xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/target.c (revision d16b7486a53dcb8072b60ec6fcb4373a2d0c27b7)
1 /* Select target systems and architectures at runtime for GDB.
2 
3    Copyright (C) 1990-2020 Free Software Foundation, Inc.
4 
5    Contributed by Cygnus Support.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "gdbsupport/agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "gdbsupport/byte-vector.h"
50 #include "terminal.h"
51 #include <unordered_map>
52 #include "target-connection.h"
53 #include "valprint.h"
54 
55 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
56 
57 static void default_terminal_info (struct target_ops *, const char *, int);
58 
59 static int default_watchpoint_addr_within_range (struct target_ops *,
60 						 CORE_ADDR, CORE_ADDR, int);
61 
62 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
63 						CORE_ADDR, int);
64 
65 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
66 
67 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
68 					 long lwp, long tid);
69 
70 static void default_mourn_inferior (struct target_ops *self);
71 
72 static int default_search_memory (struct target_ops *ops,
73 				  CORE_ADDR start_addr,
74 				  ULONGEST search_space_len,
75 				  const gdb_byte *pattern,
76 				  ULONGEST pattern_len,
77 				  CORE_ADDR *found_addrp);
78 
79 static int default_verify_memory (struct target_ops *self,
80 				  const gdb_byte *data,
81 				  CORE_ADDR memaddr, ULONGEST size);
82 
83 static void tcomplain (void) ATTRIBUTE_NORETURN;
84 
85 static struct target_ops *find_default_run_target (const char *);
86 
87 static int dummy_find_memory_regions (struct target_ops *self,
88 				      find_memory_region_ftype ignore1,
89 				      void *ignore2);
90 
91 static char *dummy_make_corefile_notes (struct target_ops *self,
92 					bfd *ignore1, int *ignore2);
93 
94 static std::string default_pid_to_str (struct target_ops *ops, ptid_t ptid);
95 
96 static enum exec_direction_kind default_execution_direction
97     (struct target_ops *self);
98 
99 /* Mapping between target_info objects (which have address identity)
100    and corresponding open/factory function/callback.  Each add_target
101    call adds one entry to this map, and registers a "target
102    TARGET_NAME" command that when invoked calls the factory registered
103    here.  The target_info object is associated with the command via
104    the command's context.  */
105 static std::unordered_map<const target_info *, target_open_ftype *>
106   target_factories;
107 
108 /* The singleton debug target.  */
109 
110 static struct target_ops *the_debug_target;
111 
112 /* Top of target stack.  */
113 /* The target structure we are currently using to talk to a process
114    or file or whatever "inferior" we have.  */
115 
116 target_ops *
117 current_top_target ()
118 {
119   return current_inferior ()->top_target ();
120 }
121 
122 /* Command list for target.  */
123 
124 static struct cmd_list_element *targetlist = NULL;
125 
126 /* True if we should trust readonly sections from the
127    executable when reading memory.  */
128 
129 static bool trust_readonly = false;
130 
131 /* Nonzero if we should show true memory content including
132    memory breakpoint inserted by gdb.  */
133 
134 static int show_memory_breakpoints = 0;
135 
136 /* These globals control whether GDB attempts to perform these
137    operations; they are useful for targets that need to prevent
138    inadvertent disruption, such as in non-stop mode.  */
139 
140 bool may_write_registers = true;
141 
142 bool may_write_memory = true;
143 
144 bool may_insert_breakpoints = true;
145 
146 bool may_insert_tracepoints = true;
147 
148 bool may_insert_fast_tracepoints = true;
149 
150 bool may_stop = true;
151 
152 /* Non-zero if we want to see trace of target level stuff.  */
153 
154 static unsigned int targetdebug = 0;
155 
156 static void
157 set_targetdebug  (const char *args, int from_tty, struct cmd_list_element *c)
158 {
159   if (targetdebug)
160     push_target (the_debug_target);
161   else
162     unpush_target (the_debug_target);
163 }
164 
165 static void
166 show_targetdebug (struct ui_file *file, int from_tty,
167 		  struct cmd_list_element *c, const char *value)
168 {
169   fprintf_filtered (file, _("Target debugging is %s.\n"), value);
170 }
171 
172 int
173 target_has_all_memory_1 (void)
174 {
175   for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
176     if (t->has_all_memory ())
177       return 1;
178 
179   return 0;
180 }
181 
182 int
183 target_has_memory_1 (void)
184 {
185   for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
186     if (t->has_memory ())
187       return 1;
188 
189   return 0;
190 }
191 
192 int
193 target_has_stack_1 (void)
194 {
195   for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
196     if (t->has_stack ())
197       return 1;
198 
199   return 0;
200 }
201 
202 int
203 target_has_registers_1 (void)
204 {
205   for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
206     if (t->has_registers ())
207       return 1;
208 
209   return 0;
210 }
211 
212 bool
213 target_has_execution_1 (inferior *inf)
214 {
215   for (target_ops *t = inf->top_target ();
216        t != nullptr;
217        t = inf->find_target_beneath (t))
218     if (t->has_execution (inf))
219       return true;
220 
221   return false;
222 }
223 
224 int
225 target_has_execution_current (void)
226 {
227   return target_has_execution_1 (current_inferior ());
228 }
229 
230 /* This is used to implement the various target commands.  */
231 
232 static void
233 open_target (const char *args, int from_tty, struct cmd_list_element *command)
234 {
235   auto *ti = static_cast<target_info *> (get_cmd_context (command));
236   target_open_ftype *func = target_factories[ti];
237 
238   if (targetdebug)
239     fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
240 			ti->shortname);
241 
242   func (args, from_tty);
243 
244   if (targetdebug)
245     fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
246 			ti->shortname, args, from_tty);
247 }
248 
249 /* See target.h.  */
250 
251 void
252 add_target (const target_info &t, target_open_ftype *func,
253 	    completer_ftype *completer)
254 {
255   struct cmd_list_element *c;
256 
257   auto &func_slot = target_factories[&t];
258   if (func_slot != nullptr)
259     internal_error (__FILE__, __LINE__,
260 		    _("target already added (\"%s\")."), t.shortname);
261   func_slot = func;
262 
263   if (targetlist == NULL)
264     add_basic_prefix_cmd ("target", class_run, _("\
265 Connect to a target machine or process.\n\
266 The first argument is the type or protocol of the target machine.\n\
267 Remaining arguments are interpreted by the target protocol.  For more\n\
268 information on the arguments for a particular protocol, type\n\
269 `help target ' followed by the protocol name."),
270 			  &targetlist, "target ", 0, &cmdlist);
271   c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
272   set_cmd_context (c, (void *) &t);
273   set_cmd_sfunc (c, open_target);
274   if (completer != NULL)
275     set_cmd_completer (c, completer);
276 }
277 
278 /* See target.h.  */
279 
280 void
281 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
282 {
283   struct cmd_list_element *c;
284   char *alt;
285 
286   /* If we use add_alias_cmd, here, we do not get the deprecated warning,
287      see PR cli/15104.  */
288   c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
289   set_cmd_sfunc (c, open_target);
290   set_cmd_context (c, (void *) &tinfo);
291   alt = xstrprintf ("target %s", tinfo.shortname);
292   deprecate_cmd (c, alt);
293 }
294 
295 /* Stub functions */
296 
297 void
298 target_kill (void)
299 {
300   current_top_target ()->kill ();
301 }
302 
303 void
304 target_load (const char *arg, int from_tty)
305 {
306   target_dcache_invalidate ();
307   current_top_target ()->load (arg, from_tty);
308 }
309 
310 /* Define it.  */
311 
312 target_terminal_state target_terminal::m_terminal_state
313   = target_terminal_state::is_ours;
314 
315 /* See target/target.h.  */
316 
317 void
318 target_terminal::init (void)
319 {
320   current_top_target ()->terminal_init ();
321 
322   m_terminal_state = target_terminal_state::is_ours;
323 }
324 
325 /* See target/target.h.  */
326 
327 void
328 target_terminal::inferior (void)
329 {
330   struct ui *ui = current_ui;
331 
332   /* A background resume (``run&'') should leave GDB in control of the
333      terminal.  */
334   if (ui->prompt_state != PROMPT_BLOCKED)
335     return;
336 
337   /* Since we always run the inferior in the main console (unless "set
338      inferior-tty" is in effect), when some UI other than the main one
339      calls target_terminal::inferior, then we leave the main UI's
340      terminal settings as is.  */
341   if (ui != main_ui)
342     return;
343 
344   /* If GDB is resuming the inferior in the foreground, install
345      inferior's terminal modes.  */
346 
347   struct inferior *inf = current_inferior ();
348 
349   if (inf->terminal_state != target_terminal_state::is_inferior)
350     {
351       current_top_target ()->terminal_inferior ();
352       inf->terminal_state = target_terminal_state::is_inferior;
353     }
354 
355   m_terminal_state = target_terminal_state::is_inferior;
356 
357   /* If the user hit C-c before, pretend that it was hit right
358      here.  */
359   if (check_quit_flag ())
360     target_pass_ctrlc ();
361 }
362 
363 /* See target/target.h.  */
364 
365 void
366 target_terminal::restore_inferior (void)
367 {
368   struct ui *ui = current_ui;
369 
370   /* See target_terminal::inferior().  */
371   if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
372     return;
373 
374   /* Restore the terminal settings of inferiors that were in the
375      foreground but are now ours_for_output due to a temporary
376      target_target::ours_for_output() call.  */
377 
378   {
379     scoped_restore_current_inferior restore_inferior;
380 
381     for (::inferior *inf : all_inferiors ())
382       {
383 	if (inf->terminal_state == target_terminal_state::is_ours_for_output)
384 	  {
385 	    set_current_inferior (inf);
386 	    current_top_target ()->terminal_inferior ();
387 	    inf->terminal_state = target_terminal_state::is_inferior;
388 	  }
389       }
390   }
391 
392   m_terminal_state = target_terminal_state::is_inferior;
393 
394   /* If the user hit C-c before, pretend that it was hit right
395      here.  */
396   if (check_quit_flag ())
397     target_pass_ctrlc ();
398 }
399 
400 /* Switch terminal state to DESIRED_STATE, either is_ours, or
401    is_ours_for_output.  */
402 
403 static void
404 target_terminal_is_ours_kind (target_terminal_state desired_state)
405 {
406   scoped_restore_current_inferior restore_inferior;
407 
408   /* Must do this in two passes.  First, have all inferiors save the
409      current terminal settings.  Then, after all inferiors have add a
410      chance to safely save the terminal settings, restore GDB's
411      terminal settings.  */
412 
413   for (inferior *inf : all_inferiors ())
414     {
415       if (inf->terminal_state == target_terminal_state::is_inferior)
416 	{
417 	  set_current_inferior (inf);
418 	  current_top_target ()->terminal_save_inferior ();
419 	}
420     }
421 
422   for (inferior *inf : all_inferiors ())
423     {
424       /* Note we don't check is_inferior here like above because we
425 	 need to handle 'is_ours_for_output -> is_ours' too.  Careful
426 	 to never transition from 'is_ours' to 'is_ours_for_output',
427 	 though.  */
428       if (inf->terminal_state != target_terminal_state::is_ours
429 	  && inf->terminal_state != desired_state)
430 	{
431 	  set_current_inferior (inf);
432 	  if (desired_state == target_terminal_state::is_ours)
433 	    current_top_target ()->terminal_ours ();
434 	  else if (desired_state == target_terminal_state::is_ours_for_output)
435 	    current_top_target ()->terminal_ours_for_output ();
436 	  else
437 	    gdb_assert_not_reached ("unhandled desired state");
438 	  inf->terminal_state = desired_state;
439 	}
440     }
441 }
442 
443 /* See target/target.h.  */
444 
445 void
446 target_terminal::ours ()
447 {
448   struct ui *ui = current_ui;
449 
450   /* See target_terminal::inferior.  */
451   if (ui != main_ui)
452     return;
453 
454   if (m_terminal_state == target_terminal_state::is_ours)
455     return;
456 
457   target_terminal_is_ours_kind (target_terminal_state::is_ours);
458   m_terminal_state = target_terminal_state::is_ours;
459 }
460 
461 /* See target/target.h.  */
462 
463 void
464 target_terminal::ours_for_output ()
465 {
466   struct ui *ui = current_ui;
467 
468   /* See target_terminal::inferior.  */
469   if (ui != main_ui)
470     return;
471 
472   if (!target_terminal::is_inferior ())
473     return;
474 
475   target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
476   target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
477 }
478 
479 /* See target/target.h.  */
480 
481 void
482 target_terminal::info (const char *arg, int from_tty)
483 {
484   current_top_target ()->terminal_info (arg, from_tty);
485 }
486 
487 /* See target.h.  */
488 
489 bool
490 target_supports_terminal_ours (void)
491 {
492   /* The current top target is the target at the top of the target
493      stack of the current inferior.  While normally there's always an
494      inferior, we must check for nullptr here because we can get here
495      very early during startup, before the initial inferior is first
496      created.  */
497   inferior *inf = current_inferior ();
498 
499   if (inf == nullptr)
500     return false;
501   return inf->top_target ()->supports_terminal_ours ();
502 }
503 
504 static void
505 tcomplain (void)
506 {
507   error (_("You can't do that when your target is `%s'"),
508 	 current_top_target ()->shortname ());
509 }
510 
511 void
512 noprocess (void)
513 {
514   error (_("You can't do that without a process to debug."));
515 }
516 
517 static void
518 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
519 {
520   printf_unfiltered (_("No saved terminal information.\n"));
521 }
522 
523 /* A default implementation for the to_get_ada_task_ptid target method.
