cause_BD ((unsigned)1 << 31)    /* L1 Exception in branch delay slot */
547 #define cause_BD2         (1 << 30)     /* L2 Exception in branch delay slot */
548 #define cause_CE_mask     0x30000000	/* Coprocessor exception */
549 #define cause_CE_shift    28
550 #define cause_EXC2_mask   0x00070000
551 #define cause_EXC2_shift  16
552 #define cause_IP7 	  (1 << 15)	/* Interrupt pending */
553 #define cause_SIOP        (1 << 12)     /* SIO pending */
554 #define cause_IP3 	  (1 << 11)	/* Int 0 pending */
555 #define cause_IP2 	  (1 << 10)	/* Int 1 pending */
556 
557 #define cause_EXC_mask  (0x1c)          /* Exception code */
558 #define cause_EXC_shift (2)
559 
560 #define cause_SW0       (1 << 8)        /* Software interrupt 0 */
561 #define cause_SW1       (1 << 9)        /* Software interrupt 1 */
562 #define cause_IP_mask   (0x3f)          /* Interrupt pending field */
563 #define cause_IP_shift  (10)
564 
565 #define cause_set_EXC(x)  CAUSE = (CAUSE & ~cause_EXC_mask)  | ((x << cause_EXC_shift)  & cause_EXC_mask)
566 #define cause_set_EXC2(x) CAUSE = (CAUSE & ~cause_EXC2_mask) | ((x << cause_EXC2_shift) & cause_EXC2_mask)
567 
568 
569 /* NOTE: We keep the following status flags as bit values (1 for true,
570    0 for false). This allows them to be used in binary boolean
571    operations without worrying about what exactly the non-zero true
572    value is. */
573 
574 /* UserMode */
575 #ifdef SUBTARGET_R3900
576 #define UserMode        ((SR & status_KUc) ? 1 : 0)
577 #else
578 #define UserMode	((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
579 #endif /* SUBTARGET_R3900 */
580 
581 /* BigEndianMem */
582 /* Hardware configuration. Affects endianness of LoadMemory and
583    StoreMemory and the endianness of Kernel and Supervisor mode
584    execution. The value is 0 for little-endian; 1 for big-endian. */
585 #define BigEndianMem    (CURRENT_TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
586 /*(state & simBE) ? 1 : 0)*/
587 
588 /* ReverseEndian */
589 /* This mode is selected if in User mode with the RE bit being set in
590    SR (Status Register). It reverses the endianness of load and store
591    instructions. */
592 #define ReverseEndian   (((SR & status_RE) && UserMode) ? 1 : 0)
593 
594 /* BigEndianCPU */
595 /* The endianness for load and store instructions (0=little;1=big). In
596    User mode this endianness may be switched by setting the state_RE
597    bit in the SR register. Thus, BigEndianCPU may be computed as
598    (BigEndianMem EOR ReverseEndian). */
599 #define BigEndianCPU    (BigEndianMem ^ ReverseEndian) /* Already bits */
600 
601 
602 
603 /* Exceptions: */
604 
605 /* NOTE: These numbers depend on the processor architecture being
606    simulated: */
607 enum ExceptionCause {
608   Interrupt               = 0,
609   TLBModification         = 1,
610   TLBLoad                 = 2,
611   TLBStore                = 3,
612   AddressLoad             = 4,
613   AddressStore            = 5,
614   InstructionFetch        = 6,
615   DataReference           = 7,
616   SystemCall              = 8,
617   BreakPoint              = 9,
618   ReservedInstruction     = 10,
