1 /* Select target systems and architectures at runtime for GDB. 2 3 Copyright (C) 1990-2023 Free Software Foundation, Inc. 4 5 Contributed by Cygnus Support. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 #include "defs.h" 23 #include "target.h" 24 #include "target-dcache.h" 25 #include "gdbcmd.h" 26 #include "symtab.h" 27 #include "inferior.h" 28 #include "infrun.h" 29 #include "observable.h" 30 #include "bfd.h" 31 #include "symfile.h" 32 #include "objfiles.h" 33 #include "dcache.h" 34 #include <signal.h> 35 #include "regcache.h" 36 #include "gdbcore.h" 37 #include "target-descriptions.h" 38 #include "gdbthread.h" 39 #include "solib.h" 40 #include "exec.h" 41 #include "inline-frame.h" 42 #include "tracepoint.h" 43 #include "gdbsupport/fileio.h" 44 #include "gdbsupport/agent.h" 45 #include "auxv.h" 46 #include "target-debug.h" 47 #include "top.h" 48 #include "event-top.h" 49 #include <algorithm> 50 #include "gdbsupport/byte-vector.h" 51 #include "gdbsupport/search.h" 52 #include "terminal.h" 53 #include <unordered_map> 54 #include "target-connection.h" 55 #include "valprint.h" 56 #include "cli/cli-decode.h" 57 58 static void generic_tls_error (void) ATTRIBUTE_NORETURN; 59 60 static void default_terminal_info (struct target_ops *, const char *, int); 61 62 static int default_watchpoint_addr_within_range (struct target_ops *, 63 CORE_ADDR, CORE_ADDR, int); 64 65 static int default_region_ok_for_hw_watchpoint (struct target_ops *, 66 CORE_ADDR, int); 67 68 static void default_rcmd (struct target_ops *, const char *, struct ui_file *); 69 70 static ptid_t default_get_ada_task_ptid (struct target_ops *self, 71 long lwp, ULONGEST tid); 72 73 static void default_mourn_inferior (struct target_ops *self); 74 75 static int default_search_memory (struct target_ops *ops, 76 CORE_ADDR start_addr, 77 ULONGEST search_space_len, 78 const gdb_byte *pattern, 79 ULONGEST pattern_len, 80 CORE_ADDR *found_addrp); 81 82 static int default_verify_memory (struct target_ops *self, 83 const gdb_byte *data, 84 CORE_ADDR memaddr, ULONGEST size); 85 86 static void tcomplain (void) ATTRIBUTE_NORETURN; 87 88 static struct target_ops *find_default_run_target (const char *); 89 90 static int dummy_find_memory_regions (struct target_ops *self, 91 find_memory_region_ftype ignore1, 92 void *ignore2); 93 94 static gdb::unique_xmalloc_ptr<char> dummy_make_corefile_notes 95 (struct target_ops *self, bfd *ignore1, int *ignore2); 96 97 static std::string default_pid_to_str (struct target_ops *ops, ptid_t ptid); 98 99 static enum exec_direction_kind default_execution_direction 100 (struct target_ops *self); 101 102 /* Mapping between target_info objects (which have address identity) 103 and corresponding open/factory function/callback. Each add_target 104 call adds one entry to this map, and registers a "target 105 TARGET_NAME" command that when invoked calls the factory registered 106 here. The target_info object is associated with the command via 107 the command's context. */ 108 static std::unordered_map<const target_info *, target_open_ftype *> 109 target_factories; 110 111 /* The singleton debug target. */ 112 113 static struct target_ops *the_debug_target; 114 115 /* Command list for target. */ 116 117 static struct cmd_list_element *targetlist = NULL; 118 119 /* True if we should trust readonly sections from the 120 executable when reading memory. */ 121 122 static bool trust_readonly = false; 123 124 /* Nonzero if we should show true memory content including 125 memory breakpoint inserted by gdb. */ 126 127 static int show_memory_breakpoints = 0; 128 129 /* These globals control whether GDB attempts to perform these 130 operations; they are useful for targets that need to prevent 131 inadvertent disruption, such as in non-stop mode. */ 132 133 bool may_write_registers = true; 134 135 bool may_write_memory = true; 136 137 bool may_insert_breakpoints = true; 138 139 bool may_insert_tracepoints = true; 140 141 bool may_insert_fast_tracepoints = true; 142 143 bool may_stop = true; 144 145 /* Non-zero if we want to see trace of target level stuff. */ 146 147 static unsigned int targetdebug = 0; 148 149 static void 150 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c) 151 { 152 if (targetdebug) 153 current_inferior ()->push_target (the_debug_target); 154 else 155 current_inferior ()->unpush_target (the_debug_target); 156 } 157 158 static void 159 show_targetdebug (struct ui_file *file, int from_tty, 160 struct cmd_list_element *c, const char *value) 161 { 162 gdb_printf (file, _("Target debugging is %s.\n"), value); 163 } 164 165 int 166 target_has_memory () 167 { 168 for (target_ops *t = current_inferior ()->top_target (); 169 t != NULL; 170 t = t->beneath ()) 171 if (t->has_memory ()) 172 return 1; 173 174 return 0; 175 } 176 177 int 178 target_has_stack () 179 { 180 for (target_ops *t = current_inferior ()->top_target (); 181 t != NULL; 182 t = t->beneath ()) 183 if (t->has_stack ()) 184 return 1; 185 186 return 0; 187 } 188 189 int 190 target_has_registers () 191 { 192 for (target_ops *t = current_inferior ()->top_target (); 193 t != NULL; 194 t = t->beneath ()) 195 if (t->has_registers ()) 196 return 1; 197 198 return 0; 199 } 200 201 bool 202 target_has_execution (inferior *inf) 203 { 204 if (inf == nullptr) 205 inf = current_inferior (); 206 207 for (target_ops *t = inf->top_target (); 208 t != nullptr; 209 t = inf->find_target_beneath (t)) 210 if (t->has_execution (inf)) 211 return true; 212 213 return false; 214 } 215 216 const char * 217 target_shortname () 218 { 219 return current_inferior ()->top_target ()->shortname (); 220 } 221 222 /* See target.h. */ 223 224 bool 225 target_attach_no_wait () 226 { 227 return current_inferior ()->top_target ()->attach_no_wait (); 228 } 229 230 /* See target.h. */ 231 232 void 233 target_post_attach (int pid) 234 { 235 return current_inferior ()->top_target ()->post_attach (pid); 236 } 237 238 /* See target.h. */ 239 240 void 241 target_prepare_to_store (regcache *regcache) 242 { 243 return current_inferior ()->top_target ()->prepare_to_store (regcache); 244 } 245 246 /* See target.h. */ 247 248 bool 249 target_supports_enable_disable_tracepoint () 250 { 251 target_ops *target = current_inferior ()->top_target (); 252 253 return target->supports_enable_disable_tracepoint (); 254 } 255 256 bool 257 target_supports_string_tracing () 258 { 259 return current_inferior ()->top_target ()->supports_string_tracing (); 260 } 261 262 /* See target.h. */ 263 264 bool 265 target_supports_evaluation_of_breakpoint_conditions () 266 { 267 target_ops *target = current_inferior ()->top_target (); 268 269 return target->supports_evaluation_of_breakpoint_conditions (); 270 } 271 272 /* See target.h. */ 273 274 bool 275 target_supports_dumpcore () 276 { 277 return current_inferior ()->top_target ()->supports_dumpcore (); 278 } 279 280 /* See target.h. */ 281 282 void 283 target_dumpcore (const char *filename) 284 { 285 return current_inferior ()->top_target ()->dumpcore (filename); 286 } 287 288 /* See target.h. */ 289 290 bool 291 target_can_run_breakpoint_commands () 292 { 293 return current_inferior ()->top_target ()->can_run_breakpoint_commands (); 294 } 295 296 /* See target.h. */ 297 298 void 299 target_files_info () 300 { 301 return current_inferior ()->top_target ()->files_info (); 302 } 303 304 /* See target.h. */ 305 306 int 307 target_insert_fork_catchpoint (int pid) 308 { 309 return current_inferior ()->top_target ()->insert_fork_catchpoint (pid); 310 } 311 312 /* See target.h. */ 313 314 int 315 target_remove_fork_catchpoint (int pid) 316 { 317 return current_inferior ()->top_target ()->remove_fork_catchpoint (pid); 318 } 319 320 /* See target.h. */ 321 322 int 323 target_insert_vfork_catchpoint (int pid) 324 { 325 return current_inferior ()->top_target ()->insert_vfork_catchpoint (pid); 326 } 327 328 /* See target.h. */ 329 330 int 331 target_remove_vfork_catchpoint (int pid) 332 { 333 return current_inferior ()->top_target ()->remove_vfork_catchpoint (pid); 334 } 335 336 /* See target.h. */ 337 338 int 339 target_insert_exec_catchpoint (int pid) 340 { 341 return current_inferior ()->top_target ()->insert_exec_catchpoint (pid); 342 } 343 344 /* See target.h. */ 345 346 int 347 target_remove_exec_catchpoint (int pid) 348 { 349 return current_inferior ()->top_target ()->remove_exec_catchpoint (pid); 350 } 351 352 /* See target.h. */ 353 354 int 355 target_set_syscall_catchpoint (int pid, bool needed, int any_count, 356 gdb::array_view<const int> syscall_counts) 357 { 358 target_ops *target = current_inferior ()->top_target (); 359 360 return target->set_syscall_catchpoint (pid, needed, any_count, 361 syscall_counts); 362 } 363 364 /* See target.h. */ 365 366 void 367 target_rcmd (const char *command, struct ui_file *outbuf) 368 { 369 return current_inferior ()->top_target ()->rcmd (command, outbuf); 370 } 371 372 /* See target.h. */ 373 374 bool 375 target_can_lock_scheduler () 376 { 377 target_ops *target = current_inferior ()->top_target (); 378 379 return (target->get_thread_control_capabilities ()& tc_schedlock) != 0; 380 } 381 382 /* See target.h. */ 383 384 bool 385 target_can_async_p () 386 { 387 return target_can_async_p (current_inferior ()->top_target ()); 388 } 389 390 /* See target.h. */ 391 392 bool 393 target_can_async_p (struct target_ops *target) 394 { 395 if (!target_async_permitted) 396 return false; 397 return target->can_async_p (); 398 } 399 400 /* See target.h. */ 401 402 bool 403 target_is_async_p () 404 { 405 bool result = current_inferior ()->top_target ()->is_async_p (); 406 gdb_assert (target_async_permitted || !result); 407 return result; 408 } 409 410 exec_direction_kind 411 target_execution_direction () 412 { 413 return current_inferior ()->top_target ()->execution_direction (); 414 } 415 416 /* See target.h. */ 417 418 const char * 419 target_extra_thread_info (thread_info *tp) 420 { 421 return current_inferior ()->top_target ()->extra_thread_info (tp); 422 } 423 424 /* See target.h. */ 425 426 const char * 427 target_pid_to_exec_file (int pid) 428 { 429 return current_inferior ()->top_target ()->pid_to_exec_file (pid); 430 } 431 432 /* See target.h. */ 433 434 gdbarch * 435 target_thread_architecture (ptid_t ptid) 436 { 437 return current_inferior ()->top_target ()->thread_architecture (ptid); 438 } 439 440 /* See target.h. */ 441 442 int 443 target_find_memory_regions (find_memory_region_ftype func, void *data) 444 { 445 return current_inferior ()->top_target ()->find_memory_regions (func, data); 446 } 447 448 /* See target.h. */ 449 450 gdb::unique_xmalloc_ptr<char> 451 target_make_corefile_notes (bfd *bfd, int *size_p) 452 { 453 return current_inferior ()->top_target ()->make_corefile_notes (bfd, size_p); 454 } 455 456 gdb_byte * 457 target_get_bookmark (const char *args, int from_tty) 458 { 459 return current_inferior ()->top_target ()->get_bookmark (args, from_tty); 460 } 461 462 void 463 target_goto_bookmark (const gdb_byte *arg, int from_tty) 464 { 465 return current_inferior ()->top_target ()->goto_bookmark (arg, from_tty); 466 } 467 468 /* See target.h. */ 469 470 bool 471 target_stopped_by_watchpoint () 472 { 473 return current_inferior ()->top_target ()->stopped_by_watchpoint (); 474 } 475 476 /* See target.h. */ 477 478 bool 479 target_stopped_by_sw_breakpoint () 480 { 481 return current_inferior ()->top_target ()->stopped_by_sw_breakpoint (); 482 } 483 484 bool 485 target_supports_stopped_by_sw_breakpoint () 486 { 487 target_ops *target = current_inferior ()->top_target (); 488 489 return target->supports_stopped_by_sw_breakpoint (); 490 } 491 492 bool 493 target_stopped_by_hw_breakpoint () 494 { 495 return current_inferior ()->top_target ()->stopped_by_hw_breakpoint (); 496 } 497 498 bool 499 target_supports_stopped_by_hw_breakpoint () 500 { 501 target_ops *target = current_inferior ()->top_target (); 502 503 return target->supports_stopped_by_hw_breakpoint (); 504 } 505 506 /* See target.h. */ 507 508 bool 509 target_have_steppable_watchpoint () 510 { 511 return current_inferior ()->top_target ()->have_steppable_watchpoint (); 512 } 513 514 /* See target.h. */ 515 516 int 517 target_can_use_hardware_watchpoint (bptype type, int cnt, int othertype) 518 { 519 target_ops *target = current_inferior ()->top_target (); 520 521 return target->can_use_hw_breakpoint (type, cnt, othertype); 522 } 523 524 /* See target.h. */ 525 526 int 527 target_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len) 528 { 529 target_ops *target = current_inferior ()->top_target (); 530 531 return target->region_ok_for_hw_watchpoint (addr, len); 532 } 533 534 535 int 536 target_can_do_single_step () 537 { 538 return current_inferior ()->top_target ()->can_do_single_step (); 539 } 540 541 /* See target.h. */ 542 543 int 544 target_insert_watchpoint (CORE_ADDR addr, int len, target_hw_bp_type type, 545 expression *cond) 546 { 547 target_ops *target = current_inferior ()->top_target (); 548 549 return target->insert_watchpoint (addr, len, type, cond); 550 } 551 552 /* See target.h. */ 553 554 int 555 target_remove_watchpoint (CORE_ADDR addr, int len, target_hw_bp_type type, 556 expression *cond) 557 { 558 target_ops *target = current_inferior ()->top_target (); 559 560 return target->remove_watchpoint (addr, len, type, cond); 561 } 562 563 /* See target.h. */ 564 565 int 566 target_insert_hw_breakpoint (gdbarch *gdbarch, bp_target_info *bp_tgt) 567 { 568 target_ops *target = current_inferior ()->top_target (); 569 570 return target->insert_hw_breakpoint (gdbarch, bp_tgt); 571 } 572 573 /* See target.h. */ 574 575 int 576 target_remove_hw_breakpoint (gdbarch *gdbarch, bp_target_info *bp_tgt) 577 { 578 target_ops *target = current_inferior ()->top_target (); 579 580 return target->remove_hw_breakpoint (gdbarch, bp_tgt); 581 } 582 583 /* See target.h. */ 584 585 bool 586 target_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int type, 587 expression *cond) 588 { 589 target_ops *target = current_inferior ()->top_target (); 590 591 return target->can_accel_watchpoint_condition (addr, len, type, cond); 592 } 593 594 /* See target.h. */ 595 596 bool 597 target_can_execute_reverse () 598 { 599 return current_inferior ()->top_target ()->can_execute_reverse (); 600 } 601 602 ptid_t 603 target_get_ada_task_ptid (long lwp, ULONGEST tid) 604 { 605 return current_inferior ()->top_target ()->get_ada_task_ptid (lwp, tid); 606 } 607 608 bool 609 target_filesystem_is_local () 610 { 611 return current_inferior ()->top_target ()->filesystem_is_local (); 612 } 613 614 void 615 target_trace_init () 616 { 617 return current_inferior ()->top_target ()->trace_init (); 618 } 619 620 void 621 target_download_tracepoint (bp_location *location) 622 { 623 return current_inferior ()->top_target ()->download_tracepoint (location); 624 } 625 626 bool 627 target_can_download_tracepoint () 628 { 629 return current_inferior ()->top_target ()->can_download_tracepoint (); 630 } 631 632 void 633 target_download_trace_state_variable (const trace_state_variable &tsv) 634 { 635 target_ops *target = current_inferior ()->top_target (); 636 637 return target->download_trace_state_variable (tsv); 638 } 639 640 void 641 target_enable_tracepoint (bp_location *loc) 642 { 643 return current_inferior ()->top_target ()->enable_tracepoint (loc); 644 } 645 646 void 647 target_disable_tracepoint (bp_location *loc) 648 { 649 return current_inferior ()->top_target ()->disable_tracepoint (loc); 650 } 651 652 void 653 target_trace_start () 654 { 655 return current_inferior ()->top_target ()->trace_start (); 656 } 657 658 void 659 target_trace_set_readonly_regions () 660 { 661 return current_inferior ()->top_target ()->trace_set_readonly_regions (); 662 } 663 664 int 665 target_get_trace_status (trace_status *ts) 666 { 667 return current_inferior ()->top_target ()->get_trace_status (ts); 668 } 669 670 void 671 target_get_tracepoint_status (breakpoint *tp, uploaded_tp *utp) 672 { 673 return current_inferior ()->top_target ()->get_tracepoint_status (tp, utp); 674 } 675 676 void 677 target_trace_stop () 678 { 679 return current_inferior ()->top_target ()->trace_stop (); 680 } 681 682 int 683 target_trace_find (trace_find_type type, int num, 684 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) 685 { 686 target_ops *target = current_inferior ()->top_target (); 687 688 return target->trace_find (type, num, addr1, addr2, tpp); 689 } 690 691 bool 692 target_get_trace_state_variable_value (int tsv, LONGEST *val) 693 { 694 target_ops *target = current_inferior ()->top_target (); 695 696 return target->get_trace_state_variable_value (tsv, val); 697 } 698 699 int 700 target_save_trace_data (const char *filename) 701 { 702 return current_inferior ()->top_target ()->save_trace_data (filename); 703 } 704 705 int 706 target_upload_tracepoints (uploaded_tp **utpp) 707 { 708 return current_inferior ()->top_target ()->upload_tracepoints (utpp); 709 } 710 711 int 712 target_upload_trace_state_variables (uploaded_tsv **utsvp) 713 { 714 target_ops *target = current_inferior ()->top_target (); 715 716 return target->upload_trace_state_variables (utsvp); 717 } 718 719 LONGEST 720 target_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) 721 { 722 target_ops *target = current_inferior ()->top_target (); 723 724 return target->get_raw_trace_data (buf, offset, len); 725 } 726 727 int 728 target_get_min_fast_tracepoint_insn_len () 729 { 730 target_ops *target = current_inferior ()->top_target (); 731 732 return target->get_min_fast_tracepoint_insn_len (); 733 } 734 735 void 736 target_set_disconnected_tracing (int val) 737 { 738 return current_inferior ()->top_target ()->set_disconnected_tracing (val); 739 } 740 741 void 742 target_set_circular_trace_buffer (int val) 743 { 744 return current_inferior ()->top_target ()->set_circular_trace_buffer (val); 745 } 746 747 void 748 target_set_trace_buffer_size (LONGEST val) 749 { 750 return current_inferior ()->top_target ()->set_trace_buffer_size (val); 751 } 752 753 bool 754 target_set_trace_notes (const char *user, const char *notes, 755 const char *stopnotes) 756 { 757 target_ops *target = current_inferior ()->top_target (); 758 759 return target->set_trace_notes (user, notes, stopnotes); 760 } 761 762 bool 763 target_get_tib_address (ptid_t ptid, CORE_ADDR *addr) 764 { 765 return current_inferior ()->top_target ()->get_tib_address (ptid, addr); 766 } 767 768 void 769 target_set_permissions () 770 { 771 return current_inferior ()->top_target ()->set_permissions (); 772 } 773 774 bool 775 target_static_tracepoint_marker_at (CORE_ADDR addr, 776 static_tracepoint_marker *marker) 777 { 778 target_ops *target = current_inferior ()->top_target (); 779 780 return target->static_tracepoint_marker_at (addr, marker); 781 } 782 783 std::vector<static_tracepoint_marker> 784 target_static_tracepoint_markers_by_strid (const char *marker_id) 785 { 786 target_ops *target = current_inferior ()->top_target (); 787 788 return target->static_tracepoint_markers_by_strid (marker_id); 789 } 790 791 traceframe_info_up 792 target_traceframe_info () 793 { 794 return current_inferior ()->top_target ()->traceframe_info (); 795 } 796 797 bool 798 target_use_agent (bool use) 799 { 800 return current_inferior ()->top_target ()->use_agent (use); 801 } 802 803 bool 804 target_can_use_agent () 805 { 806 return current_inferior ()->top_target ()->can_use_agent (); 807 } 808 809 bool 810 target_augmented_libraries_svr4_read () 811 { 812 return current_inferior ()->top_target ()->augmented_libraries_svr4_read (); 813 } 814 815 bool 816 target_supports_memory_tagging () 817 { 818 return current_inferior ()->top_target ()->supports_memory_tagging (); 819 } 820 821 bool 822 target_fetch_memtags (CORE_ADDR address, size_t len, gdb::byte_vector &tags, 823 int type) 824 { 825 return current_inferior ()->top_target ()->fetch_memtags (address, len, tags, type); 826 } 827 828 bool 829 target_store_memtags (CORE_ADDR address, size_t len, 830 const gdb::byte_vector &tags, int type) 831 { 832 return current_inferior ()->top_target ()->store_memtags (address, len, tags, type); 833 } 834 835 void 836 target_log_command (const char *p) 837 { 838 return current_inferior ()->top_target ()->log_command (p); 839 } 840 841 /* This is used to implement the various target commands. */ 842 843 static void 844 open_target (const char *args, int from_tty, struct cmd_list_element *command) 845 { 846 auto *ti = static_cast<target_info *> (command->context ()); 847 target_open_ftype *func = target_factories[ti]; 848 849 if (targetdebug) 850 gdb_printf (gdb_stdlog, "-> %s->open (...)\n", 851 ti->shortname); 852 853 func (args, from_tty); 854 855 if (targetdebug) 856 gdb_printf (gdb_stdlog, "<- %s->open (%s, %d)\n", 857 ti->shortname, args, from_tty); 858 } 859 860 /* See target.h. */ 861 862 void 863 add_target (const target_info &t, target_open_ftype *func, 864 completer_ftype *completer) 865 { 866 struct cmd_list_element *c; 867 868 auto &func_slot = target_factories[&t]; 869 if (func_slot != nullptr) 870 internal_error (_("target already added (\"%s\")."), t.shortname); 871 func_slot = func; 872 873 if (targetlist == NULL) 874 add_basic_prefix_cmd ("target", class_run, _("\ 875 Connect to a target machine or process.\n\ 876 The first argument is the type or protocol of the target machine.\n\ 877 Remaining arguments are interpreted by the target protocol. For more\n\ 878 information on the arguments for a particular protocol, type\n\ 879 `help target ' followed by the protocol name."), 880 &targetlist, 0, &cmdlist); 881 c = add_cmd (t.shortname, no_class, t.doc, &targetlist); 882 c->set_context ((void *) &t); 883 c->func = open_target; 884 if (completer != NULL) 885 set_cmd_completer (c, completer); 886 } 887 888 /* See target.h. */ 889 890 void 891 add_deprecated_target_alias (const target_info &tinfo, const char *alias) 892 { 893 struct cmd_list_element *c; 894 895 /* If we use add_alias_cmd, here, we do not get the deprecated warning, 896 see PR cli/15104. */ 897 c = add_cmd (alias, no_class, tinfo.doc, &targetlist); 898 c->func = open_target; 899 c->set_context ((void *) &tinfo); 900 gdb::unique_xmalloc_ptr<char> alt 901 = xstrprintf ("target %s", tinfo.shortname); 902 deprecate_cmd (c, alt.release ()); 903 } 904 905 /* Stub functions */ 906 907 void 908 target_kill (void) 909 { 910 911 /* If the commit_resume_state of the to-be-killed-inferior's process stratum 912 is true, and this inferior is the last live inferior with resumed threads 913 of that target, then we want to leave commit_resume_state to false, as the 914 target won't have any resumed threads anymore. We achieve this with 915 this scoped_disable_commit_resumed. On construction, it will set the flag 916 to false. On destruction, it will only set it to true if there are resumed 917 threads left. */ 918 scoped_disable_commit_resumed disable ("killing"); 919 current_inferior ()->top_target ()->kill (); 920 } 921 922 void 923 target_load (const char *arg, int from_tty) 924 { 925 target_dcache_invalidate (); 926 current_inferior ()->top_target ()->load (arg, from_tty); 927 } 928 929 /* Define it. */ 930 931 target_terminal_state target_terminal::m_terminal_state 932 = target_terminal_state::is_ours; 933 934 /* See target/target.h. */ 935 936 void 937 target_terminal::init (void) 938 { 939 current_inferior ()->top_target ()->terminal_init (); 940 941 m_terminal_state = target_terminal_state::is_ours; 942 } 943 944 /* See target/target.h. */ 945 946 void 947 target_terminal::inferior (void) 948 { 949 struct ui *ui = current_ui; 950 951 /* A background resume (``run&'') should leave GDB in control of the 952 terminal. */ 953 if (ui->prompt_state != PROMPT_BLOCKED) 954 return; 955 956 /* Since we always run the inferior in the main console (unless "set 957 inferior-tty" is in effect), when some UI other than the main one 958 calls target_terminal::inferior, then we leave the main UI's 959 terminal settings as is. */ 960 if (ui != main_ui) 961 return; 962 963 /* If GDB is resuming the inferior in the foreground, install 964 inferior's terminal modes. */ 965 966 struct inferior *inf = current_inferior (); 967 968 if (inf->terminal_state != target_terminal_state::is_inferior) 969 { 970 current_inferior ()->top_target ()->terminal_inferior (); 971 inf->terminal_state = target_terminal_state::is_inferior; 972 } 973 974 m_terminal_state = target_terminal_state::is_inferior; 975 976 /* If the user hit C-c before, pretend that it was hit right 977 here. */ 978 if (check_quit_flag ()) 979 target_pass_ctrlc (); 980 } 981 982 /* See target/target.h. */ 983 984 void 985 target_terminal::restore_inferior (void) 986 { 987 struct ui *ui = current_ui; 988 989 /* See target_terminal::inferior(). */ 990 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui) 991 return; 992 993 /* Restore the terminal settings of inferiors that were in the 994 foreground but are now ours_for_output due to a temporary 995 target_target::ours_for_output() call. */ 996 997 { 998 scoped_restore_current_inferior restore_inferior; 999 1000 for (::inferior *inf : all_inferiors ()) 1001 { 1002 if (inf->terminal_state == target_terminal_state::is_ours_for_output) 1003 { 1004 set_current_inferior (inf); 1005 current_inferior ()->top_target ()->terminal_inferior (); 1006 inf->terminal_state = target_terminal_state::is_inferior; 1007 } 1008 } 1009 } 1010 1011 m_terminal_state = target_terminal_state::is_inferior; 1012 1013 /* If the user hit C-c before, pretend that it was hit right 1014 here. */ 1015 if (check_quit_flag ()) 1016 target_pass_ctrlc (); 1017 } 1018 1019 /* Switch terminal state to DESIRED_STATE, either is_ours, or 1020 is_ours_for_output. */ 1021 1022 static void 1023 target_terminal_is_ours_kind (target_terminal_state desired_state) 1024 { 1025 scoped_restore_current_inferior restore_inferior; 1026 1027 /* Must do this in two passes. First, have all inferiors save the 1028 current terminal settings. Then, after all inferiors have add a 1029 chance to safely save the terminal settings, restore GDB's 1030 terminal settings. */ 1031 1032 for (inferior *inf : all_inferiors ()) 1033 { 1034 if (inf->terminal_state == target_terminal_state::is_inferior) 1035 { 1036 set_current_inferior (inf); 1037 current_inferior ()->top_target ()->terminal_save_inferior (); 1038 } 1039 } 1040 1041 for (inferior *inf : all_inferiors ()) 1042 { 1043 /* Note we don't check is_inferior here like above because we 1044 need to handle 'is_ours_for_output -> is_ours' too. Careful 1045 to never transition from 'is_ours' to 'is_ours_for_output', 1046 though. */ 1047 if (inf->terminal_state != target_terminal_state::is_ours 1048 && inf->terminal_state != desired_state) 1049 { 1050 set_current_inferior (inf); 1051 if (desired_state == target_terminal_state::is_ours) 1052 current_inferior ()->top_target ()->terminal_ours (); 1053 else if (desired_state == target_terminal_state::is_ours_for_output) 1054 current_inferior ()->top_target ()->terminal_ours_for_output (); 1055 else 1056 gdb_assert_not_reached ("unhandled desired state"); 1057 inf->terminal_state = desired_state; 1058 } 1059 } 1060 } 1061 1062 /* See target/target.h. */ 1063 1064 void 1065 target_terminal::ours () 1066 { 1067 struct ui *ui = current_ui; 1068 1069 /* See target_terminal::inferior. */ 1070 if (ui != main_ui) 1071 return; 1072 1073 if (m_terminal_state == target_terminal_state::is_ours) 1074 return; 1075 1076 target_terminal_is_ours_kind (target_terminal_state::is_ours); 1077 m_terminal_state = target_terminal_state::is_ours; 1078 } 1079 1080 /* See target/target.h. */ 1081 1082 void 1083 target_terminal::ours_for_output () 1084 { 1085 struct ui *ui = current_ui; 1086 1087 /* See target_terminal::inferior. */ 1088 if (ui != main_ui) 1089 return; 1090 1091 if (!target_terminal::is_inferior ()) 1092 return; 1093 1094 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output); 1095 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output; 1096 } 1097 1098 /* See target/target.h. */ 1099 1100 void 1101 target_terminal::info (const char *arg, int from_tty) 1102 { 1103 current_inferior ()->top_target ()->terminal_info (arg, from_tty); 1104 } 1105 1106 /* See target.h. */ 1107 1108 bool 1109 target_supports_terminal_ours (void) 1110 { 1111 /* The current top target is the target at the top of the target 1112 stack of the current inferior. While normally there's always an 1113 inferior, we must check for nullptr here because we can get here 1114 very early during startup, before the initial inferior is first 1115 created. */ 1116 inferior *inf = current_inferior (); 1117 1118 if (inf == nullptr) 1119 return false; 1120 return inf->top_target ()->supports_terminal_ours (); 1121 } 1122 1123 static void 1124 tcomplain (void) 1125 { 1126 error (_("You can't do that when your target is `%s'"), 1127 current_inferior ()->top_target ()->shortname ()); 1128 } 1129 1130 void 1131 noprocess (void) 1132 { 1133 error (_("You can't do that without a process to debug.")); 1134 } 1135 1136 static void 1137 default_terminal_info (struct target_ops *self, const char *args, int from_tty) 1138 { 1139 gdb_printf (_("No saved terminal information.\n")); 1140 } 1141 1142 /* A default implementation for the to_get_ada_task_ptid target method. 1143 1144 This function builds the PTID by using both LWP and TID as part of 1145 the PTID lwp and tid elements. The pid used is the pid of the 1146 inferior_ptid. */ 1147 1148 static ptid_t 1149 default_get_ada_task_ptid (struct target_ops *self, long lwp, ULONGEST tid) 1150 { 1151 return ptid_t (inferior_ptid.pid (), lwp, tid); 1152 } 1153 1154 static enum exec_direction_kind 1155 default_execution_direction (struct target_ops *self) 1156 { 1157 if (!target_can_execute_reverse ()) 1158 return EXEC_FORWARD; 1159 else if (!target_can_async_p ()) 1160 return EXEC_FORWARD; 1161 else 1162 gdb_assert_not_reached ("\ 1163 to_execution_direction must be implemented for reverse async"); 1164 } 1165 1166 /* See target.h. */ 1167 1168 void 1169 target_ops_ref_policy::decref (target_ops *t) 1170 { 1171 t->decref (); 1172 if (t->refcount () == 0) 1173 { 1174 if (t->stratum () == process_stratum) 1175 connection_list_remove (as_process_stratum_target (t)); 1176 target_close (t); 1177 } 1178 } 1179 1180 /* See target.h. */ 1181 1182 void 1183 target_stack::push (target_ops *t) 1184 { 1185 /* We must create a new reference first. It is possible that T is 1186 already pushed on this target stack, in which case we will first 1187 unpush it below, before re-pushing it. If we don't increment the 1188 reference count now, then when we unpush it, we might end up deleting 1189 T, which is not good. */ 1190 auto ref = target_ops_ref::new_reference (t); 1191 1192 strata stratum = t->stratum (); 1193 1194 /* If there's already a target at this stratum, remove it. */ 1195 1196 if (m_stack[stratum].get () != nullptr) 1197 unpush (m_stack[stratum].get ()); 1198 1199 /* Now add the new one. */ 1200 m_stack[stratum] = std::move (ref); 1201 1202 if (m_top < stratum) 1203 m_top = stratum; 1204 1205 if (stratum == process_stratum) 1206 connection_list_add (as_process_stratum_target (t)); 1207 } 1208 1209 /* See target.h. */ 1210 1211 bool 1212 target_stack::unpush (target_ops *t) 1213 { 1214 gdb_assert (t != NULL); 1215 1216 strata stratum = t->stratum (); 1217 1218 if (stratum == dummy_stratum) 1219 internal_error (_("Attempt to unpush the dummy target")); 1220 1221 /* Look for the specified target. Note that a target can only occur 1222 once in the target stack. */ 1223 1224 if (m_stack[stratum] != t) 1225 { 1226 /* If T wasn't pushed, quit. Only open targets should be 1227 closed. */ 1228 return false; 1229 } 1230 1231 if (m_top == stratum) 1232 m_top = this->find_beneath (t)->stratum (); 1233 1234 /* Move the target reference off the target stack, this sets the pointer 1235 held in m_stack to nullptr, and places the reference in ref. When 1236 ref goes out of scope its reference count will be decremented, which 1237 might cause the target to close. 