1# Copyright 1999-2023 Free Software Foundation, Inc. 2 3# This program is free software; you can redistribute it and/or modify 4# it under the terms of the GNU General Public License as published by 5# the Free Software Foundation; either version 3 of the License, or 6# (at your option) any later version. 7# 8# This program is distributed in the hope that it will be useful, 9# but WITHOUT ANY WARRANTY; without even the implied warranty of 10# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11# GNU General Public License for more details. 12# 13# You should have received a copy of the GNU General Public License 14# along with this program. If not, see <http://www.gnu.org/licenses/>. 15 16# This file was based on a file written by Fred Fish. (fnf@cygnus.com) 17 18# Test setup routines that work with the MI interpreter. 19 20load_lib gdb-utils.exp 21 22# The variable mi_gdb_prompt is a regexp which matches the gdb mi prompt. 23# Set it if it is not already set. 24global mi_gdb_prompt 25if {![info exists mi_gdb_prompt]} { 26 set mi_gdb_prompt "\[(\]gdb\[)\] \r\n" 27} 28 29global mi_inferior_tty_name 30 31# Always points to GDB's main UI spawn ID, even when testing with MI 32# running on a secondary UI. 33global gdb_main_spawn_id 34 35# Points to the spawn id of the MI channel. When testing with MI 36# running as the primary/main UI, this is the same as 37# gdb_main_spawn_id, but will be different when testing with MI 38# running on a secondary UI. 39global mi_spawn_id 40 41set MIFLAGS "-i=mi" 42 43set thread_selected_re "=thread-selected,id=\"\[0-9\]+\"\r\n" 44set gdbindex_warning_re "&\"warning: Skipping \[^\r\n\]+ \.gdb_index section in \[^\r\n\]+\"\r\n(?:&\"\\\\n\"\r\n)?" 45set library_loaded_re "=library-loaded\[^\n\]+\"\r\n(?:$gdbindex_warning_re)?" 46set breakpoint_re "=(?:breakpoint-created|breakpoint-deleted)\[^\n\]+\"\r\n" 47 48# 49# mi_gdb_exit -- exit the GDB, killing the target program if necessary 50# 51proc mi_gdb_exit {} { 52 catch mi_uncatched_gdb_exit 53} 54 55proc mi_uncatched_gdb_exit {} { 56 global GDB 57 global INTERNAL_GDBFLAGS GDBFLAGS 58 global gdb_spawn_id gdb_main_spawn_id 59 global mi_spawn_id inferior_spawn_id 60 global gdb_prompt 61 global mi_gdb_prompt 62 global MIFLAGS 63 64 if { [info procs sid_exit] != "" } { 65 sid_exit 66 } 67 68 if ![info exists gdb_spawn_id] { 69 return 70 } 71 72 verbose "Quitting $GDB $INTERNAL_GDBFLAGS $GDBFLAGS $MIFLAGS" 73 74 if { [is_remote host] && [board_info host exists fileid] } { 75 send_gdb "999-gdb-exit\n" 76 gdb_expect 10 { 77 -re "y or n" { 78 send_gdb "y\n" 79 exp_continue 80 } 81 -re "Undefined command.*$gdb_prompt $" { 82 send_gdb "quit\n" 83 exp_continue 84 } 85 -re "DOSEXIT code" { } 86 -re "\r\n999\\^exit\r\n" { } 87 } 88 } 89 90 # Switch back to the main spawn id, so that remote_close below 91 # closes it, and not a secondary channel. Closing a secondary 92 # channel does not make GDB exit. 93 if {$gdb_spawn_id != $gdb_main_spawn_id} { 94 switch_gdb_spawn_id $gdb_main_spawn_id 95 } 96 97 # Close secondary MI channel, if there's one. 98 if {$mi_spawn_id != $gdb_main_spawn_id} { 99 close -i $mi_spawn_id 100 } 101 102 if ![is_remote host] { 103 remote_close host 104 } 105 unset gdb_spawn_id 106 unset gdb_main_spawn_id 107 unset mi_spawn_id 108 unset inferior_spawn_id 109} 110 111# Create the PTY for the inferior process and tell GDB about it. 112 113proc mi_create_inferior_pty {} { 114 global mi_gdb_prompt 115 global inferior_spawn_id 116 global mi_inferior_tty_name 117 118 spawn -pty 119 set inferior_spawn_id $spawn_id 120 set tty_name $spawn_out(slave,name) 121 set mi_inferior_tty_name $tty_name 122 123 send_gdb "102-inferior-tty-set $tty_name\n" 124 gdb_expect 10 { 125 -re ".*102\\\^done\r\n$mi_gdb_prompt$" { 126 verbose "redirect inferior output to new terminal device." 127 } 128 timeout { 129 warning "Couldn't redirect inferior output." 2 130 } 131 } 132} 133 134# 135# Like default_mi_gdb_start below, but the MI is created as a separate 136# ui in a new tty. The global MI_SPAWN_ID is updated to point at the 137# new tty created for the MI interface. The global GDB_MAIN_SPAWN_ID 138# is updated to the current value of the global GDB_SPAWN_ID. 139# 140proc mi_gdb_start_separate_mi_tty { { flags {} } } { 141 global gdb_prompt mi_gdb_prompt 142 global timeout 143 global gdb_spawn_id gdb_main_spawn_id mi_spawn_id 144 global inferior_spawn_id 145 146 set separate_inferior_pty 0 147 148 foreach flag $flags { 149 if {$flag == "separate-inferior-tty"} { 150 set separate_inferior_pty 1 151 } 152 } 153 154 gdb_start 155 156 # Create the new PTY for the MI UI. 157 spawn -pty 158 set mi_spawn_id $spawn_id 159 set mi_tty_name $spawn_out(slave,name) 160 gdb_test_multiple "new-ui mi $mi_tty_name" "new-ui" { 161 -re "New UI allocated\r\n$gdb_prompt $" { 162 } 163 } 164 165 # Switch to the MI channel. 166 set gdb_main_spawn_id $gdb_spawn_id 167 switch_gdb_spawn_id $mi_spawn_id 168 169 # Consume pending output and MI prompt. 170 gdb_expect { 171 -re "$mi_gdb_prompt$" { 172 } 173 default { 174 perror "MI channel failed" 175 remote_close host 176 return -1 177 } 178 } 179 180 if {$separate_inferior_pty} { 181 mi_create_inferior_pty 182 } 183 184 mi_detect_async 185 186 return 0 187} 188 189# 190# default_mi_gdb_start [FLAGS] -- start gdb running, default procedure 191# 192# FLAGS is a list of flags, each flag is a string. 193# 194# If "separate-inferior-tty" is specified, the inferior works with 195# it's own PTY. 196# 197# If "separate-mi-tty" is specified, the gdb starts in CLI mode, with 198# MI running on a secondary UI, on its own tty. 199# 200# When running over NFS, particularly if running many simultaneous 201# tests on different hosts all using the same server, things can 202# get really slow. Give gdb at least 3 minutes to start up. 203# 204proc default_mi_gdb_start { { flags {} } } { 205 global use_gdb_stub 206 global GDB 207 global INTERNAL_GDBFLAGS GDBFLAGS 208 global gdb_prompt 209 global mi_gdb_prompt 210 global timeout 211 global gdb_spawn_id gdb_main_spawn_id inferior_spawn_id mi_spawn_id 212 global MIFLAGS 213 global FORCE_SEPARATE_MI_TTY 214 215 # Keep track of the number of times GDB has been launched. 216 global gdb_instances 217 incr gdb_instances 218 219 gdb_stdin_log_init 220 221 if {[info exists FORCE_SEPARATE_MI_TTY]} { 222 set separate_mi_pty $FORCE_SEPARATE_MI_TTY 223 } else { 224 set separate_mi_pty 0 225 } 226 227 set separate_inferior_pty 0 228 229 foreach flag $flags { 230 if {$flag == "separate-mi-tty"} { 231 set separate_mi_pty 1 232 } elseif {$flag == "separate-inferior-tty"} { 233 set separate_inferior_pty 1 234 } 235 } 236 237 if {$separate_mi_pty} { 238 return [mi_gdb_start_separate_mi_tty $flags] 239 } 240 241 set inferior_pty no-tty 242 243 # Set the default value, it may be overriden later by specific testfile. 244 set use_gdb_stub [target_info exists use_gdb_stub] 245 246 # Start SID. 247 if { [info procs sid_start] != "" } { 248 verbose "Spawning SID" 249 sid_start 250 } 251 252 if [info exists gdb_spawn_id] { 253 return 0 254 } 255 256 save_vars { GDBFLAGS } { 257 append GDBFLAGS " $MIFLAGS" 258 259 set res [gdb_spawn] 260 if { $res != 0} { 261 return $res 262 } 263 } 264 265 gdb_expect { 266 -re "~\"GNU.*\r\n~\".*$mi_gdb_prompt$" { 267 # We have a new format mi startup prompt. If we are 268 # running mi1, then this is an error as we should be 269 # using the old-style prompt. 270 if { $MIFLAGS == "-i=mi1" } { 271 perror "(mi startup) Got unexpected new mi prompt." 272 remote_close host 273 unset gdb_spawn_id 274 return -1 275 } 276 verbose "GDB initialized." 277 } 278 -re "\[^~\].*$mi_gdb_prompt$" { 279 # We have an old format mi startup prompt. If we are 280 # not running mi1, then this is an error as we should be 281 # using the new-style prompt. 282 if { $MIFLAGS != "-i=mi1" } { 283 perror "(mi startup) Got unexpected old mi prompt." 284 remote_close host 285 unset gdb_spawn_id 286 return -1 287 } 288 verbose "GDB initialized." 289 } 290 -re ".*unrecognized option.*for a complete list of options." { 291 untested "skip mi tests (not compiled with mi support)." 292 remote_close host 293 unset gdb_spawn_id 294 return -1 295 } 296 -re ".*Interpreter `mi' unrecognized." { 297 untested "skip mi tests (not compiled with mi support)." 298 remote_close host 299 unset gdb_spawn_id 300 return -1 301 } 302 timeout { 303 perror "(timeout) GDB never initialized after 10 seconds." 304 remote_close host 305 unset gdb_spawn_id 306 return -1 307 } 308 } 309 set gdb_main_spawn_id $gdb_spawn_id 310 set mi_spawn_id $gdb_spawn_id 311 312 # FIXME: mi output does not go through pagers, so these can be removed. 313 # force the height to "unlimited", so no pagers get used 314 send_gdb "100-gdb-set height 0\n" 315 gdb_expect 10 { 316 -re ".*100-gdb-set height 0\r\n100\\\^done\r\n$mi_gdb_prompt$" { 317 verbose "Setting height to 0." 2 318 } 319 timeout { 320 warning "Couldn't set the height to 0" 321 } 322 } 323 # force the width to "unlimited", so no wraparound occurs 324 send_gdb "101-gdb-set width 0\n" 325 gdb_expect 10 { 326 -re ".*101-gdb-set width 0\r\n101\\\^done\r\n$mi_gdb_prompt$" { 327 verbose "Setting width to 0." 2 328 } 329 timeout { 330 warning "Couldn't set the width to 0." 331 } 332 } 333 334 if { $separate_inferior_pty } { 335 mi_create_inferior_pty 336 } 337 338 if {![info exists inferior_spawn_id]} { 339 set inferior_spawn_id $gdb_spawn_id 340 } 341 342 mi_detect_async 343 344 return 0 345} 346 347# 348# Overridable function. You can override this function in your 349# baseboard file. 350# 351proc mi_gdb_start { args } { 352 return [eval default_mi_gdb_start $args] 353} 354 355# Many of the tests depend on setting breakpoints at various places and 356# running until that breakpoint is reached. At times, we want to start 357# with a clean-slate with respect to breakpoints, so this utility proc 358# lets us do this without duplicating this code everywhere. 359# 360 361proc mi_delete_breakpoints {} { 362 global mi_gdb_prompt 363 364# FIXME: The mi operation won't accept a prompt back and will use the 'all' arg 365 send_gdb "102-break-delete\n" 366 gdb_expect 30 { 367 -re "Delete all breakpoints.*y or n.*$" { 368 send_gdb "y\n" 369 exp_continue 370 } 371 -re "102-break-delete\r\n102\\\^done\r\n$mi_gdb_prompt$" { 372 # This happens if there were no breakpoints 373 } 374 timeout { perror "Delete all breakpoints in mi_delete_breakpoints (timeout)" ; return } 375 } 376 377# The correct output is not "No breakpoints or watchpoints." but an 378# empty BreakpointTable. Also, a query is not acceptable with mi. 379 send_gdb "103-break-list\n" 380 gdb_expect 30 { 381 -re "103-break-list\r\n103\\\^done,BreakpointTable=\{\}\r\n$mi_gdb_prompt$" {} 382 -re "103-break-list\r\n103\\\^done,BreakpointTable=\{nr_rows=\".\",nr_cols=\".\",hdr=\\\[\{width=\".*\",alignment=\".*\",col_name=\"number\",colhdr=\"Num\"\}.*colhdr=\"Type\".*colhdr=\"Disp\".*colhdr=\"Enb\".*colhdr=\"Address\".*colhdr=\"What\".