619   CoProcessorUnusable     = 11,
620   IntegerOverflow         = 12,    /* Arithmetic overflow (IDT monitor raises SIGFPE) */
621   Trap                    = 13,
622   FPE                     = 15,
623   DebugBreakPoint         = 16,    /* Impl. dep. in MIPS32/MIPS64.  */
624   MDMX                    = 22,
625   Watch                   = 23,
626   MCheck                  = 24,
627   CacheErr                = 30,
628   NMIReset                = 31,    /* Reserved in MIPS32/MIPS64.  */
629 
630 
631 /* The following exception code is actually private to the simulator
632    world. It is *NOT* a processor feature, and is used to signal
633    run-time errors in the simulator. */
634   SimulatorFault      	  = 0xFFFFFFFF
635 };
636 
637 #define TLB_REFILL  (0)
638 #define TLB_INVALID (1)
639 
640 
641 /* The following break instructions are reserved for use by the
642    simulator.  The first is used to halt the simulation.  The second
643    is used by gdb for break-points.  NOTE: Care must be taken, since
644    this value may be used in later revisions of the MIPS ISA. */
645 #define HALT_INSTRUCTION_MASK   (0x03FFFFC0)
646 
647 #define HALT_INSTRUCTION        (0x03ff000d)
648 #define HALT_INSTRUCTION2       (0x0000ffcd)
649 
650 
651 #define BREAKPOINT_INSTRUCTION  (0x0005000d)
652 #define BREAKPOINT_INSTRUCTION2 (0x0000014d)
653 
654 
655 
656 void interrupt_event (SIM_DESC sd, void *data);
657 
658 void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
659 #define SignalException(exc,instruction)     signal_exception (SD, CPU, cia, (exc), (instruction))
660 #define SignalExceptionInterrupt(level)      signal_exception (SD, CPU, cia, Interrupt, level)
661 #define SignalExceptionInstructionFetch()    signal_exception (SD, CPU, cia, InstructionFetch)
662 #define SignalExceptionAddressStore()        signal_exception (SD, CPU, cia, AddressStore)
663 #define SignalExceptionAddressLoad()         signal_exception (SD, CPU, cia, AddressLoad)
664 #define SignalExceptionDataReference()       signal_exception (SD, CPU, cia, DataReference)
665 #define SignalExceptionSimulatorFault(buf)   signal_exception (SD, CPU, cia, SimulatorFault, buf)
666 #define SignalExceptionFPE()                 signal_exception (SD, CPU, cia, FPE)
667 #define SignalExceptionIntegerOverflow()     signal_exception (SD, CPU, cia, IntegerOverflow)
668 #define SignalExceptionCoProcessorUnusable(cop) signal_exception (SD, CPU, cia, CoProcessorUnusable)
669 #define SignalExceptionNMIReset()            signal_exception (SD, CPU, cia, NMIReset)
670 #define SignalExceptionTLBRefillStore()      signal_exception (SD, CPU, cia, TLBStore, TLB_REFILL)
671 #define SignalExceptionTLBRefillLoad()       signal_exception (SD, CPU, cia, TLBLoad, TLB_REFILL)
672 #define SignalExceptionTLBInvalidStore()     signal_exception (SD, CPU, cia, TLBStore, TLB_INVALID)
673 #define SignalExceptionTLBInvalidLoad()      signal_exception (SD, CPU, cia, TLBLoad, TLB_INVALID)
674 #define SignalExceptionTLBModification()     signal_exception (SD, CPU, cia, TLBModification)
675 #define SignalExceptionMDMX()                signal_exception (SD, CPU, cia, MDMX)
