1 /* Disassembly display. 2 3 Copyright (C) 1998-2023 Free Software Foundation, Inc. 4 5 Contributed by Hewlett-Packard Company. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 #include "defs.h" 23 #include "arch-utils.h" 24 #include "symtab.h" 25 #include "breakpoint.h" 26 #include "frame.h" 27 #include "value.h" 28 #include "source.h" 29 #include "disasm.h" 30 #include "tui/tui.h" 31 #include "tui/tui-command.h" 32 #include "tui/tui-data.h" 33 #include "tui/tui-win.h" 34 #include "tui/tui-layout.h" 35 #include "tui/tui-winsource.h" 36 #include "tui/tui-stack.h" 37 #include "tui/tui-file.h" 38 #include "tui/tui-disasm.h" 39 #include "tui/tui-source.h" 40 #include "progspace.h" 41 #include "objfiles.h" 42 #include "cli/cli-style.h" 43 #include "tui/tui-location.h" 44 45 #include "gdb_curses.h" 46 47 struct tui_asm_line 48 { 49 CORE_ADDR addr; 50 std::string addr_string; 51 size_t addr_size; 52 std::string insn; 53 }; 54 55 /* Helper function to find the number of characters in STR, skipping 56 any ANSI escape sequences. */ 57 static size_t 58 len_without_escapes (const std::string &str) 59 { 60 size_t len = 0; 61 const char *ptr = str.c_str (); 62 char c; 63 64 while ((c = *ptr) != '\0') 65 { 66 if (c == '\033') 67 { 68 ui_file_style style; 69 size_t n_read; 70 if (style.parse (ptr, &n_read)) 71 ptr += n_read; 72 else 73 { 74 /* Shouldn't happen, but just skip the ESC if it somehow 75 does. */ 76 ++ptr; 77 } 78 } 79 else 80 { 81 ++len; 82 ++ptr; 83 } 84 } 85 return len; 86 } 87 88 /* Function to disassemble up to COUNT instructions starting from address 89 PC into the ASM_LINES vector (which will be emptied of any previous 90 contents). Return the address of the COUNT'th instruction after pc. 91 When ADDR_SIZE is non-null then place the maximum size of an address and 92 label into the value pointed to by ADDR_SIZE, and set the addr_size 93 field on each item in ASM_LINES, otherwise the addr_size fields within 94 ASM_LINES are undefined. 95 96 It is worth noting that ASM_LINES might not have COUNT entries when this 97 function returns. If the disassembly is truncated for some other 98 reason, for example, we hit invalid memory, then ASM_LINES can have 99 fewer entries than requested. */ 100 static CORE_ADDR 101 tui_disassemble (struct gdbarch *gdbarch, 102 std::vector<tui_asm_line> &asm_lines, 103 CORE_ADDR pc, int count, 104 size_t *addr_size = nullptr) 105 { 106 bool term_out = source_styling && gdb_stdout->can_emit_style_escape (); 107 string_file gdb_dis_out (term_out); 108 109 /* Must start with an empty list. */ 110 asm_lines.clear (); 111 112 /* Now construct each line. */ 113 for (int i = 0; i < count; ++i) 114 { 115 tui_asm_line tal; 116 CORE_ADDR orig_pc = pc; 117 118 try 119 { 120 pc = pc + gdb_print_insn (gdbarch, pc, &gdb_dis_out, NULL); 121 } 122 catch (const gdb_exception_error &except) 123 { 124 /* If PC points to an invalid address then we'll catch a 125 MEMORY_ERROR here, this should stop the disassembly, but 126 otherwise is fine. */ 127 if (except.error != MEMORY_ERROR) 128 throw; 129 return pc; 130 } 131 132 /* Capture the disassembled instruction. */ 133 tal.insn = gdb_dis_out.release (); 134 135 /* And capture the address the instruction is at. */ 136 tal.addr = orig_pc; 137 print_address (gdbarch, orig_pc, &gdb_dis_out); 138 tal.addr_string = gdb_dis_out.release (); 139 140 if (addr_size != nullptr) 141 { 142 size_t new_size; 143 144 if (term_out) 145 new_size = len_without_escapes (tal.addr_string); 146 else 147 new_size = tal.addr_string.size (); 148 *addr_size = std::max (*addr_size, new_size); 149 tal.addr_size = new_size; 150 } 151 152 asm_lines.push_back (std::move (tal)); 153 } 154 return pc; 155 } 