1 /* Select target systems and architectures at runtime for GDB. 2 3 Copyright (C) 1990-2020 Free Software Foundation, Inc. 4 5 Contributed by Cygnus Support. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 #include "defs.h" 23 #include "target.h" 24 #include "target-dcache.h" 25 #include "gdbcmd.h" 26 #include "symtab.h" 27 #include "inferior.h" 28 #include "infrun.h" 29 #include "bfd.h" 30 #include "symfile.h" 31 #include "objfiles.h" 32 #include "dcache.h" 33 #include <signal.h> 34 #include "regcache.h" 35 #include "gdbcore.h" 36 #include "target-descriptions.h" 37 #include "gdbthread.h" 38 #include "solib.h" 39 #include "exec.h" 40 #include "inline-frame.h" 41 #include "tracepoint.h" 42 #include "gdb/fileio.h" 43 #include "gdbsupport/agent.h" 44 #include "auxv.h" 45 #include "target-debug.h" 46 #include "top.h" 47 #include "event-top.h" 48 #include <algorithm> 49 #include "gdbsupport/byte-vector.h" 50 #include "terminal.h" 51 #include <unordered_map> 52 #include "target-connection.h" 53 #include "valprint.h" 54 55 static void generic_tls_error (void) ATTRIBUTE_NORETURN; 56 57 static void default_terminal_info (struct target_ops *, const char *, int); 58 59 static int default_watchpoint_addr_within_range (struct target_ops *, 60 CORE_ADDR, CORE_ADDR, int); 61 62 static int default_region_ok_for_hw_watchpoint (struct target_ops *, 63 CORE_ADDR, int); 64 65 static void default_rcmd (struct target_ops *, const char *, struct ui_file *); 66 67 static ptid_t default_get_ada_task_ptid (struct target_ops *self, 68 long lwp, long tid); 69 70 static void default_mourn_inferior (struct target_ops *self); 71 72 static int default_search_memory (struct target_ops *ops, 73 CORE_ADDR start_addr, 74 ULONGEST search_space_len, 75 const gdb_byte *pattern, 76 ULONGEST pattern_len, 77 CORE_ADDR *found_addrp); 78 79 static int default_verify_memory (struct target_ops *self, 80 const gdb_byte *data, 81 CORE_ADDR memaddr, ULONGEST size); 82 83 static void tcomplain (void) ATTRIBUTE_NORETURN; 84 85 static struct target_ops *find_default_run_target (const char *); 86 87 static int dummy_find_memory_regions (struct target_ops *self, 88 find_memory_region_ftype ignore1, 89 void *ignore2); 90 91 static char *dummy_make_corefile_notes (struct target_ops *self, 92 bfd *ignore1, int *ignore2); 93 94 static std::string default_pid_to_str (struct target_ops *ops, ptid_t ptid); 95 96 static enum exec_direction_kind default_execution_direction 97 (struct target_ops *self); 98 99 /* Mapping between target_info objects (which have address identity) 100 and corresponding open/factory function/callback. Each add_target 101 call adds one entry to this map, and registers a "target 102 TARGET_NAME" command that when invoked calls the factory registered 103 here. The target_info object is associated with the command via 104 the command's context. */ 105 static std::unordered_map<const target_info *, target_open_ftype *> 106 target_factories; 107 108 /* The singleton debug target. */ 109 110 static struct target_ops *the_debug_target; 111 112 /* Top of target stack. */ 113 /* The target structure we are currently using to talk to a process 114 or file or whatever "inferior" we have. */ 115 116 target_ops * 117 current_top_target () 118 { 119 return current_inferior ()->top_target (); 120 } 121 122 /* Command list for target. */ 123 124 static struct cmd_list_element *targetlist = NULL; 125 126 /* True if we should trust readonly sections from the 127 executable when reading memory. */ 128 129 static bool trust_readonly = false; 130 131 /* Nonzero if we should show true memory content including 132 memory breakpoint inserted by gdb. */ 133 134 static int show_memory_breakpoints = 0; 135 136 /* These globals control whether GDB attempts to perform these 137 operations; they are useful for targets that need to prevent 138 inadvertent disruption, such as in non-stop mode. */ 139 140 bool may_write_registers = true; 141 142 bool may_write_memory = true; 143 144 bool may_insert_breakpoints = true; 145 146 bool may_insert_tracepoints = true; 147 148 bool may_insert_fast_tracepoints = true; 149 150 bool may_stop = true; 151 152 /* Non-zero if we want to see trace of target level stuff. */ 153 154 static unsigned int targetdebug = 0; 155 156 static void 157 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c) 158 { 159 if (targetdebug) 160 push_target (the_debug_target); 161 else 162 unpush_target (the_debug_target); 163 } 164 165 static void 166 show_targetdebug (struct ui_file *file, int from_tty, 167 struct cmd_list_element *c, const char *value) 168 { 169 fprintf_filtered (file, _("Target debugging is %s.\n"), value); 170 } 171 172 int 173 target_has_all_memory_1 (void) 174 { 175 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ()) 176 if (t->has_all_memory ()) 177 return 1; 178 179 return 0; 180 } 181 182 int 183 target_has_memory_1 (void) 184 { 185 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ()) 186 if (t->has_memory ()) 187 return 1; 188 189 return 0; 190 } 191 192 int 193 target_has_stack_1 (void) 194 { 195 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ()) 196 if (t->has_stack ()) 197 return 1; 198 199 return 0; 200 } 201 202 int 203 target_has_registers_1 (void) 204 { 205 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ()) 206 if (t->has_registers ()) 207 return 1; 208 209 return 0; 210 } 211 212 bool 213 target_has_execution_1 (inferior *inf) 214 { 215 for (target_ops *t = inf->top_target (); 216 t != nullptr; 217 t = inf->find_target_beneath (t)) 218 if (t->has_execution (inf)) 219 return true; 220 221 return false; 222 } 223 224 int 225 target_has_execution_current (void) 226 { 227 return target_has_execution_1 (current_inferior ()); 228 } 229 230 /* This is used to implement the various target commands. */ 231 232 static void 233 open_target (const char *args, int from_tty, struct cmd_list_element *command) 234 { 235 auto *ti = static_cast<target_info *> (get_cmd_context (command)); 236 target_open_ftype *func = target_factories[ti]; 237 238 if (targetdebug) 239 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n", 240 ti->shortname); 241 242 func (args, from_tty); 243 244 if (targetdebug) 245 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n", 246 ti->shortname, args, from_tty); 247 } 248 249 /* See target.h. */ 250 251 void 252 add_target (const target_info &t, target_open_ftype *func, 253 completer_ftype *completer) 254 { 255 struct cmd_list_element *c; 256 257 auto &func_slot = target_factories[&t]; 258 if (func_slot != nullptr) 259 internal_error (__FILE__, __LINE__, 260 _("target already added (\"%s\")."), t.shortname); 261 func_slot = func; 262 263 if (targetlist == NULL) 264 add_basic_prefix_cmd ("target", class_run, _("\ 265 Connect to a target machine or process.\n\ 266 The first argument is the type or protocol of the target machine.\n\ 267 Remaining arguments are interpreted by the target protocol. For more\n\ 268 information on the arguments for a particular protocol, type\n\ 269 `help target ' followed by the protocol name."), 270 &targetlist, "target ", 0, &cmdlist); 271 c = add_cmd (t.shortname, no_class, t.doc, &targetlist); 272 set_cmd_context (c, (void *) &t); 273 set_cmd_sfunc (c, open_target); 274 if (completer != NULL) 275 set_cmd_completer (c, completer); 276 } 277 278 /* See target.h. */ 279 280 void 281 add_deprecated_target_alias (const target_info &tinfo, const char *alias) 282 { 283 struct cmd_list_element *c; 284 char *alt; 285 286 /* If we use add_alias_cmd, here, we do not get the deprecated warning, 287 see PR cli/15104. */ 288 c = add_cmd (alias, no_class, tinfo.doc, &targetlist); 289 set_cmd_sfunc (c, open_target); 290 set_cmd_context (c, (void *) &tinfo); 291 alt = xstrprintf ("target %s", tinfo.shortname); 292 deprecate_cmd (c, alt); 293 } 294 295 /* Stub functions */ 296 297 void 298 target_kill (void) 299 { 300 current_top_target ()->kill (); 301 } 302 303 void 304 target_load (const char *arg, int from_tty) 305 { 306 target_dcache_invalidate (); 307 current_top_target ()->load (arg, from_tty); 308 } 309 310 /* Define it. */ 311 312 target_terminal_state target_terminal::m_terminal_state 313 = target_terminal_state::is_ours; 314 315 /* See target/target.h. */ 316 317 void 318 target_terminal::init (void) 319 { 320 current_top_target ()->terminal_init (); 321 322 m_terminal_state = target_terminal_state::is_ours; 323 } 324 325 /* See target/target.h. */ 326 327 void 328 target_terminal::inferior (void) 329 { 330 struct ui *ui = current_ui; 331 332 /* A background resume (``run&'') should leave GDB in control of the 333 terminal. */ 334 if (ui->prompt_state != PROMPT_BLOCKED) 335 return; 336 337 /* Since we always run the inferior in the main console (unless "set 338 inferior-tty" is in effect), when some UI other than the main one 339 calls target_terminal::inferior, then we leave the main UI's 340 terminal settings as is. */ 341 if (ui != main_ui) 342 return; 343 344 /* If GDB is resuming the inferior in the foreground, install 345 inferior's terminal modes. */ 346 347 struct inferior *inf = current_inferior (); 348 349 if (inf->terminal_state != target_terminal_state::is_inferior) 350 { 351 current_top_target ()->terminal_inferior (); 352 inf->terminal_state = target_terminal_state::is_inferior; 353 } 354 355 m_terminal_state = target_terminal_state::is_inferior; 356 357 /* If the user hit C-c before, pretend that it was hit right 358 here. */ 359 if (check_quit_flag ()) 360 target_pass_ctrlc (); 361 } 362 363 /* See target/target.h. */ 364 365 void 366 target_terminal::restore_inferior (void) 367 { 368 struct ui *ui = current_ui; 369 370 /* See target_terminal::inferior(). */ 371 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui) 372 return; 373 374 /* Restore the terminal settings of inferiors that were in the 375 foreground but are now ours_for_output due to a temporary 376 target_target::ours_for_output() call. */ 377 378 { 379 scoped_restore_current_inferior restore_inferior; 380 381 for (::inferior *inf : all_inferiors ()) 382 { 383 if (inf->terminal_state == target_terminal_state::is_ours_for_output) 384 { 385 set_current_inferior (inf); 386 current_top_target ()->terminal_inferior (); 387 inf->terminal_state = target_terminal_state::is_inferior; 388 } 389 } 390 } 391 392 m_terminal_state = target_terminal_state::is_inferior; 393 394 /* If the user hit C-c before, pretend that it was hit right 395 here. */ 396 if (check_quit_flag ()) 397 target_pass_ctrlc (); 398 } 399 400 /* Switch terminal state to DESIRED_STATE, either is_ours, or 401 is_ours_for_output. */ 402 403 static void 404 target_terminal_is_ours_kind (target_terminal_state desired_state) 405 { 406 scoped_restore_current_inferior restore_inferior; 407 408 /* Must do this in two passes. First, have all inferiors save the 409 current terminal settings. Then, after all inferiors have add a 410 chance to safely save the terminal settings, restore GDB's 411 terminal settings. */ 412 413 for (inferior *inf : all_inferiors ()) 414 { 415 if (inf->terminal_state == target_terminal_state::is_inferior) 416 { 417 set_current_inferior (inf); 418 current_top_target ()->terminal_save_inferior (); 419 } 420 } 421 422 for (inferior *inf : all_inferiors ()) 423 { 424 /* Note we don't check is_inferior here like above because we 425 need to handle 'is_ours_for_output -> is_ours' too. Careful 426 to never transition from 'is_ours' to 'is_ours_for_output', 427 though. */ 428 if (inf->terminal_state != target_terminal_state::is_ours 429 && inf->terminal_state != desired_state) 430 { 431 set_current_inferior (inf); 432 if (desired_state == target_terminal_state::is_ours) 433 current_top_target ()->terminal_ours (); 434 else if (desired_state == target_terminal_state::is_ours_for_output) 435 current_top_target ()->terminal_ours_for_output (); 436 else 437 gdb_assert_not_reached ("unhandled desired state"); 438 inf->terminal_state = desired_state; 439 } 440 } 441 } 442 443 /* See target/target.h. */ 444 445 void 446 target_terminal::ours () 447 { 448 struct ui *ui = current_ui; 449 450 /* See target_terminal::inferior. */ 451 if (ui != main_ui) 452 return; 453 454 if (m_terminal_state == target_terminal_state::is_ours) 455 return; 456 457 target_terminal_is_ours_kind (target_terminal_state::is_ours); 458 m_terminal_state = target_terminal_state::is_ours; 459 } 460 461 /* See target/target.h. */ 462 463 void 464 target_terminal::ours_for_output () 465 { 466 struct ui *ui = current_ui; 467 468 /* See target_terminal::inferior. */ 469 if (ui != main_ui) 470 return; 471 472 if (!target_terminal::is_inferior ()) 473 return; 474 475 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output); 476 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output; 477 } 478 479 /* See target/target.h. */ 480 481 void 482 target_terminal::info (const char *arg, int from_tty) 483 { 484 current_top_target ()->terminal_info (arg, from_tty); 485 } 486 487 /* See target.h. */ 488 489 bool 490 target_supports_terminal_ours (void) 491 { 492 /* The current top target is the target at the top of the target 493 stack of the current inferior. While normally there's always an 494 inferior, we must check for nullptr here because we can get here 495 very early during startup, before the initial inferior is first 496 created. */ 497 inferior *inf = current_inferior (); 498 499 if (inf == nullptr) 500 return false; 501 return inf->top_target ()->supports_terminal_ours (); 502 } 503 504 static void 505 tcomplain (void) 506 { 507 error (_("You can't do that when your target is `%s'"), 508 current_top_target ()->shortname ()); 509 } 510 511 void 512 noprocess (void) 513 { 514 error (_("You can't do that without a process to debug.")); 515 } 516 517 static void 518 default_terminal_info (struct target_ops *self, const char *args, int from_tty) 519 { 520 printf_unfiltered (_("No saved terminal information.\n")); 521 } 522 523 /* A default implementation for the to_get_ada_task_ptid target method. 