524 
525    This function builds the PTID by using both LWP and TID as part of
526    the PTID lwp and tid elements.  The pid used is the pid of the
527    inferior_ptid.  */
528 
529 static ptid_t
530 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
531 {
532   return ptid_t (inferior_ptid.pid (), lwp, tid);
533 }
534 
535 static enum exec_direction_kind
536 default_execution_direction (struct target_ops *self)
537 {
538   if (!target_can_execute_reverse)
539     return EXEC_FORWARD;
540   else if (!target_can_async_p ())
541     return EXEC_FORWARD;
542   else
543     gdb_assert_not_reached ("\
544 to_execution_direction must be implemented for reverse async");
545 }
546 
547 /* See target.h.  */
548 
549 void
550 decref_target (target_ops *t)
551 {
552   t->decref ();
553   if (t->refcount () == 0)
554     {
555       if (t->stratum () == process_stratum)
556 	connection_list_remove (as_process_stratum_target (t));
557       target_close (t);
558     }
559 }
560 
561 /* See target.h.  */
562 
563 void
564 target_stack::push (target_ops *t)
565 {
566   t->incref ();
567 
568   strata stratum = t->stratum ();
569 
570   if (stratum == process_stratum)
571     connection_list_add (as_process_stratum_target (t));
572 
573   /* If there's already a target at this stratum, remove it.  */
574 
575   if (m_stack[stratum] != NULL)
576     unpush (m_stack[stratum]);
577 
578   /* Now add the new one.  */
579   m_stack[stratum] = t;
580 
581   if (m_top < stratum)
582     m_top = stratum;
583 }
584 
585 /* See target.h.  */
586 
587 void
588 push_target (struct target_ops *t)
589 {
590   current_inferior ()->push_target (t);
591 }
592 
593 /* See target.h.  */
594 
595 void
596 push_target (target_ops_up &&t)
597 {
598   current_inferior ()->push_target (t.get ());
599   t.release ();
600 }
601 
602 /* See target.h.  */
603 
604 int
605 unpush_target (struct target_ops *t)
606 {
607   return current_inferior ()->unpush_target (t);
608 }
609 
610 /* See target.h.  */
611 
612 bool
613 target_stack::unpush (target_ops *t)
614 {
615   gdb_assert (t != NULL);
616 
617   strata stratum = t->stratum ();
618 
619   if (stratum == dummy_stratum)
620     internal_error (__FILE__, __LINE__,
621 		    _("Attempt to unpush the dummy target"));
622 
623   /* Look for the specified target.  Note that a target can only occur
624      once in the target stack.  */
625 
626   if (m_stack[stratum] != t)
627     {
628       /* If T wasn't pushed, quit.  Only open targets should be
629 	 closed.  */
630       return false;
631     }
632 
633   /* Unchain the target.  */
634   m_stack[stratum] = NULL;
635 
636   if (m_top == stratum)
637     m_top = t->beneath ()->stratum ();
638 
639   /* Finally close the target, if there are no inferiors
640      referencing this target still.  Note we do this after unchaining,
641      so any target method calls from within the target_close
642      implementation don't end up in T anymore.  Do leave the target
643      open if we have are other inferiors referencing this target
644      still.  */
645   decref_target (t);
646 
647   return true;
648 }
649 
650 /* Unpush TARGET and assert that it worked.  */
651 
652 static void
653 unpush_target_and_assert (struct target_ops *target)
654 {
655   if (!unpush_target (target))
656     {
657       fprintf_unfiltered (gdb_stderr,
658 			  "pop_all_targets couldn't find target %s\n",
659 			  target->shortname ());
660       internal_error (__FILE__, __LINE__,
661 		      _("failed internal consistency check"));
662     }
663 }
664 
665 void
666 pop_all_targets_above (enum strata above_stratum)
667 {
668   while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
669     unpush_target_and_assert (current_top_target ());
670 }
671 
672 /* See target.h.  */
673 
674 void
675 pop_all_targets_at_and_above (enum strata stratum)
676 {
677   while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
678     unpush_target_and_assert (current_top_target ());
679 }
680 
681 void
682 pop_all_targets (void)
683 {
684   pop_all_targets_above (dummy_stratum);
685 }
686 
687 /* Return true if T is now pushed in the current inferior's target
688    stack.  Return false otherwise.  */
689 
690 bool
691 target_is_pushed (target_ops *t)
692 {
693   return current_inferior ()->target_is_pushed (t);
694 }
695 
696 /* Default implementation of to_get_thread_local_address.  */
697 
698 static void
699 generic_tls_error (void)
700 {
701   throw_error (TLS_GENERIC_ERROR,
702 	       _("Cannot find thread-local variables on this target"));
703 }
704 
705 /* Using the objfile specified in OBJFILE, find the address for the
706    current thread's thread-local storage with offset OFFSET.  */
707 CORE_ADDR
708 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
709 {
710   volatile CORE_ADDR addr = 0;
711   struct target_ops *target = current_top_target ();
712   struct gdbarch *gdbarch = target_gdbarch ();
713 
714   if (gdbarch_fetch_tls_load_module_address_p (gdbarch))
715     {
716       ptid_t ptid = inferior_ptid;
717 
718       try
719 	{
720 	  CORE_ADDR lm_addr;
721 
722 	  /* Fetch the load module address for this objfile.  */
723 	  lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch,
724 	                                                   objfile);
725 
726 	  if (gdbarch_get_thread_local_address_p (gdbarch))
727 	    addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr,
728 						     offset);
729 	  else
730 	    addr = target->get_thread_local_address (ptid, lm_addr, offset);
731 	}
732       /* If an error occurred, print TLS related messages here.  Otherwise,
733          throw the error to some higher catcher.  */
734       catch (const gdb_exception &ex)
735 	{
736 	  int objfile_is_library = (objfile->flags & OBJF_SHARED);
737 
738 	  switch (ex.error)
739 	    {
740 	    case TLS_NO_LIBRARY_SUPPORT_ERROR:
741 	      error (_("Cannot find thread-local variables "
742 		       "in this thread library."));
743 	      break;
744 	    case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
745 	      if (objfile_is_library)
746 		error (_("Cannot find shared library `%s' in dynamic"
747 		         " linker's load module list"), objfile_name (objfile));
748 	      else
749 		error (_("Cannot find executable file `%s' in dynamic"
750 		         " linker's load module list"), objfile_name (objfile));
751 	      break;
752 	    case TLS_NOT_ALLOCATED_YET_ERROR:
753 	      if (objfile_is_library)
754 		error (_("The inferior has not yet allocated storage for"
755 		         " thread-local variables in\n"
756 		         "the shared library `%s'\n"
757 		         "for %s"),
758 		       objfile_name (objfile),
759 		       target_pid_to_str (ptid).c_str ());
760 	      else
761 		error (_("The inferior has not yet allocated storage for"
762 		         " thread-local variables in\n"
763 		         "the executable `%s'\n"
764 		         "for %s"),
765 		       objfile_name (objfile),
766 		       target_pid_to_str (ptid).c_str ());
767 	      break;
768 	    case TLS_GENERIC_ERROR:
769 	      if (objfile_is_library)
770 		error (_("Cannot find thread-local storage for %s, "
771 		         "shared library %s:\n%s"),
772 		       target_pid_to_str (ptid).c_str (),
773 		       objfile_name (objfile), ex.what ());
774 	      else
775 		error (_("Cannot find thread-local storage for %s, "
776 		         "executable file %s:\n%s"),
777 		       target_pid_to_str (ptid).c_str (),
778 		       objfile_name (objfile), ex.what ());
779 	      break;
780 	    default:
781 	      throw;
782 	      break;
783 	    }
784 	}
785     }
786   else
787     error (_("Cannot find thread-local variables on this target"));
788 
789   return addr;
790 }
791 
792 const char *
793 target_xfer_status_to_string (enum target_xfer_status status)
794 {
795 #define CASE(X) case X: return #X
796   switch (status)
797     {
798       CASE(TARGET_XFER_E_IO);
799       CASE(TARGET_XFER_UNAVAILABLE);
800     default:
801       return "<unknown>";
802     }
803 #undef CASE
804 };
805 
806 
807 /* See target.h.  */
808 
809 gdb::unique_xmalloc_ptr<char>
810 target_read_string (CORE_ADDR memaddr, int len, int *bytes_read)
811 {
812   gdb::unique_xmalloc_ptr<gdb_byte> buffer;
813 
814   int ignore;
815   if (bytes_read == nullptr)
816     bytes_read = &ignore;
817 
818   /* Note that the endian-ness does not matter here.  */
819   int errcode = read_string (memaddr, -1, 1, len, BFD_ENDIAN_LITTLE,
820 			     &buffer, bytes_read);
821   if (errcode != 0)
822     return {};
823 
824   return gdb::unique_xmalloc_ptr<char> ((char *) buffer.release ());
825 }
826 
827 struct target_section_table *
828 target_get_section_table (struct target_ops *target)
829 {
830   return target->get_section_table ();
831 }
832 
833 /* Find a section containing ADDR.  */
834 
835 struct target_section *
836 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
837 {
838   struct target_section_table *table = target_get_section_table (target);
839   struct target_section *secp;
840 
841   if (table == NULL)
842     return NULL;
843 
844   for (secp = table->sections; secp < table->sections_end; secp++)
845     {
846       if (addr >= secp->addr && addr < secp->endaddr)
847 	return secp;
848     }
849   return NULL;
850 }
851 
852 
853 /* Helper for the memory xfer routines.  Checks the attributes of the
854    memory region of MEMADDR against the read or write being attempted.