676 #define SignalExceptionWatch()               signal_exception (SD, CPU, cia, Watch)
677 #define SignalExceptionMCheck()              signal_exception (SD, CPU, cia, MCheck)
678 #define SignalExceptionCacheErr()            signal_exception (SD, CPU, cia, CacheErr)
679 
680 /* Co-processor accesses */
681 
682 /* XXX FIXME: For now, assume that FPU (cp1) is always usable.  */
683 #define COP_Usable(coproc_num)		(coproc_num == 1)
684 
685 void cop_lw  (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword);
686 void cop_ld  (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword);
687 unsigned int cop_sw (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg);
688 uword64 cop_sd (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg);
689 
690 #define COP_LW(coproc_num,coproc_reg,memword) \
691 cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
692 #define COP_LD(coproc_num,coproc_reg,memword) \
693 cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
694 #define COP_SW(coproc_num,coproc_reg) \
695 cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
696 #define COP_SD(coproc_num,coproc_reg) \
697 cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
698 
699 
700 void decode_coproc (SIM_DESC sd, sim_cpu *cpu, address_word cia,
701 		    unsigned int instruction, int coprocnum, CP0_operation op,
702 		    int rt, int rd, int sel);
703 #define DecodeCoproc(instruction,coprocnum,op,rt,rd,sel) \
704   decode_coproc (SD, CPU, cia, (instruction), (coprocnum), (op), \
705 		 (rt), (rd), (sel))
706 
707 int sim_monitor (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int arg);
708 
709 
710 /* FPR access.  */
711 uint64_t value_fpr (SIM_STATE, int fpr, FP_formats);
712 #define ValueFPR(FPR,FMT) value_fpr (SIM_ARGS, (FPR), (FMT))
713 void store_fpr (SIM_STATE, int fpr, FP_formats fmt, uint64_t value);
714 #define StoreFPR(FPR,FMT,VALUE) store_fpr (SIM_ARGS, (FPR), (FMT), (VALUE))
715 uint64_t ps_lower (SIM_STATE, uint64_t op);
716 #define PSLower(op) ps_lower (SIM_ARGS, op)
717 uint64_t ps_upper (SIM_STATE, uint64_t op);
718 #define PSUpper(op) ps_upper (SIM_ARGS, op)
719 uint64_t pack_ps (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats from);
720 #define PackPS(op1,op2) pack_ps (SIM_ARGS, op1, op2, fmt_single)
721 
722 
723 /* FCR access.  */
724 unsigned_word value_fcr (SIM_STATE, int fcr);
725 #define ValueFCR(FCR) value_fcr (SIM_ARGS, (FCR))
726 void store_fcr (SIM_STATE, int fcr, unsigned_word value);
727 #define StoreFCR(FCR,VALUE) store_fcr (SIM_ARGS, (FCR), (VALUE))
728 void test_fcsr (SIM_STATE);
729 #define TestFCSR() test_fcsr (SIM_ARGS)
730 
731 
732 /* FPU operations.  */
733 /* Non-signalling */
734 #define FP_R6CMP_AF  0x0
735 #define FP_R6CMP_EQ  0x2
736 #define FP_R6CMP_LE  0x6
737 #define FP_R6CMP_LT  0x4
738 #define FP_R6CMP_NE  0x13
739 #define FP_R6CMP_OR  0x11
740 #define FP_R6CMP_UEQ 0x3
741 #define FP_R6CMP_ULE 0x7
742 #define FP_R6CMP_ULT 0x5
743 #define FP_R6CMP_UN  0x1
744 #define FP_R6CMP_UNE 0x12
745 
746 /* Signalling */
747 #define FP_R6CMP_SAF  0x8
748 #define FP_R6CMP_SEQ  0xa
749 #define FP_R6CMP_SLE  0xe
750 #define FP_R6CMP_SLT  0xc
751 #define FP_R6CMP_SNE  0x1b