524 525 This function builds the PTID by using both LWP and TID as part of 526 the PTID lwp and tid elements. The pid used is the pid of the 527 inferior_ptid. */ 528 529 static ptid_t 530 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid) 531 { 532 return ptid_t (inferior_ptid.pid (), lwp, tid); 533 } 534 535 static enum exec_direction_kind 536 default_execution_direction (struct target_ops *self) 537 { 538 if (!target_can_execute_reverse) 539 return EXEC_FORWARD; 540 else if (!target_can_async_p ()) 541 return EXEC_FORWARD; 542 else 543 gdb_assert_not_reached ("\ 544 to_execution_direction must be implemented for reverse async"); 545 } 546 547 /* See target.h. */ 548 549 void 550 decref_target (target_ops *t) 551 { 552 t->decref (); 553 if (t->refcount () == 0) 554 { 555 if (t->stratum () == process_stratum) 556 connection_list_remove (as_process_stratum_target (t)); 557 target_close (t); 558 } 559 } 560 561 /* See target.h. */ 562 563 void 564 target_stack::push (target_ops *t) 565 { 566 t->incref (); 567 568 strata stratum = t->stratum (); 569 570 if (stratum == process_stratum) 571 connection_list_add (as_process_stratum_target (t)); 572 573 /* If there's already a target at this stratum, remove it. */ 574 575 if (m_stack[stratum] != NULL) 576 unpush (m_stack[stratum]); 577 578 /* Now add the new one. */ 579 m_stack[stratum] = t; 580 581 if (m_top < stratum) 582 m_top = stratum; 583 } 584 585 /* See target.h. */ 586 587 void 588 push_target (struct target_ops *t) 589 { 590 current_inferior ()->push_target (t); 591 } 592 593 /* See target.h. */ 594 595 void 596 push_target (target_ops_up &&t) 597 { 598 current_inferior ()->push_target (t.get ()); 599 t.release (); 600 } 601 602 /* See target.h. */ 603 604 int 605 unpush_target (struct target_ops *t) 606 { 607 return current_inferior ()->unpush_target (t); 608 } 609 610 /* See target.h. */ 611 612 bool 613 target_stack::unpush (target_ops *t) 614 { 615 gdb_assert (t != NULL); 616 617 strata stratum = t->stratum (); 618 619 if (stratum == dummy_stratum) 620 internal_error (__FILE__, __LINE__, 621 _("Attempt to unpush the dummy target")); 622 623 /* Look for the specified target. Note that a target can only occur 624 once in the target stack. */ 625 626 if (m_stack[stratum] != t) 627 { 628 /* If T wasn't pushed, quit. Only open targets should be 629 closed. */ 630 return false; 631 } 632 633 /* Unchain the target. */ 634 m_stack[stratum] = NULL; 635 636 if (m_top == stratum) 637 m_top = t->beneath ()->stratum (); 638 639 /* Finally close the target, if there are no inferiors 640 referencing this target still. Note we do this after unchaining, 641 so any target method calls from within the target_close 642 implementation don't end up in T anymore. Do leave the target 643 open if we have are other inferiors referencing this target 644 still. */ 645 decref_target (t); 646 647 return true; 648 } 649 650 /* Unpush TARGET and assert that it worked. */ 651 652 static void 653 unpush_target_and_assert (struct target_ops *target) 654 { 655 if (!unpush_target (target)) 656 { 657 fprintf_unfiltered (gdb_stderr, 658 "pop_all_targets couldn't find target %s\n", 659 target->shortname ()); 660 internal_error (__FILE__, __LINE__, 661 _("failed internal consistency check")); 662 } 663 } 664 665 void 666 pop_all_targets_above (enum strata above_stratum) 667 { 668 while ((int) (current_top_target ()->stratum ()) > (int) above_stratum) 669 unpush_target_and_assert (current_top_target ()); 670 } 671 672 /* See target.h. */ 673 674 void 675 pop_all_targets_at_and_above (enum strata stratum) 676 { 677 while ((int) (current_top_target ()->stratum ()) >= (int) stratum) 678 unpush_target_and_assert (current_top_target ()); 679 } 680 681 void 682 pop_all_targets (void) 683 { 684 pop_all_targets_above (dummy_stratum); 685 } 686 687 /* Return true if T is now pushed in the current inferior's target 688 stack. Return false otherwise. */ 689 690 bool 691 target_is_pushed (target_ops *t) 692 { 693 return current_inferior ()->target_is_pushed (t); 694 } 695 696 /* Default implementation of to_get_thread_local_address. */ 697 698 static void 699 generic_tls_error (void) 700 { 701 throw_error (TLS_GENERIC_ERROR, 702 _("Cannot find thread-local variables on this target")); 703 } 704 705 /* Using the objfile specified in OBJFILE, find the address for the 706 current thread's thread-local storage with offset OFFSET. */ 707 CORE_ADDR 708 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset) 709 { 710 volatile CORE_ADDR addr = 0; 711 struct target_ops *target = current_top_target (); 712 struct gdbarch *gdbarch = target_gdbarch (); 713 714 if (gdbarch_fetch_tls_load_module_address_p (gdbarch)) 715 { 716 ptid_t ptid = inferior_ptid; 717 718 try 719 { 720 CORE_ADDR lm_addr; 721 722 /* Fetch the load module address for this objfile. */ 723 lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch, 724 objfile); 725 726 if (gdbarch_get_thread_local_address_p (gdbarch)) 727 addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr, 728 offset); 729 else 730 addr = target->get_thread_local_address (ptid, lm_addr, offset); 731 } 732 /* If an error occurred, print TLS related messages here. Otherwise, 733 throw the error to some higher catcher. */ 734 catch (const gdb_exception &ex) 735 { 736 int objfile_is_library = (objfile->flags & OBJF_SHARED); 737 738 switch (ex.error) 739 { 740 case TLS_NO_LIBRARY_SUPPORT_ERROR: 741 error (_("Cannot find thread-local variables " 742 "in this thread library.")); 743 break; 744 case TLS_LOAD_MODULE_NOT_FOUND_ERROR: 745 if (objfile_is_library) 746 error (_("Cannot find shared library `%s' in dynamic" 747 " linker's load module list"), objfile_name (objfile)); 748 else 749 error (_("Cannot find executable file `%s' in dynamic" 750 " linker's load module list"), objfile_name (objfile)); 751 break; 752 case TLS_NOT_ALLOCATED_YET_ERROR: 753 if (objfile_is_library) 754 error (_("The inferior has not yet allocated storage for" 755 " thread-local variables in\n" 756 "the shared library `%s'\n" 757 "for %s"), 758 objfile_name (objfile), 759 target_pid_to_str (ptid).c_str ()); 760 else 761 error (_("The inferior has not yet allocated storage for" 762 " thread-local variables in\n" 763 "the executable `%s'\n" 764 "for %s"), 765 objfile_name (objfile), 766 target_pid_to_str (ptid).c_str ()); 767 break; 768 case TLS_GENERIC_ERROR: 769 if (objfile_is_library) 770 error (_("Cannot find thread-local storage for %s, " 771 "shared library %s:\n%s"), 772 target_pid_to_str (ptid).c_str (), 773 objfile_name (objfile), ex.what ()); 774 else 775 error (_("Cannot find thread-local storage for %s, " 776 "executable file %s:\n%s"), 777 target_pid_to_str (ptid).c_str (), 778 objfile_name (objfile), ex.what ()); 779 break; 780 default: 781 throw; 782 break; 783 } 784 } 785 } 786 else 787 error (_("Cannot find thread-local variables on this target")); 788 789 return addr; 790 } 791 792 const char * 793 target_xfer_status_to_string (enum target_xfer_status status) 794 { 795 #define CASE(X) case X: return #X 796 switch (status) 797 { 798 CASE(TARGET_XFER_E_IO); 799 CASE(TARGET_XFER_UNAVAILABLE); 800 default: 801 return "<unknown>"; 802 } 803 #undef CASE 804 }; 805 806 807 /* See target.h. */ 808 809 gdb::unique_xmalloc_ptr<char> 810 target_read_string (CORE_ADDR memaddr, int len, int *bytes_read) 811 { 812 gdb::unique_xmalloc_ptr<gdb_byte> buffer; 813 814 int ignore; 815 if (bytes_read == nullptr) 816 bytes_read = &ignore; 817 818 /* Note that the endian-ness does not matter here. */ 819 int errcode = read_string (memaddr, -1, 1, len, BFD_ENDIAN_LITTLE, 820 &buffer, bytes_read); 821 if (errcode != 0) 822 return {}; 823 824 return gdb::unique_xmalloc_ptr<char> ((char *) buffer.release ()); 825 } 826 827 struct target_section_table * 828 target_get_section_table (struct target_ops *target) 829 { 830 return target->get_section_table (); 831 } 832 833 /* Find a section containing ADDR. */ 834 835 struct target_section * 836 target_section_by_addr (struct target_ops *target, CORE_ADDR addr) 837 { 838 struct target_section_table *table = target_get_section_table (target); 839 struct target_section *secp; 840 841 if (table == NULL) 842 return NULL; 843 844 for (secp = table->sections; secp < table->sections_end; secp++) 845 { 846 if (addr >= secp->addr && addr < secp->endaddr) 847 return secp; 848 } 849 return NULL; 850 } 851 852 853 /* Helper for the memory xfer routines. Checks the attributes of the 854 memory region of MEMADDR against the read or write being attempted. 855 If the access is permitted returns true, otherwise returns false. 856 REGION_P is an optional output parameter. If not-NULL, it is 857 filled with a pointer to the memory region of MEMADDR. REG_LEN 858 returns LEN trimmed to the end of the region. This is how much the 859 caller can continue requesting, if the access is permitted. A 860 single xfer request must not straddle memory region boundaries. */ 861 862 static int 863 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf, 864 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len, 865 struct mem_region **region_p) 866 { 867 struct mem_region *region; 868 869 region = lookup_mem_region (memaddr); 870 871 if (region_p != NULL) 872 *region_p = region; 873 874 switch (region->attrib.mode) 875 { 876 case MEM_RO: 877 if (writebuf != NULL) 878 return 0; 879 break; 880 881 case MEM_WO: 882 if (readbuf != NULL) 883 return 0; 884 break; 885 886 case MEM_FLASH: 887 /* We only support writing to flash during "load" for now. */ 888 if (writebuf != NULL) 889 error (_("Writing to flash memory forbidden in this context")); 890 break; 891 892 case MEM_NONE: 893 return 0; 894 } 895 896 /* region->hi == 0 means there's no upper bound. */ 897 if (memaddr + len < region->hi || region->hi == 0) 898 *reg_len = len; 899 else 900 *reg_len = region->hi - memaddr; 901 902 return 1; 903 } 904 905 /* Read memory from more than one valid target. A core file, for 906 instance, could have some of memory but delegate other bits to 907 the target below it. So, we must manually try all targets. */ 908 909 enum target_xfer_status 910 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf, 911 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len, 912 ULONGEST *xfered_len) 913 { 914 enum target_xfer_status res; 915 916 do 917 { 918 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL, 919 readbuf, writebuf, memaddr, len, 920 xfered_len); 921 if (res == TARGET_XFER_OK) 922 break; 923 924 /* Stop if the target reports that the memory is not available. */ 925 if (res == TARGET_XFER_UNAVAILABLE) 926 break; 927 928 /* Don't continue past targets which have all the memory. 929 At one time, this code was necessary to read data from 930 executables / shared libraries when data for the requested 931 addresses weren't available in the core file. But now the 932 core target handles this case itself. */ 933 if (ops->has_all_memory ()) 934 break; 935 936 ops = ops->beneath (); 937 } 938 while (ops != NULL); 939 940 /* The cache works at the raw memory level. Make sure the cache 941 gets updated with raw contents no matter what kind of memory 942 object was originally being written. Note we do write-through 943 first, so that if it fails, we don't write to the cache contents 944 that never made it to the target. */ 945 if (writebuf != NULL 946 && inferior_ptid != null_ptid 947 && target_dcache_init_p () 948 && (stack_cache_enabled_p () || code_cache_enabled_p ())) 949 { 950 DCACHE *dcache = target_dcache_get (); 951 952 /* Note that writing to an area of memory which wasn't present 953 in the cache doesn't cause it to be loaded in. */ 954 dcache_update (dcache, res, memaddr, writebuf, *xfered_len); 955 } 956 957 return res; 958 } 959 960 /* Perform a partial memory transfer. 961 For docs see target.h, to_xfer_partial. */ 962 963 static enum target_xfer_status 964 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object, 965 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr, 966 ULONGEST len, ULONGEST *xfered_len) 967 { 968 enum target_xfer_status res; 969 ULONGEST reg_len; 970 struct mem_region *region; 971 struct inferior *inf; 972 973 /* For accesses to unmapped overlay sections, read directly from 974 files. Must do this first, as MEMADDR may need adjustment. */ 975 if (readbuf != NULL && overlay_debugging) 976 { 977 struct obj_section *section = find_pc_overlay (memaddr); 978 979 if (pc_in_unmapped_range (memaddr, section)) 980 { 981 struct target_section_table *table 982 = target_get_section_table (ops); 983 const char *section_name = section->the_bfd_section->name; 984 985 memaddr = overlay_mapped_address (memaddr, section); 986 987 auto match_cb = [=] (const struct target_section *s) 988 { 989 return (strcmp (section_name, s->the_bfd_section->name) == 0); 990 }; 991 992 return section_table_xfer_memory_partial (readbuf, writebuf, 993 memaddr, len, xfered_len, 994 table->sections, 995 table->sections_end, 996 match_cb); 997 } 998 } 999 1000 /* Try the executable files, if "trust-readonly-sections" is set. */ 1001 if (readbuf != NULL && trust_readonly) 1002 { 1003 struct target_section *secp; 1004 struct target_section_table *table; 1005 1006 secp = target_section_by_addr (ops, memaddr); 1007 if (secp != NULL 1008 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY)) 1009 { 1010 table = target_get_section_table (ops); 1011 return section_table_xfer_memory_partial (readbuf, writebuf, 1012 memaddr, len, xfered_len, 1013 table->sections, 1014 table->sections_end); 1015 } 1016 } 1017 1018 /* Try GDB's internal data cache. */ 1019 1020 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, ®_len, 1021 ®ion)) 1022 return TARGET_XFER_E_IO; 1023 1024 if (inferior_ptid != null_ptid) 1025 inf = current_inferior (); 1026 else 1027 inf = NULL; 1028 1029 if (inf != NULL 1030 && readbuf != NULL 1031 /* The dcache reads whole cache lines; that doesn't play well 1032 with reading from a trace buffer, because reading outside of 1033 the collected memory range fails. */ 1034 && get_traceframe_number () == -1 1035 && (region->attrib.cache 1036 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY) 1037 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY))) 1038 { 1039 DCACHE *dcache = target_dcache_get_or_init (); 1040 1041 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf, 1042 reg_len, xfered_len); 1043 } 1044 1045 /* If none of those methods found the memory we wanted, fall back 1046 to a target partial transfer. Normally a single call to 1047 to_xfer_partial is enough; if it doesn't recognize an object 1048 it will call the to_xfer_partial of the next target down. 1049 But for memory this won't do. Memory is the only target 1050 object which can be read from more than one valid target. 