855    If the access is permitted returns true, otherwise returns false.
856    REGION_P is an optional output parameter.  If not-NULL, it is
857    filled with a pointer to the memory region of MEMADDR.  REG_LEN
858    returns LEN trimmed to the end of the region.  This is how much the
859    caller can continue requesting, if the access is permitted.  A
860    single xfer request must not straddle memory region boundaries.  */
861 
862 static int
863 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
864 			  ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
865 			  struct mem_region **region_p)
866 {
867   struct mem_region *region;
868 
869   region = lookup_mem_region (memaddr);
870 
871   if (region_p != NULL)
872     *region_p = region;
873 
874   switch (region->attrib.mode)
875     {
876     case MEM_RO:
877       if (writebuf != NULL)
878 	return 0;
879       break;
880 
881     case MEM_WO:
882       if (readbuf != NULL)
883 	return 0;
884       break;
885 
886     case MEM_FLASH:
887       /* We only support writing to flash during "load" for now.  */
888       if (writebuf != NULL)
889 	error (_("Writing to flash memory forbidden in this context"));
890       break;
891 
892     case MEM_NONE:
893       return 0;
894     }
895 
896   /* region->hi == 0 means there's no upper bound.  */
897   if (memaddr + len < region->hi || region->hi == 0)
898     *reg_len = len;
899   else
900     *reg_len = region->hi - memaddr;
901 
902   return 1;
903 }
904 
905 /* Read memory from more than one valid target.  A core file, for
906    instance, could have some of memory but delegate other bits to
907    the target below it.  So, we must manually try all targets.  */
908 
909 enum target_xfer_status
910 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
911 			 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
912 			 ULONGEST *xfered_len)
913 {
914   enum target_xfer_status res;
915 
916   do
917     {
918       res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
919 			       readbuf, writebuf, memaddr, len,
920 			       xfered_len);
921       if (res == TARGET_XFER_OK)
922 	break;
923 
924       /* Stop if the target reports that the memory is not available.  */
925       if (res == TARGET_XFER_UNAVAILABLE)
926 	break;
927 
928       /* Don't continue past targets which have all the memory.
929          At one time, this code was necessary to read data from
930 	 executables / shared libraries when data for the requested
931 	 addresses weren't available in the core file.  But now the
932 	 core target handles this case itself.  */
933       if (ops->has_all_memory ())
934 	break;
935 
936       ops = ops->beneath ();
937     }
938   while (ops != NULL);
939 
940   /* The cache works at the raw memory level.  Make sure the cache
941      gets updated with raw contents no matter what kind of memory
942      object was originally being written.  Note we do write-through
943      first, so that if it fails, we don't write to the cache contents
944      that never made it to the target.  */
945   if (writebuf != NULL
946       && inferior_ptid != null_ptid
947       && target_dcache_init_p ()
948       && (stack_cache_enabled_p () || code_cache_enabled_p ()))
949     {
950       DCACHE *dcache = target_dcache_get ();
951 
952       /* Note that writing to an area of memory which wasn't present
953 	 in the cache doesn't cause it to be loaded in.  */
954       dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
955     }
956 
957   return res;
958 }
959 
960 /* Perform a partial memory transfer.
961    For docs see target.h, to_xfer_partial.  */
962 
963 static enum target_xfer_status
964 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
965 		       gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
966 		       ULONGEST len, ULONGEST *xfered_len)
967 {
968   enum target_xfer_status res;
969   ULONGEST reg_len;
970   struct mem_region *region;
971   struct inferior *inf;
972 
973   /* For accesses to unmapped overlay sections, read directly from
974      files.  Must do this first, as MEMADDR may need adjustment.  */
975   if (readbuf != NULL && overlay_debugging)
976     {
977       struct obj_section *section = find_pc_overlay (memaddr);
978 
979       if (pc_in_unmapped_range (memaddr, section))
980 	{
981 	  struct target_section_table *table
982 	    = target_get_section_table (ops);
983 	  const char *section_name = section->the_bfd_section->name;
984 
985 	  memaddr = overlay_mapped_address (memaddr, section);
986 
987 	  auto match_cb = [=] (const struct target_section *s)
988 	    {
989 	      return (strcmp (section_name, s->the_bfd_section->name) == 0);
990 	    };
991 
992 	  return section_table_xfer_memory_partial (readbuf, writebuf,
993 						    memaddr, len, xfered_len,
994 						    table->sections,
995 						    table->sections_end,
996 						    match_cb);
997 	}
998     }
999 
1000   /* Try the executable files, if "trust-readonly-sections" is set.  */
1001   if (readbuf != NULL && trust_readonly)
1002     {
1003       struct target_section *secp;
1004       struct target_section_table *table;
1005 
1006       secp = target_section_by_addr (ops, memaddr);
1007       if (secp != NULL
1008 	  && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
1009 	{
1010 	  table = target_get_section_table (ops);
1011 	  return section_table_xfer_memory_partial (readbuf, writebuf,
1012 						    memaddr, len, xfered_len,
1013 						    table->sections,
1014 						    table->sections_end);
1015 	}
1016     }
1017 
1018   /* Try GDB's internal data cache.  */
1019 
1020   if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1021 				 &region))
1022     return TARGET_XFER_E_IO;
1023 
1024   if (inferior_ptid != null_ptid)
1025     inf = current_inferior ();
1026   else
1027     inf = NULL;
1028 
1029   if (inf != NULL
1030       && readbuf != NULL
1031       /* The dcache reads whole cache lines; that doesn't play well
1032 	 with reading from a trace buffer, because reading outside of
1033 	 the collected memory range fails.  */
1034       && get_traceframe_number () == -1
1035       && (region->attrib.cache
1036 	  || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1037 	  || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1038     {
1039       DCACHE *dcache = target_dcache_get_or_init ();
1040 
1041       return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1042 					 reg_len, xfered_len);
1043     }
1044 
1045   /* If none of those methods found the memory we wanted, fall back
1046      to a target partial transfer.  Normally a single call to
1047      to_xfer_partial is enough; if it doesn't recognize an object
1048      it will call the to_xfer_partial of the next target down.
1049      But for memory this won't do.  Memory is the only target
1050      object which can be read from more than one valid target.
1051      A core file, for instance, could have some of memory but
1052      delegate other bits to the target below it.  So, we must
1053      manually try all targets.  */
1054 
1055   res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1056 				 xfered_len);
1057 
1058   /* If we still haven't got anything, return the last error.  We
1059      give up.  */
1060   return res;
1061 }
1062 
1063 /* Perform a partial memory transfer.  For docs see target.h,
1064    to_xfer_partial.  */
1065 
1066 static enum target_xfer_status
1067 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1068 		     gdb_byte *readbuf, const gdb_byte *writebuf,
1069 		     ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1070 {
1071   enum target_xfer_status res;
1072 
1073   /* Zero length requests are ok and require no work.  */
1074   if (len == 0)
1075     return TARGET_XFER_EOF;
1076 
1077   memaddr = address_significant (target_gdbarch (), memaddr);
1078 
1079   /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1080      breakpoint insns, thus hiding out from higher layers whether
1081      there are software breakpoints inserted in the code stream.  */
1082   if (readbuf != NULL)
1083     {
1084       res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1085 				   xfered_len);
1086 
1087       if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1088 	breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1089     }
1090   else
1091     {
1092       /* A large write request is likely to be partially satisfied
1093 	 by memory_xfer_partial_1.  We will continually malloc
1094 	 and free a copy of the entire write request for breakpoint
1095 	 shadow handling even though we only end up writing a small
1096 	 subset of it.  Cap writes to a limit specified by the target
1097 	 to mitigate this.  */
1098       len = std::min (ops->get_memory_xfer_limit (), len);
1099 
1100       gdb::byte_vector buf (writebuf, writebuf + len);
1101       breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1102       res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1103 				   xfered_len);
1104     }
1105 
1106   return res;
1107 }
1108 
1109 scoped_restore_tmpl<int>
1110 make_scoped_restore_show_memory_breakpoints (int show)
1111 {
1112   return make_scoped_restore (&show_memory_breakpoints, show);
1113 }
1114 
1115 /* For docs see target.h, to_xfer_partial.  */
1116 
1117 enum target_xfer_status
1118 target_xfer_partial (struct target_ops *ops,
1119 		     enum target_object object, const char *annex,
1120 		     gdb_byte *readbuf, const gdb_byte *writebuf,
1121 		     ULONGEST offset, ULONGEST len,
1122 		     ULONGEST *xfered_len)
1123 {
1124   enum target_xfer_status retval;
1125 
1126   /* Transfer is done when LEN is zero.  */
1127   if (len == 0)
1128     return TARGET_XFER_EOF;
1129 
1130   if (writebuf && !may_write_memory)
1131     error (_("Writing to memory is not allowed (addr %s, len %s)"),
1132 	   core_addr_to_string_nz (offset), plongest (len));
1133 
1134   *xfered_len = 0;
1135 
1136   /* If this is a memory transfer, let the memory-specific code
1137      have a look at it instead.  Memory transfers are more
1138      complicated.  */
1139   if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1140       || object == TARGET_OBJECT_CODE_MEMORY)
1141     retval = memory_xfer_partial (ops, object, readbuf,
1142 				  writebuf, offset, len, xfered_len);
1143   else if (object == TARGET_OBJECT_RAW_MEMORY)
1144     {
1145       /* Skip/avoid accessing the target if the memory region
1146 	 attributes block the access.  Check this here instead of in
1147 	 raw_memory_xfer_partial as otherwise we'd end up checking
1148 	 this twice in the case of the memory_xfer_partial path is
1149 	 taken; once before checking the dcache, and another in the
1150 	 tail call to raw_memory_xfer_partial.  */
1151       if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1152 				     NULL))
1153 	return TARGET_XFER_E_IO;
1154 
1155       /* Request the normal memory object from other layers.  */
1156       retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1157 					xfered_len);
1158     }
1159   else
1160     retval = ops->xfer_partial (object, annex, readbuf,
1161 				writebuf, offset, len, xfered_len);
1162 
1163   if (targetdebug)
1164     {
1165       const unsigned char *myaddr = NULL;
1166 
1167       fprintf_unfiltered (gdb_stdlog,
1168 			  "%s:target_xfer_partial "
1169 			  "(%d, %s, %s, %s, %s, %s) = %d, %s",
1170 			  ops->shortname (),
1171 			  (int) object,
1172 			  (annex ? annex : "(null)"),
1173 			  host_address_to_string (readbuf),
1174 			  host_address_to_string (writebuf),
1175 			  core_addr_to_string_nz (offset),
1176 			  pulongest (len), retval,
1177 			  pulongest (*xfered_len));
1178 
1179       if (readbuf)
1180 	myaddr = readbuf;
1181       if (writebuf)
1182 	myaddr = writebuf;
1183       if (retval == TARGET_XFER_OK && myaddr != NULL)
1184 	{
1185 	  int i;
1186 
1187 	  fputs_unfiltered (", bytes =", gdb_stdlog);
1188 	  for (i = 0; i < *xfered_len; i++)
1189 	    {
1190 	      if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1191 		{
1192 		  if (targetdebug < 2 && i > 0)
1193 		    {
1194 		      fprintf_unfiltered (gdb_stdlog, " ...");
1195 		      break;
1196 		    }
1197 		  fprintf_unfiltered (gdb_stdlog, "\n");
1198 		}
1199 
1200 	      fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1201 	    }
1202 	}
1203 
1204       fputc_unfiltered ('\n', gdb_stdlog);
1205     }
1206 
1207   /* Check implementations of to_xfer_partial update *XFERED_LEN
1208      properly.  Do assertion after printing debug messages, so that we
1209      can find more clues on assertion failure from debugging messages.  */
1210   if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1211     gdb_assert (*xfered_len > 0);
1212 
1213   return retval;
1214 }
1215 
1216 /* Read LEN bytes of target memory at address MEMADDR, placing the
1217    results in GDB's memory at MYADDR.  Returns either 0 for success or
1218    -1 if any error occurs.