752 #define FP_R6CMP_SOR  0x19
753 #define FP_R6CMP_SUEQ 0xb
754 #define FP_R6CMP_SULE 0xf
755 #define FP_R6CMP_SULT 0xd
756 #define FP_R6CMP_SUN  0x9
757 #define FP_R6CMP_SUNE 0x1a
758 
759 /* FPU Class */
760 #define FP_R6CLASS_SNAN    (1<<0)
761 #define FP_R6CLASS_QNAN    (1<<1)
762 #define FP_R6CLASS_NEGINF  (1<<2)
763 #define FP_R6CLASS_NEGNORM (1<<3)
764 #define FP_R6CLASS_NEGSUB  (1<<4)
765 #define FP_R6CLASS_NEGZERO (1<<5)
766 #define FP_R6CLASS_POSINF  (1<<6)
767 #define FP_R6CLASS_POSNORM (1<<7)
768 #define FP_R6CLASS_POSSUB  (1<<8)
769 #define FP_R6CLASS_POSZERO (1<<9)
770 
771 void fp_cmp (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt,
772 	     int abs, int cond, int cc);
773 #define Compare(op1,op2,fmt,cond,cc)  \
774   fp_cmp(SIM_ARGS, op1, op2, fmt, 0, cond, cc)
775 uint64_t fp_r6_cmp (SIM_STATE, uint64_t op1, uint64_t op2,
776 		      FP_formats fmt, int cond);
777 #define R6Compare(op1,op2,fmt,cond) fp_r6_cmp(SIM_ARGS, op1, op2, fmt, cond)
778 uint64_t fp_classify(SIM_STATE, uint64_t op, FP_formats fmt);
779 #define Classify(op, fmt) fp_classify(SIM_ARGS, op, fmt)
780 int fp_rint(SIM_STATE, uint64_t op, uint64_t *ans, FP_formats fmt);
781 #define RoundToIntegralExact(op, ans, fmt) fp_rint(SIM_ARGS, op, ans, fmt)
782 uint64_t fp_abs (SIM_STATE, uint64_t op, FP_formats fmt);
783 #define AbsoluteValue(op,fmt) fp_abs(SIM_ARGS, op, fmt)
784 uint64_t fp_neg (SIM_STATE, uint64_t op, FP_formats fmt);
785 #define Negate(op,fmt) fp_neg(SIM_ARGS, op, fmt)
786 uint64_t fp_add (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
787 #define Add(op1,op2,fmt) fp_add(SIM_ARGS, op1, op2, fmt)
788 uint64_t fp_sub (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
789 #define Sub(op1,op2,fmt) fp_sub(SIM_ARGS, op1, op2, fmt)
790 uint64_t fp_mul (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
791 #define Multiply(op1,op2,fmt) fp_mul(SIM_ARGS, op1, op2, fmt)
792 uint64_t fp_div (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
793 #define Divide(op1,op2,fmt) fp_div(SIM_ARGS, op1, op2, fmt)
794 uint64_t fp_min (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
795 #define Min(op1,op2,fmt) fp_min(SIM_ARGS, op1, op2, fmt)
796 uint64_t fp_max (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
797 #define Max(op1,op2,fmt) fp_max(SIM_ARGS, op1, op2, fmt)
798 uint64_t fp_mina (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
799 #define MinA(op1,op2,fmt) fp_mina(SIM_ARGS, op1, op2, fmt)
800 uint64_t fp_maxa (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
801 #define MaxA(op1,op2,fmt) fp_maxa(SIM_ARGS, op1, op2, fmt)
802 uint64_t fp_recip (SIM_STATE, uint64_t op, FP_formats fmt);
803 #define Recip(op,fmt) fp_recip(SIM_ARGS, op, fmt)
804 uint64_t fp_sqrt (SIM_STATE, uint64_t op, FP_formats fmt);
805 #define SquareRoot(op,fmt) fp_sqrt(SIM_ARGS, op, fmt)
806 uint64_t fp_rsqrt (SIM_STATE, uint64_t op, FP_formats fmt);
807 #define RSquareRoot(op,fmt) fp_rsqrt(SIM_ARGS, op, fmt)
808 uint64_t fp_madd (SIM_STATE, uint64_t op1, uint64_t op2,
809 		    uint64_t op3, FP_formats fmt);
810 #define FusedMultiplyAdd(op1,op2,op3,fmt) fp_fmadd(SIM_ARGS, op1, op2, op3, fmt)