156 157 /* Look backward from ADDR for an address from which we can start 158 disassembling, this needs to be something we can be reasonably 159 confident will fall on an instruction boundary. We use msymbol 160 addresses, or the start of a section. */ 161 162 static CORE_ADDR 163 tui_find_backward_disassembly_start_address (CORE_ADDR addr) 164 { 165 struct bound_minimal_symbol msym, msym_prev; 166 167 msym = lookup_minimal_symbol_by_pc_section (addr - 1, nullptr, 168 lookup_msym_prefer::TEXT, 169 &msym_prev); 170 if (msym.minsym != nullptr) 171 return msym.value_address (); 172 else if (msym_prev.minsym != nullptr) 173 return msym_prev.value_address (); 174 175 /* Find the section that ADDR is in, and look for the start of the 176 section. */ 177 struct obj_section *section = find_pc_section (addr); 178 if (section != NULL) 179 return section->addr (); 180 181 return addr; 182 } 183 184 /* Find the disassembly address that corresponds to FROM lines above 185 or below the PC. Variable sized instructions are taken into 186 account by the algorithm. */ 187 static CORE_ADDR 188 tui_find_disassembly_address (struct gdbarch *gdbarch, CORE_ADDR pc, int from) 189 { 190 CORE_ADDR new_low; 191 int max_lines; 192 193 max_lines = (from > 0) ? from : - from; 194 if (max_lines == 0) 195 return pc; 196 197 std::vector<tui_asm_line> asm_lines; 198 199 new_low = pc; 200 if (from > 0) 201 { 202 /* Always disassemble 1 extra instruction here, then if the last 203 instruction fails to disassemble we will take the address of the 204 previous instruction that did disassemble as the result. */ 205 tui_disassemble (gdbarch, asm_lines, pc, max_lines + 1); 206 new_low = asm_lines.back ().addr; 207 } 208 else 209 { 210 /* In order to disassemble backwards we need to find a suitable 211 address to start disassembling from and then work forward until we 212 re-find the address we're currently at. We can then figure out 213 which address will be at the top of the TUI window after our 214 backward scroll. During our backward disassemble we need to be 215 able to distinguish between the case where the last address we 216 _can_ disassemble is ADDR, and the case where the disassembly 217 just happens to stop at ADDR, for this reason we increase 218 MAX_LINES by one. */ 219 max_lines++; 220 221 /* When we disassemble a series of instructions this will hold the 222 address of the last instruction disassembled. */ 223 CORE_ADDR last_addr; 224 225 /* And this will hold the address of the next instruction that would 226 have been disassembled. */ 227 CORE_ADDR next_addr; 228 229 /* As we search backward if we find an address that looks like a 230 promising starting point then we record it in this structure. If 231 the next address we try is not a suitable starting point then we 232 will fall back to the address held here. */ 233 gdb::optional<CORE_ADDR> possible_new_low; 234 235 /* The previous value of NEW_LOW so we know if the new value is 236 different or not. */ 237 CORE_ADDR prev_low; 238 239 do 240 { 241 /* Find an address from which we can start disassembling. */ 242 prev_low = new_low; 243 new_low = tui_find_backward_disassembly_start_address (new_low); 244 245 /* Disassemble forward. */ 246 next_addr = tui_disassemble (gdbarch, asm_lines, new_low, max_lines); 247 last_addr = asm_lines.back ().addr; 248 249 /* If disassembling from the current value of NEW_LOW reached PC 250 (or went past it) then this would do as a starting point if we 251 can't find anything better, so remember it. */ 252 if (last_addr >= pc && new_low != prev_low 253 && asm_lines.size () >= max_lines) 254 possible_new_low.emplace (new_low); 255 256 /* Continue searching until we find a value