xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/target.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /* Select target systems and architectures at runtime for GDB.
2 
3    Copyright (C) 1990-2015 Free Software Foundation, Inc.
4 
5    Contributed by Cygnus Support.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 
47 static void target_info (char *, int);
48 
49 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50 
51 static void default_terminal_info (struct target_ops *, const char *, int);
52 
53 static int default_watchpoint_addr_within_range (struct target_ops *,
54 						 CORE_ADDR, CORE_ADDR, int);
55 
56 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 						CORE_ADDR, int);
58 
59 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
60 
61 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 					 long lwp, long tid);
63 
64 static int default_follow_fork (struct target_ops *self, int follow_child,
65 				int detach_fork);
66 
67 static void default_mourn_inferior (struct target_ops *self);
68 
69 static int default_search_memory (struct target_ops *ops,
70 				  CORE_ADDR start_addr,
71 				  ULONGEST search_space_len,
72 				  const gdb_byte *pattern,
73 				  ULONGEST pattern_len,
74 				  CORE_ADDR *found_addrp);
75 
76 static int default_verify_memory (struct target_ops *self,
77 				  const gdb_byte *data,
78 				  CORE_ADDR memaddr, ULONGEST size);
79 
80 static struct address_space *default_thread_address_space
81      (struct target_ops *self, ptid_t ptid);
82 
83 static void tcomplain (void) ATTRIBUTE_NORETURN;
84 
85 static int return_zero (struct target_ops *);
86 
87 static int return_zero_has_execution (struct target_ops *, ptid_t);
88 
89 static void target_command (char *, int);
90 
91 static struct target_ops *find_default_run_target (char *);
92 
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 						    ptid_t ptid);
95 
96 static int dummy_find_memory_regions (struct target_ops *self,
97 				      find_memory_region_ftype ignore1,
98 				      void *ignore2);
99 
100 static char *dummy_make_corefile_notes (struct target_ops *self,
101 					bfd *ignore1, int *ignore2);
102 
103 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104 
105 static enum exec_direction_kind default_execution_direction
106     (struct target_ops *self);
107 
108 static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
109 						     struct gdbarch *gdbarch);
110 
111 static struct target_ops debug_target;
112 
113 #include "target-delegates.c"
114 
115 static void init_dummy_target (void);
116 
117 static void update_current_target (void);
118 
119 /* Vector of existing target structures. */
120 typedef struct target_ops *target_ops_p;
121 DEF_VEC_P (target_ops_p);
122 static VEC (target_ops_p) *target_structs;
123 
124 /* The initial current target, so that there is always a semi-valid
125    current target.  */
126 
127 static struct target_ops dummy_target;
128 
129 /* Top of target stack.  */
130 
131 static struct target_ops *target_stack;
132 
133 /* The target structure we are currently using to talk to a process
134    or file or whatever "inferior" we have.  */
135 
136 struct target_ops current_target;
137 
138 /* Command list for target.  */
139 
140 static struct cmd_list_element *targetlist = NULL;
141 
142 /* Nonzero if we should trust readonly sections from the
143    executable when reading memory.  */
144 
145 static int trust_readonly = 0;
146 
147 /* Nonzero if we should show true memory content including
148    memory breakpoint inserted by gdb.  */
149 
150 static int show_memory_breakpoints = 0;
151 
152 /* These globals control whether GDB attempts to perform these
153    operations; they are useful for targets that need to prevent
154    inadvertant disruption, such as in non-stop mode.  */
155 
156 int may_write_registers = 1;
157 
158 int may_write_memory = 1;
159 
160 int may_insert_breakpoints = 1;
161 
162 int may_insert_tracepoints = 1;
163 
164 int may_insert_fast_tracepoints = 1;
165 
166 int may_stop = 1;
167 
168 /* Non-zero if we want to see trace of target level stuff.  */
169 
170 static unsigned int targetdebug = 0;
171 
172 static void
173 set_targetdebug  (char *args, int from_tty, struct cmd_list_element *c)
174 {
175   update_current_target ();
176 }
177 
178 static void
179 show_targetdebug (struct ui_file *file, int from_tty,
180 		  struct cmd_list_element *c, const char *value)
181 {
182   fprintf_filtered (file, _("Target debugging is %s.\n"), value);
183 }
184 
185 static void setup_target_debug (void);
186 
187 /* The user just typed 'target' without the name of a target.  */
188 
189 static void
190 target_command (char *arg, int from_tty)
191 {
192   fputs_filtered ("Argument required (target name).  Try `help target'\n",
193 		  gdb_stdout);
194 }
195 
196 /* Default target_has_* methods for process_stratum targets.  */
197 
198 int
199 default_child_has_all_memory (struct target_ops *ops)
200 {
201   /* If no inferior selected, then we can't read memory here.  */
202   if (ptid_equal (inferior_ptid, null_ptid))
203     return 0;
204 
205   return 1;
206 }
207 
208 int
209 default_child_has_memory (struct target_ops *ops)
210 {
211   /* If no inferior selected, then we can't read memory here.  */
212   if (ptid_equal (inferior_ptid, null_ptid))
213     return 0;
214 
215   return 1;
216 }
217 
218 int
219 default_child_has_stack (struct target_ops *ops)
220 {
221   /* If no inferior selected, there's no stack.  */
222   if (ptid_equal (inferior_ptid, null_ptid))
223     return 0;
224 
225   return 1;
226 }
227 
228 int
229 default_child_has_registers (struct target_ops *ops)
230 {
231   /* Can't read registers from no inferior.  */
232   if (ptid_equal (inferior_ptid, null_ptid))
233     return 0;
234 
235   return 1;
236 }
237 
238 int
239 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
240 {
241   /* If there's no thread selected, then we can't make it run through
242      hoops.  */
243   if (ptid_equal (the_ptid, null_ptid))
244     return 0;
245 
246   return 1;
247 }
248 
249 
250 int
251 target_has_all_memory_1 (void)
252 {
253   struct target_ops *t;
254 
255   for (t = current_target.beneath; t != NULL; t = t->beneath)
256     if (t->to_has_all_memory (t))
257       return 1;
258 
259   return 0;
260 }
261 
262 int
263 target_has_memory_1 (void)
264 {
265   struct target_ops *t;
266 
267   for (t = current_target.beneath; t != NULL; t = t->beneath)
268     if (t->to_has_memory (t))
269       return 1;
270 
271   return 0;
272 }
273 
274 int
275 target_has_stack_1 (void)
276 {
277   struct target_ops *t;
278 
279   for (t = current_target.beneath; t != NULL; t = t->beneath)
280     if (t->to_has_stack (t))
281       return 1;
282 
283   return 0;
284 }
285 
286 int
287 target_has_registers_1 (void)
288 {
289   struct target_ops *t;
290 
291   for (t = current_target.beneath; t != NULL; t = t->beneath)
292     if (t->to_has_registers (t))
293       return 1;
294 
295   return 0;
296 }
297 
298 int
299 target_has_execution_1 (ptid_t the_ptid)
300 {
301   struct target_ops *t;
302 
303   for (t = current_target.beneath; t != NULL; t = t->beneath)
304     if (t->to_has_execution (t, the_ptid))
305       return 1;
306 
307   return 0;
308 }
309 
310 int
311 target_has_execution_current (void)
312 {
313   return target_has_execution_1 (inferior_ptid);
314 }
315 
316 /* Complete initialization of T.  This ensures that various fields in
317    T are set, if needed by the target implementation.  */
318 
319 void
320 complete_target_initialization (struct target_ops *t)
321 {
322   /* Provide default values for all "must have" methods.  */
323 
324   if (t->to_has_all_memory == NULL)
325     t->to_has_all_memory = return_zero;
326 
327   if (t->to_has_memory == NULL)
328     t->to_has_memory = return_zero;
329 
330   if (t->to_has_stack == NULL)
331     t->to_has_stack = return_zero;
332 
333   if (t->to_has_registers == NULL)
334     t->to_has_registers = return_zero;
335 
336   if (t->to_has_execution == NULL)
337     t->to_has_execution = return_zero_has_execution;
338 
339   /* These methods can be called on an unpushed target and so require
340      a default implementation if the target might plausibly be the
341      default run target.  */
342   gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
343 					&& t->to_supports_non_stop != NULL));
344 
345   install_delegators (t);
346 }
347 
348 /* This is used to implement the various target commands.  */
349 
350 static void
351 open_target (char *args, int from_tty, struct cmd_list_element *command)
352 {
353   struct target_ops *ops = get_cmd_context (command);
354 
355   if (targetdebug)
356     fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
357 			ops->to_shortname);
358 
359   ops->to_open (args, from_tty);
360 
361   if (targetdebug)
362     fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
363 			ops->to_shortname, args, from_tty);
364 }
365 
366 /* Add possible target architecture T to the list and add a new
367    command 'target T->to_shortname'.  Set COMPLETER as the command's
368    completer if not NULL.  */
369 
370 void
371 add_target_with_completer (struct target_ops *t,
372 			   completer_ftype *completer)
373 {
374   struct cmd_list_element *c;
375 
376   complete_target_initialization (t);
377 
378   VEC_safe_push (target_ops_p, target_structs, t);
379 
380   if (targetlist == NULL)
381     add_prefix_cmd ("target", class_run, target_command, _("\
382 Connect to a target machine or process.\n\
383 The first argument is the type or protocol of the target machine.\n\
384 Remaining arguments are interpreted by the target protocol.  For more\n\
385 information on the arguments for a particular protocol, type\n\
386 `help target ' followed by the protocol name."),
387 		    &targetlist, "target ", 0, &cmdlist);
388   c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
389   set_cmd_sfunc (c, open_target);
390   set_cmd_context (c, t);
391   if (completer != NULL)
392     set_cmd_completer (c, completer);
393 }
394 
395 /* Add a possible target architecture to the list.  */
396 
397 void
398 add_target (struct target_ops *t)
399 {
400   add_target_with_completer (t, NULL);
401 }
402 
403 /* See target.h.  */
404 
405 void
406 add_deprecated_target_alias (struct target_ops *t, char *alias)
407 {
408   struct cmd_list_element *c;
409   char *alt;
410 
411   /* If we use add_alias_cmd, here, we do not get the deprecated warning,
412      see PR cli/15104.  */
413   c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
414   set_cmd_sfunc (c, open_target);
415   set_cmd_context (c, t);
416   alt = xstrprintf ("target %s", t->to_shortname);
417   deprecate_cmd (c, alt);
418 }
419 
420 /* Stub functions */
421 
422 void
423 target_kill (void)
424 {
425   current_target.to_kill (&current_target);
426 }
427 
428 void
429 target_load (const char *arg, int from_tty)
430 {
431   target_dcache_invalidate ();
432   (*current_target.to_load) (&current_target, arg, from_tty);
433 }
434 
435 /* Possible terminal states.  */
436 
437 enum terminal_state
438   {
439     /* The inferior's terminal settings are in effect.  */
440     terminal_is_inferior = 0,
441 
442     /* Some of our terminal settings are in effect, enough to get
443        proper output.  */
444     terminal_is_ours_for_output = 1,
445 
446     /* Our terminal settings are in effect, for output and input.  */
447     terminal_is_ours = 2
448   };
449 
450 static enum terminal_state terminal_state;
451 
452 /* See target.h.  */
453 
454 void
455 target_terminal_init (void)
456 {
457   (*current_target.to_terminal_init) (&current_target);
458 
459   terminal_state = terminal_is_ours;
460 }
461 
462 /* See target.h.  */
463 
464 int
465 target_terminal_is_inferior (void)
466 {
467   return (terminal_state == terminal_is_inferior);
468 }
469 
470 /* See target.h.  */
471 
472 void
473 target_terminal_inferior (void)
474 {
475   /* A background resume (``run&'') should leave GDB in control of the
476      terminal.  Use target_can_async_p, not target_is_async_p, since at
477      this point the target is not async yet.  However, if sync_execution
478      is not set, we know it will become async prior to resume.  */
479   if (target_can_async_p () && !sync_execution)
480     return;
481 
482   if (terminal_state == terminal_is_inferior)
483     return;
484 
485   /* If GDB is resuming the inferior in the foreground, install
486      inferior's terminal modes.  */
487   (*current_target.to_terminal_inferior) (&current_target);
488   terminal_state = terminal_is_inferior;
489 }
490 
491 /* See target.h.  */
492 
493 void
494 target_terminal_ours (void)
495 {
496   if (terminal_state == terminal_is_ours)
497     return;
498 
499   (*current_target.to_terminal_ours) (&current_target);
500   terminal_state = terminal_is_ours;
501 }
502 
503 /* See target.h.  */
504 
505 void
506 target_terminal_ours_for_output (void)
507 {
508   if (terminal_state != terminal_is_inferior)
509     return;
510   (*current_target.to_terminal_ours_for_output) (&current_target);
511   terminal_state = terminal_is_ours_for_output;
512 }
513 
514 /* See target.h.  */
515 
516 int
517 target_supports_terminal_ours (void)
518 {
519   struct target_ops *t;
520 
521   for (t = current_target.beneath; t != NULL; t = t->beneath)
522     {
523       if (t->to_terminal_ours != delegate_terminal_ours
524 	  && t->to_terminal_ours != tdefault_terminal_ours)
525 	return 1;
526     }
527 
528   return 0;
529 }
530 
531 /* Restore the terminal to its previous state (helper for
532    make_cleanup_restore_target_terminal). */
533 
534 static void
535 cleanup_restore_target_terminal (void *arg)
536 {
537   enum terminal_state *previous_state = arg;
538 
539   switch (*previous_state)
540     {
541     case terminal_is_ours:
542       target_terminal_ours ();
543       break;
544     case terminal_is_ours_for_output:
545       target_terminal_ours_for_output ();
546       break;
547     case terminal_is_inferior:
548       target_terminal_inferior ();
549       break;
550     }
551 }
552 
553 /* See target.h. */
554 
555 struct cleanup *
556 make_cleanup_restore_target_terminal (void)
557 {
558   enum terminal_state *ts = xmalloc (sizeof (*ts));
559 
560   *ts = terminal_state;
561 
562   return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
563 }
564 
565 static void
566 tcomplain (void)
567 {
568   error (_("You can't do that when your target is `%s'"),
569 	 current_target.to_shortname);
570 }
571 
572 void
573 noprocess (void)
574 {
575   error (_("You can't do that without a process to debug."));
576 }
577 
578 static void
579 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
580 {
581   printf_unfiltered (_("No saved terminal information.\n"));
582 }
583 
584 /* A default implementation for the to_get_ada_task_ptid target method.