811 uint64_t fp_fmadd (SIM_STATE, uint64_t op1, uint64_t op2,
812 		     uint64_t op3, FP_formats fmt);
813 #define FusedMultiplySub(op1,op2,op3,fmt) fp_fmsub(SIM_ARGS, op1, op2, op3, fmt)
814 uint64_t fp_fmsub (SIM_STATE, uint64_t op1, uint64_t op2,
815 		     uint64_t op3, FP_formats fmt);
816 #define MultiplyAdd(op1,op2,op3,fmt) fp_madd(SIM_ARGS, op1, op2, op3, fmt)
817 uint64_t fp_msub (SIM_STATE, uint64_t op1, uint64_t op2,
818 		    uint64_t op3, FP_formats fmt);
819 #define MultiplySub(op1,op2,op3,fmt) fp_msub(SIM_ARGS, op1, op2, op3, fmt)
820 uint64_t fp_nmadd (SIM_STATE, uint64_t op1, uint64_t op2,
821 		     uint64_t op3, FP_formats fmt);
822 #define NegMultiplyAdd(op1,op2,op3,fmt) fp_nmadd(SIM_ARGS, op1, op2, op3, fmt)
823 uint64_t fp_nmsub (SIM_STATE, uint64_t op1, uint64_t op2,
824 		     uint64_t op3, FP_formats fmt);
825 #define NegMultiplySub(op1,op2,op3,fmt) fp_nmsub(SIM_ARGS, op1, op2, op3, fmt)
826 uint64_t convert (SIM_STATE, int rm, uint64_t op, FP_formats from, FP_formats to);
827 #define Convert(rm,op,from,to) convert (SIM_ARGS, rm, op, from, to)
828 uint64_t convert_ps (SIM_STATE, int rm, uint64_t op, FP_formats from,
829 		       FP_formats to);
830 #define ConvertPS(rm,op,from,to) convert_ps (SIM_ARGS, rm, op, from, to)
831 
832 
833 /* MIPS-3D ASE operations.  */
834 #define CompareAbs(op1,op2,fmt,cond,cc) \
835 fp_cmp(SIM_ARGS, op1, op2, fmt, 1, cond, cc)
836 uint64_t fp_add_r (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
837 #define AddR(op1,op2,fmt) fp_add_r(SIM_ARGS, op1, op2, fmt)
838 uint64_t fp_mul_r (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
839 #define MultiplyR(op1,op2,fmt) fp_mul_r(SIM_ARGS, op1, op2, fmt)
840 uint64_t fp_recip1 (SIM_STATE, uint64_t op, FP_formats fmt);
841 #define Recip1(op,fmt) fp_recip1(SIM_ARGS, op, fmt)
842 uint64_t fp_recip2 (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
843 #define Recip2(op1,op2,fmt) fp_recip2(SIM_ARGS, op1, op2, fmt)
844 uint64_t fp_rsqrt1 (SIM_STATE, uint64_t op, FP_formats fmt);
845 #define RSquareRoot1(op,fmt) fp_rsqrt1(SIM_ARGS, op, fmt)
846 uint64_t fp_rsqrt2 (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
847 #define RSquareRoot2(op1,op2,fmt) fp_rsqrt2(SIM_ARGS, op1, op2, fmt)
848 
849 
850 /* MDMX access.  */
851 
852 typedef unsigned int MX_fmtsel;   /* MDMX format select field (5 bits).  */
853 #define ob_fmtsel(sel) (((sel)<<1)|0x0)
854 #define qh_fmtsel(sel) (((sel)<<2)|0x1)
855 
856 #define fmt_mdmx fmt_uninterpreted
857 
858 #define MX_VECT_AND  (0)
859 #define MX_VECT_NOR  (1)
860 #define MX_VECT_OR   (2)
861 #define MX_VECT_XOR  (3)
862 #define MX_VECT_SLL  (4)
863 #define MX_VECT_SRL  (5)
864 #define MX_VECT_ADD  (6)
865 #define MX_VECT_SUB  (7)
866 #define MX_VECT_MIN  (8)
867 #define MX_VECT_MAX  (9)
868 #define MX_VECT_MUL  (10)
869 #define MX_VECT_MSGN (11)
870 #define MX_VECT_SRA  (12)
871 #define MX_VECT_ABSD (13)		/* SB-1 only.  */
872 #define MX_VECT_AVG  (14)		/* SB-1 only.  */
873 
874 uint64_t mdmx_cpr_op (SIM_STATE, int op, uint64_t op1, int vt, MX_fmtsel fmtsel);
875 #define MX_Add(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ADD, op1, vt, fmtsel)