1219 
1220    If an error occurs, no guarantee is made about the contents of the data at
1221    MYADDR.  In particular, the caller should not depend upon partial reads
1222    filling the buffer with good data.  There is no way for the caller to know
1223    how much good data might have been transfered anyway.  Callers that can
1224    deal with partial reads should call target_read (which will retry until
1225    it makes no progress, and then return how much was transferred).  */
1226 
1227 int
1228 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1229 {
1230   if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1231 		   myaddr, memaddr, len) == len)
1232     return 0;
1233   else
1234     return -1;
1235 }
1236 
1237 /* See target/target.h.  */
1238 
1239 int
1240 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1241 {
1242   gdb_byte buf[4];
1243   int r;
1244 
1245   r = target_read_memory (memaddr, buf, sizeof buf);
1246   if (r != 0)
1247     return r;
1248   *result = extract_unsigned_integer (buf, sizeof buf,
1249 				      gdbarch_byte_order (target_gdbarch ()));
1250   return 0;
1251 }
1252 
1253 /* Like target_read_memory, but specify explicitly that this is a read
1254    from the target's raw memory.  That is, this read bypasses the
1255    dcache, breakpoint shadowing, etc.  */
1256 
1257 int
1258 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1259 {
1260   if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1261 		   myaddr, memaddr, len) == len)
1262     return 0;
1263   else
1264     return -1;
1265 }
1266 
1267 /* Like target_read_memory, but specify explicitly that this is a read from
1268    the target's stack.  This may trigger different cache behavior.  */
1269 
1270 int
1271 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1272 {
1273   if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1274 		   myaddr, memaddr, len) == len)
1275     return 0;
1276   else
1277     return -1;
1278 }
1279 
1280 /* Like target_read_memory, but specify explicitly that this is a read from
1281    the target's code.  This may trigger different cache behavior.  */
1282 
1283 int
1284 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1285 {
1286   if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1287 		   myaddr, memaddr, len) == len)
1288     return 0;
1289   else
1290     return -1;
1291 }
1292 
1293 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1294    Returns either 0 for success or -1 if any error occurs.  If an
1295    error occurs, no guarantee is made about how much data got written.
1296    Callers that can deal with partial writes should call
1297    target_write.  */
1298 
1299 int
1300 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1301 {
1302   if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1303 		    myaddr, memaddr, len) == len)
1304     return 0;
1305   else
1306     return -1;
1307 }
1308 
1309 /* Write LEN bytes from MYADDR to target raw memory at address
1310    MEMADDR.  Returns either 0 for success or -1 if any error occurs.
1311    If an error occurs, no guarantee is made about how much data got
1312    written.  Callers that can deal with partial writes should call
1313    target_write.  */
1314 
1315 int
1316 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1317 {
1318   if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1319 		    myaddr, memaddr, len) == len)
1320     return 0;
1321   else
1322     return -1;
1323 }
1324 
1325 /* Fetch the target's memory map.  */
1326 
1327 std::vector<mem_region>
1328 target_memory_map (void)
1329 {
1330   std::vector<mem_region> result = current_top_target ()->memory_map ();
1331   if (result.empty ())
1332     return result;
1333 
1334   std::sort (result.begin (), result.end ());
1335 
1336   /* Check that regions do not overlap.  Simultaneously assign
1337      a numbering for the "mem" commands to use to refer to
1338      each region.  */
1339   mem_region *last_one = NULL;
1340   for (size_t ix = 0; ix < result.size (); ix++)
1341     {
1342       mem_region *this_one = &result[ix];
1343       this_one->number = ix;
1344 
1345       if (last_one != NULL && last_one->hi > this_one->lo)
1346 	{
1347 	  warning (_("Overlapping regions in memory map: ignoring"));
1348 	  return std::vector<mem_region> ();
1349 	}
1350 
1351       last_one = this_one;
1352     }
1353 
1354   return result;
1355 }
1356 
1357 void
1358 target_flash_erase (ULONGEST address, LONGEST length)
1359 {
1360   current_top_target ()->flash_erase (address, length);
1361 }
1362 
1363 void
1364 target_flash_done (void)
1365 {
1366   current_top_target ()->flash_done ();
1367 }
1368 
1369 static void
1370 show_trust_readonly (struct ui_file *file, int from_tty,
1371 		     struct cmd_list_element *c, const char *value)
1372 {
1373   fprintf_filtered (file,
1374 		    _("Mode for reading from readonly sections is %s.\n"),
1375 		    value);
1376 }
1377 
1378 /* Target vector read/write partial wrapper functions.  */
1379 
1380 static enum target_xfer_status
1381 target_read_partial (struct target_ops *ops,
1382 		     enum target_object object,
1383 		     const char *annex, gdb_byte *buf,
1384 		     ULONGEST offset, ULONGEST len,
1385 		     ULONGEST *xfered_len)
1386 {
1387   return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1388 			      xfered_len);
1389 }
1390 
1391 static enum target_xfer_status
1392 target_write_partial (struct target_ops *ops,
1393 		      enum target_object object,
1394 		      const char *annex, const gdb_byte *buf,
1395 		      ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1396 {
1397   return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1398 			      xfered_len);
1399 }
1400 
1401 /* Wrappers to perform the full transfer.  */
1402 
1403 /* For docs on target_read see target.h.  */
1404 
1405 LONGEST
1406 target_read (struct target_ops *ops,
1407 	     enum target_object object,
1408 	     const char *annex, gdb_byte *buf,
1409 	     ULONGEST offset, LONGEST len)
1410 {
1411   LONGEST xfered_total = 0;
1412   int unit_size = 1;
1413 
1414   /* If we are reading from a memory object, find the length of an addressable
1415      unit for that architecture.  */
1416   if (object == TARGET_OBJECT_MEMORY
1417       || object == TARGET_OBJECT_STACK_MEMORY
1418       || object == TARGET_OBJECT_CODE_MEMORY
1419       || object == TARGET_OBJECT_RAW_MEMORY)
1420     unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1421 
1422   while (xfered_total < len)
1423     {
1424       ULONGEST xfered_partial;
1425       enum target_xfer_status status;
1426 
1427       status = target_read_partial (ops, object, annex,
1428 				    buf + xfered_total * unit_size,
1429 				    offset + xfered_total, len - xfered_total,
1430 				    &xfered_partial);
1431 
1432       /* Call an observer, notifying them of the xfer progress?  */
1433       if (status == TARGET_XFER_EOF)
1434 	return xfered_total;
1435       else if (status == TARGET_XFER_OK)
1436 	{
1437 	  xfered_total += xfered_partial;
1438 	  QUIT;
1439 	}
1440       else
1441 	return TARGET_XFER_E_IO;
1442 
1443     }
1444   return len;
1445 }
1446 
1447 /* Assuming that the entire [begin, end) range of memory cannot be
1448    read, try to read whatever subrange is possible to read.
1449 
1450    The function returns, in RESULT, either zero or one memory block.
1451    If there's a readable subrange at the beginning, it is completely
1452    read and returned.  Any further readable subrange will not be read.
1453    Otherwise, if there's a readable subrange at the end, it will be
1454    completely read and returned.  Any readable subranges before it
1455    (obviously, not starting at the beginning), will be ignored.  In
1456    other cases -- either no readable subrange, or readable subrange(s)
1457    that is neither at the beginning, or end, nothing is returned.
1458 
1459    The purpose of this function is to handle a read across a boundary
1460    of accessible memory in a case when memory map is not available.
1461    The above restrictions are fine for this case, but will give
1462    incorrect results if the memory is 'patchy'.  However, supporting
1463    'patchy' memory would require trying to read every single byte,
1464    and it seems unacceptable solution.  Explicit memory map is
1465    recommended for this case -- and target_read_memory_robust will
1466    take care of reading multiple ranges then.  */
1467 
1468 static void
1469 read_whatever_is_readable (struct target_ops *ops,
1470 			   const ULONGEST begin, const ULONGEST end,
1471 			   int unit_size,
1472 			   std::vector<memory_read_result> *result)
1473 {
1474   ULONGEST current_begin = begin;
1475   ULONGEST current_end = end;
1476   int forward;
1477   ULONGEST xfered_len;
1478 
1479   /* If we previously failed to read 1 byte, nothing can be done here.  */
1480   if (end - begin <= 1)
1481     return;
1482 
1483   gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1484 
1485   /* Check that either first or the last byte is readable, and give up
1486      if not.  This heuristic is meant to permit reading accessible memory
1487      at the boundary of accessible region.  */
1488   if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1489 			   buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1490     {
1491       forward = 1;
1492       ++current_begin;
1493     }
1494   else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1495 				buf.get () + (end - begin) - 1, end - 1, 1,
1496 				&xfered_len) == TARGET_XFER_OK)
1497     {
1498       forward = 0;
1499       --current_end;
1500     }
1501   else
1502     return;
1503 
1504   /* Loop invariant is that the [current_begin, current_end) was previously
1505      found to be not readable as a whole.