1238 1239 We have to do it this way, and not just set the value in m_stack to 1240 nullptr directly, because doing so would decrement the reference 1241 count first, which might close the target, and closing the target 1242 does a check that the target is not on any inferiors target_stack. */ 1243 auto ref = std::move (m_stack[stratum]); 1244 1245 return true; 1246 } 1247 1248 void 1249 target_unpusher::operator() (struct target_ops *ops) const 1250 { 1251 current_inferior ()->unpush_target (ops); 1252 } 1253 1254 /* Default implementation of to_get_thread_local_address. */ 1255 1256 static void 1257 generic_tls_error (void) 1258 { 1259 throw_error (TLS_GENERIC_ERROR, 1260 _("Cannot find thread-local variables on this target")); 1261 } 1262 1263 /* Using the objfile specified in OBJFILE, find the address for the 1264 current thread's thread-local storage with offset OFFSET. */ 1265 CORE_ADDR 1266 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset) 1267 { 1268 volatile CORE_ADDR addr = 0; 1269 struct target_ops *target = current_inferior ()->top_target (); 1270 struct gdbarch *gdbarch = target_gdbarch (); 1271 1272 /* If OBJFILE is a separate debug object file, look for the 1273 original object file. */ 1274 if (objfile->separate_debug_objfile_backlink != NULL) 1275 objfile = objfile->separate_debug_objfile_backlink; 1276 1277 if (gdbarch_fetch_tls_load_module_address_p (gdbarch)) 1278 { 1279 ptid_t ptid = inferior_ptid; 1280 1281 try 1282 { 1283 CORE_ADDR lm_addr; 1284 1285 /* Fetch the load module address for this objfile. */ 1286 lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch, 1287 objfile); 1288 1289 if (gdbarch_get_thread_local_address_p (gdbarch)) 1290 addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr, 1291 offset); 1292 else 1293 addr = target->get_thread_local_address (ptid, lm_addr, offset); 1294 } 1295 /* If an error occurred, print TLS related messages here. Otherwise, 1296 throw the error to some higher catcher. */ 1297 catch (const gdb_exception &ex) 1298 { 1299 int objfile_is_library = (objfile->flags & OBJF_SHARED); 1300 1301 switch (ex.error) 1302 { 1303 case TLS_NO_LIBRARY_SUPPORT_ERROR: 1304 error (_("Cannot find thread-local variables " 1305 "in this thread library.")); 1306 break; 1307 case TLS_LOAD_MODULE_NOT_FOUND_ERROR: 1308 if (objfile_is_library) 1309 error (_("Cannot find shared library `%s' in dynamic" 1310 " linker's load module list"), objfile_name (objfile)); 1311 else 1312 error (_("Cannot find executable file `%s' in dynamic" 1313 " linker's load module list"), objfile_name (objfile)); 1314 break; 1315 case TLS_NOT_ALLOCATED_YET_ERROR: 1316 if (objfile_is_library) 1317 error (_("The inferior has not yet allocated storage for" 1318 " thread-local variables in\n" 1319 "the shared library `%s'\n" 1320 "for %s"), 1321 objfile_name (objfile), 1322 target_pid_to_str (ptid).c_str ()); 1323 else 1324 error (_("The inferior has not yet allocated storage for" 1325 " thread-local variables in\n" 1326 "the executable `%s'\n" 1327 "for %s"), 1328 objfile_name (objfile), 1329 target_pid_to_str (ptid).c_str ()); 1330 break; 1331 case TLS_GENERIC_ERROR: 1332 if (objfile_is_library) 1333 error (_("Cannot find thread-local storage for %s, " 1334 "shared library %s:\n%s"), 1335 target_pid_to_str (ptid).c_str (), 1336 objfile_name (objfile), ex.what ()); 1337 else 1338 error (_("Cannot find thread-local storage for %s, " 1339 "executable file %s:\n%s"), 1340 target_pid_to_str (ptid).c_str (), 1341 objfile_name (objfile), ex.what ()); 1342 break; 1343 default: 1344 throw; 1345 break; 1346 } 1347 } 1348 } 1349 else 1350 error (_("Cannot find thread-local variables on this target")); 1351 1352 return addr; 1353 } 1354 1355 const char * 1356 target_xfer_status_to_string (enum target_xfer_status status) 1357 { 1358 #define CASE(X) case X: return #X 1359 switch (status) 1360 { 1361 CASE(TARGET_XFER_E_IO); 1362 CASE(TARGET_XFER_UNAVAILABLE); 1363 default: 1364 return "<unknown>"; 1365 } 1366 #undef CASE 1367 }; 1368 1369 1370 const target_section_table * 1371 target_get_section_table (struct target_ops *target) 1372 { 1373 return target->get_section_table (); 1374 } 1375 1376 /* Find a section containing ADDR. */ 1377 1378 const struct target_section * 1379 target_section_by_addr (struct target_ops *target, CORE_ADDR addr) 1380 { 1381 const target_section_table *table = target_get_section_table (target); 1382 1383 if (table == NULL) 1384 return NULL; 1385 1386 for (const target_section &secp : *table) 1387 { 1388 if (addr >= secp.addr && addr < secp.endaddr) 1389 return &secp; 1390 } 1391 return NULL; 1392 } 1393 1394 /* See target.h. */ 1395 1396 const target_section_table * 1397 default_get_section_table () 1398 { 1399 return ¤t_program_space->target_sections (); 1400 } 1401 1402 /* Helper for the memory xfer routines. Checks the attributes of the 1403 memory region of MEMADDR against the read or write being attempted. 1404 If the access is permitted returns true, otherwise returns false. 1405 REGION_P is an optional output parameter. If not-NULL, it is 1406 filled with a pointer to the memory region of MEMADDR. REG_LEN 1407 returns LEN trimmed to the end of the region. This is how much the 1408 caller can continue requesting, if the access is permitted. A 1409 single xfer request must not straddle memory region boundaries. */ 1410 1411 static int 1412 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf, 1413 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len, 1414 struct mem_region **region_p) 1415 { 1416 struct mem_region *region; 1417 1418 region = lookup_mem_region (memaddr); 1419 1420 if (region_p != NULL) 1421 *region_p = region; 1422 1423 switch (region->attrib.mode) 1424 { 1425 case MEM_RO: 1426 if (writebuf != NULL) 1427 return 0; 1428 break; 1429 1430 case MEM_WO: 1431 if (readbuf != NULL) 1432 return 0; 1433 break; 1434 1435 case MEM_FLASH: 1436 /* We only support writing to flash during "load" for now. */ 1437 if (writebuf != NULL) 1438 error (_("Writing to flash memory forbidden in this context")); 1439 break; 1440 1441 case MEM_NONE: 1442 return 0; 1443 } 1444 1445 /* region->hi == 0 means there's no upper bound. */ 1446 if (memaddr + len < region->hi || region->hi == 0) 1447 *reg_len = len; 1448 else 1449 *reg_len = region->hi - memaddr; 1450 1451 return 1; 1452 } 1453 1454 /* Read memory from more than one valid target. A core file, for 1455 instance, could have some of memory but delegate other bits to 1456 the target below it. So, we must manually try all targets. */ 1457 1458 enum target_xfer_status 1459 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf, 1460 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len, 1461 ULONGEST *xfered_len) 1462 { 1463 enum target_xfer_status res; 1464 1465 do 1466 { 1467 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL, 1468 readbuf, writebuf, memaddr, len, 1469 xfered_len); 1470 if (res == TARGET_XFER_OK) 1471 break; 1472 1473 /* Stop if the target reports that the memory is not available. */ 1474 if (res == TARGET_XFER_UNAVAILABLE) 1475 break; 1476 1477 /* Don't continue past targets which have all the memory. 1478 At one time, this code was necessary to read data from 1479 executables / shared libraries when data for the requested 1480 addresses weren't available in the core file. But now the 1481 core target handles this case itself. */ 1482 if (ops->has_all_memory ()) 1483 break; 1484 1485 ops = ops->beneath (); 1486 } 1487 while (ops != NULL); 1488 1489 /* The cache works at the raw memory level. Make sure the cache 1490 gets updated with raw contents no matter what kind of memory 1491 object was originally being written. Note we do write-through 1492 first, so that if it fails, we don't write to the cache contents 1493 that never made it to the target. */ 1494 if (writebuf != NULL 1495 && inferior_ptid != null_ptid 1496 && target_dcache_init_p () 1497 && (stack_cache_enabled_p () || code_cache_enabled_p ())) 1498 { 1499 DCACHE *dcache = target_dcache_get (); 1500 1501 /* Note that writing to an area of memory which wasn't present 1502 in the cache doesn't cause it to be loaded in. */ 1503 dcache_update (dcache, res, memaddr, writebuf, *xfered_len); 1504 } 1505 1506 return res; 1507 } 1508 1509 /* Perform a partial memory transfer. 1510 For docs see target.h, to_xfer_partial. */ 1511 1512 static enum target_xfer_status 1513 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object, 1514 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr, 1515 ULONGEST len, ULONGEST *xfered_len) 1516 { 1517 enum target_xfer_status res; 1518 ULONGEST reg_len; 1519 struct mem_region *region; 1520 struct inferior *inf; 1521 1522 /* For accesses to unmapped overlay sections, read directly from 1523 files. Must do this first, as MEMADDR may need adjustment. */ 1524 if (readbuf != NULL && overlay_debugging) 1525 { 1526 struct obj_section *section = find_pc_overlay (memaddr); 1527 1528 if (pc_in_unmapped_range (memaddr, section)) 1529 { 1530 const target_section_table *table = target_get_section_table (ops); 1531 const char *section_name = section->the_bfd_section->name; 1532 1533 memaddr = overlay_mapped_address (memaddr, section); 1534 1535 auto match_cb = [=] (const struct target_section *s) 1536 { 1537 return (strcmp (section_name, s->the_bfd_section->name) == 0); 1538 }; 1539 1540 return section_table_xfer_memory_partial (readbuf, writebuf, 1541 memaddr, len, xfered_len, 1542 *table, match_cb); 1543 } 1544 } 1545 1546 /* Try the executable files, if "trust-readonly-sections" is set. */ 1547 if (readbuf != NULL && trust_readonly) 1548 { 1549 const struct target_section *secp 1550 = target_section_by_addr (ops, memaddr); 1551 if (secp != NULL 1552 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY)) 1553 { 1554 const target_section_table *table = target_get_section_table (ops); 1555 return section_table_xfer_memory_partial (readbuf, writebuf, 1556 memaddr, len, xfered_len, 1557 *table); 1558 } 1559 } 1560 1561 /* Try GDB's internal data cache. */ 1562 1563 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, ®_len, 1564 ®ion)) 1565 return TARGET_XFER_E_IO; 1566 1567 if (inferior_ptid != null_ptid) 1568 inf = current_inferior (); 1569 else 1570 inf = NULL; 1571 1572 if (inf != NULL 1573 && readbuf != NULL 1574 /* The dcache reads whole cache lines; that doesn't play well 1575 with reading from a trace buffer, because reading outside of 1576 the collected memory range fails. */ 1577 && get_traceframe_number () == -1 1578 && (region->attrib.cache 1579 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY) 1580 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY))) 1581 { 1582 DCACHE *dcache = target_dcache_get_or_init (); 1583 1584 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf, 1585 reg_len, xfered_len); 1586 } 1587 1588 /* If none of those methods found the memory we wanted, fall back 1589 to a target partial transfer. Normally a single call to 1590 to_xfer_partial is enough; if it doesn't recognize an object 1591 it will call the to_xfer_partial of the next target down. 1592 But for memory this won't do. Memory is the only target 1593 object which can be read from more than one valid target. 1594 A core file, for instance, could have some of memory but 1595 delegate other bits to the target below it. So, we must 1596 manually try all targets. */ 1597 1598 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len, 1599 xfered_len); 1600 1601 /* If we still haven't got anything, return the last error. We 1602 give up. */ 1603 return res; 1604 } 1605 1606 /* Perform a partial memory transfer. For docs see target.h, 1607 to_xfer_partial. */ 1608 1609 static enum target_xfer_status 1610 memory_xfer_partial (struct target_ops *ops, enum target_object object, 1611 gdb_byte *readbuf, const gdb_byte *writebuf, 1612 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len) 1613 { 1614 enum target_xfer_status res; 1615 1616 /* Zero length requests are ok and require no work. */ 1617 if (len == 0) 1618 return TARGET_XFER_EOF; 1619 1620 memaddr = gdbarch_remove_non_address_bits (target_gdbarch (), memaddr); 1621 1622 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with 1623 breakpoint insns, thus hiding out from higher layers whether 1624 there are software breakpoints inserted in the code stream. */ 1625 if (readbuf != NULL) 1626 { 1627 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len, 1628 xfered_len); 1629 1630 if (res == TARGET_XFER_OK && !show_memory_breakpoints) 1631 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len); 1632 } 1633 else 1634 { 1635 /* A large write request is likely to be partially satisfied 1636 by memory_xfer_partial_1. We will continually malloc 1637 and free a copy of the entire write request for breakpoint 1638 shadow handling even though we only end up writing a small 1639 subset of it. Cap writes to a limit specified by the target 1640 to mitigate this. */ 1641 len = std::min (ops->get_memory_xfer_limit (), len); 1642 1643 gdb::byte_vector buf (writebuf, writebuf + len); 1644 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len); 1645 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len, 1646 xfered_len); 1647 } 1648 1649 return res; 1650 } 1651 1652 scoped_restore_tmpl<int> 1653 make_scoped_restore_show_memory_breakpoints (int show) 1654 { 1655 return make_scoped_restore (&show_memory_breakpoints, show); 1656 } 1657 1658 /* For docs see target.h, to_xfer_partial. */ 1659 1660 enum target_xfer_status 1661 target_xfer_partial (struct target_ops *ops, 1662 enum target_object object, const char *annex, 1663 gdb_byte *readbuf, const gdb_byte *writebuf, 1664 ULONGEST offset, ULONGEST len, 1665 ULONGEST *xfered_len) 1666 { 1667 enum target_xfer_status retval; 1668 1669 /* Transfer is done when LEN is zero. */ 1670 if (len == 0) 1671 return TARGET_XFER_EOF; 1672 1673 if (writebuf && !may_write_memory) 1674 error (_("Writing to memory is not allowed (addr %s, len %s)"), 1675 core_addr_to_string_nz (offset), plongest (len)); 1676 1677 *xfered_len = 0; 1678 1679 /* If this is a memory transfer, let the memory-specific code 1680 have a look at it instead. Memory transfers are more 1681 complicated. */ 1682 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY 1683 || object == TARGET_OBJECT_CODE_MEMORY) 1684 retval = memory_xfer_partial (ops, object, readbuf, 1685 writebuf, offset, len, xfered_len); 1686 else if (object == TARGET_OBJECT_RAW_MEMORY) 1687 { 1688 /* Skip/avoid accessing the target if the memory region 1689 attributes block the access. Check this here instead of in 1690 raw_memory_xfer_partial as otherwise we'd end up checking 1691 this twice in the case of the memory_xfer_partial path is 1692 taken; once before checking the dcache, and another in the 1693 tail call to raw_memory_xfer_partial. */ 1694 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len, 1695 NULL)) 1696 return TARGET_XFER_E_IO; 1697 1698 /* Request the normal memory object from other layers. */ 1699 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len, 1700 xfered_len); 1701 } 1702 else 1703 retval = ops->xfer_partial (object, annex, readbuf, 1704 writebuf, offset, len, xfered_len); 1705 1706 if (targetdebug) 1707 { 1708 const unsigned char *myaddr = NULL; 1709 1710 gdb_printf (gdb_stdlog, 1711 "%s:target_xfer_partial " 1712 "(%d, %s, %s, %s, %s, %s) = %d, %s", 1713 ops->shortname (), 1714 (int) object, 1715 (annex ? annex : "(null)"), 1716 host_address_to_string (readbuf), 1717 host_address_to_string (writebuf), 1718 core_addr_to_string_nz (offset), 1719 pulongest (len), retval, 1720 pulongest (*xfered_len)); 1721 1722 if (readbuf) 1723 myaddr = readbuf; 1724 if (writebuf) 1725 myaddr = writebuf; 1726 if (retval == TARGET_XFER_OK && myaddr != NULL) 1727 { 1728 int i; 1729 1730 gdb_puts (", bytes =", gdb_stdlog); 1731 for (i = 0; i < *xfered_len; i++) 1732 { 1733 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0) 1734 { 1735 if (targetdebug < 2 && i > 0) 1736 { 1737 gdb_printf (gdb_stdlog, " ..."); 1738 break; 1739 } 1740 gdb_printf (gdb_stdlog, "\n"); 1741 } 1742 1743 gdb_printf (gdb_stdlog, " %02x", myaddr[i] & 0xff); 1744 } 1745 } 1746 1747 gdb_putc ('\n', gdb_stdlog); 1748 } 1749 1750 /* Check implementations of to_xfer_partial update *XFERED_LEN 1751 properly. Do assertion after printing debug messages, so that we 1752 can find more clues on assertion failure from debugging messages. */ 1753 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE) 1754 gdb_assert (*xfered_len > 0); 1755 1756 return retval; 1757 } 1758 1759 /* Read LEN bytes of target memory at address MEMADDR, placing the 1760 results in GDB's memory at MYADDR. Returns either 0 for success or 1761 -1 if any error occurs. 