1051 A core file, for instance, could have some of memory but 1052 delegate other bits to the target below it. So, we must 1053 manually try all targets. */ 1054 1055 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len, 1056 xfered_len); 1057 1058 /* If we still haven't got anything, return the last error. We 1059 give up. */ 1060 return res; 1061 } 1062 1063 /* Perform a partial memory transfer. For docs see target.h, 1064 to_xfer_partial. */ 1065 1066 static enum target_xfer_status 1067 memory_xfer_partial (struct target_ops *ops, enum target_object object, 1068 gdb_byte *readbuf, const gdb_byte *writebuf, 1069 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len) 1070 { 1071 enum target_xfer_status res; 1072 1073 /* Zero length requests are ok and require no work. */ 1074 if (len == 0) 1075 return TARGET_XFER_EOF; 1076 1077 memaddr = address_significant (target_gdbarch (), memaddr); 1078 1079 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with 1080 breakpoint insns, thus hiding out from higher layers whether 1081 there are software breakpoints inserted in the code stream. */ 1082 if (readbuf != NULL) 1083 { 1084 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len, 1085 xfered_len); 1086 1087 if (res == TARGET_XFER_OK && !show_memory_breakpoints) 1088 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len); 1089 } 1090 else 1091 { 1092 /* A large write request is likely to be partially satisfied 1093 by memory_xfer_partial_1. We will continually malloc 1094 and free a copy of the entire write request for breakpoint 1095 shadow handling even though we only end up writing a small 1096 subset of it. Cap writes to a limit specified by the target 1097 to mitigate this. */ 1098 len = std::min (ops->get_memory_xfer_limit (), len); 1099 1100 gdb::byte_vector buf (writebuf, writebuf + len); 1101 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len); 1102 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len, 1103 xfered_len); 1104 } 1105 1106 return res; 1107 } 1108 1109 scoped_restore_tmpl<int> 1110 make_scoped_restore_show_memory_breakpoints (int show) 1111 { 1112 return make_scoped_restore (&show_memory_breakpoints, show); 1113 } 1114 1115 /* For docs see target.h, to_xfer_partial. */ 1116 1117 enum target_xfer_status 1118 target_xfer_partial (struct target_ops *ops, 1119 enum target_object object, const char *annex, 1120 gdb_byte *readbuf, const gdb_byte *writebuf, 1121 ULONGEST offset, ULONGEST len, 1122 ULONGEST *xfered_len) 1123 { 1124 enum target_xfer_status retval; 1125 1126 /* Transfer is done when LEN is zero. */ 1127 if (len == 0) 1128 return TARGET_XFER_EOF; 1129 1130 if (writebuf && !may_write_memory) 1131 error (_("Writing to memory is not allowed (addr %s, len %s)"), 1132 core_addr_to_string_nz (offset), plongest (len)); 1133 1134 *xfered_len = 0; 1135 1136 /* If this is a memory transfer, let the memory-specific code 1137 have a look at it instead. Memory transfers are more 1138 complicated. */ 1139 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY 1140 || object == TARGET_OBJECT_CODE_MEMORY) 1141 retval = memory_xfer_partial (ops, object, readbuf, 1142 writebuf, offset, len, xfered_len); 1143 else if (object == TARGET_OBJECT_RAW_MEMORY) 1144 { 1145 /* Skip/avoid accessing the target if the memory region 1146 attributes block the access. Check this here instead of in 1147 raw_memory_xfer_partial as otherwise we'd end up checking 1148 this twice in the case of the memory_xfer_partial path is 1149 taken; once before checking the dcache, and another in the 1150 tail call to raw_memory_xfer_partial. */ 1151 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len, 1152 NULL)) 1153 return TARGET_XFER_E_IO; 1154 1155 /* Request the normal memory object from other layers. */ 1156 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len, 1157 xfered_len); 1158 } 1159 else 1160 retval = ops->xfer_partial (object, annex, readbuf, 1161 writebuf, offset, len, xfered_len); 1162 1163 if (targetdebug) 1164 { 1165 const unsigned char *myaddr = NULL; 1166 1167 fprintf_unfiltered (gdb_stdlog, 1168 "%s:target_xfer_partial " 1169 "(%d, %s, %s, %s, %s, %s) = %d, %s", 1170 ops->shortname (), 1171 (int) object, 1172 (annex ? annex : "(null)"), 1173 host_address_to_string (readbuf), 1174 host_address_to_string (writebuf), 1175 core_addr_to_string_nz (offset), 1176 pulongest (len), retval, 1177 pulongest (*xfered_len)); 1178 1179 if (readbuf) 1180 myaddr = readbuf; 1181 if (writebuf) 1182 myaddr = writebuf; 1183 if (retval == TARGET_XFER_OK && myaddr != NULL) 1184 { 1185 int i; 1186 1187 fputs_unfiltered (", bytes =", gdb_stdlog); 1188 for (i = 0; i < *xfered_len; i++) 1189 { 1190 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0) 1191 { 1192 if (targetdebug < 2 && i > 0) 1193 { 1194 fprintf_unfiltered (gdb_stdlog, " ..."); 1195 break; 1196 } 1197 fprintf_unfiltered (gdb_stdlog, "\n"); 1198 } 1199 1200 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff); 1201 } 1202 } 1203 1204 fputc_unfiltered ('\n', gdb_stdlog); 1205 } 1206 1207 /* Check implementations of to_xfer_partial update *XFERED_LEN 1208 properly. Do assertion after printing debug messages, so that we 1209 can find more clues on assertion failure from debugging messages. */ 1210 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE) 1211 gdb_assert (*xfered_len > 0); 1212 1213 return retval; 1214 } 1215 1216 /* Read LEN bytes of target memory at address MEMADDR, placing the 1217 results in GDB's memory at MYADDR. Returns either 0 for success or 1218 -1 if any error occurs. 1219 1220 If an error occurs, no guarantee is made about the contents of the data at 1221 MYADDR. In particular, the caller should not depend upon partial reads 1222 filling the buffer with good data. There is no way for the caller to know 1223 how much good data might have been transfered anyway. Callers that can 1224 deal with partial reads should call target_read (which will retry until 1225 it makes no progress, and then return how much was transferred). */ 1226 1227 int 1228 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) 1229 { 1230 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL, 1231 myaddr, memaddr, len) == len) 1232 return 0; 1233 else 1234 return -1; 1235 } 1236 1237 /* See target/target.h. */ 1238 1239 int 1240 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result) 1241 { 1242 gdb_byte buf[4]; 1243 int r; 1244 1245 r = target_read_memory (memaddr, buf, sizeof buf); 1246 if (r != 0) 1247 return r; 1248 *result = extract_unsigned_integer (buf, sizeof buf, 1249 gdbarch_byte_order (target_gdbarch ())); 1250 return 0; 1251 } 1252 1253 /* Like target_read_memory, but specify explicitly that this is a read 1254 from the target's raw memory. That is, this read bypasses the 1255 dcache, breakpoint shadowing, etc. */ 1256 1257 int 1258 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) 1259 { 1260 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL, 1261 myaddr, memaddr, len) == len) 1262 return 0; 1263 else 1264 return -1; 1265 } 1266 1267 /* Like target_read_memory, but specify explicitly that this is a read from 1268 the target's stack. This may trigger different cache behavior. */ 1269 1270 int 1271 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) 1272 { 1273 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL, 1274 myaddr, memaddr, len) == len) 1275 return 0; 1276 else 1277 return -1; 1278 } 1279 1280 /* Like target_read_memory, but specify explicitly that this is a read from 1281 the target's code. This may trigger different cache behavior. */ 1282 1283 int 1284 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) 1285 { 1286 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL, 1287 myaddr, memaddr, len) == len) 1288 return 0; 1289 else 1290 return -1; 1291 } 1292 1293 /* Write LEN bytes from MYADDR to target memory at address MEMADDR. 1294 Returns either 0 for success or -1 if any error occurs. If an 1295 error occurs, no guarantee is made about how much data got written. 1296 Callers that can deal with partial writes should call 1297 target_write. */ 1298 1299 int 1300 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len) 1301 { 1302 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL, 1303 myaddr, memaddr, len) == len) 1304 return 0; 1305 else 1306 return -1; 1307 } 1308 1309 /* Write LEN bytes from MYADDR to target raw memory at address 1310 MEMADDR. Returns either 0 for success or -1 if any error occurs. 1311 If an error occurs, no guarantee is made about how much data got 1312 written. Callers that can deal with partial writes should call 1313 target_write. */ 1314 1315 int 1316 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len) 1317 { 1318 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL, 1319 myaddr, memaddr, len) == len) 1320 return 0; 1321 else 1322 return -1; 1323 } 1324 1325 /* Fetch the target's memory map. */ 1326 1327 std::vector<mem_region> 1328 target_memory_map (void) 1329 { 1330 std::vector<mem_region> result = current_top_target ()->memory_map (); 1331 if (result.empty ()) 1332 return result; 1333 1334 std::sort (result.begin (), result.end ()); 1335 1336 /* Check that regions do not overlap. Simultaneously assign 1337 a numbering for the "mem" commands to use to refer to 1338 each region. */ 1339 mem_region *last_one = NULL; 1340 for (size_t ix = 0; ix < result.size (); ix++) 1341 { 1342 mem_region *this_one = &result[ix]; 1343 this_one->number = ix; 1344 1345 if (last_one != NULL && last_one->hi > this_one->lo) 1346 { 1347 warning (_("Overlapping regions in memory map: ignoring")); 1348 return std::vector<mem_region> (); 1349 } 1350 1351 last_one = this_one; 1352 } 1353 1354 return result; 1355 } 1356 1357 void 1358 target_flash_erase (ULONGEST address, LONGEST length) 1359 { 1360 current_top_target ()->flash_erase (address, length); 1361 } 1362 1363 void 1364 target_flash_done (void) 1365 { 1366 current_top_target ()->flash_done (); 1367 } 1368 1369 static void 1370 show_trust_readonly (struct ui_file *file, int from_tty, 1371 struct cmd_list_element *c, const char *value) 1372 { 1373 fprintf_filtered (file, 1374 _("Mode for reading from readonly sections is %s.\n"), 1375 value); 1376 } 1377 1378 /* Target vector read/write partial wrapper functions. */ 1379 1380 static enum target_xfer_status 1381 target_read_partial (struct target_ops *ops, 1382 enum target_object object, 1383 const char *annex, gdb_byte *buf, 1384 ULONGEST offset, ULONGEST len, 1385 ULONGEST *xfered_len) 1386 { 1387 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len, 1388 xfered_len); 1389 } 1390 1391 static enum target_xfer_status 1392 target_write_partial (struct target_ops *ops, 1393 enum target_object object, 1394 const char *annex, const gdb_byte *buf, 1395 ULONGEST offset, LONGEST len, ULONGEST *xfered_len) 1396 { 1397 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len, 1398 xfered_len); 1399 } 1400 1401 /* Wrappers to perform the full transfer. */ 1402 1403 /* For docs on target_read see target.h. */ 1404 1405 LONGEST 1406 target_read (struct target_ops *ops, 1407 enum target_object object, 1408 const char *annex, gdb_byte *buf, 1409 ULONGEST offset, LONGEST len) 1410 { 1411 LONGEST xfered_total = 0; 1412 int unit_size = 1; 1413 1414 /* If we are reading from a memory object, find the length of an addressable 1415 unit for that architecture. */ 1416 if (object == TARGET_OBJECT_MEMORY 1417 || object == TARGET_OBJECT_STACK_MEMORY 1418 || object == TARGET_OBJECT_CODE_MEMORY 1419 || object == TARGET_OBJECT_RAW_MEMORY) 1420 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ()); 1421 1422 while (xfered_total < len) 1423 { 1424 ULONGEST xfered_partial; 1425 enum target_xfer_status status; 1426 1427 status = target_read_partial (ops, object, annex, 1428 buf + xfered_total * unit_size, 1429 offset + xfered_total, len - xfered_total, 1430 &xfered_partial); 1431 1432 /* Call an observer, notifying them of the xfer progress? */ 1433 if (status == TARGET_XFER_EOF) 1434 return xfered_total; 1435 else if (status == TARGET_XFER_OK) 1436 { 1437 xfered_total += xfered_partial; 1438 QUIT; 1439 } 1440 else 1441 return TARGET_XFER_E_IO; 1442 1443 } 1444 return len; 1445 } 1446 1447 /* Assuming that the entire [begin, end) range of memory cannot be 1448 read, try to read whatever subrange is possible to read. 1449 1450 The function returns, in RESULT, either zero or one memory block. 1451 If there's a readable subrange at the beginning, it is completely 1452 read and returned. Any further readable subrange will not be read. 1453 Otherwise, if there's a readable subrange at the end, it will be 1454 completely read and returned. Any readable subranges before it 1455 (obviously, not starting at the beginning), will be ignored. In 1456 other cases -- either no readable subrange, or readable subrange(s) 1457 that is neither at the beginning, or end, nothing is returned. 1458 1459 The purpose of this function is to handle a read across a boundary 1460 of accessible memory in a case when memory map is not available. 1461 The above restrictions are fine for this case, but will give 1462 incorrect results if the memory is 'patchy'. However, supporting 1463 'patchy' memory would require trying to read every single byte, 1464 and it seems unacceptable solution. Explicit memory map is 1465 recommended for this case -- and target_read_memory_robust will 1466 take care of reading multiple ranges then. */ 1467 1468 static void 1469 read_whatever_is_readable (struct target_ops *ops, 1470 const ULONGEST begin, const ULONGEST end, 1471 int unit_size, 1472 std::vector<memory_read_result> *result) 1473 { 1474 ULONGEST current_begin = begin; 1475 ULONGEST current_end = end; 1476 int forward; 1477 ULONGEST xfered_len; 1478 1479 /* If we previously failed to read 1 byte, nothing can be done here. */ 1480 if (end - begin <= 1) 1481 return; 1482 1483 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin)); 1484 1485 /* Check that either first or the last byte is readable, and give up 1486 if not. This heuristic is meant to permit reading accessible memory 1487 at the boundary of accessible region. */ 1488 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL, 1489 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK) 1490 { 1491 forward = 1; 1492 ++current_begin; 1493 } 1494 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL, 1495 buf.get () + (end - begin) - 1, end - 1, 1, 1496 &xfered_len) == TARGET_XFER_OK) 1497 { 1498 forward = 0; 1499 --current_end; 1500 } 1501 else 1502 return; 1503 1504 /* Loop invariant is that the [current_begin, current_end) was previously 1505 found to be not readable as a whole. 