876 #define MX_And(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AND, op1, vt, fmtsel)
877 #define MX_Max(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MAX, op1, vt, fmtsel)
878 #define MX_Min(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MIN, op1, vt, fmtsel)
879 #define MX_Msgn(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MSGN, op1, vt, fmtsel)
880 #define MX_Mul(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MUL, op1, vt, fmtsel)
881 #define MX_Nor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_NOR, op1, vt, fmtsel)
882 #define MX_Or(op1,vt,fmtsel)  mdmx_cpr_op(SIM_ARGS, MX_VECT_OR,  op1, vt, fmtsel)
883 #define MX_ShiftLeftLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SLL, op1, vt, fmtsel)
884 #define MX_ShiftRightArith(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRA, op1, vt, fmtsel)
885 #define MX_ShiftRightLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRL, op1, vt, fmtsel)
886 #define MX_Sub(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SUB, op1, vt, fmtsel)
887 #define MX_Xor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_XOR, op1, vt, fmtsel)
888 #define MX_AbsDiff(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ABSD, op1, vt, fmtsel)
889 #define MX_Avg(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AVG, op1, vt, fmtsel)
890 
891 #define MX_C_EQ  0x1
892 #define MX_C_LT  0x4
893 
894 void mdmx_cc_op (SIM_STATE, int cond, uint64_t op1, int vt, MX_fmtsel fmtsel);
895 #define MX_Comp(op1,cond,vt,fmtsel) mdmx_cc_op(SIM_ARGS, cond, op1, vt, fmtsel)
896 
897 uint64_t mdmx_pick_op (SIM_STATE, int tf, uint64_t op1, int vt, MX_fmtsel fmtsel);
898 #define MX_Pick(tf,op1,vt,fmtsel) mdmx_pick_op(SIM_ARGS, tf, op1, vt, fmtsel)
899 
900 #define MX_VECT_ADDA  (0)
901 #define MX_VECT_ADDL  (1)
902 #define MX_VECT_MULA  (2)
903 #define MX_VECT_MULL  (3)
904 #define MX_VECT_MULS  (4)
905 #define MX_VECT_MULSL (5)
906 #define MX_VECT_SUBA  (6)
907 #define MX_VECT_SUBL  (7)
908 #define MX_VECT_ABSDA (8)		/* SB-1 only.  */
909 
910 void mdmx_acc_op (SIM_STATE, int op, uint64_t op1, int vt, MX_fmtsel fmtsel);
911 #define MX_AddA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDA, op1, vt, fmtsel)
912 #define MX_AddL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDL, op1, vt, fmtsel)
913 #define MX_MulA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULA, op1, vt, fmtsel)
914 #define MX_MulL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULL, op1, vt, fmtsel)
915 #define MX_MulS(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULS, op1, vt, fmtsel)
916 #define MX_MulSL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULSL, op1, vt, fmtsel)
917 #define MX_SubA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBA, op1, vt, fmtsel)
918 #define MX_SubL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBL, op1, vt, fmtsel)
919 #define MX_AbsDiffC(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ABSDA, op1, vt, fmtsel)
920 
921 #define MX_FMT_OB   (0)
922 #define MX_FMT_QH   (1)
923 
924 /* The following codes chosen to indicate the units of shift.  */
925 #define MX_RAC_L    (0)
926 #define MX_RAC_M    (1)
927 #define MX_RAC_H    (2)
928 