of NEW_LOW from which 257 disassembling MAX_LINES instructions doesn't reach PC. We 258 know this means we can find the required number of previous 259 instructions then. */ 260 } 261 while ((last_addr > pc 262 || (last_addr == pc && asm_lines.size () < max_lines)) 263 && new_low != prev_low); 264 265 /* If we failed to disassemble the required number of lines then the 266 following walk forward is not going to work, it assumes that 267 ASM_LINES contains exactly MAX_LINES entries. Instead we should 268 consider falling back to a previous possible start address in 269 POSSIBLE_NEW_LOW. */ 270 if (asm_lines.size () < max_lines) 271 { 272 if (!possible_new_low.has_value ()) 273 return new_low; 274 275 /* Take the best possible match we have. */ 276 new_low = *possible_new_low; 277 next_addr = tui_disassemble (gdbarch, asm_lines, new_low, max_lines); 278 last_addr = asm_lines.back ().addr; 279 gdb_assert (asm_lines.size () >= max_lines); 280 } 281 282 /* Scan forward disassembling one instruction at a time until 283 the last visible instruction of the window matches the pc. 284 We keep the disassembled instructions in the 'lines' window 285 and shift it downward (increasing its addresses). */ 286 int pos = max_lines - 1; 287 if (last_addr < pc) 288 do 289 { 290 pos++; 291 if (pos >= max_lines) 292 pos = 0; 293 294 CORE_ADDR old_next_addr = next_addr; 295 std::vector<tui_asm_line> single_asm_line; 296 next_addr = tui_disassemble (gdbarch, single_asm_line, 297 next_addr, 1); 298 /* If there are some problems while disassembling exit. */ 299 if (next_addr <= old_next_addr) 300 return pc; 301 gdb_assert (single_asm_line.size () == 1); 302 asm_lines[pos] = single_asm_line[0]; 303 } while (next_addr <= pc); 304 pos++; 305 if (pos >= max_lines) 306 pos = 0; 307 new_low = asm_lines[pos].addr; 308 309 /* When scrolling backward the addresses should move backward, or at 310 the very least stay the same if we are at the first address that 311 can be disassembled. */ 312 gdb_assert (new_low <= pc); 313 } 314 return new_low; 315 } 316 317 /* Function to set the disassembly window's content. */ 318 bool 319 tui_disasm_window::set_contents (struct gdbarch *arch, 320 const struct symtab_and_line &sal) 321 { 322 int i; 323 int max_lines; 324 CORE_ADDR cur_pc; 325 int tab_len = tui_tab_width; 326 int insn_pos; 327 328 CORE_ADDR pc = sal.pc; 329 if (pc == 0) 330 return false; 331 332 m_gdbarch = arch; 333 m_start_line_or_addr.loa = LOA_ADDRESS; 334 m_start_line_or_addr.u.addr = pc; 335 cur_pc = tui_location.addr (); 336 337 /* Window size, excluding highlight box. */ 338 max_lines = height - 2; 339 340 /* Get temporary table that will hold all strings (addr & insn). */ 341 std::vector<tui_asm_line> asm_lines; 342 size_t addr_size = 0; 343 tui_disassemble (m_gdbarch, asm_lines, pc, max_lines, &addr_size); 344 345 /* Align instructions to the same column. */ 346 insn_pos = (1 + (addr_size / tab_len)) * tab_len; 347 348 /* Now construct each line. */ 349 m_content.resize (max_lines); 350 m_max_length = -1; 351 for (i = 0; i < max_lines; i++) 352 { 353 tui_source_element *src = &m_content[i]; 354 355 std::string line; 356 CORE_ADDR addr; 357 358 if (i < asm_lines.size ()) 359 { 360 line 361 = (asm_lines[i].addr_string 362 + n_spaces (insn_pos - asm_lines[i].addr_size) 363 + asm_lines[i].insn); 364 addr = asm_lines[i].addr; 365 } 366 else 367 { 368 line = ""; 369 addr = 0; 370 } 371 372 const char *ptr = line.c_str (); 373 int line_len; 374 src->line = tui_copy_source_line (&ptr, &line_len); 375 m_max_length = std::max (m_max_length, line_len); 376 377 src->line_or_addr.loa = LOA_ADDRESS; 378 src->line_or_addr.u.addr = addr; 379 src->is_exec_point = (addr == cur_pc && line.size () > 0); 380 } 381 return true; 382 } 383 384 385 void 386 tui_get_begin_asm_address (struct gdbarch **gdbarch_p, CORE_ADDR *addr_p) 387 { 388 struct gdbarch *gdbarch = get_current_arch (); 389 CORE_ADDR addr = 0; 390 391 if (tui_location.addr () == 0) 392 { 393 if (have_full_symbols () || have_partial_symbols ()) 394 { 395 set_default_source_symtab_and_line (); 396 struct symtab_and_line sal = get_current_source_symtab_and_line (); 397 398 if (sal.symtab != nullptr) 399 find_line_pc (sal.symtab, sal.line, &addr); 400 } 401 402 if (addr == 0) 403 { 404 struct bound_minimal_symbol main_symbol 405 = lookup_minimal_symbol (main_name (), nullptr, nullptr); 406 if (main_symbol.minsym != nullptr) 407 addr = main_symbol.value_address (); 408 } 409 } 410 else /* The target is executing. */ 411 { 412 gdbarch = tui_location.gdbarch (); 413 addr = tui_location.addr (); 414 } 415 416 *gdbarch_p = gdbarch; 417 *addr_p = addr; 418 } 419 420 /* Determine what the low address will be to display in the TUI's 421 disassembly window. This may or may not be the same as the low 422 address input. */ 423 CORE_ADDR 424 tui_get_low_disassembly_address (struct gdbarch *gdbarch, 425 CORE_ADDR low, CORE_ADDR pc) 426 { 427 int pos; 428 429 /* Determine where to start the disassembly so that the pc is about 430 in the middle of the viewport. */ 431 if (TUI_DISASM_WIN != NULL) 432 pos = TUI_DISASM_WIN->height; 433 else if (TUI_CMD_WIN == NULL) 434 pos = tui_term_height () / 2 - 2; 435 else 436 pos = tui_term_height () - TUI_CMD_WIN->height - 2; 437 pos = (pos - 2) / 2; 438 439 pc = tui_find_disassembly_address (gdbarch, pc, -pos); 440 441 if (pc < low) 442 pc = low; 443 return pc; 444 } 445 446 /* Scroll the disassembly forward or backward vertically. */ 447 void 448 tui_disasm_window::do_scroll_vertical (int num_to_scroll) 449 { 450 if (!m_content.empty ()) 451 { 452 CORE_ADDR pc; 453 454 pc = m_start_line_or_addr.u.addr; 455 456 symtab_and_line sal {}; 457 sal.pspace = current_program_space; 458 sal.pc = tui_find_disassembly_address (m_gdbarch, pc, num_to_scroll); 459 update_source_window_as_is (m_gdbarch, sal); 460 } 461 } 462 463 bool 464 tui_disasm_window::location_matches_p (struct bp_location *loc, int line_no) 465 { 466 return (m_content[line_no].line_or_addr.loa == LOA_ADDRESS 467 && m_content[line_no].line_or_addr.u.addr == loc->address); 468 } 469 470 bool 471 tui_disasm_window::addr_is_displayed (CORE_ADDR addr) const 472 { 473 if (m_content.size () < SCROLL_THRESHOLD) 474 return false; 475 476 for (size_t i = 0; i < m_content.size () - SCROLL_THRESHOLD; ++i) 477 { 478 if (m_content[i].line_or_addr.loa == LOA_ADDRESS 479 && m_content[i].line_or_addr.u.addr == addr) 480 return true; 481 } 482 483 return false; 484 } 485 486 void 487 tui_disasm_window::maybe_update (frame_info_ptr fi, symtab_and_line sal) 488 { 489 CORE_ADDR low; 490 491 struct gdbarch *frame_arch = get_frame_arch (fi); 492 493 if (find_pc_partial_function (sal.pc, NULL, &low, NULL) == 0) 494 { 495 /* There is no symbol available for current PC. There is no 496 safe way how to "disassemble backwards". */ 497 low = sal.pc; 498 } 499 else 500 low = tui_get_low_disassembly_address (frame_arch, low, sal.pc); 501 502 struct tui_line_or_address a; 503 504 a.loa = LOA_ADDRESS; 505 a.u.addr = low; 506 if (!addr_is_displayed (sal.pc)) 507 { 508 sal.pc = low; 509 update_source_window (frame_arch, sal); 510 } 511 else 512 { 513 a.u.addr = sal.pc; 514 set_is_exec_point_at (a); 515 } 516 } 517 518 void 519 tui_disasm_window::display_start_addr (struct gdbarch **gdbarch_p, 520 CORE_ADDR *addr_p) 521 { 522 *gdbarch_p = m_gdbarch; 523 *addr_p = m_start_line_or_addr.u.addr; 524 } 525