*\\\],body=\\\[\\\]\}\r\n$mi_gdb_prompt$" {} 383 -re "103-break-list\r\n103\\\^doneNo breakpoints or watchpoints.\r\n\r\n$mi_gdb_prompt$" {warning "Unexpected console text received"} 384 -re "$mi_gdb_prompt$" { perror "Breakpoints not deleted" ; return } 385 -re "Delete all breakpoints.*or n.*$" { 386 warning "Unexpected prompt for breakpoints deletion" 387 send_gdb "y\n" 388 exp_continue 389 } 390 timeout { perror "-break-list (timeout)" ; return } 391 } 392} 393 394proc mi_gdb_reinitialize_dir { subdir } { 395 global mi_gdb_prompt 396 global MIFLAGS 397 398 if [is_remote host] { 399 return "" 400 } 401 402 if { $MIFLAGS == "-i=mi1" } { 403 send_gdb "104-environment-directory\n" 404 gdb_expect 60 { 405 -re ".*Reinitialize source path to empty.*y or n. " { 406 warning "Got confirmation prompt for dir reinitialization." 407 send_gdb "y\n" 408 gdb_expect 60 { 409 -re "$mi_gdb_prompt$" {} 410 timeout {error "Dir reinitialization failed (timeout)"} 411 } 412 } 413 -re "$mi_gdb_prompt$" {} 414 timeout {error "Dir reinitialization failed (timeout)"} 415 } 416 } else { 417 send_gdb "104-environment-directory -r\n" 418 gdb_expect 60 { 419 -re "104\\\^done,source-path=.*\r\n$mi_gdb_prompt$" {} 420 -re "$mi_gdb_prompt$" {} 421 timeout {error "Dir reinitialization failed (timeout)"} 422 } 423 } 424 425 send_gdb "105-environment-directory $subdir\n" 426 gdb_expect 60 { 427 -re "Source directories searched.*$mi_gdb_prompt$" { 428 verbose "Dir set to $subdir" 429 } 430 -re "105\\\^done.*\r\n$mi_gdb_prompt$" { 431 # FIXME: We return just the prompt for now. 432 verbose "Dir set to $subdir" 433 # perror "Dir \"$subdir\" failed." 434 } 435 } 436} 437 438# Send GDB the "target" command. 439# FIXME: Some of these patterns are not appropriate for MI. Based on 440# config/monitor.exp:gdb_target_command. 441proc mi_gdb_target_cmd { targetname serialport } { 442 global mi_gdb_prompt 443 444 set serialport_re [string_to_regexp $serialport] 445 for {set i 1} {$i <= 3} {incr i} { 446 send_gdb "47-target-select $targetname $serialport\n" 447 gdb_expect 60 { 448 -re "47\\^connected.*$mi_gdb_prompt" { 449 verbose "Set target to $targetname" 450 return 0 451 } 452 -re "unknown host.*$mi_gdb_prompt" { 453 verbose "Couldn't look up $serialport" 454 } 455 -re "Couldn't establish connection to remote.*$mi_gdb_prompt$" { 456 verbose "Connection failed" 457 } 458 -re "Remote MIPS debugging.*$mi_gdb_prompt$" { 459 verbose "Set target to $targetname" 460 return 0 461 } 462 -re "Remote debugging using .*$serialport_re.*$mi_gdb_prompt$" { 463 verbose "Set target to $targetname" 464 return 0 465 } 466 -re "Remote target $targetname connected to.*$mi_gdb_prompt$" { 467 verbose "Set target to $targetname" 468 return 0 469 } 470 -re "Connected to.*$mi_gdb_prompt$" { 471 verbose "Set target to $targetname" 472 return 0 473 } 474 -re "Ending remote.*$mi_gdb_prompt$" { } 475 -re "Connection refused.*$mi_gdb_prompt$" { 476 verbose "Connection refused by remote target. Pausing, and trying again." 477 sleep 5 478 continue 479 } 480 -re "Non-stop mode requested, but remote does not support non-stop.*$mi_gdb_prompt" { 481 unsupported "non-stop mode not supported" 482 return 1 483 } 484 -re "Timeout reading from remote system.*$mi_gdb_prompt$" { 485 verbose "Got timeout error from gdb." 486 } 487 timeout { 488 send_gdb "" 489 break 490 } 491 } 492 } 493 return 1 494} 495 496# 497# load a file into the debugger (file command only). 498# return a -1 if anything goes wrong. 499# 500proc mi_gdb_file_cmd { arg } { 501 global loadpath 502 global loadfile 503 global GDB 504 global mi_gdb_prompt 505 global last_loaded_file 506 upvar timeout timeout 507 508 # GCC for Windows target may create foo.exe given "-o foo". 509 if { ![file exists $arg] && [file exists "$arg.exe"] } { 510 set arg "$arg.exe" 511 } 512 513 set last_loaded_file $arg 514 515 if [is_remote host] { 516 set arg [remote_download host $arg] 517 if { $arg == "" } { 518 error "download failed" 519 return -1 520 } 521 } 522 523# FIXME: Several of these patterns are only acceptable for console 524# output. Queries are an error for mi. 525 send_gdb "105-file-exec-and-symbols $arg\n" 526 gdb_expect 120 { 527 -re "Reading symbols from.*$mi_gdb_prompt$" { 528 verbose "\t\tLoaded $arg into the $GDB" 529 return 0 530 } 531 -re "has no symbol-table.*$mi_gdb_prompt$" { 532 perror "$arg wasn't compiled with \"-g\"" 533 return -1 534 } 535 -re "Load new symbol table from \".*\".*y or n. $" { 536 send_gdb "y\n" 537 gdb_expect 120 { 538 -re "Reading symbols from.*$mi_gdb_prompt$" { 539 verbose "\t\tLoaded $arg with new symbol table into $GDB" 540 # All OK 541 } 542 timeout { 543 perror "(timeout) Couldn't load $arg, other program already loaded." 544 return -1 545 } 546 } 547 } 548 -re "No such file or directory.*$mi_gdb_prompt$" { 549 perror "($arg) No such file or directory\n" 550 return -1 551 } 552 -re "105-file-exec-and-symbols .*\r\n105\\\^done\r\n$mi_gdb_prompt$" { 553 # We (MI) are just giving the prompt back for now, instead of giving 554 # some acknowledgement. 555 return 0 556 } 557 timeout { 558 perror "couldn't load $arg into $GDB (timed out)." 559 return -1 560 } 561 eof { 562 # This is an attempt to detect a core dump, but seems not to 563 # work. Perhaps we need to match .* followed by eof, in which 564 # gdb_expect does not seem to have a way to do that. 565 perror "couldn't load $arg into $GDB (end of file)." 566 return -1 567 } 568 } 569} 570 571# 572# connect to the target and download a file, if necessary. 573# return a -1 if anything goes wrong. 574# 575proc mi_gdb_target_load { } { 576 global loadpath 577 global loadfile 578 global GDB 579 global mi_gdb_prompt 580 581 if [target_info exists gdb_load_timeout] { 582 set loadtimeout [target_info gdb_load_timeout] 583 } else { 584 set loadtimeout 1600 585 } 586 587 if { [info procs gdbserver_gdb_load] != "" } { 588 mi_gdb_test "kill" ".*" "" 589 if { [catch gdbserver_gdb_load res] == 1 } { 590 perror $res 591 return -1 592 } 593 set protocol [lindex $res 0] 594 set gdbport [lindex $res 1] 595 596 if { [mi_gdb_target_cmd $protocol $gdbport] != 0 } { 597 return -1 598 } 599 } elseif { [info procs send_target_sid] != "" } { 600 # For SID, things get complex 601 send_gdb "kill\n" 602 gdb_expect 10 { 603 -re ".*$mi_gdb_prompt$" 604 } 605 send_target_sid 606 gdb_expect $loadtimeout { 607 -re "\\^done.*$mi_gdb_prompt$" { 608 } 609 timeout { 610 perror "Unable to connect to SID target (timeout)" 611 return -1 612 } 613 } 614 send_gdb "48-target-download\n" 615 gdb_expect $loadtimeout { 616 -re "48\\^done.*$mi_gdb_prompt$" { 617 } 618 timeout { 619 perror "Unable to download to SID target (timeout)" 620 return -1 621 } 622 } 623 } elseif { [target_info protocol] == "sim" } { 624 set target_sim_options "[board_info target gdb,target_sim_options]" 625 # For the simulator, just connect to it directly. 626 send_gdb "47-target-select sim $target_sim_options\n" 627 gdb_expect $loadtimeout { 628 -re "47\\^connected.*$mi_gdb_prompt$" { 629 } 630 timeout { 631 perror "Unable to select sim target (timeout)" 632 return -1 633 } 634 } 635 send_gdb "48-target-download\n" 636 gdb_expect $loadtimeout { 637 -re "48\\^done.*$mi_gdb_prompt$" { 638 } 639 timeout { 640 perror "Unable to download to sim target (timeout)" 641 return -1 642 } 643 } 644 } elseif { [target_info gdb_protocol] == "remote" } { 645 # remote targets 646 if { [mi_gdb_target_cmd "remote" [target_info netport]] != 0 } { 647 perror "Unable to connect to remote target" 648 return -1 649 } 650 send_gdb "48-target-download\n" 651 gdb_expect $loadtimeout { 652 -re "48\\^done.*$mi_gdb_prompt$" { 653 } 654 timeout { 655 perror "Unable to download to remote target (timeout)" 656 return -1 657 } 658 } 659 } 660 return 0 661} 662 663# 664# load a file into the debugger. 665# return a -1 if anything goes wrong. 666# 667proc mi_gdb_load { arg } { 668 if { $arg != "" } { 669 return [mi_gdb_file_cmd $arg] 670 } 671 return 0 672} 673 674# Return true if symbols were read in using -readnow. Otherwise, 675# return false. 676 677proc mi_readnow { args } { 678 # Just defer to gdb.exp. 679 return [readnow] 680} 681 682# mi_gdb_test COMMAND [PATTERN [MESSAGE [IPATTERN]]] -- send a command to gdb; 683# test the result. 684# 685# COMMAND is the command to execute, send to GDB with send_gdb. If 686# this is the null string no command is sent. 687# PATTERN is the pattern to match for a PASS, and must NOT include 688# the \r\n sequence immediately before the gdb prompt. 689# If not specified, .* is used. 690# MESSAGE is the message to be printed. (If this is the empty string, 691# then sometimes we don't call pass or fail at all; I don't 692# understand this at all.) 693# If not specified, COMMAND is used. 694# IPATTERN is the pattern to match for the inferior's output. This parameter 695# is optional. If present, it will produce a PASS if the match is 696# successful, and a FAIL if unsuccessful. 697# 698# Returns: 699# 1 if the test failed, 700# 0 if the test passes, 701# -1 if there was an internal error. 702# 703proc mi_gdb_test { args } { 704 global verbose 705 global mi_gdb_prompt 706 global GDB expect_out 707 global inferior_exited_re async 708 upvar timeout timeout 709 710 if {[llength $args] >= 1} { 711 set command [lindex $args 0] 712 } else { 713 error "Not enough arguments in mi_gdb_test" 714 } 715 716 if {[llength $args] >= 2} { 717 set pattern [lindex $args 1] 718 } else { 719 set pattern ".*" 720 } 721 722 if {[llength $args] >= 3} { 723 set message [lindex $args 2] 724 } else { 725 set message $command 726 } 727 728 if [llength $args]==4 { 729 set ipattern [lindex $args 3] 730 } 731 732 if [llength $args]==5 { 733 set question_string [lindex $args 3] 734 set response_string [lindex $args 4] 735 } else { 736 set question_string "^FOOBAR$" 737 } 738 739 if { [llength $args] >= 6 } { 740 error "Too many arguments in mi_gdb_test" 741 } 742 743 if {$verbose > 2} { 744 send_user "Sending \"$command\" to gdb\n" 745 send_user "Looking to match \"$pattern\"\n" 746 send_user "Message is \"$message\"\n" 747 } 748 749 set result -1 750 set string "${command}\n" 751 set string_regex [string_to_regexp $command] 752 753 if { $command != "" } { 754 while { "$string" != "" } { 755 set foo [string first "\n" "$string"] 756 set len [string length "$string"] 757 if { $foo < [expr $len - 1] } { 758 set str [string range "$string" 0 $foo] 759 if { [send_gdb "$str"] != "" } { 760 perror "Couldn't send $command to GDB." 761 } 762 gdb_expect 2 { 763 -re "\[\r\n\]" { } 764 timeout { } 765 } 766 set string [string range "$string" [expr $foo + 1] end] 767 } else { 768 break 769 } 770 } 771 if { "$string" != "" } { 772 if { [send_gdb "$string"] != "" } { 773 perror "Couldn't send $command to GDB." 774 } 775 } 776 } 777 778 if [info exists timeout] { 779 set tmt $timeout 780 } else { 781 global timeout 782 if [info exists timeout] { 783 set tmt $timeout 784 } else { 785 set tmt 60 786 } 787 } 788 if {$async} { 789 # With $prompt_re "" there may come arbitrary asynchronous response 790 # from the previous command, before or after $string_regex. 