1506 1507 Note loop condition -- if the range has 1 byte, we can't divide the range 1508 so there's no point trying further. */ 1509 while (current_end - current_begin > 1) 1510 { 1511 ULONGEST first_half_begin, first_half_end; 1512 ULONGEST second_half_begin, second_half_end; 1513 LONGEST xfer; 1514 ULONGEST middle = current_begin + (current_end - current_begin) / 2; 1515 1516 if (forward) 1517 { 1518 first_half_begin = current_begin; 1519 first_half_end = middle; 1520 second_half_begin = middle; 1521 second_half_end = current_end; 1522 } 1523 else 1524 { 1525 first_half_begin = middle; 1526 first_half_end = current_end; 1527 second_half_begin = current_begin; 1528 second_half_end = middle; 1529 } 1530 1531 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL, 1532 buf.get () + (first_half_begin - begin) * unit_size, 1533 first_half_begin, 1534 first_half_end - first_half_begin); 1535 1536 if (xfer == first_half_end - first_half_begin) 1537 { 1538 /* This half reads up fine. So, the error must be in the 1539 other half. */ 1540 current_begin = second_half_begin; 1541 current_end = second_half_end; 1542 } 1543 else 1544 { 1545 /* This half is not readable. Because we've tried one byte, we 1546 know some part of this half if actually readable. Go to the next 1547 iteration to divide again and try to read. 1548 1549 We don't handle the other half, because this function only tries 1550 to read a single readable subrange. */ 1551 current_begin = first_half_begin; 1552 current_end = first_half_end; 1553 } 1554 } 1555 1556 if (forward) 1557 { 1558 /* The [begin, current_begin) range has been read. */ 1559 result->emplace_back (begin, current_end, std::move (buf)); 1560 } 1561 else 1562 { 1563 /* The [current_end, end) range has been read. */ 1564 LONGEST region_len = end - current_end; 1565 1566 gdb::unique_xmalloc_ptr<gdb_byte> data 1567 ((gdb_byte *) xmalloc (region_len * unit_size)); 1568 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size, 1569 region_len * unit_size); 1570 result->emplace_back (current_end, end, std::move (data)); 1571 } 1572 } 1573 1574 std::vector<memory_read_result> 1575 read_memory_robust (struct target_ops *ops, 1576 const ULONGEST offset, const LONGEST len) 1577 { 1578 std::vector<memory_read_result> result; 1579 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ()); 1580 1581 LONGEST xfered_total = 0; 1582 while (xfered_total < len) 1583 { 1584 struct mem_region *region = lookup_mem_region (offset + xfered_total); 1585 LONGEST region_len; 1586 1587 /* If there is no explicit region, a fake one should be created. */ 1588 gdb_assert (region); 1589 1590 if (region->hi == 0) 1591 region_len = len - xfered_total; 1592 else 1593 region_len = region->hi - offset; 1594 1595 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO) 1596 { 1597 /* Cannot read this region. Note that we can end up here only 1598 if the region is explicitly marked inaccessible, or 1599 'inaccessible-by-default' is in effect. */ 1600 xfered_total += region_len; 1601 } 1602 else 1603 { 1604 LONGEST to_read = std::min (len - xfered_total, region_len); 1605 gdb::unique_xmalloc_ptr<gdb_byte> buffer 1606 ((gdb_byte *) xmalloc (to_read * unit_size)); 1607 1608 LONGEST xfered_partial = 1609 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (), 1610 offset + xfered_total, to_read); 1611 /* Call an observer, notifying them of the xfer progress? */ 1612 if (xfered_partial <= 0) 1613 { 1614 /* Got an error reading full chunk. See if maybe we can read 1615 some subrange. */ 1616 read_whatever_is_readable (ops, offset + xfered_total, 1617 offset + xfered_total + to_read, 1618 unit_size, &result); 1619 xfered_total += to_read; 1620 } 1621 else 1622 { 1623 result.emplace_back (offset + xfered_total, 1624 offset + xfered_total + xfered_partial, 1625 std::move (buffer)); 1626 xfered_total += xfered_partial; 1627 } 1628 QUIT; 1629 } 1630 } 1631 1632 return result; 1633 } 1634 1635 1636 /* An alternative to target_write with progress callbacks. */ 1637 1638 LONGEST 1639 target_write_with_progress (struct target_ops *ops, 1640 enum target_object object, 1641 const char *annex, const gdb_byte *buf, 1642 ULONGEST offset, LONGEST len, 1643 void (*progress) (ULONGEST, void *), void *baton) 1644 { 1645 LONGEST xfered_total = 0; 1646 int unit_size = 1; 1647 1648 /* If we are writing to a memory object, find the length of an addressable 1649 unit for that architecture. */ 1650 if (object == TARGET_OBJECT_MEMORY 1651 || object == TARGET_OBJECT_STACK_MEMORY 1652 || object == TARGET_OBJECT_CODE_MEMORY 1653 || object == TARGET_OBJECT_RAW_MEMORY) 1654 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ()); 1655 1656 /* Give the progress callback a chance to set up. */ 1657 if (progress) 1658 (*progress) (0, baton); 1659 1660 while (xfered_total < len) 1661 { 1662 ULONGEST xfered_partial; 1663 enum target_xfer_status status; 1664 1665 status = target_write_partial (ops, object, annex, 1666 buf + xfered_total * unit_size, 1667 offset + xfered_total, len - xfered_total, 1668 &xfered_partial); 1669 1670 if (status != TARGET_XFER_OK) 1671 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO; 1672 1673 if (progress) 1674 (*progress) (xfered_partial, baton); 1675 1676 xfered_total += xfered_partial; 1677 QUIT; 1678 } 1679 return len; 1680 } 1681 1682 /* For docs on target_write see target.h. */ 1683 1684 LONGEST 1685 target_write (struct target_ops *ops, 1686 enum target_object object, 1687 const char *annex, const gdb_byte *buf, 1688 ULONGEST offset, LONGEST len) 1689 { 1690 return target_write_with_progress (ops, object, annex, buf, offset, len, 1691 NULL, NULL); 1692 } 1693 1694 /* Help for target_read_alloc and target_read_stralloc. See their comments 1695 for details. */ 1696 1697 template <typename T> 1698 gdb::optional<gdb::def_vector<T>> 1699 target_read_alloc_1 (struct target_ops *ops, enum target_object object, 1700 const char *annex) 1701 { 1702 gdb::def_vector<T> buf; 1703 size_t buf_pos = 0; 1704 const int chunk = 4096; 1705 1706 /* This function does not have a length parameter; it reads the 1707 entire OBJECT). Also, it doesn't support objects fetched partly 1708 from one target and partly from another (in a different stratum, 1709 e.g. a core file and an executable). Both reasons make it 1710 unsuitable for reading memory. */ 1711 gdb_assert (object != TARGET_OBJECT_MEMORY); 1712 1713 /* Start by reading up to 4K at a time. The target will throttle 1714 this number down if necessary. */ 1715 while (1) 1716 { 1717 ULONGEST xfered_len; 1718 enum target_xfer_status status; 1719 1720 buf.resize (buf_pos + chunk); 1721 1722 status = target_read_partial (ops, object, annex, 1723 (gdb_byte *) &buf[buf_pos], 1724 buf_pos, chunk, 1725 &xfered_len); 1726 1727 if (status == TARGET_XFER_EOF) 1728 { 1729 /* Read all there was. */ 1730 buf.resize (buf_pos); 1731 return buf; 1732 } 1733 else if (status != TARGET_XFER_OK) 1734 { 1735 /* An error occurred. */ 1736 return {}; 1737 } 1738 1739 buf_pos += xfered_len; 1740 1741 QUIT; 1742 } 1743 } 1744 1745 /* See target.h */ 1746 1747 gdb::optional<gdb::byte_vector> 1748 target_read_alloc (struct target_ops *ops, enum target_object object, 1749 const char *annex) 1750 { 1751 return target_read_alloc_1<gdb_byte> (ops, object, annex); 1752 } 1753 1754 /* See target.h. */ 1755 1756 gdb::optional<gdb::char_vector> 1757 target_read_stralloc (struct target_ops *ops, enum target_object object, 1758 const char *annex) 1759 { 1760 gdb::optional<gdb::char_vector> buf 1761 = target_read_alloc_1<char> (ops, object, annex); 1762 1763 if (!buf) 1764 return {}; 1765 1766 if (buf->empty () || buf->back () != '\0') 1767 buf->push_back ('\0'); 1768 1769 /* Check for embedded NUL bytes; but allow trailing NULs. */ 1770 for (auto it = std::find (buf->begin (), buf->end (), '\0'); 1771 it != buf->end (); it++) 1772 if (*it != '\0') 1773 { 1774 warning (_("target object %d, annex %s, " 1775 "contained unexpected null characters"), 1776 (int) object, annex ? annex : "(none)"); 1777 break; 1778 } 1779 1780 return buf; 1781 } 1782 1783 /* Memory transfer methods. */ 1784 1785 void 1786 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf, 1787 LONGEST len) 1788 { 1789 /* This method is used to read from an alternate, non-current 1790 target. This read must bypass the overlay support (as symbols 1791 don't match this target), and GDB's internal cache (wrong cache 1792 for this target). */ 1793 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len) 1794 != len) 1795 memory_error (TARGET_XFER_E_IO, addr); 1796 } 1797 1798 ULONGEST 1799 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr, 1800 int len, enum bfd_endian byte_order) 1801 { 1802 gdb_byte buf[sizeof (ULONGEST)]; 1803 1804 gdb_assert (len <= sizeof (buf)); 1805 get_target_memory (ops, addr, buf, len); 1806 return extract_unsigned_integer (buf, len, byte_order); 1807 } 1808 1809 /* See target.h. */ 1810 1811 int 1812 target_insert_breakpoint (struct gdbarch *gdbarch, 1813 struct bp_target_info *bp_tgt) 1814 { 1815 if (!may_insert_breakpoints) 1816 { 1817 warning (_("May not insert breakpoints")); 1818 return 1; 1819 } 1820 1821 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt); 1822 } 1823 1824 /* See target.h. */ 1825 1826 int 1827 target_remove_breakpoint (struct gdbarch *gdbarch, 1828 struct bp_target_info *bp_tgt, 1829 enum remove_bp_reason reason) 1830 { 1831 /* This is kind of a weird case to handle, but the permission might 1832 have been changed after breakpoints were inserted - in which case 1833 we should just take the user literally and assume that any 1834 breakpoints should be left in place. */ 1835 if (!may_insert_breakpoints) 1836 { 1837 warning (_("May not remove breakpoints")); 1838 return 1; 1839 } 1840 1841 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason); 1842 } 1843 1844 static void 1845 info_target_command (const char *args, int from_tty) 1846 { 1847 int has_all_mem = 0; 1848 1849 if (symfile_objfile != NULL) 1850 printf_unfiltered (_("Symbols from \"%s\".\n"), 1851 objfile_name (symfile_objfile)); 1852 1853 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ()) 1854 { 1855 if (!t->has_memory ()) 1856 continue; 1857 1858 if ((int) (t->stratum ()) <= (int) dummy_stratum) 1859 continue; 1860 if (has_all_mem) 1861 printf_unfiltered (_("\tWhile running this, " 1862 "GDB does not access memory from...\n")); 1863 printf_unfiltered ("%s:\n", t->longname ()); 1864 t->files_info (); 1865 has_all_mem = t->has_all_memory (); 1866 } 1867 } 1868 1869 /* This function is called before any new inferior is created, e.g. 1870 by running a program, attaching, or connecting to a target. 1871 It cleans up any state from previous invocations which might 1872 change between runs. This is a subset of what target_preopen 1873 resets (things which might change between targets). */ 1874 1875 void 1876 target_pre_inferior (int from_tty) 1877 { 1878 /* Clear out solib state. Otherwise the solib state of the previous 1879 inferior might have survived and is entirely wrong for the new 1880 target. This has been observed on GNU/Linux using glibc 2.3. How 1881 to reproduce: 1882 1883 bash$ ./foo& 1884 [1] 4711 1885 bash$ ./foo& 1886 [1] 4712 1887 bash$ gdb ./foo 1888 [...] 1889 (gdb) attach 4711 1890 (gdb) detach 1891 (gdb) attach 4712 1892 Cannot access memory at address 0xdeadbeef 1893 */ 1894 1895 /* In some OSs, the shared library list is the same/global/shared 1896 across inferiors. If code is shared between processes, so are 1897 memory regions and features. */ 1898 if (!gdbarch_has_global_solist (target_gdbarch ())) 1899 { 1900 no_shared_libraries (NULL, from_tty); 1901 1902 invalidate_target_mem_regions (); 1903 1904 target_clear_description (); 1905 } 1906 1907 /* attach_flag may be set if the previous process associated with 1908 the inferior was attached to. */ 1909 current_inferior ()->attach_flag = 0; 1910 1911 current_inferior ()->highest_thread_num = 0; 1912 1913 agent_capability_invalidate (); 1914 } 1915 1916 /* This is to be called by the open routine before it does 1917 anything. */ 1918 1919 void 1920 target_preopen (int from_tty) 1921 { 1922 dont_repeat (); 1923 1924 if (current_inferior ()->pid != 0) 1925 { 1926 if (!from_tty 1927 || !target_has_execution 1928 || query (_("A program is being debugged already. Kill it? "))) 1929 { 1930 /* Core inferiors actually should be detached, not 1931 killed. */ 1932 if (target_has_execution) 1933 target_kill (); 1934 else 1935 target_detach (current_inferior (), 0); 1936 } 1937 else 1938 error (_("Program not killed.")); 1939 } 1940 1941 /* Calling target_kill may remove the target from the stack. But if 1942 it doesn't (which seems like a win for UDI), remove it now. */ 1943 /* Leave the exec target, though. The user may be switching from a 1944 live process to a core of the same program. */ 1945 pop_all_targets_above (file_stratum); 1946 1947 target_pre_inferior (from_tty); 1948 } 1949 1950 /* See target.h. */ 1951 1952 void 1953 target_detach (inferior *inf, int from_tty) 1954 { 1955 /* After we have detached, we will clear the register cache for this inferior 1956 by calling registers_changed_ptid. We must save the pid_ptid before 1957 detaching, as the target detach method will clear inf->pid. */ 1958 ptid_t save_pid_ptid = ptid_t (inf->pid); 1959 1960 /* As long as some to_detach implementations rely on the current_inferior 1961 (either directly, or indirectly, like through target_gdbarch or by 1962 reading memory), INF needs to be the current inferior. When that 1963 requirement will become no longer true, then we can remove this 1964 assertion. */ 1965 gdb_assert (inf == current_inferior ()); 1966 1967 if (gdbarch_has_global_breakpoints (target_gdbarch ())) 1968 /* Don't remove global breakpoints here. They're removed on 1969 disconnection from the target. */ 1970 ; 1971 else 1972 /* If we're in breakpoints-always-inserted mode, have to remove 1973 breakpoints before detaching. */ 1974 remove_breakpoints_inf (current_inferior ()); 1975 1976 prepare_for_detach (); 1977 1978 /* Hold a strong reference because detaching may unpush the 1979 target. */ 1980 auto proc_target_ref = target_ops_ref::new_reference (inf->process_target ()); 1981 1982 current_top_target ()->detach (inf, from_tty); 1983 1984 process_stratum_target *proc_target 1985 = as_process_stratum_target (proc_target_ref.get ()); 1986 1987 registers_changed_ptid (proc_target, save_pid_ptid); 1988 1989 /* We have to ensure we have no frame cache left. Normally, 1990 registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when 1991 inferior_ptid matches save_pid_ptid, but in our case, it does not 1992 call it, as inferior_ptid has been reset. */ 1993 reinit_frame_cache (); 1994 } 1995 1996 void 1997 target_disconnect (const char *args, int from_tty) 1998 { 1999 /* If we're in breakpoints-always-inserted mode or if breakpoints 2000 are global across processes, we have to remove them before 2001 disconnecting. */ 2002 remove_breakpoints (); 2003 2004 current_top_target ()->disconnect (args, from_tty); 2005 } 2006 2007 /* See target/target.h. */ 2008 2009 ptid_t 2010 target_wait (ptid_t ptid, struct target_waitstatus *status, int options) 2011 { 2012 return current_top_target ()->wait (ptid, status, options); 2013 } 2014 2015 /* See target.h. */ 2016 2017 ptid_t 2018 default_target_wait (struct target_ops *ops, 2019 ptid_t ptid, struct target_waitstatus *status, 2020 int options) 2021 { 2022 status->kind = TARGET_WAITKIND_IGNORE; 2023 return minus_one_ptid; 2024 } 2025 2026 std::string 2027 target_pid_to_str (ptid_t ptid) 2028 { 2029 return current_top_target ()->pid_to_str (ptid); 2030 } 2031 2032 const char * 2033 target_thread_name (struct thread_info *info) 2034 { 2035 gdb_assert (info->inf == current_inferior ()); 2036 2037 return current_top_target ()->thread_name (info); 2038 } 2039 2040 struct thread_info * 2041 target_thread_handle_to_thread_info (const gdb_byte *thread_handle, 2042 int handle_len, 2043 struct inferior *inf) 2044 { 2045 return current_top_target ()->thread_handle_to_thread_info (thread_handle, 2046 handle_len, inf); 2047 } 2048 2049 /* See target.h. */ 2050 2051 gdb::byte_vector 2052 target_thread_info_to_thread_handle (struct thread_info *tip) 2053 { 2054 return current_top_target ()->thread_info_to_thread_handle (tip); 2055 } 2056 2057 void 2058 target_resume (ptid_t ptid, int step, enum gdb_signal signal) 2059 { 2060 process_stratum_target *curr_target = current_inferior ()->process_target (); 2061 2062 target_dcache_invalidate (); 2063 2064 current_top_target ()->resume (ptid, step, signal); 2065 2066 registers_changed_ptid (curr_target, ptid); 2067 /* We only set the internal executing state here. The user/frontend 2068 running state is set at a higher level. This also clears the 2069 thread's stop_pc as side effect. */ 2070 set_executing (curr_target, ptid, true); 2071 clear_inline_frame_state (curr_target, ptid); 2072 } 2073 2074 /* If true, target_commit_resume is a nop. */ 2075 static int defer_target_commit_resume; 2076 2077 /* See target.h. */ 2078 2079 void 2080 target_commit_resume (void) 2081 { 2082 if (defer_target_commit_resume) 2083 return; 2084 2085 current_top_target ()->commit_resume (); 2086 } 2087 2088 /* See target.h. */ 2089 2090 scoped_restore_tmpl<int> 2091 make_scoped_defer_target_commit_resume () 2092 { 2093 return make_scoped_restore (&defer_target_commit_resume, 1); 2094 } 2095 2096 void 2097 target_pass_signals (gdb::array_view<const unsigned char> pass_signals) 2098 { 2099 current_top_target ()->pass_signals (pass_signals); 2100 } 2101 2102 void 2103 target_program_signals (gdb::array_view<const unsigned char> program_signals) 2104 { 2105 current_top_target ()->program_signals (program_signals); 2106 } 2107 2108 static bool 2109 default_follow_fork (struct target_ops *self, bool follow_child, 2110 bool detach_fork) 2111 { 2112 /* Some target returned a fork event, but did not know how to follow it. */ 2113 internal_error (__FILE__, __LINE__, 2114 _("could not find a target to follow fork")); 2115 } 2116 2117 /* Look through the list of possible targets for a target that can 2118 follow forks. */ 2119 2120 bool 2121 target_follow_fork (bool follow_child, bool detach_fork) 2122 { 2123 return current_top_target ()->follow_fork (follow_child, detach_fork); 2124 } 2125 2126 /* Target wrapper for follow exec hook. */ 2127 2128 void 2129 target_follow_exec (struct inferior *inf, const char *execd_pathname) 2130 { 2131 current_top_target ()->follow_exec (inf, execd_pathname); 2132 } 2133 2134 static void 2135 default_mourn_inferior (struct target_ops *self) 2136 { 2137 internal_error (__FILE__, __LINE__, 2138 _("could not find a target to follow mourn inferior")); 2139 } 2140 2141 void 2142 target_mourn_inferior (ptid_t ptid) 2143 { 2144 gdb_assert (ptid == inferior_ptid); 2145 current_top_target ()->mourn_inferior (); 2146 2147 /* We no longer need to keep handles on any of the object files. 2148 Make sure to release them to avoid unnecessarily locking any 2149 of them while we're not actually debugging. */ 2150 bfd_cache_close_all (); 2151 } 2152 2153 /* Look for a target which can describe architectural features, starting 2154 from TARGET. If we find one, return its description. */ 2155 2156 const struct target_desc * 2157 target_read_description (struct target_ops *target) 2158 { 2159 return target->read_description (); 2160 } 2161 2162 /* This implements a basic search of memory, reading target memory and 2163 performing the search here (as opposed to performing the search in on the 2164 target side with, for example, gdbserver). */ 2165 2166 int 2167 simple_search_memory (struct target_ops *ops, 2168 CORE_ADDR start_addr, ULONGEST search_space_len, 2169 const gdb_byte *pattern, ULONGEST pattern_len, 2170 CORE_ADDR *found_addrp) 2171 { 2172 /* NOTE: also defined in find.c testcase. */ 2173 #define SEARCH_CHUNK_SIZE 16000 2174 const unsigned chunk_size = SEARCH_CHUNK_SIZE; 2175 /* Buffer to hold memory contents for searching. */ 2176 unsigned search_buf_size; 2177 2178 search_buf_size = chunk_size + pattern_len - 1; 2179 2180 /* No point in trying to allocate a buffer larger than the search space. */ 2181 if (search_space_len < search_buf_size) 2182 search_buf_size = search_space_len; 2183 2184 gdb::byte_vector search_buf (search_buf_size); 2185 2186 /* Prime the search buffer. */ 2187 2188 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, 2189 search_buf.data (), start_addr, search_buf_size) 2190 != search_buf_size) 2191 { 2192 warning (_("Unable to access %s bytes of target " 2193 "memory at %s, halting search."), 2194 pulongest (search_buf_size), hex_string (start_addr)); 2195 return -1; 2196 } 2197 2198 /* Perform the search. 2199 2200 The loop is kept simple by allocating [N + pattern-length - 1] bytes. 2201 When we've scanned N bytes we copy the trailing bytes to the start and 2202 read in another N bytes. */ 2203 2204 while (search_space_len >= pattern_len) 2205 { 2206 gdb_byte *found_ptr; 2207 unsigned nr_search_bytes 2208 = std::min (search_space_len, (ULONGEST) search_buf_size); 2209 2210 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes, 2211 pattern, pattern_len); 2212 2213 if (found_ptr != NULL) 2214 { 2215 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ()); 2216 2217 *found_addrp = found_addr; 2218 return 1; 2219 } 2220 2221 /* Not found in this chunk, skip to next chunk. */ 2222 2223 /* Don't let search_space_len wrap here, it's unsigned. */ 2224 if (search_space_len >= chunk_size) 2225 search_space_len -= chunk_size; 2226 else 2227 search_space_len = 0; 2228 2229 if (search_space_len >= pattern_len) 2230 { 2231 unsigned keep_len = search_buf_size - chunk_size; 2232 CORE_ADDR read_addr = start_addr + chunk_size + keep_len; 2233 int nr_to_read; 2234 2235 /* Copy the trailing part of the previous iteration to the front 2236 of the buffer for the next iteration. */ 2237 gdb_assert (keep_len == pattern_len - 1); 2238 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len); 2239 2240 nr_to_read = std::min (search_space_len - keep_len, 2241 (ULONGEST) chunk_size); 2242 2243 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, 2244 &search_buf[keep_len], read_addr, 2245 nr_to_read) != nr_to_read) 2246 { 2247 warning (_("Unable to access %s bytes of target " 2248 "memory at %s, halting search."), 2249 plongest (nr_to_read), 2250 hex_string (read_addr)); 2251 return -1; 2252 } 2253 2254 start_addr += chunk_size; 2255 } 2256 } 2257 2258 /* Not found. */ 2259 2260 return 0; 2261 } 2262 2263 /* Default implementation of memory-searching. */ 2264 2265 static int 2266 default_search_memory (struct target_ops *self, 2267 CORE_ADDR start_addr, ULONGEST search_space_len, 2268 const gdb_byte *pattern, ULONGEST pattern_len, 2269 CORE_ADDR *found_addrp) 2270 { 2271 /* Start over from the top of the target stack. */ 2272 return simple_search_memory (current_top_target (), 2273 start_addr, search_space_len, 2274 pattern, pattern_len, found_addrp); 2275 } 2276 2277 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the 2278 sequence of bytes in PATTERN with length PATTERN_LEN. 2279 2280 The result is 1 if found, 0 if not found, and -1 if there was an error 2281 requiring halting of the search (e.g. memory read error). 2282 If the pattern is found the address is recorded in FOUND_ADDRP. */ 2283 2284 int 2285 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len, 2286 const gdb_byte *pattern, ULONGEST pattern_len, 2287 CORE_ADDR *found_addrp) 2288 { 2289 return current_top_target ()->search_memory (start_addr, search_space_len, 2290 pattern, pattern_len, found_addrp); 2291 } 2292 2293 /* Look through the currently pushed targets. If none of them will 2294 be able to restart the currently running process, issue an error 2295 message. */ 2296 2297 void 2298 target_require_runnable (void) 2299 { 2300 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ()) 2301 { 2302 /* If this target knows how to create a new program, then 2303 assume we will still be able to after killing the current 2304 one. Either killing and mourning will not pop T, or else 2305 find_default_run_target will find it again. */ 2306 if (t->can_create_inferior ()) 2307 return; 2308 2309 /* Do not worry about targets at certain strata that can not 2310 create inferiors. Assume they will be pushed again if 2311 necessary, and continue to the process_stratum. */ 2312 if (t->stratum () > process_stratum) 2313 continue; 2314 2315 error (_("The \"%s\" target does not support \"run\". " 2316 "Try \"help target\" or \"continue\"."), 2317 t->shortname ()); 2318 } 2319 2320 /* This function is only called if the target is running. In that 2321 case there should have been a process_stratum target and it 2322 should either know how to create inferiors, or not... */ 2323 internal_error (__FILE__, __LINE__, _("No targets found")); 2324 } 2325 2326 /* Whether GDB is allowed to fall back to the default run target for 2327 "run", "attach", etc. when no target is connected yet. */ 2328 static bool auto_connect_native_target = true; 2329 2330 static void 2331 show_auto_connect_native_target (struct ui_file *file, int from_tty, 2332 struct cmd_list_element *c, const char *value) 2333 { 2334 fprintf_filtered (file, 2335 _("Whether GDB may automatically connect to the " 2336 "native target is %s.\n"), 2337 value); 2338 } 2339 2340 /* A pointer to the target that can respond to "run" or "attach". 2341 Native targets are always singletons and instantiated early at GDB 2342 startup. */ 2343 static target_ops *the_native_target; 2344 2345 /* See target.h. */ 2346 2347 void 2348 set_native_target (target_ops *target) 2349 { 2350 if (the_native_target != NULL) 2351 internal_error (__FILE__, __LINE__, 2352 _("native target already set (\"%s\")."), 2353 the_native_target->longname ()); 2354 2355 the_native_target = target; 2356 } 2357 2358 /* See target.h. */ 2359 2360 target_ops * 2361 get_native_target () 2362 { 2363 return the_native_target; 2364 } 2365 2366 /* Look through the list of possible targets for a target that can 2367 execute a run or attach command without any other data. This is 2368 used to locate the default process stratum. 2369 2370 If DO_MESG is not NULL, the result is always valid (error() is 2371 called for errors); else, return NULL on error. */ 2372 2373 static struct target_ops * 2374 find_default_run_target (const char *do_mesg) 2375 { 2376 if (auto_connect_native_target && the_native_target != NULL) 2377 return the_native_target; 2378 2379 if (do_mesg != NULL) 2380 error (_("Don't know how to %s. Try \"help target\"."), do_mesg); 2381 return NULL; 2382 } 2383 2384 /* See target.h. */ 2385 2386 struct target_ops * 2387 find_attach_target (void) 2388 { 2389 /* If a target on the current stack can attach, use it. */ 2390 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ()) 2391 { 2392 if (t->can_attach ()) 2393 return t; 2394 } 2395 2396 /* Otherwise, use the default run target for attaching. */ 2397 return find_default_run_target ("attach"); 2398 } 2399 2400 /* See target.h. */ 2401 2402 struct target_ops * 2403 find_run_target (void) 2404 { 2405 /* If a target on the current stack can run, use it. */ 2406 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ()) 2407 { 2408 if (t->can_create_inferior ()) 2409 return t; 2410 } 2411 2412 /* Otherwise, use the default run target. */ 2413 return find_default_run_target ("run"); 2414 } 2415 2416 bool 2417 target_ops::info_proc (const char *args, enum info_proc_what what) 2418 { 2419 return false; 2420 } 2421 2422 /* Implement the "info proc" command. */ 2423 2424 int 2425 target_info_proc (const char *args, enum info_proc_what what) 2426 { 2427 struct target_ops *t; 2428 2429 /* If we're already connected to something that can get us OS 2430 related data, use it. Otherwise, try using the native 2431 target. */ 2432 t = find_target_at (process_stratum); 2433 if (t == NULL) 2434 t = find_default_run_target (NULL); 2435 2436 for (; t != NULL; t = t->beneath ()) 2437 { 2438 if (t->info_proc (args, what)) 2439 { 2440 if (targetdebug) 2441 fprintf_unfiltered (gdb_stdlog, 2442 "target_info_proc (\"%s\", %d)\n", args, what); 2443 2444 return 1; 2445 } 2446 } 2447 2448 return 0; 2449 } 2450 2451 static int 2452 find_default_supports_disable_randomization (struct target_ops *self) 2453 { 2454 struct target_ops *t; 2455 2456 t = find_default_run_target (NULL); 2457 if (t != NULL) 2458 return t->supports_disable_randomization (); 2459 return 0; 2460 } 2461 2462 int 2463 target_supports_disable_randomization (void) 2464 { 2465 return current_top_target ()->supports_disable_randomization (); 2466 } 2467 2468 /* See target/target.h. */ 2469 2470 int 2471 target_supports_multi_process (void) 2472 { 2473 return