1 /* Select target systems and architectures at runtime for GDB. 2 3 Copyright (C) 1990-2015 Free Software Foundation, Inc. 4 5 Contributed by Cygnus Support. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 #include "defs.h" 23 #include "target.h" 24 #include "target-dcache.h" 25 #include "gdbcmd.h" 26 #include "symtab.h" 27 #include "inferior.h" 28 #include "infrun.h" 29 #include "bfd.h" 30 #include "symfile.h" 31 #include "objfiles.h" 32 #include "dcache.h" 33 #include <signal.h> 34 #include "regcache.h" 35 #include "gdbcore.h" 36 #include "target-descriptions.h" 37 #include "gdbthread.h" 38 #include "solib.h" 39 #include "exec.h" 40 #include "inline-frame.h" 41 #include "tracepoint.h" 42 #include "gdb/fileio.h" 43 #include "agent.h" 44 #include "auxv.h" 45 #include "target-debug.h" 46 47 static void target_info (char *, int); 48 49 static void generic_tls_error (void) ATTRIBUTE_NORETURN; 50 51 static void default_terminal_info (struct target_ops *, const char *, int); 52 53 static int default_watchpoint_addr_within_range (struct target_ops *, 54 CORE_ADDR, CORE_ADDR, int); 55 56 static int default_region_ok_for_hw_watchpoint (struct target_ops *, 57 CORE_ADDR, int); 58 59 static void default_rcmd (struct target_ops *, const char *, struct ui_file *); 60 61 static ptid_t default_get_ada_task_ptid (struct target_ops *self, 62 long lwp, long tid); 63 64 static int default_follow_fork (struct target_ops *self, int follow_child, 65 int detach_fork); 66 67 static void default_mourn_inferior (struct target_ops *self); 68 69 static int default_search_memory (struct target_ops *ops, 70 CORE_ADDR start_addr, 71 ULONGEST search_space_len, 72 const gdb_byte *pattern, 73 ULONGEST pattern_len, 74 CORE_ADDR *found_addrp); 75 76 static int default_verify_memory (struct target_ops *self, 77 const gdb_byte *data, 78 CORE_ADDR memaddr, ULONGEST size); 79 80 static struct address_space *default_thread_address_space 81 (struct target_ops *self, ptid_t ptid); 82 83 static void tcomplain (void) ATTRIBUTE_NORETURN; 84 85 static int return_zero (struct target_ops *); 86 87 static int return_zero_has_execution (struct target_ops *, ptid_t); 88 89 static void target_command (char *, int); 90 91 static struct target_ops *find_default_run_target (char *); 92 93 static struct gdbarch *default_thread_architecture (struct target_ops *ops, 94 ptid_t ptid); 95 96 static int dummy_find_memory_regions (struct target_ops *self, 97 find_memory_region_ftype ignore1, 98 void *ignore2); 99 100 static char *dummy_make_corefile_notes (struct target_ops *self, 101 bfd *ignore1, int *ignore2); 102 103 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid); 104 105 static enum exec_direction_kind default_execution_direction 106 (struct target_ops *self); 107 108 static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops, 109 struct gdbarch *gdbarch); 110 111 static struct target_ops debug_target; 112 113 #include "target-delegates.c" 114 115 static void init_dummy_target (void); 116 117 static void update_current_target (void); 118 119 /* Vector of existing target structures. */ 120 typedef struct target_ops *target_ops_p; 121 DEF_VEC_P (target_ops_p); 122 static VEC (target_ops_p) *target_structs; 123 124 /* The initial current target, so that there is always a semi-valid 125 current target. */ 126 127 static struct target_ops dummy_target; 128 129 /* Top of target stack. */ 130 131 static struct target_ops *target_stack; 132 133 /* The target structure we are currently using to talk to a process 134 or file or whatever "inferior" we have. */ 135 136 struct target_ops current_target; 137 138 /* Command list for target. */ 139 140 static struct cmd_list_element *targetlist = NULL; 141 142 /* Nonzero if we should trust readonly sections from the 143 executable when reading memory. */ 144 145 static int trust_readonly = 0; 146 147 /* Nonzero if we should show true memory content including 148 memory breakpoint inserted by gdb. */ 149 150 static int show_memory_breakpoints = 0; 151 152 /* These globals control whether GDB attempts to perform these 153 operations; they are useful for targets that need to prevent 154 inadvertant disruption, such as in non-stop mode. */ 155 156 int may_write_registers = 1; 157 158 int may_write_memory = 1; 159 160 int may_insert_breakpoints = 1; 161 162 int may_insert_tracepoints = 1; 163 164 int may_insert_fast_tracepoints = 1; 165 166 int may_stop = 1; 167 168 /* Non-zero if we want to see trace of target level stuff. */ 169 170 static unsigned int targetdebug = 0; 171 172 static void 173 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c) 174 { 175 update_current_target (); 176 } 177 178 static void 179 show_targetdebug (struct ui_file *file, int from_tty, 180 struct cmd_list_element *c, const char *value) 181 { 182 fprintf_filtered (file, _("Target debugging is %s.\n"), value); 183 } 184 185 static void setup_target_debug (void); 186 187 /* The user just typed 'target' without the name of a target. */ 188 189 static void 190 target_command (char *arg, int from_tty) 191 { 192 fputs_filtered ("Argument required (target name). Try `help target'\n", 193 gdb_stdout); 194 } 195 196 /* Default target_has_* methods for process_stratum targets. */ 197 198 int 199 default_child_has_all_memory (struct target_ops *ops) 200 { 201 /* If no inferior selected, then we can't read memory here. */ 202 if (ptid_equal (inferior_ptid, null_ptid)) 203 return 0; 204 205 return 1; 206 } 207 208 int 209 default_child_has_memory (struct target_ops *ops) 210 { 211 /* If no inferior selected, then we can't read memory here. */ 212 if (ptid_equal (inferior_ptid, null_ptid)) 213 return 0; 214 215 return 1; 216 } 217 218 int 219 default_child_has_stack (struct target_ops *ops) 220 { 221 /* If no inferior selected, there's no stack. */ 222 if (ptid_equal (inferior_ptid, null_ptid)) 223 return 0; 224 225 return 1; 226 } 227 228 int 229 default_child_has_registers (struct target_ops *ops) 230 { 231 /* Can't read registers from no inferior. */ 232 if (ptid_equal (inferior_ptid, null_ptid)) 233 return 0; 234 235 return 1; 236 } 237 238 int 239 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid) 240 { 241 /* If there's no thread selected, then we can't make it run through 242 hoops. */ 243 if (ptid_equal (the_ptid, null_ptid)) 244 return 0; 245 246 return 1; 247 } 248 249 250 int 251 target_has_all_memory_1 (void) 252 { 253 struct target_ops *t; 254 255 for (t = current_target.beneath; t != NULL; t = t->beneath) 256 if (t->to_has_all_memory (t)) 257 return 1; 258 259 return 0; 260 } 261 262 int 263 target_has_memory_1 (void) 264 { 265 struct target_ops *t; 266 267 for (t = current_target.beneath; t != NULL; t = t->beneath) 268 if (t->to_has_memory (t)) 269 return 1; 270 271 return 0; 272 } 273 274 int 275 target_has_stack_1 (void) 276 { 277 struct target_ops *t; 278 279 for (t = current_target.beneath; t != NULL; t = t->beneath) 280 if (t->to_has_stack (t)) 281 return 1; 282 283 return 0; 284 } 285 286 int 287 target_has_registers_1 (void) 288 { 289 struct target_ops *t; 290 291 for (t = current_target.beneath; t != NULL; t = t->beneath) 292 if (t->to_has_registers (t)) 293 return 1; 294 295 return 0; 296 } 297 298 int 299 target_has_execution_1 (ptid_t the_ptid) 300 { 301 struct target_ops *t; 302 303 for (t = current_target.beneath; t != NULL; t = t->beneath) 304 if (t->to_has_execution (t, the_ptid)) 305 return 1; 306 307 return 0; 308 } 309 310 int 311 target_has_execution_current (void) 312 { 313 return target_has_execution_1 (inferior_ptid); 314 } 315 316 /* Complete initialization of T. This ensures that various fields in 317 T are set, if needed by the target implementation. */ 318 319 void 320 complete_target_initialization (struct target_ops *t) 321 { 322 /* Provide default values for all "must have" methods. */ 323 324 if (t->to_has_all_memory == NULL) 325 t->to_has_all_memory = return_zero; 326 327 if (t->to_has_memory == NULL) 328 t->to_has_memory = return_zero; 329 330 if (t->to_has_stack == NULL) 331 t->to_has_stack = return_zero; 332 333 if (t->to_has_registers == NULL) 334 t->to_has_registers = return_zero; 335 336 if (t->to_has_execution == NULL) 337 t->to_has_execution = return_zero_has_execution; 338 339 /* These methods can be called on an unpushed target and so require 340 a default implementation if the target might plausibly be the 341 default run target. */ 342 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL 343 && t->to_supports_non_stop != NULL)); 344 345 install_delegators (t); 346 } 347 348 /* This is used to implement the various target commands. */ 349 350 static void 351 open_target (char *args, int from_tty, struct cmd_list_element *command) 352 { 353 struct target_ops *ops = get_cmd_context (command); 354 355 if (targetdebug) 356 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n", 357 ops->to_shortname); 358 359 ops->to_open (args, from_tty); 360 361 if (targetdebug) 362 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n", 363 ops->to_shortname, args, from_tty); 364 } 365 366 /* Add possible target architecture T to the list and add a new 367 command 'target T->to_shortname'. Set COMPLETER as the command's 368 completer if not NULL. */ 369 370 void 371 add_target_with_completer (struct target_ops *t, 372 completer_ftype *completer) 373 { 374 struct cmd_list_element *c; 375 376 complete_target_initialization (t); 377 378 VEC_safe_push (target_ops_p, target_structs, t); 379 380 if (targetlist == NULL) 381 add_prefix_cmd ("target", class_run, target_command, _("\ 382 Connect to a target machine or process.\n\ 383 The first argument is the type or protocol of the target machine.\n\ 384 Remaining arguments are interpreted by the target protocol. For more\n\ 385 information on the arguments for a particular protocol, type\n\ 386 `help target ' followed by the protocol name."), 387 &targetlist, "target ", 0, &cmdlist); 388 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist); 389 set_cmd_sfunc (c, open_target); 390 set_cmd_context (c, t); 391 if (completer != NULL) 392 set_cmd_completer (c, completer); 393 } 394 395 /* Add a possible target architecture to the list. */ 396 397 void 398 add_target (struct target_ops *t) 399 { 400 add_target_with_completer (t, NULL); 401 } 402 403 /* See target.h. */ 404 405 void 406 add_deprecated_target_alias (struct target_ops *t, char *alias) 407 { 408 struct cmd_list_element *c; 409 char *alt; 410 411 /* If we use add_alias_cmd, here, we do not get the deprecated warning, 412 see PR cli/15104. */ 413 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist); 414 set_cmd_sfunc (c, open_target); 415 set_cmd_context (c, t); 416 alt = xstrprintf ("target %s", t->to_shortname); 417 deprecate_cmd (c, alt); 418 } 419 420 /* Stub functions */ 421 422 void 423 target_kill (void) 424 { 425 current_target.to_kill (¤t_target); 426 } 427 428 void 429 target_load (const char *arg, int from_tty) 430 { 431 target_dcache_invalidate (); 432 (*current_target.to_load) (¤t_target, arg, from_tty); 433 } 434 435 /* Possible terminal states. */ 436 437 enum terminal_state 438 { 439 /* The inferior's terminal settings are in effect. */ 440 terminal_is_inferior = 0, 441 442 /* Some of our terminal settings are in effect, enough to get 443 proper output. */ 444 terminal_is_ours_for_output = 1, 445 446 /* Our terminal settings are in effect, for output and input. */ 447 terminal_is_ours = 2 448 }; 449 450 static enum terminal_state terminal_state; 451 452 /* See target.h. */ 453 454 void 455 target_terminal_init (void) 456 { 457 (*current_target.to_terminal_init) (¤t_target); 458 459 terminal_state = terminal_is_ours; 460 } 461 462 /* See target.h. */ 463 464 int 465 target_terminal_is_inferior (void) 466 { 467 return (terminal_state == terminal_is_inferior); 468 } 469 470 /* See target.h. */ 471 472 void 473 target_terminal_inferior (void) 474 { 475 /* A background resume (``run&'') should leave GDB in control of the 476 terminal. Use target_can_async_p, not target_is_async_p, since at 477 this point the target is not async yet. However, if sync_execution 478 is not set, we know it will become async prior to resume. */ 479 if (target_can_async_p () && !sync_execution) 480 return; 481 482 if (terminal_state == terminal_is_inferior) 483 return; 484 485 /* If GDB is resuming the inferior in the foreground, install 486 inferior's terminal modes. */ 487 (*current_target.to_terminal_inferior) (¤t_target); 488 terminal_state = terminal_is_inferior; 489 } 490 491 /* See target.h. */ 492 493 void 494 target_terminal_ours (void) 495 { 496 if (terminal_state == terminal_is_ours) 497 return; 498 499 (*current_target.to_terminal_ours) (¤t_target); 500 terminal_state = terminal_is_ours; 501 } 502 503 /* See target.h. */ 504 505 void 506 target_terminal_ours_for_output (void) 507 { 508 if (terminal_state != terminal_is_inferior) 509 return; 510 (*current_target.to_terminal_ours_for_output) (¤t_target); 511 terminal_state = terminal_is_ours_for_output; 512 } 513 514 /* See target.h. */ 515 516 int 517 target_supports_terminal_ours (void) 518 { 519 struct target_ops *t; 520 521 for (t = current_target.beneath; t != NULL; t = t->beneath) 522 { 523 if (t->to_terminal_ours != delegate_terminal_ours 524 && t->to_terminal_ours != tdefault_terminal_ours) 525 return 1; 526 } 527 528 return 0; 529 } 530 531 /* Restore the terminal to its previous state (helper for 532 make_cleanup_restore_target_terminal). */ 533 534 static void 535 cleanup_restore_target_terminal (void *arg) 536 { 537 enum terminal_state *previous_state = arg; 538 539 switch (*previous_state) 540 { 541 case terminal_is_ours: 542 target_terminal_ours (); 543 break; 544 case terminal_is_ours_for_output: 545 target_terminal_ours_for_output (); 546 break; 547 case terminal_is_inferior: 548 target_terminal_inferior (); 549 break; 550 } 551 } 552 553 /* See target.h. */ 554 555 struct cleanup * 556 make_cleanup_restore_target_terminal (void) 557 { 558 enum terminal_state *ts = xmalloc (sizeof (*ts)); 559 560 *ts = terminal_state; 561 562 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree); 563 } 564 565 static void 566 tcomplain (void) 567 { 568 error (_("You can't do that when your target is `%s'"), 569 current_target.to_shortname); 570 } 571 572 void 573 noprocess (void) 574 { 575 error (_("You can't do that without a process to debug.")); 576 } 577 578 static void 579 default_terminal_info (struct target_ops *self, const char *args, int from_tty) 580 { 581 printf_unfiltered (_("No saved terminal information.