791 set string_regex ".*" 792 } 793 verbose -log "Expecting: ^($string_regex\[\r\n\]+)?($pattern\[\r\n\]+$mi_gdb_prompt\[ \]*)" 794 gdb_expect $tmt { 795 -re "\\*\\*\\* DOSEXIT code.*" { 796 if { $message != "" } { 797 fail "$message" 798 } 799 return -1 800 } 801 -re "Ending remote debugging.*$mi_gdb_prompt\[ \]*$" { 802 if {![isnative]} { 803 warning "Can`t communicate to remote target." 804 } 805 gdb_exit 806 gdb_start 807 set result -1 808 } 809 -re "^($string_regex\[\r\n\]+)?($pattern\[\r\n\]+$mi_gdb_prompt\[ \]*)" { 810 # At this point, $expect_out(1,string) is the MI input command. 811 # and $expect_out(2,string) is the MI output command. 812 # If $expect_out(1,string) is "", then there was no MI input command here. 813 814 # NOTE, there is no trailing anchor because with GDB/MI, 815 # asynchronous responses can happen at any point, causing more 816 # data to be available. Normally an anchor is used to make 817 # sure the end of the output is matched, however, $mi_gdb_prompt 818 # is just as good of an anchor since mi_gdb_test is meant to 819 # match a single mi output command. If a second GDB/MI output 820 # response is sent, it will be in the buffer for the next 821 # time mi_gdb_test is called. 822 if {![string match "" $message]} { 823 pass "$message" 824 } 825 set result 0 826 } 827 -re "(${question_string})$" { 828 send_gdb "$response_string\n" 829 exp_continue 830 } 831 -re "Undefined.* command:.*$mi_gdb_prompt\[ \]*$" { 832 perror "Undefined command \"$command\"." 833 fail "$message" 834 set result 1 835 } 836 -re "Ambiguous command.*$mi_gdb_prompt\[ \]*$" { 837 perror "\"$command\" is not a unique command name." 838 fail "$message" 839 set result 1 840 } 841 -re "$inferior_exited_re with code \[0-9\]+.*$mi_gdb_prompt\[ \]*$" { 842 if {![string match "" $message]} { 843 set errmsg "$message (the program exited)" 844 } else { 845 set errmsg "$command (the program exited)" 846 } 847 fail "$errmsg" 848 return -1 849 } 850 -re "The program is not being run.*$mi_gdb_prompt\[ \]*$" { 851 if {![string match "" $message]} { 852 set errmsg "$message (the program is no longer running)" 853 } else { 854 set errmsg "$command (the program is no longer running)" 855 } 856 fail "$errmsg" 857 return -1 858 } 859 -re ".*$mi_gdb_prompt\[ \]*$" { 860 if {![string match "" $message]} { 861 fail "$message (unexpected output)" 862 } 863 set result 1 864 } 865 "<return>" { 866 send_gdb "\n" 867 perror "Window too small." 868 fail "$message" 869 } 870 eof { 871 perror "Process no longer exists" 872 if { $message != "" } { 873 fail "$message" 874 } 875 return -1 876 } 877 full_buffer { 878 perror "internal buffer is full." 879 fail "$message" 880 } 881 timeout { 882 if {![string match "" $message]} { 883 fail "$message (timeout)" 884 } 885 set result 1 886 } 887 } 888 889 # If the GDB output matched, compare the inferior output. 890 if { $result == 0 } { 891 if [ info exists ipattern ] { 892 if { ![target_info exists gdb,noinferiorio] } { 893 global gdb_spawn_id inferior_spawn_id 894 895 set sid "$inferior_spawn_id $gdb_spawn_id" 896 gdb_expect { 897 -i "$sid" -re "$ipattern" { 898 pass "$message inferior output" 899 } 900 timeout { 901 fail "$message inferior output (timeout)" 902 set result 1 903 } 904 } 905 } else { 906 unsupported "$message inferior output" 907 } 908 } 909 } 910 911 return $result 912} 913 914# Collect output sent to the console output stream until UNTIL is 915# seen. UNTIL is a regular expression. MESSAGE is the message to be 916# printed in case of timeout. 917 918proc mi_gdb_expect_cli_output {until message} { 919 920 set output "" 921 gdb_expect { 922 -re "~\"(\[^\r\n\]+)\"\r\n" { 923 append output $expect_out(1,string) 924 exp_continue 925 } 926 -notransfer -re "$until" { 927 # Done 928 } 929 timeout { 930 fail "$message (timeout)" 931 return "" 932 } 933 } 934 935 return $output 936} 937 938# 939# MI run command. (A modified version of gdb_run_cmd) 940# 941 942# In patterns, the newline sequence ``\r\n'' is matched explicitly as 943# ``.*$'' could swallow up output that we attempt to match elsewhere. 944 945# Send the command to run the test program. 946# 947# If USE_MI_COMMAND is true, the "-exec-run" command is used. 948# Otherwise, the "run" (CLI) command is used. If the global USE_GDB_STUB is 949# true, -exec-continue and continue are used instead of their run counterparts. 950# 951# ARGS is passed as argument to the command used to run the test program. 952# Beware that arguments to "-exec-run" do not have the same semantics as 953# arguments to the "run" command, so USE_MI_COMMAND influences the meaning 954# of ARGS. If USE_MI_COMMAND is true, they are arguments to -exec-run. 955# If USE_MI_COMMAND is false, they are effectively arguments passed 956# to the test program. If the global USE_GDB_STUB is true, ARGS is not used. 957proc mi_run_cmd_full {use_mi_command args} { 958 global mi_gdb_prompt use_gdb_stub 959 global thread_selected_re 960 global library_loaded_re 961 962 if {$use_mi_command} { 963 set run_prefix "220-exec-" 964 set run_match "220" 965 } else { 966 set run_prefix "" 967 set run_match "" 968 } 969 970 foreach command [gdb_init_commands] { 971 send_gdb "$command\n" 972 gdb_expect 30 { 973 -re "$mi_gdb_prompt$" { } 974 default { 975 unresolved "gdb_init_command for target failed" 976 return -1 977 } 978 } 979 } 980 981 if { [mi_gdb_target_load] < 0 } { 982 return -1 983 } 984 985 if $use_gdb_stub { 986 if [target_info exists gdb,do_reload_on_run] { 987 send_gdb "${run_prefix}continue\n" 988 gdb_expect 60 { 989 -re "${run_match}\\^running\[\r\n\]+\\*running,thread-id=\"\[^\"\]+\"\r\n$mi_gdb_prompt" {} 990 -re "${run_match}\\^error.*$mi_gdb_prompt" {return -1} 991 default {} 992 } 993 return 0 994 } 995 996 if [target_info exists gdb,start_symbol] { 997 set start [target_info gdb,start_symbol] 998 } else { 999 set start "start" 1000 } 1001 1002 # HACK: Should either use 000-jump or fix the target code 1003 # to better handle RUN. 1004 send_gdb "jump *$start\n" 1005 warning "Using CLI jump command, expect run-to-main FAIL" 1006 gdb_expect { 1007 -re "&\"jump \\*${start}\\\\n\"\[\r\n\]+~\"Continuing at 0x\[0-9A-Fa-f\]+\.\\\\n\"\[\r\n\]+\\^running\[\r\n\]+\\*running,thread-id=\"\[^\"\]+\"\[\r\n\]+${mi_gdb_prompt}" {} 1008 timeout { 1009 unresolved "unable to start target" 1010 return -1 1011 } 1012 } 1013 return 0 1014 } 1015 1016 send_gdb "${run_prefix}run $args\n" 1017 gdb_expect { 1018 -re "${run_match}\\^running\r\n(\\*running,thread-id=\"\[^\"\]+\"\r\n|=thread-created,id=\"1\",group-id=\"\[0-9\]+\"\r\n)*(${library_loaded_re})*(${thread_selected_re})?${mi_gdb_prompt}" { 1019 } 1020 -re "\\^error,msg=\"The target does not support running in non-stop mode.\"" { 1021 unsupported "non-stop mode not supported" 1022 return -1 1023 } 1024 timeout { 1025 unresolved "unable to start target" 1026 return -1 1027 } 1028 } 1029 # NOTE: Shortly after this there will be a ``000*stopped,...(gdb)'' 1030 1031 return 0 1032} 1033 1034# A wrapper for mi_run_cmd_full which uses -exec-run and 1035# -exec-continue, as appropriate. ARGS are passed verbatim to 1036# mi_run_cmd_full. 1037proc mi_run_cmd {args} { 1038 return [eval mi_run_cmd_full 1 $args] 1039} 1040 1041# A wrapper for mi_run_cmd_full which uses the CLI commands 'run' and 1042# 'continue', as appropriate. ARGS are passed verbatim to 1043# mi_run_cmd_full. 1044proc mi_run_with_cli {args} { 1045 return [eval mi_run_cmd_full 0 $args] 1046} 1047 1048# Starts fresh GDB binary and loads an optional executable into GDB. 1049# Usage: mi_clean_restart [executable] 1050# EXECUTABLE is the basename of the binary. 1051# Return -1 if starting gdb or loading the executable failed. 1052 1053proc mi_clean_restart { args } { 1054 global srcdir 1055 global subdir 1056 global errcnt 1057 global warncnt 1058 1059 if { [llength $args] > 1 } { 1060 error "bad number of args: [llength $args]" 1061 } 1062 1063 gdb_exit 1064 1065 # This is a clean restart, so reset error and warning count. 1066 set errcnt 0 1067 set warncnt 0 1068 1069 if {[mi_gdb_start]} { 1070 return -1 1071 } 1072 1073 mi_gdb_reinitialize_dir $srcdir/$subdir 1074 1075 if { [llength $args] >= 1 } { 1076 set executable [lindex $args 0] 1077 set binfile [standard_output_file ${executable}] 1078 return [mi_gdb_load ${binfile}] 1079 } 1080 1081 return 0 1082} 1083 1084# Just like gdb's "runto" proc, it will run the target to a given 1085# function. The big difference here between mi_runto and mi_execute_to 1086# is that mi_execute_to must have the inferior running already. This 1087# proc will (like gdb's runto) (re)start the inferior, too. 1088# 1089# FUNC is the linespec of the place to stop (it inserts a breakpoint here). 1090# It returns: 1091# -1 if failed, timedout 1092# 0 if test passed 1093# 1094# Supported options: 1095# 1096# -qualified -- pass --qualified to -break-insert 1097# -pending -- pass -f to -break-insert to create a pending 1098# breakpoint. 1099 1100proc mi_runto_helper {func run_or_continue args} { 1101 global mi_gdb_prompt expect_out 1102 global hex decimal fullname_syntax 1103 1104 parse_args {{qualified} {pending}} 1105 1106 set test "mi runto $func" 1107 if {$pending} { 1108 set bp [mi_make_breakpoint_pending -type breakpoint -disp del] 1109 } else { 1110 set bp [mi_make_breakpoint -type breakpoint -disp del \ 1111 -func $func\(\\\(.*\\\)\)?] 1112 } 1113 set extra_opts "" 1114 set extra_output "" 1115 if {$qualified} { 1116 lappend extra_opts "--qualified" 1117 } 1118 if {$pending} { 1119 lappend extra_opts "-f" 1120 # MI prints "Function FUNC not defined", "No line NNN in current 1121 # file.", etc. to the CLI stream. 1122 set extra_output "&\"\[^\r\n\]+\"\r\n" 1123 } 1124 mi_gdb_test "200-break-insert [join $extra_opts " "] -t $func" "${extra_output}200\\^done,$bp" \ 1125 "breakpoint at $func" 1126 1127 if {$run_or_continue == "run"} { 1128 if { [mi_run_cmd] < 0 } { 1129 return -1 1130 } 1131 } else { 1132 mi_send_resuming_command "exec-continue" "$test" 1133 } 1134 1135 mi_expect_stop "breakpoint-hit" $func ".*" ".*" "\[0-9\]+" { "" "disp=\"del\"" } $test 1136} 1137 1138proc mi_runto {func args} { 1139 return [mi_runto_helper $func "run" {*}$args] 1140} 1141 1142# Just like runto_main but works with the MI interface. 1143 1144proc mi_runto_main {} { 1145 return [mi_runto_helper "main" "run" -qualified] 1146} 1147 1148# Next to the next statement 1149# For return values, see mi_execute_to_helper 1150 1151proc mi_next { test } { 1152 return [mi_next_to {.*} {.*} {.*} {.*} $test] 1153} 1154 1155 1156# Step to the next statement 1157# For return values, see mi_execute_to_helper 1158 1159proc mi_step { test } { 1160 return [mi_step_to {.*} {.*} {.*} {.*} $test] 1161} 1162 1163set async "unknown" 1164 1165proc mi_detect_async {} { 1166 global async 1167 global mi_gdb_prompt 1168 1169 send_gdb "show mi-async\n" 1170 1171 gdb_expect { 1172 -re "asynchronous mode is on...