585 
586    This function builds the PTID by using both LWP and TID as part of
587    the PTID lwp and tid elements.  The pid used is the pid of the
588    inferior_ptid.  */
589 
590 static ptid_t
591 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
592 {
593   return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
594 }
595 
596 static enum exec_direction_kind
597 default_execution_direction (struct target_ops *self)
598 {
599   if (!target_can_execute_reverse)
600     return EXEC_FORWARD;
601   else if (!target_can_async_p ())
602     return EXEC_FORWARD;
603   else
604     gdb_assert_not_reached ("\
605 to_execution_direction must be implemented for reverse async");
606 }
607 
608 /* Go through the target stack from top to bottom, copying over zero
609    entries in current_target, then filling in still empty entries.  In
610    effect, we are doing class inheritance through the pushed target
611    vectors.
612 
613    NOTE: cagney/2003-10-17: The problem with this inheritance, as it
614    is currently implemented, is that it discards any knowledge of
615    which target an inherited method originally belonged to.
616    Consequently, new new target methods should instead explicitly and
617    locally search the target stack for the target that can handle the
618    request.  */
619 
620 static void
621 update_current_target (void)
622 {
623   struct target_ops *t;
624 
625   /* First, reset current's contents.  */
626   memset (&current_target, 0, sizeof (current_target));
627 
628   /* Install the delegators.  */
629   install_delegators (&current_target);
630 
631   current_target.to_stratum = target_stack->to_stratum;
632 
633 #define INHERIT(FIELD, TARGET) \
634       if (!current_target.FIELD) \
635 	current_target.FIELD = (TARGET)->FIELD
636 
637   /* Do not add any new INHERITs here.  Instead, use the delegation
638      mechanism provided by make-target-delegates.  */
639   for (t = target_stack; t; t = t->beneath)
640     {
641       INHERIT (to_shortname, t);
642       INHERIT (to_longname, t);
643       INHERIT (to_attach_no_wait, t);
644       INHERIT (to_have_steppable_watchpoint, t);
645       INHERIT (to_have_continuable_watchpoint, t);
646       INHERIT (to_has_thread_control, t);
647     }
648 #undef INHERIT
649 
650   /* Finally, position the target-stack beneath the squashed
651      "current_target".  That way code looking for a non-inherited
652      target method can quickly and simply find it.  */
653   current_target.beneath = target_stack;
654 
655   if (targetdebug)
656     setup_target_debug ();
657 }
658 
659 /* Push a new target type into the stack of the existing target accessors,
660    possibly superseding some of the existing accessors.
661 
662    Rather than allow an empty stack, we always have the dummy target at
663    the bottom stratum, so we can call the function vectors without
664    checking them.  */
665 
666 void
667 push_target (struct target_ops *t)
668 {
669   struct target_ops **cur;
670 
671   /* Check magic number.  If wrong, it probably means someone changed
672      the struct definition, but not all the places that initialize one.  */
673   if (t->to_magic != OPS_MAGIC)
674     {
675       fprintf_unfiltered (gdb_stderr,
676 			  "Magic number of %s target struct wrong\n",
677 			  t->to_shortname);
678       internal_error (__FILE__, __LINE__,
679 		      _("failed internal consistency check"));
680     }
681 
682   /* Find the proper stratum to install this target in.  */
683   for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
684     {
685       if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
686 	break;
687     }
688 
689   /* If there's already targets at this stratum, remove them.  */
690   /* FIXME: cagney/2003-10-15: I think this should be popping all
691      targets to CUR, and not just those at this stratum level.  */
692   while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
693     {
694       /* There's already something at this stratum level.  Close it,
695          and un-hook it from the stack.  */
696       struct target_ops *tmp = (*cur);
697 
698       (*cur) = (*cur)->beneath;
699       tmp->beneath = NULL;
700       target_close (tmp);
701     }
702 
703   /* We have removed all targets in our stratum, now add the new one.  */
704   t->beneath = (*cur);
705   (*cur) = t;
706 
707   update_current_target ();
708 }
709 
710 /* Remove a target_ops vector from the stack, wherever it may be.
711    Return how many times it was removed (0 or 1).  */
712 
713 int
714 unpush_target (struct target_ops *t)
715 {
716   struct target_ops **cur;
717   struct target_ops *tmp;
718 
719   if (t->to_stratum == dummy_stratum)
720     internal_error (__FILE__, __LINE__,
721 		    _("Attempt to unpush the dummy target"));
722 
723   /* Look for the specified target.  Note that we assume that a target
724      can only occur once in the target stack.  */
725 
726   for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
727     {
728       if ((*cur) == t)
729 	break;
730     }
731 
732   /* If we don't find target_ops, quit.  Only open targets should be
733      closed.  */
734   if ((*cur) == NULL)
735     return 0;
736 
737   /* Unchain the target.  */
738   tmp = (*cur);
739   (*cur) = (*cur)->beneath;
740   tmp->beneath = NULL;
741 
742   update_current_target ();
743 
744   /* Finally close the target.  Note we do this after unchaining, so
745      any target method calls from within the target_close
746      implementation don't end up in T anymore.  */
747   target_close (t);
748 
749   return 1;
750 }
751 
752 void
753 pop_all_targets_above (enum strata above_stratum)
754 {
755   while ((int) (current_target.to_stratum) > (int) above_stratum)
756     {
757       if (!unpush_target (target_stack))
758 	{
759 	  fprintf_unfiltered (gdb_stderr,
760 			      "pop_all_targets couldn't find target %s\n",
761 			      target_stack->to_shortname);
762 	  internal_error (__FILE__, __LINE__,
763 			  _("failed internal consistency check"));
764 	  break;
765 	}
766     }
767 }
768 
769 void
770 pop_all_targets (void)
771 {
772   pop_all_targets_above (dummy_stratum);
773 }
774 
775 /* Return 1 if T is now pushed in the target stack.  Return 0 otherwise.  */
776 
777 int
778 target_is_pushed (struct target_ops *t)
779 {
780   struct target_ops *cur;
781 
782   /* Check magic number.  If wrong, it probably means someone changed
783      the struct definition, but not all the places that initialize one.  */
784   if (t->to_magic != OPS_MAGIC)
785     {
786       fprintf_unfiltered (gdb_stderr,
787 			  "Magic number of %s target struct wrong\n",
788 			  t->to_shortname);
789       internal_error (__FILE__, __LINE__,
790 		      _("failed internal consistency check"));
791     }
792 
793   for (cur = target_stack; cur != NULL; cur = cur->beneath)
794     if (cur == t)
795       return 1;
796 
797   return 0;
798 }
799 
800 /* Default implementation of to_get_thread_local_address.  */
801 
802 static void
803 generic_tls_error (void)
804 {
805   throw_error (TLS_GENERIC_ERROR,
806 	       _("Cannot find thread-local variables on this target"));
807 }
808 
809 /* Using the objfile specified in OBJFILE, find the address for the
810    current thread's thread-local storage with offset OFFSET.  */
811 CORE_ADDR
812 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
813 {
814   volatile CORE_ADDR addr = 0;
815   struct target_ops *target = &current_target;
816 
817   if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
818     {
819       ptid_t ptid = inferior_ptid;
820       volatile struct gdb_exception ex;
821 
822       TRY_CATCH (ex, RETURN_MASK_ALL)
823 	{
824 	  CORE_ADDR lm_addr;
825 
826 	  /* Fetch the load module address for this objfile.  */
827 	  lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
828 	                                                   objfile);
829 
830 	  addr = target->to_get_thread_local_address (target, ptid,
831 						      lm_addr, offset);
832 	}
833       /* If an error occurred, print TLS related messages here.  Otherwise,
834          throw the error to some higher catcher.  */
835       if (ex.reason < 0)
836 	{
837 	  int objfile_is_library = (objfile->flags & OBJF_SHARED);
838 
839 	  switch (ex.error)
840 	    {
841 	    case TLS_NO_LIBRARY_SUPPORT_ERROR:
842 	      error (_("Cannot find thread-local variables "
843 		       "in this thread library."));
844 	      break;
845 	    case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
846 	      if (objfile_is_library)
847 		error (_("Cannot find shared library `%s' in dynamic"
848 		         " linker's load module list"), objfile_name (objfile));
849 	      else
850 		error (_("Cannot find executable file `%s' in dynamic"
851 		         " linker's load module list"), objfile_name (objfile));
852 	      break;
853 	    case TLS_NOT_ALLOCATED_YET_ERROR:
854 	      if (objfile_is_library)
855 		error (_("The inferior has not yet allocated storage for"
856 		         " thread-local variables in\n"
857 		         "the shared library `%s'\n"
858 		         "for %s"),
859 		       objfile_name (objfile), target_pid_to_str (ptid));
860 	      else
861 		error (_("The inferior has not yet allocated storage for"
862 		         " thread-local variables in\n"
863 		         "the executable `%s'\n"
864 		         "for %s"),
865 		       objfile_name (objfile), target_pid_to_str (ptid));
866 	      break;
867 	    case TLS_GENERIC_ERROR:
868 	      if (objfile_is_library)
869 		error (_("Cannot find thread-local storage for %s, "
870 		         "shared library %s:\n%s"),
871 		       target_pid_to_str (ptid),
872 		       objfile_name (objfile), ex.message);
873 	      else
874 		error (_("Cannot find thread-local storage for %s, "
875 		         "executable file %s:\n%s"),
876 		       target_pid_to_str (ptid),
877 		       objfile_name (objfile), ex.message);
878 	      break;
879 	    default:
880 	      throw_exception (ex);
881 	      break;
882 	    }
883 	}
884     }
885   /* It wouldn't be wrong here to try a gdbarch method, too; finding
886      TLS is an ABI-specific thing.  But we don't do that yet.  */
887   else
888     error (_("Cannot find thread-local variables on this target"));
889 
890   return addr;
891 }
892 
893 const char *
894 target_xfer_status_to_string (enum target_xfer_status status)
895 {
896 #define CASE(X) case X: return #X
897   switch (status)
898     {
899       CASE(TARGET_XFER_E_IO);
900       CASE(TARGET_XFER_UNAVAILABLE);
901     default:
902       return "<unknown>";
903     }
904 #undef CASE
905 };
906 
907 
908 #undef	MIN
909 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
910 
911 /* target_read_string -- read a null terminated string, up to LEN bytes,
912    from MEMADDR in target.  Set *ERRNOP to the errno code, or 0 if successful.
913    Set *STRING to a pointer to malloc'd memory containing the data; the caller
914    is responsible for freeing it.  Return the number of bytes successfully
915    read.  */
916 
917 int
918 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
919 {
920   int tlen, offset, i;
921   gdb_byte buf[4];
922   int errcode = 0;
923   char *buffer;
924   int buffer_allocated;
925   char *bufptr;
926   unsigned int nbytes_read = 0;
927 
928   gdb_assert (string);
929 
930   /* Small for testing.  */
931   buffer_allocated = 4;
932   buffer = xmalloc (buffer_allocated);
933   bufptr = buffer;
934 
935   while (len > 0)
936     {
937       tlen = MIN (len, 4 - (memaddr & 3));
938       offset = memaddr & 3;
939 
940       errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
941       if (errcode != 0)
942 	{
943 	  /* The transfer request might have crossed the boundary to an
944 	     unallocated region of memory.  Retry the transfer, requesting
945 	     a single byte.  */
946 	  tlen = 1;
947 	  offset = 0;
948 	  errcode = target_read_memory (memaddr, buf, 1);
949 	  if (errcode != 0)
950 	    goto done;
951 	}
952 
953       if (bufptr - buffer + tlen > buffer_allocated)
954 	{
955 	  unsigned int bytes;
956 
957 	  bytes = bufptr - buffer;
958 	  buffer_allocated *= 2;
959 	  buffer = xrealloc (buffer, buffer_allocated);
960 	  bufptr = buffer + bytes;
961 	}
962 
963       for (i = 0; i < tlen; i++)
964 	{
965 	  *bufptr++ = buf[i + offset];
966 	  if (buf[i + offset] == '\000')
967 	    {
968 	      nbytes_read += i + 1;
969 	      goto done;
970 	    }
971 	}
972 
973       memaddr += tlen;
974       len -= tlen;
975       nbytes_read += tlen;
976     }
977 done:
978   *string = buffer;
979   if (errnop != NULL)
980     *errnop = errcode;
981   return nbytes_read;
982 }
983 
984 struct target_section_table *
985 target_get_section_table (struct target_ops *target)
986 {
987   return (*target->to_get_section_table) (target);
988 }
989 
990 /* Find a section containing ADDR.  */
991 
992 struct target_section *
993 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
994 {
995   struct target_section_table *table = target_get_section_table (target);
996   struct target_section *secp;
997 
998   if (table == NULL)
999     return NULL;
1000 
1001   for (secp = table->sections; secp < table->sections_end; secp++)
1002     {
1003       if (addr >= secp->addr && addr < secp->endaddr)
1004 	return secp;
1005     }
1006   return NULL;
1007 }
1008 
1009 
1010 /* Helper for the memory xfer routines.  Checks the attributes of the
1011    memory region of MEMADDR against the read or write being attempted.