1506 
1507      Note loop condition -- if the range has 1 byte, we can't divide the range
1508      so there's no point trying further.  */
1509   while (current_end - current_begin > 1)
1510     {
1511       ULONGEST first_half_begin, first_half_end;
1512       ULONGEST second_half_begin, second_half_end;
1513       LONGEST xfer;
1514       ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1515 
1516       if (forward)
1517 	{
1518 	  first_half_begin = current_begin;
1519 	  first_half_end = middle;
1520 	  second_half_begin = middle;
1521 	  second_half_end = current_end;
1522 	}
1523       else
1524 	{
1525 	  first_half_begin = middle;
1526 	  first_half_end = current_end;
1527 	  second_half_begin = current_begin;
1528 	  second_half_end = middle;
1529 	}
1530 
1531       xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1532 			  buf.get () + (first_half_begin - begin) * unit_size,
1533 			  first_half_begin,
1534 			  first_half_end - first_half_begin);
1535 
1536       if (xfer == first_half_end - first_half_begin)
1537 	{
1538 	  /* This half reads up fine.  So, the error must be in the
1539 	     other half.  */
1540 	  current_begin = second_half_begin;
1541 	  current_end = second_half_end;
1542 	}
1543       else
1544 	{
1545 	  /* This half is not readable.  Because we've tried one byte, we
1546 	     know some part of this half if actually readable.  Go to the next
1547 	     iteration to divide again and try to read.
1548 
1549 	     We don't handle the other half, because this function only tries
1550 	     to read a single readable subrange.  */
1551 	  current_begin = first_half_begin;
1552 	  current_end = first_half_end;
1553 	}
1554     }
1555 
1556   if (forward)
1557     {
1558       /* The [begin, current_begin) range has been read.  */
1559       result->emplace_back (begin, current_end, std::move (buf));
1560     }
1561   else
1562     {
1563       /* The [current_end, end) range has been read.  */
1564       LONGEST region_len = end - current_end;
1565 
1566       gdb::unique_xmalloc_ptr<gdb_byte> data
1567 	((gdb_byte *) xmalloc (region_len * unit_size));
1568       memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1569 	      region_len * unit_size);
1570       result->emplace_back (current_end, end, std::move (data));
1571     }
1572 }
1573 
1574 std::vector<memory_read_result>
1575 read_memory_robust (struct target_ops *ops,
1576 		    const ULONGEST offset, const LONGEST len)
1577 {
1578   std::vector<memory_read_result> result;
1579   int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1580 
1581   LONGEST xfered_total = 0;
1582   while (xfered_total < len)
1583     {
1584       struct mem_region *region = lookup_mem_region (offset + xfered_total);
1585       LONGEST region_len;
1586 
1587       /* If there is no explicit region, a fake one should be created.  */
1588       gdb_assert (region);
1589 
1590       if (region->hi == 0)
1591 	region_len = len - xfered_total;
1592       else
1593 	region_len = region->hi - offset;
1594 
1595       if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1596 	{
1597 	  /* Cannot read this region.  Note that we can end up here only
1598 	     if the region is explicitly marked inaccessible, or
1599 	     'inaccessible-by-default' is in effect.  */
1600 	  xfered_total += region_len;
1601 	}
1602       else
1603 	{
1604 	  LONGEST to_read = std::min (len - xfered_total, region_len);
1605 	  gdb::unique_xmalloc_ptr<gdb_byte> buffer
1606 	    ((gdb_byte *) xmalloc (to_read * unit_size));
1607 
1608 	  LONGEST xfered_partial =
1609 	      target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1610 			   offset + xfered_total, to_read);
1611 	  /* Call an observer, notifying them of the xfer progress?  */
1612 	  if (xfered_partial <= 0)
1613 	    {
1614 	      /* Got an error reading full chunk.  See if maybe we can read
1615 		 some subrange.  */
1616 	      read_whatever_is_readable (ops, offset + xfered_total,
1617 					 offset + xfered_total + to_read,
1618 					 unit_size, &result);
1619 	      xfered_total += to_read;
1620 	    }
1621 	  else
1622 	    {
1623 	      result.emplace_back (offset + xfered_total,
1624 				   offset + xfered_total + xfered_partial,
1625 				   std::move (buffer));
1626 	      xfered_total += xfered_partial;
1627 	    }
1628 	  QUIT;
1629 	}
1630     }
1631 
1632   return result;
1633 }
1634 
1635 
1636 /* An alternative to target_write with progress callbacks.  */
1637 
1638 LONGEST
1639 target_write_with_progress (struct target_ops *ops,
1640 			    enum target_object object,
1641 			    const char *annex, const gdb_byte *buf,
1642 			    ULONGEST offset, LONGEST len,
1643 			    void (*progress) (ULONGEST, void *), void *baton)
1644 {
1645   LONGEST xfered_total = 0;
1646   int unit_size = 1;
1647 
1648   /* If we are writing to a memory object, find the length of an addressable
1649      unit for that architecture.  */
1650   if (object == TARGET_OBJECT_MEMORY
1651       || object == TARGET_OBJECT_STACK_MEMORY
1652       || object == TARGET_OBJECT_CODE_MEMORY
1653       || object == TARGET_OBJECT_RAW_MEMORY)
1654     unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1655 
1656   /* Give the progress callback a chance to set up.  */
1657   if (progress)
1658     (*progress) (0, baton);
1659 
1660   while (xfered_total < len)
1661     {
1662       ULONGEST xfered_partial;
1663       enum target_xfer_status status;
1664 
1665       status = target_write_partial (ops, object, annex,
1666 				     buf + xfered_total * unit_size,
1667 				     offset + xfered_total, len - xfered_total,
1668 				     &xfered_partial);
1669 
1670       if (status != TARGET_XFER_OK)
1671 	return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1672 
1673       if (progress)
1674 	(*progress) (xfered_partial, baton);
1675 
1676       xfered_total += xfered_partial;
1677       QUIT;
1678     }
1679   return len;
1680 }
1681 
1682 /* For docs on target_write see target.h.  */
1683 
1684 LONGEST
1685 target_write (struct target_ops *ops,
1686 	      enum target_object object,
1687 	      const char *annex, const gdb_byte *buf,
1688 	      ULONGEST offset, LONGEST len)
1689 {
1690   return target_write_with_progress (ops, object, annex, buf, offset, len,
1691 				     NULL, NULL);
1692 }
1693 
1694 /* Help for target_read_alloc and target_read_stralloc.  See their comments
1695    for details.  */
1696 
1697 template <typename T>
1698 gdb::optional<gdb::def_vector<T>>
1699 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1700 		     const char *annex)
1701 {
1702   gdb::def_vector<T> buf;
1703   size_t buf_pos = 0;
1704   const int chunk = 4096;
1705 
1706   /* This function does not have a length parameter; it reads the
1707      entire OBJECT).  Also, it doesn't support objects fetched partly
1708      from one target and partly from another (in a different stratum,
1709      e.g. a core file and an executable).  Both reasons make it
1710      unsuitable for reading memory.  */
1711   gdb_assert (object != TARGET_OBJECT_MEMORY);
1712 
1713   /* Start by reading up to 4K at a time.  The target will throttle
1714      this number down if necessary.  */
1715   while (1)
1716     {
1717       ULONGEST xfered_len;
1718       enum target_xfer_status status;
1719 
1720       buf.resize (buf_pos + chunk);
1721 
1722       status = target_read_partial (ops, object, annex,
1723 				    (gdb_byte *) &buf[buf_pos],
1724 				    buf_pos, chunk,
1725 				    &xfered_len);
1726 
1727       if (status == TARGET_XFER_EOF)
1728 	{
1729 	  /* Read all there was.  */
1730 	  buf.resize (buf_pos);
1731 	  return buf;
1732 	}
1733       else if (status != TARGET_XFER_OK)
1734 	{
1735 	  /* An error occurred.  */
1736 	  return {};
1737 	}
1738 
1739       buf_pos += xfered_len;
1740 
1741       QUIT;
1742     }
1743 }
1744 
1745 /* See target.h  */
1746 
1747 gdb::optional<gdb::byte_vector>
1748 target_read_alloc (struct target_ops *ops, enum target_object object,
1749 		   const char *annex)
1750 {
1751   return target_read_alloc_1<gdb_byte> (ops, object, annex);
1752 }
1753 
1754 /* See target.h.  */
1755 
1756 gdb::optional<gdb::char_vector>
1757 target_read_stralloc (struct target_ops *ops, enum target_object object,
1758 		      const char *annex)
1759 {
1760   gdb::optional<gdb::char_vector> buf
1761     = target_read_alloc_1<char> (ops, object, annex);
1762 
1763   if (!buf)
1764     return {};
1765 
1766   if (buf->empty () || buf->back () != '\0')
1767     buf->push_back ('\0');
1768 
1769   /* Check for embedded NUL bytes; but allow trailing NULs.  */
1770   for (auto it = std::find (buf->begin (), buf->end (), '\0');
1771        it != buf->end (); it++)
1772     if (*it != '\0')
1773       {
1774 	warning (_("target object %d, annex %s, "
1775 		   "contained unexpected null characters"),
1776 		 (int) object, annex ? annex : "(none)");
1777 	break;
1778       }
1779 
1780   return buf;
1781 }
1782 
1783 /* Memory transfer methods.  */
1784 
1785 void
1786 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1787 		   LONGEST len)
1788 {
1789   /* This method is used to read from an alternate, non-current
1790      target.  This read must bypass the overlay support (as symbols
1791      don't match this target), and GDB's internal cache (wrong cache
1792      for this target).  */
1793   if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1794       != len)
1795     memory_error (TARGET_XFER_E_IO, addr);
1796 }
1797 
1798 ULONGEST
1799 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1800 			    int len, enum bfd_endian byte_order)
1801 {
1802   gdb_byte buf[sizeof (ULONGEST)];
1803 
1804   gdb_assert (len <= sizeof (buf));
1805   get_target_memory (ops, addr, buf, len);
1806   return extract_unsigned_integer (buf, len, byte_order);
1807 }
1808 
1809 /* See target.h.  */
1810 
1811 int
1812 target_insert_breakpoint (struct gdbarch *gdbarch,
1813 			  struct bp_target_info *bp_tgt)
1814 {
1815   if (!may_insert_breakpoints)
1816     {
1817       warning (_("May not insert breakpoints"));
1818       return 1;
1819     }
1820 
1821   return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1822 }
1823 
1824 /* See target.h.  */
1825 
1826 int
1827 target_remove_breakpoint (struct gdbarch *gdbarch,
1828 			  struct bp_target_info *bp_tgt,
1829 			  enum remove_bp_reason reason)
1830 {
1831   /* This is kind of a weird case to handle, but the permission might
1832      have been changed after breakpoints were inserted - in which case
1833      we should just take the user literally and assume that any
1834      breakpoints should be left in place.  */
1835   if (!may_insert_breakpoints)
1836     {
1837       warning (_("May not remove breakpoints"));
1838       return 1;
1839     }
1840 
1841   return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1842 }
1843 
1844 static void
1845 info_target_command (const char *args, int from_tty)
1846 {
1847   int has_all_mem = 0;
1848 
1849   if (symfile_objfile != NULL)
1850     printf_unfiltered (_("Symbols from \"%s\".\n"),
1851 		       objfile_name (symfile_objfile));
1852 
1853   for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1854     {
1855       if (!t->has_memory ())
1856 	continue;
1857 
1858       if ((int) (t->stratum ()) <= (int) dummy_stratum)
1859 	continue;
1860       if (has_all_mem)
1861 	printf_unfiltered (_("\tWhile running this, "
1862 			     "GDB does not access memory from...\n"));
1863       printf_unfiltered ("%s:\n", t->longname ());
1864       t->files_info ();
1865       has_all_mem = t->has_all_memory ();
1866     }
1867 }
1868 
1869 /* This function is called before any new inferior is created, e.g.