*$mi_gdb_prompt$" { 1173 set async 1 1174 } 1175 -re ".*$mi_gdb_prompt$" { 1176 set async 0 1177 } 1178 timeout { 1179 set async 0 1180 } 1181 } 1182 return $async 1183} 1184 1185# Wait for MI *stopped notification to appear. 1186# The REASON, FUNC, ARGS, FILE and LINE are regular expressions 1187# to match against whatever is output in *stopped. FILE may also match 1188# filename of a file without debug info. ARGS should not include [] the 1189# list of argument is enclosed in, and other regular expressions should 1190# not include quotes. 1191# EXTRA can be a list of one, two or three elements. 1192# The first element is the regular expression 1193# for output expected right after *stopped, and before GDB prompt. 1194# The third element is the regular expression for the locno 1195# right after bkptno field. The locno regex should not include 1196# the comma separating it from the following fields. 1197# 1198# When we fail to match output at all, -1 is returned. If FILE does 1199# match and the target system has no debug info for FILE return 0. 1200# Otherwise, the line at which we stop is returned. This is useful when 1201# exact line is not possible to specify for some reason -- one can pass 1202# the .* or "\[0-9\]*" regexps for line, and then check the line 1203# programmatically. 1204# 1205# Do not pass .* for any argument if you are expecting more than one stop. 1206proc mi_expect_stop { reason func args file line extra test } { 1207 1208 global mi_gdb_prompt 1209 global hex 1210 global decimal 1211 global fullname_syntax 1212 global async 1213 global thread_selected_re 1214 global breakpoint_re 1215 1216 set any "\[^\n\]*" 1217 1218 set after_stopped "" 1219 set after_reason "" 1220 set locno "" 1221 if { [llength $extra] == 3 } { 1222 set after_stopped [lindex $extra 0] 1223 set after_reason [lindex $extra 1] 1224 set after_reason "${after_reason}," 1225 set locno [lindex $extra 2] 1226 set locno "${locno}," 1227 } elseif { [llength $extra] == 2 } { 1228 set after_stopped [lindex $extra 0] 1229 set after_reason [lindex $extra 1] 1230 set after_reason "${after_reason}," 1231 } elseif { [llength $extra] == 1 } { 1232 set after_stopped [lindex $extra 0] 1233 } 1234 1235 if {$async} { 1236 set prompt_re "" 1237 } else { 1238 set prompt_re "$mi_gdb_prompt$" 1239 } 1240 1241 if { $reason == "really-no-reason" } { 1242 gdb_expect { 1243 -re "\\*stopped\r\n$prompt_re" { 1244 pass "$test" 1245 } 1246 timeout { 1247 fail "$test (timeout)" 1248 } 1249 } 1250 return 1251 } 1252 1253 if { $reason == "exited-normally" } { 1254 1255 gdb_expect { 1256 -re "\\*stopped,reason=\"exited-normally\"\r\n$prompt_re" { 1257 pass "$test" 1258 } 1259 -re ".*$mi_gdb_prompt$" {fail "continue to end (2)"} 1260 timeout { 1261 fail "$test (timeout)" 1262 } 1263 } 1264 return 1265 } 1266 if { $reason == "exited" } { 1267 gdb_expect { 1268 -re "\\*stopped,reason=\"exited\",exit-code=\"\[0-7\]+\"\r\n$prompt_re" { 1269 pass "$test" 1270 } 1271 -re ".*$mi_gdb_prompt$" { 1272 fail "$test (inferior not stopped)" 1273 } 1274 timeout { 1275 fail "$test (timeout)" 1276 } 1277 } 1278 return 1279 } 1280 1281 if { $reason == "solib-event" } { 1282 set pattern "\\*stopped,reason=\"solib-event\",thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re" 1283 verbose -log "mi_expect_stop: expecting: $pattern" 1284 gdb_expect { 1285 -re "$pattern" { 1286 pass "$test" 1287 } 1288 timeout { 1289 fail "$test (timeout)" 1290 } 1291 } 1292 return 1293 } 1294 1295 set args "\\\[$args\\\]" 1296 1297 set bn "" 1298 set ebn "" 1299 if { $reason == "breakpoint-hit" } { 1300 set bn {bkptno="[0-9]+",} 1301 set bn "${bn}${locno}" 1302 } elseif { $reason == "solib-event" } { 1303 set bn ".*" 1304 } elseif { $reason == "exception-caught" } { 1305 set ebn {bkptno="[0-9]+",} 1306 set ebn "${ebn}${locno}" 1307 set bn ".*" 1308 set reason "breakpoint-hit" 1309 } 1310 1311 set r "" 1312 if { $reason != "" } { 1313 set r "reason=\"$reason\"," 1314 } 1315 1316 1317 set a $after_reason 1318 1319 verbose -log "mi_expect_stop: expecting: \\*stopped,${ebn}${r}${a}${bn}frame=\{addr=\"$hex\",func=\"$func\",args=$args,(?:file=\"$any$file\",fullname=\"${fullname_syntax}$file\",line=\"$line\",arch=\"$any\"|from=\"$file\")\}$after_stopped,thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re" 1320 1321 gdb_expect { 1322 -re "\\*stopped,${ebn}${r}${a}${bn}frame=\{addr=\"$hex\",func=\"$func\",args=$args,(?:file=\"$any$file\",fullname=\"${fullname_syntax}$file\",line=\"($line)\",arch=\"$any\"|from=\"$file\")\}$after_stopped,thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re" { 1323 pass "$test" 1324 if {[array names expect_out "2,string"] != ""} { 1325 return $expect_out(2,string) 1326 } 1327 # No debug info available but $file does match. 1328 return 0 1329 } 1330 -re "\\*stopped,${ebn}${r}${a}${bn}frame=\{addr=\"$hex\",func=\"$any\",args=\[\\\[\{\]$any\[\\\]\}\],file=\"$any\",fullname=\"${fullname_syntax}$any\",line=\"\[0-9\]*\",arch=\"$any\"\}$after_stopped,thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re" { 1331 verbose -log "got $expect_out(buffer)" 1332 fail "$test (stopped at wrong place)" 1333 return -1 1334 } 1335 -re ".*\r\n$mi_gdb_prompt$" { 1336 verbose -log "got $expect_out(buffer)" 1337 fail "$test (unknown output after running)" 1338 return -1 1339 } 1340 timeout { 1341 fail "$test (timeout)" 1342 return -1 1343 } 1344 } 1345} 1346 1347# Wait for MI *stopped notification related to an interrupt request to 1348# appear. 1349proc mi_expect_interrupt { test } { 1350 global mi_gdb_prompt 1351 global decimal 1352 global async 1353 1354 if {$async} { 1355 set prompt_re "" 1356 } else { 1357 set prompt_re "$mi_gdb_prompt" 1358 } 1359 1360 set r_nonstop "reason=\"signal-received\",signal-name=\"0\",signal-meaning=\"Signal 0\"" 1361 set r_allstop "reason=\"signal-received\",signal-name=\"SIGINT\",signal-meaning=\"Interrupt\"" 1362 set r "(${r_nonstop}|${r_allstop})" 1363 set any "\[^\n\]*" 1364 1365 # A signal can land anywhere, just ignore the location 1366 verbose -log "mi_expect_interrupt: expecting: \\*stopped,${r}$any\r\n$prompt_re" 1367 gdb_expect { 1368 -re "\\*stopped,${r}$any\r\n$prompt_re" { 1369 pass "$test" 1370 return 0 1371 } 1372 -re ".*\r\n$mi_gdb_prompt" { 1373 verbose -log "got $expect_out(buffer)" 1374 fail "$test (unknown output after running)" 1375 return -1 1376 } 1377 timeout { 1378 fail "$test (timeout)" 1379 return -1 1380 } 1381 } 1382} 1383 1384# cmd should not include the number or newline (i.e. "exec-step 3", not 1385# "220-exec-step 3\n" 1386 1387# Can not match -re ".*\r\n${mi_gdb_prompt}", because of false positives 1388# after the first prompt is printed. 1389 1390proc mi_execute_to { cmd reason func args file line extra test } { 1391 mi_send_resuming_command "$cmd" "$test" 1392 set r [mi_expect_stop $reason $func $args $file $line $extra $test] 1393 return $r 1394} 1395 1396proc mi_next_to { func args file line test } { 1397 mi_execute_to "exec-next" "end-stepping-range" "$func" "$args" \ 1398 "$file" "$line" "" "$test" 1399} 1400 1401proc mi_step_to { func args file line test } { 1402 mi_execute_to "exec-step" "end-stepping-range" "$func" "$args" \ 1403 "$file" "$line" "" "$test" 1404} 1405 1406proc mi_finish_to { func args file line result ret test } { 1407 mi_execute_to "exec-finish" "function-finished" "$func" "$args" \ 1408 "$file" "$line" \ 1409 ",gdb-result-var=\"$result\",return-value=\"$ret\"" \ 1410 "$test" 1411} 1412 1413proc mi_continue_to {func} { 1414 mi_runto_helper $func "continue" 1415} 1416 1417proc mi0_execute_to { cmd reason func args file line extra test } { 1418 mi_execute_to_helper "$cmd" "$reason" "$func" "\{$args\}" \ 1419 "$file" "$line" "$extra" "$test" 1420} 1421 1422proc mi0_next_to { func args file line test } { 1423 mi0_execute_to "exec-next" "end-stepping-range" "$func" "$args" \ 1424 "$file" "$line" "" "$test" 1425} 1426 1427proc mi0_step_to { func args file line test } { 1428 mi0_execute_to "exec-step" "end-stepping-range" "$func" "$args" \ 1429 "$file" "$line" "" "$test" 1430} 1431 1432proc mi0_finish_to { func args file line result ret test } { 1433 mi0_execute_to "exec-finish" "function-finished" "$func" "$args" \ 1434 "$file" "$line" \ 1435 ",gdb-result-var=\"$result\",return-value=\"$ret\"" \ 1436 "$test" 1437} 1438 1439proc mi0_continue_to { bkptno func args file line test } { 1440 mi0_execute_to "exec-continue" "breakpoint-hit\",bkptno=\"$bkptno" \ 1441 "$func" "$args" "$file" "$line" "" "$test" 1442} 1443 1444# Creates a breakpoint and checks the reported fields are as expected. 1445# This procedure takes the same options as mi_make_breakpoint and 1446# returns the breakpoint regexp from that procedure. 1447 1448proc mi_create_breakpoint {location test args} { 1449 set bp [eval mi_make_breakpoint $args] 1450 mi_gdb_test "222-break-insert $location" "222\\^done,$bp" $test 1451 return $bp 1452} 1453 1454# Like mi_create_breakpoint, but creates a breakpoint with multiple 1455# locations using mi_make_breakpoint_multi instead. 1456 1457proc mi_create_breakpoint_multi {location test args} { 1458 set bp [eval mi_make_breakpoint_multi $args] 1459 mi_gdb_test "222-break-insert $location" "222\\^done,$bp" $test 1460 return $bp 1461} 1462 1463# Creates varobj named NAME for EXPRESSION. 1464# Name cannot be "-". 1465proc mi_create_varobj { name expression testname } { 1466 mi_gdb_test "-var-create $name * $expression" \ 1467 "\\^done,name=\"$name\",numchild=\"\[0-9\]+\",value=\".*\",type=.*,has_more=\"0\"" \ 1468 $testname 1469} 1470 1471proc mi_create_floating_varobj { name expression testname } { 1472 mi_gdb_test "-var-create $name @ $expression" \ 1473 "\\^done,name=\"$name\",numchild=\"\(-1\|\[0-9\]+\)\",value=\".*\",type=.*" \ 1474 $testname 1475} 1476 1477 1478# Same as mi_create_varobj, but also checks the reported type 1479# of the varobj. 1480proc mi_create_varobj_checked { name expression type testname } { 1481 mi_gdb_test "-var-create $name * $expression" \ 1482 "\\^done,name=\"$name\",numchild=\"\[0-9\]+\",value=\".*\",type=\"$type\".*" \ 1483 $testname 1484} 1485 1486# Same as mi_create_floating_varobj, but assumes the test is creating 1487# a dynamic varobj that has children, so the value must be "{...}". 1488# The "has_more" attribute is checked. 1489proc mi_create_dynamic_varobj {name expression has_more testname} { 1490 mi_gdb_test "-var-create $name @ $expression" \ 1491 "\\^done,name=\"$name\",numchild=\"0\",value=\"{\\.\\.\\.}\",type=.*,has_more=\"${has_more}\"" \ 1492 $testname 1493} 1494 1495# Deletes the specified NAME. 1496proc mi_delete_varobj { name testname } { 1497 mi_gdb_test "-var-delete $name" \ 1498 "\\^done,ndeleted=.*" \ 1499 $testname 1500} 1501 1502# Updates varobj named NAME and checks that all varobjs in EXPECTED 1503# are reported as updated, and no other varobj is updated. 1504# Assumes that no varobj is out of scope and that no varobj changes 1505# types. 