\n")); 582 } 583 584 /* A default implementation for the to_get_ada_task_ptid target method. 585 586 This function builds the PTID by using both LWP and TID as part of 587 the PTID lwp and tid elements. The pid used is the pid of the 588 inferior_ptid. */ 589 590 static ptid_t 591 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid) 592 { 593 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid); 594 } 595 596 static enum exec_direction_kind 597 default_execution_direction (struct target_ops *self) 598 { 599 if (!target_can_execute_reverse) 600 return EXEC_FORWARD; 601 else if (!target_can_async_p ()) 602 return EXEC_FORWARD; 603 else 604 gdb_assert_not_reached ("\ 605 to_execution_direction must be implemented for reverse async"); 606 } 607 608 /* Go through the target stack from top to bottom, copying over zero 609 entries in current_target, then filling in still empty entries. In 610 effect, we are doing class inheritance through the pushed target 611 vectors. 612 613 NOTE: cagney/2003-10-17: The problem with this inheritance, as it 614 is currently implemented, is that it discards any knowledge of 615 which target an inherited method originally belonged to. 616 Consequently, new new target methods should instead explicitly and 617 locally search the target stack for the target that can handle the 618 request. */ 619 620 static void 621 update_current_target (void) 622 { 623 struct target_ops *t; 624 625 /* First, reset current's contents. */ 626 memset (¤t_target, 0, sizeof (current_target)); 627 628 /* Install the delegators. */ 629 install_delegators (¤t_target); 630 631 current_target.to_stratum = target_stack->to_stratum; 632 633 #define INHERIT(FIELD, TARGET) \ 634 if (!current_target.FIELD) \ 635 current_target.FIELD = (TARGET)->FIELD 636 637 /* Do not add any new INHERITs here. Instead, use the delegation 638 mechanism provided by make-target-delegates. */ 639 for (t = target_stack; t; t = t->beneath) 640 { 641 INHERIT (to_shortname, t); 642 INHERIT (to_longname, t); 643 INHERIT (to_attach_no_wait, t); 644 INHERIT (to_have_steppable_watchpoint, t); 645 INHERIT (to_have_continuable_watchpoint, t); 646 INHERIT (to_has_thread_control, t); 647 } 648 #undef INHERIT 649 650 /* Finally, position the target-stack beneath the squashed 651 "current_target". That way code looking for a non-inherited 652 target method can quickly and simply find it. */ 653 current_target.beneath = target_stack; 654 655 if (targetdebug) 656 setup_target_debug (); 657 } 658 659 /* Push a new target type into the stack of the existing target accessors, 660 possibly superseding some of the existing accessors. 661 662 Rather than allow an empty stack, we always have the dummy target at 663 the bottom stratum, so we can call the function vectors without 664 checking them. */ 665 666 void 667 push_target (struct target_ops *t) 668 { 669 struct target_ops **cur; 670 671 /* Check magic number. If wrong, it probably means someone changed 672 the struct definition, but not all the places that initialize one. */ 673 if (t->to_magic != OPS_MAGIC) 674 { 675 fprintf_unfiltered (gdb_stderr, 676 "Magic number of %s target struct wrong\n", 677 t->to_shortname); 678 internal_error (__FILE__, __LINE__, 679 _("failed internal consistency check")); 680 } 681 682 /* Find the proper stratum to install this target in. */ 683 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath) 684 { 685 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum) 686 break; 687 } 688 689 /* If there's already targets at this stratum, remove them. */ 690 /* FIXME: cagney/2003-10-15: I think this should be popping all 691 targets to CUR, and not just those at this stratum level. */ 692 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum) 693 { 694 /* There's already something at this stratum level. Close it, 695 and un-hook it from the stack. */ 696 struct target_ops *tmp = (*cur); 697 698 (*cur) = (*cur)->beneath; 699 tmp->beneath = NULL; 700 target_close (tmp); 701 } 702 703 /* We have removed all targets in our stratum, now add the new one. */ 704 t->beneath = (*cur); 705 (*cur) = t; 706 707 update_current_target (); 708 } 709 710 /* Remove a target_ops vector from the stack, wherever it may be. 711 Return how many times it was removed (0 or 1). */ 712 713 int 714 unpush_target (struct target_ops *t) 715 { 716 struct target_ops **cur; 717 struct target_ops *tmp; 718 719 if (t->to_stratum == dummy_stratum) 720 internal_error (__FILE__, __LINE__, 721 _("Attempt to unpush the dummy target")); 722 723 /* Look for the specified target. Note that we assume that a target 724 can only occur once in the target stack. */ 725 726 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath) 727 { 728 if ((*cur) == t) 729 break; 730 } 731 732 /* If we don't find target_ops, quit. Only open targets should be 733 closed. */ 734 if ((*cur) == NULL) 735 return 0; 736 737 /* Unchain the target. */ 738 tmp = (*cur); 739 (*cur) = (*cur)->beneath; 740 tmp->beneath = NULL; 741 742 update_current_target (); 743 744 /* Finally close the target. Note we do this after unchaining, so 745 any target method calls from within the target_close 746 implementation don't end up in T anymore. */ 747 target_close (t); 748 749 return 1; 750 } 751 752 void 753 pop_all_targets_above (enum strata above_stratum) 754 { 755 while ((int) (current_target.to_stratum) > (int) above_stratum) 756 { 757 if (!unpush_target (target_stack)) 758 { 759 fprintf_unfiltered (gdb_stderr, 760 "pop_all_targets couldn't find target %s\n", 761 target_stack->to_shortname); 762 internal_error (__FILE__, __LINE__, 763 _("failed internal consistency check")); 764 break; 765 } 766 } 767 } 768 769 void 770 pop_all_targets (void) 771 { 772 pop_all_targets_above (dummy_stratum); 773 } 774 775 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */ 776 777 int 778 target_is_pushed (struct target_ops *t) 779 { 780 struct target_ops *cur; 781 782 /* Check magic number. If wrong, it probably means someone changed 783 the struct definition, but not all the places that initialize one. */ 784 if (t->to_magic != OPS_MAGIC) 785 { 786 fprintf_unfiltered (gdb_stderr, 787 "Magic number of %s target struct wrong\n", 788 t->to_shortname); 789 internal_error (__FILE__, __LINE__, 790 _("failed internal consistency check")); 791 } 792 793 for (cur = target_stack; cur != NULL; cur = cur->beneath) 794 if (cur == t) 795 return 1; 796 797 return 0; 798 } 799 800 /* Default implementation of to_get_thread_local_address. */ 801 802 static void 803 generic_tls_error (void) 804 { 805 throw_error (TLS_GENERIC_ERROR, 806 _("Cannot find thread-local variables on this target")); 807 } 808 809 /* Using the objfile specified in OBJFILE, find the address for the 810 current thread's thread-local storage with offset OFFSET. */ 811 CORE_ADDR 812 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset) 813 { 814 volatile CORE_ADDR addr = 0; 815 struct target_ops *target = ¤t_target; 816 817 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ())) 818 { 819 ptid_t ptid = inferior_ptid; 820 volatile struct gdb_exception ex; 821 822 TRY_CATCH (ex, RETURN_MASK_ALL) 823 { 824 CORE_ADDR lm_addr; 825 826 /* Fetch the load module address for this objfile. */ 827 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (), 828 objfile); 829 830 addr = target->to_get_thread_local_address (target, ptid, 831 lm_addr, offset); 832 } 833 /* If an error occurred, print TLS related messages here. Otherwise, 834 throw the error to some higher catcher. */ 835 if (ex.reason < 0) 836 { 837 int objfile_is_library = (objfile->flags & OBJF_SHARED); 838 839 switch (ex.error) 840 { 841 case TLS_NO_LIBRARY_SUPPORT_ERROR: 842 error (_("Cannot find thread-local variables " 843 "in this thread library.")); 844 break; 845 case TLS_LOAD_MODULE_NOT_FOUND_ERROR: 846 if (objfile_is_library) 847 error (_("Cannot find shared library `%s' in dynamic" 848 " linker's load module list"), objfile_name (objfile)); 849 else 850 error (_("Cannot find executable file `%s' in dynamic" 851 " linker's load module list"), objfile_name (objfile)); 852 break; 853 case TLS_NOT_ALLOCATED_YET_ERROR: 854 if (objfile_is_library) 855 error (_("The inferior has not yet allocated storage for" 856 " thread-local variables in\n" 857 "the shared library `%s'\n" 858 "for %s"), 859 objfile_name (objfile), target_pid_to_str (ptid)); 860 else 861 error (_("The inferior has not yet allocated storage for" 862 " thread-local variables in\n" 863 "the executable `%s'\n" 864 "for %s"), 865 objfile_name (objfile), target_pid_to_str (ptid)); 866 break; 867 case TLS_GENERIC_ERROR: 868 if (objfile_is_library) 869 error (_("Cannot find thread-local storage for %s, " 870 "shared library %s:\n%s"), 871 target_pid_to_str (ptid), 872 objfile_name (objfile), ex.message); 873 else 874 error (_("Cannot find thread-local storage for %s, " 875 "executable file %s:\n%s"), 876 target_pid_to_str (ptid), 877 objfile_name (objfile), ex.message); 878 break; 879 default: 880 throw_exception (ex); 881 break; 882 } 883 } 884 } 885 /* It wouldn't be wrong here to try a gdbarch method, too; finding 886 TLS is an ABI-specific thing. But we don't do that yet. */ 887 else 888 error (_("Cannot find thread-local variables on this target")); 889 890 return addr; 891 } 892 893 const char * 894 target_xfer_status_to_string (enum target_xfer_status status) 895 { 896 #define CASE(X) case X: return #X 897 switch (status) 898 { 899 CASE(TARGET_XFER_E_IO); 900 CASE(TARGET_XFER_UNAVAILABLE); 901 default: 902 return "<unknown>"; 903 } 904 #undef CASE 905 }; 906 907 908 #undef MIN 909 #define MIN(A, B) (((A) <= (B)) ? (A) : (B)) 910 911 /* target_read_string -- read a null terminated string, up to LEN bytes, 912 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful. 913 Set *STRING to a pointer to malloc'd memory containing the data; the caller 914 is responsible for freeing it. Return the number of bytes successfully 915 read. */ 916 917 int 918 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop) 919 { 920 int tlen, offset, i; 921 gdb_byte buf[4]; 922 int errcode = 0; 923 char *buffer; 924 int buffer_allocated; 925 char *bufptr; 926 unsigned int nbytes_read = 0; 927 928 gdb_assert (string); 929 930 /* Small for testing. */ 931 buffer_allocated = 4; 932 buffer = xmalloc (buffer_allocated); 933 bufptr = buffer; 934 935 while (len > 0) 936 { 937 tlen = MIN (len, 4 - (memaddr & 3)); 938 offset = memaddr & 3; 939 940 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf); 941 if (errcode != 0) 942 { 943 /* The transfer request might have crossed the boundary to an 944 unallocated region of memory. Retry the transfer, requesting 945 a single byte. */ 946 tlen = 1; 947 offset = 0; 948 errcode = target_read_memory (memaddr, buf, 1); 949 if (errcode != 0) 950 goto done; 951 } 952 953 if (bufptr - buffer + tlen > buffer_allocated) 954 { 955 unsigned int bytes; 956 957 bytes = bufptr - buffer; 958 buffer_allocated *= 2; 959 buffer = xrealloc (buffer, buffer_allocated); 960 bufptr = buffer + bytes; 961 } 962 963 for (i = 0; i < tlen; i++) 964 { 965 *bufptr++ = buf[i + offset]; 966 if (buf[i + offset] == '\000') 967 { 968 nbytes_read += i + 1; 969 goto done; 970 } 971 } 972 973 memaddr += tlen; 974 len -= tlen; 975 nbytes_read += tlen; 976 } 977 done: 978 *string = buffer; 979 if (errnop != NULL) 980 *errnop = errcode; 981 return nbytes_read; 982 } 983 984 struct target_section_table * 985 target_get_section_table (struct target_ops *target) 986 { 987 return (*target->to_get_section_table) (target); 988 } 989 990 /* Find a section containing ADDR. */ 991 992 struct target_section * 993 target_section_by_addr (struct target_ops *target, CORE_ADDR addr) 994 { 995 struct target_section_table *table = target_get_section_table (target); 996 struct target_section *secp; 997 998 if (table == NULL) 999 return NULL; 1000 1001 for (secp = table->sections; secp < table->sections_end; secp++) 1002 { 1003 if (addr >= secp->addr && addr < secp->endaddr) 1004 return secp; 1005 } 1006 return NULL; 1007 } 1008 1009 1010 /* Helper for the memory xfer routines. Checks the attributes of the 1011 memory region of MEMADDR against the read or write being attempted. 1012 If the access is permitted returns true, otherwise returns false. 