1762 1763 If an error occurs, no guarantee is made about the contents of the data at 1764 MYADDR. In particular, the caller should not depend upon partial reads 1765 filling the buffer with good data. There is no way for the caller to know 1766 how much good data might have been transfered anyway. Callers that can 1767 deal with partial reads should call target_read (which will retry until 1768 it makes no progress, and then return how much was transferred). */ 1769 1770 int 1771 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) 1772 { 1773 if (target_read (current_inferior ()->top_target (), 1774 TARGET_OBJECT_MEMORY, NULL, 1775 myaddr, memaddr, len) == len) 1776 return 0; 1777 else 1778 return -1; 1779 } 1780 1781 /* See target/target.h. */ 1782 1783 int 1784 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result) 1785 { 1786 gdb_byte buf[4]; 1787 int r; 1788 1789 r = target_read_memory (memaddr, buf, sizeof buf); 1790 if (r != 0) 1791 return r; 1792 *result = extract_unsigned_integer (buf, sizeof buf, 1793 gdbarch_byte_order (target_gdbarch ())); 1794 return 0; 1795 } 1796 1797 /* Like target_read_memory, but specify explicitly that this is a read 1798 from the target's raw memory. That is, this read bypasses the 1799 dcache, breakpoint shadowing, etc. */ 1800 1801 int 1802 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) 1803 { 1804 if (target_read (current_inferior ()->top_target (), 1805 TARGET_OBJECT_RAW_MEMORY, NULL, 1806 myaddr, memaddr, len) == len) 1807 return 0; 1808 else 1809 return -1; 1810 } 1811 1812 /* Like target_read_memory, but specify explicitly that this is a read from 1813 the target's stack. This may trigger different cache behavior. */ 1814 1815 int 1816 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) 1817 { 1818 if (target_read (current_inferior ()->top_target (), 1819 TARGET_OBJECT_STACK_MEMORY, NULL, 1820 myaddr, memaddr, len) == len) 1821 return 0; 1822 else 1823 return -1; 1824 } 1825 1826 /* Like target_read_memory, but specify explicitly that this is a read from 1827 the target's code. This may trigger different cache behavior. */ 1828 1829 int 1830 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) 1831 { 1832 if (target_read (current_inferior ()->top_target (), 1833 TARGET_OBJECT_CODE_MEMORY, NULL, 1834 myaddr, memaddr, len) == len) 1835 return 0; 1836 else 1837 return -1; 1838 } 1839 1840 /* Write LEN bytes from MYADDR to target memory at address MEMADDR. 1841 Returns either 0 for success or -1 if any error occurs. If an 1842 error occurs, no guarantee is made about how much data got written. 1843 Callers that can deal with partial writes should call 1844 target_write. */ 1845 1846 int 1847 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len) 1848 { 1849 if (target_write (current_inferior ()->top_target (), 1850 TARGET_OBJECT_MEMORY, NULL, 1851 myaddr, memaddr, len) == len) 1852 return 0; 1853 else 1854 return -1; 1855 } 1856 1857 /* Write LEN bytes from MYADDR to target raw memory at address 1858 MEMADDR. Returns either 0 for success or -1 if any error occurs. 1859 If an error occurs, no guarantee is made about how much data got 1860 written. Callers that can deal with partial writes should call 1861 target_write. */ 1862 1863 int 1864 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len) 1865 { 1866 if (target_write (current_inferior ()->top_target (), 1867 TARGET_OBJECT_RAW_MEMORY, NULL, 1868 myaddr, memaddr, len) == len) 1869 return 0; 1870 else 1871 return -1; 1872 } 1873 1874 /* Fetch the target's memory map. */ 1875 1876 std::vector<mem_region> 1877 target_memory_map (void) 1878 { 1879 target_ops *target = current_inferior ()->top_target (); 1880 std::vector<mem_region> result = target->memory_map (); 1881 if (result.empty ()) 1882 return result; 1883 1884 std::sort (result.begin (), result.end ()); 1885 1886 /* Check that regions do not overlap. Simultaneously assign 1887 a numbering for the "mem" commands to use to refer to 1888 each region. */ 1889 mem_region *last_one = NULL; 1890 for (size_t ix = 0; ix < result.size (); ix++) 1891 { 1892 mem_region *this_one = &result[ix]; 1893 this_one->number = ix; 1894 1895 if (last_one != NULL && last_one->hi > this_one->lo) 1896 { 1897 warning (_("Overlapping regions in memory map: ignoring")); 1898 return std::vector<mem_region> (); 1899 } 1900 1901 last_one = this_one; 1902 } 1903 1904 return result; 1905 } 1906 1907 void 1908 target_flash_erase (ULONGEST address, LONGEST length) 1909 { 1910 current_inferior ()->top_target ()->flash_erase (address, length); 1911 } 1912 1913 void 1914 target_flash_done (void) 1915 { 1916 current_inferior ()->top_target ()->flash_done (); 1917 } 1918 1919 static void 1920 show_trust_readonly (struct ui_file *file, int from_tty, 1921 struct cmd_list_element *c, const char *value) 1922 { 1923 gdb_printf (file, 1924 _("Mode for reading from readonly sections is %s.\n"), 1925 value); 1926 } 1927 1928 /* Target vector read/write partial wrapper functions. */ 1929 1930 static enum target_xfer_status 1931 target_read_partial (struct target_ops *ops, 1932 enum target_object object, 1933 const char *annex, gdb_byte *buf, 1934 ULONGEST offset, ULONGEST len, 1935 ULONGEST *xfered_len) 1936 { 1937 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len, 1938 xfered_len); 1939 } 1940 1941 static enum target_xfer_status 1942 target_write_partial (struct target_ops *ops, 1943 enum target_object object, 1944 const char *annex, const gdb_byte *buf, 1945 ULONGEST offset, LONGEST len, ULONGEST *xfered_len) 1946 { 1947 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len, 1948 xfered_len); 1949 } 1950 1951 /* Wrappers to perform the full transfer. */ 1952 1953 /* For docs on target_read see target.h. */ 1954 1955 LONGEST 1956 target_read (struct target_ops *ops, 1957 enum target_object object, 1958 const char *annex, gdb_byte *buf, 1959 ULONGEST offset, LONGEST len) 1960 { 1961 LONGEST xfered_total = 0; 1962 int unit_size = 1; 1963 1964 /* If we are reading from a memory object, find the length of an addressable 1965 unit for that architecture. */ 1966 if (object == TARGET_OBJECT_MEMORY 1967 || object == TARGET_OBJECT_STACK_MEMORY 1968 || object == TARGET_OBJECT_CODE_MEMORY 1969 || object == TARGET_OBJECT_RAW_MEMORY) 1970 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ()); 1971 1972 while (xfered_total < len) 1973 { 1974 ULONGEST xfered_partial; 1975 enum target_xfer_status status; 1976 1977 status = target_read_partial (ops, object, annex, 1978 buf + xfered_total * unit_size, 1979 offset + xfered_total, len - xfered_total, 1980 &xfered_partial); 1981 1982 /* Call an observer, notifying them of the xfer progress? */ 1983 if (status == TARGET_XFER_EOF) 1984 return xfered_total; 1985 else if (status == TARGET_XFER_OK) 1986 { 1987 xfered_total += xfered_partial; 1988 QUIT; 1989 } 1990 else 1991 return TARGET_XFER_E_IO; 1992 1993 } 1994 return len; 1995 } 1996 1997 /* Assuming that the entire [begin, end) range of memory cannot be 1998 read, try to read whatever subrange is possible to read. 1999 2000 The function returns, in RESULT, either zero or one memory block. 2001 If there's a readable subrange at the beginning, it is completely 2002 read and returned. Any further readable subrange will not be read. 2003 Otherwise, if there's a readable subrange at the end, it will be 2004 completely read and returned. Any readable subranges before it 2005 (obviously, not starting at the beginning), will be ignored. In 2006 other cases -- either no readable subrange, or readable subrange(s) 2007 that is neither at the beginning, or end, nothing is returned. 2008 2009 The purpose of this function is to handle a read across a boundary 2010 of accessible memory in a case when memory map is not available. 2011 The above restrictions are fine for this case, but will give 2012 incorrect results if the memory is 'patchy'. However, supporting 2013 'patchy' memory would require trying to read every single byte, 2014 and it seems unacceptable solution. Explicit memory map is 2015 recommended for this case -- and target_read_memory_robust will 2016 take care of reading multiple ranges then. */ 2017 2018 static void 2019 read_whatever_is_readable (struct target_ops *ops, 2020 const ULONGEST begin, const ULONGEST end, 2021 int unit_size, 2022 std::vector<memory_read_result> *result) 2023 { 2024 ULONGEST current_begin = begin; 2025 ULONGEST current_end = end; 2026 int forward; 2027 ULONGEST xfered_len; 2028 2029 /* If we previously failed to read 1 byte, nothing can be done here. */ 2030 if (end - begin <= 1) 2031 return; 2032 2033 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin)); 2034 2035 /* Check that either first or the last byte is readable, and give up 2036 if not. This heuristic is meant to permit reading accessible memory 2037 at the boundary of accessible region. */ 2038 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL, 2039 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK) 2040 { 2041 forward = 1; 2042 ++current_begin; 2043 } 2044 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL, 2045 buf.get () + (end - begin) - 1, end - 1, 1, 2046 &xfered_len) == TARGET_XFER_OK) 2047 { 2048 forward = 0; 2049 --current_end; 2050 } 2051 else 2052 return; 2053 2054 /* Loop invariant is that the [current_begin, current_end) was previously 2055 found to be not readable as a whole. 2056 2057 Note loop condition -- if the range has 1 byte, we can't divide the range 2058 so there's no point trying further. */ 2059 while (current_end - current_begin > 1) 2060 { 2061 ULONGEST first_half_begin, first_half_end; 2062 ULONGEST second_half_begin, second_half_end; 2063 LONGEST xfer; 2064 ULONGEST middle = current_begin + (current_end - current_begin) / 2; 2065 2066 if (forward) 2067 { 2068 first_half_begin = current_begin; 2069 first_half_end = middle; 2070 second_half_begin = middle; 2071 second_half_end = current_end; 2072 } 2073 else 2074 { 2075 first_half_begin = middle; 2076 first_half_end = current_end; 2077 second_half_begin = current_begin; 2078 second_half_end = middle; 2079 } 2080 2081 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL, 2082 buf.get () + (first_half_begin - begin) * unit_size, 2083 first_half_begin, 2084 first_half_end - first_half_begin); 2085 2086 if (xfer == first_half_end - first_half_begin) 2087 { 2088 /* This half reads up fine. So, the error must be in the 2089 other half. */ 2090 current_begin = second_half_begin; 2091 current_end = second_half_end; 2092 } 2093 else 2094 { 2095 /* This half is not readable. Because we've tried one byte, we 2096 know some part of this half if actually readable. Go to the next 2097 iteration to divide again and try to read. 2098 2099 We don't handle the other half, because this function only tries 2100 to read a single readable subrange. */ 2101 current_begin = first_half_begin; 2102 current_end = first_half_end; 2103 } 2104 } 2105 2106 if (forward) 2107 { 2108 /* The [begin, current_begin) range has been read. */ 2109 result->emplace_back (begin, current_end, std::move (buf)); 2110 } 2111 else 2112 { 2113 /* The [current_end, end) range has been read. */ 2114 LONGEST region_len = end - current_end; 2115 2116 gdb::unique_xmalloc_ptr<gdb_byte> data 2117 ((gdb_byte *) xmalloc (region_len * unit_size)); 2118 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size, 2119 region_len * unit_size); 2120 result->emplace_back (current_end, end, std::move (data)); 2121 } 2122 } 2123 2124 std::vector<memory_read_result> 2125 read_memory_robust (struct target_ops *ops, 2126 const ULONGEST offset, const LONGEST len) 2127 { 2128 std::vector<memory_read_result> result; 2129 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ()); 2130 2131 LONGEST xfered_total = 0; 2132 while (xfered_total < len) 2133 { 2134 struct mem_region *region = lookup_mem_region (offset + xfered_total); 2135 LONGEST region_len; 2136 2137 /* If there is no explicit region, a fake one should be created. */ 2138 gdb_assert (region); 2139 2140 if (region->hi == 0) 2141 region_len = len - xfered_total; 2142 else 2143 region_len = region->hi - offset; 2144 2145 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO) 2146 { 2147 /* Cannot read this region. Note that we can end up here only 2148 if the region is explicitly marked inaccessible, or 2149 'inaccessible-by-default' is in effect. */ 2150 xfered_total += region_len; 2151 } 2152 else 2153 { 2154 LONGEST to_read = std::min (len - xfered_total, region_len); 2155 gdb::unique_xmalloc_ptr<gdb_byte> buffer 2156 ((gdb_byte *) xmalloc (to_read * unit_size)); 2157 2158 LONGEST xfered_partial = 2159 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (), 2160 offset + xfered_total, to_read); 2161 /* Call an observer, notifying them of the xfer progress? */ 2162 if (xfered_partial <= 0) 2163 { 2164 /* Got an error reading full chunk. See if maybe we can read 2165 some subrange. */ 2166 read_whatever_is_readable (ops, offset + xfered_total, 2167 offset + xfered_total + to_read, 2168 unit_size, &result); 2169 xfered_total += to_read; 2170 } 2171 else 2172 { 2173 result.emplace_back (offset + xfered_total, 2174 offset + xfered_total + xfered_partial, 2175 std::move (buffer)); 2176 xfered_total += xfered_partial; 2177 } 2178 QUIT; 2179 } 2180 } 2181 2182 return result; 2183 } 2184 2185 2186 /* An alternative to target_write with progress callbacks. */ 2187 2188 LONGEST 2189 target_write_with_progress (struct target_ops *ops, 2190 enum target_object object, 2191 const char *annex, const gdb_byte *buf, 2192 ULONGEST offset, LONGEST len, 2193 void (*progress) (ULONGEST, void *), void *baton) 2194 { 2195 LONGEST xfered_total = 0; 2196 int unit_size = 1; 2197 2198 /* If we are writing to a memory object, find the length of an addressable 2199 unit for that architecture. */ 2200 if (object == TARGET_OBJECT_MEMORY 2201 || object == TARGET_OBJECT_STACK_MEMORY 2202 || object == TARGET_OBJECT_CODE_MEMORY 2203 || object == TARGET_OBJECT_RAW_MEMORY) 2204 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ()); 2205 2206 /* Give the progress callback a chance to set up. */ 2207 if (progress) 2208 (*progress) (0, baton); 2209 2210 while (xfered_total < len) 2211 { 2212 ULONGEST xfered_partial; 2213 enum target_xfer_status status; 2214 2215 status = target_write_partial (ops, object, annex, 2216 buf + xfered_total * unit_size, 2217 offset + xfered_total, len - xfered_total, 2218 &xfered_partial); 2219 2220 if (status != TARGET_XFER_OK) 2221 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO; 2222 2223 if (progress) 2224 (*progress) (xfered_partial, baton); 2225 2226 xfered_total += xfered_partial; 2227 QUIT; 2228 } 2229 return len; 2230 } 2231 2232 /* For docs on target_write see target.h. */ 2233 2234 LONGEST 2235 target_write (struct target_ops *ops, 2236 enum target_object object, 2237 const char *annex, const gdb_byte *buf, 2238 ULONGEST offset, LONGEST len) 2239 { 2240 return target_write_with_progress (ops, object, annex, buf, offset, len, 2241 NULL, NULL); 2242 } 2243 2244 /* Help for target_read_alloc and target_read_stralloc. See their comments 2245 for details. */ 2246 2247 template <typename T> 2248 gdb::optional<gdb::def_vector<T>> 2249 target_read_alloc_1 (struct target_ops *ops, enum target_object object, 2250 const char *annex) 2251 { 2252 gdb::def_vector<T> buf; 2253 size_t buf_pos = 0; 2254 const int chunk = 4096; 2255 2256 /* This function does not have a length parameter; it reads the 2257 entire OBJECT). Also, it doesn't support objects fetched partly 2258 from one target and partly from another (in a different stratum, 2259 e.g. a core file and an executable). Both reasons make it 2260 unsuitable for reading memory. */ 2261 gdb_assert (object != TARGET_OBJECT_MEMORY); 2262 2263 /* Start by reading up to 4K at a time. The target will throttle 2264 this number down if necessary. */ 2265 while (1) 2266 { 2267 ULONGEST xfered_len; 2268 enum target_xfer_status status; 2269 2270 buf.resize (buf_pos + chunk); 2271 2272 status = target_read_partial (ops, object, annex, 2273 (gdb_byte *) &buf[buf_pos], 2274 buf_pos, chunk, 2275 &xfered_len); 2276 2277 if (status == TARGET_XFER_EOF) 2278 { 2279 /* Read all there was. */ 2280 buf.resize (buf_pos); 2281 return buf; 2282 } 2283 else if (status != TARGET_XFER_OK) 2284 { 2285 /* An error occurred. */ 