1012    If the access is permitted returns true, otherwise returns false.
1013    REGION_P is an optional output parameter.  If not-NULL, it is
1014    filled with a pointer to the memory region of MEMADDR.  REG_LEN
1015    returns LEN trimmed to the end of the region.  This is how much the
1016    caller can continue requesting, if the access is permitted.  A
1017    single xfer request must not straddle memory region boundaries.  */
1018 
1019 static int
1020 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1021 			  ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1022 			  struct mem_region **region_p)
1023 {
1024   struct mem_region *region;
1025 
1026   region = lookup_mem_region (memaddr);
1027 
1028   if (region_p != NULL)
1029     *region_p = region;
1030 
1031   switch (region->attrib.mode)
1032     {
1033     case MEM_RO:
1034       if (writebuf != NULL)
1035 	return 0;
1036       break;
1037 
1038     case MEM_WO:
1039       if (readbuf != NULL)
1040 	return 0;
1041       break;
1042 
1043     case MEM_FLASH:
1044       /* We only support writing to flash during "load" for now.  */
1045       if (writebuf != NULL)
1046 	error (_("Writing to flash memory forbidden in this context"));
1047       break;
1048 
1049     case MEM_NONE:
1050       return 0;
1051     }
1052 
1053   /* region->hi == 0 means there's no upper bound.  */
1054   if (memaddr + len < region->hi || region->hi == 0)
1055     *reg_len = len;
1056   else
1057     *reg_len = region->hi - memaddr;
1058 
1059   return 1;
1060 }
1061 
1062 /* Read memory from more than one valid target.  A core file, for
1063    instance, could have some of memory but delegate other bits to
1064    the target below it.  So, we must manually try all targets.  */
1065 
1066 static enum target_xfer_status
1067 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1068 			 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1069 			 ULONGEST *xfered_len)
1070 {
1071   enum target_xfer_status res;
1072 
1073   do
1074     {
1075       res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1076 				  readbuf, writebuf, memaddr, len,
1077 				  xfered_len);
1078       if (res == TARGET_XFER_OK)
1079 	break;
1080 
1081       /* Stop if the target reports that the memory is not available.  */
1082       if (res == TARGET_XFER_UNAVAILABLE)
1083 	break;
1084 
1085       /* We want to continue past core files to executables, but not
1086 	 past a running target's memory.  */
1087       if (ops->to_has_all_memory (ops))
1088 	break;
1089 
1090       ops = ops->beneath;
1091     }
1092   while (ops != NULL);
1093 
1094   /* The cache works at the raw memory level.  Make sure the cache
1095      gets updated with raw contents no matter what kind of memory
1096      object was originally being written.  Note we do write-through
1097      first, so that if it fails, we don't write to the cache contents
1098      that never made it to the target.  */
1099   if (writebuf != NULL
1100       && !ptid_equal (inferior_ptid, null_ptid)
1101       && target_dcache_init_p ()
1102       && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1103     {
1104       DCACHE *dcache = target_dcache_get ();
1105 
1106       /* Note that writing to an area of memory which wasn't present
1107 	 in the cache doesn't cause it to be loaded in.  */
1108       dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1109     }
1110 
1111   return res;
1112 }
1113 
1114 /* Perform a partial memory transfer.
1115    For docs see target.h, to_xfer_partial.  */
1116 
1117 static enum target_xfer_status
1118 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1119 		       gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1120 		       ULONGEST len, ULONGEST *xfered_len)
1121 {
1122   enum target_xfer_status res;
1123   ULONGEST reg_len;
1124   struct mem_region *region;
1125   struct inferior *inf;
1126 
1127   /* For accesses to unmapped overlay sections, read directly from
1128      files.  Must do this first, as MEMADDR may need adjustment.  */
1129   if (readbuf != NULL && overlay_debugging)
1130     {
1131       struct obj_section *section = find_pc_overlay (memaddr);
1132 
1133       if (pc_in_unmapped_range (memaddr, section))
1134 	{
1135 	  struct target_section_table *table
1136 	    = target_get_section_table (ops);
1137 	  const char *section_name = section->the_bfd_section->name;
1138 
1139 	  memaddr = overlay_mapped_address (memaddr, section);
1140 	  return section_table_xfer_memory_partial (readbuf, writebuf,
1141 						    memaddr, len, xfered_len,
1142 						    table->sections,
1143 						    table->sections_end,
1144 						    section_name);
1145 	}
1146     }
1147 
1148   /* Try the executable files, if "trust-readonly-sections" is set.  */
1149   if (readbuf != NULL && trust_readonly)
1150     {
1151       struct target_section *secp;
1152       struct target_section_table *table;
1153 
1154       secp = target_section_by_addr (ops, memaddr);
1155       if (secp != NULL
1156 	  && (bfd_get_section_flags (secp->the_bfd_section->owner,
1157 				     secp->the_bfd_section)
1158 	      & SEC_READONLY))
1159 	{
1160 	  table = target_get_section_table (ops);
1161 	  return section_table_xfer_memory_partial (readbuf, writebuf,
1162 						    memaddr, len, xfered_len,
1163 						    table->sections,
1164 						    table->sections_end,
1165 						    NULL);
1166 	}
1167     }
1168 
1169   /* Try GDB's internal data cache.  */
1170 
1171   if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1172 				 &region))
1173     return TARGET_XFER_E_IO;
1174 
1175   if (!ptid_equal (inferior_ptid, null_ptid))
1176     inf = find_inferior_ptid (inferior_ptid);
1177   else
1178     inf = NULL;
1179 
1180   if (inf != NULL
1181       && readbuf != NULL
1182       /* The dcache reads whole cache lines; that doesn't play well
1183 	 with reading from a trace buffer, because reading outside of
1184 	 the collected memory range fails.  */
1185       && get_traceframe_number () == -1
1186       && (region->attrib.cache
1187 	  || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1188 	  || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1189     {
1190       DCACHE *dcache = target_dcache_get_or_init ();
1191 
1192       return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1193 					 reg_len, xfered_len);
1194     }
1195 
1196   /* If none of those methods found the memory we wanted, fall back
1197      to a target partial transfer.  Normally a single call to
1198      to_xfer_partial is enough; if it doesn't recognize an object
1199      it will call the to_xfer_partial of the next target down.
1200      But for memory this won't do.  Memory is the only target
1201      object which can be read from more than one valid target.
1202      A core file, for instance, could have some of memory but
1203      delegate other bits to the target below it.  So, we must
1204      manually try all targets.  */
1205 
1206   res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1207 				 xfered_len);
1208 
1209   /* If we still haven't got anything, return the last error.  We
1210      give up.  */
1211   return res;
1212 }
1213 
1214 /* Perform a partial memory transfer.  For docs see target.h,
1215    to_xfer_partial.  */
1216 
1217 static enum target_xfer_status
1218 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1219 		     gdb_byte *readbuf, const gdb_byte *writebuf,
1220 		     ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1221 {
1222   enum target_xfer_status res;
1223 
1224   /* Zero length requests are ok and require no work.  */
1225   if (len == 0)
1226     return TARGET_XFER_EOF;
1227 
1228   /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1229      breakpoint insns, thus hiding out from higher layers whether
1230      there are software breakpoints inserted in the code stream.  */
1231   if (readbuf != NULL)
1232     {
1233       res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1234 				   xfered_len);
1235 
1236       if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1237 	breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1238     }
1239   else
1240     {
1241       void *buf;
1242       struct cleanup *old_chain;
1243 
1244       /* A large write request is likely to be partially satisfied
1245 	 by memory_xfer_partial_1.  We will continually malloc
1246 	 and free a copy of the entire write request for breakpoint
1247 	 shadow handling even though we only end up writing a small
1248 	 subset of it.  Cap writes to 4KB to mitigate this.  */
1249       len = min (4096, len);
1250 
1251       buf = xmalloc (len);
1252       old_chain = make_cleanup (xfree, buf);
1253       memcpy (buf, writebuf, len);
1254 
1255       breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1256       res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1257 				   xfered_len);
1258 
1259       do_cleanups (old_chain);
1260     }
1261 
1262   return res;
1263 }
1264 
1265 static void
1266 restore_show_memory_breakpoints (void *arg)
1267 {
1268   show_memory_breakpoints = (uintptr_t) arg;
1269 }
1270 
1271 struct cleanup *
1272 make_show_memory_breakpoints_cleanup (int show)
1273 {
1274   int current = show_memory_breakpoints;
1275 
1276   show_memory_breakpoints = show;
1277   return make_cleanup (restore_show_memory_breakpoints,
1278 		       (void *) (uintptr_t) current);
1279 }
1280 
1281 /* For docs see target.h, to_xfer_partial.  */
1282 
1283 enum target_xfer_status
1284 target_xfer_partial (struct target_ops *ops,
1285 		     enum target_object object, const char *annex,
1286 		     gdb_byte *readbuf, const gdb_byte *writebuf,
1287 		     ULONGEST offset, ULONGEST len,
1288 		     ULONGEST *xfered_len)
1289 {
1290   enum target_xfer_status retval;
1291 
1292   gdb_assert (ops->to_xfer_partial != NULL);
1293 
1294   /* Transfer is done when LEN is zero.  */
1295   if (len == 0)
1296     return TARGET_XFER_EOF;
1297 
1298   if (writebuf && !may_write_memory)
1299     error (_("Writing to memory is not allowed (addr %s, len %s)"),
1300 	   core_addr_to_string_nz (offset), plongest (len));
1301 
1302   *xfered_len = 0;
1303 
1304   /* If this is a memory transfer, let the memory-specific code
1305      have a look at it instead.  Memory transfers are more
1306      complicated.  */
1307   if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1308       || object == TARGET_OBJECT_CODE_MEMORY)
1309     retval = memory_xfer_partial (ops, object, readbuf,
1310 				  writebuf, offset, len, xfered_len);
1311   else if (object == TARGET_OBJECT_RAW_MEMORY)
1312     {
1313       /* Skip/avoid accessing the target if the memory region
1314 	 attributes block the access.  Check this here instead of in
1315 	 raw_memory_xfer_partial as otherwise we'd end up checking
1316 	 this twice in the case of the memory_xfer_partial path is
1317 	 taken; once before checking the dcache, and another in the
1318 	 tail call to raw_memory_xfer_partial.  */
1319       if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1320 				     NULL))
1321 	return TARGET_XFER_E_IO;
1322 
1323       /* Request the normal memory object from other layers.  */
1324       retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1325 					xfered_len);
1326     }
1327   else
1328     retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1329 				   writebuf, offset, len, xfered_len);
1330 
1331   if (targetdebug)
1332     {
1333       const unsigned char *myaddr = NULL;
1334 
1335       fprintf_unfiltered (gdb_stdlog,
1336 			  "%s:target_xfer_partial "
1337 			  "(%d, %s, %s, %s, %s, %s) = %d, %s",
1338 			  ops->to_shortname,
1339 			  (int) object,
1340 			  (annex ? annex : "(null)"),
1341 			  host_address_to_string (readbuf),
1342 			  host_address_to_string (writebuf),
1343 			  core_addr_to_string_nz (offset),
1344 			  pulongest (len), retval,
1345 			  pulongest (*xfered_len));
1346 
1347       if (readbuf)
1348 	myaddr = readbuf;
1349       if (writebuf)
1350 	myaddr = writebuf;
1351       if (retval == TARGET_XFER_OK && myaddr != NULL)
1352 	{
1353 	  int i;
1354 
1355 	  fputs_unfiltered (", bytes =", gdb_stdlog);
1356 	  for (i = 0; i < *xfered_len; i++)
1357 	    {
1358 	      if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1359 		{
1360 		  if (targetdebug < 2 && i > 0)
1361 		    {
1362 		      fprintf_unfiltered (gdb_stdlog, " ...");
1363 		      break;
1364 		    }
1365 		  fprintf_unfiltered (gdb_stdlog, "\n");
1366 		}
1367 
1368 	      fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1369 	    }
1370 	}
1371 
1372       fputc_unfiltered ('\n', gdb_stdlog);
1373     }
1374 
1375   /* Check implementations of to_xfer_partial update *XFERED_LEN
1376      properly.  Do assertion after printing debug messages, so that we
1377      can find more clues on assertion failure from debugging messages.  */
1378   if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1379     gdb_assert (*xfered_len > 0);
1380 
1381   return retval;
1382 }
1383 
1384 /* Read LEN bytes of target memory at address MEMADDR, placing the
1385    results in GDB's memory at MYADDR.  Returns either 0 for success or
1386    TARGET_XFER_E_IO if any error occurs.
1387 
1388    If an error occurs, no guarantee is made about the contents of the data at
1389    MYADDR.  In particular, the caller should not depend upon partial reads
1390    filling the buffer with good data.  There is no way for the caller to know
1391    how much good data might have been transfered anyway.  Callers that can
1392    deal with partial reads should call target_read (which will retry until
1393    it makes no progress, and then return how much was transferred).  */
1394 
1395 int
1396 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1397 {
1398   /* Dispatch to the topmost target, not the flattened current_target.