1013 REGION_P is an optional output parameter. If not-NULL, it is 1014 filled with a pointer to the memory region of MEMADDR. REG_LEN 1015 returns LEN trimmed to the end of the region. This is how much the 1016 caller can continue requesting, if the access is permitted. A 1017 single xfer request must not straddle memory region boundaries. */ 1018 1019 static int 1020 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf, 1021 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len, 1022 struct mem_region **region_p) 1023 { 1024 struct mem_region *region; 1025 1026 region = lookup_mem_region (memaddr); 1027 1028 if (region_p != NULL) 1029 *region_p = region; 1030 1031 switch (region->attrib.mode) 1032 { 1033 case MEM_RO: 1034 if (writebuf != NULL) 1035 return 0; 1036 break; 1037 1038 case MEM_WO: 1039 if (readbuf != NULL) 1040 return 0; 1041 break; 1042 1043 case MEM_FLASH: 1044 /* We only support writing to flash during "load" for now. */ 1045 if (writebuf != NULL) 1046 error (_("Writing to flash memory forbidden in this context")); 1047 break; 1048 1049 case MEM_NONE: 1050 return 0; 1051 } 1052 1053 /* region->hi == 0 means there's no upper bound. */ 1054 if (memaddr + len < region->hi || region->hi == 0) 1055 *reg_len = len; 1056 else 1057 *reg_len = region->hi - memaddr; 1058 1059 return 1; 1060 } 1061 1062 /* Read memory from more than one valid target. A core file, for 1063 instance, could have some of memory but delegate other bits to 1064 the target below it. So, we must manually try all targets. */ 1065 1066 static enum target_xfer_status 1067 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf, 1068 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len, 1069 ULONGEST *xfered_len) 1070 { 1071 enum target_xfer_status res; 1072 1073 do 1074 { 1075 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL, 1076 readbuf, writebuf, memaddr, len, 1077 xfered_len); 1078 if (res == TARGET_XFER_OK) 1079 break; 1080 1081 /* Stop if the target reports that the memory is not available. */ 1082 if (res == TARGET_XFER_UNAVAILABLE) 1083 break; 1084 1085 /* We want to continue past core files to executables, but not 1086 past a running target's memory. */ 1087 if (ops->to_has_all_memory (ops)) 1088 break; 1089 1090 ops = ops->beneath; 1091 } 1092 while (ops != NULL); 1093 1094 /* The cache works at the raw memory level. Make sure the cache 1095 gets updated with raw contents no matter what kind of memory 1096 object was originally being written. Note we do write-through 1097 first, so that if it fails, we don't write to the cache contents 1098 that never made it to the target. */ 1099 if (writebuf != NULL 1100 && !ptid_equal (inferior_ptid, null_ptid) 1101 && target_dcache_init_p () 1102 && (stack_cache_enabled_p () || code_cache_enabled_p ())) 1103 { 1104 DCACHE *dcache = target_dcache_get (); 1105 1106 /* Note that writing to an area of memory which wasn't present 1107 in the cache doesn't cause it to be loaded in. */ 1108 dcache_update (dcache, res, memaddr, writebuf, *xfered_len); 1109 } 1110 1111 return res; 1112 } 1113 1114 /* Perform a partial memory transfer. 1115 For docs see target.h, to_xfer_partial. */ 1116 1117 static enum target_xfer_status 1118 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object, 1119 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr, 1120 ULONGEST len, ULONGEST *xfered_len) 1121 { 1122 enum target_xfer_status res; 1123 ULONGEST reg_len; 1124 struct mem_region *region; 1125 struct inferior *inf; 1126 1127 /* For accesses to unmapped overlay sections, read directly from 1128 files. Must do this first, as MEMADDR may need adjustment. */ 1129 if (readbuf != NULL && overlay_debugging) 1130 { 1131 struct obj_section *section = find_pc_overlay (memaddr); 1132 1133 if (pc_in_unmapped_range (memaddr, section)) 1134 { 1135 struct target_section_table *table 1136 = target_get_section_table (ops); 1137 const char *section_name = section->the_bfd_section->name; 1138 1139 memaddr = overlay_mapped_address (memaddr, section); 1140 return section_table_xfer_memory_partial (readbuf, writebuf, 1141 memaddr, len, xfered_len, 1142 table->sections, 1143 table->sections_end, 1144 section_name); 1145 } 1146 } 1147 1148 /* Try the executable files, if "trust-readonly-sections" is set. */ 1149 if (readbuf != NULL && trust_readonly) 1150 { 1151 struct target_section *secp; 1152 struct target_section_table *table; 1153 1154 secp = target_section_by_addr (ops, memaddr); 1155 if (secp != NULL 1156 && (bfd_get_section_flags (secp->the_bfd_section->owner, 1157 secp->the_bfd_section) 1158 & SEC_READONLY)) 1159 { 1160 table = target_get_section_table (ops); 1161 return section_table_xfer_memory_partial (readbuf, writebuf, 1162 memaddr, len, xfered_len, 1163 table->sections, 1164 table->sections_end, 1165 NULL); 1166 } 1167 } 1168 1169 /* Try GDB's internal data cache. */ 1170 1171 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, ®_len, 1172 ®ion)) 1173 return TARGET_XFER_E_IO; 1174 1175 if (!ptid_equal (inferior_ptid, null_ptid)) 1176 inf = find_inferior_ptid (inferior_ptid); 1177 else 1178 inf = NULL; 1179 1180 if (inf != NULL 1181 && readbuf != NULL 1182 /* The dcache reads whole cache lines; that doesn't play well 1183 with reading from a trace buffer, because reading outside of 1184 the collected memory range fails. */ 1185 && get_traceframe_number () == -1 1186 && (region->attrib.cache 1187 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY) 1188 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY))) 1189 { 1190 DCACHE *dcache = target_dcache_get_or_init (); 1191 1192 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf, 1193 reg_len, xfered_len); 1194 } 1195 1196 /* If none of those methods found the memory we wanted, fall back 1197 to a target partial transfer. Normally a single call to 1198 to_xfer_partial is enough; if it doesn't recognize an object 1199 it will call the to_xfer_partial of the next target down. 1200 But for memory this won't do. Memory is the only target 1201 object which can be read from more than one valid target. 1202 A core file, for instance, could have some of memory but 1203 delegate other bits to the target below it. So, we must 1204 manually try all targets. */ 1205 1206 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len, 1207 xfered_len); 1208 1209 /* If we still haven't got anything, return the last error. We 1210 give up. */ 1211 return res; 1212 } 1213 1214 /* Perform a partial memory transfer. For docs see target.h, 1215 to_xfer_partial. */ 1216 1217 static enum target_xfer_status 1218 memory_xfer_partial (struct target_ops *ops, enum target_object object, 1219 gdb_byte *readbuf, const gdb_byte *writebuf, 1220 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len) 1221 { 1222 enum target_xfer_status res; 1223 1224 /* Zero length requests are ok and require no work. */ 1225 if (len == 0) 1226 return TARGET_XFER_EOF; 1227 1228 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with 1229 breakpoint insns, thus hiding out from higher layers whether 1230 there are software breakpoints inserted in the code stream. */ 1231 if (readbuf != NULL) 1232 { 1233 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len, 1234 xfered_len); 1235 1236 if (res == TARGET_XFER_OK && !show_memory_breakpoints) 1237 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len); 1238 } 1239 else 1240 { 1241 void *buf; 1242 struct cleanup *old_chain; 1243 1244 /* A large write request is likely to be partially satisfied 1245 by memory_xfer_partial_1. We will continually malloc 1246 and free a copy of the entire write request for breakpoint 1247 shadow handling even though we only end up writing a small 1248 subset of it. Cap writes to 4KB to mitigate this. */ 1249 len = min (4096, len); 1250 1251 buf = xmalloc (len); 1252 old_chain = make_cleanup (xfree, buf); 1253 memcpy (buf, writebuf, len); 1254 1255 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len); 1256 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len, 1257 xfered_len); 1258 1259 do_cleanups (old_chain); 1260 } 1261 1262 return res; 1263 } 1264 1265 static void 1266 restore_show_memory_breakpoints (void *arg) 1267 { 1268 show_memory_breakpoints = (uintptr_t) arg; 1269 } 1270 1271 struct cleanup * 1272 make_show_memory_breakpoints_cleanup (int show) 1273 { 1274 int current = show_memory_breakpoints; 1275 1276 show_memory_breakpoints = show; 1277 return make_cleanup (restore_show_memory_breakpoints, 1278 (void *) (uintptr_t) current); 1279 } 1280 1281 /* For docs see target.h, to_xfer_partial. */ 1282 1283 enum target_xfer_status 1284 target_xfer_partial (struct target_ops *ops, 1285 enum target_object object, const char *annex, 1286 gdb_byte *readbuf, const gdb_byte *writebuf, 1287 ULONGEST offset, ULONGEST len, 1288 ULONGEST *xfered_len) 1289 { 1290 enum target_xfer_status retval; 1291 1292 gdb_assert (ops->to_xfer_partial != NULL); 1293 1294 /* Transfer is done when LEN is zero. */ 1295 if (len == 0) 1296 return TARGET_XFER_EOF; 1297 1298 if (writebuf && !may_write_memory) 1299 error (_("Writing to memory is not allowed (addr %s, len %s)"), 1300 core_addr_to_string_nz (offset), plongest (len)); 1301 1302 *xfered_len = 0; 1303 1304 /* If this is a memory transfer, let the memory-specific code 1305 have a look at it instead. Memory transfers are more 1306 complicated. */ 1307 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY 1308 || object == TARGET_OBJECT_CODE_MEMORY) 1309 retval = memory_xfer_partial (ops, object, readbuf, 1310 writebuf, offset, len, xfered_len); 1311 else if (object == TARGET_OBJECT_RAW_MEMORY) 1312 { 1313 /* Skip/avoid accessing the target if the memory region 1314 attributes block the access. Check this here instead of in 1315 raw_memory_xfer_partial as otherwise we'd end up checking 1316 this twice in the case of the memory_xfer_partial path is 1317 taken; once before checking the dcache, and another in the 1318 tail call to raw_memory_xfer_partial. */ 1319 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len, 1320 NULL)) 1321 return TARGET_XFER_E_IO; 1322 1323 /* Request the normal memory object from other layers. */ 1324 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len, 1325 xfered_len); 1326 } 1327 else 1328 retval = ops->to_xfer_partial (ops, object, annex, readbuf, 1329 writebuf, offset, len, xfered_len); 1330 1331 if (targetdebug) 1332 { 1333 const unsigned char *myaddr = NULL; 1334 1335 fprintf_unfiltered (gdb_stdlog, 1336 "%s:target_xfer_partial " 1337 "(%d, %s, %s, %s, %s, %s) = %d, %s", 1338 ops->to_shortname, 1339 (int) object, 1340 (annex ? annex : "(null)"), 1341 host_address_to_string (readbuf), 1342 host_address_to_string (writebuf), 1343 core_addr_to_string_nz (offset), 1344 pulongest (len), retval, 1345 pulongest (*xfered_len)); 1346 1347 if (readbuf) 1348 myaddr = readbuf; 1349 if (writebuf) 1350 myaddr = writebuf; 1351 if (retval == TARGET_XFER_OK && myaddr != NULL) 1352 { 1353 int i; 1354 1355 fputs_unfiltered (", bytes =", gdb_stdlog); 1356 for (i = 0; i < *xfered_len; i++) 1357 { 1358 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0) 1359 { 1360 if (targetdebug < 2 && i > 0) 1361 { 1362 fprintf_unfiltered (gdb_stdlog, " ..."); 1363 break; 1364 } 1365 fprintf_unfiltered (gdb_stdlog, "\n"); 1366 } 1367 1368 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff); 1369 } 1370 } 1371 1372 fputc_unfiltered ('\n', gdb_stdlog); 1373 } 1374 1375 /* Check implementations of to_xfer_partial update *XFERED_LEN 1376 properly. Do assertion after printing debug messages, so that we 1377 can find more clues on assertion failure from debugging messages. */ 1378 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE) 1379 gdb_assert (*xfered_len > 0); 1380 1381 return retval; 1382 } 1383 1384 /* Read LEN bytes of target memory at address MEMADDR, placing the 1385 results in GDB's memory at MYADDR. Returns either 0 for success or 1386 TARGET_XFER_E_IO if any error occurs. 1387 1388 If an error occurs, no guarantee is made about the contents of the data at 1389 MYADDR. In particular, the caller should not depend upon partial reads 1390 filling the buffer with good data. There is no way for the caller to know 1391 how much good data might have been transfered anyway. Callers that can 1392 deal with partial reads should call target_read (which will retry until 1393 it makes no progress, and then return how much was transferred). */ 1394 1395 int 1396 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) 1397 { 1398 /* Dispatch to the topmost target, not the flattened current_target. 1399 Memory accesses check target->to_has_(all_)memory, and the 1400 flattened target doesn't inherit those. */ 1401 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL, 1402 myaddr, memaddr, len) == len) 1403 return 0; 1404 else 1405 return TARGET_XFER_E_IO; 1406 } 1407 1408 /* See target/target.h. */ 1409 1410 int 1411 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result) 1412 { 1413 gdb_byte buf[4]; 1414 int r; 1415 1416 r = target_read_memory (memaddr, buf, sizeof buf); 1417 if (r != 0) 1418 return r; 1419 *result = extract_unsigned_integer (buf, sizeof buf, 1420 gdbarch_byte_order (target_gdbarch ())); 1421 return 0; 1422 } 1423 1424 /* Like target_read_memory, but specify explicitly that this is a read 1425 from the target's raw memory. That is, this read bypasses the 1426 dcache, breakpoint shadowing, etc. */ 1427 1428 int 1429 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) 1430 { 1431 /* See comment in target_read_memory about why the request starts at 1432 current_target.beneath. */ 1433 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL, 1434 myaddr, memaddr, len) == len) 1435 return 0; 1436 else 1437 return TARGET_XFER_E_IO; 1438 } 1439 1440 /* Like target_read_memory, but specify explicitly that this is a read from 1441 the target's stack. This may trigger different cache behavior. */ 1442 1443 int 1444 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) 1445 { 1446 /* See comment in target_read_memory about why the request starts at 1447 current_target.beneath. */ 1448 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL, 1449 myaddr, memaddr, len) == len) 1450 return 0; 1451 else 1452 return TARGET_XFER_E_IO; 1453 } 1454 1455 /* Like target_read_memory, but specify explicitly that this is a read from 1456 the target's code. This may trigger different cache behavior. */ 1457 1458 int 1459 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) 1460 { 1461 /* See comment in target_read_memory about why the request starts at 1462 current_target.beneath. */ 1463 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL, 1464 myaddr, memaddr, len) == len) 1465 return 0; 1466 else 1467 return TARGET_XFER_E_IO; 1468 } 1469 1470 /* Write LEN bytes from MYADDR to target memory at address MEMADDR. 