2286 return {}; 2287 } 2288 2289 buf_pos += xfered_len; 2290 2291 QUIT; 2292 } 2293 } 2294 2295 /* See target.h */ 2296 2297 gdb::optional<gdb::byte_vector> 2298 target_read_alloc (struct target_ops *ops, enum target_object object, 2299 const char *annex) 2300 { 2301 return target_read_alloc_1<gdb_byte> (ops, object, annex); 2302 } 2303 2304 /* See target.h. */ 2305 2306 gdb::optional<gdb::char_vector> 2307 target_read_stralloc (struct target_ops *ops, enum target_object object, 2308 const char *annex) 2309 { 2310 gdb::optional<gdb::char_vector> buf 2311 = target_read_alloc_1<char> (ops, object, annex); 2312 2313 if (!buf) 2314 return {}; 2315 2316 if (buf->empty () || buf->back () != '\0') 2317 buf->push_back ('\0'); 2318 2319 /* Check for embedded NUL bytes; but allow trailing NULs. */ 2320 for (auto it = std::find (buf->begin (), buf->end (), '\0'); 2321 it != buf->end (); it++) 2322 if (*it != '\0') 2323 { 2324 warning (_("target object %d, annex %s, " 2325 "contained unexpected null characters"), 2326 (int) object, annex ? annex : "(none)"); 2327 break; 2328 } 2329 2330 return buf; 2331 } 2332 2333 /* Memory transfer methods. */ 2334 2335 void 2336 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf, 2337 LONGEST len) 2338 { 2339 /* This method is used to read from an alternate, non-current 2340 target. This read must bypass the overlay support (as symbols 2341 don't match this target), and GDB's internal cache (wrong cache 2342 for this target). */ 2343 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len) 2344 != len) 2345 memory_error (TARGET_XFER_E_IO, addr); 2346 } 2347 2348 ULONGEST 2349 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr, 2350 int len, enum bfd_endian byte_order) 2351 { 2352 gdb_byte buf[sizeof (ULONGEST)]; 2353 2354 gdb_assert (len <= sizeof (buf)); 2355 get_target_memory (ops, addr, buf, len); 2356 return extract_unsigned_integer (buf, len, byte_order); 2357 } 2358 2359 /* See target.h. */ 2360 2361 int 2362 target_insert_breakpoint (struct gdbarch *gdbarch, 2363 struct bp_target_info *bp_tgt) 2364 { 2365 if (!may_insert_breakpoints) 2366 { 2367 warning (_("May not insert breakpoints")); 2368 return 1; 2369 } 2370 2371 target_ops *target = current_inferior ()->top_target (); 2372 2373 return target->insert_breakpoint (gdbarch, bp_tgt); 2374 } 2375 2376 /* See target.h. */ 2377 2378 int 2379 target_remove_breakpoint (struct gdbarch *gdbarch, 2380 struct bp_target_info *bp_tgt, 2381 enum remove_bp_reason reason) 2382 { 2383 /* This is kind of a weird case to handle, but the permission might 2384 have been changed after breakpoints were inserted - in which case 2385 we should just take the user literally and assume that any 2386 breakpoints should be left in place. */ 2387 if (!may_insert_breakpoints) 2388 { 2389 warning (_("May not remove breakpoints")); 2390 return 1; 2391 } 2392 2393 target_ops *target = current_inferior ()->top_target (); 2394 2395 return target->remove_breakpoint (gdbarch, bp_tgt, reason); 2396 } 2397 2398 static void 2399 info_target_command (const char *args, int from_tty) 2400 { 2401 int has_all_mem = 0; 2402 2403 if (current_program_space->symfile_object_file != NULL) 2404 { 2405 objfile *objf = current_program_space->symfile_object_file; 2406 gdb_printf (_("Symbols from \"%s\".\n"), 2407 objfile_name (objf)); 2408 } 2409 2410 for (target_ops *t = current_inferior ()->top_target (); 2411 t != NULL; 2412 t = t->beneath ()) 2413 { 2414 if (!t->has_memory ()) 2415 continue; 2416 2417 if ((int) (t->stratum ()) <= (int) dummy_stratum) 2418 continue; 2419 if (has_all_mem) 2420 gdb_printf (_("\tWhile running this, " 2421 "GDB does not access memory from...\n")); 2422 gdb_printf ("%s:\n", t->longname ()); 2423 t->files_info (); 2424 has_all_mem = t->has_all_memory (); 2425 } 2426 } 2427 2428 /* This function is called before any new inferior is created, e.g. 2429 by running a program, attaching, or connecting to a target. 2430 It cleans up any state from previous invocations which might 2431 change between runs. This is a subset of what target_preopen 2432 resets (things which might change between targets). */ 2433 2434 void 2435 target_pre_inferior (int from_tty) 2436 { 2437 /* Clear out solib state. Otherwise the solib state of the previous 2438 inferior might have survived and is entirely wrong for the new 2439 target. This has been observed on GNU/Linux using glibc 2.3. How 2440 to reproduce: 2441 2442 bash$ ./foo& 2443 [1] 4711 2444 bash$ ./foo& 2445 [1] 4712 2446 bash$ gdb ./foo 2447 [...] 2448 (gdb) attach 4711 2449 (gdb) detach 2450 (gdb) attach 4712 2451 Cannot access memory at address 0xdeadbeef 2452 */ 2453 2454 /* In some OSs, the shared library list is the same/global/shared 2455 across inferiors. If code is shared between processes, so are 2456 memory regions and features. */ 2457 if (!gdbarch_has_global_solist (target_gdbarch ())) 2458 { 2459 no_shared_libraries (NULL, from_tty); 2460 2461 invalidate_target_mem_regions (); 2462 2463 target_clear_description (); 2464 } 2465 2466 /* attach_flag may be set if the previous process associated with 2467 the inferior was attached to. */ 2468 current_inferior ()->attach_flag = false; 2469 2470 current_inferior ()->highest_thread_num = 0; 2471 2472 agent_capability_invalidate (); 2473 } 2474 2475 /* This is to be called by the open routine before it does 2476 anything. */ 2477 2478 void 2479 target_preopen (int from_tty) 2480 { 2481 dont_repeat (); 2482 2483 if (current_inferior ()->pid != 0) 2484 { 2485 if (!from_tty 2486 || !target_has_execution () 2487 || query (_("A program is being debugged already. Kill it? "))) 2488 { 2489 /* Core inferiors actually should be detached, not 2490 killed. */ 2491 if (target_has_execution ()) 2492 target_kill (); 2493 else 2494 target_detach (current_inferior (), 0); 2495 } 2496 else 2497 error (_("Program not killed.")); 2498 } 2499 2500 /* Calling target_kill may remove the target from the stack. But if 2501 it doesn't (which seems like a win for UDI), remove it now. */ 2502 /* Leave the exec target, though. The user may be switching from a 2503 live process to a core of the same program. */ 2504 current_inferior ()->pop_all_targets_above (file_stratum); 2505 2506 target_pre_inferior (from_tty); 2507 } 2508 2509 /* See target.h. */ 2510 2511 void 2512 target_detach (inferior *inf, int from_tty) 2513 { 2514 /* Thread's don't need to be resumed until the end of this function. */ 2515 scoped_disable_commit_resumed disable_commit_resumed ("detaching"); 2516 2517 /* After we have detached, we will clear the register cache for this inferior 2518 by calling registers_changed_ptid. We must save the pid_ptid before 2519 detaching, as the target detach method will clear inf->pid. */ 2520 ptid_t save_pid_ptid = ptid_t (inf->pid); 2521 2522 /* As long as some to_detach implementations rely on the current_inferior 2523 (either directly, or indirectly, like through target_gdbarch or by 2524 reading memory), INF needs to be the current inferior. When that 2525 requirement will become no longer true, then we can remove this 2526 assertion. */ 2527 gdb_assert (inf == current_inferior ()); 2528 2529 prepare_for_detach (); 2530 2531 /* Hold a strong reference because detaching may unpush the 2532 target. */ 2533 auto proc_target_ref = target_ops_ref::new_reference (inf->process_target ()); 2534 2535 current_inferior ()->top_target ()->detach (inf, from_tty); 2536 2537 process_stratum_target *proc_target 2538 = as_process_stratum_target (proc_target_ref.get ()); 2539 2540 registers_changed_ptid (proc_target, save_pid_ptid); 2541 2542 /* We have to ensure we have no frame cache left. Normally, 2543 registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when 2544 inferior_ptid matches save_pid_ptid, but in our case, it does not 2545 call it, as inferior_ptid has been reset. */ 2546 reinit_frame_cache (); 2547 2548 disable_commit_resumed.reset_and_commit (); 2549 } 2550 2551 void 2552 target_disconnect (const char *args, int from_tty) 2553 { 2554 /* If we're in breakpoints-always-inserted mode or if breakpoints 2555 are global across processes, we have to remove them before 2556 disconnecting. */ 2557 remove_breakpoints (); 2558 2559 current_inferior ()->top_target ()->disconnect (args, from_tty); 2560 } 2561 2562 /* See target/target.h. */ 2563 2564 ptid_t 2565 target_wait (ptid_t ptid, struct target_waitstatus *status, 2566 target_wait_flags options) 2567 { 2568 target_ops *target = current_inferior ()->top_target (); 2569 process_stratum_target *proc_target = current_inferior ()->process_target (); 2570 2571 gdb_assert (!proc_target->commit_resumed_state); 2572 2573 if (!target_can_async_p (target)) 2574 gdb_assert ((options & TARGET_WNOHANG) == 0); 2575 2576 try 2577 { 2578 gdb::observers::target_pre_wait.notify (ptid); 2579 ptid_t event_ptid = target->wait (ptid, status, options); 2580 gdb::observers::target_post_wait.notify (event_ptid); 2581 return event_ptid; 2582 } 2583 catch (...) 2584 { 2585 gdb::observers::target_post_wait.notify (null_ptid); 2586 throw; 2587 } 2588 } 2589 2590 /* See target.h. */ 2591 2592 ptid_t 2593 default_target_wait (struct target_ops *ops, 2594 ptid_t ptid, struct target_waitstatus *status, 2595 target_wait_flags options) 2596 { 2597 status->set_ignore (); 2598 return minus_one_ptid; 2599 } 2600 2601 std::string 2602 target_pid_to_str (ptid_t ptid) 2603 { 2604 return current_inferior ()->top_target ()->pid_to_str (ptid); 2605 } 2606 2607 const char * 2608 target_thread_name (struct thread_info *info) 2609 { 2610 gdb_assert (info->inf == current_inferior ()); 2611 2612 return current_inferior ()->top_target ()->thread_name (info); 2613 } 2614 2615 struct thread_info * 2616 target_thread_handle_to_thread_info (const gdb_byte *thread_handle, 2617 int handle_len, 2618 struct inferior *inf) 2619 { 2620 target_ops *target = current_inferior ()->top_target (); 2621 2622 return target->thread_handle_to_thread_info (thread_handle, handle_len, inf); 2623 } 2624 2625 /* See target.h. */ 2626 2627 gdb::byte_vector 2628 target_thread_info_to_thread_handle (struct thread_info *tip) 2629 { 2630 target_ops *target = current_inferior ()->top_target (); 2631 2632 return target->thread_info_to_thread_handle (tip); 2633 } 2634 2635 void 2636 target_resume (ptid_t scope_ptid, int step, enum gdb_signal signal) 2637 { 2638 process_stratum_target *curr_target = current_inferior ()->process_target (); 2639 gdb_assert (!curr_target->commit_resumed_state); 2640 2641 gdb_assert (inferior_ptid != null_ptid); 2642 gdb_assert (inferior_ptid.matches (scope_ptid)); 2643 2644 target_dcache_invalidate (); 2645 2646 current_inferior ()->top_target ()->resume (scope_ptid, step, signal); 2647 2648 registers_changed_ptid (curr_target, scope_ptid); 2649 /* We only set the internal executing state here. The user/frontend 2650 running state is set at a higher level. This also clears the 2651 thread's stop_pc as side effect. */ 2652 set_executing (curr_target, scope_ptid, true); 2653 clear_inline_frame_state (curr_target, scope_ptid); 2654 2655 if (target_can_async_p ()) 2656 target_async (true); 2657 } 2658 2659 /* See target.h. */ 2660 2661 void 2662 target_commit_resumed () 2663 { 2664 gdb_assert (current_inferior ()->process_target ()->commit_resumed_state); 2665 current_inferior ()->top_target ()->commit_resumed (); 2666 } 2667 2668 /* See target.h. */ 2669 2670 bool 2671 target_has_pending_events () 2672 { 2673 return current_inferior ()->top_target ()->has_pending_events (); 2674 } 2675 2676 void 2677 target_pass_signals (gdb::array_view<const unsigned char> pass_signals) 2678 { 2679 current_inferior ()->top_target ()->pass_signals (pass_signals); 2680 } 2681 2682 void 2683 target_program_signals (gdb::array_view<const unsigned char> program_signals) 2684 { 2685 current_inferior ()->top_target ()->program_signals (program_signals); 2686 } 2687 2688 static void 2689 default_follow_fork (struct target_ops *self, inferior *child_inf, 2690 ptid_t child_ptid, target_waitkind fork_kind, 2691 bool follow_child, bool detach_fork) 2692 { 2693 /* Some target returned a fork event, but did not know how to follow it. */ 2694 internal_error (_("could not find a target to follow fork")); 2695 } 2696 2697 /* See target.h. */ 2698 2699 void 2700 target_follow_fork (inferior *child_inf, ptid_t child_ptid, 2701 target_waitkind fork_kind, bool follow_child, 2702 bool detach_fork) 2703 { 2704 target_ops *target = current_inferior ()->top_target (); 2705 2706 /* Check consistency between CHILD_INF, CHILD_PTID, FOLLOW_CHILD and 2707 DETACH_FORK. */ 2708 if (child_inf != nullptr) 2709 { 2710 gdb_assert (follow_child || !detach_fork); 2711 gdb_assert (child_inf->pid == child_ptid.pid ()); 2712 } 2713 else 2714 gdb_assert (!follow_child && detach_fork); 2715 2716 return target->follow_fork (child_inf, child_ptid, fork_kind, follow_child, 2717 detach_fork); 2718 } 2719 2720 /* See target.h. */ 2721 2722 void 2723 target_follow_exec (inferior *follow_inf, ptid_t ptid, 2724 const char *execd_pathname) 2725 { 2726 current_inferior ()->top_target ()->follow_exec (follow_inf, ptid, 2727 execd_pathname); 2728 } 2729 2730 static void 2731 default_mourn_inferior (struct target_ops *self) 2732 { 2733 internal_error (_("could not find a target to follow mourn inferior")); 2734 } 2735 2736 void 2737 target_mourn_inferior (ptid_t ptid) 2738 { 2739 gdb_assert (ptid.pid () == inferior_ptid.pid ()); 2740 current_inferior ()->top_target ()->mourn_inferior (); 2741 2742 /* We no longer need to keep handles on any of the object files. 2743 Make sure to release them to avoid unnecessarily locking any 2744 of them while we're not actually debugging. */ 2745 bfd_cache_close_all (); 2746 } 2747 2748 /* Look for a target which can describe architectural features, starting 2749 from TARGET. If we find one, return its description. */ 2750 2751 const struct target_desc * 2752 target_read_description (struct target_ops *target) 2753 { 2754 return target->read_description (); 2755 } 2756 2757 2758 /* Default implementation of memory-searching. */ 2759 2760 static int 2761 default_search_memory (struct target_ops *self, 2762 CORE_ADDR start_addr, ULONGEST search_space_len, 2763 const gdb_byte *pattern, ULONGEST pattern_len, 2764 CORE_ADDR *found_addrp) 2765 { 2766 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len) 2767 { 2768 return target_read (current_inferior ()->top_target (), 2769 TARGET_OBJECT_MEMORY, NULL, 2770 result, addr, len) == len; 2771 }; 2772 2773 /* Start over from the top of the target stack. */ 2774 return simple_search_memory (read_memory, start_addr, search_space_len, 2775 pattern, pattern_len, found_addrp); 2776 } 2777 2778 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the 2779 sequence of bytes in PATTERN with length PATTERN_LEN. 2780 2781 The result is 1 if found, 0 if not found, and -1 if there was an error 2782 requiring halting of the search (e.g. memory read error). 2783 If the pattern is found the address is recorded in FOUND_ADDRP. */ 2784 2785 int 2786 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len, 2787 const gdb_byte *pattern, ULONGEST pattern_len, 2788 CORE_ADDR *found_addrp) 2789 { 2790 target_ops *target = current_inferior ()->top_target (); 2791 2792 return target->search_memory (start_addr, search_space_len, pattern, 2793 pattern_len, found_addrp); 2794 } 2795 2796 /* Look through the currently pushed targets. If none of them will 2797 be able to restart the currently running process, issue an error 2798 message. */ 2799 2800 void 2801 target_require_runnable (void) 2802 { 2803 for (target_ops *t = current_inferior ()->top_target (); 2804 t != NULL; 2805 t = t->beneath ()) 2806 { 2807 /* If this target knows how to create a new program, then 2808 assume we will still be able to after killing the current 2809 one. Either killing and mourning will not pop T, or else 2810 find_default_run_target will find it again. */ 2811 if (t->can_create_inferior ()) 2812 return; 2813 2814 /* Do not worry about targets at certain strata that can not 2815 create inferiors. Assume they will be pushed again if 2816 necessary, and continue to the process_stratum. */ 2817 if (t->stratum () > process_stratum) 2818 continue; 2819 2820 error (_("The \"%s\" target does not support \"run\". " 2821 "Try \"help target\" or \"continue\"."), 2822 t->shortname ()); 2823 } 2824 2825 /* This function is only called if the target is running. In that 2826 case there should have been a process_stratum target and it 2827 should either know how to create inferiors, or not... */ 2828 internal_error (_("No targets found")); 2829 } 2830 2831 /* Whether GDB is allowed to fall back to the default run target for 2832 "run", "attach", etc. when no target is connected yet. */ 2833 static bool auto_connect_native_target = true; 2834 2835 static void 2836 show_auto_connect_native_target (struct ui_file *file, int from_tty, 2837 struct cmd_list_element *c, const char *value) 2838 { 2839 gdb_printf (file, 2840 _("Whether GDB may automatically connect to the " 2841 "native target is %s.