1399      Memory accesses check target->to_has_(all_)memory, and the
1400      flattened target doesn't inherit those.  */
1401   if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1402 		   myaddr, memaddr, len) == len)
1403     return 0;
1404   else
1405     return TARGET_XFER_E_IO;
1406 }
1407 
1408 /* See target/target.h.  */
1409 
1410 int
1411 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1412 {
1413   gdb_byte buf[4];
1414   int r;
1415 
1416   r = target_read_memory (memaddr, buf, sizeof buf);
1417   if (r != 0)
1418     return r;
1419   *result = extract_unsigned_integer (buf, sizeof buf,
1420 				      gdbarch_byte_order (target_gdbarch ()));
1421   return 0;
1422 }
1423 
1424 /* Like target_read_memory, but specify explicitly that this is a read
1425    from the target's raw memory.  That is, this read bypasses the
1426    dcache, breakpoint shadowing, etc.  */
1427 
1428 int
1429 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1430 {
1431   /* See comment in target_read_memory about why the request starts at
1432      current_target.beneath.  */
1433   if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1434 		   myaddr, memaddr, len) == len)
1435     return 0;
1436   else
1437     return TARGET_XFER_E_IO;
1438 }
1439 
1440 /* Like target_read_memory, but specify explicitly that this is a read from
1441    the target's stack.  This may trigger different cache behavior.  */
1442 
1443 int
1444 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1445 {
1446   /* See comment in target_read_memory about why the request starts at
1447      current_target.beneath.  */
1448   if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1449 		   myaddr, memaddr, len) == len)
1450     return 0;
1451   else
1452     return TARGET_XFER_E_IO;
1453 }
1454 
1455 /* Like target_read_memory, but specify explicitly that this is a read from
1456    the target's code.  This may trigger different cache behavior.  */
1457 
1458 int
1459 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1460 {
1461   /* See comment in target_read_memory about why the request starts at
1462      current_target.beneath.  */
1463   if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1464 		   myaddr, memaddr, len) == len)
1465     return 0;
1466   else
1467     return TARGET_XFER_E_IO;
1468 }
1469 
1470 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1471    Returns either 0 for success or TARGET_XFER_E_IO if any
1472    error occurs.  If an error occurs, no guarantee is made about how
1473    much data got written.  Callers that can deal with partial writes
1474    should call target_write.  */
1475 
1476 int
1477 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1478 {
1479   /* See comment in target_read_memory about why the request starts at
1480      current_target.beneath.  */
1481   if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1482 		    myaddr, memaddr, len) == len)
1483     return 0;
1484   else
1485     return TARGET_XFER_E_IO;
1486 }
1487 
1488 /* Write LEN bytes from MYADDR to target raw memory at address
1489    MEMADDR.  Returns either 0 for success or TARGET_XFER_E_IO
1490    if any error occurs.  If an error occurs, no guarantee is made
1491    about how much data got written.  Callers that can deal with
1492    partial writes should call target_write.  */
1493 
1494 int
1495 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1496 {
1497   /* See comment in target_read_memory about why the request starts at
1498      current_target.beneath.  */
1499   if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1500 		    myaddr, memaddr, len) == len)
1501     return 0;
1502   else
1503     return TARGET_XFER_E_IO;
1504 }
1505 
1506 /* Fetch the target's memory map.  */
1507 
1508 VEC(mem_region_s) *
1509 target_memory_map (void)
1510 {
1511   VEC(mem_region_s) *result;
1512   struct mem_region *last_one, *this_one;
1513   int ix;
1514   struct target_ops *t;
1515 
1516   result = current_target.to_memory_map (&current_target);
1517   if (result == NULL)
1518     return NULL;
1519 
1520   qsort (VEC_address (mem_region_s, result),
1521 	 VEC_length (mem_region_s, result),
1522 	 sizeof (struct mem_region), mem_region_cmp);
1523 
1524   /* Check that regions do not overlap.  Simultaneously assign
1525      a numbering for the "mem" commands to use to refer to
1526      each region.  */
1527   last_one = NULL;
1528   for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1529     {
1530       this_one->number = ix;
1531 
1532       if (last_one && last_one->hi > this_one->lo)
1533 	{
1534 	  warning (_("Overlapping regions in memory map: ignoring"));
1535 	  VEC_free (mem_region_s, result);
1536 	  return NULL;
1537 	}
1538       last_one = this_one;
1539     }
1540 
1541   return result;
1542 }
1543 
1544 void
1545 target_flash_erase (ULONGEST address, LONGEST length)
1546 {
1547   current_target.to_flash_erase (&current_target, address, length);
1548 }
1549 
1550 void
1551 target_flash_done (void)
1552 {
1553   current_target.to_flash_done (&current_target);
1554 }
1555 
1556 static void
1557 show_trust_readonly (struct ui_file *file, int from_tty,
1558 		     struct cmd_list_element *c, const char *value)
1559 {
1560   fprintf_filtered (file,
1561 		    _("Mode for reading from readonly sections is %s.\n"),
1562 		    value);
1563 }
1564 
1565 /* Target vector read/write partial wrapper functions.  */
1566 
1567 static enum target_xfer_status
1568 target_read_partial (struct target_ops *ops,
1569 		     enum target_object object,
1570 		     const char *annex, gdb_byte *buf,
1571 		     ULONGEST offset, ULONGEST len,
1572 		     ULONGEST *xfered_len)
1573 {
1574   return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1575 			      xfered_len);
1576 }
1577 
1578 static enum target_xfer_status
1579 target_write_partial (struct target_ops *ops,
1580 		      enum target_object object,
1581 		      const char *annex, const gdb_byte *buf,
1582 		      ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1583 {
1584   return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1585 			      xfered_len);
1586 }
1587 
1588 /* Wrappers to perform the full transfer.  */
1589 
1590 /* For docs on target_read see target.h.  */
1591 
1592 LONGEST
1593 target_read (struct target_ops *ops,
1594 	     enum target_object object,
1595 	     const char *annex, gdb_byte *buf,
1596 	     ULONGEST offset, LONGEST len)
1597 {
1598   LONGEST xfered = 0;
1599 
1600   while (xfered < len)
1601     {
1602       ULONGEST xfered_len;
1603       enum target_xfer_status status;
1604 
1605       status = target_read_partial (ops, object, annex,
1606 				    (gdb_byte *) buf + xfered,
1607 				    offset + xfered, len - xfered,
1608 				    &xfered_len);
1609 
1610       /* Call an observer, notifying them of the xfer progress?  */
1611       if (status == TARGET_XFER_EOF)
1612 	return xfered;
1613       else if (status == TARGET_XFER_OK)
1614 	{
1615 	  xfered += xfered_len;
1616 	  QUIT;
1617 	}
1618       else
1619 	return -1;
1620 
1621     }
1622   return len;
1623 }
1624 
1625 /* Assuming that the entire [begin, end) range of memory cannot be
1626    read, try to read whatever subrange is possible to read.
1627 
1628    The function returns, in RESULT, either zero or one memory block.
1629    If there's a readable subrange at the beginning, it is completely
1630    read and returned.  Any further readable subrange will not be read.
1631    Otherwise, if there's a readable subrange at the end, it will be
1632    completely read and returned.  Any readable subranges before it
1633    (obviously, not starting at the beginning), will be ignored.  In
1634    other cases -- either no readable subrange, or readable subrange(s)
1635    that is neither at the beginning, or end, nothing is returned.
1636 
1637    The purpose of this function is to handle a read across a boundary
1638    of accessible memory in a case when memory map is not available.
1639    The above restrictions are fine for this case, but will give
1640    incorrect results if the memory is 'patchy'.  However, supporting
1641    'patchy' memory would require trying to read every single byte,
1642    and it seems unacceptable solution.  Explicit memory map is
1643    recommended for this case -- and target_read_memory_robust will
1644    take care of reading multiple ranges then.  */
1645 
1646 static void
1647 read_whatever_is_readable (struct target_ops *ops,
1648 			   ULONGEST begin, ULONGEST end,
1649 			   VEC(memory_read_result_s) **result)
1650 {
1651   gdb_byte *buf = xmalloc (end - begin);
1652   ULONGEST current_begin = begin;
1653   ULONGEST current_end = end;
1654   int forward;
1655   memory_read_result_s r;
1656   ULONGEST xfered_len;
1657 
1658   /* If we previously failed to read 1 byte, nothing can be done here.  */
1659   if (end - begin <= 1)
1660     {
1661       xfree (buf);
1662       return;
1663     }
1664 
1665   /* Check that either first or the last byte is readable, and give up
1666      if not.  This heuristic is meant to permit reading accessible memory
1667      at the boundary of accessible region.  */
1668   if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1669 			   buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1670     {
1671       forward = 1;
1672       ++current_begin;
1673     }
1674   else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1675 				buf + (end-begin) - 1, end - 1, 1,
1676 				&xfered_len) == TARGET_XFER_OK)
1677     {
1678       forward = 0;
1679       --current_end;
1680     }
1681   else
1682     {
1683       xfree (buf);
1684       return;
1685     }
1686 
1687   /* Loop invariant is that the [current_begin, current_end) was previously
1688      found to be not readable as a whole.
1689 
1690      Note loop condition -- if the range has 1 byte, we can't divide the range
1691      so there's no point trying further.  */
1692   while (current_end - current_begin > 1)
1693     {
1694       ULONGEST first_half_begin, first_half_end;
1695       ULONGEST second_half_begin, second_half_end;
1696       LONGEST xfer;
1697       ULONGEST middle = current_begin + (current_end - current_begin)/2;
1698 
1699       if (forward)
1700 	{
1701 	  first_half_begin = current_begin;
1702 	  first_half_end = middle;
1703 	  second_half_begin = middle;
1704 	  second_half_end = current_end;
1705 	}
1706       else
1707 	{
1708 	  first_half_begin = middle;
1709 	  first_half_end = current_end;
1710 	  second_half_begin = current_begin;
1711 	  second_half_end = middle;
1712 	}
1713 
1714       xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1715 			  buf + (first_half_begin - begin),
1716 			  first_half_begin,
1717 			  first_half_end - first_half_begin);
1718 
1719       if (xfer == first_half_end - first_half_begin)
1720 	{
1721 	  /* This half reads up fine.  So, the error must be in the
1722 	     other half.  */
1723 	  current_begin = second_half_begin;
1724 	  current_end = second_half_end;
1725 	}
1726       else
1727 	{
1728 	  /* This half is not readable.  Because we've tried one byte, we
1729 	     know some part of this half if actually redable.  Go to the next
1730 	     iteration to divide again and try to read.
1731 
1732 	     We don't handle the other half, because this function only tries
1733 	     to read a single readable subrange.  */
1734 	  current_begin = first_half_begin;
1735 	  current_end = first_half_end;
1736 	}
1737     }
1738 
1739   if (forward)
1740     {
1741       /* The [begin, current_begin) range has been read.  */
1742       r.begin = begin;
1743       r.end = current_begin;
1744       r.data = buf;
1745     }
1746   else
1747     {
1748       /* The [current_end, end) range has been read.  */
1749       LONGEST rlen = end - current_end;
1750 
1751       r.data = xmalloc (rlen);
1752       memcpy (r.data, buf + current_end - begin, rlen);
1753       r.begin = current_end;
1754       r.end = end;
1755       xfree (buf);
1756     }
1757   VEC_safe_push(memory_read_result_s, (*result), &r);
1758 }
1759 
1760 void
1761 free_memory_read_result_vector (void *x)
1762 {
1763   VEC(memory_read_result_s) *v = x;
1764   memory_read_result_s *current;
1765   int ix;
1766 
1767   for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1768     {
1769       xfree (current->data);
1770     }
1771   VEC_free (memory_read_result_s, v);
1772 }
1773 
1774 VEC(memory_read_result_s) *
1775 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1776 {
1777   VEC(memory_read_result_s) *result = 0;
1778 
1779   LONGEST xfered = 0;
1780   while (xfered < len)
1781     {
1782       struct mem_region *region = lookup_mem_region (offset + xfered);
1783       LONGEST rlen;
1784 
1785       /* If there is no explicit region, a fake one should be created.  */
1786       gdb_assert (region);
1787 
1788       if (region->hi == 0)
1789 	rlen = len - xfered;
1790       else
1791 	rlen = region->hi - offset;
1792 
1793       if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1794 	{
1795 	  /* Cannot read this region.  Note that we can end up here only
1796 	     if the region is explicitly marked inaccessible, or
1797 	     'inaccessible-by-default' is in effect.  */
1798 	  xfered += rlen;
1799 	}
1800       else
1801 	{
1802 	  LONGEST to_read = min (len - xfered, rlen);
1803 	  gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1804 
1805 	  LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1806 				      (gdb_byte *) buffer,
1807 				      offset + xfered, to_read);
1808 	  /* Call an observer, notifying them of the xfer progress?  */
1809 	  if (xfer <= 0)
1810 	    {
1811 	      /* Got an error reading full chunk.  See if maybe we can read
1812 		 some subrange.  */
1813 	      xfree (buffer);
1814 	      read_whatever_is_readable (ops, offset + xfered,
1815 					 offset + xfered + to_read, &result);
1816 	      xfered += to_read;
1817 	    }
1818 	  else
1819 	    {
1820 	      struct memory_read_result r;
1821 	      r.data = buffer;
1822 	      r.begin = offset + xfered;
1823 	      r.end = r.begin + xfer;
1824 	      VEC_safe_push (memory_read_result_s, result, &r);
1825 	      xfered += xfer;
1826 	    }
1827 	  QUIT;
1828 	}
1829     }
1830   return result;
1831 }
1832 
1833 
1834 /* An alternative to target_write with progress callbacks.  */
1835 
1836 LONGEST
1837 target_write_with_progress (struct target_ops *ops,
1838 			    enum target_object object,
1839 			    const char *annex, const gdb_byte *buf,
1840 			    ULONGEST offset, LONGEST len,
1841 			    void (*progress) (ULONGEST, void *), void *baton)
1842 {
1843   LONGEST xfered = 0;
1844 
1845   /* Give the progress callback a chance to set up.  */
1846   if (progress)
1847     (*progress) (0, baton);
1848 
1849   while (xfered < len)
1850     {
1851       ULONGEST xfered_len;
1852       enum target_xfer_status status;
1853 
1854       status = target_write_partial (ops, object, annex,
1855 				     (gdb_byte *) buf + xfered,
1856 				     offset + xfered, len - xfered,
1857 				     &xfered_len);
1858 
1859       if (status != TARGET_XFER_OK)
1860 	return status == TARGET_XFER_EOF ? xfered : -1;
1861 
1862       if (progress)
1863 	(*progress) (xfered_len, baton);
1864 
1865       xfered += xfered_len;
1866       QUIT;
1867     }
1868   return len;
1869 }
1870 
1871 /* For docs on target_write see target.h.  */
1872 
1873 LONGEST
1874 target_write (struct target_ops *ops,
1875 	      enum target_object object,
1876 	      const char *annex, const gdb_byte *buf,
1877 	      ULONGEST offset, LONGEST len)
1878 {
1879   return target_write_with_progress (ops, object, annex, buf, offset, len,
1880 				     NULL, NULL);
1881 }
1882 
1883 /* Read OBJECT/ANNEX using OPS.  Store the result in *BUF_P and return
1884    the size of the transferred data.  PADDING additional bytes are
1885    available in *BUF_P.  This is a helper function for
1886    target_read_alloc; see the declaration of that function for more
1887    information.  */
1888 
1889 static LONGEST
1890 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1891 		     const char *annex, gdb_byte **buf_p, int padding)
1892 {
1893   size_t buf_alloc, buf_pos;
1894   gdb_byte *buf;
1895 
1896   /* This function does not have a length parameter; it reads the
1897      entire OBJECT).  Also, it doesn't support objects fetched partly
1898      from one target and partly from another (in a different stratum,
1899      e.g. a core file and an executable).  Both reasons make it
1900      unsuitable for reading memory.  */
1901   gdb_assert (object != TARGET_OBJECT_MEMORY);
1902 
1903   /* Start by reading up to 4K at a time.  The target will throttle
1904      this number down if necessary.  */
1905   buf_alloc = 4096;
1906   buf = xmalloc (buf_alloc);
1907   buf_pos = 0;
1908   while (1)
1909     {
1910       ULONGEST xfered_len;
1911       enum target_xfer_status status;
1912 
1913       status = target_read_partial (ops, object, annex, &buf[buf_pos],
1914 				    buf_pos, buf_alloc - buf_pos - padding,
1915 				    &xfered_len);
1916 
1917       if (status == TARGET_XFER_EOF)
1918 	{
1919 	  /* Read all there was.  */
1920 	  if (buf_pos == 0)
1921 	    xfree (buf);
1922 	  else
1923 	    *buf_p = buf;
1924 	  return buf_pos;
1925 	}
1926       else if (status != TARGET_XFER_OK)
1927 	{
1928 	  /* An error occurred.  */
1929 	  xfree (buf);
1930 	  return TARGET_XFER_E_IO;
1931 	}
1932 
1933       buf_pos += xfered_len;
1934 
1935       /* If the buffer is filling up, expand it.  */
1936       if (buf_alloc < buf_pos * 2)
1937 	{
1938 	  buf_alloc *= 2;
1939 	  buf = xrealloc (buf, buf_alloc);
1940 	}
1941 
1942       QUIT;
1943     }
1944 }
1945 
1946 /* Read OBJECT/ANNEX using OPS.  Store the result in *BUF_P and return
1947    the size of the transferred data.  See the declaration in "target.h"
1948    function for more information about the return value.  */
1949 
1950 LONGEST
1951 target_read_alloc (struct target_ops *ops, enum target_object object,
1952 		   const char *annex, gdb_byte **buf_p)
1953 {
1954   return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1955 }
1956 
1957 /* Read OBJECT/ANNEX using OPS.  The result is NUL-terminated and
1958    returned as a string, allocated using xmalloc.  If an error occurs
1959    or the transfer is unsupported, NULL is returned.  Empty objects
1960    are returned as allocated but empty strings.  A warning is issued
1961    if the result contains any embedded NUL bytes.  */
1962 
1963 char *
1964 target_read_stralloc (struct target_ops *ops, enum target_object object,
1965 		      const char *annex)
1966 {
1967   gdb_byte *buffer;
1968   char *bufstr;
1969   LONGEST i, transferred;
1970 
1971   transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1972   bufstr = (char *) buffer;
1973 
1974   if (transferred < 0)
1975     return NULL;
1976 
1977   if (transferred == 0)
1978     return xstrdup ("");
1979 
1980   bufstr[transferred] = 0;
1981 
1982   /* Check for embedded NUL bytes; but allow trailing NULs.  */
1983   for (i = strlen (bufstr); i < transferred; i++)
1984     if (bufstr[i] != 0)
1985       {
1986 	warning (_("target object %d, annex %s, "
1987 		   "contained unexpected null characters"),
1988 		 (int) object, annex ? annex : "(none)");
1989 	break;
1990       }
1991 
1992   return bufstr;
1993 }
1994 
1995 /* Memory transfer methods.  */
1996 
1997 void
1998 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1999 		   LONGEST len)
2000 {
2001   /* This method is used to read from an alternate, non-current
2002      target.  This read must bypass the overlay support (as symbols
2003      don't match this target), and GDB's internal cache (wrong cache
2004      for this target).  */
2005   if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2006       != len)
2007     memory_error (TARGET_XFER_E_IO, addr);
2008 }
2009 
2010 ULONGEST
2011 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2012 			    int len, enum bfd_endian byte_order)
2013 {
2014   gdb_byte buf[sizeof (ULONGEST)];
2015 
2016   gdb_assert (len <= sizeof (buf));
2017   get_target_memory (ops, addr, buf, len);
2018   return extract_unsigned_integer (buf, len, byte_order);
2019 }
2020 
2021 /* See target.h.  */
2022 
2023 int
2024 target_insert_breakpoint (struct gdbarch *gdbarch,
2025 			  struct bp_target_info *bp_tgt)
2026 {
2027   if (!may_insert_breakpoints)
2028     {
2029       warning (_("May not insert breakpoints"));
2030       return 1;
2031     }
2032 
2033   return current_target.to_insert_breakpoint (&current_target,
2034 					      gdbarch, bp_tgt);
2035 }
2036 
2037 /* See target.h.  */
2038 
2039 int
2040 target_remove_breakpoint (struct gdbarch *gdbarch,
2041 			  struct bp_target_info *bp_tgt)
2042 {
2043   /* This is kind of a weird case to handle, but the permission might
2044      have been changed after breakpoints were inserted - in which case
2045      we should just take the user literally and assume that any
2046      breakpoints should be left in place.  */
2047   if (!may_insert_breakpoints)
2048     {
2049       warning (_("May not remove breakpoints"));
2050       return 1;
2051     }
2052 
2053   return current_target.to_remove_breakpoint (&current_target,
2054 					      gdbarch, bp_tgt);
2055 }
2056 
2057 static void
2058 target_info (char *args, int from_tty)
2059 {
2060   struct target_ops *t;
2061   int has_all_mem = 0;
2062 
2063   if (symfile_objfile != NULL)
2064     printf_unfiltered (_("Symbols from \"%s\".\n"),
2065 		       objfile_name (symfile_objfile));
2066 
2067   for (t = target_stack; t != NULL; t = t->beneath)
2068     {
2069       if (!(*t->to_has_memory) (t))
2070 	continue;
2071 
2072       if ((int) (t->to_stratum) <= (int) dummy_stratum)
2073 	continue;
2074       if (has_all_mem)
2075 	printf_unfiltered (_("\tWhile running this, "
2076 			     "GDB does not access memory from...\n"));
2077       printf_unfiltered ("%s:\n", t->to_longname);
2078       (t->to_files_info) (t);
2079       has_all_mem = (*t->to_has_all_memory) (t);
2080     }
2081 }
2082 
2083 /* This function is called before any new inferior is created, e.g.