1471 Returns either 0 for success or TARGET_XFER_E_IO if any 1472 error occurs. If an error occurs, no guarantee is made about how 1473 much data got written. Callers that can deal with partial writes 1474 should call target_write. */ 1475 1476 int 1477 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len) 1478 { 1479 /* See comment in target_read_memory about why the request starts at 1480 current_target.beneath. */ 1481 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL, 1482 myaddr, memaddr, len) == len) 1483 return 0; 1484 else 1485 return TARGET_XFER_E_IO; 1486 } 1487 1488 /* Write LEN bytes from MYADDR to target raw memory at address 1489 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO 1490 if any error occurs. If an error occurs, no guarantee is made 1491 about how much data got written. Callers that can deal with 1492 partial writes should call target_write. */ 1493 1494 int 1495 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len) 1496 { 1497 /* See comment in target_read_memory about why the request starts at 1498 current_target.beneath. */ 1499 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL, 1500 myaddr, memaddr, len) == len) 1501 return 0; 1502 else 1503 return TARGET_XFER_E_IO; 1504 } 1505 1506 /* Fetch the target's memory map. */ 1507 1508 VEC(mem_region_s) * 1509 target_memory_map (void) 1510 { 1511 VEC(mem_region_s) *result; 1512 struct mem_region *last_one, *this_one; 1513 int ix; 1514 struct target_ops *t; 1515 1516 result = current_target.to_memory_map (¤t_target); 1517 if (result == NULL) 1518 return NULL; 1519 1520 qsort (VEC_address (mem_region_s, result), 1521 VEC_length (mem_region_s, result), 1522 sizeof (struct mem_region), mem_region_cmp); 1523 1524 /* Check that regions do not overlap. Simultaneously assign 1525 a numbering for the "mem" commands to use to refer to 1526 each region. */ 1527 last_one = NULL; 1528 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++) 1529 { 1530 this_one->number = ix; 1531 1532 if (last_one && last_one->hi > this_one->lo) 1533 { 1534 warning (_("Overlapping regions in memory map: ignoring")); 1535 VEC_free (mem_region_s, result); 1536 return NULL; 1537 } 1538 last_one = this_one; 1539 } 1540 1541 return result; 1542 } 1543 1544 void 1545 target_flash_erase (ULONGEST address, LONGEST length) 1546 { 1547 current_target.to_flash_erase (¤t_target, address, length); 1548 } 1549 1550 void 1551 target_flash_done (void) 1552 { 1553 current_target.to_flash_done (¤t_target); 1554 } 1555 1556 static void 1557 show_trust_readonly (struct ui_file *file, int from_tty, 1558 struct cmd_list_element *c, const char *value) 1559 { 1560 fprintf_filtered (file, 1561 _("Mode for reading from readonly sections is %s.\n"), 1562 value); 1563 } 1564 1565 /* Target vector read/write partial wrapper functions. */ 1566 1567 static enum target_xfer_status 1568 target_read_partial (struct target_ops *ops, 1569 enum target_object object, 1570 const char *annex, gdb_byte *buf, 1571 ULONGEST offset, ULONGEST len, 1572 ULONGEST *xfered_len) 1573 { 1574 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len, 1575 xfered_len); 1576 } 1577 1578 static enum target_xfer_status 1579 target_write_partial (struct target_ops *ops, 1580 enum target_object object, 1581 const char *annex, const gdb_byte *buf, 1582 ULONGEST offset, LONGEST len, ULONGEST *xfered_len) 1583 { 1584 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len, 1585 xfered_len); 1586 } 1587 1588 /* Wrappers to perform the full transfer. */ 1589 1590 /* For docs on target_read see target.h. */ 1591 1592 LONGEST 1593 target_read (struct target_ops *ops, 1594 enum target_object object, 1595 const char *annex, gdb_byte *buf, 1596 ULONGEST offset, LONGEST len) 1597 { 1598 LONGEST xfered = 0; 1599 1600 while (xfered < len) 1601 { 1602 ULONGEST xfered_len; 1603 enum target_xfer_status status; 1604 1605 status = target_read_partial (ops, object, annex, 1606 (gdb_byte *) buf + xfered, 1607 offset + xfered, len - xfered, 1608 &xfered_len); 1609 1610 /* Call an observer, notifying them of the xfer progress? */ 1611 if (status == TARGET_XFER_EOF) 1612 return xfered; 1613 else if (status == TARGET_XFER_OK) 1614 { 1615 xfered += xfered_len; 1616 QUIT; 1617 } 1618 else 1619 return -1; 1620 1621 } 1622 return len; 1623 } 1624 1625 /* Assuming that the entire [begin, end) range of memory cannot be 1626 read, try to read whatever subrange is possible to read. 1627 1628 The function returns, in RESULT, either zero or one memory block. 1629 If there's a readable subrange at the beginning, it is completely 1630 read and returned. Any further readable subrange will not be read. 1631 Otherwise, if there's a readable subrange at the end, it will be 1632 completely read and returned. Any readable subranges before it 1633 (obviously, not starting at the beginning), will be ignored. In 1634 other cases -- either no readable subrange, or readable subrange(s) 1635 that is neither at the beginning, or end, nothing is returned. 1636 1637 The purpose of this function is to handle a read across a boundary 1638 of accessible memory in a case when memory map is not available. 1639 The above restrictions are fine for this case, but will give 1640 incorrect results if the memory is 'patchy'. However, supporting 1641 'patchy' memory would require trying to read every single byte, 1642 and it seems unacceptable solution. Explicit memory map is 1643 recommended for this case -- and target_read_memory_robust will 1644 take care of reading multiple ranges then. */ 1645 1646 static void 1647 read_whatever_is_readable (struct target_ops *ops, 1648 ULONGEST begin, ULONGEST end, 1649 VEC(memory_read_result_s) **result) 1650 { 1651 gdb_byte *buf = xmalloc (end - begin); 1652 ULONGEST current_begin = begin; 1653 ULONGEST current_end = end; 1654 int forward; 1655 memory_read_result_s r; 1656 ULONGEST xfered_len; 1657 1658 /* If we previously failed to read 1 byte, nothing can be done here. */ 1659 if (end - begin <= 1) 1660 { 1661 xfree (buf); 1662 return; 1663 } 1664 1665 /* Check that either first or the last byte is readable, and give up 1666 if not. This heuristic is meant to permit reading accessible memory 1667 at the boundary of accessible region. */ 1668 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL, 1669 buf, begin, 1, &xfered_len) == TARGET_XFER_OK) 1670 { 1671 forward = 1; 1672 ++current_begin; 1673 } 1674 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL, 1675 buf + (end-begin) - 1, end - 1, 1, 1676 &xfered_len) == TARGET_XFER_OK) 1677 { 1678 forward = 0; 1679 --current_end; 1680 } 1681 else 1682 { 1683 xfree (buf); 1684 return; 1685 } 1686 1687 /* Loop invariant is that the [current_begin, current_end) was previously 1688 found to be not readable as a whole. 1689 1690 Note loop condition -- if the range has 1 byte, we can't divide the range 1691 so there's no point trying further. */ 1692 while (current_end - current_begin > 1) 1693 { 1694 ULONGEST first_half_begin, first_half_end; 1695 ULONGEST second_half_begin, second_half_end; 1696 LONGEST xfer; 1697 ULONGEST middle = current_begin + (current_end - current_begin)/2; 1698 1699 if (forward) 1700 { 1701 first_half_begin = current_begin; 1702 first_half_end = middle; 1703 second_half_begin = middle; 1704 second_half_end = current_end; 1705 } 1706 else 1707 { 1708 first_half_begin = middle; 1709 first_half_end = current_end; 1710 second_half_begin = current_begin; 1711 second_half_end = middle; 1712 } 1713 1714 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL, 1715 buf + (first_half_begin - begin), 1716 first_half_begin, 1717 first_half_end - first_half_begin); 1718 1719 if (xfer == first_half_end - first_half_begin) 1720 { 1721 /* This half reads up fine. So, the error must be in the 1722 other half. */ 1723 current_begin = second_half_begin; 1724 current_end = second_half_end; 1725 } 1726 else 1727 { 1728 /* This half is not readable. Because we've tried one byte, we 1729 know some part of this half if actually redable. Go to the next 1730 iteration to divide again and try to read. 1731 1732 We don't handle the other half, because this function only tries 1733 to read a single readable subrange. */ 1734 current_begin = first_half_begin; 1735 current_end = first_half_end; 1736 } 1737 } 1738 1739 if (forward) 1740 { 1741 /* The [begin, current_begin) range has been read. */ 1742 r.begin = begin; 1743 r.end = current_begin; 1744 r.data = buf; 1745 } 1746 else 1747 { 1748 /* The [current_end, end) range has been read. */ 1749 LONGEST rlen = end - current_end; 1750 1751 r.data = xmalloc (rlen); 1752 memcpy (r.data, buf + current_end - begin, rlen); 1753 r.begin = current_end; 1754 r.end = end; 1755 xfree (buf); 1756 } 1757 VEC_safe_push(memory_read_result_s, (*result), &r); 1758 } 1759 1760 void 1761 free_memory_read_result_vector (void *x) 1762 { 1763 VEC(memory_read_result_s) *v = x; 1764 memory_read_result_s *current; 1765 int ix; 1766 1767 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix) 1768 { 1769 xfree (current->data); 1770 } 1771 VEC_free (memory_read_result_s, v); 1772 } 1773 1774 VEC(memory_read_result_s) * 1775 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len) 1776 { 1777 VEC(memory_read_result_s) *result = 0; 1778 1779 LONGEST xfered = 0; 1780 while (xfered < len) 1781 { 1782 struct mem_region *region = lookup_mem_region (offset + xfered); 1783 LONGEST rlen; 1784 1785 /* If there is no explicit region, a fake one should be created. */ 1786 gdb_assert (region); 1787 1788 if (region->hi == 0) 1789 rlen = len - xfered; 1790 else 1791 rlen = region->hi - offset; 1792 1793 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO) 1794 { 1795 /* Cannot read this region. Note that we can end up here only 1796 if the region is explicitly marked inaccessible, or 1797 'inaccessible-by-default' is in effect. */ 1798 xfered += rlen; 1799 } 1800 else 1801 { 1802 LONGEST to_read = min (len - xfered, rlen); 1803 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read); 1804 1805 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL, 1806 (gdb_byte *) buffer, 1807 offset + xfered, to_read); 1808 /* Call an observer, notifying them of the xfer progress? */ 1809 if (xfer <= 0) 1810 { 1811 /* Got an error reading full chunk. See if maybe we can read 1812 some subrange. */ 1813 xfree (buffer); 1814 read_whatever_is_readable (ops, offset + xfered, 1815 offset + xfered + to_read, &result); 1816 xfered += to_read; 1817 } 1818 else 1819 { 1820 struct memory_read_result r; 1821 r.data = buffer; 1822 r.begin = offset + xfered; 1823 r.end = r.begin + xfer; 1824 VEC_safe_push (memory_read_result_s, result, &r); 1825 xfered += xfer; 1826 } 1827 QUIT; 1828 } 1829 } 1830 return result; 1831 } 1832 1833 1834 /* An alternative to target_write with progress callbacks. */ 1835 1836 LONGEST 1837 target_write_with_progress (struct target_ops *ops, 1838 enum target_object object, 1839 const char *annex, const gdb_byte *buf, 1840 ULONGEST offset, LONGEST len, 1841 void (*progress) (ULONGEST, void *), void *baton) 1842 { 1843 LONGEST xfered = 0; 1844 1845 /* Give the progress callback a chance to set up. */ 1846 if (progress) 1847 (*progress) (0, baton); 1848 1849 while (xfered < len) 1850 { 1851 ULONGEST xfered_len; 1852 enum target_xfer_status status; 1853 1854 status = target_write_partial (ops, object, annex, 1855 (gdb_byte *) buf + xfered, 1856 offset + xfered, len - xfered, 1857 &xfered_len); 1858 1859 if (status != TARGET_XFER_OK) 1860 return status == TARGET_XFER_EOF ? xfered : -1; 1861 1862 if (progress) 1863 (*progress) (xfered_len, baton); 1864 1865 xfered += xfered_len; 1866 QUIT; 1867 } 1868 return len; 1869 } 1870 1871 /* For docs on target_write see target.h. */ 1872 1873 LONGEST 1874 target_write (struct target_ops *ops, 1875 enum target_object object, 1876 const char *annex, const gdb_byte *buf, 1877 ULONGEST offset, LONGEST len) 1878 { 1879 return target_write_with_progress (ops, object, annex, buf, offset, len, 1880 NULL, NULL); 1881 } 1882 1883 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return 1884 the size of the transferred data. PADDING additional bytes are 1885 available in *BUF_P. This is a helper function for 1886 target_read_alloc; see the declaration of that function for more 1887 information. */ 1888 1889 static LONGEST 1890 target_read_alloc_1 (struct target_ops *ops, enum target_object object, 1891 const char *annex, gdb_byte **buf_p, int padding) 1892 { 1893 size_t buf_alloc, buf_pos; 1894 gdb_byte *buf; 1895 1896 /* This function does not have a length parameter; it reads the 1897 entire OBJECT). Also, it doesn't support objects fetched partly 1898 from one target and partly from another (in a different stratum, 1899 e.g. a core file and an executable). Both reasons make it 1900 unsuitable for reading memory. */ 1901 gdb_assert (object != TARGET_OBJECT_MEMORY); 1902 