1870    by running a program, attaching, or connecting to a target.
1871    It cleans up any state from previous invocations which might
1872    change between runs.  This is a subset of what target_preopen
1873    resets (things which might change between targets).  */
1874 
1875 void
1876 target_pre_inferior (int from_tty)
1877 {
1878   /* Clear out solib state.  Otherwise the solib state of the previous
1879      inferior might have survived and is entirely wrong for the new
1880      target.  This has been observed on GNU/Linux using glibc 2.3.  How
1881      to reproduce:
1882 
1883      bash$ ./foo&
1884      [1] 4711
1885      bash$ ./foo&
1886      [1] 4712
1887      bash$ gdb ./foo
1888      [...]
1889      (gdb) attach 4711
1890      (gdb) detach
1891      (gdb) attach 4712
1892      Cannot access memory at address 0xdeadbeef
1893   */
1894 
1895   /* In some OSs, the shared library list is the same/global/shared
1896      across inferiors.  If code is shared between processes, so are
1897      memory regions and features.  */
1898   if (!gdbarch_has_global_solist (target_gdbarch ()))
1899     {
1900       no_shared_libraries (NULL, from_tty);
1901 
1902       invalidate_target_mem_regions ();
1903 
1904       target_clear_description ();
1905     }
1906 
1907   /* attach_flag may be set if the previous process associated with
1908      the inferior was attached to.  */
1909   current_inferior ()->attach_flag = 0;
1910 
1911   current_inferior ()->highest_thread_num = 0;
1912 
1913   agent_capability_invalidate ();
1914 }
1915 
1916 /* This is to be called by the open routine before it does
1917    anything.  */
1918 
1919 void
1920 target_preopen (int from_tty)
1921 {
1922   dont_repeat ();
1923 
1924   if (current_inferior ()->pid != 0)
1925     {
1926       if (!from_tty
1927 	  || !target_has_execution
1928 	  || query (_("A program is being debugged already.  Kill it? ")))
1929 	{
1930 	  /* Core inferiors actually should be detached, not
1931 	     killed.  */
1932 	  if (target_has_execution)
1933 	    target_kill ();
1934 	  else
1935 	    target_detach (current_inferior (), 0);
1936 	}
1937       else
1938 	error (_("Program not killed."));
1939     }
1940 
1941   /* Calling target_kill may remove the target from the stack.  But if
1942      it doesn't (which seems like a win for UDI), remove it now.  */
1943   /* Leave the exec target, though.  The user may be switching from a
1944      live process to a core of the same program.  */
1945   pop_all_targets_above (file_stratum);
1946 
1947   target_pre_inferior (from_tty);
1948 }
1949 
1950 /* See target.h.  */
1951 
1952 void
1953 target_detach (inferior *inf, int from_tty)
1954 {
1955   /* After we have detached, we will clear the register cache for this inferior
1956      by calling registers_changed_ptid.  We must save the pid_ptid before
1957      detaching, as the target detach method will clear inf->pid.  */
1958   ptid_t save_pid_ptid = ptid_t (inf->pid);
1959 
1960   /* As long as some to_detach implementations rely on the current_inferior
1961      (either directly, or indirectly, like through target_gdbarch or by
1962      reading memory), INF needs to be the current inferior.  When that
1963      requirement will become no longer true, then we can remove this
1964      assertion.  */
1965   gdb_assert (inf == current_inferior ());
1966 
1967   if (gdbarch_has_global_breakpoints (target_gdbarch ()))
1968     /* Don't remove global breakpoints here.  They're removed on
1969        disconnection from the target.  */
1970     ;
1971   else
1972     /* If we're in breakpoints-always-inserted mode, have to remove
1973        breakpoints before detaching.  */
1974     remove_breakpoints_inf (current_inferior ());
1975 
1976   prepare_for_detach ();
1977 
1978   /* Hold a strong reference because detaching may unpush the
1979      target.  */
1980   auto proc_target_ref = target_ops_ref::new_reference (inf->process_target ());
1981 
1982   current_top_target ()->detach (inf, from_tty);
1983 
1984   process_stratum_target *proc_target
1985     = as_process_stratum_target (proc_target_ref.get ());
1986 
1987   registers_changed_ptid (proc_target, save_pid_ptid);
1988 
1989   /* We have to ensure we have no frame cache left.  Normally,
1990      registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
1991      inferior_ptid matches save_pid_ptid, but in our case, it does not
1992      call it, as inferior_ptid has been reset.  */
1993   reinit_frame_cache ();
1994 }
1995 
1996 void
1997 target_disconnect (const char *args, int from_tty)
1998 {
1999   /* If we're in breakpoints-always-inserted mode or if breakpoints
2000      are global across processes, we have to remove them before
2001      disconnecting.  */
2002   remove_breakpoints ();
2003 
2004   current_top_target ()->disconnect (args, from_tty);
2005 }
2006 
2007 /* See target/target.h.  */
2008 
2009 ptid_t
2010 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2011 {
2012   return current_top_target ()->wait (ptid, status, options);
2013 }
2014 
2015 /* See target.h.  */
2016 
2017 ptid_t
2018 default_target_wait (struct target_ops *ops,
2019 		     ptid_t ptid, struct target_waitstatus *status,
2020 		     int options)
2021 {
2022   status->kind = TARGET_WAITKIND_IGNORE;
2023   return minus_one_ptid;
2024 }
2025 
2026 std::string
2027 target_pid_to_str (ptid_t ptid)
2028 {
2029   return current_top_target ()->pid_to_str (ptid);
2030 }
2031 
2032 const char *
2033 target_thread_name (struct thread_info *info)
2034 {
2035   gdb_assert (info->inf == current_inferior ());
2036 
2037   return current_top_target ()->thread_name (info);
2038 }
2039 
2040 struct thread_info *
2041 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2042 				     int handle_len,
2043 				     struct inferior *inf)
2044 {
2045   return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2046 						     handle_len, inf);
2047 }
2048 
2049 /* See target.h.  */
2050 
2051 gdb::byte_vector
2052 target_thread_info_to_thread_handle (struct thread_info *tip)
2053 {
2054   return current_top_target ()->thread_info_to_thread_handle (tip);
2055 }
2056 
2057 void
2058 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2059 {
2060   process_stratum_target *curr_target = current_inferior ()->process_target ();
2061 
2062   target_dcache_invalidate ();
2063 
2064   current_top_target ()->resume (ptid, step, signal);
2065 
2066   registers_changed_ptid (curr_target, ptid);
2067   /* We only set the internal executing state here.  The user/frontend
2068      running state is set at a higher level.  This also clears the
2069      thread's stop_pc as side effect.  */
2070   set_executing (curr_target, ptid, true);
2071   clear_inline_frame_state (curr_target, ptid);
2072 }
2073 
2074 /* If true, target_commit_resume is a nop.  */
2075 static int defer_target_commit_resume;
2076 
2077 /* See target.h.  */
2078 
2079 void
2080 target_commit_resume (void)
2081 {
2082   if (defer_target_commit_resume)
2083     return;
2084 
2085   current_top_target ()->commit_resume ();
2086 }
2087 
2088 /* See target.h.  */
2089 
2090 scoped_restore_tmpl<int>
2091 make_scoped_defer_target_commit_resume ()
2092 {
2093   return make_scoped_restore (&defer_target_commit_resume, 1);
2094 }
2095 
2096 void
2097 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2098 {
2099   current_top_target ()->pass_signals (pass_signals);
2100 }
2101 
2102 void
2103 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2104 {
2105   current_top_target ()->program_signals (program_signals);
2106 }
2107 
2108 static bool
2109 default_follow_fork (struct target_ops *self, bool follow_child,
2110 		     bool detach_fork)
2111 {
2112   /* Some target returned a fork event, but did not know how to follow it.  */
2113   internal_error (__FILE__, __LINE__,
2114 		  _("could not find a target to follow fork"));
2115 }
2116 
2117 /* Look through the list of possible targets for a target that can
2118    follow forks.  */
2119 
2120 bool
2121 target_follow_fork (bool follow_child, bool detach_fork)
2122 {
2123   return current_top_target ()->follow_fork (follow_child, detach_fork);
2124 }
2125 
2126 /* Target wrapper for follow exec hook.  */
2127 
2128 void
2129 target_follow_exec (struct inferior *inf, const char *execd_pathname)
2130 {
2131   current_top_target ()->follow_exec (inf, execd_pathname);
2132 }
2133 
2134 static void
2135 default_mourn_inferior (struct target_ops *self)
2136 {
2137   internal_error (__FILE__, __LINE__,
2138 		  _("could not find a target to follow mourn inferior"));
2139 }
2140 
2141 void
2142 target_mourn_inferior (ptid_t ptid)
2143 {
2144   gdb_assert (ptid == inferior_ptid);
2145   current_top_target ()->mourn_inferior ();
2146 
2147   /* We no longer need to keep handles on any of the object files.