929 uint64_t mdmx_rac_op (SIM_STATE, int, int);
930 #define MX_RAC(op,fmt) mdmx_rac_op(SIM_ARGS, op, fmt)
931 
932 void mdmx_wacl (SIM_STATE, int, uint64_t, uint64_t);
933 #define MX_WACL(fmt,vs,vt) mdmx_wacl(SIM_ARGS, fmt, vs, vt)
934 void mdmx_wach (SIM_STATE, int, uint64_t);
935 #define MX_WACH(fmt,vs) mdmx_wach(SIM_ARGS, fmt, vs)
936 
937 #define MX_RND_AS   (0)
938 #define MX_RND_AU   (1)
939 #define MX_RND_ES   (2)
940 #define MX_RND_EU   (3)
941 #define MX_RND_ZS   (4)
942 #define MX_RND_ZU   (5)
943 
944 uint64_t mdmx_round_op (SIM_STATE, int, int, MX_fmtsel);
945 #define MX_RNAS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AS, vt, fmt)
946 #define MX_RNAU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AU, vt, fmt)
947 #define MX_RNES(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ES, vt, fmt)
948 #define MX_RNEU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_EU, vt, fmt)
949 #define MX_RZS(vt,fmt)  mdmx_round_op(SIM_ARGS, MX_RND_ZS, vt, fmt)
950 #define MX_RZU(vt,fmt)  mdmx_round_op(SIM_ARGS, MX_RND_ZU, vt, fmt)
951 
952 uint64_t mdmx_shuffle (SIM_STATE, int, uint64_t, uint64_t);
953 #define MX_SHFL(shop,op1,op2) mdmx_shuffle(SIM_ARGS, shop, op1, op2)
954 
955 
956 
957 /* Memory accesses */
958 
959 /* The following are generic to all versions of the MIPS architecture
960    to date: */
961 
962 #define isINSTRUCTION   (1 == 0) /* FALSE */
963 #define isDATA          (1 == 1) /* TRUE */
964 #define isLOAD          (1 == 0) /* FALSE */
965 #define isSTORE         (1 == 1) /* TRUE */
966 #define isREAL          (1 == 0) /* FALSE */
967 #define isRAW           (1 == 1) /* TRUE */
968 /* The parameter HOST (isTARGET / isHOST) is ignored */
969 #define isTARGET        (1 == 0) /* FALSE */
970 /* #define isHOST          (1 == 1) TRUE */
971 
972 /* The "AccessLength" specifications for Loads and Stores. NOTE: This
973    is the number of bytes minus 1. */
974 #define AccessLength_BYTE       (0)
975 #define AccessLength_HALFWORD   (1)
976 #define AccessLength_TRIPLEBYTE (2)
977 #define AccessLength_WORD       (3)
978 #define AccessLength_QUINTIBYTE (4)
979 #define AccessLength_SEXTIBYTE  (5)
980 #define AccessLength_SEPTIBYTE  (6)
981 #define AccessLength_DOUBLEWORD (7)
982 #define AccessLength_QUADWORD   (15)
983 
984 #define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
985 		    ? AccessLength_DOUBLEWORD /*7*/ \
986 		    : AccessLength_WORD /*3*/)
987 
988 INLINE_SIM_MAIN (void) load_memory (SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD);
989 #define LoadMemory(memvalp,memval1p,AccessLength,pAddr,vAddr,IorD,raw) \
990 load_memory (SD, CPU, cia, memvalp, memval1p, 0, AccessLength, pAddr, vAddr, IorD)
991 
992 INLINE_SIM_MAIN (void) store_memory (SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr);
993 #define StoreMemory(AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
994 store_memory (SD, CPU, cia, 0, AccessLength, MemElem, MemElem1, pAddr, vAddr)
995 
996 INLINE_SIM_MAIN (void) cache_op (SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction);
997 #define CacheOp(op,pAddr,vAddr,instruction) \
998 cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