1903 /* Start by reading up to 4K at a time. The target will throttle 1904 this number down if necessary. */ 1905 buf_alloc = 4096; 1906 buf = xmalloc (buf_alloc); 1907 buf_pos = 0; 1908 while (1) 1909 { 1910 ULONGEST xfered_len; 1911 enum target_xfer_status status; 1912 1913 status = target_read_partial (ops, object, annex, &buf[buf_pos], 1914 buf_pos, buf_alloc - buf_pos - padding, 1915 &xfered_len); 1916 1917 if (status == TARGET_XFER_EOF) 1918 { 1919 /* Read all there was. */ 1920 if (buf_pos == 0) 1921 xfree (buf); 1922 else 1923 *buf_p = buf; 1924 return buf_pos; 1925 } 1926 else if (status != TARGET_XFER_OK) 1927 { 1928 /* An error occurred. */ 1929 xfree (buf); 1930 return TARGET_XFER_E_IO; 1931 } 1932 1933 buf_pos += xfered_len; 1934 1935 /* If the buffer is filling up, expand it. */ 1936 if (buf_alloc < buf_pos * 2) 1937 { 1938 buf_alloc *= 2; 1939 buf = xrealloc (buf, buf_alloc); 1940 } 1941 1942 QUIT; 1943 } 1944 } 1945 1946 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return 1947 the size of the transferred data. See the declaration in "target.h" 1948 function for more information about the return value. */ 1949 1950 LONGEST 1951 target_read_alloc (struct target_ops *ops, enum target_object object, 1952 const char *annex, gdb_byte **buf_p) 1953 { 1954 return target_read_alloc_1 (ops, object, annex, buf_p, 0); 1955 } 1956 1957 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and 1958 returned as a string, allocated using xmalloc. If an error occurs 1959 or the transfer is unsupported, NULL is returned. Empty objects 1960 are returned as allocated but empty strings. A warning is issued 1961 if the result contains any embedded NUL bytes. */ 1962 1963 char * 1964 target_read_stralloc (struct target_ops *ops, enum target_object object, 1965 const char *annex) 1966 { 1967 gdb_byte *buffer; 1968 char *bufstr; 1969 LONGEST i, transferred; 1970 1971 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1); 1972 bufstr = (char *) buffer; 1973 1974 if (transferred < 0) 1975 return NULL; 1976 1977 if (transferred == 0) 1978 return xstrdup (""); 1979 1980 bufstr[transferred] = 0; 1981 1982 /* Check for embedded NUL bytes; but allow trailing NULs. */ 1983 for (i = strlen (bufstr); i < transferred; i++) 1984 if (bufstr[i] != 0) 1985 { 1986 warning (_("target object %d, annex %s, " 1987 "contained unexpected null characters"), 1988 (int) object, annex ? annex : "(none)"); 1989 break; 1990 } 1991 1992 return bufstr; 1993 } 1994 1995 /* Memory transfer methods. */ 1996 1997 void 1998 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf, 1999 LONGEST len) 2000 { 2001 /* This method is used to read from an alternate, non-current 2002 target. This read must bypass the overlay support (as symbols 2003 don't match this target), and GDB's internal cache (wrong cache 2004 for this target). */ 2005 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len) 2006 != len) 2007 memory_error (TARGET_XFER_E_IO, addr); 2008 } 2009 2010 ULONGEST 2011 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr, 2012 int len, enum bfd_endian byte_order) 2013 { 2014 gdb_byte buf[sizeof (ULONGEST)]; 2015 2016 gdb_assert (len <= sizeof (buf)); 2017 get_target_memory (ops, addr, buf, len); 2018 return extract_unsigned_integer (buf, len, byte_order); 2019 } 2020 2021 /* See target.h. */ 2022 2023 int 2024 target_insert_breakpoint (struct gdbarch *gdbarch, 2025 struct bp_target_info *bp_tgt) 2026 { 2027 if (!may_insert_breakpoints) 2028 { 2029 warning (_("May not insert breakpoints")); 2030 return 1; 2031 } 2032 2033 return current_target.to_insert_breakpoint (¤t_target, 2034 gdbarch, bp_tgt); 2035 } 2036 2037 /* See target.h. */ 2038 2039 int 2040 target_remove_breakpoint (struct gdbarch *gdbarch, 2041 struct bp_target_info *bp_tgt) 2042 { 2043 /* This is kind of a weird case to handle, but the permission might 2044 have been changed after breakpoints were inserted - in which case 2045 we should just take the user literally and assume that any 2046 breakpoints should be left in place. */ 2047 if (!may_insert_breakpoints) 2048 { 2049 warning (_("May not remove breakpoints")); 2050 return 1; 2051 } 2052 2053 return current_target.to_remove_breakpoint (¤t_target, 2054 gdbarch, bp_tgt); 2055 } 2056 2057 static void 2058 target_info (char *args, int from_tty) 2059 { 2060 struct target_ops *t; 2061 int has_all_mem = 0; 2062 2063 if (symfile_objfile != NULL) 2064 printf_unfiltered (_("Symbols from \"%s\".\n"), 2065 objfile_name (symfile_objfile)); 2066 2067 for (t = target_stack; t != NULL; t = t->beneath) 2068 { 2069 if (!(*t->to_has_memory) (t)) 2070 continue; 2071 2072 if ((int) (t->to_stratum) <= (int) dummy_stratum) 2073 continue; 2074 if (has_all_mem) 2075 printf_unfiltered (_("\tWhile running this, " 2076 "GDB does not access memory from...\n")); 2077 printf_unfiltered ("%s:\n", t->to_longname); 2078 (t->to_files_info) (t); 2079 has_all_mem = (*t->to_has_all_memory) (t); 2080 } 2081 } 2082 2083 /* This function is called before any new inferior is created, e.g. 2084 by running a program, attaching, or connecting to a target. 2085 It cleans up any state from previous invocations which might 2086 change between runs. This is a subset of what target_preopen 2087 resets (things which might change between targets). */ 2088 2089 void 2090 target_pre_inferior (int from_tty) 2091 { 2092 /* Clear out solib state. Otherwise the solib state of the previous 2093 inferior might have survived and is entirely wrong for the new 2094 target. This has been observed on GNU/Linux using glibc 2.3. How 2095 to reproduce: 2096 2097 bash$ ./foo& 2098 [1] 4711 2099 bash$ ./foo& 2100 [1] 4712 2101 bash$ gdb ./foo 2102 [...] 2103 (gdb) attach 4711 2104 (gdb) detach 2105 (gdb) attach 4712 2106 Cannot access memory at address 0xdeadbeef 2107 */ 2108 2109 /* In some OSs, the shared library list is the same/global/shared 2110 across inferiors. If code is shared between processes, so are 2111 memory regions and features. */ 2112 if (!gdbarch_has_global_solist (target_gdbarch ())) 2113 { 2114 no_shared_libraries (NULL, from_tty); 2115 2116 invalidate_target_mem_regions (); 2117 2118 target_clear_description (); 2119 } 2120 2121 agent_capability_invalidate (); 2122 } 2123 2124 /* Callback for iterate_over_inferiors. Gets rid of the given 2125 inferior. */ 2126 2127 static int 2128 dispose_inferior (struct inferior *inf, void *args) 2129 { 2130 struct thread_info *thread; 2131 2132 thread = any_thread_of_process (inf->pid); 2133 if (thread) 2134 { 2135 switch_to_thread (thread->ptid); 2136 2137 /* Core inferiors actually should be detached, not killed. */ 2138 if (target_has_execution) 2139 target_kill (); 2140 else 2141 target_detach (NULL, 0); 2142 } 2143 2144 return 0; 2145 } 2146 2147 /* This is to be called by the open routine before it does 2148 anything. */ 2149 2150 void 2151 target_preopen (int from_tty) 2152 { 2153 dont_repeat (); 2154 2155 if (have_inferiors ()) 2156 { 2157 if (!from_tty 2158 || !have_live_inferiors () 2159 || query (_("A program is being debugged already. Kill it? "))) 2160 iterate_over_inferiors (dispose_inferior, NULL); 2161 else 2162 error (_("Program not killed.")); 2163 } 2164 2165 /* Calling target_kill may remove the target from the stack. But if 2166 it doesn't (which seems like a win for UDI), remove it now. */ 2167 /* Leave the exec target, though. The user may be switching from a 2168 live process to a core of the same program. */ 2169 pop_all_targets_above (file_stratum); 2170 2171 target_pre_inferior (from_tty); 2172 } 2173 2174 /* Detach a target after doing deferred register stores. */ 2175 2176 void 2177 target_detach (const char *args, int from_tty) 2178 { 2179 struct target_ops* t; 2180 2181 if (gdbarch_has_global_breakpoints (target_gdbarch ())) 2182 /* Don't remove global breakpoints here. They're removed on 2183 disconnection from the target. */ 2184 ; 2185 else 2186 /* If we're in breakpoints-always-inserted mode, have to remove 2187 them before detaching. */ 2188 remove_breakpoints_pid (ptid_get_pid (inferior_ptid)); 2189 2190 prepare_for_detach (); 2191 2192 current_target.to_detach (¤t_target, args, from_tty); 2193 } 2194 2195 void 2196 target_disconnect (const char *args, int from_tty) 2197 { 2198 /* If we're in breakpoints-always-inserted mode or if breakpoints 2199 are global across processes, we have to remove them before 2200 disconnecting. */ 2201 remove_breakpoints (); 2202 2203 current_target.to_disconnect (¤t_target, args, from_tty); 2204 } 2205 2206 ptid_t 2207 target_wait (ptid_t ptid, struct target_waitstatus *status, int options) 2208 { 2209 return (current_target.to_wait) (¤t_target, ptid, status, options); 2210 } 2211 2212 char * 2213 target_pid_to_str (ptid_t ptid) 2214 { 2215 return (*current_target.to_pid_to_str) (¤t_target, ptid); 2216 } 2217 2218 char * 2219 target_thread_name (struct thread_info *info) 2220 { 2221 return current_target.to_thread_name (¤t_target, info); 2222 } 2223 2224 void 2225 target_resume (ptid_t ptid, int step, enum gdb_signal signal) 2226 { 2227 struct target_ops *t; 2228 2229 target_dcache_invalidate (); 2230 2231 current_target.to_resume (¤t_target, ptid, step, signal); 2232 2233 registers_changed_ptid (ptid); 2234 /* We only set the internal executing state here. The user/frontend 2235 running state is set at a higher level. */ 2236 set_executing (ptid, 1); 2237 clear_inline_frame_state (ptid); 2238 } 2239 2240 void 2241 target_pass_signals (int numsigs, unsigned char *pass_signals) 2242 { 2243 (*current_target.to_pass_signals) (¤t_target, numsigs, pass_signals); 2244 } 2245 2246 void 2247 target_program_signals (int numsigs, unsigned char *program_signals) 2248 { 2249 (*current_target.to_program_signals) (¤t_target, 2250 numsigs, program_signals); 2251 } 2252 2253 static int 2254 default_follow_fork (struct target_ops *self, int follow_child, 2255 int detach_fork) 2256 { 2257 /* Some target returned a fork event, but did not know how to follow it. */ 2258 internal_error (__FILE__, __LINE__, 2259 _("could not find a target to follow fork")); 2260 } 2261 2262 /* Look through the list of possible targets for a target that can 2263 follow forks. */ 2264 2265 int 2266 target_follow_fork (int follow_child, int detach_fork) 2267 { 2268 return current_target.to_follow_fork (¤t_target, 2269 follow_child, detach_fork); 2270 } 2271 2272 static void 2273 default_mourn_inferior (struct target_ops *self) 2274 { 2275 internal_error (__FILE__, __LINE__, 2276 _("could not find a target to follow mourn inferior")); 2277 } 2278 2279 void 2280 target_mourn_inferior (void) 2281 { 2282 current_target.to_mourn_inferior (¤t_target); 2283 2284 /* We no longer need to keep handles on any of the object files. 2285 Make sure to release them to avoid unnecessarily locking any 2286 of them while we're not actually debugging. */ 2287 bfd_cache_close_all (); 2288 } 2289 2290 /* Look for a target which can describe architectural features, starting 2291 from TARGET. If we find one, return its description. */ 2292 2293 const struct target_desc * 2294 target_read_description (struct target_ops *target) 2295 { 2296 return target->to_read_description (target); 2297 } 2298 2299 /* This implements a basic search of memory, reading target memory and 2300 performing the search here (as opposed to performing the search in on the 2301 target side with, for example, gdbserver). */ 2302 2303 int 2304 simple_search_memory (struct target_ops *ops, 2305 CORE_ADDR start_addr, ULONGEST search_space_len, 2306 const gdb_byte *pattern, ULONGEST pattern_len, 2307 CORE_ADDR *found_addrp) 2308 { 2309 /* NOTE: also defined in find.c testcase. */ 2310 #define SEARCH_CHUNK_SIZE 16000 2311 const unsigned chunk_size = SEARCH_CHUNK_SIZE; 2312 /* Buffer to hold memory contents for searching. */ 2313 gdb_byte *search_buf; 2314 unsigned search_buf_size; 2315 struct cleanup *old_cleanups; 2316 2317 search_buf_size = chunk_size + pattern_len - 1; 2318 2319 /* No point in trying to allocate a buffer larger than the search space. */ 2320 if (search_space_len < search_buf_size) 2321 search_buf_size = search_space_len; 2322 2323 search_buf = malloc (search_buf_size); 2324 if (search_buf == NULL) 2325 error (_("Unable to allocate memory to perform the search.")); 2326 old_cleanups = make_cleanup (free_current_contents, &search_buf); 2327 2328 /* Prime the search buffer. */ 2329 2330 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, 2331 search_buf, start_addr, search_buf_size) != search_buf_size) 2332 { 2333 warning (_("Unable to access %s bytes of target " 2334 "memory at %s, halting search."), 2335 pulongest (search_buf_size), hex_string (start_addr)); 2336 do_cleanups (old_cleanups); 2337 return -1; 2338 } 2339 2340 /* Perform the search. 2341 2342 The loop is kept simple by allocating [N + pattern-length - 1] bytes. 