current_top_target ()->supports_multi_process (); 2474 } 2475 2476 /* See target.h. */ 2477 2478 gdb::optional<gdb::char_vector> 2479 target_get_osdata (const char *type) 2480 { 2481 struct target_ops *t; 2482 2483 /* If we're already connected to something that can get us OS 2484 related data, use it. Otherwise, try using the native 2485 target. */ 2486 t = find_target_at (process_stratum); 2487 if (t == NULL) 2488 t = find_default_run_target ("get OS data"); 2489 2490 if (!t) 2491 return {}; 2492 2493 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type); 2494 } 2495 2496 /* Determine the current address space of thread PTID. */ 2497 2498 struct address_space * 2499 target_thread_address_space (ptid_t ptid) 2500 { 2501 struct address_space *aspace; 2502 2503 aspace = current_top_target ()->thread_address_space (ptid); 2504 gdb_assert (aspace != NULL); 2505 2506 return aspace; 2507 } 2508 2509 /* See target.h. */ 2510 2511 target_ops * 2512 target_ops::beneath () const 2513 { 2514 return current_inferior ()->find_target_beneath (this); 2515 } 2516 2517 void 2518 target_ops::close () 2519 { 2520 } 2521 2522 bool 2523 target_ops::can_attach () 2524 { 2525 return 0; 2526 } 2527 2528 void 2529 target_ops::attach (const char *, int) 2530 { 2531 gdb_assert_not_reached ("target_ops::attach called"); 2532 } 2533 2534 bool 2535 target_ops::can_create_inferior () 2536 { 2537 return 0; 2538 } 2539 2540 void 2541 target_ops::create_inferior (const char *, const std::string &, 2542 char **, int) 2543 { 2544 gdb_assert_not_reached ("target_ops::create_inferior called"); 2545 } 2546 2547 bool 2548 target_ops::can_run () 2549 { 2550 return false; 2551 } 2552 2553 int 2554 target_can_run () 2555 { 2556 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ()) 2557 { 2558 if (t->can_run ()) 2559 return 1; 2560 } 2561 2562 return 0; 2563 } 2564 2565 /* Target file operations. */ 2566 2567 static struct target_ops * 2568 default_fileio_target (void) 2569 { 2570 struct target_ops *t; 2571 2572 /* If we're already connected to something that can perform 2573 file I/O, use it. Otherwise, try using the native target. */ 2574 t = find_target_at (process_stratum); 2575 if (t != NULL) 2576 return t; 2577 return find_default_run_target ("file I/O"); 2578 } 2579 2580 /* File handle for target file operations. */ 2581 2582 struct fileio_fh_t 2583 { 2584 /* The target on which this file is open. NULL if the target is 2585 meanwhile closed while the handle is open. */ 2586 target_ops *target; 2587 2588 /* The file descriptor on the target. */ 2589 int target_fd; 2590 2591 /* Check whether this fileio_fh_t represents a closed file. */ 2592 bool is_closed () 2593 { 2594 return target_fd < 0; 2595 } 2596 }; 2597 2598 /* Vector of currently open file handles. The value returned by 2599 target_fileio_open and passed as the FD argument to other 2600 target_fileio_* functions is an index into this vector. This 2601 vector's entries are never freed; instead, files are marked as 2602 closed, and the handle becomes available for reuse. */ 2603 static std::vector<fileio_fh_t> fileio_fhandles; 2604 2605 /* Index into fileio_fhandles of the lowest handle that might be 2606 closed. This permits handle reuse without searching the whole 2607 list each time a new file is opened. */ 2608 static int lowest_closed_fd; 2609 2610 /* Invalidate the target associated with open handles that were open 2611 on target TARG, since we're about to close (and maybe destroy) the 2612 target. The handles remain open from the client's perspective, but 2613 trying to do anything with them other than closing them will fail 2614 with EIO. */ 2615 2616 static void 2617 fileio_handles_invalidate_target (target_ops *targ) 2618 { 2619 for (fileio_fh_t &fh : fileio_fhandles) 2620 if (fh.target == targ) 2621 fh.target = NULL; 2622 } 2623 2624 /* Acquire a target fileio file descriptor. */ 2625 2626 static int 2627 acquire_fileio_fd (target_ops *target, int target_fd) 2628 { 2629 /* Search for closed handles to reuse. */ 2630 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++) 2631 { 2632 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd]; 2633 2634 if (fh.is_closed ()) 2635 break; 2636 } 2637 2638 /* Push a new handle if no closed handles were found. */ 2639 if (lowest_closed_fd == fileio_fhandles.size ()) 2640 fileio_fhandles.push_back (fileio_fh_t {target, target_fd}); 2641 else 2642 fileio_fhandles[lowest_closed_fd] = {target, target_fd}; 2643 2644 /* Should no longer be marked closed. */ 2645 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ()); 2646 2647 /* Return its index, and start the next lookup at 2648 the next index. */ 2649 return lowest_closed_fd++; 2650 } 2651 2652 /* Release a target fileio file descriptor. */ 2653 2654 static void 2655 release_fileio_fd (int fd, fileio_fh_t *fh) 2656 { 2657 fh->target_fd = -1; 2658 lowest_closed_fd = std::min (lowest_closed_fd, fd); 2659 } 2660 2661 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */ 2662 2663 static fileio_fh_t * 2664 fileio_fd_to_fh (int fd) 2665 { 2666 return &fileio_fhandles[fd]; 2667 } 2668 2669 2670 /* Default implementations of file i/o methods. We don't want these 2671 to delegate automatically, because we need to know which target 2672 supported the method, in order to call it directly from within 2673 pread/pwrite, etc. */ 2674 2675 int 2676 target_ops::fileio_open (struct inferior *inf, const char *filename, 2677 int flags, int mode, int warn_if_slow, 2678 int *target_errno) 2679 { 2680 *target_errno = FILEIO_ENOSYS; 2681 return -1; 2682 } 2683 2684 int 2685 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len, 2686 ULONGEST offset, int *target_errno) 2687 { 2688 *target_errno = FILEIO_ENOSYS; 2689 return -1; 2690 } 2691 2692 int 2693 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len, 2694 ULONGEST offset, int *target_errno) 2695 { 2696 *target_errno = FILEIO_ENOSYS; 2697 return -1; 2698 } 2699 2700 int 2701 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno) 2702 { 2703 *target_errno = FILEIO_ENOSYS; 2704 return -1; 2705 } 2706 2707 int 2708 target_ops::fileio_close (int fd, int *target_errno) 2709 { 2710 *target_errno = FILEIO_ENOSYS; 2711 return -1; 2712 } 2713 2714 int 2715 target_ops::fileio_unlink (struct inferior *inf, const char *filename, 2716 int *target_errno) 2717 { 2718 *target_errno = FILEIO_ENOSYS; 2719 return -1; 2720 } 2721 2722 gdb::optional<std::string> 2723 target_ops::fileio_readlink (struct inferior *inf, const char *filename, 2724 int *target_errno) 2725 { 2726 *target_errno = FILEIO_ENOSYS; 2727 return {}; 2728 } 2729 2730 /* See target.h. */ 2731 2732 int 2733 target_fileio_open (struct inferior *inf, const char *filename, 2734 int flags, int mode, bool warn_if_slow, int *target_errno) 2735 { 2736 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ()) 2737 { 2738 int fd = t->fileio_open (inf, filename, flags, mode, 2739 warn_if_slow, target_errno); 2740 2741 if (fd == -1 && *target_errno == FILEIO_ENOSYS) 2742 continue; 2743 2744 if (fd < 0) 2745 fd = -1; 2746 else 2747 fd = acquire_fileio_fd (t, fd); 2748 2749 if (targetdebug) 2750 fprintf_unfiltered (gdb_stdlog, 2751 "target_fileio_open (%d,%s,0x%x,0%o,%d)" 2752 " = %d (%d)\n", 2753 inf == NULL ? 0 : inf->num, 2754 filename, flags, mode, 2755 warn_if_slow, fd, 2756 fd != -1 ? 0 : *target_errno); 2757 return fd; 2758 } 2759 2760 *target_errno = FILEIO_ENOSYS; 2761 return -1; 2762 } 2763 2764 /* See target.h. */ 2765 2766 int 2767 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len, 2768 ULONGEST offset, int *target_errno) 2769 { 2770 fileio_fh_t *fh = fileio_fd_to_fh (fd); 2771 int ret = -1; 2772 2773 if (fh->is_closed ()) 2774 *target_errno = EBADF; 2775 else if (fh->target == NULL) 2776 *target_errno = EIO; 2777 else 2778 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf, 2779 len, offset, target_errno); 2780 2781 if (targetdebug) 2782 fprintf_unfiltered (gdb_stdlog, 2783 "target_fileio_pwrite (%d,...,%d,%s) " 2784 "= %d (%d)\n", 2785 fd, len, pulongest (offset), 2786 ret, ret != -1 ? 0 : *target_errno); 2787 return ret; 2788 } 2789 2790 /* See target.h. */ 2791 2792 int 2793 target_fileio_pread (int fd, gdb_byte *read_buf, int len, 2794 ULONGEST offset, int *target_errno) 2795 { 2796 fileio_fh_t *fh = fileio_fd_to_fh (fd); 2797 int ret = -1; 2798 2799 if (fh->is_closed ()) 2800 *target_errno = EBADF; 2801 else if (fh->target == NULL) 2802 *target_errno = EIO; 2803 else 2804 ret = fh->target->fileio_pread (fh->target_fd, read_buf, 2805 len, offset, target_errno); 2806 2807 if (targetdebug) 2808 fprintf_unfiltered (gdb_stdlog, 2809 "target_fileio_pread (%d,...,%d,%s) " 2810 "= %d (%d)\n", 2811 fd, len, pulongest (offset), 2812 ret, ret != -1 ? 0 : *target_errno); 2813 return ret; 2814 } 2815 2816 /* See target.h. */ 2817 2818 int 2819 target_fileio_fstat (int fd, struct stat *sb, int *target_errno) 2820 { 2821 fileio_fh_t *fh = fileio_fd_to_fh (fd); 2822 int ret = -1; 2823 2824 if (fh->is_closed ()) 2825 *target_errno = EBADF; 2826 else if (fh->target == NULL) 2827 *target_errno = EIO; 2828 else 2829 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno); 2830 2831 if (targetdebug) 2832 fprintf_unfiltered (gdb_stdlog, 2833 "target_fileio_fstat (%d) = %d (%d)\n", 2834 fd, ret, ret != -1 ? 0 : *target_errno); 2835 return ret; 2836 } 2837 2838 /* See target.h. */ 2839 2840 int 2841 target_fileio_close (int fd, int *target_errno) 2842 { 2843 fileio_fh_t *fh = fileio_fd_to_fh (fd); 2844 int ret = -1; 2845 2846 if (fh->is_closed ()) 2847 *target_errno = EBADF; 2848 else 2849 { 2850 if (fh->target != NULL) 2851 ret = fh->target->fileio_close (fh->target_fd, 2852 target_errno); 2853 else 2854 ret = 0; 2855 release_fileio_fd (fd, fh); 2856 } 2857 2858 if (targetdebug) 2859 fprintf_unfiltered (gdb_stdlog, 2860 "target_fileio_close (%d) = %d (%d)\n", 2861 fd, ret, ret != -1 ? 0 : *target_errno); 2862 return ret; 2863 } 2864 2865 /* See target.h. */ 2866 2867 int 2868 target_fileio_unlink (struct inferior *inf, const char *filename, 2869 int *target_errno) 2870 { 2871 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ()) 2872 { 2873 int ret = t->fileio_unlink (inf, filename, target_errno); 2874 2875 if (ret == -1 && *target_errno == FILEIO_ENOSYS) 2876 continue; 2877 2878 if (targetdebug) 2879 fprintf_unfiltered (gdb_stdlog, 2880 "target_fileio_unlink (%d,%s)" 2881 " = %d (%d)\n", 2882 inf == NULL ? 0 : inf->num, filename, 2883 ret, ret != -1 ? 0 : *target_errno); 2884 return ret; 2885 } 2886 2887 *target_errno = FILEIO_ENOSYS; 2888 return -1; 2889 } 2890 2891 /* See target.h. */ 2892 2893 gdb::optional<std::string> 2894 target_fileio_readlink (struct inferior *inf, const char *filename, 2895 int *target_errno) 2896 { 2897 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ()) 2898 { 2899 gdb::optional<std::string> ret 2900 = t->fileio_readlink (inf, filename, target_errno); 2901 2902 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS) 2903 continue; 2904 2905 if (targetdebug) 2906 fprintf_unfiltered (gdb_stdlog, 2907 "target_fileio_readlink (%d,%s)" 2908 " = %s (%d)\n", 2909 inf == NULL ? 0 : inf->num, 2910 filename, ret ? ret->c_str () : "(nil)", 2911 ret ? 0 : *target_errno); 2912 return ret; 2913 } 2914 2915 *target_errno = FILEIO_ENOSYS; 2916 return {}; 2917 } 2918 2919 /* Like scoped_fd, but specific to target fileio. */ 2920 2921 class scoped_target_fd 2922 { 2923 public: 2924 explicit scoped_target_fd (int fd) noexcept 2925 : m_fd (fd) 2926 { 2927 } 2928 2929 ~scoped_target_fd () 2930 { 2931 if (m_fd >= 0) 2932 { 2933 int target_errno; 2934 2935 target_fileio_close (m_fd, &target_errno); 2936 } 2937 } 2938 2939 DISABLE_COPY_AND_ASSIGN (scoped_target_fd); 2940 2941 int get () const noexcept 2942 { 2943 return m_fd; 2944 } 2945 2946 private: 2947 int m_fd; 2948 }; 2949 2950 /* Read target file FILENAME, in the filesystem as seen by INF. If 2951 INF is NULL, use the filesystem seen by the debugger (GDB or, for 2952 remote targets, the remote stub). Store the result in *BUF_P and 2953 return the size of the transferred data. PADDING additional bytes 2954 are available in *BUF_P. This is a helper function for 2955 target_fileio_read_alloc; see the declaration of that function for 2956 more information. */ 2957 2958 static LONGEST 2959 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename, 2960 gdb_byte **buf_p, int padding) 2961 { 2962 size_t buf_alloc, buf_pos; 2963 gdb_byte *buf; 2964 LONGEST n; 2965 int target_errno; 2966 2967 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY, 2968 0700, false, &target_errno)); 2969 if (fd.get () == -1) 2970 return -1; 2971 2972 /* Start by reading up to 4K at a time. The target will throttle 2973 this number down if necessary. */ 2974 buf_alloc = 4096; 2975 buf = (gdb_byte *) xmalloc (buf_alloc); 2976 buf_pos = 0; 2977 while (1) 2978 { 2979 n = target_fileio_pread (fd.get (), &buf[buf_pos], 2980 buf_alloc - buf_pos - padding, buf_pos, 2981 &target_errno); 2982 if (n < 0) 2983 { 2984 /* An error occurred. */ 2985 xfree (buf); 2986 return -1; 2987 } 2988 else if (n == 0) 2989 { 2990 /* Read all there was. */ 2991 if (buf_pos == 0) 2992 xfree (buf); 2993 else 2994 *buf_p = buf; 2995 return buf_pos; 2996 } 2997 2998 buf_pos += n; 2999 3000 /* If the buffer is filling up, expand it. */ 3001 if (buf_alloc < buf_pos * 2) 3002 { 3003 buf_alloc *= 2; 3004 buf = (gdb_byte *) xrealloc (buf, buf_alloc); 3005 } 3006 3007 QUIT; 3008 } 3009 } 3010 3011 /* See target.h. */ 3012 3013 LONGEST 3014 target_fileio_read_alloc (struct inferior *inf, const char *filename, 3015 gdb_byte **buf_p) 3016 { 3017 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0); 3018 } 3019 3020 /* See target.h. */ 3021 3022 gdb::unique_xmalloc_ptr<char> 3023 target_fileio_read_stralloc (struct inferior *inf, const char *filename) 3024 { 3025 gdb_byte *buffer; 3026 char *bufstr; 3027 LONGEST i, transferred; 3028 3029 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1); 3030 bufstr = (char *) buffer; 3031 3032 if (transferred < 0) 3033 return gdb::unique_xmalloc_ptr<char> (nullptr); 3034 3035 if (transferred == 0) 3036 return make_unique_xstrdup (""); 3037 3038 bufstr[transferred] = 0; 3039 3040 /* Check for embedded NUL bytes; but allow trailing NULs. */ 3041 for (i = strlen (bufstr); i < transferred; i++) 3042 if (bufstr[i] != 0) 3043 { 3044 warning (_("target file %s " 3045 "contained unexpected null characters"), 3046 filename); 3047 break; 