1506proc mi_varobj_update { name expected testname } { 1507 set er "\\^done,changelist=\\\[" 1508 set first 1 1509 foreach item $expected { 1510 set v "{name=\"$item\",in_scope=\"true\",type_changed=\"false\",has_more=\".\"}" 1511 if {$first == 1} { 1512 set er "$er$v" 1513 set first 0 1514 } else { 1515 set er "$er,$v" 1516 } 1517 } 1518 set er "$er\\\]" 1519 1520 verbose -log "Expecting: $er" 2 1521 mi_gdb_test "-var-update $name" $er $testname 1522} 1523 1524proc mi_varobj_update_with_child_type_change { name child_name new_type new_children testname } { 1525 set v "{name=\"$child_name\",in_scope=\"true\",type_changed=\"true\",new_type=\"$new_type\",new_num_children=\"$new_children\",has_more=\".\"}" 1526 set er "\\^done,changelist=\\\[$v\\\]" 1527 verbose -log "Expecting: $er" 1528 mi_gdb_test "-var-update $name" $er $testname 1529} 1530 1531proc mi_varobj_update_with_type_change { name new_type new_children testname } { 1532 mi_varobj_update_with_child_type_change $name $name $new_type $new_children $testname 1533} 1534 1535# A helper that turns a key/value list into a regular expression 1536# matching some MI output. 1537proc mi_varobj_update_kv_helper {list} { 1538 set first 1 1539 set rx "" 1540 foreach {key value} $list { 1541 if {!$first} { 1542 append rx , 1543 } 1544 set first 0 1545 if {$key == "new_children"} { 1546 append rx "$key=\\\[$value\\\]" 1547 } else { 1548 append rx "$key=\"$value\"" 1549 } 1550 } 1551 return $rx 1552} 1553 1554# A helper for mi_varobj_update_dynamic that computes a match 1555# expression given a child list. 1556proc mi_varobj_update_dynamic_helper {children} { 1557 set crx "" 1558 1559 set first 1 1560 foreach child $children { 1561 if {!$first} { 1562 append crx , 1563 } 1564 set first 0 1565 append crx "{" 1566 append crx [mi_varobj_update_kv_helper $child] 1567 append crx "}" 1568 } 1569 1570 return $crx 1571} 1572 1573# Update a dynamic varobj named NAME. CHILDREN is a list of children 1574# that have been updated; NEW_CHILDREN is a list of children that were 1575# added to the primary varobj. Each child is a list of key/value 1576# pairs that are expected. SELF is a key/value list holding 1577# information about the varobj itself. TESTNAME is the name of the 1578# test. 1579proc mi_varobj_update_dynamic {name testname self children new_children} { 1580 if {[llength $new_children]} { 1581 set newrx [mi_varobj_update_dynamic_helper $new_children] 1582 lappend self new_children $newrx 1583 } 1584 set selfrx [mi_varobj_update_kv_helper $self] 1585 set crx [mi_varobj_update_dynamic_helper $children] 1586 1587 set er "\\^done,changelist=\\\[\{name=\"$name\",in_scope=\"true\"" 1588 append er ",$selfrx\}" 1589 if {"$crx" != ""} { 1590 append er ",$crx" 1591 } 1592 append er "\\\]" 1593 1594 verbose -log "Expecting: $er" 1595 mi_gdb_test "-var-update $name" $er $testname 1596} 1597 1598proc mi_check_varobj_value { name value testname } { 1599 1600 mi_gdb_test "-var-evaluate-expression $name" \ 1601 "\\^done,value=\"$value\"" \ 1602 $testname 1603} 1604 1605# Helper proc which constructs a child regexp for 1606# mi_list_varobj_children and mi_varobj_update_dynamic. 1607proc mi_child_regexp {children add_child} { 1608 set children_exp {} 1609 1610 if {$add_child} { 1611 set pre "child=" 1612 } else { 1613 set pre "" 1614 } 1615 1616 foreach item $children { 1617 1618 set name [lindex $item 0] 1619 set exp [lindex $item 1] 1620 set numchild [lindex $item 2] 1621 if {[llength $item] == 5} { 1622 set type [lindex $item 3] 1623 set value [lindex $item 4] 1624 1625 lappend children_exp\ 1626 "$pre{name=\"$name\",exp=\"$exp\",numchild=\"$numchild\",value=\"$value\",type=\"$type\"(,thread-id=\"\[0-9\]+\")?}" 1627 } elseif {[llength $item] == 4} { 1628 set type [lindex $item 3] 1629 1630 lappend children_exp\ 1631 "$pre{name=\"$name\",exp=\"$exp\",numchild=\"$numchild\",type=\"$type\"(,thread-id=\"\[0-9\]+\")?}" 1632 } else { 1633 lappend children_exp\ 1634 "$pre{name=\"$name\",exp=\"$exp\",numchild=\"$numchild\"(,thread-id=\"\[0-9\]+\")?}" 1635 } 1636 } 1637 return [join $children_exp ","] 1638} 1639 1640# Check the results of the: 1641# 1642# -var-list-children VARNAME 1643# 1644# command. The CHILDREN parement should be a list of lists. 1645# Each inner list can have either 3 or 4 elements, describing 1646# fields that gdb is expected to report for child variable object, 1647# in the following order 1648# 1649# - Name 1650# - Expression 1651# - Number of children 1652# - Type 1653# 1654# If inner list has 3 elements, the gdb is expected to output no 1655# type for a child and no value. 1656# 1657# If the inner list has 4 elements, gdb output is expected to 1658# have no value. 1659# 1660proc mi_list_varobj_children { varname children testname } { 1661 mi_list_varobj_children_range $varname "" "" [llength $children] $children \ 1662 $testname 1663} 1664 1665# Like mi_list_varobj_children, but sets a subrange. NUMCHILDREN is 1666# the total number of children. 1667proc mi_list_varobj_children_range {varname from to numchildren children testname} { 1668 set options "" 1669 if {[llength $varname] == 2} { 1670 set options [lindex $varname 1] 1671 set varname [lindex $varname 0] 1672 } 1673 1674 set children_exp_j [mi_child_regexp $children 1] 1675 if {$numchildren} { 1676 set expected "\\^done,numchild=\".*\",children=\\\[$children_exp_j.*\\\]" 1677 } { 1678 set expected "\\^done,numchild=\"0\"" 1679 } 1680 1681 if {"$to" == ""} { 1682 append expected ",has_more=\"0\"" 1683 } elseif {$to >= 0 && $numchildren > $to} { 1684 append expected ",has_more=\"1\"" 1685 } else { 1686 append expected ",has_more=\"0\"" 1687 } 1688 1689 verbose -log "Expecting: $expected" 1690 1691 mi_gdb_test "-var-list-children $options $varname $from $to" \ 1692 $expected $testname 1693} 1694 1695# Verifies that variable object VARNAME has NUMBER children, 1696# where each one is named $VARNAME.<index-of-child> and has type TYPE. 1697proc mi_list_array_varobj_children { varname number type testname } { 1698 mi_list_array_varobj_children_with_index $varname $number 0 $type $testname 1699} 1700 1701# Same as mi_list_array_varobj_children, but allowing to pass a start index 1702# for an array. 1703proc mi_list_array_varobj_children_with_index { varname number start_index \ 1704 type testname } { 1705 set t {} 1706 set index $start_index 1707 for {set i 0} {$i < $number} {incr i} { 1708 lappend t [list $varname.$index $index 0 $type] 1709 incr index 1710 } 1711 mi_list_varobj_children $varname $t $testname 1712} 1713 1714# A list of two-element lists. First element of each list is 1715# a Tcl statement, and the second element is the line 1716# number of source C file where the statement originates. 1717set mi_autotest_data "" 1718# The name of the source file for autotesting. 1719set mi_autotest_source "" 1720 1721# Prepares for running inline tests in FILENAME. 1722# See comments for mi_run_inline_test for detailed 1723# explanation of the idea and syntax. 1724proc mi_prepare_inline_tests { filename } { 1725 1726 global srcdir 1727 global subdir 1728 global mi_autotest_source 1729 global mi_autotest_data 1730 1731 set mi_autotest_data {} 1732 1733 set mi_autotest_source $filename 1734 1735 if {![regexp "^/" "$filename"]} { 1736 set filename "$srcdir/$subdir/$filename" 1737 } 1738 1739 set chan [open $filename] 1740 set content [read $chan] 1741 set line_number 1 1742 while {1} { 1743 set start [string first "/*:" $content] 1744 if {$start != -1} { 1745 set end [string first ":*/" $content] 1746 if {$end == -1} { 1747 error "Unterminated special comment in $filename" 1748 } 1749 1750 set prefix [string range $content 0 $start] 1751 set prefix_newlines [count_newlines $prefix] 1752 1753 set line_number [expr $line_number+$prefix_newlines] 1754 set comment_line $line_number 1755 1756 set comment [string range $content [expr $start+3] [expr $end-1]] 1757 1758 set comment_newlines [count_newlines $comment] 1759 set line_number [expr $line_number+$comment_newlines] 1760 1761 set comment [string trim $comment] 1762 set content [string range $content [expr $end+3] \ 1763 [string length $content]] 1764 lappend mi_autotest_data [list $comment $comment_line] 1765 } else { 1766 break 1767 } 1768 } 1769 close $chan 1770} 1771 1772# Helper to mi_run_inline_test below. 1773# Return the list of all (statement,line_number) lists 1774# that comprise TESTCASE. The begin and end markers 1775# are not included. 1776proc mi_get_inline_test {testcase} { 1777 1778 global mi_gdb_prompt 1779 global mi_autotest_data 1780 global mi_autotest_source 1781 1782 set result {} 1783 1784 set seen_begin 0 1785 set seen_end 0 1786 foreach l $mi_autotest_data { 1787 1788 set comment [lindex $l 0] 1789 1790 if {$comment == "BEGIN: $testcase"} { 1791 set seen_begin 1 1792 } elseif {$comment == "END: $testcase"} { 1793 set seen_end 1 1794 break 1795 } elseif {$seen_begin==1} { 1796 lappend result $l 1797 } 1798 } 1799 1800 if {$seen_begin == 0} { 1801 error "Autotest $testcase not found" 1802 } 1803 1804 if {$seen_begin == 1 && $seen_end == 0} { 1805 error "Missing end marker for test $testcase" 1806 } 1807 1808 return $result 1809} 1810 1811# Sets temporary breakpoint at LOCATION. 1812proc mi_tbreak {location test} { 1813 1814 global mi_gdb_prompt 1815 1816 mi_gdb_test "-break-insert -t $location" \ 1817 {\^done,bkpt=.*} \ 1818 $test 1819} 1820 1821# Send COMMAND that must be a command that resumes 1822# the inferior (run/continue/next/etc) and consumes 1823# the "^running" output from it. 1824proc mi_send_resuming_command_raw {command test} { 1825 1826 global mi_gdb_prompt 1827 global thread_selected_re 1828 global library_loaded_re 1829 1830 send_gdb "$command\n" 1831 gdb_expect { 1832 -re "\\^running\r\n\\*running,thread-id=\"\[^\"\]+\"\r\n($library_loaded_re)*($thread_selected_re)?${mi_gdb_prompt}" { 1833 # Note that lack of 'pass' call here -- this works around limitation 1834 # in DejaGNU xfail mechanism. mi-until.exp has this: 1835 # 1836 # setup_kfail gdb/2104 "*-*-*" 1837 # mi_execute_to ... 1838 # 1839 # and mi_execute_to uses mi_send_resuming_command. If we use 'pass' here, 1840 # it will reset kfail, so when the actual test fails, it will be flagged 1841 # as real failure. 1842 return 0 1843 } 1844 -re "\\^error,msg=\"Displaced stepping is only supported in ARM mode\".*" { 1845 unsupported "$test (Thumb mode)" 1846 return -1 1847 } 1848 -re "\\^error,msg=.*" { 1849 fail "$test (MI error)" 1850 return -1 1851 } 1852 -re ".*${mi_gdb_prompt}" { 1853 fail "$test (failed to resume)" 1854 return -1 1855 } 1856 timeout { 1857 fail "$test" 1858 return -1 1859 } 1860 } 1861} 1862 1863proc mi_send_resuming_command {command test} { 1864 mi_send_resuming_command_raw -$command $test 1865} 1866 1867# Helper to mi_run_inline_test below. 1868# Sets a temporary breakpoint at LOCATION and runs 1869# the program using COMMAND. When the program is stopped 1870# returns the line at which it. Returns -1 if line cannot 1871# be determined. 1872# Does not check that the line is the same as requested. 