\n"), 2842 value); 2843 } 2844 2845 /* A pointer to the target that can respond to "run" or "attach". 2846 Native targets are always singletons and instantiated early at GDB 2847 startup. */ 2848 static target_ops *the_native_target; 2849 2850 /* See target.h. */ 2851 2852 void 2853 set_native_target (target_ops *target) 2854 { 2855 if (the_native_target != NULL) 2856 internal_error (_("native target already set (\"%s\")."), 2857 the_native_target->longname ()); 2858 2859 the_native_target = target; 2860 } 2861 2862 /* See target.h. */ 2863 2864 target_ops * 2865 get_native_target () 2866 { 2867 return the_native_target; 2868 } 2869 2870 /* Look through the list of possible targets for a target that can 2871 execute a run or attach command without any other data. This is 2872 used to locate the default process stratum. 2873 2874 If DO_MESG is not NULL, the result is always valid (error() is 2875 called for errors); else, return NULL on error. */ 2876 2877 static struct target_ops * 2878 find_default_run_target (const char *do_mesg) 2879 { 2880 if (auto_connect_native_target && the_native_target != NULL) 2881 return the_native_target; 2882 2883 if (do_mesg != NULL) 2884 error (_("Don't know how to %s. Try \"help target\"."), do_mesg); 2885 return NULL; 2886 } 2887 2888 /* See target.h. */ 2889 2890 struct target_ops * 2891 find_attach_target (void) 2892 { 2893 /* If a target on the current stack can attach, use it. */ 2894 for (target_ops *t = current_inferior ()->top_target (); 2895 t != NULL; 2896 t = t->beneath ()) 2897 { 2898 if (t->can_attach ()) 2899 return t; 2900 } 2901 2902 /* Otherwise, use the default run target for attaching. */ 2903 return find_default_run_target ("attach"); 2904 } 2905 2906 /* See target.h. */ 2907 2908 struct target_ops * 2909 find_run_target (void) 2910 { 2911 /* If a target on the current stack can run, use it. */ 2912 for (target_ops *t = current_inferior ()->top_target (); 2913 t != NULL; 2914 t = t->beneath ()) 2915 { 2916 if (t->can_create_inferior ()) 2917 return t; 2918 } 2919 2920 /* Otherwise, use the default run target. */ 2921 return find_default_run_target ("run"); 2922 } 2923 2924 bool 2925 target_ops::info_proc (const char *args, enum info_proc_what what) 2926 { 2927 return false; 2928 } 2929 2930 /* Implement the "info proc" command. */ 2931 2932 int 2933 target_info_proc (const char *args, enum info_proc_what what) 2934 { 2935 struct target_ops *t; 2936 2937 /* If we're already connected to something that can get us OS 2938 related data, use it. Otherwise, try using the native 2939 target. */ 2940 t = find_target_at (process_stratum); 2941 if (t == NULL) 2942 t = find_default_run_target (NULL); 2943 2944 for (; t != NULL; t = t->beneath ()) 2945 { 2946 if (t->info_proc (args, what)) 2947 { 2948 if (targetdebug) 2949 gdb_printf (gdb_stdlog, 2950 "target_info_proc (\"%s\", %d)\n", args, what); 2951 2952 return 1; 2953 } 2954 } 2955 2956 return 0; 2957 } 2958 2959 static int 2960 find_default_supports_disable_randomization (struct target_ops *self) 2961 { 2962 struct target_ops *t; 2963 2964 t = find_default_run_target (NULL); 2965 if (t != NULL) 2966 return t->supports_disable_randomization (); 2967 return 0; 2968 } 2969 2970 int 2971 target_supports_disable_randomization (void) 2972 { 2973 return current_inferior ()->top_target ()->supports_disable_randomization (); 2974 } 2975 2976 /* See target/target.h. */ 2977 2978 int 2979 target_supports_multi_process (void) 2980 { 2981 return current_inferior ()->top_target ()->supports_multi_process (); 2982 } 2983 2984 /* See target.h. */ 2985 2986 gdb::optional<gdb::char_vector> 2987 target_get_osdata (const char *type) 2988 { 2989 struct target_ops *t; 2990 2991 /* If we're already connected to something that can get us OS 2992 related data, use it. Otherwise, try using the native 2993 target. */ 2994 t = find_target_at (process_stratum); 2995 if (t == NULL) 2996 t = find_default_run_target ("get OS data"); 2997 2998 if (!t) 2999 return {}; 3000 3001 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type); 3002 } 3003 3004 /* Determine the current address space of thread PTID. */ 3005 3006 struct address_space * 3007 target_thread_address_space (ptid_t ptid) 3008 { 3009 struct address_space *aspace; 3010 3011 aspace = current_inferior ()->top_target ()->thread_address_space (ptid); 3012 gdb_assert (aspace != NULL); 3013 3014 return aspace; 3015 } 3016 3017 /* See target.h. */ 3018 3019 target_ops * 3020 target_ops::beneath () const 3021 { 3022 return current_inferior ()->find_target_beneath (this); 3023 } 3024 3025 void 3026 target_ops::close () 3027 { 3028 } 3029 3030 bool 3031 target_ops::can_attach () 3032 { 3033 return 0; 3034 } 3035 3036 void 3037 target_ops::attach (const char *, int) 3038 { 3039 gdb_assert_not_reached ("target_ops::attach called"); 3040 } 3041 3042 bool 3043 target_ops::can_create_inferior () 3044 { 3045 return 0; 3046 } 3047 3048 void 3049 target_ops::create_inferior (const char *, const std::string &, 3050 char **, int) 3051 { 3052 gdb_assert_not_reached ("target_ops::create_inferior called"); 3053 } 3054 3055 bool 3056 target_ops::can_run () 3057 { 3058 return false; 3059 } 3060 3061 int 3062 target_can_run () 3063 { 3064 for (target_ops *t = current_inferior ()->top_target (); 3065 t != NULL; 3066 t = t->beneath ()) 3067 { 3068 if (t->can_run ()) 3069 return 1; 3070 } 3071 3072 return 0; 3073 } 3074 3075 /* Target file operations. */ 3076 3077 static struct target_ops * 3078 default_fileio_target (void) 3079 { 3080 struct target_ops *t; 3081 3082 /* If we're already connected to something that can perform 3083 file I/O, use it. Otherwise, try using the native target. */ 3084 t = find_target_at (process_stratum); 3085 if (t != NULL) 3086 return t; 3087 return find_default_run_target ("file I/O"); 3088 } 3089 3090 /* File handle for target file operations. */ 3091 3092 struct fileio_fh_t 3093 { 3094 /* The target on which this file is open. NULL if the target is 3095 meanwhile closed while the handle is open. */ 3096 target_ops *target; 3097 3098 /* The file descriptor on the target. */ 3099 int target_fd; 3100 3101 /* Check whether this fileio_fh_t represents a closed file. */ 3102 bool is_closed () 3103 { 3104 return target_fd < 0; 3105 } 3106 }; 3107 3108 /* Vector of currently open file handles. The value returned by 3109 target_fileio_open and passed as the FD argument to other 3110 target_fileio_* functions is an index into this vector. This 3111 vector's entries are never freed; instead, files are marked as 3112 closed, and the handle becomes available for reuse. */ 3113 static std::vector<fileio_fh_t> fileio_fhandles; 3114 3115 /* Index into fileio_fhandles of the lowest handle that might be 3116 closed. This permits handle reuse without searching the whole 3117 list each time a new file is opened. */ 3118 static int lowest_closed_fd; 3119 3120 /* See target.h. */ 3121 3122 void 3123 fileio_handles_invalidate_target (target_ops *targ) 3124 { 3125 for (fileio_fh_t &fh : fileio_fhandles) 3126 if (fh.target == targ) 3127 fh.target = NULL; 3128 } 3129 3130 /* Acquire a target fileio file descriptor. */ 3131 3132 static int 3133 acquire_fileio_fd (target_ops *target, int target_fd) 3134 { 3135 /* Search for closed handles to reuse. */ 3136 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++) 3137 { 3138 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd]; 3139 3140 if (fh.is_closed ()) 3141 break; 3142 } 3143 3144 /* Push a new handle if no closed handles were found. */ 3145 if (lowest_closed_fd == fileio_fhandles.size ()) 3146 fileio_fhandles.push_back (fileio_fh_t {target, target_fd}); 3147 else 3148 fileio_fhandles[lowest_closed_fd] = {target, target_fd}; 3149 3150 /* Should no longer be marked closed. */ 3151 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ()); 3152 3153 /* Return its index, and start the next lookup at 3154 the next index. */ 3155 return lowest_closed_fd++; 3156 } 3157 3158 /* Release a target fileio file descriptor. */ 3159 3160 static void 3161 release_fileio_fd (int fd, fileio_fh_t *fh) 3162 { 3163 fh->target_fd = -1; 3164 lowest_closed_fd = std::min (lowest_closed_fd, fd); 3165 } 3166 3167 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */ 3168 3169 static fileio_fh_t * 3170 fileio_fd_to_fh (int fd) 3171 { 3172 return &fileio_fhandles[fd]; 3173 } 3174 3175 3176 /* Default implementations of file i/o methods. We don't want these 3177 to delegate automatically, because we need to know which target 3178 supported the method, in order to call it directly from within 3179 pread/pwrite, etc. */ 3180 3181 int 3182 target_ops::fileio_open (struct inferior *inf, const char *filename, 3183 int flags, int mode, int warn_if_slow, 3184 fileio_error *target_errno) 3185 { 3186 *target_errno = FILEIO_ENOSYS; 3187 return -1; 3188 } 3189 3190 int 3191 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len, 3192 ULONGEST offset, fileio_error *target_errno) 3193 { 3194 *target_errno = FILEIO_ENOSYS; 3195 return -1; 3196 } 3197 3198 int 3199 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len, 3200 ULONGEST offset, fileio_error *target_errno) 3201 { 3202 *target_errno = FILEIO_ENOSYS; 3203 return -1; 3204 } 3205 3206 int 3207 target_ops::fileio_fstat (int fd, struct stat *sb, fileio_error *target_errno) 3208 { 3209 *target_errno = FILEIO_ENOSYS; 3210 return -1; 3211 } 3212 3213 int 3214 target_ops::fileio_close (int fd, fileio_error *target_errno) 3215 { 3216 *target_errno = FILEIO_ENOSYS; 3217 return -1; 3218 } 3219 3220 int 3221 target_ops::fileio_unlink (struct inferior *inf, const char *filename, 3222 fileio_error *target_errno) 3223 { 3224 *target_errno = FILEIO_ENOSYS; 3225 return -1; 3226 } 3227 3228 gdb::optional<std::string> 3229 target_ops::fileio_readlink (struct inferior *inf, const char *filename, 3230 fileio_error *target_errno) 3231 { 3232 *target_errno = FILEIO_ENOSYS; 3233 return {}; 3234 } 3235 3236 /* See target.h. */ 3237 3238 int 3239 target_fileio_open (struct inferior *inf, const char *filename, 3240 int flags, int mode, bool warn_if_slow, fileio_error *target_errno) 3241 { 3242 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ()) 3243 { 3244 int fd = t->fileio_open (inf, filename, flags, mode, 3245 warn_if_slow, target_errno); 3246 3247 if (fd == -1 && *target_errno == FILEIO_ENOSYS) 3248 continue; 3249 3250 if (fd < 0) 3251 fd = -1; 3252 else 3253 fd = acquire_fileio_fd (t, fd); 3254 3255 if (targetdebug) 3256 gdb_printf (gdb_stdlog, 3257 "target_fileio_open (%d,%s,0x%x,0%o,%d)" 3258 " = %d (%d)\n", 3259 inf == NULL ? 0 : inf->num, 3260 filename, flags, mode, 3261 warn_if_slow, fd, 3262 fd != -1 ? 0 : *target_errno); 3263 return fd; 3264 } 3265 3266 *target_errno = FILEIO_ENOSYS; 3267 return -1; 3268 } 3269 3270 /* See target.h. */ 3271 3272 int 3273 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len, 3274 ULONGEST offset, fileio_error *target_errno) 3275 { 3276 fileio_fh_t *fh = fileio_fd_to_fh (fd); 3277 int ret = -1; 3278 3279 if (fh->is_closed ()) 3280 *target_errno = FILEIO_EBADF; 3281 else if (fh->target == NULL) 3282 *target_errno = FILEIO_EIO; 3283 else 3284 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf, 3285 len, offset, target_errno); 3286 3287 if (targetdebug) 3288 gdb_printf (gdb_stdlog, 3289 "target_fileio_pwrite (%d,...,%d,%s) " 3290 "= %d (%d)\n", 3291 fd, len, pulongest (offset), 3292 ret, ret != -1 ? 0 : *target_errno); 3293 return ret; 3294 } 3295 3296 /* See target.h. */ 3297 3298 int 3299 target_fileio_pread (int fd, gdb_byte *read_buf, int len, 3300 ULONGEST offset, fileio_error *target_errno) 3301 { 3302 fileio_fh_t *fh = fileio_fd_to_fh (fd); 3303 int ret = -1; 3304 3305 if (fh->is_closed ()) 3306 *target_errno = FILEIO_EBADF; 3307 else if (fh->target == NULL) 3308 *target_errno = FILEIO_EIO; 3309 else 3310 ret = fh->target->fileio_pread (fh->target_fd, read_buf, 3311 len, offset, target_errno); 3312 3313 if (targetdebug) 3314 gdb_printf (gdb_stdlog, 3315 "target_fileio_pread (%d,...,%d,%s) " 3316 "= %d (%d)\n", 3317 fd, len, pulongest (offset), 3318 ret, ret != -1 ? 0 : *target_errno); 3319 return ret; 3320 } 3321 3322 /* See target.h. */ 3323 3324 int 3325 target_fileio_fstat (int fd, struct stat *sb, fileio_error *target_errno) 3326 { 3327 fileio_fh_t *fh = fileio_fd_to_fh (fd); 3328 int ret = -1; 3329 3330 if (fh->is_closed ()) 3331 *target_errno = FILEIO_EBADF; 3332 else if (fh->target == NULL) 3333 *target_errno = FILEIO_EIO; 3334 else 3335 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno); 3336 3337 if (targetdebug) 3338 gdb_printf (gdb_stdlog, 3339 "target_fileio_fstat (%d) = %d (%d)\n", 3340 fd, ret, ret != -1 ? 0 : *target_errno); 3341 return ret; 3342 } 3343 3344 /* See target.h. */ 3345 3346 int 3347 target_fileio_close (int fd, fileio_error *target_errno) 3348 { 3349 fileio_fh_t *fh = fileio_fd_to_fh (fd); 3350 int ret = -1; 3351 3352 if (fh->is_closed ()) 3353 *target_errno = FILEIO_EBADF; 3354 else 3355 { 3356 if (fh->target != NULL) 3357 ret = fh->target->fileio_close (fh->target_fd, 3358 target_errno); 3359 else 3360 ret = 0; 3361 release_fileio_fd (fd, fh); 3362 } 3363 3364 if (targetdebug) 3365 gdb_printf (gdb_stdlog, 3366 "target_fileio_close (%d) = %d (%d)\n", 3367 fd, ret, ret != -1 ? 0 : *target_errno); 3368 return ret; 3369 } 3370 3371 /* See target.h. */ 3372 3373 int 3374 target_fileio_unlink (struct inferior *inf, const char *filename, 3375 fileio_error *target_errno) 3376 { 3377 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ()) 3378 { 3379 int ret = t->fileio_unlink (inf, filename, target_errno); 3380 3381 if (ret == -1 && *target_errno == FILEIO_ENOSYS) 3382 continue; 3383 3384 if (targetdebug) 3385 gdb_printf (gdb_stdlog, 3386 "target_fileio_unlink (%d,%s)" 3387 " = %d (%d)\n", 3388 inf == NULL ? 0 : inf->num, filename, 3389 ret, ret != -1 ? 0 : *target_errno); 3390 return ret; 3391 } 3392 3393 *target_errno = FILEIO_ENOSYS; 3394 return -1; 3395 } 3396 3397 /* See target.h. */ 3398 3399 gdb::optional<std::string> 3400 target_fileio_readlink (struct inferior *inf, const char *filename, 3401 fileio_error *target_errno) 3402 { 3403 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ()) 3404 { 3405 gdb::optional<std::string> ret 3406 = t->fileio_readlink (inf, filename, target_errno); 3407 3408 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS) 3409 continue; 3410 3411 if (targetdebug) 3412 gdb_printf (gdb_stdlog, 3413 "target_fileio_readlink (%d,%s)" 3414 " = %s (%d)\n", 3415 inf == NULL ? 0 : inf->num, 3416 filename, ret ? ret->c_str () : "(nil)", 3417 ret ? 