2343 When we've scanned N bytes we copy the trailing bytes to the start and 2344 read in another N bytes. */ 2345 2346 while (search_space_len >= pattern_len) 2347 { 2348 gdb_byte *found_ptr; 2349 unsigned nr_search_bytes = min (search_space_len, search_buf_size); 2350 2351 found_ptr = memmem (search_buf, nr_search_bytes, 2352 pattern, pattern_len); 2353 2354 if (found_ptr != NULL) 2355 { 2356 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf); 2357 2358 *found_addrp = found_addr; 2359 do_cleanups (old_cleanups); 2360 return 1; 2361 } 2362 2363 /* Not found in this chunk, skip to next chunk. */ 2364 2365 /* Don't let search_space_len wrap here, it's unsigned. */ 2366 if (search_space_len >= chunk_size) 2367 search_space_len -= chunk_size; 2368 else 2369 search_space_len = 0; 2370 2371 if (search_space_len >= pattern_len) 2372 { 2373 unsigned keep_len = search_buf_size - chunk_size; 2374 CORE_ADDR read_addr = start_addr + chunk_size + keep_len; 2375 int nr_to_read; 2376 2377 /* Copy the trailing part of the previous iteration to the front 2378 of the buffer for the next iteration. */ 2379 gdb_assert (keep_len == pattern_len - 1); 2380 memcpy (search_buf, search_buf + chunk_size, keep_len); 2381 2382 nr_to_read = min (search_space_len - keep_len, chunk_size); 2383 2384 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, 2385 search_buf + keep_len, read_addr, 2386 nr_to_read) != nr_to_read) 2387 { 2388 warning (_("Unable to access %s bytes of target " 2389 "memory at %s, halting search."), 2390 plongest (nr_to_read), 2391 hex_string (read_addr)); 2392 do_cleanups (old_cleanups); 2393 return -1; 2394 } 2395 2396 start_addr += chunk_size; 2397 } 2398 } 2399 2400 /* Not found. */ 2401 2402 do_cleanups (old_cleanups); 2403 return 0; 2404 } 2405 2406 /* Default implementation of memory-searching. */ 2407 2408 static int 2409 default_search_memory (struct target_ops *self, 2410 CORE_ADDR start_addr, ULONGEST search_space_len, 2411 const gdb_byte *pattern, ULONGEST pattern_len, 2412 CORE_ADDR *found_addrp) 2413 { 2414 /* Start over from the top of the target stack. */ 2415 return simple_search_memory (current_target.beneath, 2416 start_addr, search_space_len, 2417 pattern, pattern_len, found_addrp); 2418 } 2419 2420 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the 2421 sequence of bytes in PATTERN with length PATTERN_LEN. 2422 2423 The result is 1 if found, 0 if not found, and -1 if there was an error 2424 requiring halting of the search (e.g. memory read error). 2425 If the pattern is found the address is recorded in FOUND_ADDRP. */ 2426 2427 int 2428 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len, 2429 const gdb_byte *pattern, ULONGEST pattern_len, 2430 CORE_ADDR *found_addrp) 2431 { 2432 return current_target.to_search_memory (¤t_target, start_addr, 2433 search_space_len, 2434 pattern, pattern_len, found_addrp); 2435 } 2436 2437 /* Look through the currently pushed targets. If none of them will 2438 be able to restart the currently running process, issue an error 2439 message. */ 2440 2441 void 2442 target_require_runnable (void) 2443 { 2444 struct target_ops *t; 2445 2446 for (t = target_stack; t != NULL; t = t->beneath) 2447 { 2448 /* If this target knows how to create a new program, then 2449 assume we will still be able to after killing the current 2450 one. Either killing and mourning will not pop T, or else 2451 find_default_run_target will find it again. */ 2452 if (t->to_create_inferior != NULL) 2453 return; 2454 2455 /* Do not worry about targets at certain strata that can not 2456 create inferiors. Assume they will be pushed again if 2457 necessary, and continue to the process_stratum. */ 2458 if (t->to_stratum == thread_stratum 2459 || t->to_stratum == record_stratum 2460 || t->to_stratum == arch_stratum) 2461 continue; 2462 2463 error (_("The \"%s\" target does not support \"run\". " 2464 "Try \"help target\" or \"continue\"."), 2465 t->to_shortname); 2466 } 2467 2468 /* This function is only called if the target is running. In that 2469 case there should have been a process_stratum target and it 2470 should either know how to create inferiors, or not... */ 2471 internal_error (__FILE__, __LINE__, _("No targets found")); 2472 } 2473 2474 /* Whether GDB is allowed to fall back to the default run target for 2475 "run", "attach", etc. when no target is connected yet. */ 2476 static int auto_connect_native_target = 1; 2477 2478 static void 2479 show_auto_connect_native_target (struct ui_file *file, int from_tty, 2480 struct cmd_list_element *c, const char *value) 2481 { 2482 fprintf_filtered (file, 2483 _("Whether GDB may automatically connect to the " 2484 "native target is %s.\n"), 2485 value); 2486 } 2487 2488 /* Look through the list of possible targets for a target that can 2489 execute a run or attach command without any other data. This is 2490 used to locate the default process stratum. 2491 2492 If DO_MESG is not NULL, the result is always valid (error() is 2493 called for errors); else, return NULL on error. */ 2494 2495 static struct target_ops * 2496 find_default_run_target (char *do_mesg) 2497 { 2498 struct target_ops *runable = NULL; 2499 2500 if (auto_connect_native_target) 2501 { 2502 struct target_ops *t; 2503 int count = 0; 2504 int i; 2505 2506 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i) 2507 { 2508 if (t->to_can_run != delegate_can_run && target_can_run (t)) 2509 { 2510 runable = t; 2511 ++count; 2512 } 2513 } 2514 2515 if (count != 1) 2516 runable = NULL; 2517 } 2518 2519 if (runable == NULL) 2520 { 2521 if (do_mesg) 2522 error (_("Don't know how to %s. Try \"help target\"."), do_mesg); 2523 else 2524 return NULL; 2525 } 2526 2527 return runable; 2528 } 2529 2530 /* See target.h. */ 2531 2532 struct target_ops * 2533 find_attach_target (void) 2534 { 2535 struct target_ops *t; 2536 2537 /* If a target on the current stack can attach, use it. */ 2538 for (t = current_target.beneath; t != NULL; t = t->beneath) 2539 { 2540 if (t->to_attach != NULL) 2541 break; 2542 } 2543 2544 /* Otherwise, use the default run target for attaching. */ 2545 if (t == NULL) 2546 t = find_default_run_target ("attach"); 2547 2548 return t; 2549 } 2550 2551 /* See target.h. */ 2552 2553 struct target_ops * 2554 find_run_target (void) 2555 { 2556 struct target_ops *t; 2557 2558 /* If a target on the current stack can attach, use it. */ 2559 for (t = current_target.beneath; t != NULL; t = t->beneath) 2560 { 2561 if (t->to_create_inferior != NULL) 2562 break; 2563 } 2564 2565 /* Otherwise, use the default run target. */ 2566 if (t == NULL) 2567 t = find_default_run_target ("run"); 2568 2569 return t; 2570 } 2571 2572 /* Implement the "info proc" command. */ 2573 2574 int 2575 target_info_proc (const char *args, enum info_proc_what what) 2576 { 2577 struct target_ops *t; 2578 2579 /* If we're already connected to something that can get us OS 2580 related data, use it. Otherwise, try using the native 2581 target. */ 2582 if (current_target.to_stratum >= process_stratum) 2583 t = current_target.beneath; 2584 else 2585 t = find_default_run_target (NULL); 2586 2587 for (; t != NULL; t = t->beneath) 2588 { 2589 if (t->to_info_proc != NULL) 2590 { 2591 t->to_info_proc (t, args, what); 2592 2593 if (targetdebug) 2594 fprintf_unfiltered (gdb_stdlog, 2595 "target_info_proc (\"%s\", %d)\n", args, what); 2596 2597 return 1; 2598 } 2599 } 2600 2601 return 0; 2602 } 2603 2604 static int 2605 find_default_supports_disable_randomization (struct target_ops *self) 2606 { 2607 struct target_ops *t; 2608 2609 t = find_default_run_target (NULL); 2610 if (t && t->to_supports_disable_randomization) 2611 return (t->to_supports_disable_randomization) (t); 2612 return 0; 2613 } 2614 2615 int 2616 target_supports_disable_randomization (void) 2617 { 2618 struct target_ops *t; 2619 2620 for (t = ¤t_target; t != NULL; t = t->beneath) 2621 if (t->to_supports_disable_randomization) 2622 return t->to_supports_disable_randomization (t); 2623 2624 return 0; 2625 } 2626 2627 char * 2628 target_get_osdata (const char *type) 2629 { 2630 struct target_ops *t; 2631 2632 /* If we're already connected to something that can get us OS 2633 related data, use it. Otherwise, try using the native 2634 target. */ 2635 if (current_target.to_stratum >= process_stratum) 2636 t = current_target.beneath; 2637 else 2638 t = find_default_run_target ("get OS data"); 2639 2640 if (!t) 2641 return NULL; 2642 2643 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type); 2644 } 2645 2646 static struct address_space * 2647 default_thread_address_space (struct target_ops *self, ptid_t ptid) 2648 { 2649 struct inferior *inf; 2650 2651 /* Fall-back to the "main" address space of the inferior. */ 2652 inf = find_inferior_ptid (ptid); 2653 2654 if (inf == NULL || inf->aspace == NULL) 2655 internal_error (__FILE__, __LINE__, 2656 _("Can't determine the current " 2657 "address space of thread %s\n"), 2658 target_pid_to_str (ptid)); 2659 2660 return inf->aspace; 2661 } 2662 2663 /* Determine the current address space of thread PTID. */ 2664 2665 struct address_space * 2666 target_thread_address_space (ptid_t ptid) 2667 { 2668 struct address_space *aspace; 2669 2670 aspace = current_target.to_thread_address_space (¤t_target, ptid); 2671 gdb_assert (aspace != NULL); 2672 2673 return aspace; 2674 } 2675 2676 2677 /* Target file operations. */ 2678 2679 static struct target_ops * 2680 default_fileio_target (void) 2681 { 2682 /* If we're already connected to something that can perform 2683 file I/O, use it. Otherwise, try using the native target. */ 2684 if (current_target.to_stratum >= process_stratum) 2685 return current_target.beneath; 2686 else 2687 return find_default_run_target ("file I/O"); 2688 } 2689 2690 /* Open FILENAME on the target, using FLAGS and MODE. Return a 2691 target file descriptor, or -1 if an error occurs (and set 2692 *TARGET_ERRNO). */ 2693 int 2694 target_fileio_open (const char *filename, int flags, int mode, 2695 int *target_errno) 2696 { 2697 struct target_ops *t; 2698 2699 for (t = default_fileio_target (); t != NULL; t = t->beneath) 2700 { 2701 if (t->to_fileio_open != NULL) 2702 { 2703 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno); 2704 2705 if (targetdebug) 2706 fprintf_unfiltered (gdb_stdlog, 2707 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n", 2708 filename, flags, mode, 2709 fd, fd != -1 ? 0 : *target_errno); 2710 return fd; 2711 } 2712 } 2713 2714 *target_errno = FILEIO_ENOSYS; 2715 return -1; 2716 } 2717 2718 /* Write up to LEN bytes from WRITE_BUF to FD on the target. 2719 Return the number of bytes written, or -1 if an error occurs 2720 (and set *TARGET_ERRNO). */ 2721 int 2722 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len, 2723 ULONGEST offset, int *target_errno) 2724 { 2725 struct target_ops *t; 2726 2727 for (t = default_fileio_target (); t != NULL; t = t->beneath) 2728 { 2729 if (t->to_fileio_pwrite != NULL) 2730 { 2731 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset, 2732 target_errno); 2733 2734 if (targetdebug) 2735 fprintf_unfiltered (gdb_stdlog, 2736 "target_fileio_pwrite (%d,...,%d,%s) " 2737 "= %d (%d)\n", 2738 fd, len, pulongest (offset), 2739 ret, ret != -1 ? 0 : *target_errno); 2740 return ret; 2741 } 2742 } 2743 2744 *target_errno = FILEIO_ENOSYS; 2745 return -1; 2746 } 2747 2748 /* Read up to LEN bytes FD on the target into READ_BUF. 2749 Return the number of bytes read, or -1 if an error occurs 2750 (and set *TARGET_ERRNO). */ 2751 int 2752 target_fileio_pread (int fd, gdb_byte *read_buf, int len, 2753 ULONGEST offset, int *target_errno) 2754 { 2755 struct target_ops *t; 2756 2757 for (t = default_fileio_target (); t != NULL; t = t->beneath) 2758 { 2759 if (t->to_fileio_pread != NULL) 2760 { 2761 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset, 2762 target_errno); 2763 2764 if (targetdebug) 2765 fprintf_unfiltered (gdb_stdlog, 2766 "target_fileio_pread (%d,...,%d,%s) " 2767 "= %d (%d)\n", 2768 fd, len, pulongest (offset), 2769 ret, ret != -1 ? 0 : *target_errno); 2770 return ret; 2771 } 2772 } 2773 2774 *target_errno = FILEIO_ENOSYS; 2775 return -1; 2776 } 2777 2778 /* Close FD on the target. Return 0, or -1 if an error occurs 2779 (and set *TARGET_ERRNO). */ 2780 int 2781 target_fileio_close (int fd, int *target_errno) 2782 { 2783 struct target_ops *t; 2784 2785 for (t = default_fileio_target (); t != NULL; t = t->beneath) 2786 { 2787 if (t->to_fileio_close != NULL) 2788 { 2789 int ret = t->to_fileio_close (t, fd, target_errno); 2790 2791 if (targetdebug) 2792 fprintf_unfiltered (gdb_stdlog, 2793 "target_fileio_close (%d) = %d (%d)\n", 2794 fd, ret, ret != -1 ? 0 : *target_errno); 2795 return ret; 2796 } 2797 } 2798 2799 *target_errno = FILEIO_ENOSYS; 2800 return -1; 2801 } 2802 2803 /* Unlink FILENAME on the target. Return 0, or -1 if an error 2804 occurs (and set *TARGET_ERRNO). */ 2805 int 2806 target_fileio_unlink (const char *filename, int *target_errno) 2807 { 2808 struct target_ops *t; 2809 2810 for (t = default_fileio_target (); t != NULL; t = t->beneath) 2811 { 2812 if (t->to_fileio_unlink != NULL) 2813 { 2814 int ret = t->to_fileio_unlink (t, filename, target_errno); 2815 2816 if (targetdebug) 2817 fprintf_unfiltered (gdb_stdlog, 2818 "target_fileio_unlink (%s) = %d (%d)\n", 2819 filename, ret, ret != -1 ? 