1873# The caller can check itself if required. 1874proc_with_prefix mi_continue_to_line {location test} { 1875 with_test_prefix $test { 1876 mi_tbreak $location "set temporary breakpoint" 1877 mi_send_resuming_command "exec-continue" "continue to breakpoint" 1878 return [mi_get_stop_line] 1879 } 1880} 1881 1882# Wait until gdb prints the current line. 1883proc mi_get_stop_line {} { 1884 1885 global mi_gdb_prompt 1886 global async 1887 1888 if {$async} { 1889 set prompt_re "" 1890 } else { 1891 set prompt_re "$mi_gdb_prompt$" 1892 } 1893 1894 gdb_expect { 1895 -re ".*line=\"(\[0-9\]*)\".*\r\n$prompt_re" { 1896 return $expect_out(1,string) 1897 } 1898 -re ".*$mi_gdb_prompt" { 1899 fail "wait for stop (unexpected output)" 1900 } 1901 timeout { 1902 fail "wait for stop (timeout)" 1903 } 1904 } 1905} 1906 1907# Run a MI test embedded in comments in a C file. 1908# The C file should contain special comments in the following 1909# three forms: 1910# 1911# /*: BEGIN: testname :*/ 1912# /*: <Tcl statements> :*/ 1913# /*: END: testname :*/ 1914# 1915# This procedure find the begin and end marker for the requested 1916# test. Then, a temporary breakpoint is set at the begin 1917# marker and the program is run (from start). 1918# 1919# After that, for each special comment between the begin and end 1920# marker, the Tcl statements are executed. It is assumed that 1921# for each comment, the immediately preceding line is executable 1922# C statement. Then, gdb will be single-stepped until that 1923# preceding C statement is executed, and after that the 1924# Tcl statements in the comment will be executed. 1925# 1926# For example: 1927# 1928# /*: BEGIN: assignment-test :*/ 1929# v = 10; 1930# /*: <Tcl code to check that 'v' is indeed 10 :*/ 1931# /*: END: assignment-test :*/ 1932# 1933# The mi_prepare_inline_tests function should be called before 1934# calling this function. A given C file can contain several 1935# inline tests. The names of the tests must be unique within one 1936# C file. 1937# 1938proc mi_run_inline_test { testcase } { 1939 1940 global mi_gdb_prompt 1941 global hex 1942 global decimal 1943 global fullname_syntax 1944 global mi_autotest_source 1945 1946 set commands [mi_get_inline_test $testcase] 1947 1948 set first 1 1949 set line_now 1 1950 1951 foreach c $commands { 1952 set statements [lindex $c 0] 1953 set line [lindex $c 1] 1954 set line [expr $line-1] 1955 1956 # We want gdb to be stopped at the expression immediately 1957 # before the comment. If this is the first comment, the 1958 # program is either not started yet or is in some random place, 1959 # so we run it. For further comments, we might be already 1960 # standing at the right line. If not continue till the 1961 # right line. 1962 1963 if {$first==1} { 1964 # Start the program afresh. 1965 mi_tbreak "$mi_autotest_source:$line" "set temporary breakpoint" 1966 if { [mi_run_cmd] < 0 } { 1967 return -1 1968 } 1969 set line_now [mi_get_stop_line] 1970 set first 0 1971 } elseif {$line_now!=$line} { 1972 set line_now [mi_continue_to_line "$mi_autotest_source:$line" "continue to $line"] 1973 } 1974 1975 if {$line_now!=$line} { 1976 fail "$testcase: go to line $line" 1977 } 1978 1979 # We're not at the statement right above the comment. 1980 # Execute that statement so that the comment can test 1981 # the state after the statement is executed. 1982 1983 # Single-step past the line. 1984 if { [mi_send_resuming_command "exec-next" "$testcase: step over $line"] != 0 } { 1985 return -1 1986 } 1987 set line_now [mi_get_stop_line] 1988 1989 # We probably want to use 'uplevel' so that statements 1990 # have direct access to global variables that the 1991 # main 'exp' file has set up. But it's not yet clear, 1992 # will need more experience to be sure. 1993 eval $statements 1994 } 1995 1996 return 0 1997} 1998 1999proc get_mi_thread_list {name} { 2000 global expect_out 2001 2002 # MI will return a list of thread ids: 2003 # 2004 # -thread-list-ids 2005 # ^done,thread-ids=[thread-id="1",thread-id="2",...],number-of-threads="N" 2006 # (gdb) 2007 mi_gdb_test "-thread-list-ids" \ 2008 {.*\^done,thread-ids={(thread-id="[0-9]+"(,)?)+},current-thread-id="[0-9]+",number-of-threads="[0-9]+"} \ 2009 "-thread_list_ids ($name)" 2010 2011 set output {} 2012 if {[info exists expect_out(buffer)]} { 2013 set output $expect_out(buffer) 2014 } 2015 2016 set thread_list {} 2017 if {![regexp {thread-ids=\{(thread-id="[0-9]+"(,)?)*\}} $output threads]} { 2018 fail "finding threads in MI output ($name)" 2019 } else { 2020 pass "finding threads in MI output ($name)" 2021 2022 # Make list of console threads 2023 set start [expr {[string first \{ $threads] + 1}] 2024 set end [expr {[string first \} $threads] - 1}] 2025 set threads [string range $threads $start $end] 2026 foreach thread [split $threads ,] { 2027 if {[scan $thread {thread-id="%d"} num]} { 2028 lappend thread_list $num 2029 } 2030 } 2031 } 2032 2033 return $thread_list 2034} 2035 2036# Check that MI and the console know of the same threads. 2037# Appends NAME to all test names. 2038proc check_mi_and_console_threads {name} { 2039 global expect_out 2040 2041 mi_gdb_test "-thread-list-ids" \ 2042 {.*\^done,thread-ids={(thread-id="[0-9]+"(,)*)+},current-thread-id="[0-9]+",number-of-threads="[0-9]+"} \ 2043 "-thread-list-ids ($name)" 2044 set mi_output {} 2045 if {[info exists expect_out(buffer)]} { 2046 set mi_output $expect_out(buffer) 2047 } 2048 2049 # GDB will return a list of thread ids and some more info: 2050 # 2051 # (gdb) 2052 # -interpreter-exec console "info threads" 2053 # ~" 4 Thread 2051 (LWP 7734) 0x401166b1 in __libc_nanosleep () at __libc_nanosleep:-1" 2054 # ~" 3 Thread 1026 (LWP 7733) () at __libc_nanosleep:-1" 2055 # ~" 2 Thread 2049 (LWP 7732) 0x401411f8 in __poll (fds=0x804bb24, nfds=1, timeout=2000) at ../sysdeps/unix/sysv/linux/poll.c:63" 2056 # ~"* 1 Thread 1024 (LWP 7731) main (argc=1, argv=0xbfffdd94) at ../../../src/gdb/testsuite/gdb.mi/pthreads.c:160" 2057 # FIXME: kseitz/2002-09-05: Don't use the hack-cli method. 2058 mi_gdb_test "info threads" \ 2059 {.*(~".*"[\r\n]*)+.*} \ 2060 "info threads ($name)" 2061 set console_output {} 2062 if {[info exists expect_out(buffer)]} { 2063 set console_output $expect_out(buffer) 2064 } 2065 2066 # Make a list of all known threads to console (gdb's thread IDs) 2067 set console_thread_list {} 2068 foreach line [split $console_output \n] { 2069 if {[string index $line 0] == "~"} { 2070 # This is a line from the console; trim off "~", " ", "*", and "\"" 2071 set line [string trim $line ~\ \"\*] 2072 if {[scan $line "%d" id] == 1} { 2073 lappend console_thread_list $id 2074 } 2075 } 2076 } 2077 2078 # Now find the result string from MI 2079 set mi_result "" 2080 foreach line [split $mi_output \n] { 2081 if {[string range $line 0 4] == "^done"} { 2082 set mi_result $line 2083 } 2084 } 2085 if {$mi_result == ""} { 2086 fail "finding MI result string ($name)" 2087 } else { 2088 pass "finding MI result string ($name)" 2089 } 2090 2091 # Finally, extract the thread ids and compare them to the console 2092 set num_mi_threads_str "" 2093 if {![regexp {number-of-threads="[0-9]+"} $mi_result num_mi_threads_str]} { 2094 fail "finding number of threads in MI output ($name)" 2095 } else { 2096 pass "finding number of threads in MI output ($name)" 2097 2098 # Extract the number of threads from the MI result 2099 if {![scan $num_mi_threads_str {number-of-threads="%d"} num_mi_threads]} { 2100 fail "got number of threads from MI ($name)" 2101 } else { 2102 pass "got number of threads from MI ($name)" 2103 2104 # Check if MI and console have same number of threads 2105 if {$num_mi_threads != [llength $console_thread_list]} { 2106 fail "console and MI have same number of threads ($name)" 2107 } else { 2108 pass "console and MI have same number of threads ($name)" 2109 2110 # Get MI thread list 2111 set mi_thread_list [get_mi_thread_list $name] 2112 2113 # Check if MI and console have the same threads 2114 set fails 0 2115 foreach ct [lsort $console_thread_list] mt [lsort $mi_thread_list] { 2116 if {$ct != $mt} { 2117 incr fails 2118 } 2119 } 2120 if {$fails > 0} { 2121 fail "MI and console have same threads ($name)" 2122 2123 # Send a list of failures to the log 2124 send_log "Console has thread ids: $console_thread_list\n" 2125 send_log "MI has thread ids: $mi_thread_list\n" 2126 } else { 2127 pass "MI and console have same threads ($name)" 2128 } 2129 } 2130 } 2131 } 2132} 2133 2134# Download shared libraries to the target. 2135proc mi_load_shlibs { args } { 2136 foreach file $args { 2137 gdb_remote_download target [shlib_target_file $file] 2138 } 2139 2140 if {[is_remote target]} { 2141 # If the target is remote, we need to tell gdb where to find the 2142 # libraries. 2143 # 2144 # We could set this even when not testing remotely, but a user 2145 # generally won't set it unless necessary. In order to make the tests 2146 # more like the real-life scenarios, we don't set it for local testing. 2147 mi_gdb_test "set solib-search-path [file dirname [lindex $args 0]]" "\^done" "" 2148 } 2149} 2150 2151proc mi_check_thread_states { states test } { 2152 global expect_out 2153 set pattern ".*\\^done,threads=\\\[" 2154 foreach s $states { 2155 set pattern "${pattern}(.*)state=\"$s\"" 2156 } 2157 set pattern "${pattern}(,core=\"\[0-9\]*\")?\\\}\\\].*" 2158 2159 verbose -log "expecting: $pattern" 2160 mi_gdb_test "-thread-info" $pattern $test 2161} 2162 2163# Return a list of MI features supported by this gdb. 2164proc mi_get_features {} { 2165 global expect_out mi_gdb_prompt 2166 2167 send_gdb "-list-features\n" 2168 2169 gdb_expect { 2170 -re "\\^done,features=\\\[(.*)\\\]\r\n$mi_gdb_prompt$" { 2171 regsub -all -- \" $expect_out(1,string) "" features 2172 return [split $features ,] 2173 } 2174 -re ".*\r\n$mi_gdb_prompt$" { 2175 verbose -log "got $expect_out(buffer)" 2176 return "" 2177 } 2178 timeout { 2179 verbose -log "timeout in mi_gdb_prompt" 2180 return "" 2181 } 2182 } 2183} 2184 2185# Variable Object Trees 2186# 2187# Yet another way to check varobjs. Pass mi_walk_varobj_tree a "list" of 2188# variables (not unlike the actual source code definition), and it will 2189# automagically test the children for you (by default). 2190# 2191# Example: 2192# 2193# source code: 2194# struct bar { 2195# union { 2196# int integer; 2197# void *ptr; 2198# }; 2199# const int *iPtr; 2200# }; 2201# 2202# class foo { 2203# public: 2204# int a; 2205# struct { 2206# int b; 2207# struct bar *c; 2208# }; 2209# }; 2210# 2211# foo *f = new foo (); <-- break here 2212# 2213# We want to check all the children of "f". 