2084    by running a program, attaching, or connecting to a target.
2085    It cleans up any state from previous invocations which might
2086    change between runs.  This is a subset of what target_preopen
2087    resets (things which might change between targets).  */
2088 
2089 void
2090 target_pre_inferior (int from_tty)
2091 {
2092   /* Clear out solib state.  Otherwise the solib state of the previous
2093      inferior might have survived and is entirely wrong for the new
2094      target.  This has been observed on GNU/Linux using glibc 2.3.  How
2095      to reproduce:
2096 
2097      bash$ ./foo&
2098      [1] 4711
2099      bash$ ./foo&
2100      [1] 4712
2101      bash$ gdb ./foo
2102      [...]
2103      (gdb) attach 4711
2104      (gdb) detach
2105      (gdb) attach 4712
2106      Cannot access memory at address 0xdeadbeef
2107   */
2108 
2109   /* In some OSs, the shared library list is the same/global/shared
2110      across inferiors.  If code is shared between processes, so are
2111      memory regions and features.  */
2112   if (!gdbarch_has_global_solist (target_gdbarch ()))
2113     {
2114       no_shared_libraries (NULL, from_tty);
2115 
2116       invalidate_target_mem_regions ();
2117 
2118       target_clear_description ();
2119     }
2120 
2121   agent_capability_invalidate ();
2122 }
2123 
2124 /* Callback for iterate_over_inferiors.  Gets rid of the given
2125    inferior.  */
2126 
2127 static int
2128 dispose_inferior (struct inferior *inf, void *args)
2129 {
2130   struct thread_info *thread;
2131 
2132   thread = any_thread_of_process (inf->pid);
2133   if (thread)
2134     {
2135       switch_to_thread (thread->ptid);
2136 
2137       /* Core inferiors actually should be detached, not killed.  */
2138       if (target_has_execution)
2139 	target_kill ();
2140       else
2141 	target_detach (NULL, 0);
2142     }
2143 
2144   return 0;
2145 }
2146 
2147 /* This is to be called by the open routine before it does
2148    anything.  */
2149 
2150 void
2151 target_preopen (int from_tty)
2152 {
2153   dont_repeat ();
2154 
2155   if (have_inferiors ())
2156     {
2157       if (!from_tty
2158 	  || !have_live_inferiors ()
2159 	  || query (_("A program is being debugged already.  Kill it? ")))
2160 	iterate_over_inferiors (dispose_inferior, NULL);
2161       else
2162 	error (_("Program not killed."));
2163     }
2164 
2165   /* Calling target_kill may remove the target from the stack.  But if
2166      it doesn't (which seems like a win for UDI), remove it now.  */
2167   /* Leave the exec target, though.  The user may be switching from a
2168      live process to a core of the same program.  */
2169   pop_all_targets_above (file_stratum);
2170 
2171   target_pre_inferior (from_tty);
2172 }
2173 
2174 /* Detach a target after doing deferred register stores.  */
2175 
2176 void
2177 target_detach (const char *args, int from_tty)
2178 {
2179   struct target_ops* t;
2180 
2181   if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2182     /* Don't remove global breakpoints here.  They're removed on
2183        disconnection from the target.  */
2184     ;
2185   else
2186     /* If we're in breakpoints-always-inserted mode, have to remove
2187        them before detaching.  */
2188     remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2189 
2190   prepare_for_detach ();
2191 
2192   current_target.to_detach (&current_target, args, from_tty);
2193 }
2194 
2195 void
2196 target_disconnect (const char *args, int from_tty)
2197 {
2198   /* If we're in breakpoints-always-inserted mode or if breakpoints
2199      are global across processes, we have to remove them before
2200      disconnecting.  */
2201   remove_breakpoints ();
2202 
2203   current_target.to_disconnect (&current_target, args, from_tty);
2204 }
2205 
2206 ptid_t
2207 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2208 {
2209   return (current_target.to_wait) (&current_target, ptid, status, options);
2210 }
2211 
2212 char *
2213 target_pid_to_str (ptid_t ptid)
2214 {
2215   return (*current_target.to_pid_to_str) (&current_target, ptid);
2216 }
2217 
2218 char *
2219 target_thread_name (struct thread_info *info)
2220 {
2221   return current_target.to_thread_name (&current_target, info);
2222 }
2223 
2224 void
2225 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2226 {
2227   struct target_ops *t;
2228 
2229   target_dcache_invalidate ();
2230 
2231   current_target.to_resume (&current_target, ptid, step, signal);
2232 
2233   registers_changed_ptid (ptid);
2234   /* We only set the internal executing state here.  The user/frontend
2235      running state is set at a higher level.  */
2236   set_executing (ptid, 1);
2237   clear_inline_frame_state (ptid);
2238 }
2239 
2240 void
2241 target_pass_signals (int numsigs, unsigned char *pass_signals)
2242 {
2243   (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2244 }
2245 
2246 void
2247 target_program_signals (int numsigs, unsigned char *program_signals)
2248 {
2249   (*current_target.to_program_signals) (&current_target,
2250 					numsigs, program_signals);
2251 }
2252 
2253 static int
2254 default_follow_fork (struct target_ops *self, int follow_child,
2255 		     int detach_fork)
2256 {
2257   /* Some target returned a fork event, but did not know how to follow it.  */
2258   internal_error (__FILE__, __LINE__,
2259 		  _("could not find a target to follow fork"));
2260 }
2261 
2262 /* Look through the list of possible targets for a target that can
2263    follow forks.  */
2264 
2265 int
2266 target_follow_fork (int follow_child, int detach_fork)
2267 {
2268   return current_target.to_follow_fork (&current_target,
2269 					follow_child, detach_fork);
2270 }
2271 
2272 static void
2273 default_mourn_inferior (struct target_ops *self)
2274 {
2275   internal_error (__FILE__, __LINE__,
2276 		  _("could not find a target to follow mourn inferior"));
2277 }
2278 
2279 void
2280 target_mourn_inferior (void)
2281 {
2282   current_target.to_mourn_inferior (&current_target);
2283 
2284   /* We no longer need to keep handles on any of the object files.
2285      Make sure to release them to avoid unnecessarily locking any
2286      of them while we're not actually debugging.  */
2287   bfd_cache_close_all ();
2288 }
2289 
2290 /* Look for a target which can describe architectural features, starting
2291    from TARGET.  If we find one, return its description.  */
2292 
2293 const struct target_desc *
2294 target_read_description (struct target_ops *target)
2295 {
2296   return target->to_read_description (target);
2297 }
2298 
2299 /* This implements a basic search of memory, reading target memory and
2300    performing the search here (as opposed to performing the search in on the
2301    target side with, for example, gdbserver).  */
2302 
2303 int
2304 simple_search_memory (struct target_ops *ops,
2305 		      CORE_ADDR start_addr, ULONGEST search_space_len,
2306 		      const gdb_byte *pattern, ULONGEST pattern_len,
2307 		      CORE_ADDR *found_addrp)
2308 {
2309   /* NOTE: also defined in find.c testcase.  */
2310 #define SEARCH_CHUNK_SIZE 16000
2311   const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2312   /* Buffer to hold memory contents for searching.  */
2313   gdb_byte *search_buf;
2314   unsigned search_buf_size;
2315   struct cleanup *old_cleanups;
2316 
2317   search_buf_size = chunk_size + pattern_len - 1;
2318 
2319   /* No point in trying to allocate a buffer larger than the search space.  */
2320   if (search_space_len < search_buf_size)
2321     search_buf_size = search_space_len;
2322 
2323   search_buf = malloc (search_buf_size);
2324   if (search_buf == NULL)
2325     error (_("Unable to allocate memory to perform the search."));
2326   old_cleanups = make_cleanup (free_current_contents, &search_buf);
2327 
2328   /* Prime the search buffer.  */
2329 
2330   if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2331 		   search_buf, start_addr, search_buf_size) != search_buf_size)
2332     {
2333       warning (_("Unable to access %s bytes of target "
2334 		 "memory at %s, halting search."),
2335 	       pulongest (search_buf_size), hex_string (start_addr));
2336       do_cleanups (old_cleanups);
2337       return -1;
2338     }
2339 
2340   /* Perform the search.
2341 
2342      The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2343      When we've scanned N bytes we copy the trailing bytes to the start and
2344      read in another N bytes.  */
2345 
2346   while (search_space_len >= pattern_len)
2347     {
2348       gdb_byte *found_ptr;
2349       unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2350 
2351       found_ptr = memmem (search_buf, nr_search_bytes,
2352 			  pattern, pattern_len);
2353 
2354       if (found_ptr != NULL)
2355 	{
2356 	  CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2357 
2358 	  *found_addrp = found_addr;
2359 	  do_cleanups (old_cleanups);
2360 	  return 1;
2361 	}
2362 
2363       /* Not found in this chunk, skip to next chunk.  */
2364 
2365       /* Don't let search_space_len wrap here, it's unsigned.  */
2366       if (search_space_len >= chunk_size)
2367 	search_space_len -= chunk_size;
2368       else
2369 	search_space_len = 0;
2370 
2371       if (search_space_len >= pattern_len)
2372 	{
2373 	  unsigned keep_len = search_buf_size - chunk_size;
2374 	  CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2375 	  int nr_to_read;
2376 
2377 	  /* Copy the trailing part of the previous iteration to the front
2378 	     of the buffer for the next iteration.  */
2379 	  gdb_assert (keep_len == pattern_len - 1);
2380 	  memcpy (search_buf, search_buf + chunk_size, keep_len);
2381 
2382 	  nr_to_read = min (search_space_len - keep_len, chunk_size);
2383 
2384 	  if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2385 			   search_buf + keep_len, read_addr,
2386 			   nr_to_read) != nr_to_read)
2387 	    {
2388 	      warning (_("Unable to access %s bytes of target "
2389 			 "memory at %s, halting search."),
2390 		       plongest (nr_to_read),
2391 		       hex_string (read_addr));
2392 	      do_cleanups (old_cleanups);
2393 	      return -1;
2394 	    }
2395 
2396 	  start_addr += chunk_size;
2397 	}
2398     }
2399 
2400   /* Not found.  */
2401 
2402   do_cleanups (old_cleanups);
2403   return 0;
2404 }
2405 
2406 /* Default implementation of memory-searching.  */
2407 
2408 static int
2409 default_search_memory (struct target_ops *self,
2410 		       CORE_ADDR start_addr, ULONGEST search_space_len,
2411 		       const gdb_byte *pattern, ULONGEST pattern_len,
2412 		       CORE_ADDR *found_addrp)
2413 {
2414   /* Start over from the top of the target stack.  */
2415   return simple_search_memory (current_target.beneath,
2416 			       start_addr, search_space_len,
2417 			       pattern, pattern_len, found_addrp);
2418 }
2419 
2420 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2421    sequence of bytes in PATTERN with length PATTERN_LEN.