3048 } 3049 3050 return gdb::unique_xmalloc_ptr<char> (bufstr); 3051 } 3052 3053 3054 static int 3055 default_region_ok_for_hw_watchpoint (struct target_ops *self, 3056 CORE_ADDR addr, int len) 3057 { 3058 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT); 3059 } 3060 3061 static int 3062 default_watchpoint_addr_within_range (struct target_ops *target, 3063 CORE_ADDR addr, 3064 CORE_ADDR start, int length) 3065 { 3066 return addr >= start && addr < start + length; 3067 } 3068 3069 /* See target.h. */ 3070 3071 target_ops * 3072 target_stack::find_beneath (const target_ops *t) const 3073 { 3074 /* Look for a non-empty slot at stratum levels beneath T's. */ 3075 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum) 3076 if (m_stack[stratum] != NULL) 3077 return m_stack[stratum]; 3078 3079 return NULL; 3080 } 3081 3082 /* See target.h. */ 3083 3084 struct target_ops * 3085 find_target_at (enum strata stratum) 3086 { 3087 return current_inferior ()->target_at (stratum); 3088 } 3089 3090 3091 3092 /* See target.h */ 3093 3094 void 3095 target_announce_detach (int from_tty) 3096 { 3097 pid_t pid; 3098 const char *exec_file; 3099 3100 if (!from_tty) 3101 return; 3102 3103 exec_file = get_exec_file (0); 3104 if (exec_file == NULL) 3105 exec_file = ""; 3106 3107 pid = inferior_ptid.pid (); 3108 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file, 3109 target_pid_to_str (ptid_t (pid)).c_str ()); 3110 } 3111 3112 /* The inferior process has died. Long live the inferior! */ 3113 3114 void 3115 generic_mourn_inferior (void) 3116 { 3117 inferior *inf = current_inferior (); 3118 3119 switch_to_no_thread (); 3120 3121 /* Mark breakpoints uninserted in case something tries to delete a 3122 breakpoint while we delete the inferior's threads (which would 3123 fail, since the inferior is long gone). */ 3124 mark_breakpoints_out (); 3125 3126 if (inf->pid != 0) 3127 exit_inferior (inf); 3128 3129 /* Note this wipes step-resume breakpoints, so needs to be done 3130 after exit_inferior, which ends up referencing the step-resume 3131 breakpoints through clear_thread_inferior_resources. */ 3132 breakpoint_init_inferior (inf_exited); 3133 3134 registers_changed (); 3135 3136 reopen_exec_file (); 3137 reinit_frame_cache (); 3138 3139 if (deprecated_detach_hook) 3140 deprecated_detach_hook (); 3141 } 3142 3143 /* Convert a normal process ID to a string. Returns the string in a 3144 static buffer. */ 3145 3146 std::string 3147 normal_pid_to_str (ptid_t ptid) 3148 { 3149 return string_printf ("process %d", ptid.pid ()); 3150 } 3151 3152 static std::string 3153 default_pid_to_str (struct target_ops *ops, ptid_t ptid) 3154 { 3155 return normal_pid_to_str (ptid); 3156 } 3157 3158 /* Error-catcher for target_find_memory_regions. */ 3159 static int 3160 dummy_find_memory_regions (struct target_ops *self, 3161 find_memory_region_ftype ignore1, void *ignore2) 3162 { 3163 error (_("Command not implemented for this target.")); 3164 return 0; 3165 } 3166 3167 /* Error-catcher for target_make_corefile_notes. */ 3168 static char * 3169 dummy_make_corefile_notes (struct target_ops *self, 3170 bfd *ignore1, int *ignore2) 3171 { 3172 error (_("Command not implemented for this target.")); 3173 return NULL; 3174 } 3175 3176 #include "target-delegates.c" 3177 3178 /* The initial current target, so that there is always a semi-valid 3179 current target. */ 3180 3181 static dummy_target the_dummy_target; 3182 3183 /* See target.h. */ 3184 3185 target_ops * 3186 get_dummy_target () 3187 { 3188 return &the_dummy_target; 3189 } 3190 3191 static const target_info dummy_target_info = { 3192 "None", 3193 N_("None"), 3194 "" 3195 }; 3196 3197 strata 3198 dummy_target::stratum () const 3199 { 3200 return dummy_stratum; 3201 } 3202 3203 strata 3204 debug_target::stratum () const 3205 { 3206 return debug_stratum; 3207 } 3208 3209 const target_info & 3210 dummy_target::info () const 3211 { 3212 return dummy_target_info; 3213 } 3214 3215 const target_info & 3216 debug_target::info () const 3217 { 3218 return beneath ()->info (); 3219 } 3220 3221 3222 3223 void 3224 target_close (struct target_ops *targ) 3225 { 3226 gdb_assert (!target_is_pushed (targ)); 3227 3228 fileio_handles_invalidate_target (targ); 3229 3230 targ->close (); 3231 3232 if (targetdebug) 3233 fprintf_unfiltered (gdb_stdlog, "target_close ()\n"); 3234 } 3235 3236 int 3237 target_thread_alive (ptid_t ptid) 3238 { 3239 return current_top_target ()->thread_alive (ptid); 3240 } 3241 3242 void 3243 target_update_thread_list (void) 3244 { 3245 current_top_target ()->update_thread_list (); 3246 } 3247 3248 void 3249 target_stop (ptid_t ptid) 3250 { 3251 if (!may_stop) 3252 { 3253 warning (_("May not interrupt or stop the target, ignoring attempt")); 3254 return; 3255 } 3256 3257 current_top_target ()->stop (ptid); 3258 } 3259 3260 void 3261 target_interrupt () 3262 { 3263 if (!may_stop) 3264 { 3265 warning (_("May not interrupt or stop the target, ignoring attempt")); 3266 return; 3267 } 3268 3269 current_top_target ()->interrupt (); 3270 } 3271 3272 /* See target.h. */ 3273 3274 void 3275 target_pass_ctrlc (void) 3276 { 3277 /* Pass the Ctrl-C to the first target that has a thread 3278 running. */ 3279 for (inferior *inf : all_inferiors ()) 3280 { 3281 target_ops *proc_target = inf->process_target (); 3282 if (proc_target == NULL) 3283 continue; 3284 3285 for (thread_info *thr : inf->non_exited_threads ()) 3286 { 3287 /* A thread can be THREAD_STOPPED and executing, while 3288 running an infcall. */ 3289 if (thr->state == THREAD_RUNNING || thr->executing) 3290 { 3291 /* We can get here quite deep in target layers. Avoid 3292 switching thread context or anything that would 3293 communicate with the target (e.g., to fetch 3294 registers), or flushing e.g., the frame cache. We 3295 just switch inferior in order to be able to call 3296 through the target_stack. */ 3297 scoped_restore_current_inferior restore_inferior; 3298 set_current_inferior (inf); 3299 current_top_target ()->pass_ctrlc (); 3300 return; 3301 } 3302 } 3303 } 3304 } 3305 3306 /* See target.h. */ 3307 3308 void 3309 default_target_pass_ctrlc (struct target_ops *ops) 3310 { 3311 target_interrupt (); 3312 } 3313 3314 /* See target/target.h. */ 3315 3316 void 3317 target_stop_and_wait (ptid_t ptid) 3318 { 3319 struct target_waitstatus status; 3320 bool was_non_stop = non_stop; 3321 3322 non_stop = true; 3323 target_stop (ptid); 3324 3325 memset (&status, 0, sizeof (status)); 3326 target_wait (ptid, &status, 0); 3327 3328 non_stop = was_non_stop; 3329 } 3330 3331 /* See target/target.h. */ 3332 3333 void 3334 target_continue_no_signal (ptid_t ptid) 3335 { 3336 target_resume (ptid, 0, GDB_SIGNAL_0); 3337 } 3338 3339 /* See target/target.h. */ 3340 3341 void 3342 target_continue (ptid_t ptid, enum gdb_signal signal) 3343 { 3344 target_resume (ptid, 0, signal); 3345 } 3346 3347 /* Concatenate ELEM to LIST, a comma-separated list. */ 3348 3349 static void 3350 str_comma_list_concat_elem (std::string *list, const char *elem) 3351 { 3352 if (!list->empty ()) 3353 list->append (", "); 3354 3355 list->append (elem); 3356 } 3357 3358 /* Helper for target_options_to_string. If OPT is present in 3359 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET. 3360 OPT is removed from TARGET_OPTIONS. */ 3361 3362 static void 3363 do_option (int *target_options, std::string *ret, 3364 int opt, const char *opt_str) 3365 { 3366 if ((*target_options & opt) != 0) 3367 { 3368 str_comma_list_concat_elem (ret, opt_str); 3369 *target_options &= ~opt; 3370 } 3371 } 3372 3373 /* See target.h. */ 3374 3375 std::string 3376 target_options_to_string (int target_options) 3377 { 3378 std::string ret; 3379 3380 #define DO_TARG_OPTION(OPT) \ 3381 do_option (&target_options, &ret, OPT, #OPT) 3382 3383 DO_TARG_OPTION (TARGET_WNOHANG); 3384 3385 if (target_options != 0) 3386 str_comma_list_concat_elem (&ret, "unknown???"); 3387 3388 return ret; 3389 } 3390 3391 void 3392 target_fetch_registers (struct regcache *regcache, int regno) 3393 { 3394 current_top_target ()->fetch_registers (regcache, regno); 3395 if (targetdebug) 3396 regcache->debug_print_register ("target_fetch_registers", regno); 3397 } 3398 3399 void 3400 target_store_registers (struct regcache *regcache, int regno) 3401 { 3402 if (!may_write_registers) 3403 error (_("Writing to registers is not allowed (regno %d)"), regno); 3404 3405 current_top_target ()->store_registers (regcache, regno); 3406 if (targetdebug) 3407 { 3408 regcache->debug_print_register ("target_store_registers", regno); 3409 } 3410 } 3411 3412 int 3413 target_core_of_thread (ptid_t ptid) 3414 { 3415 return current_top_target ()->core_of_thread (ptid); 3416 } 3417 3418 int 3419 simple_verify_memory (struct target_ops *ops, 3420 const gdb_byte *data, CORE_ADDR lma, ULONGEST size) 3421 { 3422 LONGEST total_xfered = 0; 3423 3424 while (total_xfered < size) 3425 { 3426 ULONGEST xfered_len; 3427 enum target_xfer_status status; 3428 gdb_byte buf[1024]; 3429 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered); 3430 3431 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL, 3432 buf, NULL, lma + total_xfered, howmuch, 3433 &xfered_len); 3434 if (status == TARGET_XFER_OK 3435 && memcmp (data + total_xfered, buf, xfered_len) == 0) 3436 { 3437 total_xfered += xfered_len; 3438 QUIT; 3439 } 3440 else 3441 return 0; 3442 } 3443 return 1; 3444 } 3445 3446 /* Default implementation of memory verification. */ 3447 3448 static int 3449 default_verify_memory (struct target_ops *self, 3450 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size) 3451 { 3452 /* Start over from the top of the target stack. */ 3453 return simple_verify_memory (current_top_target (), 3454 data, memaddr, size); 3455 } 3456 3457 int 3458 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size) 3459 { 3460 return current_top_target ()->verify_memory (data, memaddr, size); 3461 } 3462 3463 /* The documentation for this function is in its prototype declaration in 3464 target.h. */ 3465 3466 int 3467 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, 3468 enum target_hw_bp_type rw) 3469 { 3470 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw); 3471 } 3472 3473 /* The documentation for this function is in its prototype declaration in 3474 target.h. */ 3475 3476 int 3477 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, 3478 enum target_hw_bp_type rw) 3479 { 3480 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw); 3481 } 3482 3483 /* The documentation for this function is in its prototype declaration 3484 in target.h. */ 3485 3486 int 3487 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask) 3488 { 3489 return current_top_target ()->masked_watch_num_registers (addr, mask); 3490 } 3491 3492 /* The documentation for this function is in its prototype declaration 3493 in target.h. */ 3494 3495 int 3496 target_ranged_break_num_registers (void) 3497 { 3498 return current_top_target ()->ranged_break_num_registers (); 3499 } 3500 3501 /* See target.h. */ 3502 3503 struct btrace_target_info * 3504 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf) 3505 { 3506 return current_top_target ()->enable_btrace (ptid, conf); 3507 } 3508 3509 /* See target.h. */ 3510 3511 void 3512 target_disable_btrace (struct btrace_target_info *btinfo) 3513 { 3514 current_top_target ()->disable_btrace (btinfo); 3515 } 3516 3517 /* See target.h. */ 3518 3519 void 3520 target_teardown_btrace (struct btrace_target_info *btinfo) 3521 { 3522 current_top_target ()->teardown_btrace (btinfo); 3523 } 3524 3525 /* See target.h. */ 3526 3527 enum btrace_error 3528 target_read_btrace (struct btrace_data *btrace, 3529 struct btrace_target_info *btinfo, 3530 enum btrace_read_type type) 3531 { 3532 return current_top_target ()->read_btrace (btrace, btinfo, type); 3533 } 3534 3535 /* See target.h. */ 3536 3537 const struct btrace_config * 3538 target_btrace_conf (const struct btrace_target_info *btinfo) 3539 { 3540 return current_top_target ()->btrace_conf (btinfo); 3541 } 3542 3543 /* See target.h. */ 3544 3545 void 3546 target_stop_recording (void) 3547 { 3548 current_top_target ()->stop_recording (); 3549 } 3550 3551 /* See target.h. */ 3552 3553 void 3554 target_save_record (const char *filename) 3555 { 3556 current_top_target ()->save_record (filename); 3557 } 3558 3559 /* See target.h. */ 3560 3561 int 3562 target_supports_delete_record () 3563 { 3564 return current_top_target ()->supports_delete_record (); 3565 } 3566 3567 /* See target.h. */ 3568 3569 void 3570 target_delete_record (void) 3571 { 3572 current_top_target ()->delete_record (); 3573 } 3574 3575 /* See target.h. */ 3576 3577 enum record_method 3578 target_record_method (ptid_t ptid) 3579 { 3580 return current_top_target ()->record_method (ptid); 3581 } 3582 3583 /* See target.h. */ 3584 3585 int 3586 target_record_is_replaying (ptid_t ptid) 3587 { 3588 return current_top_target ()->record_is_replaying (ptid); 3589 } 3590 3591 /* See target.h. */ 3592 3593 int 3594 target_record_will_replay (ptid_t ptid, int dir) 3595 { 3596 return current_top_target ()->record_will_replay (ptid, dir); 3597 } 3598 3599 /* See target.h. */ 3600 3601 void 3602 target_record_stop_replaying (void) 3603 { 3604 current_top_target ()->record_stop_replaying (); 3605 } 3606 3607 /* See target.h. */ 3608 3609 void 3610 target_goto_record_begin (void) 3611 { 3612 current_top_target ()->goto_record_begin (); 3613 } 3614 3615 /* See target.h. */ 3616 3617 void 3618 target_goto_record_end (void) 3619 { 3620 current_top_target ()->goto_record_end (); 3621 } 3622 3623 /* See target.h. */ 3624 3625 void 3626 target_goto_record (ULONGEST insn) 3627 { 3628 current_top_target ()->goto_record (insn); 3629 } 3630 3631 /* See target.h. */ 3632 3633 void 3634 target_insn_history (int size, gdb_disassembly_flags flags) 3635 { 3636 current_top_target ()->insn_history (size, flags); 3637 } 3638 3639 /* See target.h. */ 3640 3641 void 3642 target_insn_history_from (ULONGEST from, int size, 3643 gdb_disassembly_flags flags) 3644 { 3645 current_top_target ()->insn_history_from (from, size, flags); 3646 } 3647 3648 /* See target.h. */ 3649 3650 void 3651 target_insn_history_range (ULONGEST begin, ULONGEST end, 3652 gdb_disassembly_flags flags) 3653 { 3654 current_top_target ()->insn_history_range (begin, end, flags); 3655 } 3656 3657 /* See target.h. */ 3658 3659 void 3660 target_call_history (int size, record_print_flags flags) 3661 { 3662 current_top_target ()->call_history (size, flags); 3663 } 3664 3665 /* See target.h. */ 3666 3667 void 3668 target_call_history_from (ULONGEST begin, int size, record_print_flags flags) 3669 { 3670 current_top_target ()->call_history_from (begin, size, flags); 3671 } 3672 3673 /* See target.h. */ 3674 3675 void 3676 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags) 3677 { 3678 current_top_target ()->call_history_range (begin, end, flags); 3679 } 3680 3681 /* See target.h. */ 3682 3683 const struct frame_unwind * 3684 target_get_unwinder (void) 3685 { 3686 return current_top_target ()->get_unwinder (); 3687 } 3688 3689 /* See target.h. */ 3690 3691 const struct frame_unwind * 3692 target_get_tailcall_unwinder (void) 3693 { 3694 return current_top_target ()->get_tailcall_unwinder (); 3695 } 3696 3697 /* See target.h. */ 3698 3699 void 3700 target_prepare_to_generate_core (void) 3701 { 3702 current_top_target ()->prepare_to_generate_core (); 3703 } 3704 3705 /* See target.h. */ 3706 3707 void 3708 target_done_generating_core (void) 3709 { 3710 current_top_target ()->done_generating_core (); 3711 } 3712 3713 3714 3715 static char targ_desc[] = 3716 "Names of targets and files being debugged.