0 : *target_errno); 3418 return ret; 3419 } 3420 3421 *target_errno = FILEIO_ENOSYS; 3422 return {}; 3423 } 3424 3425 /* Like scoped_fd, but specific to target fileio. */ 3426 3427 class scoped_target_fd 3428 { 3429 public: 3430 explicit scoped_target_fd (int fd) noexcept 3431 : m_fd (fd) 3432 { 3433 } 3434 3435 ~scoped_target_fd () 3436 { 3437 if (m_fd >= 0) 3438 { 3439 fileio_error target_errno; 3440 3441 target_fileio_close (m_fd, &target_errno); 3442 } 3443 } 3444 3445 DISABLE_COPY_AND_ASSIGN (scoped_target_fd); 3446 3447 int get () const noexcept 3448 { 3449 return m_fd; 3450 } 3451 3452 private: 3453 int m_fd; 3454 }; 3455 3456 /* Read target file FILENAME, in the filesystem as seen by INF. If 3457 INF is NULL, use the filesystem seen by the debugger (GDB or, for 3458 remote targets, the remote stub). Store the result in *BUF_P and 3459 return the size of the transferred data. PADDING additional bytes 3460 are available in *BUF_P. This is a helper function for 3461 target_fileio_read_alloc; see the declaration of that function for 3462 more information. */ 3463 3464 static LONGEST 3465 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename, 3466 gdb_byte **buf_p, int padding) 3467 { 3468 size_t buf_alloc, buf_pos; 3469 gdb_byte *buf; 3470 LONGEST n; 3471 fileio_error target_errno; 3472 3473 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY, 3474 0700, false, &target_errno)); 3475 if (fd.get () == -1) 3476 return -1; 3477 3478 /* Start by reading up to 4K at a time. The target will throttle 3479 this number down if necessary. */ 3480 buf_alloc = 4096; 3481 buf = (gdb_byte *) xmalloc (buf_alloc); 3482 buf_pos = 0; 3483 while (1) 3484 { 3485 n = target_fileio_pread (fd.get (), &buf[buf_pos], 3486 buf_alloc - buf_pos - padding, buf_pos, 3487 &target_errno); 3488 if (n < 0) 3489 { 3490 /* An error occurred. */ 3491 xfree (buf); 3492 return -1; 3493 } 3494 else if (n == 0) 3495 { 3496 /* Read all there was. */ 3497 if (buf_pos == 0) 3498 xfree (buf); 3499 else 3500 *buf_p = buf; 3501 return buf_pos; 3502 } 3503 3504 buf_pos += n; 3505 3506 /* If the buffer is filling up, expand it. */ 3507 if (buf_alloc < buf_pos * 2) 3508 { 3509 buf_alloc *= 2; 3510 buf = (gdb_byte *) xrealloc (buf, buf_alloc); 3511 } 3512 3513 QUIT; 3514 } 3515 } 3516 3517 /* See target.h. */ 3518 3519 LONGEST 3520 target_fileio_read_alloc (struct inferior *inf, const char *filename, 3521 gdb_byte **buf_p) 3522 { 3523 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0); 3524 } 3525 3526 /* See target.h. */ 3527 3528 gdb::unique_xmalloc_ptr<char> 3529 target_fileio_read_stralloc (struct inferior *inf, const char *filename) 3530 { 3531 gdb_byte *buffer; 3532 char *bufstr; 3533 LONGEST i, transferred; 3534 3535 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1); 3536 bufstr = (char *) buffer; 3537 3538 if (transferred < 0) 3539 return gdb::unique_xmalloc_ptr<char> (nullptr); 3540 3541 if (transferred == 0) 3542 return make_unique_xstrdup (""); 3543 3544 bufstr[transferred] = 0; 3545 3546 /* Check for embedded NUL bytes; but allow trailing NULs. */ 3547 for (i = strlen (bufstr); i < transferred; i++) 3548 if (bufstr[i] != 0) 3549 { 3550 warning (_("target file %s " 3551 "contained unexpected null characters"), 3552 filename); 3553 break; 3554 } 3555 3556 return gdb::unique_xmalloc_ptr<char> (bufstr); 3557 } 3558 3559 3560 static int 3561 default_region_ok_for_hw_watchpoint (struct target_ops *self, 3562 CORE_ADDR addr, int len) 3563 { 3564 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT); 3565 } 3566 3567 static int 3568 default_watchpoint_addr_within_range (struct target_ops *target, 3569 CORE_ADDR addr, 3570 CORE_ADDR start, int length) 3571 { 3572 return addr >= start && addr < start + length; 3573 } 3574 3575 /* See target.h. */ 3576 3577 target_ops * 3578 target_stack::find_beneath (const target_ops *t) const 3579 { 3580 /* Look for a non-empty slot at stratum levels beneath T's. */ 3581 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum) 3582 if (m_stack[stratum].get () != NULL) 3583 return m_stack[stratum].get (); 3584 3585 return NULL; 3586 } 3587 3588 /* See target.h. */ 3589 3590 struct target_ops * 3591 find_target_at (enum strata stratum) 3592 { 3593 return current_inferior ()->target_at (stratum); 3594 } 3595 3596 3597 3598 /* See target.h */ 3599 3600 void 3601 target_announce_detach (int from_tty) 3602 { 3603 pid_t pid; 3604 const char *exec_file; 3605 3606 if (!from_tty) 3607 return; 3608 3609 pid = inferior_ptid.pid (); 3610 exec_file = get_exec_file (0); 3611 if (exec_file == nullptr) 3612 gdb_printf ("Detaching from pid %s\n", 3613 target_pid_to_str (ptid_t (pid)).c_str ()); 3614 else 3615 gdb_printf (_("Detaching from program: %s, %s\n"), exec_file, 3616 target_pid_to_str (ptid_t (pid)).c_str ()); 3617 } 3618 3619 /* See target.h */ 3620 3621 void 3622 target_announce_attach (int from_tty, int pid) 3623 { 3624 if (!from_tty) 3625 return; 3626 3627 const char *exec_file = get_exec_file (0); 3628 3629 if (exec_file != nullptr) 3630 gdb_printf ("Attaching to program: %s, %s\n", exec_file, 3631 target_pid_to_str (ptid_t (pid)).c_str ()); 3632 else 3633 gdb_printf ("Attaching to %s\n", 3634 target_pid_to_str (ptid_t (pid)).c_str ()); 3635 } 3636 3637 /* The inferior process has died. Long live the inferior! */ 3638 3639 void 3640 generic_mourn_inferior (void) 3641 { 3642 inferior *inf = current_inferior (); 3643 3644 switch_to_no_thread (); 3645 3646 /* Mark breakpoints uninserted in case something tries to delete a 3647 breakpoint while we delete the inferior's threads (which would 3648 fail, since the inferior is long gone). */ 3649 mark_breakpoints_out (); 3650 3651 if (inf->pid != 0) 3652 exit_inferior (inf); 3653 3654 /* Note this wipes step-resume breakpoints, so needs to be done 3655 after exit_inferior, which ends up referencing the step-resume 3656 breakpoints through clear_thread_inferior_resources. */ 3657 breakpoint_init_inferior (inf_exited); 3658 3659 registers_changed (); 3660 3661 reopen_exec_file (); 3662 reinit_frame_cache (); 3663 3664 if (deprecated_detach_hook) 3665 deprecated_detach_hook (); 3666 } 3667 3668 /* Convert a normal process ID to a string. Returns the string in a 3669 static buffer. */ 3670 3671 std::string 3672 normal_pid_to_str (ptid_t ptid) 3673 { 3674 return string_printf ("process %d", ptid.pid ()); 3675 } 3676 3677 static std::string 3678 default_pid_to_str (struct target_ops *ops, ptid_t ptid) 3679 { 3680 return normal_pid_to_str (ptid); 3681 } 3682 3683 /* Error-catcher for target_find_memory_regions. */ 3684 static int 3685 dummy_find_memory_regions (struct target_ops *self, 3686 find_memory_region_ftype ignore1, void *ignore2) 3687 { 3688 error (_("Command not implemented for this target.")); 3689 return 0; 3690 } 3691 3692 /* Error-catcher for target_make_corefile_notes. */ 3693 static gdb::unique_xmalloc_ptr<char> 3694 dummy_make_corefile_notes (struct target_ops *self, 3695 bfd *ignore1, int *ignore2) 3696 { 3697 error (_("Command not implemented for this target.")); 3698 return NULL; 3699 } 3700 3701 #include "target-delegates.c" 3702 3703 /* The initial current target, so that there is always a semi-valid 3704 current target. */ 3705 3706 static dummy_target the_dummy_target; 3707 3708 /* See target.h. */ 3709 3710 target_ops * 3711 get_dummy_target () 3712 { 3713 return &the_dummy_target; 3714 } 3715 3716 static const target_info dummy_target_info = { 3717 "None", 3718 N_("None"), 3719 "" 3720 }; 3721 3722 strata 3723 dummy_target::stratum () const 3724 { 3725 return dummy_stratum; 3726 } 3727 3728 strata 3729 debug_target::stratum () const 3730 { 3731 return debug_stratum; 3732 } 3733 3734 const target_info & 3735 dummy_target::info () const 3736 { 3737 return dummy_target_info; 3738 } 3739 3740 const target_info & 3741 debug_target::info () const 3742 { 3743 return beneath ()->info (); 3744 } 3745 3746 3747 3748 void 3749 target_close (struct target_ops *targ) 3750 { 3751 for (inferior *inf : all_inferiors ()) 3752 gdb_assert (!inf->target_is_pushed (targ)); 3753 3754 fileio_handles_invalidate_target (targ); 3755 3756 targ->close (); 3757 3758 if (targetdebug) 3759 gdb_printf (gdb_stdlog, "target_close ()\n"); 3760 } 3761 3762 int 3763 target_thread_alive (ptid_t ptid) 3764 { 3765 return current_inferior ()->top_target ()->thread_alive (ptid); 3766 } 3767 3768 void 3769 target_update_thread_list (void) 3770 { 3771 current_inferior ()->top_target ()->update_thread_list (); 3772 } 3773 3774 void 3775 target_stop (ptid_t ptid) 3776 { 3777 process_stratum_target *proc_target = current_inferior ()->process_target (); 3778 3779 gdb_assert (!proc_target->commit_resumed_state); 3780 3781 if (!may_stop) 3782 { 3783 warning (_("May not interrupt or stop the target, ignoring attempt")); 3784 return; 3785 } 3786 3787 current_inferior ()->top_target ()->stop (ptid); 3788 } 3789 3790 void 3791 target_interrupt () 3792 { 3793 if (!may_stop) 3794 { 3795 warning (_("May not interrupt or stop the target, ignoring attempt")); 3796 return; 3797 } 3798 3799 current_inferior ()->top_target ()->interrupt (); 3800 } 3801 3802 /* See target.h. */ 3803 3804 void 3805 target_pass_ctrlc (void) 3806 { 3807 /* Pass the Ctrl-C to the first target that has a thread 3808 running. */ 3809 for (inferior *inf : all_inferiors ()) 3810 { 3811 target_ops *proc_target = inf->process_target (); 3812 if (proc_target == NULL) 3813 continue; 3814 3815 for (thread_info *thr : inf->non_exited_threads ()) 3816 { 3817 /* A thread can be THREAD_STOPPED and executing, while 3818 running an infcall. */ 3819 if (thr->state == THREAD_RUNNING || thr->executing ()) 3820 { 3821 /* We can get here quite deep in target layers. Avoid 3822 switching thread context or anything that would 3823 communicate with the target (e.g., to fetch 3824 registers), or flushing e.g., the frame cache. We 3825 just switch inferior in order to be able to call 3826 through the target_stack. */ 3827 scoped_restore_current_inferior restore_inferior; 3828 set_current_inferior (inf); 3829 current_inferior ()->top_target ()->pass_ctrlc (); 3830 return; 3831 } 3832 } 3833 } 3834 } 3835 3836 /* See target.h. */ 3837 3838 void 3839 default_target_pass_ctrlc (struct target_ops *ops) 3840 { 3841 target_interrupt (); 3842 } 3843 3844 /* See target/target.h. */ 3845 3846 void 3847 target_stop_and_wait (ptid_t ptid) 3848 { 3849 struct target_waitstatus status; 3850 bool was_non_stop = non_stop; 3851 3852 non_stop = true; 3853 target_stop (ptid); 3854 3855 target_wait (ptid, &status, 0); 3856 3857 non_stop = was_non_stop; 3858 } 3859 3860 /* See target/target.h. */ 3861 3862 void 3863 target_continue_no_signal (ptid_t ptid) 3864 { 3865 target_resume (ptid, 0, GDB_SIGNAL_0); 3866 } 3867 3868 /* See target/target.h. */ 3869 3870 void 3871 target_continue (ptid_t ptid, enum gdb_signal signal) 3872 { 3873 target_resume (ptid, 0, signal); 3874 } 3875 3876 /* Concatenate ELEM to LIST, a comma-separated list. */ 3877 3878 static void 3879 str_comma_list_concat_elem (std::string *list, const char *elem) 3880 { 3881 if (!list->empty ()) 3882 list->append (", "); 3883 3884 list->append (elem); 3885 } 3886 3887 /* Helper for target_options_to_string. If OPT is present in 3888 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET. 3889 OPT is removed from TARGET_OPTIONS. */ 3890 3891 static void 3892 do_option (target_wait_flags *target_options, std::string *ret, 3893 target_wait_flag opt, const char *opt_str) 3894 { 3895 if ((*target_options & opt) != 0) 3896 { 3897 str_comma_list_concat_elem (ret, opt_str); 3898 *target_options &= ~opt; 3899 } 3900 } 3901 3902 /* See target.h. */ 3903 3904 std::string 3905 target_options_to_string (target_wait_flags target_options) 3906 { 3907 std::string ret; 3908 3909 #define DO_TARG_OPTION(OPT) \ 3910 do_option (&target_options, &ret, OPT, #OPT) 3911 3912 DO_TARG_OPTION (TARGET_WNOHANG); 3913 3914 if (target_options != 0) 3915 str_comma_list_concat_elem (&ret, "unknown???"); 3916 3917 return ret; 3918 } 3919 3920 void 3921 target_fetch_registers (struct regcache *regcache, int regno) 3922 { 3923 current_inferior ()->top_target ()->fetch_registers (regcache, regno); 3924 if (targetdebug) 3925 regcache->debug_print_register ("target_fetch_registers", regno); 3926 } 3927 3928 void 3929 target_store_registers (struct regcache *regcache, int regno) 3930 { 3931 if (!may_write_registers) 3932 error (_("Writing to registers is not allowed (regno %d)"), regno); 3933 3934 current_inferior ()->top_target ()->store_registers (regcache, regno); 3935 if (targetdebug) 3936 { 3937 regcache->debug_print_register ("target_store_registers", regno); 3938 } 3939 } 3940 3941 int 3942 target_core_of_thread (ptid_t ptid) 3943 { 3944 return current_inferior ()->top_target ()->core_of_thread (ptid); 3945 } 3946 3947 int 3948 simple_verify_memory (struct target_ops *ops, 3949 const gdb_byte *data, CORE_ADDR lma, ULONGEST size) 3950 { 3951 LONGEST total_xfered = 0; 3952 3953 while (total_xfered < size) 3954 { 3955 ULONGEST xfered_len; 3956 enum target_xfer_status status; 3957 gdb_byte buf[1024]; 3958 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered); 3959 3960 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL, 3961 buf, NULL, lma + total_xfered, howmuch, 3962 &xfered_len); 3963 if (status == TARGET_XFER_OK 3964 && memcmp (data + total_xfered, buf, xfered_len) == 0) 3965 { 3966 total_xfered += xfered_len; 3967 QUIT; 3968 } 3969 else 3970 return 0; 3971 } 3972 return 1; 3973 } 3974 3975 /* Default implementation of memory verification. */ 3976 3977 static int 3978 default_verify_memory (struct target_ops *self, 3979 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size) 3980 { 3981 /* Start over from the top of the target stack. */ 3982 return simple_verify_memory (current_inferior ()->top_target (), 3983 data, memaddr, size); 3984 } 3985 3986 int 3987 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size) 3988 { 3989 target_ops *target = current_inferior ()->top_target (); 3990 3991 return target->verify_memory (data, memaddr, size); 3992 } 3993 3994 /* The documentation for this function is in its prototype declaration in 3995 target.h. */ 3996 3997 int 3998 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, 3999 enum target_hw_bp_type rw) 4000 { 4001 target_ops *target = current_inferior ()->top_target (); 4002 4003 return target->insert_mask_watchpoint (addr, mask, rw); 4004 } 4005 4006 /* The documentation for this function is in its prototype declaration in 4007 target.h. */ 4008 4009 int 4010 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, 4011 enum target_hw_bp_type rw) 4012 { 4013 target_ops *target = current_inferior ()->top_target (); 4014 4015 return target->remove_mask_watchpoint (addr, mask, rw); 4016 } 4017 4018 /* The documentation for this function is in its prototype declaration 4019 in target.h. */ 4020 4021 int 4022 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask) 4023 { 4024 target_ops *target = current_inferior ()->top_target (); 4025 4026 return target->masked_watch_num_registers (addr, mask); 4027 } 4028 4029 /* The documentation for this function is in its prototype declaration 4030 in target.h. */ 4031 4032 int 4033 target_ranged_break_num_registers (void) 4034 { 4035 return current_inferior ()->top_target ()->ranged_break_num_registers (); 4036 } 4037 4038 /* See target.h. */ 4039 4040 struct btrace_target_info * 4041 target_enable_btrace (thread_info *tp, const struct btrace_config *conf) 4042 { 4043 return current_inferior ()->top_target ()->enable_btrace (tp, conf); 4044 } 4045 4046 /* See target.h. */ 4047 4048 void 4049 target_disable_btrace (struct btrace_target_info *btinfo) 4050 { 4051 current_inferior ()->top_target ()->disable_btrace (btinfo); 4052 } 4053 4054 /* See target.h. */ 4055 4056 void 4057 target_teardown_btrace (struct btrace_target_info *btinfo) 4058 { 4059 current_inferior ()->top_target ()->teardown_btrace (btinfo); 4060 } 4061 4062 /* See target.h. */ 4063 4064 enum btrace_error 4065 target_read_btrace (struct btrace_data *btrace, 4066 struct btrace_target_info *btinfo, 4067 enum btrace_read_type type) 4068 { 4069 target_ops *target = current_inferior ()->top_target (); 4070 4071 return target->read_btrace (btrace, btinfo, type); 4072 } 4073 4074 /* See target.h. */ 4075 4076 const struct btrace_config * 4077 target_btrace_conf (const struct btrace_target_info *btinfo) 4078 { 4079 return current_inferior ()->top_target ()->btrace_conf (btinfo); 4080 } 4081 4082 /* See target.h. */ 4083 4084 void 4085 target_stop_recording (void) 4086 { 4087 current_inferior ()->top_target ()->stop_recording (); 4088 } 4089 4090 /* See target.h. */ 4091 4092 void 4093 target_save_record (const char *filename) 4094 { 4095 current_inferior ()->top_target ()->save_record (filename); 4096 } 4097 4098 /* See target.h. */ 4099 4100 int 4101 target_supports_delete_record () 4102 { 4103 return current_inferior ()->top_target ()->supports_delete_record (); 4104 } 4105 4106 /* See target.h. */ 4107 4108 void 4109 target_delete_record (void) 4110 { 4111 current_inferior ()->top_target ()->delete_record (); 