999 
1000 INLINE_SIM_MAIN (void) sync_operation (SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype);
1001 #define SyncOperation(stype) \
1002 sync_operation (SD, CPU, cia, (stype))
1003 
1004 void unpredictable_action (sim_cpu *cpu, address_word cia);
1005 #define NotWordValue(val)	not_word_value (SD_, (val))
1006 #define Unpredictable()		unpredictable (SD_)
1007 #define UnpredictableResult()	/* For now, do nothing.  */
1008 
1009 INLINE_SIM_MAIN (uint32_t) ifetch32 (SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr);
1010 #define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
1011 INLINE_SIM_MAIN (uint16_t) ifetch16 (SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr);
1012 #define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1))
1013 #define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
1014 #define IMEM32_MICROMIPS(CIA) \
1015   (ifetch16 (SD, CPU, (CIA), (CIA)) << 16 | ifetch16 (SD, CPU, (CIA + 2), \
1016 						      (CIA + 2)))
1017 #define IMEM16_MICROMIPS(CIA) ifetch16 (SD, CPU, (CIA), ((CIA)))
1018 
1019 #define MICROMIPS_MINOR_OPCODE(INSN) ((INSN & 0x1C00) >> 10)
1020 
1021 #define MICROMIPS_DELAYSLOT_SIZE_ANY 0
1022 #define MICROMIPS_DELAYSLOT_SIZE_16 2
1023 #define MICROMIPS_DELAYSLOT_SIZE_32 4
1024 
1025 extern int isa_mode;
1026 
1027 #define ISA_MODE_MIPS32 0
1028 #define ISA_MODE_MICROMIPS 1
1029 
1030 address_word micromips_instruction_decode (SIM_DESC sd, sim_cpu * cpu,
1031 					   address_word cia,
1032 					   int instruction_size);
1033 
1034 #if WITH_TRACE_ANY_P
1035 void dotrace (SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, const char *comment, ...) ATTRIBUTE_PRINTF (7, 8);
1036 extern FILE *tracefh;
1037 #else
1038 #define dotrace(sd, cpu, tracefh, type, address, width, comment, ...)
1039 #endif
1040 
1041 extern int DSPLO_REGNUM[4];
1042 extern int DSPHI_REGNUM[4];
1043 
1044 INLINE_SIM_MAIN (void) pending_tick (SIM_DESC sd, sim_cpu *cpu, address_word cia);
1045 extern SIM_CORE_SIGNAL_FN mips_core_signal;
1046 
1047 char* pr_addr (SIM_ADDR addr);
1048 char* pr_uword64 (uword64 addr);
1049 
1050 
1051 #define GPR_CLEAR(N) do { GPR_SET((N),0); } while (0)
1052 
1053 void mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word pc);
1054 void mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception);
1055 void mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception);
1056 
1057 #ifdef MIPS_MACH_MULTI
1058 extern int mips_mach_multi(SIM_DESC sd);
1059 #define MIPS_MACH(SD)	mips_mach_multi(SD)
1060 #else
1061 #define	MIPS_MACH(SD)	MIPS_MACH_DEFAULT
1062 #endif
1063 
1064 /* Macros for determining whether a MIPS IV or MIPS V part is subject
1065    to the hi/lo restrictions described in mips.igen.  */
1066 
1067 #define MIPS_MACH_HAS_MT_HILO_HAZARD(SD) \
1068   (MIPS_MACH (SD) != bfd_mach_mips5500)
1069 
1070 #define MIPS_MACH_HAS_MULT_HILO_HAZARD(SD) \
1071   (MIPS_MACH (SD) != bfd_mach_mips5500)
1072 
1073 #define MIPS_MACH_HAS_DIV_HILO_HAZARD(SD) \
1074   (MIPS_MACH (SD) != bfd_mach_mips5500)
1075 
1076 #if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
1077 #include "sim-main.c"
1078 #endif
1079 
1080 #endif
1081