2214# 2215# Translate the above structures into the following tree: 2216# 2217# set tree { 2218# foo f { 2219# {} public { 2220# int a {} 2221# anonymous struct { 2222# {} public { 2223# int b {} 2224# {bar *} c { 2225# {} public { 2226# anonymous union { 2227# {} public { 2228# int integer {} 2229# {void *} ptr {} 2230# } 2231# } 2232# {const int *} iPtr { 2233# {const int} {*iPtr} {} 2234# } 2235# } 2236# } 2237# } 2238# } 2239# } 2240# } 2241# } 2242# 2243# mi_walk_varobj_tree c++ $tree 2244# 2245# If you'd prefer to walk the tree using your own callback, 2246# simply pass the name of the callback to mi_walk_varobj_tree. 2247# 2248# This callback should take one argument, the name of the variable 2249# to process. This name is the name of a global array holding the 2250# variable's properties (object name, type, etc). 2251# 2252# An example callback: 2253# 2254# proc my_callback {var} { 2255# upvar #0 $var varobj 2256# 2257# puts "my_callback: called on varobj $varobj(obj_name)" 2258# } 2259# 2260# The arrays created for each variable object contain the following 2261# members: 2262# 2263# obj_name - the object name for accessing this variable via MI 2264# display_name - the display name for this variable (exp="display_name" in 2265# the output of -var-list-children) 2266# type - the type of this variable (type="type" in the output 2267# of -var-list-children, or the special tag "anonymous" 2268# path_expr - the "-var-info-path-expression" for this variable 2269# NOTE: This member cannot be used reliably with typedefs. 2270# Use with caution! 2271# See notes inside get_path_expr for more. 2272# parent - the variable name of the parent varobj 2273# children - a list of children variable names (which are the 2274# names Tcl arrays, not object names) 2275# 2276# For each variable object, an array containing the above fields will 2277# be created under the root node (conveniently called, "root"). For example, 2278# a variable object with handle "OBJ.public.0_anonymous.a" will have 2279# a corresponding global Tcl variable named "root.OBJ.public.0_anonymous.a". 2280# 2281# Note that right now, this mechanism cannot be used for recursive data 2282# structures like linked lists. 2283 2284namespace eval ::varobj_tree { 2285 # An index which is appended to root varobjs to ensure uniqueness. 2286 variable _root_idx 0 2287 2288 # A procedure to help with debuggging varobj trees. 2289 # VARIABLE_NAME is the name of the variable to dump. 2290 # CMD, if present, is the name of the callback to output the contstructed 2291 # strings. By default, it uses expect's "send_log" command. 2292 # TERM, if present, is a terminating character. By default it is the newline. 2293 # 2294 # To output to the terminal (not the expect log), use 2295 # mi_varobj_tree_dump_variable my_variable puts "" 2296 2297 proc mi_varobj_tree_dump_variable {variable_name {cmd send_log} {term "\n"}} { 2298 upvar #0 $variable_name varobj 2299 2300 eval "$cmd \"VAR = $variable_name$term\"" 2301 2302 # Explicitly encode the array indices, since outputting them 2303 # in some logical order is better than what "array names" might 2304 # return. 2305 foreach idx {obj_name parent display_name type path_expr} { 2306 eval "$cmd \"\t$idx = $varobj($idx)$term\"" 2307 } 2308 2309 # Output children 2310 set num [llength $varobj(children)] 2311 eval "$cmd \"\tnum_children = $num$term\"" 2312 if {$num > 0} { 2313 eval "$cmd \"\tchildren = $varobj(children)$term\"" 2314 } 2315 } 2316 2317 # The default callback used by mi_walk_varobj_tree. This callback 2318 # simply checks all of VAR's children. It specifically does not test 2319 # path expressions, since that is very problematic. 2320 # 2321 # This procedure may be used in custom callbacks. 2322 proc test_children_callback {variable_name} { 2323 upvar #0 $variable_name varobj 2324 2325 if {[llength $varobj(children)] > 0} { 2326 # Construct the list of children the way mi_list_varobj_children 2327 # expects to get it: 2328 # { {obj_name display_name num_children type} ... } 2329 set children_list {} 2330 foreach child $varobj(children) { 2331 upvar #0 $child c 2332 set clist [list [string_to_regexp $c(obj_name)] \ 2333 [string_to_regexp $c(display_name)] \ 2334 [llength $c(children)]] 2335 if {[string length $c(type)] > 0} { 2336 lappend clist [string_to_regexp $c(type)] 2337 } 2338 lappend children_list $clist 2339 } 2340 2341 mi_list_varobj_children $varobj(obj_name) $children_list \ 2342 "VT: list children of $varobj(obj_name)" 2343 } 2344 } 2345 2346 # Set the properties of the varobj represented by 2347 # PARENT_VARIABLE - the name of the parent's variable 2348 # OBJNAME - the MI object name of this variable 2349 # DISP_NAME - the display name of this variable 2350 # TYPE - the type of this variable 2351 # PATH - the path expression for this variable 2352 # CHILDREN - a list of the variable's children 2353 proc create_varobj {parent_variable objname disp_name \ 2354 type path children} { 2355 upvar #0 $parent_variable parent 2356 2357 set var_name "root.$objname" 2358 global $var_name 2359 array set $var_name [list obj_name $objname] 2360 array set $var_name [list display_name $disp_name] 2361 array set $var_name [list type $type] 2362 array set $var_name [list path_expr $path] 2363 array set $var_name [list parent "$parent_variable"] 2364 array set $var_name [list children \ 2365 [get_tree_children $var_name $children]] 2366 return $var_name 2367 } 2368 2369 # Should VARIABLE be used in path expressions? The CPLUS_FAKE_CHILD 2370 # varobjs and anonymous structs/unions are not used for path expressions. 2371 proc is_path_expr_parent {variable} { 2372 upvar #0 $variable varobj 2373 2374 # If the varobj's type is "", it is a CPLUS_FAKE_CHILD. 2375 # If the tail of the varobj's object name is "%d_anonymous", 2376 # then it represents an anonymous struct or union. 2377 if {[string length $varobj(type)] == 0 \ 2378 || [regexp {[0-9]+_anonymous$} $varobj(obj_name)]} { 2379 return false 2380 } 2381 2382 return true 2383 } 2384 2385 # Return the path expression for the variable named NAME in 2386 # parent varobj whose variable name is given by PARENT_VARIABLE. 2387 proc get_path_expr {parent_variable name type} { 2388 upvar #0 $parent_variable parent 2389 upvar #0 $parent_variable path_parent 2390 2391 # If TYPE is "", this is one of the CPLUS_FAKE_CHILD varobjs, 2392 # which has no path expression. Likewsise for anonymous structs 2393 # and unions. 2394 if {[string length $type] == 0 \ 2395 || [string compare $type "anonymous"] == 0} { 2396 return "" 2397 } 2398 2399 # Find the path parent variable. 2400 while {![is_path_expr_parent $parent_variable]} { 2401 set parent_variable $path_parent(parent) 2402 upvar #0 $parent_variable path_parent 2403 } 2404 2405 # This is where things get difficult. We do not actually know 2406 # the real type for variables defined via typedefs, so we don't actually 2407 # know whether the parent is a structure/union or not. 2408 # 2409 # So we assume everything that isn't a simple type is a compound type. 2410 set stars "" 2411 regexp {\*+} $parent(type) stars 2412 set is_compound 1 2413 if {[string index $name 0] == "*"} { 2414 set is_compound 0 2415 } 2416 2417 if {[string index $parent(type) end] == "\]"} { 2418 # Parent is an array. 2419 return "($path_parent(path_expr))\[$name\]" 2420 } elseif {$is_compound} { 2421 # Parent is a structure or union or a pointer to one. 2422 if {[string length $stars]} { 2423 set join "->" 2424 } else { 2425 set join "." 2426 } 2427 2428 global root 2429 2430 # To make matters even more hideous, varobj.c has slightly different 2431 # path expressions for C and C++. 2432 set path_expr "($path_parent(path_expr))$join$name" 2433 if {[string compare -nocase $root(language) "c"] == 0} { 2434 return $path_expr 2435 } else { 2436 return "($path_expr)" 2437 } 2438 } else { 2439 # Parent is a pointer. 2440 return "*($path_parent(path_expr))" 2441 } 2442 } 2443 2444 # Process the CHILDREN (a list of varobj_tree elements) of the variable 2445 # given by PARENT_VARIABLE. Returns a list of children variables. 2446 proc get_tree_children {parent_variable children} { 2447 upvar #0 $parent_variable parent 2448 2449 set field_idx 0 2450 set children_list {} 2451 foreach {type name children} $children { 2452 if {[string compare $parent_variable "root"] == 0} { 2453 # Root variable 2454 variable _root_idx 2455 incr _root_idx 2456 set objname "$name$_root_idx" 2457 set disp_name "$name" 2458 set path_expr "$name" 2459 } elseif {[string compare $type "anonymous"] == 0} { 2460 # Special case: anonymous types. In this case, NAME will either be 2461 # "struct" or "union". 2462 set objname "$parent(obj_name).${field_idx}_anonymous" 2463 set disp_name "<anonymous $name>" 2464 set path_expr "" 2465 set type "$name {...}" 2466 } else { 2467 set objname "$parent(obj_name).$name" 2468 set disp_name $name 2469 set path_expr [get_path_expr $parent_variable $name $type] 2470 } 2471 2472 lappend children_list [create_varobj $parent_variable $objname \ 2473 $disp_name $type $path_expr $children] 2474 incr field_idx 2475 } 2476 2477 return $children_list 2478 } 2479 2480 # The main procedure to call the given CALLBACK on the elements of the 2481 # given varobj TREE. See detailed explanation above. 2482 proc walk_tree {language tree callback} { 2483 global root 2484 variable _root_idx 2485 2486 if {[llength $tree] < 3} { 2487 error "tree does not contain enough elements" 2488 } 2489 2490 set _root_idx 0 2491 2492 # Create root node and process the tree. 2493 array set root [list language $language] 2494 array set root [list obj_name "root"] 2495 array set root [list display_name "root"] 2496 array set root [list type "root"] 2497 array set root [list path_expr "root"] 2498 array set root [list parent "root"] 2499 array set root [list children [get_tree_children root $tree]] 2500 2501 # Walk the tree 2502 set all_nodes $root(children); # a stack of nodes 2503 while {[llength $all_nodes] > 0} { 2504 # "Pop" the name of the global variable containing this varobj's 2505 # information from the stack of nodes. 2506 set var_name [lindex $all_nodes 0] 2507 set all_nodes [lreplace $all_nodes 0 0] 2508 2509 # Bring the global named in VAR_NAME into scope as the local variable 2510 # VAROBJ. 2511 upvar #0 $var_name varobj 2512 2513 # Append any children of VAROBJ to the list of nodes to walk. 2514 if {[llength $varobj(children)] > 0} { 2515 set all_nodes [concat $all_nodes $varobj(children)] 2516 } 2517 2518 # If this is a root variable, create the variable object for it. 2519 if {[string compare $varobj(parent) "root"] == 0} { 2520 mi_create_varobj $varobj(obj_name) $varobj(display_name) \ 2521 "VT: create root varobj for $varobj(display_name)" 2522 } 2523 2524 # Now call the callback for VAROBJ. 2525 uplevel #0 $callback $var_name 2526 } 2527 } 2528} 2529 2530# The default varobj tree callback, which simply tests -var-list-children. 2531proc mi_varobj_tree_test_children_callback {variable} { 2532 ::varobj_tree::test_children_callback $variable 2533} 2534 2535# Walk the variable object tree given by TREE, calling the specified 2536# CALLBACK. By default this uses mi_varobj_tree_test_children_callback. 