\nShows the entire \ 3717 stack of targets currently in use (including the exec-file,\n\ 3718 core-file, and process, if any), as well as the symbol file name."; 3719 3720 static void 3721 default_rcmd (struct target_ops *self, const char *command, 3722 struct ui_file *output) 3723 { 3724 error (_("\"monitor\" command not supported by this target.")); 3725 } 3726 3727 static void 3728 do_monitor_command (const char *cmd, int from_tty) 3729 { 3730 target_rcmd (cmd, gdb_stdtarg); 3731 } 3732 3733 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are 3734 ignored. */ 3735 3736 void 3737 flash_erase_command (const char *cmd, int from_tty) 3738 { 3739 /* Used to communicate termination of flash operations to the target. */ 3740 bool found_flash_region = false; 3741 struct gdbarch *gdbarch = target_gdbarch (); 3742 3743 std::vector<mem_region> mem_regions = target_memory_map (); 3744 3745 /* Iterate over all memory regions. */ 3746 for (const mem_region &m : mem_regions) 3747 { 3748 /* Is this a flash memory region? */ 3749 if (m.attrib.mode == MEM_FLASH) 3750 { 3751 found_flash_region = true; 3752 target_flash_erase (m.lo, m.hi - m.lo); 3753 3754 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions"); 3755 3756 current_uiout->message (_("Erasing flash memory region at address ")); 3757 current_uiout->field_core_addr ("address", gdbarch, m.lo); 3758 current_uiout->message (", size = "); 3759 current_uiout->field_string ("size", hex_string (m.hi - m.lo)); 3760 current_uiout->message ("\n"); 3761 } 3762 } 3763 3764 /* Did we do any flash operations? If so, we need to finalize them. */ 3765 if (found_flash_region) 3766 target_flash_done (); 3767 else 3768 current_uiout->message (_("No flash memory regions found.\n")); 3769 } 3770 3771 /* Print the name of each layers of our target stack. */ 3772 3773 static void 3774 maintenance_print_target_stack (const char *cmd, int from_tty) 3775 { 3776 printf_filtered (_("The current target stack is:\n")); 3777 3778 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ()) 3779 { 3780 if (t->stratum () == debug_stratum) 3781 continue; 3782 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ()); 3783 } 3784 } 3785 3786 /* See target.h. */ 3787 3788 void 3789 target_async (int enable) 3790 { 3791 infrun_async (enable); 3792 current_top_target ()->async (enable); 3793 } 3794 3795 /* See target.h. */ 3796 3797 void 3798 target_thread_events (int enable) 3799 { 3800 current_top_target ()->thread_events (enable); 3801 } 3802 3803 /* Controls if targets can report that they can/are async. This is 3804 just for maintainers to use when debugging gdb. */ 3805 bool target_async_permitted = true; 3806 3807 /* The set command writes to this variable. If the inferior is 3808 executing, target_async_permitted is *not* updated. */ 3809 static bool target_async_permitted_1 = true; 3810 3811 static void 3812 maint_set_target_async_command (const char *args, int from_tty, 3813 struct cmd_list_element *c) 3814 { 3815 if (have_live_inferiors ()) 3816 { 3817 target_async_permitted_1 = target_async_permitted; 3818 error (_("Cannot change this setting while the inferior is running.")); 3819 } 3820 3821 target_async_permitted = target_async_permitted_1; 3822 } 3823 3824 static void 3825 maint_show_target_async_command (struct ui_file *file, int from_tty, 3826 struct cmd_list_element *c, 3827 const char *value) 3828 { 3829 fprintf_filtered (file, 3830 _("Controlling the inferior in " 3831 "asynchronous mode is %s.\n"), value); 3832 } 3833 3834 /* Return true if the target operates in non-stop mode even with "set 3835 non-stop off". */ 3836 3837 static int 3838 target_always_non_stop_p (void) 3839 { 3840 return current_top_target ()->always_non_stop_p (); 3841 } 3842 3843 /* See target.h. */ 3844 3845 int 3846 target_is_non_stop_p (void) 3847 { 3848 return (non_stop 3849 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE 3850 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO 3851 && target_always_non_stop_p ())); 3852 } 3853 3854 /* See target.h. */ 3855 3856 bool 3857 exists_non_stop_target () 3858 { 3859 if (target_is_non_stop_p ()) 3860 return true; 3861 3862 scoped_restore_current_thread restore_thread; 3863 3864 for (inferior *inf : all_inferiors ()) 3865 { 3866 switch_to_inferior_no_thread (inf); 3867 if (target_is_non_stop_p ()) 3868 return true; 3869 } 3870 3871 return false; 3872 } 3873 3874 /* Controls if targets can report that they always run in non-stop 3875 mode. This is just for maintainers to use when debugging gdb. */ 3876 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO; 3877 3878 /* The set command writes to this variable. If the inferior is 3879 executing, target_non_stop_enabled is *not* updated. */ 3880 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO; 3881 3882 /* Implementation of "maint set target-non-stop". */ 3883 3884 static void 3885 maint_set_target_non_stop_command (const char *args, int from_tty, 3886 struct cmd_list_element *c) 3887 { 3888 if (have_live_inferiors ()) 3889 { 3890 target_non_stop_enabled_1 = target_non_stop_enabled; 3891 error (_("Cannot change this setting while the inferior is running.")); 3892 } 3893 3894 target_non_stop_enabled = target_non_stop_enabled_1; 3895 } 3896 3897 /* Implementation of "maint show target-non-stop". */ 3898 3899 static void 3900 maint_show_target_non_stop_command (struct ui_file *file, int from_tty, 3901 struct cmd_list_element *c, 3902 const char *value) 3903 { 3904 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO) 3905 fprintf_filtered (file, 3906 _("Whether the target is always in non-stop mode " 3907 "is %s (currently %s).\n"), value, 3908 target_always_non_stop_p () ? "on" : "off"); 3909 else 3910 fprintf_filtered (file, 3911 _("Whether the target is always in non-stop mode " 3912 "is %s.\n"), value); 3913 } 3914 3915 /* Temporary copies of permission settings. */ 3916 3917 static bool may_write_registers_1 = true; 3918 static bool may_write_memory_1 = true; 3919 static bool may_insert_breakpoints_1 = true; 3920 static bool may_insert_tracepoints_1 = true; 3921 static bool may_insert_fast_tracepoints_1 = true; 3922 static bool may_stop_1 = true; 3923 3924 /* Make the user-set values match the real values again. */ 3925 3926 void 3927 update_target_permissions (void) 3928 { 3929 may_write_registers_1 = may_write_registers; 3930 may_write_memory_1 = may_write_memory; 3931 may_insert_breakpoints_1 = may_insert_breakpoints; 3932 may_insert_tracepoints_1 = may_insert_tracepoints; 3933 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints; 3934 may_stop_1 = may_stop; 3935 } 3936 3937 /* The one function handles (most of) the permission flags in the same 3938 way. */ 3939 3940 static void 3941 set_target_permissions (const char *args, int from_tty, 3942 struct cmd_list_element *c) 3943 { 3944 if (target_has_execution) 3945 { 3946 update_target_permissions (); 3947 error (_("Cannot change this setting while the inferior is running.")); 3948 } 3949 3950 /* Make the real values match the user-changed values. */ 3951 may_write_registers = may_write_registers_1; 3952 may_insert_breakpoints = may_insert_breakpoints_1; 3953 may_insert_tracepoints = may_insert_tracepoints_1; 3954 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1; 3955 may_stop = may_stop_1; 3956 update_observer_mode (); 3957 } 3958 3959 /* Set memory write permission independently of observer mode. */ 3960 3961 static void 3962 set_write_memory_permission (const char *args, int from_tty, 3963 struct cmd_list_element *c) 3964 { 3965 /* Make the real values match the user-changed values. */ 3966 may_write_memory = may_write_memory_1; 3967 update_observer_mode (); 3968 } 3969 3970 void _initialize_target (); 3971 3972 void 3973 _initialize_target () 3974 { 3975 the_debug_target = new debug_target (); 3976 3977 add_info ("target", info_target_command, targ_desc); 3978 add_info ("files", info_target_command, targ_desc); 3979 3980 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\ 3981 Set target debugging."), _("\ 3982 Show target debugging."), _("\ 3983 When non-zero, target debugging is enabled. Higher numbers are more\n\ 3984 verbose."), 3985 set_targetdebug, 3986 show_targetdebug, 3987 &setdebuglist, &showdebuglist); 3988 3989 add_setshow_boolean_cmd ("trust-readonly-sections", class_support, 3990 &trust_readonly, _("\ 3991 Set mode for reading from readonly sections."), _("\ 3992 Show mode for reading from readonly sections."), _("\ 3993 When this mode is on, memory reads from readonly sections (such as .text)\n\ 3994 will be read from the object file instead of from the target. This will\n\ 3995 result in significant performance improvement for remote targets."), 3996 NULL, 3997 show_trust_readonly, 3998 &setlist, &showlist); 3999 4000 add_com ("monitor", class_obscure, do_monitor_command, 4001 _("Send a command to the remote monitor (remote targets only).")); 4002 4003 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack, 4004 _("Print the name of each layer of the internal target stack."), 4005 &maintenanceprintlist); 4006 4007 add_setshow_boolean_cmd ("target-async", no_class, 4008 &target_async_permitted_1, _("\ 4009 Set whether gdb controls the inferior in asynchronous mode."), _("\ 4010 Show whether gdb controls the inferior in asynchronous mode."), _("\ 4011 Tells gdb whether to control the inferior in asynchronous mode."), 4012 maint_set_target_async_command, 4013 maint_show_target_async_command, 4014 &maintenance_set_cmdlist, 4015 &maintenance_show_cmdlist); 4016 4017 add_setshow_auto_boolean_cmd ("target-non-stop", no_class, 4018 &target_non_stop_enabled_1, _("\ 4019 Set whether gdb always controls the inferior in non-stop mode."), _("\ 4020 Show whether gdb always controls the inferior in non-stop mode."), _("\ 4021 Tells gdb whether to control the inferior in non-stop mode."), 4022 maint_set_target_non_stop_command, 4023 maint_show_target_non_stop_command, 4024 &maintenance_set_cmdlist, 4025 &maintenance_show_cmdlist); 4026 4027 add_setshow_boolean_cmd ("may-write-registers", class_support, 4028 &may_write_registers_1, _("\ 4029 Set permission to write into registers."), _("\ 4030 Show permission to write into registers."), _("\ 4031 When this permission is on, GDB may write into the target's registers.\n\ 4032 Otherwise, any sort of write attempt will result in an error."), 4033 set_target_permissions, NULL, 4034 &setlist, &showlist); 4035 4036 add_setshow_boolean_cmd ("may-write-memory", class_support, 4037 &may_write_memory_1, _("\ 4038 Set permission to write into target memory."), _("\ 4039 Show permission to write into target memory."), _("\ 4040 When this permission is on, GDB may write into the target's memory.\n\ 4041 Otherwise, any sort of write attempt will result in an error."), 4042 set_write_memory_permission, NULL, 4043 &setlist, &showlist); 4044 4045 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support, 4046 &may_insert_breakpoints_1, _("\ 4047 Set permission to insert breakpoints in the target."), _("\ 4048 Show permission to insert breakpoints in the target."), _("\ 4049 When this permission is on, GDB may insert breakpoints in the program.\n\ 4050 Otherwise, any sort of insertion attempt will result in an error."), 4051 set_target_permissions, NULL, 4052 &setlist, &showlist); 4053 4054 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support, 4055 &may_insert_tracepoints_1, _("\ 4056 Set permission to insert tracepoints in the target."), _("\ 4057 Show permission to insert tracepoints in the target."), _("\ 4058 When this permission is on, GDB may insert tracepoints in the program.\n\ 4059 Otherwise, any sort of insertion attempt will result in an error."), 4060 set_target_permissions, NULL, 4061 &setlist, &showlist); 4062 4063 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support, 4064 &may_insert_fast_tracepoints_1, _("\ 4065 Set permission to insert fast tracepoints in the target."), _("\ 4066 Show permission to insert fast tracepoints in the target."), _("\ 4067 When this permission is on, GDB may insert fast tracepoints.\n\ 4068 Otherwise, any sort of insertion attempt will result in an error."), 4069 set_target_permissions, NULL, 4070 &setlist, &showlist); 4071 4072 add_setshow_boolean_cmd ("may-interrupt", class_support, 4073 &may_stop_1, _("\ 4074 Set permission to interrupt or signal the target."), _("\ 4075 Show permission to interrupt or signal the target."), _("\ 4076 When this permission is on, GDB may interrupt/stop the target's execution.\n\ 4077 Otherwise, any attempt to interrupt or stop will be ignored."), 4078 set_target_permissions, NULL, 4079 &setlist, &showlist); 4080 4081 add_com ("flash-erase", no_class, flash_erase_command, 4082 _("Erase all flash memory regions.")); 4083 4084 add_setshow_boolean_cmd ("auto-connect-native-target", class_support, 4085 &auto_connect_native_target, _("\ 4086 Set whether GDB may automatically connect to the native target."), _("\ 4087 Show whether GDB may automatically connect to the native target."), _("\ 4088 When on, and GDB is not connected to a target yet, GDB\n\ 4089 attempts \"run\" and other commands with the native target."), 4090 NULL, show_auto_connect_native_target, 4091 &setlist, &showlist); 4092 } 4093