2148      Make sure to release them to avoid unnecessarily locking any
2149      of them while we're not actually debugging.  */
2150   bfd_cache_close_all ();
2151 }
2152 
2153 /* Look for a target which can describe architectural features, starting
2154    from TARGET.  If we find one, return its description.  */
2155 
2156 const struct target_desc *
2157 target_read_description (struct target_ops *target)
2158 {
2159   return target->read_description ();
2160 }
2161 
2162 /* This implements a basic search of memory, reading target memory and
2163    performing the search here (as opposed to performing the search in on the
2164    target side with, for example, gdbserver).  */
2165 
2166 int
2167 simple_search_memory (struct target_ops *ops,
2168 		      CORE_ADDR start_addr, ULONGEST search_space_len,
2169 		      const gdb_byte *pattern, ULONGEST pattern_len,
2170 		      CORE_ADDR *found_addrp)
2171 {
2172   /* NOTE: also defined in find.c testcase.  */
2173 #define SEARCH_CHUNK_SIZE 16000
2174   const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2175   /* Buffer to hold memory contents for searching.  */
2176   unsigned search_buf_size;
2177 
2178   search_buf_size = chunk_size + pattern_len - 1;
2179 
2180   /* No point in trying to allocate a buffer larger than the search space.  */
2181   if (search_space_len < search_buf_size)
2182     search_buf_size = search_space_len;
2183 
2184   gdb::byte_vector search_buf (search_buf_size);
2185 
2186   /* Prime the search buffer.  */
2187 
2188   if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2189 		   search_buf.data (), start_addr, search_buf_size)
2190       != search_buf_size)
2191     {
2192       warning (_("Unable to access %s bytes of target "
2193 		 "memory at %s, halting search."),
2194 	       pulongest (search_buf_size), hex_string (start_addr));
2195       return -1;
2196     }
2197 
2198   /* Perform the search.
2199 
2200      The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2201      When we've scanned N bytes we copy the trailing bytes to the start and
2202      read in another N bytes.  */
2203 
2204   while (search_space_len >= pattern_len)
2205     {
2206       gdb_byte *found_ptr;
2207       unsigned nr_search_bytes
2208 	= std::min (search_space_len, (ULONGEST) search_buf_size);
2209 
2210       found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2211 				       pattern, pattern_len);
2212 
2213       if (found_ptr != NULL)
2214 	{
2215 	  CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2216 
2217 	  *found_addrp = found_addr;
2218 	  return 1;
2219 	}
2220 
2221       /* Not found in this chunk, skip to next chunk.  */
2222 
2223       /* Don't let search_space_len wrap here, it's unsigned.  */
2224       if (search_space_len >= chunk_size)
2225 	search_space_len -= chunk_size;
2226       else
2227 	search_space_len = 0;
2228 
2229       if (search_space_len >= pattern_len)
2230 	{
2231 	  unsigned keep_len = search_buf_size - chunk_size;
2232 	  CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2233 	  int nr_to_read;
2234 
2235 	  /* Copy the trailing part of the previous iteration to the front
2236 	     of the buffer for the next iteration.  */
2237 	  gdb_assert (keep_len == pattern_len - 1);
2238 	  memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2239 
2240 	  nr_to_read = std::min (search_space_len - keep_len,
2241 				 (ULONGEST) chunk_size);
2242 
2243 	  if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2244 			   &search_buf[keep_len], read_addr,
2245 			   nr_to_read) != nr_to_read)
2246 	    {
2247 	      warning (_("Unable to access %s bytes of target "
2248 			 "memory at %s, halting search."),
2249 		       plongest (nr_to_read),
2250 		       hex_string (read_addr));
2251 	      return -1;
2252 	    }
2253 
2254 	  start_addr += chunk_size;
2255 	}
2256     }
2257 
2258   /* Not found.  */
2259 
2260   return 0;
2261 }
2262 
2263 /* Default implementation of memory-searching.  */
2264 
2265 static int
2266 default_search_memory (struct target_ops *self,
2267 		       CORE_ADDR start_addr, ULONGEST search_space_len,
2268 		       const gdb_byte *pattern, ULONGEST pattern_len,
2269 		       CORE_ADDR *found_addrp)
2270 {
2271   /* Start over from the top of the target stack.  */
2272   return simple_search_memory (current_top_target (),
2273 			       start_addr, search_space_len,
2274 			       pattern, pattern_len, found_addrp);
2275 }
2276 
2277 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2278    sequence of bytes in PATTERN with length PATTERN_LEN.
2279 
2280    The result is 1 if found, 0 if not found, and -1 if there was an error
2281    requiring halting of the search (e.g. memory read error).
2282    If the pattern is found the address is recorded in FOUND_ADDRP.  */
2283 
2284 int
2285 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2286 		      const gdb_byte *pattern, ULONGEST pattern_len,
2287 		      CORE_ADDR *found_addrp)
2288 {
2289   return current_top_target ()->search_memory (start_addr, search_space_len,
2290 				      pattern, pattern_len, found_addrp);
2291 }
2292 
2293 /* Look through the currently pushed targets.  If none of them will
2294    be able to restart the currently running process, issue an error
2295    message.  */
2296 
2297 void
2298 target_require_runnable (void)
2299 {
2300   for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2301     {
2302       /* If this target knows how to create a new program, then
2303 	 assume we will still be able to after killing the current
2304 	 one.  Either killing and mourning will not pop T, or else
2305 	 find_default_run_target will find it again.  */
2306       if (t->can_create_inferior ())
2307 	return;
2308 
2309       /* Do not worry about targets at certain strata that can not
2310 	 create inferiors.  Assume they will be pushed again if
2311 	 necessary, and continue to the process_stratum.  */
2312       if (t->stratum () > process_stratum)
2313 	continue;
2314 
2315       error (_("The \"%s\" target does not support \"run\".  "
2316 	       "Try \"help target\" or \"continue\"."),
2317 	     t->shortname ());
2318     }
2319 
2320   /* This function is only called if the target is running.  In that
2321      case there should have been a process_stratum target and it
2322      should either know how to create inferiors, or not...  */
2323   internal_error (__FILE__, __LINE__, _("No targets found"));
2324 }
2325 
2326 /* Whether GDB is allowed to fall back to the default run target for
2327    "run", "attach", etc. when no target is connected yet.  */
2328 static bool auto_connect_native_target = true;
2329 
2330 static void
2331 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2332 				 struct cmd_list_element *c, const char *value)
2333 {
2334   fprintf_filtered (file,
2335 		    _("Whether GDB may automatically connect to the "
2336 		      "native target is %s.\n"),
2337 		    value);
2338 }
2339 
2340 /* A pointer to the target that can respond to "run" or "attach".
2341    Native targets are always singletons and instantiated early at GDB
2342    startup.  */
2343 static target_ops *the_native_target;
2344 
2345 /* See target.h.  */
2346 
2347 void
2348 set_native_target (target_ops *target)
2349 {
2350   if (the_native_target != NULL)
2351     internal_error (__FILE__, __LINE__,
2352 		    _("native target already set (\"%s\")."),
2353 		    the_native_target->longname ());
2354 
2355   the_native_target = target;
2356 }
2357 
2358 /* See target.h.  */
2359 
2360 target_ops *
2361 get_native_target ()
2362 {
2363   return the_native_target;
2364 }
2365 
2366 /* Look through the list of possible targets for a target that can
2367    execute a run or attach command without any other data.  This is
2368    used to locate the default process stratum.
2369 
2370    If DO_MESG is not NULL, the result is always valid (error() is
2371    called for errors); else, return NULL on error.  */
2372 
2373 static struct target_ops *
2374 find_default_run_target (const char *do_mesg)
2375 {
2376   if (auto_connect_native_target && the_native_target != NULL)
2377     return the_native_target;
2378 
2379   if (do_mesg != NULL)
2380     error (_("Don't know how to %s.  Try \"help target\"."), do_mesg);
2381   return NULL;
2382 }
2383 
2384 /* See target.h.  */
2385 
2386 struct target_ops *
2387 find_attach_target (void)
2388 {
2389   /* If a target on the current stack can attach, use it.  */
2390   for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2391     {
2392       if (t->can_attach ())
2393 	return t;
2394     }
2395 
2396   /* Otherwise, use the default run target for attaching.  */
2397   return find_default_run_target ("attach");
2398 }
2399 
2400 /* See target.h.  */
2401 
2402 struct target_ops *
2403 find_run_target (void)
2404 {
2405   /* If a target on the current stack can run, use it.  */
2406   for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2407     {
2408       if (t->can_create_inferior ())
2409 	return t;
2410     }
2411 
2412   /* Otherwise, use the default run target.  */
2413   return find_default_run_target ("run");
2414 }
2415 
2416 bool
2417 target_ops::info_proc (const char *args, enum info_proc_what what)
2418 {
2419   return false;
2420 }
2421 
2422 /* Implement the "info proc" command.  */
2423 
2424 int
2425 target_info_proc (const char *args, enum info_proc_what what)
2426 {
2427   struct target_ops *t;
2428 
2429   /* If we're already connected to something that can get us OS
2430      related data, use it.  Otherwise, try using the native
2431      target.  */
2432   t = find_target_at (process_stratum);
2433   if (t == NULL)
2434     t = find_default_run_target (NULL);
2435 
2436   for (; t != NULL; t = t->beneath ())
2437     {
2438       if (t->info_proc (args, what))
2439 	{
2440 	  if (targetdebug)
2441 	    fprintf_unfiltered (gdb_stdlog,
2442 				"target_info_proc (\"%s\", %d)\n", args, what);
2443 
2444 	  return 1;
2445 	}
2446     }
2447 
2448   return 0;
2449 }
2450 
2451 static int
2452 find_default_supports_disable_randomization (struct target_ops *self)
2453 {
2454   struct target_ops *t;
2455 
2456   t = find_default_run_target (NULL);
2457   if (t != NULL)
2458     return t->supports_disable_randomization ();
2459   return 0;
2460 }
2461 
2462 int
2463 target_supports_disable_randomization (void)
2464 {
2465   return current_top_target ()->supports_disable_randomization ();
2466 }
2467 
2468 /* See target/target.h.  */
2469 
2470 int
2471 target_supports_multi_process (void)
2472 {
2473   return current_top_target ()->supports_multi_process ();
2474 }
2475 
2476 /* See target.h.  */
2477 
2478 gdb::optional<gdb::char_vector>
2479 target_get_osdata (const char *type)
2480 {
2481   struct target_ops *t;
2482 
2483   /* If we're already connected to something that can get us OS
2484      related data, use it.  Otherwise, try using the native
2485      target.  */
2486   t = find_target_at (process_stratum);