0 : *target_errno); 2820 return ret; 2821 } 2822 } 2823 2824 *target_errno = FILEIO_ENOSYS; 2825 return -1; 2826 } 2827 2828 /* Read value of symbolic link FILENAME on the target. Return a 2829 null-terminated string allocated via xmalloc, or NULL if an error 2830 occurs (and set *TARGET_ERRNO). */ 2831 char * 2832 target_fileio_readlink (const char *filename, int *target_errno) 2833 { 2834 struct target_ops *t; 2835 2836 for (t = default_fileio_target (); t != NULL; t = t->beneath) 2837 { 2838 if (t->to_fileio_readlink != NULL) 2839 { 2840 char *ret = t->to_fileio_readlink (t, filename, target_errno); 2841 2842 if (targetdebug) 2843 fprintf_unfiltered (gdb_stdlog, 2844 "target_fileio_readlink (%s) = %s (%d)\n", 2845 filename, ret? ret : "(nil)", 2846 ret? 0 : *target_errno); 2847 return ret; 2848 } 2849 } 2850 2851 *target_errno = FILEIO_ENOSYS; 2852 return NULL; 2853 } 2854 2855 static void 2856 target_fileio_close_cleanup (void *opaque) 2857 { 2858 int fd = *(int *) opaque; 2859 int target_errno; 2860 2861 target_fileio_close (fd, &target_errno); 2862 } 2863 2864 /* Read target file FILENAME. Store the result in *BUF_P and 2865 return the size of the transferred data. PADDING additional bytes are 2866 available in *BUF_P. This is a helper function for 2867 target_fileio_read_alloc; see the declaration of that function for more 2868 information. */ 2869 2870 static LONGEST 2871 target_fileio_read_alloc_1 (const char *filename, 2872 gdb_byte **buf_p, int padding) 2873 { 2874 struct cleanup *close_cleanup; 2875 size_t buf_alloc, buf_pos; 2876 gdb_byte *buf; 2877 LONGEST n; 2878 int fd; 2879 int target_errno; 2880 2881 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno); 2882 if (fd == -1) 2883 return -1; 2884 2885 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd); 2886 2887 /* Start by reading up to 4K at a time. The target will throttle 2888 this number down if necessary. */ 2889 buf_alloc = 4096; 2890 buf = xmalloc (buf_alloc); 2891 buf_pos = 0; 2892 while (1) 2893 { 2894 n = target_fileio_pread (fd, &buf[buf_pos], 2895 buf_alloc - buf_pos - padding, buf_pos, 2896 &target_errno); 2897 if (n < 0) 2898 { 2899 /* An error occurred. */ 2900 do_cleanups (close_cleanup); 2901 xfree (buf); 2902 return -1; 2903 } 2904 else if (n == 0) 2905 { 2906 /* Read all there was. */ 2907 do_cleanups (close_cleanup); 2908 if (buf_pos == 0) 2909 xfree (buf); 2910 else 2911 *buf_p = buf; 2912 return buf_pos; 2913 } 2914 2915 buf_pos += n; 2916 2917 /* If the buffer is filling up, expand it. */ 2918 if (buf_alloc < buf_pos * 2) 2919 { 2920 buf_alloc *= 2; 2921 buf = xrealloc (buf, buf_alloc); 2922 } 2923 2924 QUIT; 2925 } 2926 } 2927 2928 /* Read target file FILENAME. Store the result in *BUF_P and return 2929 the size of the transferred data. See the declaration in "target.h" 2930 function for more information about the return value. */ 2931 2932 LONGEST 2933 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p) 2934 { 2935 return target_fileio_read_alloc_1 (filename, buf_p, 0); 2936 } 2937 2938 /* Read target file FILENAME. The result is NUL-terminated and 2939 returned as a string, allocated using xmalloc. If an error occurs 2940 or the transfer is unsupported, NULL is returned. Empty objects 2941 are returned as allocated but empty strings. A warning is issued 2942 if the result contains any embedded NUL bytes. */ 2943 2944 char * 2945 target_fileio_read_stralloc (const char *filename) 2946 { 2947 gdb_byte *buffer; 2948 char *bufstr; 2949 LONGEST i, transferred; 2950 2951 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1); 2952 bufstr = (char *) buffer; 2953 2954 if (transferred < 0) 2955 return NULL; 2956 2957 if (transferred == 0) 2958 return xstrdup (""); 2959 2960 bufstr[transferred] = 0; 2961 2962 /* Check for embedded NUL bytes; but allow trailing NULs. */ 2963 for (i = strlen (bufstr); i < transferred; i++) 2964 if (bufstr[i] != 0) 2965 { 2966 warning (_("target file %s " 2967 "contained unexpected null characters"), 2968 filename); 2969 break; 2970 } 2971 2972 return bufstr; 2973 } 2974 2975 2976 static int 2977 default_region_ok_for_hw_watchpoint (struct target_ops *self, 2978 CORE_ADDR addr, int len) 2979 { 2980 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT); 2981 } 2982 2983 static int 2984 default_watchpoint_addr_within_range (struct target_ops *target, 2985 CORE_ADDR addr, 2986 CORE_ADDR start, int length) 2987 { 2988 return addr >= start && addr < start + length; 2989 } 2990 2991 static struct gdbarch * 2992 default_thread_architecture (struct target_ops *ops, ptid_t ptid) 2993 { 2994 return target_gdbarch (); 2995 } 2996 2997 static int 2998 return_zero (struct target_ops *ignore) 2999 { 3000 return 0; 3001 } 3002 3003 static int 3004 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2) 3005 { 3006 return 0; 3007 } 3008 3009 /* 3010 * Find the next target down the stack from the specified target. 3011 */ 3012 3013 struct target_ops * 3014 find_target_beneath (struct target_ops *t) 3015 { 3016 return t->beneath; 3017 } 3018 3019 /* See target.h. */ 3020 3021 struct target_ops * 3022 find_target_at (enum strata stratum) 3023 { 3024 struct target_ops *t; 3025 3026 for (t = current_target.beneath; t != NULL; t = t->beneath) 3027 if (t->to_stratum == stratum) 3028 return t; 3029 3030 return NULL; 3031 } 3032 3033 3034 /* The inferior process has died. Long live the inferior! */ 3035 3036 void 3037 generic_mourn_inferior (void) 3038 { 3039 ptid_t ptid; 3040 3041 ptid = inferior_ptid; 3042 inferior_ptid = null_ptid; 3043 3044 /* Mark breakpoints uninserted in case something tries to delete a 3045 breakpoint while we delete the inferior's threads (which would 3046 fail, since the inferior is long gone). */ 3047 mark_breakpoints_out (); 3048 3049 if (!ptid_equal (ptid, null_ptid)) 3050 { 3051 int pid = ptid_get_pid (ptid); 3052 exit_inferior (pid); 3053 } 3054 3055 /* Note this wipes step-resume breakpoints, so needs to be done 3056 after exit_inferior, which ends up referencing the step-resume 3057 breakpoints through clear_thread_inferior_resources. */ 3058 breakpoint_init_inferior (inf_exited); 3059 3060 registers_changed (); 3061 3062 reopen_exec_file (); 3063 reinit_frame_cache (); 3064 3065 if (deprecated_detach_hook) 3066 deprecated_detach_hook (); 3067 } 3068 3069 /* Convert a normal process ID to a string. Returns the string in a 3070 static buffer. */ 3071 3072 char * 3073 normal_pid_to_str (ptid_t ptid) 3074 { 3075 static char buf[32]; 3076 3077 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid)); 3078 return buf; 3079 } 3080 3081 static char * 3082 default_pid_to_str (struct target_ops *ops, ptid_t ptid) 3083 { 3084 return normal_pid_to_str (ptid); 3085 } 3086 3087 /* Error-catcher for target_find_memory_regions. */ 3088 static int 3089 dummy_find_memory_regions (struct target_ops *self, 3090 find_memory_region_ftype ignore1, void *ignore2) 3091 { 3092 error (_("Command not implemented for this target.")); 3093 return 0; 3094 } 3095 3096 /* Error-catcher for target_make_corefile_notes. */ 3097 static char * 3098 dummy_make_corefile_notes (struct target_ops *self, 3099 bfd *ignore1, int *ignore2) 3100 { 3101 error (_("Command not implemented for this target.")); 3102 return NULL; 3103 } 3104 3105 /* Set up the handful of non-empty slots needed by the dummy target 3106 vector. */ 3107 3108 static void 3109 init_dummy_target (void) 3110 { 3111 dummy_target.to_shortname = "None"; 3112 dummy_target.to_longname = "None"; 3113 dummy_target.to_doc = ""; 3114 dummy_target.to_supports_disable_randomization 3115 = find_default_supports_disable_randomization; 3116 dummy_target.to_stratum = dummy_stratum; 3117 dummy_target.to_has_all_memory = return_zero; 3118 dummy_target.to_has_memory = return_zero; 3119 dummy_target.to_has_stack = return_zero; 3120 dummy_target.to_has_registers = return_zero; 3121 dummy_target.to_has_execution = return_zero_has_execution; 3122 dummy_target.to_magic = OPS_MAGIC; 3123 3124 install_dummy_methods (&dummy_target); 3125 } 3126 3127 3128 void 3129 target_close (struct target_ops *targ) 3130 { 3131 gdb_assert (!target_is_pushed (targ)); 3132 3133 if (targ->to_xclose != NULL) 3134 targ->to_xclose (targ); 3135 else if (targ->to_close != NULL) 3136 targ->to_close (targ); 3137 3138 if (targetdebug) 3139 fprintf_unfiltered (gdb_stdlog, "target_close ()\n"); 3140 } 3141 3142 int 3143 target_thread_alive (ptid_t ptid) 3144 { 3145 return current_target.to_thread_alive (¤t_target, ptid); 3146 } 3147 3148 void 3149 target_update_thread_list (void) 3150 { 3151 current_target.to_update_thread_list (¤t_target); 3152 } 3153 3154 void 3155 target_stop (ptid_t ptid) 3156 { 3157 if (!may_stop) 3158 { 3159 warning (_("May not interrupt or stop the target, ignoring attempt")); 3160 return; 3161 } 3162 3163 (*current_target.to_stop) (¤t_target, ptid); 3164 } 3165 3166 /* See target/target.h. */ 3167 3168 void 3169 target_stop_and_wait (ptid_t ptid) 3170 { 3171 struct target_waitstatus status; 3172 int was_non_stop = non_stop; 3173 3174 non_stop = 1; 3175 target_stop (ptid); 3176 3177 memset (&status, 0, sizeof (status)); 3178 target_wait (ptid, &status, 0); 3179 3180 non_stop = was_non_stop; 3181 } 3182 3183 /* See target/target.h. */ 3184 3185 void 3186 target_continue_no_signal (ptid_t ptid) 3187 { 3188 target_resume (ptid, 0, GDB_SIGNAL_0); 3189 } 3190 3191 /* Concatenate ELEM to LIST, a comma separate list, and return the 3192 result. The LIST incoming argument is released. */ 3193 3194 static char * 3195 str_comma_list_concat_elem (char *list, const char *elem) 3196 { 3197 if (list == NULL) 3198 return xstrdup (elem); 3199 else 3200 return reconcat (list, list, ", ", elem, (char *) NULL); 3201 } 3202 3203 /* Helper for target_options_to_string. If OPT is present in 3204 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET. 3205 Returns the new resulting string. OPT is removed from 3206 TARGET_OPTIONS. */ 3207 3208 static char * 3209 do_option (int *target_options, char *ret, 3210 int opt, char *opt_str) 3211 { 3212 if ((*target_options & opt) != 0) 3213 { 3214 ret = str_comma_list_concat_elem (ret, opt_str); 3215 *target_options &= ~opt; 3216 } 3217 3218 return ret; 3219 } 3220 3221 char * 3222 target_options_to_string (int target_options) 3223 { 3224 char *ret = NULL; 3225 3226 #define DO_TARG_OPTION(OPT) \ 3227 ret = do_option (&target_options, ret, OPT, #OPT) 3228 3229 DO_TARG_OPTION (TARGET_WNOHANG); 3230 3231 if (target_options != 0) 3232 ret = str_comma_list_concat_elem (ret, "unknown???"); 3233 3234 if (ret == NULL) 3235 ret = xstrdup (""); 3236 return ret; 3237 } 3238 3239 static void 3240 debug_print_register (const char * func, 3241 struct regcache *regcache, int regno) 3242 { 3243 struct gdbarch *gdbarch = get_regcache_arch (regcache); 3244 3245 fprintf_unfiltered (gdb_stdlog, "%s ", func); 3246 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch) 3247 && gdbarch_register_name (gdbarch, regno) != NULL 3248 && gdbarch_register_name (gdbarch, regno)[0] != '\0') 3249 fprintf_unfiltered (gdb_stdlog, "(%s)", 3250 gdbarch_register_name (gdbarch, regno)); 3251 else 3252 fprintf_unfiltered (gdb_stdlog, "(%d)", regno); 3253 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)) 3254 { 3255 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 3256 int i, size = register_size (gdbarch, regno); 3257 gdb_byte buf[MAX_REGISTER_SIZE]; 3258 3259 regcache_raw_collect (regcache, regno, buf); 3260 fprintf_unfiltered (gdb_stdlog, " = "); 3261 for (i = 0; i < size; i++) 3262 { 3263 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]); 3264 } 3265 if (size <= sizeof (LONGEST)) 3266 { 3267 ULONGEST val = extract_unsigned_integer (buf, size, byte_order); 3268 3269 fprintf_unfiltered (gdb_stdlog, " %s %s", 3270 core_addr_to_string_nz (val), plongest (val)); 3271 } 3272 } 3273 fprintf_unfiltered (gdb_stdlog, "\n"); 3274 } 3275 3276 void 3277 target_fetch_registers (struct regcache *regcache, int regno) 3278 { 3279 current_target.to_fetch_registers (¤t_target, regcache, regno); 3280 if (targetdebug) 3281 debug_print_register ("target_fetch_registers", regcache, regno); 3282 } 3283 3284 void 3285 target_store_registers (struct regcache *regcache, int regno) 3286 { 3287 struct target_ops *t; 3288 3289 if (!may_write_registers) 3290 error (_("Writing to registers is not allowed (regno %d)"), regno); 3291 3292 current_target.to_store_registers (¤t_target, regcache, regno); 3293 if (targetdebug) 3294 { 3295 debug_print_register ("target_store_registers", regcache, regno); 3296 } 3297 } 3298 3299 int 3300 target_core_of_thread (ptid_t ptid) 3301 { 3302 return current_target.to_core_of_thread (¤t_target, ptid); 3303 } 3304 3305 int 3306 simple_verify_memory (struct target_ops *ops, 3307 const gdb_byte *data, CORE_ADDR lma, ULONGEST size) 3308 { 3309 LONGEST total_xfered = 0; 3310 3311 while (total_xfered < size) 3312 { 3313 ULONGEST xfered_len; 3314 enum target_xfer_status status; 3315 gdb_byte buf[1024]; 3316 ULONGEST howmuch = min (sizeof (buf), size - total_xfered); 3317 3318 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL, 3319 buf, NULL, lma + total_xfered, howmuch, 3320 &xfered_len); 3321 if (status == TARGET_XFER_OK 3322 && memcmp (data + total_xfered, buf, xfered_len) == 0) 3323 { 3324 total_xfered += xfered_len; 3325 QUIT; 3326 } 3327 else 3328 return 0; 3329 } 3330 return 1; 3331 } 3332 3333 /* Default implementation of memory verification. */ 3334 3335 static int 3336 default_verify_memory (struct target_ops *self, 3337 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size) 3338 { 3339 /* Start over from the top of the target stack. */ 3340 return simple_verify_memory (current_target.beneath, 3341 data, memaddr, size); 3342 } 3343 3344 int 3345 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size) 3346 { 3347 return current_target.to_verify_memory (¤t_target, 3348 data, memaddr, size); 3349 } 3350 3351 /* The documentation for this function is in its prototype declaration in 3352 target.h. */ 3353 3354 int 3355 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw) 3356 { 3357 return current_target.to_insert_mask_watchpoint (¤t_target, 3358 addr, mask, rw); 3359 } 3360 3361 /* The documentation for this function is in its prototype declaration in 3362 target.h. */ 3363 3364 int 3365 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw) 3366 { 3367 return current_target.to_remove_mask_watchpoint (¤t_target, 3368 addr, mask, rw); 3369 } 3370 3371 /* The documentation for this function is in its prototype declaration 3372 in target.h. */ 3373 3374 int 3375 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask) 3376 { 3377 return current_target.to_masked_watch_num_registers (¤t_target, 3378 addr, mask); 3379 } 3380 3381 /* The documentation for this function is in its prototype declaration 3382 in target.h. */ 3383 3384 int 3385 target_ranged_break_num_registers (void) 3386 { 3387 return current_target.to_ranged_break_num_registers (¤t_target); 3388 } 3389 3390 /* See target.h. */ 3391 3392 struct btrace_target_info * 3393 target_enable_btrace (ptid_t ptid) 3394 { 3395 return current_target.to_enable_btrace (¤t_target, ptid); 3396 } 3397 3398 /* See target.h. */ 3399 3400 void 3401 target_disable_btrace (struct btrace_target_info *btinfo) 3402 { 3403 current_target.to_disable_btrace (¤t_target, btinfo); 3404 } 3405 3406 /* See target.h. */ 3407 3408 void 3409 target_teardown_btrace (struct btrace_target_info *btinfo) 3410 { 3411 current_target.to_teardown_btrace (¤t_target, btinfo); 3412 } 3413 3414 /* See target.h. */ 3415 3416 enum btrace_error 3417 target_read_btrace (VEC (btrace_block_s) **btrace, 3418 struct btrace_target_info *btinfo, 3419 enum btrace_read_type type) 3420 { 3421 return current_target.to_read_btrace (¤t_target, btrace, btinfo, type); 3422 } 3423 3424 /* See target.h. */ 3425 3426 void 3427 target_stop_recording (void) 3428 { 3429 current_target.to_stop_recording (¤t_target); 3430 } 3431 3432 /* See target.h. */ 3433 3434 void 3435 target_save_record (const char *filename) 3436 { 3437 current_target.to_save_record (¤t_target, filename); 3438 } 3439 3440 /* See target.h. */ 3441 3442 int 3443 target_supports_delete_record (void) 3444 { 3445 struct target_ops *t; 3446 3447 for (t = current_target.beneath; t != NULL; t = t->beneath) 3448 if (t->to_delete_record != delegate_delete_record 3449 && t->to_delete_record != tdefault_delete_record) 3450 return 1; 3451 3452 return 0; 3453 } 3454 3455 /* See target.h. */ 3456 3457 void 3458 target_delete_record (void) 3459 { 3460 current_target.to_delete_record (¤t_target); 3461 } 3462 3463 /* See target.h. */ 3464 3465 int 3466 target_record_is_replaying (void) 3467 { 3468 return current_target.to_record_is_replaying (¤t_target); 3469 } 3470 3471 /* See target.h. */ 3472 3473 void 3474 target_goto_record_begin (void) 3475 { 3476 current_target.to_goto_record_begin (¤t_target); 3477 } 3478 3479 /* See target.h. */ 3480 3481 void 3482 target_goto_record_end (void) 3483 { 3484 current_target.to_goto_record_end (¤t_target); 3485 } 3486 3487 /* See target.h. */ 3488 3489 void 3490 target_goto_record (ULONGEST insn) 3491 { 3492 current_target.to_goto_record (¤t_target, insn); 3493 } 3494 3495 /* See target.h. */ 3496 3497 void 3498 target_insn_history (int size, int flags) 3499 { 3500 current_target.to_insn_history (¤t_target, size, flags); 3501 } 3502 3503 /* See target.h. */ 3504 3505 void 3506 target_insn_history_from (ULONGEST from, int size, int flags) 3507 { 3508 current_target.to_insn_history_from (¤t_target, from, size, flags); 3509 } 3510 3511 /* See target.h. */ 3512 3513 void 3514 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags) 3515 { 3516 current_target.to_insn_history_range (¤t_target, begin, end, flags); 3517 } 3518 3519 /* See target.h. */ 3520 3521 void 3522 target_call_history (int size, int flags) 3523 { 3524 current_target.to_call_history (¤t_target, size, flags); 3525 } 3526 3527 /* See target.h. */ 3528 3529 void 3530 target_call_history_from (ULONGEST begin, int size, int flags) 3531 { 3532 current_target.to_call_history_from (¤t_target, begin, size, flags); 3533 } 3534 3535 /* See target.h. */ 3536 3537 void 3538 target_call_history_range (ULONGEST begin, ULONGEST end, int flags) 3539 { 3540 current_target.to_call_history_range (¤t_target, begin, end, flags); 3541 } 3542 3543 /* See target.h. */ 3544 3545 const struct frame_unwind * 3546 target_get_unwinder (void) 3547 { 3548 return current_target.to_get_unwinder (¤t_target); 3549 } 3550 3551 /* See target.h. */ 3552 3553 const struct frame_unwind * 3554 target_get_tailcall_unwinder (void) 3555 { 3556 return current_target.to_get_tailcall_unwinder (¤t_target); 3557 } 3558 3559 /* Default implementation of to_decr_pc_after_break. */ 3560 3561 static CORE_ADDR 3562 default_target_decr_pc_after_break (struct target_ops *ops, 3563 struct gdbarch *gdbarch) 3564 { 3565 return gdbarch_decr_pc_after_break (gdbarch); 3566 } 3567 3568 /* See target.h. */ 3569 3570 CORE_ADDR 3571 target_decr_pc_after_break (struct gdbarch *gdbarch) 3572 { 3573 return current_target.to_decr_pc_after_break (¤t_target, gdbarch); 3574 } 3575 3576 /* See target.h. */ 3577 3578 void 3579 target_prepare_to_generate_core (void) 3580 { 3581 current_target.to_prepare_to_generate_core (¤t_target); 3582 } 3583 3584 /* See target.h. */ 3585 3586 void 3587 target_done_generating_core (void) 3588 { 3589 current_target.to_done_generating_core (¤t_target); 3590 } 3591 3592 static void 3593 setup_target_debug (void) 3594 { 3595 memcpy (&debug_target, ¤t_target, sizeof debug_target); 3596 3597 init_debug_target (¤t_target); 3598 } 3599 3600 3601 static char targ_desc[] = 3602 "Names of targets and files being debugged.\nShows the entire \ 3603 stack of targets currently in use (including the exec-file,\n\ 3604 core-file, and process, if any), as well as the symbol file name."; 3605 3606 static void 3607 default_rcmd (struct target_ops *self, const char *command, 3608 struct ui_file *output) 3609 { 3610 error (_("\"monitor\" command not supported by this target.")); 3611 } 3612 3613 static void 3614 do_monitor_command (char *cmd, 3615 int from_tty) 3616 { 3617 target_rcmd (cmd, gdb_stdtarg); 3618 } 3619 3620 /* Print the name of each layers of our target stack. */ 3621 3622 static void 3623 maintenance_print_target_stack (char *cmd, int from_tty) 3624 { 3625 struct target_ops *t; 3626 3627 printf_filtered (_("The current target stack is:\n")); 3628 3629 for (t = target_stack; t != NULL; t = t->beneath) 3630 { 3631 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname); 3632 } 3633 } 3634 3635 /* Controls if targets can report that they can/are async. This is 3636 just for maintainers to use when debugging gdb. */ 3637 int target_async_permitted = 1; 3638 3639 /* The set command writes to this variable. If the inferior is 3640 executing, target_async_permitted is *not* updated. */ 3641 static int target_async_permitted_1 = 1; 3642 3643 static void 3644 maint_set_target_async_command (char *args, int from_tty, 3645 struct cmd_list_element *c) 3646 { 3647 if (have_live_inferiors ()) 3648 { 3649 target_async_permitted_1 = target_async_permitted; 3650 error (_("Cannot change this setting while the inferior is running.")); 3651 } 3652 3653 target_async_permitted = target_async_permitted_1; 3654 } 3655 3656 static void 3657 maint_show_target_async_command (struct ui_file *file, int from_tty, 3658 struct cmd_list_element *c, 3659 const char *value) 3660 { 3661 fprintf_filtered (file, 3662 _("Controlling the inferior in " 3663 "asynchronous mode is %s.\n"), value); 3664 } 3665 3666 /* Temporary copies of permission settings. */ 3667 3668 static int may_write_registers_1 = 1; 3669 static int may_write_memory_1 = 1; 3670 static int may_insert_breakpoints_1 = 1; 3671 static int may_insert_tracepoints_1 = 1; 3672 static int may_insert_fast_tracepoints_1 = 1; 3673 static int may_stop_1 = 1; 3674 3675 /* Make the user-set values match the real values again. */ 3676 3677 void 3678 update_target_permissions (void) 3679 { 3680 may_write_registers_1 = may_write_registers; 3681 may_write_memory_1 = may_write_memory; 3682 may_insert_breakpoints_1 = may_insert_breakpoints; 3683 may_insert_tracepoints_1 = may_insert_tracepoints; 3684 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints; 3685 may_stop_1 = may_stop; 3686 } 3687 3688 /* The one function handles (most of) the permission flags in the same 3689 way. */ 3690 3691 static void 3692 set_target_permissions (char *args, int from_tty, 3693 struct cmd_list_element *c) 3694 { 3695 if (target_has_execution) 3696 { 3697 update_target_permissions (); 3698 error (_("Cannot change this setting while the inferior is running.")); 3699 } 3700 3701 /* Make the real values match the user-changed values. */ 3702 may_write_registers = may_write_registers_1; 3703 may_insert_breakpoints = may_insert_breakpoints_1; 3704 may_insert_tracepoints = may_insert_tracepoints_1; 3705 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1; 3706 may_stop = may_stop_1; 3707 update_observer_mode (); 3708 } 3709 3710 /* Set memory write permission independently of observer mode. */ 3711 3712 static void 3713 set_write_memory_permission (char *args, int from_tty, 3714 struct cmd_list_element *c) 3715 { 3716 /* Make the real values match the user-changed values. */ 3717 may_write_memory = may_write_memory_1; 3718 update_observer_mode (); 3719 } 3720 3721 3722 void 3723 initialize_targets (void) 3724 { 3725 init_dummy_target (); 3726 push_target (&dummy_target); 3727 3728 add_info ("target", target_info, targ_desc); 3729 add_info ("files", target_info, targ_desc); 3730 3731 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\ 3732 Set target debugging."), _("\ 3733 Show target debugging."), _("\ 3734 When non-zero, target debugging is enabled. Higher numbers are more\n\ 3735 verbose."), 3736 set_targetdebug, 3737 show_targetdebug, 3738 &setdebuglist, &showdebuglist); 3739 3740 add_setshow_boolean_cmd ("trust-readonly-sections", class_support, 3741 &trust_readonly, _("\ 3742 Set mode for reading from readonly sections."), _("\ 3743 Show mode for reading from readonly sections."), _("\ 3744 When this mode is on, memory reads from readonly sections (such as .text)\n\ 3745 will be read from the object file instead of from the target. This will\n\ 3746 result in significant performance improvement for remote targets."), 3747 NULL, 3748 show_trust_readonly, 3749 &setlist, &showlist); 3750 3751 add_com ("monitor", class_obscure, do_monitor_command, 3752 _("Send a command to the remote monitor (remote targets only).")); 3753 3754 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack, 3755 _("Print the name of each layer of the internal target stack."), 3756 &maintenanceprintlist); 3757 3758 add_setshow_boolean_cmd ("target-async", no_class, 3759 &target_async_permitted_1, _("\ 3760 Set whether gdb controls the inferior in asynchronous mode."), _("\ 3761 Show whether gdb controls the inferior in asynchronous mode."), _("\ 3762 Tells gdb whether to control the inferior in asynchronous mode."), 3763 maint_set_target_async_command, 3764 maint_show_target_async_command, 3765 &maintenance_set_cmdlist, 3766 &maintenance_show_cmdlist); 3767 3768 add_setshow_boolean_cmd ("may-write-registers", class_support, 3769 &may_write_registers_1, _("\ 3770 Set permission to write into registers."), _("\ 3771 Show permission to write into registers."), _("\ 3772 When this permission is on, GDB may write into the target's registers.\n\ 3773 Otherwise, any sort of write attempt will result in an error."), 3774 set_target_permissions, NULL, 3775 &setlist, &showlist); 3776 3777 add_setshow_boolean_cmd ("may-write-memory", class_support, 3778 &may_write_memory_1, _("\ 3779 Set permission to write into target memory."), _("\ 3780 Show permission to write into target memory."), _("\ 3781 When this permission is on, GDB may write into the target's memory.\n\ 3782 Otherwise, any sort of write attempt will result in an error."), 3783 set_write_memory_permission, NULL, 3784 &setlist, &showlist); 3785 3786 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support, 3787 &may_insert_breakpoints_1, _("\ 3788 Set permission to insert breakpoints in the target."), _("\ 3789 Show permission to insert breakpoints in the target."), _("\ 3790 When this permission is on, GDB may insert breakpoints in the program.\n\ 3791 Otherwise, any sort of insertion attempt will result in an error."), 3792 set_target_permissions, NULL, 3793 &setlist, &showlist); 3794 3795 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support, 3796 &may_insert_tracepoints_1, _("\ 3797 Set permission to insert tracepoints in the target."), _("\ 3798 Show permission to insert tracepoints in the target."), _("\ 3799 When this permission is on, GDB may insert tracepoints in the program.\n\ 3800 Otherwise, any sort of insertion attempt will result in an error."), 3801 set_target_permissions, NULL, 3802 &setlist, &showlist); 3803 3804 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support, 3805 &may_insert_fast_tracepoints_1, _("\ 3806 Set permission to insert fast tracepoints in the target."), _("\ 3807 Show permission to insert fast tracepoints in the target."), _("\ 3808 When this permission is on, GDB may insert fast tracepoints.\n\ 3809 Otherwise, any sort of insertion attempt will result in an error."), 3810 set_target_permissions, NULL, 3811 &setlist, &showlist); 3812 3813 add_setshow_boolean_cmd ("may-interrupt", class_support, 3814 &may_stop_1, _("\ 3815 Set permission to interrupt or signal the target."), _("\ 3816 Show permission to interrupt or signal the target."), _("\ 3817 When this permission is on, GDB may interrupt/stop the target's execution.\n\ 3818 Otherwise, any attempt to interrupt or stop will be ignored."), 3819 set_target_permissions, NULL, 3820 &setlist, &showlist); 3821 3822 add_setshow_boolean_cmd ("auto-connect-native-target", class_support, 3823 &auto_connect_native_target, _("\ 3824 Set whether GDB may automatically connect to the native target."), _("\ 3825 Show whether GDB may automatically connect to the native target."), _("\ 3826 When on, and GDB is not connected to a target yet, GDB\n\ 3827 attempts \"run\" and other commands with the native target."), 3828 NULL, show_auto_connect_native_target, 3829 &setlist, &showlist); 3830 } 3831