2422 
2423    The result is 1 if found, 0 if not found, and -1 if there was an error
2424    requiring halting of the search (e.g. memory read error).
2425    If the pattern is found the address is recorded in FOUND_ADDRP.  */
2426 
2427 int
2428 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2429 		      const gdb_byte *pattern, ULONGEST pattern_len,
2430 		      CORE_ADDR *found_addrp)
2431 {
2432   return current_target.to_search_memory (&current_target, start_addr,
2433 					  search_space_len,
2434 					  pattern, pattern_len, found_addrp);
2435 }
2436 
2437 /* Look through the currently pushed targets.  If none of them will
2438    be able to restart the currently running process, issue an error
2439    message.  */
2440 
2441 void
2442 target_require_runnable (void)
2443 {
2444   struct target_ops *t;
2445 
2446   for (t = target_stack; t != NULL; t = t->beneath)
2447     {
2448       /* If this target knows how to create a new program, then
2449 	 assume we will still be able to after killing the current
2450 	 one.  Either killing and mourning will not pop T, or else
2451 	 find_default_run_target will find it again.  */
2452       if (t->to_create_inferior != NULL)
2453 	return;
2454 
2455       /* Do not worry about targets at certain strata that can not
2456 	 create inferiors.  Assume they will be pushed again if
2457 	 necessary, and continue to the process_stratum.  */
2458       if (t->to_stratum == thread_stratum
2459 	  || t->to_stratum == record_stratum
2460 	  || t->to_stratum == arch_stratum)
2461 	continue;
2462 
2463       error (_("The \"%s\" target does not support \"run\".  "
2464 	       "Try \"help target\" or \"continue\"."),
2465 	     t->to_shortname);
2466     }
2467 
2468   /* This function is only called if the target is running.  In that
2469      case there should have been a process_stratum target and it
2470      should either know how to create inferiors, or not...  */
2471   internal_error (__FILE__, __LINE__, _("No targets found"));
2472 }
2473 
2474 /* Whether GDB is allowed to fall back to the default run target for
2475    "run", "attach", etc. when no target is connected yet.  */
2476 static int auto_connect_native_target = 1;
2477 
2478 static void
2479 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2480 				 struct cmd_list_element *c, const char *value)
2481 {
2482   fprintf_filtered (file,
2483 		    _("Whether GDB may automatically connect to the "
2484 		      "native target is %s.\n"),
2485 		    value);
2486 }
2487 
2488 /* Look through the list of possible targets for a target that can
2489    execute a run or attach command without any other data.  This is
2490    used to locate the default process stratum.
2491 
2492    If DO_MESG is not NULL, the result is always valid (error() is
2493    called for errors); else, return NULL on error.  */
2494 
2495 static struct target_ops *
2496 find_default_run_target (char *do_mesg)
2497 {
2498   struct target_ops *runable = NULL;
2499 
2500   if (auto_connect_native_target)
2501     {
2502       struct target_ops *t;
2503       int count = 0;
2504       int i;
2505 
2506       for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2507 	{
2508 	  if (t->to_can_run != delegate_can_run && target_can_run (t))
2509 	    {
2510 	      runable = t;
2511 	      ++count;
2512 	    }
2513 	}
2514 
2515       if (count != 1)
2516 	runable = NULL;
2517     }
2518 
2519   if (runable == NULL)
2520     {
2521       if (do_mesg)
2522 	error (_("Don't know how to %s.  Try \"help target\"."), do_mesg);
2523       else
2524 	return NULL;
2525     }
2526 
2527   return runable;
2528 }
2529 
2530 /* See target.h.  */
2531 
2532 struct target_ops *
2533 find_attach_target (void)
2534 {
2535   struct target_ops *t;
2536 
2537   /* If a target on the current stack can attach, use it.  */
2538   for (t = current_target.beneath; t != NULL; t = t->beneath)
2539     {
2540       if (t->to_attach != NULL)
2541 	break;
2542     }
2543 
2544   /* Otherwise, use the default run target for attaching.  */
2545   if (t == NULL)
2546     t = find_default_run_target ("attach");
2547 
2548   return t;
2549 }
2550 
2551 /* See target.h.  */
2552 
2553 struct target_ops *
2554 find_run_target (void)
2555 {
2556   struct target_ops *t;
2557 
2558   /* If a target on the current stack can attach, use it.  */
2559   for (t = current_target.beneath; t != NULL; t = t->beneath)
2560     {
2561       if (t->to_create_inferior != NULL)
2562 	break;
2563     }
2564 
2565   /* Otherwise, use the default run target.  */
2566   if (t == NULL)
2567     t = find_default_run_target ("run");
2568 
2569   return t;
2570 }
2571 
2572 /* Implement the "info proc" command.  */
2573 
2574 int
2575 target_info_proc (const char *args, enum info_proc_what what)
2576 {
2577   struct target_ops *t;
2578 
2579   /* If we're already connected to something that can get us OS
2580      related data, use it.  Otherwise, try using the native
2581      target.  */
2582   if (current_target.to_stratum >= process_stratum)
2583     t = current_target.beneath;
2584   else
2585     t = find_default_run_target (NULL);
2586 
2587   for (; t != NULL; t = t->beneath)
2588     {
2589       if (t->to_info_proc != NULL)
2590 	{
2591 	  t->to_info_proc (t, args, what);
2592 
2593 	  if (targetdebug)
2594 	    fprintf_unfiltered (gdb_stdlog,
2595 				"target_info_proc (\"%s\", %d)\n", args, what);
2596 
2597 	  return 1;
2598 	}
2599     }
2600 
2601   return 0;
2602 }
2603 
2604 static int
2605 find_default_supports_disable_randomization (struct target_ops *self)
2606 {
2607   struct target_ops *t;
2608 
2609   t = find_default_run_target (NULL);
2610   if (t && t->to_supports_disable_randomization)
2611     return (t->to_supports_disable_randomization) (t);
2612   return 0;
2613 }
2614 
2615 int
2616 target_supports_disable_randomization (void)
2617 {
2618   struct target_ops *t;
2619 
2620   for (t = &current_target; t != NULL; t = t->beneath)
2621     if (t->to_supports_disable_randomization)
2622       return t->to_supports_disable_randomization (t);
2623 
2624   return 0;
2625 }
2626 
2627 char *
2628 target_get_osdata (const char *type)
2629 {
2630   struct target_ops *t;
2631 
2632   /* If we're already connected to something that can get us OS
2633      related data, use it.  Otherwise, try using the native
2634      target.  */
2635   if (current_target.to_stratum >= process_stratum)
2636     t = current_target.beneath;
2637   else
2638     t = find_default_run_target ("get OS data");
2639 
2640   if (!t)
2641     return NULL;
2642 
2643   return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2644 }
2645 
2646 static struct address_space *
2647 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2648 {
2649   struct inferior *inf;
2650 
2651   /* Fall-back to the "main" address space of the inferior.  */
2652   inf = find_inferior_ptid (ptid);
2653 
2654   if (inf == NULL || inf->aspace == NULL)
2655     internal_error (__FILE__, __LINE__,
2656 		    _("Can't determine the current "
2657 		      "address space of thread %s\n"),
2658 		    target_pid_to_str (ptid));
2659 
2660   return inf->aspace;
2661 }
2662 
2663 /* Determine the current address space of thread PTID.  */
2664 
2665 struct address_space *
2666 target_thread_address_space (ptid_t ptid)
2667 {
2668   struct address_space *aspace;
2669 
2670   aspace = current_target.to_thread_address_space (&current_target, ptid);
2671   gdb_assert (aspace != NULL);
2672 
2673   return aspace;
2674 }
2675 
2676 
2677 /* Target file operations.  */
2678 
2679 static struct target_ops *
2680 default_fileio_target (void)
2681 {
2682   /* If we're already connected to something that can perform
2683      file I/O, use it. Otherwise, try using the native target.  */
2684   if (current_target.to_stratum >= process_stratum)
2685     return current_target.beneath;
2686   else
2687     return find_default_run_target ("file I/O");
2688 }
2689 
2690 /* Open FILENAME on the target, using FLAGS and MODE.  Return a
2691    target file descriptor, or -1 if an error occurs (and set
2692    *TARGET_ERRNO).  */
2693 int
2694 target_fileio_open (const char *filename, int flags, int mode,
2695 		    int *target_errno)
2696 {
2697   struct target_ops *t;
2698 
2699   for (t = default_fileio_target (); t != NULL; t = t->beneath)
2700     {
2701       if (t->to_fileio_open != NULL)
2702 	{
2703 	  int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
2704 
2705 	  if (targetdebug)
2706 	    fprintf_unfiltered (gdb_stdlog,
2707 				"target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2708 				filename, flags, mode,
2709 				fd, fd != -1 ? 0 : *target_errno);
2710 	  return fd;
2711 	}
2712     }
2713 
2714   *target_errno = FILEIO_ENOSYS;
2715   return -1;
2716 }
2717 
2718 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2719    Return the number of bytes written, or -1 if an error occurs
2720    (and set *TARGET_ERRNO).  */
2721 int
2722 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2723 		      ULONGEST offset, int *target_errno)
2724 {
2725   struct target_ops *t;
2726 
2727   for (t = default_fileio_target (); t != NULL; t = t->beneath)
2728     {
2729       if (t->to_fileio_pwrite != NULL)
2730 	{
2731 	  int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
2732 					 target_errno);
2733 
2734 	  if (targetdebug)
2735 	    fprintf_unfiltered (gdb_stdlog,
2736 				"target_fileio_pwrite (%d,...,%d,%s) "
2737 				"= %d (%d)\n",
2738 				fd, len, pulongest (offset),
2739 				ret, ret != -1 ? 0 : *target_errno);
2740 	  return ret;
2741 	}
2742     }
2743 
2744   *target_errno = FILEIO_ENOSYS;
2745   return -1;
2746 }
2747 
2748 /* Read up to LEN bytes FD on the target into READ_BUF.
2749    Return the number of bytes read, or -1 if an error occurs
2750    (and set *TARGET_ERRNO).  */
2751 int
2752 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2753 		     ULONGEST offset, int *target_errno)
2754 {
2755   struct target_ops *t;
2756 
2757   for (t = default_fileio_target (); t != NULL; t = t->beneath)
2758     {
2759       if (t->to_fileio_pread != NULL)
2760 	{
2761 	  int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
2762 					target_errno);
2763 
2764 	  if (targetdebug)
2765 	    fprintf_unfiltered (gdb_stdlog,
2766 				"target_fileio_pread (%d,...,%d,%s) "
2767 				"= %d (%d)\n",
2768 				fd, len, pulongest (offset),
2769 				ret, ret != -1 ? 0 : *target_errno);
2770 	  return ret;
2771 	}
2772     }
2773 
2774   *target_errno = FILEIO_ENOSYS;
2775   return -1;
2776 }
2777 
2778 /* Close FD on the target.  Return 0, or -1 if an error occurs
2779    (and set *TARGET_ERRNO).  */
2780 int
2781 target_fileio_close (int fd, int *target_errno)
2782 {
2783   struct target_ops *t;
2784 
2785   for (t = default_fileio_target (); t != NULL; t = t->beneath)
2786     {
2787       if (t->to_fileio_close != NULL)
2788 	{
2789 	  int ret = t->to_fileio_close (t, fd, target_errno);
2790 
2791 	  if (targetdebug)
2792 	    fprintf_unfiltered (gdb_stdlog,
2793 				"target_fileio_close (%d) = %d (%d)\n",
2794 				fd, ret, ret != -1 ? 0 : *target_errno);
2795 	  return ret;
2796 	}
2797     }
2798 
2799   *target_errno = FILEIO_ENOSYS;
2800   return -1;
2801 }
2802 
2803 /* Unlink FILENAME on the target.  Return 0, or -1 if an error
2804    occurs (and set *TARGET_ERRNO).  */
2805 int
2806 target_fileio_unlink (const char *filename, int *target_errno)
2807 {
2808   struct target_ops *t;
2809 
2810   for (t = default_fileio_target (); t != NULL; t = t->beneath)
2811     {
2812       if (t->to_fileio_unlink != NULL)
2813 	{
2814 	  int ret = t->to_fileio_unlink (t, filename, target_errno);
2815 
2816 	  if (targetdebug)
2817 	    fprintf_unfiltered (gdb_stdlog,
2818 				"target_fileio_unlink (%s) = %d (%d)\n",
2819 				filename, ret, ret != -1 ? 0 : *target_errno);
2820 	  return ret;
2821 	}
2822     }
2823 
2824   *target_errno = FILEIO_ENOSYS;
2825   return -1;
2826 }
2827 
2828 /* Read value of symbolic link FILENAME on the target.  Return a
2829    null-terminated string allocated via xmalloc, or NULL if an error
2830    occurs (and set *TARGET_ERRNO).  */
2831 char *
2832 target_fileio_readlink (const char *filename, int *target_errno)
2833 {
2834   struct target_ops *t;
2835 
2836   for (t = default_fileio_target (); t != NULL; t = t->beneath)
2837     {
2838       if (t->to_fileio_readlink != NULL)
2839 	{
2840 	  char *ret = t->to_fileio_readlink (t, filename, target_errno);
2841 
2842 	  if (targetdebug)
2843 	    fprintf_unfiltered (gdb_stdlog,
2844 				"target_fileio_readlink (%s) = %s (%d)\n",
2845 				filename, ret? ret : "(nil)",
2846 				ret? 0 : *target_errno);
2847 	  return ret;
2848 	}
2849     }
2850 
2851   *target_errno = FILEIO_ENOSYS;
2852   return NULL;
2853 }
2854 
2855 static void
2856 target_fileio_close_cleanup (void *opaque)
2857 {
2858   int fd = *(int *) opaque;
2859   int target_errno;
2860 
2861   target_fileio_close (fd, &target_errno);
2862 }
2863 
2864 /* Read target file FILENAME.  Store the result in *BUF_P and
2865    return the size of the transferred data.  PADDING additional bytes are
2866    available in *BUF_P.  This is a helper function for
2867    target_fileio_read_alloc; see the declaration of that function for more
2868    information.  */
2869 
2870 static LONGEST
2871 target_fileio_read_alloc_1 (const char *filename,
2872 			    gdb_byte **buf_p, int padding)
2873 {
2874   struct cleanup *close_cleanup;
2875   size_t buf_alloc, buf_pos;
2876   gdb_byte *buf;
2877   LONGEST n;
2878   int fd;
2879   int target_errno;
2880 
2881   fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2882   if (fd == -1)
2883     return -1;
2884 
2885   close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2886 
2887   /* Start by reading up to 4K at a time.  The target will throttle
2888      this number down if necessary.  */
2889   buf_alloc = 4096;
2890   buf = xmalloc (buf_alloc);
2891   buf_pos = 0;
2892   while (1)
2893     {
2894       n = target_fileio_pread (fd, &buf[buf_pos],
2895 			       buf_alloc - buf_pos - padding, buf_pos,
2896 			       &target_errno);
2897       if (n < 0)
2898 	{
2899 	  /* An error occurred.  */
2900 	  do_cleanups (close_cleanup);
2901 	  xfree (buf);
2902 	  return -1;
2903 	}
2904       else if (n == 0)
2905 	{
2906 	  /* Read all there was.  */
2907 	  do_cleanups (close_cleanup);
2908 	  if (buf_pos == 0)
2909 	    xfree (buf);
2910 	  else
2911 	    *buf_p = buf;
2912 	  return buf_pos;
2913 	}
2914 
2915       buf_pos += n;
2916 
2917       /* If the buffer is filling up, expand it.  */
2918       if (buf_alloc < buf_pos * 2)
2919 	{
2920 	  buf_alloc *= 2;
2921 	  buf = xrealloc (buf, buf_alloc);
2922 	}
2923 
2924       QUIT;
2925     }
2926 }
2927 
2928 /* Read target file FILENAME.  Store the result in *BUF_P and return
2929    the size of the transferred data.  See the declaration in "target.h"
2930    function for more information about the return value.  */
2931 
2932 LONGEST
2933 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2934 {
2935   return target_fileio_read_alloc_1 (filename, buf_p, 0);
2936 }
2937 
2938 /* Read target file FILENAME.  The result is NUL-terminated and
2939    returned as a string, allocated using xmalloc.  If an error occurs
2940    or the transfer is unsupported, NULL is returned.  Empty objects
2941    are returned as allocated but empty strings.  A warning is issued
2942    if the result contains any embedded NUL bytes.  */
2943 
2944 char *
2945 target_fileio_read_stralloc (const char *filename)
2946 {
2947   gdb_byte *buffer;
2948   char *bufstr;
2949   LONGEST i, transferred;
2950 
2951   transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2952   bufstr = (char *) buffer;
2953 
2954   if (transferred < 0)
2955     return NULL;
2956 
2957   if (transferred == 0)
2958     return xstrdup ("");
2959 
2960   bufstr[transferred] = 0;
2961 
2962   /* Check for embedded NUL bytes; but allow trailing NULs.  */
2963   for (i = strlen (bufstr); i < transferred; i++)
2964     if (bufstr[i] != 0)
2965       {
2966 	warning (_("target file %s "
2967 		   "contained unexpected null characters"),
2968 		 filename);
2969 	break;
2970       }
2971 
2972   return bufstr;
2973 }
2974 
2975 
2976 static int
2977 default_region_ok_for_hw_watchpoint (struct target_ops *self,
2978 				     CORE_ADDR addr, int len)
2979 {
2980   return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
2981 }
2982 
2983 static int
2984 default_watchpoint_addr_within_range (struct target_ops *target,
2985 				      CORE_ADDR addr,
2986 				      CORE_ADDR start, int length)
2987 {
2988   return addr >= start && addr < start + length;
2989 }
2990 
2991 static struct gdbarch *
2992 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2993 {
2994   return target_gdbarch ();
2995 }
2996 
2997 static int
2998 return_zero (struct target_ops *ignore)
2999 {
3000   return 0;
3001 }
3002 
3003 static int
3004 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3005 {
3006   return 0;
3007 }
3008 
3009 /*
3010  * Find the next target down the stack from the specified target.