4112 } 4113 4114 /* See target.h. */ 4115 4116 enum record_method 4117 target_record_method (ptid_t ptid) 4118 { 4119 return current_inferior ()->top_target ()->record_method (ptid); 4120 } 4121 4122 /* See target.h. */ 4123 4124 int 4125 target_record_is_replaying (ptid_t ptid) 4126 { 4127 return current_inferior ()->top_target ()->record_is_replaying (ptid); 4128 } 4129 4130 /* See target.h. */ 4131 4132 int 4133 target_record_will_replay (ptid_t ptid, int dir) 4134 { 4135 return current_inferior ()->top_target ()->record_will_replay (ptid, dir); 4136 } 4137 4138 /* See target.h. */ 4139 4140 void 4141 target_record_stop_replaying (void) 4142 { 4143 current_inferior ()->top_target ()->record_stop_replaying (); 4144 } 4145 4146 /* See target.h. */ 4147 4148 void 4149 target_goto_record_begin (void) 4150 { 4151 current_inferior ()->top_target ()->goto_record_begin (); 4152 } 4153 4154 /* See target.h. */ 4155 4156 void 4157 target_goto_record_end (void) 4158 { 4159 current_inferior ()->top_target ()->goto_record_end (); 4160 } 4161 4162 /* See target.h. */ 4163 4164 void 4165 target_goto_record (ULONGEST insn) 4166 { 4167 current_inferior ()->top_target ()->goto_record (insn); 4168 } 4169 4170 /* See target.h. */ 4171 4172 void 4173 target_insn_history (int size, gdb_disassembly_flags flags) 4174 { 4175 current_inferior ()->top_target ()->insn_history (size, flags); 4176 } 4177 4178 /* See target.h. */ 4179 4180 void 4181 target_insn_history_from (ULONGEST from, int size, 4182 gdb_disassembly_flags flags) 4183 { 4184 current_inferior ()->top_target ()->insn_history_from (from, size, flags); 4185 } 4186 4187 /* See target.h. */ 4188 4189 void 4190 target_insn_history_range (ULONGEST begin, ULONGEST end, 4191 gdb_disassembly_flags flags) 4192 { 4193 current_inferior ()->top_target ()->insn_history_range (begin, end, flags); 4194 } 4195 4196 /* See target.h. */ 4197 4198 void 4199 target_call_history (int size, record_print_flags flags) 4200 { 4201 current_inferior ()->top_target ()->call_history (size, flags); 4202 } 4203 4204 /* See target.h. */ 4205 4206 void 4207 target_call_history_from (ULONGEST begin, int size, record_print_flags flags) 4208 { 4209 current_inferior ()->top_target ()->call_history_from (begin, size, flags); 4210 } 4211 4212 /* See target.h. */ 4213 4214 void 4215 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags) 4216 { 4217 current_inferior ()->top_target ()->call_history_range (begin, end, flags); 4218 } 4219 4220 /* See target.h. */ 4221 4222 const struct frame_unwind * 4223 target_get_unwinder (void) 4224 { 4225 return current_inferior ()->top_target ()->get_unwinder (); 4226 } 4227 4228 /* See target.h. */ 4229 4230 const struct frame_unwind * 4231 target_get_tailcall_unwinder (void) 4232 { 4233 return current_inferior ()->top_target ()->get_tailcall_unwinder (); 4234 } 4235 4236 /* See target.h. */ 4237 4238 void 4239 target_prepare_to_generate_core (void) 4240 { 4241 current_inferior ()->top_target ()->prepare_to_generate_core (); 4242 } 4243 4244 /* See target.h. */ 4245 4246 void 4247 target_done_generating_core (void) 4248 { 4249 current_inferior ()->top_target ()->done_generating_core (); 4250 } 4251 4252 4253 4254 static char targ_desc[] = 4255 "Names of targets and files being debugged.\nShows the entire \ 4256 stack of targets currently in use (including the exec-file,\n\ 4257 core-file, and process, if any), as well as the symbol file name."; 4258 4259 static void 4260 default_rcmd (struct target_ops *self, const char *command, 4261 struct ui_file *output) 4262 { 4263 error (_("\"monitor\" command not supported by this target.")); 4264 } 4265 4266 static void 4267 do_monitor_command (const char *cmd, int from_tty) 4268 { 4269 target_rcmd (cmd, gdb_stdtarg); 4270 } 4271 4272 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are 4273 ignored. */ 4274 4275 void 4276 flash_erase_command (const char *cmd, int from_tty) 4277 { 4278 /* Used to communicate termination of flash operations to the target. */ 4279 bool found_flash_region = false; 4280 struct gdbarch *gdbarch = target_gdbarch (); 4281 4282 std::vector<mem_region> mem_regions = target_memory_map (); 4283 4284 /* Iterate over all memory regions. */ 4285 for (const mem_region &m : mem_regions) 4286 { 4287 /* Is this a flash memory region? */ 4288 if (m.attrib.mode == MEM_FLASH) 4289 { 4290 found_flash_region = true; 4291 target_flash_erase (m.lo, m.hi - m.lo); 4292 4293 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions"); 4294 4295 current_uiout->message (_("Erasing flash memory region at address ")); 4296 current_uiout->field_core_addr ("address", gdbarch, m.lo); 4297 current_uiout->message (", size = "); 4298 current_uiout->field_string ("size", hex_string (m.hi - m.lo)); 4299 current_uiout->message ("\n"); 4300 } 4301 } 4302 4303 /* Did we do any flash operations? If so, we need to finalize them. */ 4304 if (found_flash_region) 4305 target_flash_done (); 4306 else 4307 current_uiout->message (_("No flash memory regions found.\n")); 4308 } 4309 4310 /* Print the name of each layers of our target stack. */ 4311 4312 static void 4313 maintenance_print_target_stack (const char *cmd, int from_tty) 4314 { 4315 gdb_printf (_("The current target stack is:\n")); 4316 4317 for (target_ops *t = current_inferior ()->top_target (); 4318 t != NULL; 4319 t = t->beneath ()) 4320 { 4321 if (t->stratum () == debug_stratum) 4322 continue; 4323 gdb_printf (" - %s (%s)\n", t->shortname (), t->longname ()); 4324 } 4325 } 4326 4327 /* See target.h. */ 4328 4329 void 4330 target_async (bool enable) 4331 { 4332 /* If we are trying to enable async mode then it must be the case that 4333 async mode is possible for this target. */ 4334 gdb_assert (!enable || target_can_async_p ()); 4335 infrun_async (enable); 4336 current_inferior ()->top_target ()->async (enable); 4337 } 4338 4339 /* See target.h. */ 4340 4341 void 4342 target_thread_events (int enable) 4343 { 4344 current_inferior ()->top_target ()->thread_events (enable); 4345 } 4346 4347 /* Controls if targets can report that they can/are async. This is 4348 just for maintainers to use when debugging gdb. */ 4349 bool target_async_permitted = true; 4350 4351 static void 4352 set_maint_target_async (bool permitted) 4353 { 4354 if (have_live_inferiors ()) 4355 error (_("Cannot change this setting while the inferior is running.")); 4356 4357 target_async_permitted = permitted; 4358 } 4359 4360 static bool 4361 get_maint_target_async () 4362 { 4363 return target_async_permitted; 4364 } 4365 4366 static void 4367 show_maint_target_async (ui_file *file, int from_tty, 4368 cmd_list_element *c, const char *value) 4369 { 4370 gdb_printf (file, 4371 _("Controlling the inferior in " 4372 "asynchronous mode is %s.\n"), value); 4373 } 4374 4375 /* Return true if the target operates in non-stop mode even with "set 4376 non-stop off". */ 4377 4378 static int 4379 target_always_non_stop_p (void) 4380 { 4381 return current_inferior ()->top_target ()->always_non_stop_p (); 4382 } 4383 4384 /* See target.h. */ 4385 4386 bool 4387 target_is_non_stop_p () 4388 { 4389 return ((non_stop 4390 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE 4391 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO 4392 && target_always_non_stop_p ())) 4393 && target_can_async_p ()); 4394 } 4395 4396 /* See target.h. */ 4397 4398 bool 4399 exists_non_stop_target () 4400 { 4401 if (target_is_non_stop_p ()) 4402 return true; 4403 4404 scoped_restore_current_thread restore_thread; 4405 4406 for (inferior *inf : all_inferiors ()) 4407 { 4408 switch_to_inferior_no_thread (inf); 4409 if (target_is_non_stop_p ()) 4410 return true; 4411 } 4412 4413 return false; 4414 } 4415 4416 /* Controls if targets can report that they always run in non-stop 4417 mode. This is just for maintainers to use when debugging gdb. */ 4418 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO; 4419 4420 /* Set callback for maint target-non-stop setting. */ 4421 4422 static void 4423 set_maint_target_non_stop (auto_boolean enabled) 4424 { 4425 if (have_live_inferiors ()) 4426 error (_("Cannot change this setting while the inferior is running.")); 4427 4428 target_non_stop_enabled = enabled; 4429 } 4430 4431 /* Get callback for maint target-non-stop setting. */ 4432 4433 static auto_boolean 4434 get_maint_target_non_stop () 4435 { 4436 return target_non_stop_enabled; 4437 } 4438 4439 static void 4440 show_maint_target_non_stop (ui_file *file, int from_tty, 4441 cmd_list_element *c, const char *value) 4442 { 4443 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO) 4444 gdb_printf (file, 4445 _("Whether the target is always in non-stop mode " 4446 "is %s (currently %s).\n"), value, 4447 target_always_non_stop_p () ? "on" : "off"); 4448 else 4449 gdb_printf (file, 4450 _("Whether the target is always in non-stop mode " 4451 "is %s.\n"), value); 4452 } 4453 4454 /* Temporary copies of permission settings. */ 4455 4456 static bool may_write_registers_1 = true; 4457 static bool may_write_memory_1 = true; 4458 static bool may_insert_breakpoints_1 = true; 4459 static bool may_insert_tracepoints_1 = true; 4460 static bool may_insert_fast_tracepoints_1 = true; 4461 static bool may_stop_1 = true; 4462 4463 /* Make the user-set values match the real values again. */ 4464 4465 void 4466 update_target_permissions (void) 4467 { 4468 may_write_registers_1 = may_write_registers; 4469 may_write_memory_1 = may_write_memory; 4470 may_insert_breakpoints_1 = may_insert_breakpoints; 4471 may_insert_tracepoints_1 = may_insert_tracepoints; 4472 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints; 4473 may_stop_1 = may_stop; 4474 } 4475 4476 /* The one function handles (most of) the permission flags in the same 4477 way. */ 4478 4479 static void 4480 set_target_permissions (const char *args, int from_tty, 4481 struct cmd_list_element *c) 4482 { 4483 if (target_has_execution ()) 4484 { 4485 update_target_permissions (); 4486 error (_("Cannot change this setting while the inferior is running.")); 4487 } 4488 4489 /* Make the real values match the user-changed values. */ 4490 may_write_registers = may_write_registers_1; 4491 may_insert_breakpoints = may_insert_breakpoints_1; 4492 may_insert_tracepoints = may_insert_tracepoints_1; 4493 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1; 4494 may_stop = may_stop_1; 4495 update_observer_mode (); 4496 } 4497 4498 /* Set memory write permission independently of observer mode. */ 4499 4500 static void 4501 set_write_memory_permission (const char *args, int from_tty, 4502 struct cmd_list_element *c) 4503 { 4504 /* Make the real values match the user-changed values. */ 4505 may_write_memory = may_write_memory_1; 4506 update_observer_mode (); 4507 } 4508 4509 void _initialize_target (); 4510 4511 void 4512 _initialize_target () 4513 { 4514 the_debug_target = new debug_target (); 4515 4516 add_info ("target", info_target_command, targ_desc); 4517 add_info ("files", info_target_command, targ_desc); 4518 4519 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\ 4520 Set target debugging."), _("\ 4521 Show target debugging."), _("\ 4522 When non-zero, target debugging is enabled. Higher numbers are more\n\ 4523 verbose."), 4524 set_targetdebug, 4525 show_targetdebug, 4526 &setdebuglist, &showdebuglist); 4527 4528 add_setshow_boolean_cmd ("trust-readonly-sections", class_support, 4529 &trust_readonly, _("\ 4530 Set mode for reading from readonly sections."), _("\ 4531 Show mode for reading from readonly sections."), _("\ 4532 When this mode is on, memory reads from readonly sections (such as .text)\n\ 4533 will be read from the object file instead of from the target. This will\n\ 4534 result in significant performance improvement for remote targets."), 4535 NULL, 4536 show_trust_readonly, 4537 &setlist, &showlist); 4538 4539 add_com ("monitor", class_obscure, do_monitor_command, 4540 _("Send a command to the remote monitor (remote targets only).")); 4541 4542 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack, 4543 _("Print the name of each layer of the internal target stack."), 4544 &maintenanceprintlist); 4545 4546 add_setshow_boolean_cmd ("target-async", no_class, 4547 _("\ 4548 Set whether gdb controls the inferior in asynchronous mode."), _("\ 4549 Show whether gdb controls the inferior in asynchronous mode."), _("\ 4550 Tells gdb whether to control the inferior in asynchronous mode."), 4551 set_maint_target_async, 4552 get_maint_target_async, 4553 show_maint_target_async, 4554 &maintenance_set_cmdlist, 4555 &maintenance_show_cmdlist); 4556 4557 add_setshow_auto_boolean_cmd ("target-non-stop", no_class, 4558 _("\ 4559 Set whether gdb always controls the inferior in non-stop mode."), _("\ 4560 Show whether gdb always controls the inferior in non-stop mode."), _("\ 4561 Tells gdb whether to control the inferior in non-stop mode."), 4562 set_maint_target_non_stop, 4563 get_maint_target_non_stop, 4564 show_maint_target_non_stop, 4565 &maintenance_set_cmdlist, 4566 &maintenance_show_cmdlist); 4567 4568 add_setshow_boolean_cmd ("may-write-registers", class_support, 4569 &may_write_registers_1, _("\ 4570 Set permission to write into registers."), _("\ 4571 Show permission to write into registers."), _("\ 4572 When this permission is on, GDB may write into the target's registers.\n\ 4573 Otherwise, any sort of write attempt will result in an error."), 4574 set_target_permissions, NULL, 4575 &setlist, &showlist); 4576 4577 add_setshow_boolean_cmd ("may-write-memory", class_support, 4578 &may_write_memory_1, _("\ 4579 Set permission to write into target memory."), _("\ 4580 Show permission to write into target memory."), _("\ 4581 When this permission is on, GDB may write into the target's memory.\n\ 4582 Otherwise, any sort of write attempt will result in an error."), 4583 set_write_memory_permission, NULL, 4584 &setlist, &showlist); 4585 4586 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support, 4587 &may_insert_breakpoints_1, _("\ 4588 Set permission to insert breakpoints in the target."), _("\ 4589 Show permission to insert breakpoints in the target."), _("\ 4590 When this permission is on, GDB may insert breakpoints in the program.\n\ 4591 Otherwise, any sort of insertion attempt will result in an error."), 4592 set_target_permissions, NULL, 4593 &setlist, &showlist); 4594 4595 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support, 4596 &may_insert_tracepoints_1, _("\ 4597 Set permission to insert tracepoints in the target."), _("\ 4598 Show permission to insert tracepoints in the target."), _("\ 4599 When this permission is on, GDB may insert tracepoints in the program.\n\ 4600 Otherwise, any sort of insertion attempt will result in an error."), 4601 set_target_permissions, NULL, 4602 &setlist, &showlist); 4603 4604 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support, 4605 &may_insert_fast_tracepoints_1, _("\ 4606 Set permission to insert fast tracepoints in the target."), _("\ 4607 Show permission to insert fast tracepoints in the target."), _("\ 4608 When this permission is on, GDB may insert fast tracepoints.\n\ 4609 Otherwise, any sort of insertion attempt will result in an error."), 4610 set_target_permissions, NULL, 4611 &setlist, &showlist); 4612 4613 add_setshow_boolean_cmd ("may-interrupt", class_support, 4614 &may_stop_1, _("\ 4615 Set permission to interrupt or signal the target."), _("\ 4616 Show permission to interrupt or signal the target."), _("\ 4617 When this permission is on, GDB may interrupt/stop the target's execution.\n\ 4618 Otherwise, any attempt to interrupt or stop will be ignored."), 4619 set_target_permissions, NULL, 4620 &setlist, &showlist); 4621 4622 add_com ("flash-erase", no_class, flash_erase_command, 4623 _("Erase all flash memory regions.")); 4624 4625 add_setshow_boolean_cmd ("auto-connect-native-target", class_support, 4626 &auto_connect_native_target, _("\ 4627 Set whether GDB may automatically connect to the native target."), _("\ 4628 Show whether GDB may automatically connect to the native target."), _("\ 4629 When on, and GDB is not connected to a target yet, GDB\n\ 4630 attempts \"run\" and other commands with the native target."), 4631 NULL, show_auto_connect_native_target, 4632 &setlist, &showlist); 4633 } 4634