2537proc mi_walk_varobj_tree {language tree \ 2538 {callback \ 2539 mi_varobj_tree_test_children_callback}} { 2540 ::varobj_tree::walk_tree $language $tree $callback 2541} 2542 2543# Build a list of key-value pairs given by the list ATTR_LIST. Flatten 2544# this list using the optional JOINER, a comma by default. 2545# 2546# The list must contain an even number of elements, which are the key-value 2547# pairs. Each value will be surrounded by quotes, according to the grammar, 2548# except if the value starts with \[ or \{, when the quotes will be omitted. 2549# 2550# Example: mi_build_kv_pairs {a b c d e f g \[.*\]} 2551# returns a=\"b\",c=\"d\",e=\"f\",g=\[.*\] 2552proc mi_build_kv_pairs {attr_list {joiner ,}} { 2553 set l {} 2554 foreach {var value} $attr_list { 2555 if {[string range $value 0 1] == "\\\[" 2556 || [string range $value 0 1] == "\\\{"} { 2557 lappend l "$var=$value" 2558 } else { 2559 lappend l "$var=\"$value\"" 2560 } 2561 } 2562 return "[join $l $joiner]" 2563} 2564 2565# Construct a breakpoint location regexp. This may be used along with 2566# mi_make_breakpoint_multi to test the output of -break-insert, 2567# -dprintf-insert, or -break-info with breapoints with multiple 2568# locations. 2569# 2570# All arguments for the breakpoint location may be specified using the 2571# options number, enabled, addr, func, file, fullname, line and 2572# thread-groups. 2573# 2574# Example: mi_make_breakpoint_loc -number 2.1 -file ".*/myfile.c" -line 3 2575# will return the breakpoint location: 2576# {number="2.1",enabled=".*",addr=".*",func=".*", 2577# file=".*/myfile.c",fullname=".*",line="3",thread-groups=\[.*\]} 2578 2579proc mi_make_breakpoint_loc {args} { 2580 parse_args {{number .*} {enabled .*} {addr .*} 2581 {func .*} {file .*} {fullname .*} {line .*} 2582 {thread-groups \\\[.*\\\]}} 2583 2584 set attr_list {} 2585 foreach attr [list number enabled addr func file \ 2586 fullname line thread-groups] { 2587 lappend attr_list $attr [set $attr] 2588 } 2589 2590 return "{[mi_build_kv_pairs $attr_list]}" 2591} 2592 2593# Bits shared between mi_make_breakpoint and mi_make_breakpoint_multi. 2594 2595proc mi_make_breakpoint_1 {attr_list cond evaluated-by times \ 2596 ignore script original-location} { 2597 set result "bkpt=\\\{[mi_build_kv_pairs $attr_list]" 2598 2599 # There are always exceptions. 2600 2601 # If COND is not preset, do not output it. 2602 if {[string length $cond] > 0} { 2603 append result "," 2604 append result [mi_build_kv_pairs [list "cond" $cond]] 2605 2606 # When running on a remote, GDB may output who is evaluating 2607 # breakpoint conditions. 2608 if {[string length ${evaluated-by}] > 0} { 2609 append result [mi_build_kv_pairs \ 2610 [list "evaluated-by" ${evaluated-by}]] 2611 } else { 2612 append result {(,evaluated-by=".*")?} 2613 } 2614 } 2615 2616 append result "," 2617 append result [mi_build_kv_pairs [list "times" $times]] 2618 2619 # If SCRIPT and IGNORE are not present, do not output them. 2620 if {$ignore != 0} { 2621 append result "," 2622 append result [mi_build_kv_pairs [list "ignore" $ignore]] 2623 append result "," 2624 } 2625 if {[string length $script] > 0} { 2626 append result "," 2627 append result [mi_build_kv_pairs [list "script" $script]] 2628 append result "," 2629 } else { 2630 # Allow anything up until the next "official"/required attribute. 2631 # This pattern skips over script/ignore if matches on those 2632 # were not specifically required by the caller. 2633 append result ".*" 2634 } 2635 append result [mi_build_kv_pairs \ 2636 [list "original-location" ${original-location}]] 2637 2638 return $result 2639} 2640 2641 2642# Construct a breakpoint regexp, for a breakpoint with multiple 2643# locations. This may be used to test the output of -break-insert, 2644# -dprintf-insert, or -break-info with breakpoints with multiple 2645# locations. 2646# 2647# All arguments for the breakpoint may be specified using the options 2648# number, type, disp, enabled, func, cond, evaluated-by, times, 2649# ignore, script and locations. 2650# 2651# Only if -script and -ignore are given will they appear in the output. 2652# Otherwise, this procedure will skip them using ".*". 2653# 2654# Example: mi_make_breakpoint_multi -number 2 -locations "$loc" 2655# will return the breakpoint: 2656# bkpt={number="2",type=".*",disp=".*",enabled=".*",addr="<MULTIPLE>", 2657# times="0".*original-location=".*",locations=$loc} 2658# 2659# You can construct the list of locations with mi_make_breakpoint_loc. 2660 2661proc mi_make_breakpoint_multi {args} { 2662 parse_args {{number .*} {type .*} {disp .*} {enabled .*} 2663 {times .*} {ignore 0} 2664 {script ""} {original-location .*} {cond ""} {evaluated-by ""} 2665 {locations .*}} 2666 2667 set attr_list {} 2668 foreach attr [list number type disp enabled] { 2669 lappend attr_list $attr [set $attr] 2670 } 2671 2672 lappend attr_list "addr" "<MULTIPLE>" 2673 2674 set result [mi_make_breakpoint_1 \ 2675 $attr_list $cond ${evaluated-by} $times \ 2676 $ignore $script ${original-location}] 2677 2678 append result "," 2679 append result [mi_build_kv_pairs [list "locations" $locations]] 2680 2681 append result "\\\}" 2682 return $result 2683} 2684 2685# Construct a breakpoint regexp, for a pending breakpoint. This may 2686# be used to test the output of -break-insert, -dprintf-insert, or 2687# -break-info for pending breakpoints. 2688# 2689# Arguments for the breakpoint may be specified using the options 2690# number, type, disp, enabled, pending. 2691# 2692# Example: mi_make_breakpoint_pending -number 2 -pending func 2693# will return the breakpoint: 2694# bkpt={number="2",type=".*",disp=".*",enabled=".*",addr="<PENDING>", 2695# pending="func", times="0".*original-location=".*"} 2696 2697proc mi_make_breakpoint_pending {args} { 2698 parse_args {{number .*} {type .*} {disp .*} {enabled .*} 2699 {pending .*} {original-location .*}} 2700 2701 set attr_list {} 2702 foreach attr [list number type disp enabled] { 2703 lappend attr_list $attr [set $attr] 2704 } 2705 2706 lappend attr_list "addr" "<PENDING>" 2707 2708 foreach attr [list pending] { 2709 lappend attr_list $attr [set $attr] 2710 } 2711 2712 set ignore 0 2713 set times 0 2714 set script "" 2715 set cond "" 2716 set evaluated-by "" 2717 2718 set result [mi_make_breakpoint_1 \ 2719 $attr_list $cond ${evaluated-by} $times \ 2720 $ignore $script ${original-location}] 2721 2722 append result "\\\}" 2723 return $result 2724} 2725 2726# Construct a breakpoint regexp. This may be used to test the output of 2727# -break-insert, -dprintf-insert, or -break-info. 2728# 2729# All arguments for the breakpoint may be specified using the options 2730# number, type, disp, enabled, addr, func, file, fullanme, line, 2731# thread-groups, cond, evaluated-by, times, ignore, script, 2732# and original-location. 2733# 2734# Only if -script and -ignore are given will they appear in the output. 2735# Otherwise, this procedure will skip them using ".*". 2736# 2737# Example: mi_make_breakpoint -number 2 -file ".*/myfile.c" -line 3 2738# will return the breakpoint: 2739# bkpt={number="2",type=".*",disp=".*",enabled=".*",addr=".*",func=".*", 2740# file=".*/myfile.c",fullname=".*",line="3",thread-groups=\[.*\], 2741# times="0".*original-location=".*"} 2742 2743proc mi_make_breakpoint {args} { 2744 parse_args {{number .*} {type .*} {disp .*} {enabled .*} {addr .*} 2745 {func .*} {file .*} {fullname .*} {line .*} 2746 {thread-groups \\\[.*\\\]} {times .*} {ignore 0} 2747 {script ""} {original-location .*} {cond ""} {evaluated-by ""}} 2748 2749 set attr_list {} 2750 foreach attr [list number type disp enabled addr func file \ 2751 fullname line thread-groups] { 2752 lappend attr_list $attr [set $attr] 2753 } 2754 2755 set result [mi_make_breakpoint_1 \ 2756 $attr_list $cond ${evaluated-by} $times \ 2757 $ignore $script ${original-location}] 2758 2759 append result "\\\}" 2760 return $result 2761} 2762 2763# Build a breakpoint table regexp given the list of breakpoints in `bp_list', 2764# constructed by mi_make_breakpoint. 2765# 2766# Example: Construct a breakpoint table where the only attributes we 2767# test for are the existence of three breakpoints numbered 1, 2, and 3. 2768# 2769# set bps {} 2770# lappend bps [mi_make_breakpoint -number 1] 2771# lappend bps [mi_make_breakpoint -number 2] 2772# lappned bps [mi_make_breakpoint -number 3] 2773# mi_make_breakpoint_table $bps 2774# will return (abbreviated for clarity): 2775# BreakpointTable={nr_rows="3",nr_cols="6",hdr=[{width=".*",...} ...], 2776# body=[bkpt={number="1",...},bkpt={number="2",...},bkpt={number="3",...}]} 2777 2778proc mi_make_breakpoint_table {bp_list} { 2779 # Build header -- assume a standard header for all breakpoint tables. 2780 set hl {} 2781 foreach {nm hdr} [list number Num type Type disp Disp enabled Enb \ 2782 addr Address what What] { 2783 # The elements here are the MI table headers, which have the 2784 # format: 2785 # {width="7",alignment="-1",col_name="number",colhdr="Num"} 2786 lappend hl "{[mi_build_kv_pairs [list width .* alignment .* \ 2787 col_name $nm colhdr $hdr]]}" 2788 } 2789 set header "hdr=\\\[[join $hl ,]\\\]" 2790 2791 # The caller has implicitly supplied the number of columns and rows. 2792 set nc [llength $hl] 2793 set nr [llength $bp_list] 2794 2795 # Build body -- mi_make_breakpoint has done most of the work. 2796 set body "body=\\\[[join $bp_list ,]\\\]" 2797 2798 # Assemble the final regexp. 2799 return "BreakpointTable={nr_rows=\"$nr\",nr_cols=\"$nc\",$header,$body}" 2800} 2801 2802# Return a 1 for configurations that do not support Python scripting. 2803# Note: This also sets various globals that specify which version of Python 2804# is in use. See skip_python_tests_prompt. 2805 2806proc mi_skip_python_tests {} { 2807 global mi_gdb_prompt 2808 return [skip_python_tests_prompt "$mi_gdb_prompt$"] 2809} 2810 2811# As skip_libstdcxx_probe_tests_prompt, with mi_gdb_prompt. 2812 2813proc mi_skip_libstdcxx_probe_tests {} { 2814 global mi_gdb_prompt 2815 return [skip_libstdcxx_probe_tests_prompt "$mi_gdb_prompt$"] 2816} 2817 2818# Check whether we're testing with the remote or extended-remote 2819# targets. 2820 2821proc mi_is_target_remote {} { 2822 global mi_gdb_prompt 2823 2824 return [gdb_is_target_remote_prompt "$mi_gdb_prompt"] 2825} 2826 2827# Retrieve the value of EXP in the inferior, represented in format 2828# specified in FMT (using "printFMT"). DEFAULT is used as fallback if 2829# print fails. TEST is the test message to use. It can be omitted, 2830# in which case a test message is built from EXP. 2831# 2832# This is an MI version of gdb_valueof. 2833 2834proc mi_get_valueof { fmt exp default {test ""} } { 2835 global mi_gdb_prompt 2836 2837 if {$test == "" } { 2838 set test "get valueof \"${exp}\"" 2839 } 2840 2841 set val ${default} 2842 gdb_test_multiple "print${fmt} ${exp}" "$test" -prompt "$::mi_gdb_prompt$" { 2843 -re "~\"\\$\[0-9\]* = (\[^\r\n\]*)\\\\n\"\r\n\\^done\r\n$mi_gdb_prompt$" { 2844 set val $expect_out(1,string) 2845 pass "$test" 2846 } 2847 timeout { 2848 fail "$test (timeout)" 2849 } 2850 } 2851 return ${val} 2852} 2853