3011  */
3012 
3013 struct target_ops *
3014 find_target_beneath (struct target_ops *t)
3015 {
3016   return t->beneath;
3017 }
3018 
3019 /* See target.h.  */
3020 
3021 struct target_ops *
3022 find_target_at (enum strata stratum)
3023 {
3024   struct target_ops *t;
3025 
3026   for (t = current_target.beneath; t != NULL; t = t->beneath)
3027     if (t->to_stratum == stratum)
3028       return t;
3029 
3030   return NULL;
3031 }
3032 
3033 
3034 /* The inferior process has died.  Long live the inferior!  */
3035 
3036 void
3037 generic_mourn_inferior (void)
3038 {
3039   ptid_t ptid;
3040 
3041   ptid = inferior_ptid;
3042   inferior_ptid = null_ptid;
3043 
3044   /* Mark breakpoints uninserted in case something tries to delete a
3045      breakpoint while we delete the inferior's threads (which would
3046      fail, since the inferior is long gone).  */
3047   mark_breakpoints_out ();
3048 
3049   if (!ptid_equal (ptid, null_ptid))
3050     {
3051       int pid = ptid_get_pid (ptid);
3052       exit_inferior (pid);
3053     }
3054 
3055   /* Note this wipes step-resume breakpoints, so needs to be done
3056      after exit_inferior, which ends up referencing the step-resume
3057      breakpoints through clear_thread_inferior_resources.  */
3058   breakpoint_init_inferior (inf_exited);
3059 
3060   registers_changed ();
3061 
3062   reopen_exec_file ();
3063   reinit_frame_cache ();
3064 
3065   if (deprecated_detach_hook)
3066     deprecated_detach_hook ();
3067 }
3068 
3069 /* Convert a normal process ID to a string.  Returns the string in a
3070    static buffer.  */
3071 
3072 char *
3073 normal_pid_to_str (ptid_t ptid)
3074 {
3075   static char buf[32];
3076 
3077   xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3078   return buf;
3079 }
3080 
3081 static char *
3082 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3083 {
3084   return normal_pid_to_str (ptid);
3085 }
3086 
3087 /* Error-catcher for target_find_memory_regions.  */
3088 static int
3089 dummy_find_memory_regions (struct target_ops *self,
3090 			   find_memory_region_ftype ignore1, void *ignore2)
3091 {
3092   error (_("Command not implemented for this target."));
3093   return 0;
3094 }
3095 
3096 /* Error-catcher for target_make_corefile_notes.  */
3097 static char *
3098 dummy_make_corefile_notes (struct target_ops *self,
3099 			   bfd *ignore1, int *ignore2)
3100 {
3101   error (_("Command not implemented for this target."));
3102   return NULL;
3103 }
3104 
3105 /* Set up the handful of non-empty slots needed by the dummy target
3106    vector.  */
3107 
3108 static void
3109 init_dummy_target (void)
3110 {
3111   dummy_target.to_shortname = "None";
3112   dummy_target.to_longname = "None";
3113   dummy_target.to_doc = "";
3114   dummy_target.to_supports_disable_randomization
3115     = find_default_supports_disable_randomization;
3116   dummy_target.to_stratum = dummy_stratum;
3117   dummy_target.to_has_all_memory = return_zero;
3118   dummy_target.to_has_memory = return_zero;
3119   dummy_target.to_has_stack = return_zero;
3120   dummy_target.to_has_registers = return_zero;
3121   dummy_target.to_has_execution = return_zero_has_execution;
3122   dummy_target.to_magic = OPS_MAGIC;
3123 
3124   install_dummy_methods (&dummy_target);
3125 }
3126 
3127 
3128 void
3129 target_close (struct target_ops *targ)
3130 {
3131   gdb_assert (!target_is_pushed (targ));
3132 
3133   if (targ->to_xclose != NULL)
3134     targ->to_xclose (targ);
3135   else if (targ->to_close != NULL)
3136     targ->to_close (targ);
3137 
3138   if (targetdebug)
3139     fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3140 }
3141 
3142 int
3143 target_thread_alive (ptid_t ptid)
3144 {
3145   return current_target.to_thread_alive (&current_target, ptid);
3146 }
3147 
3148 void
3149 target_update_thread_list (void)
3150 {
3151   current_target.to_update_thread_list (&current_target);
3152 }
3153 
3154 void
3155 target_stop (ptid_t ptid)
3156 {
3157   if (!may_stop)
3158     {
3159       warning (_("May not interrupt or stop the target, ignoring attempt"));
3160       return;
3161     }
3162 
3163   (*current_target.to_stop) (&current_target, ptid);
3164 }
3165 
3166 /* See target/target.h.  */
3167 
3168 void
3169 target_stop_and_wait (ptid_t ptid)
3170 {
3171   struct target_waitstatus status;
3172   int was_non_stop = non_stop;
3173 
3174   non_stop = 1;
3175   target_stop (ptid);
3176 
3177   memset (&status, 0, sizeof (status));
3178   target_wait (ptid, &status, 0);
3179 
3180   non_stop = was_non_stop;
3181 }
3182 
3183 /* See target/target.h.  */
3184 
3185 void
3186 target_continue_no_signal (ptid_t ptid)
3187 {
3188   target_resume (ptid, 0, GDB_SIGNAL_0);
3189 }
3190 
3191 /* Concatenate ELEM to LIST, a comma separate list, and return the
3192    result.  The LIST incoming argument is released.  */
3193 
3194 static char *
3195 str_comma_list_concat_elem (char *list, const char *elem)
3196 {
3197   if (list == NULL)
3198     return xstrdup (elem);
3199   else
3200     return reconcat (list, list, ", ", elem, (char *) NULL);
3201 }
3202 
3203 /* Helper for target_options_to_string.  If OPT is present in
3204    TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3205    Returns the new resulting string.  OPT is removed from
3206    TARGET_OPTIONS.  */
3207 
3208 static char *
3209 do_option (int *target_options, char *ret,
3210 	   int opt, char *opt_str)
3211 {
3212   if ((*target_options & opt) != 0)
3213     {
3214       ret = str_comma_list_concat_elem (ret, opt_str);
3215       *target_options &= ~opt;
3216     }
3217 
3218   return ret;
3219 }
3220 
3221 char *
3222 target_options_to_string (int target_options)
3223 {
3224   char *ret = NULL;
3225 
3226 #define DO_TARG_OPTION(OPT) \
3227   ret = do_option (&target_options, ret, OPT, #OPT)
3228 
3229   DO_TARG_OPTION (TARGET_WNOHANG);
3230 
3231   if (target_options != 0)
3232     ret = str_comma_list_concat_elem (ret, "unknown???");
3233 
3234   if (ret == NULL)
3235     ret = xstrdup ("");
3236   return ret;
3237 }
3238 
3239 static void
3240 debug_print_register (const char * func,
3241 		      struct regcache *regcache, int regno)
3242 {
3243   struct gdbarch *gdbarch = get_regcache_arch (regcache);
3244 
3245   fprintf_unfiltered (gdb_stdlog, "%s ", func);
3246   if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3247       && gdbarch_register_name (gdbarch, regno) != NULL
3248       && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3249     fprintf_unfiltered (gdb_stdlog, "(%s)",
3250 			gdbarch_register_name (gdbarch, regno));
3251   else
3252     fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3253   if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3254     {
3255       enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3256       int i, size = register_size (gdbarch, regno);
3257       gdb_byte buf[MAX_REGISTER_SIZE];
3258 
3259       regcache_raw_collect (regcache, regno, buf);
3260       fprintf_unfiltered (gdb_stdlog, " = ");
3261       for (i = 0; i < size; i++)
3262 	{
3263 	  fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3264 	}
3265       if (size <= sizeof (LONGEST))
3266 	{
3267 	  ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3268 
3269 	  fprintf_unfiltered (gdb_stdlog, " %s %s",
3270 			      core_addr_to_string_nz (val), plongest (val));
3271 	}
3272     }
3273   fprintf_unfiltered (gdb_stdlog, "\n");
3274 }
3275 
3276 void
3277 target_fetch_registers (struct regcache *regcache, int regno)
3278 {
3279   current_target.to_fetch_registers (&current_target, regcache, regno);
3280   if (targetdebug)
3281     debug_print_register ("target_fetch_registers", regcache, regno);
3282 }
3283 
3284 void
3285 target_store_registers (struct regcache *regcache, int regno)
3286 {
3287   struct target_ops *t;
3288 
3289   if (!may_write_registers)
3290     error (_("Writing to registers is not allowed (regno %d)"), regno);
3291 
3292   current_target.to_store_registers (&current_target, regcache, regno);
3293   if (targetdebug)
3294     {
3295       debug_print_register ("target_store_registers", regcache, regno);
3296     }
3297 }
3298 
3299 int
3300 target_core_of_thread (ptid_t ptid)
3301 {
3302   return current_target.to_core_of_thread (&current_target, ptid);
3303 }
3304 
3305 int
3306 simple_verify_memory (struct target_ops *ops,
3307 		      const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3308 {
3309   LONGEST total_xfered = 0;
3310 
3311   while (total_xfered < size)
3312     {
3313       ULONGEST xfered_len;
3314       enum target_xfer_status status;
3315       gdb_byte buf[1024];
3316       ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3317 
3318       status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3319 				    buf, NULL, lma + total_xfered, howmuch,
3320 				    &xfered_len);
3321       if (status == TARGET_XFER_OK
3322 	  && memcmp (data + total_xfered, buf, xfered_len) == 0)
3323 	{
3324 	  total_xfered += xfered_len;
3325 	  QUIT;
3326 	}
3327       else
3328 	return 0;
3329     }
3330   return 1;
3331 }
3332 
3333 /* Default implementation of memory verification.  */
3334 
3335 static int
3336 default_verify_memory (struct target_ops *self,
3337 		       const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3338 {
3339   /* Start over from the top of the target stack.  */
3340   return simple_verify_memory (current_target.beneath,
3341 			       data, memaddr, size);
3342 }
3343 
3344 int
3345 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3346 {
3347   return current_target.to_verify_memory (&current_target,
3348 					  data, memaddr, size);
3349 }
3350 
3351 /* The documentation for this function is in its prototype declaration in
3352    target.h.  */
3353 
3354 int
3355 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3356 {
3357   return current_target.to_insert_mask_watchpoint (&current_target,
3358 						   addr, mask, rw);
3359 }
3360 
3361 /* The documentation for this function is in its prototype declaration in
3362    target.h.  */
3363 
3364 int
3365 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3366 {
3367   return current_target.to_remove_mask_watchpoint (&current_target,
3368 						   addr, mask, rw);
3369 }
3370 
3371 /* The documentation for this function is in its prototype declaration
3372    in target.h.  */
3373 
3374 int
3375 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3376 {
3377   return current_target.to_masked_watch_num_registers (&current_target,
3378 						       addr, mask);
3379 }
3380 
3381 /* The documentation for this function is in its prototype declaration
3382    in target.h.  */
3383 
3384 int
3385 target_ranged_break_num_registers (void)
3386 {
3387   return current_target.to_ranged_break_num_registers (&current_target);
3388 }
3389 
3390 /* See target.h.  */
3391 
3392 struct btrace_target_info *
3393 target_enable_btrace (ptid_t ptid)
3394 {
3395   return current_target.to_enable_btrace (&current_target, ptid);
3396 }
3397 
3398 /* See target.h.  */
3399 
3400 void
3401 target_disable_btrace (struct btrace_target_info *btinfo)
3402 {
3403   current_target.to_disable_btrace (&current_target, btinfo);
3404 }
3405 
3406 /* See target.h.  */
3407 
3408 void
3409 target_teardown_btrace (struct btrace_target_info *btinfo)
3410 {
3411   current_target.to_teardown_btrace (&current_target, btinfo);
3412 }
3413 
3414 /* See target.h.  */
3415 
3416 enum btrace_error
3417 target_read_btrace (VEC (btrace_block_s) **btrace,
3418 		    struct btrace_target_info *btinfo,
3419 		    enum btrace_read_type type)
3420 {
3421   return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3422 }
3423 
3424 /* See target.h.  */
3425 
3426 void
3427 target_stop_recording (void)
3428 {
3429   current_target.to_stop_recording (&current_target);
3430 }
3431 
3432 /* See target.h.  */
3433 
3434 void
3435 target_save_record (const char *filename)
3436 {
3437   current_target.to_save_record (&current_target, filename);
3438 }
3439 
3440 /* See target.h.  */
3441 
3442 int
3443 target_supports_delete_record (void)
3444 {
3445   struct target_ops *t;
3446 
3447   for (t = current_target.beneath; t != NULL; t = t->beneath)
3448     if (t->to_delete_record != delegate_delete_record
3449 	&& t->to_delete_record != tdefault_delete_record)
3450       return 1;
3451 
3452   return 0;
3453 }
3454 
3455 /* See target.h.  */
3456 
3457 void
3458 target_delete_record (void)
3459 {
3460   current_target.to_delete_record (&current_target);
3461 }
3462 
3463 /* See target.h.  */
3464 
3465 int
3466 target_record_is_replaying (void)
3467 {
3468   return current_target.to_record_is_replaying (&current_target);
3469 }
3470 
3471 /* See target.h.  */
3472 
3473 void
3474 target_goto_record_begin (void)
3475 {
3476   current_target.to_goto_record_begin (&current_target);
3477 }
3478 
3479 /* See target.h.  */
3480 
3481 void
3482 target_goto_record_end (void)
3483 {
3484   current_target.to_goto_record_end (&current_target);
3485 }
3486 
3487 /* See target.h.  */
3488 
3489 void
3490 target_goto_record (ULONGEST insn)
3491 {
3492   current_target.to_goto_record (&current_target, insn);
3493 }
3494 
3495 /* See target.h.  */
3496 
3497 void
3498 target_insn_history (int size, int flags)
3499 {
3500   current_target.to_insn_history (&current_target, size, flags);
3501 }
3502 
3503 /* See target.h.  */
3504 
3505 void
3506 target_insn_history_from (ULONGEST from, int size, int flags)
3507 {
3508   current_target.to_insn_history_from (&current_target, from, size, flags);
3509 }
3510 
3511 /* See target.h.  */
3512 
3513 void
3514 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3515 {
3516   current_target.to_insn_history_range (&current_target, begin, end, flags);
3517 }
3518 
3519 /* See target.h.  */
3520 
3521 void
3522 target_call_history (int size, int flags)
3523 {
3524   current_target.to_call_history (&current_target, size, flags);
3525 }
3526 
3527 /* See target.h.  */
3528 
3529 void
3530 target_call_history_from (ULONGEST begin, int size, int flags)
3531 {
3532   current_target.to_call_history_from (&current_target, begin, size, flags);
3533 }
3534 
3535 /* See target.h.  */
3536 
3537 void
3538 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3539 {
3540   current_target.to_call_history_range (&current_target, begin, end, flags);
3541 }
3542 
3543 /* See target.h.  */
3544 
3545 const struct frame_unwind *
3546 target_get_unwinder (void)
3547 {
3548   return current_target.to_get_unwinder (&current_target);
3549 }
3550 
3551 /* See target.h.  */
3552 
3553 const struct frame_unwind *
3554 target_get_tailcall_unwinder (void)
3555 {
3556   return current_target.to_get_tailcall_unwinder (&current_target);
3557 }
3558 
3559 /* Default implementation of to_decr_pc_after_break.  */
3560 
3561 static CORE_ADDR
3562 default_target_decr_pc_after_break (struct target_ops *ops,
3563 				    struct gdbarch *gdbarch)
3564 {
3565   return gdbarch_decr_pc_after_break (gdbarch);
3566 }
3567 
3568 /* See target.h.  */
3569 
3570 CORE_ADDR
3571 target_decr_pc_after_break (struct gdbarch *gdbarch)
3572 {
3573   return current_target.to_decr_pc_after_break (&current_target, gdbarch);
3574 }
3575 
3576 /* See target.h.  */
3577 
3578 void
3579 target_prepare_to_generate_core (void)
3580 {
3581   current_target.to_prepare_to_generate_core (&current_target);
3582 }
3583 
3584 /* See target.h.  */
3585 
3586 void
3587 target_done_generating_core (void)
3588 {
3589   current_target.to_done_generating_core (&current_target);
3590 }
3591 
3592 static void
3593 setup_target_debug (void)
3594 {
3595   memcpy (&debug_target, &current_target, sizeof debug_target);
3596 
3597   init_debug_target (&current_target);
3598 }
3599 
3600 
3601 static char targ_desc[] =
3602 "Names of targets and files being debugged.\nShows the entire \
3603 stack of targets currently in use (including the exec-file,\n\
3604 core-file, and process, if any), as well as the symbol file name.";
3605 
3606 static void
3607 default_rcmd (struct target_ops *self, const char *command,
3608 	      struct ui_file *output)
3609 {
3610   error (_("\"monitor\" command not supported by this target."));
3611 }
3612 
3613 static void
3614 do_monitor_command (char *cmd,
3615 		 int from_tty)
3616 {
3617   target_rcmd (cmd, gdb_stdtarg);
3618 }
3619 
3620 /* Print the name of each layers of our target stack.  */
3621 
3622 static void
3623 maintenance_print_target_stack (char *cmd, int from_tty)
3624 {
3625   struct target_ops *t;
3626 
3627   printf_filtered (_("The current target stack is:\n"));
3628 
3629   for (t = target_stack; t != NULL; t = t->beneath)
3630     {
3631       printf_filtered ("  - %s (%s)\n", t->to_shortname, t->to_longname);
3632     }
3633 }
3634 
3635 /* Controls if targets can report that they can/are async.  This is
3636    just for maintainers to use when debugging gdb.  */
3637 int target_async_permitted = 1;
3638 
3639 /* The set command writes to this variable.  If the inferior is
3640    executing, target_async_permitted is *not* updated.  */
3641 static int target_async_permitted_1 = 1;
3642 
3643 static void
3644 maint_set_target_async_command (char *args, int from_tty,
3645 				struct cmd_list_element *c)
3646 {
3647   if (have_live_inferiors ())
3648     {
3649       target_async_permitted_1 = target_async_permitted;
3650       error (_("Cannot change this setting while the inferior is running."));
3651     }
3652 
3653   target_async_permitted = target_async_permitted_1;
3654 }
3655 
3656 static void
3657 maint_show_target_async_command (struct ui_file *file, int from_tty,
3658 				 struct cmd_list_element *c,
3659 				 const char *value)
3660 {
3661   fprintf_filtered (file,
3662 		    _("Controlling the inferior in "
3663 		      "asynchronous mode is %s.\n"), value);
3664 }
3665 
3666 /* Temporary copies of permission settings.  */
3667 
3668 static int may_write_registers_1 = 1;
3669 static int may_write_memory_1 = 1;
3670 static int may_insert_breakpoints_1 = 1;
3671 static int may_insert_tracepoints_1 = 1;
3672 static int may_insert_fast_tracepoints_1 = 1;
3673 static int may_stop_1 = 1;
3674 
3675 /* Make the user-set values match the real values again.  */
3676 
3677 void
3678 update_target_permissions (void)
3679 {
3680   may_write_registers_1 = may_write_registers;
3681   may_write_memory_1 = may_write_memory;
3682   may_insert_breakpoints_1 = may_insert_breakpoints;
3683   may_insert_tracepoints_1 = may_insert_tracepoints;
3684   may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3685   may_stop_1 = may_stop;
3686 }
3687 
3688 /* The one function handles (most of) the permission flags in the same
3689    way.  */
3690 
3691 static void
3692 set_target_permissions (char *args, int from_tty,
3693 			struct cmd_list_element *c)
3694 {
3695   if (target_has_execution)
3696     {
3697       update_target_permissions ();
3698       error (_("Cannot change this setting while the inferior is running."));
3699     }
3700 
3701   /* Make the real values match the user-changed values.  */
3702   may_write_registers = may_write_registers_1;
3703   may_insert_breakpoints = may_insert_breakpoints_1;
3704   may_insert_tracepoints = may_insert_tracepoints_1;
3705   may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3706   may_stop = may_stop_1;
3707   update_observer_mode ();
3708 }
3709 
3710 /* Set memory write permission independently of observer mode.  */
3711 
3712 static void
3713 set_write_memory_permission (char *args, int from_tty,
3714 			struct cmd_list_element *c)
3715 {
3716   /* Make the real values match the user-changed values.  */
3717   may_write_memory = may_write_memory_1;
3718   update_observer_mode ();
3719 }
3720 
3721 
3722 void
3723 initialize_targets (void)
3724 {
3725   init_dummy_target ();
3726   push_target (&dummy_target);
3727 
3728   add_info ("target", target_info, targ_desc);
3729   add_info ("files", target_info, targ_desc);
3730 
3731   add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3732 Set target debugging."), _("\
3733 Show target debugging."), _("\
3734 When non-zero, target debugging is enabled.  Higher numbers are more\n\
3735 verbose."),
3736 			     set_targetdebug,
3737 			     show_targetdebug,
3738 			     &setdebuglist, &showdebuglist);
3739 
3740   add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3741 			   &trust_readonly, _("\
3742 Set mode for reading from readonly sections."), _("\
3743 Show mode for reading from readonly sections."), _("\
3744 When this mode is on, memory reads from readonly sections (such as .text)\n\
3745 will be read from the object file instead of from the target.  This will\n\
3746 result in significant performance improvement for remote targets."),
3747 			   NULL,
3748 			   show_trust_readonly,
3749 			   &setlist, &showlist);
3750 
3751   add_com ("monitor", class_obscure, do_monitor_command,
3752 	   _("Send a command to the remote monitor (remote targets only)."));
3753 
3754   add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3755            _("Print the name of each layer of the internal target stack."),
3756            &maintenanceprintlist);
3757 
3758   add_setshow_boolean_cmd ("target-async", no_class,
3759 			   &target_async_permitted_1, _("\
3760 Set whether gdb controls the inferior in asynchronous mode."), _("\
3761 Show whether gdb controls the inferior in asynchronous mode."), _("\
3762 Tells gdb whether to control the inferior in asynchronous mode."),
3763 			   maint_set_target_async_command,
3764 			   maint_show_target_async_command,
3765 			   &maintenance_set_cmdlist,
3766 			   &maintenance_show_cmdlist);
3767 
3768   add_setshow_boolean_cmd ("may-write-registers", class_support,
3769 			   &may_write_registers_1, _("\
3770 Set permission to write into registers."), _("\
3771 Show permission to write into registers."), _("\
3772 When this permission is on, GDB may write into the target's registers.\n\
3773 Otherwise, any sort of write attempt will result in an error."),
3774 			   set_target_permissions, NULL,
3775 			   &setlist, &showlist);
3776 
3777   add_setshow_boolean_cmd ("may-write-memory", class_support,
3778 			   &may_write_memory_1, _("\
3779 Set permission to write into target memory."), _("\
3780 Show permission to write into target memory."), _("\
3781 When this permission is on, GDB may write into the target's memory.\n\
3782 Otherwise, any sort of write attempt will result in an error."),
3783 			   set_write_memory_permission, NULL,
3784 			   &setlist, &showlist);
3785 
3786   add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3787 			   &may_insert_breakpoints_1, _("\
3788 Set permission to insert breakpoints in the target."), _("\
3789 Show permission to insert breakpoints in the target."), _("\
3790 When this permission is on, GDB may insert breakpoints in the program.\n\
3791 Otherwise, any sort of insertion attempt will result in an error."),
3792 			   set_target_permissions, NULL,
3793 			   &setlist, &showlist);
3794 
3795   add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3796 			   &may_insert_tracepoints_1, _("\
3797 Set permission to insert tracepoints in the target."), _("\
3798 Show permission to insert tracepoints in the target."), _("\
3799 When this permission is on, GDB may insert tracepoints in the program.\n\
3800 Otherwise, any sort of insertion attempt will result in an error."),
3801 			   set_target_permissions, NULL,
3802 			   &setlist, &showlist);
3803 
3804   add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3805 			   &may_insert_fast_tracepoints_1, _("\
3806 Set permission to insert fast tracepoints in the target."), _("\
3807 Show permission to insert fast tracepoints in the target."), _("\
3808 When this permission is on, GDB may insert fast tracepoints.\n\
3809 Otherwise, any sort of insertion attempt will result in an error."),
3810 			   set_target_permissions, NULL,
3811 			   &setlist, &showlist);
3812 
3813   add_setshow_boolean_cmd ("may-interrupt", class_support,
3814 			   &may_stop_1, _("\
3815 Set permission to interrupt or signal the target."), _("\
3816 Show permission to interrupt or signal the target."), _("\
3817 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3818 Otherwise, any attempt to interrupt or stop will be ignored."),
3819 			   set_target_permissions, NULL,
3820 			   &setlist, &showlist);
3821 
3822   add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3823 			   &auto_connect_native_target, _("\
3824 Set whether GDB may automatically connect to the native target."), _("\
3825 Show whether GDB may automatically connect to the native target."), _("\
3826 When on, and GDB is not connected to a target yet, GDB\n\
3827 attempts \"run\" and other commands with the native target."),
3828 			   NULL, show_auto_connect_native_target,
3829 			   &setlist, &showlist);
3830 }
3831