2487   if (t == NULL)
2488     t = find_default_run_target ("get OS data");
2489 
2490   if (!t)
2491     return {};
2492 
2493   return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2494 }
2495 
2496 /* Determine the current address space of thread PTID.  */
2497 
2498 struct address_space *
2499 target_thread_address_space (ptid_t ptid)
2500 {
2501   struct address_space *aspace;
2502 
2503   aspace = current_top_target ()->thread_address_space (ptid);
2504   gdb_assert (aspace != NULL);
2505 
2506   return aspace;
2507 }
2508 
2509 /* See target.h.  */
2510 
2511 target_ops *
2512 target_ops::beneath () const
2513 {
2514   return current_inferior ()->find_target_beneath (this);
2515 }
2516 
2517 void
2518 target_ops::close ()
2519 {
2520 }
2521 
2522 bool
2523 target_ops::can_attach ()
2524 {
2525   return 0;
2526 }
2527 
2528 void
2529 target_ops::attach (const char *, int)
2530 {
2531   gdb_assert_not_reached ("target_ops::attach called");
2532 }
2533 
2534 bool
2535 target_ops::can_create_inferior ()
2536 {
2537   return 0;
2538 }
2539 
2540 void
2541 target_ops::create_inferior (const char *, const std::string &,
2542 			     char **, int)
2543 {
2544   gdb_assert_not_reached ("target_ops::create_inferior called");
2545 }
2546 
2547 bool
2548 target_ops::can_run ()
2549 {
2550   return false;
2551 }
2552 
2553 int
2554 target_can_run ()
2555 {
2556   for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2557     {
2558       if (t->can_run ())
2559 	return 1;
2560     }
2561 
2562   return 0;
2563 }
2564 
2565 /* Target file operations.  */
2566 
2567 static struct target_ops *
2568 default_fileio_target (void)
2569 {
2570   struct target_ops *t;
2571 
2572   /* If we're already connected to something that can perform
2573      file I/O, use it. Otherwise, try using the native target.  */
2574   t = find_target_at (process_stratum);
2575   if (t != NULL)
2576     return t;
2577   return find_default_run_target ("file I/O");
2578 }
2579 
2580 /* File handle for target file operations.  */
2581 
2582 struct fileio_fh_t
2583 {
2584   /* The target on which this file is open.  NULL if the target is
2585      meanwhile closed while the handle is open.  */
2586   target_ops *target;
2587 
2588   /* The file descriptor on the target.  */
2589   int target_fd;
2590 
2591   /* Check whether this fileio_fh_t represents a closed file.  */
2592   bool is_closed ()
2593   {
2594     return target_fd < 0;
2595   }
2596 };
2597 
2598 /* Vector of currently open file handles.  The value returned by
2599    target_fileio_open and passed as the FD argument to other
2600    target_fileio_* functions is an index into this vector.  This
2601    vector's entries are never freed; instead, files are marked as
2602    closed, and the handle becomes available for reuse.  */
2603 static std::vector<fileio_fh_t> fileio_fhandles;
2604 
2605 /* Index into fileio_fhandles of the lowest handle that might be
2606    closed.  This permits handle reuse without searching the whole
2607    list each time a new file is opened.  */
2608 static int lowest_closed_fd;
2609 
2610 /* Invalidate the target associated with open handles that were open
2611    on target TARG, since we're about to close (and maybe destroy) the
2612    target.  The handles remain open from the client's perspective, but
2613    trying to do anything with them other than closing them will fail
2614    with EIO.  */
2615 
2616 static void
2617 fileio_handles_invalidate_target (target_ops *targ)
2618 {
2619   for (fileio_fh_t &fh : fileio_fhandles)
2620     if (fh.target == targ)
2621       fh.target = NULL;
2622 }
2623 
2624 /* Acquire a target fileio file descriptor.  */
2625 
2626 static int
2627 acquire_fileio_fd (target_ops *target, int target_fd)
2628 {
2629   /* Search for closed handles to reuse.  */
2630   for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2631     {
2632       fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2633 
2634       if (fh.is_closed ())
2635 	break;
2636     }
2637 
2638   /* Push a new handle if no closed handles were found.  */
2639   if (lowest_closed_fd == fileio_fhandles.size ())
2640     fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2641   else
2642     fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2643 
2644   /* Should no longer be marked closed.  */
2645   gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2646 
2647   /* Return its index, and start the next lookup at
2648      the next index.  */
2649   return lowest_closed_fd++;
2650 }
2651 
2652 /* Release a target fileio file descriptor.  */
2653 
2654 static void
2655 release_fileio_fd (int fd, fileio_fh_t *fh)
2656 {
2657   fh->target_fd = -1;
2658   lowest_closed_fd = std::min (lowest_closed_fd, fd);
2659 }
2660 
2661 /* Return a pointer to the fileio_fhandle_t corresponding to FD.  */
2662 
2663 static fileio_fh_t *
2664 fileio_fd_to_fh (int fd)
2665 {
2666   return &fileio_fhandles[fd];
2667 }
2668 
2669 
2670 /* Default implementations of file i/o methods.  We don't want these
2671    to delegate automatically, because we need to know which target
2672    supported the method, in order to call it directly from within
2673    pread/pwrite, etc.  */
2674 
2675 int
2676 target_ops::fileio_open (struct inferior *inf, const char *filename,
2677 			 int flags, int mode, int warn_if_slow,
2678 			 int *target_errno)
2679 {
2680   *target_errno = FILEIO_ENOSYS;
2681   return -1;
2682 }
2683 
2684 int
2685 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2686 			   ULONGEST offset, int *target_errno)
2687 {
2688   *target_errno = FILEIO_ENOSYS;
2689   return -1;
2690 }
2691 
2692 int
2693 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2694 			  ULONGEST offset, int *target_errno)
2695 {
2696   *target_errno = FILEIO_ENOSYS;
2697   return -1;
2698 }
2699 
2700 int
2701 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2702 {
2703   *target_errno = FILEIO_ENOSYS;
2704   return -1;
2705 }
2706 
2707 int
2708 target_ops::fileio_close (int fd, int *target_errno)
2709 {
2710   *target_errno = FILEIO_ENOSYS;
2711   return -1;
2712 }
2713 
2714 int
2715 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2716 			   int *target_errno)
2717 {
2718   *target_errno = FILEIO_ENOSYS;
2719   return -1;
2720 }
2721 
2722 gdb::optional<std::string>
2723 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2724 			     int *target_errno)
2725 {
2726   *target_errno = FILEIO_ENOSYS;
2727   return {};
2728 }
2729 
2730 /* See target.h.  */
2731 
2732 int
2733 target_fileio_open (struct inferior *inf, const char *filename,
2734 		    int flags, int mode, bool warn_if_slow, int *target_errno)
2735 {
2736   for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2737     {
2738       int fd = t->fileio_open (inf, filename, flags, mode,
2739 			       warn_if_slow, target_errno);
2740 
2741       if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2742 	continue;
2743 
2744       if (fd < 0)
2745 	fd = -1;
2746       else
2747 	fd = acquire_fileio_fd (t, fd);
2748 
2749       if (targetdebug)
2750 	fprintf_unfiltered (gdb_stdlog,
2751 				"target_fileio_open (%d,%s,0x%x,0%o,%d)"
2752 				" = %d (%d)\n",
2753 				inf == NULL ? 0 : inf->num,
2754 				filename, flags, mode,
2755 				warn_if_slow, fd,
2756 				fd != -1 ? 0 : *target_errno);
2757       return fd;
2758     }
2759 
2760   *target_errno = FILEIO_ENOSYS;
2761   return -1;
2762 }
2763 
2764 /* See target.h.  */
2765 
2766 int
2767 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2768 		      ULONGEST offset, int *target_errno)
2769 {
2770   fileio_fh_t *fh = fileio_fd_to_fh (fd);
2771   int ret = -1;
2772 
2773   if (fh->is_closed ())
2774     *target_errno = EBADF;
2775   else if (fh->target == NULL)
2776     *target_errno = EIO;
2777   else
2778     ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2779 				     len, offset, target_errno);
2780 
2781   if (targetdebug)
2782     fprintf_unfiltered (gdb_stdlog,
2783 			"target_fileio_pwrite (%d,...,%d,%s) "
2784 			"= %d (%d)\n",
2785 			fd, len, pulongest (offset),
2786 			ret, ret != -1 ? 0 : *target_errno);
2787   return ret;
2788 }
2789 
2790 /* See target.h.  */
2791 
2792 int
2793 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2794 		     ULONGEST offset, int *target_errno)
2795 {
2796   fileio_fh_t *fh = fileio_fd_to_fh (fd);
2797   int ret = -1;
2798 
2799   if (fh->is_closed ())
2800     *target_errno = EBADF;
2801   else if (fh->target == NULL)
2802     *target_errno = EIO;
2803   else
2804     ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2805 				    len, offset, target_errno);
2806 
2807   if (targetdebug)
2808     fprintf_unfiltered (gdb_stdlog,
2809 			"target_fileio_pread (%d,...,%d,%s) "
2810 			"= %d (%d)\n",
2811 			fd, len, pulongest (offset),
2812 			ret, ret != -1 ? 0 : *target_errno);
2813   return ret;
2814 }
2815 
2816 /* See target.h.  */
2817 
2818 int
2819 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2820 {
2821   fileio_fh_t *fh = fileio_fd_to_fh (fd);
2822   int ret = -1;
2823 
2824   if (fh->is_closed ())
2825     *target_errno = EBADF;
2826   else if (fh->target == NULL)
2827     *target_errno = EIO;
2828   else
2829     ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2830 
2831   if (targetdebug)
2832     fprintf_unfiltered (gdb_stdlog,
2833 			"target_fileio_fstat (%d) = %d (%d)\n",
2834 			fd, ret, ret != -1 ? 0 : *target_errno);
2835   return ret;
2836 }
2837 
2838 /* See target.h.  */
2839 
2840 int
2841 target_fileio_close (int fd, int *target_errno)
2842 {
2843   fileio_fh_t *fh = fileio_fd_to_fh (fd);
2844   int ret = -1;
2845 
2846   if (fh->is_closed ())
2847     *target_errno = EBADF;
2848   else
2849     {
2850       if (fh->target != NULL)
2851 	ret = fh->target->fileio_close (fh->target_fd,
2852 					target_errno);
2853       else
2854 	ret = 0;
2855       release_fileio_fd (fd, fh);
2856     }
2857 
2858   if (targetdebug)
2859     fprintf_unfiltered (gdb_stdlog,
2860 			"target_fileio_close (%d) = %d (%d)\n",
2861 			fd, ret, ret != -1 ? 0 : *target_errno);
2862   return ret;
2863 }
2864 
2865 /* See target.h.  */
2866 
2867 int
2868 target_fileio_unlink (struct inferior *inf, const char *filename,
2869 		      int *target_errno)
2870 {
2871   for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2872     {
2873       int ret = t->fileio_unlink (inf, filename, target_errno);
2874 
2875       if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2876 	continue;
2877 
2878       if (targetdebug)
2879 	fprintf_unfiltered (gdb_stdlog,
2880 			    "target_fileio_unlink (%d,%s)"
2881 			    " = %d (%d)\n",
2882 			    inf == NULL ? 0 : inf->num, filename,
2883 			    ret, ret != -1 ? 0 : *target_errno);
2884       return ret;
2885     }
2886 
2887   *target_errno = FILEIO_ENOSYS;
2888   return -1;
2889 }
2890 
2891 /* See target.h.  */
2892 
2893 gdb::optional<std::string>
2894 target_fileio_readlink (struct inferior *inf, const char *filename,
2895 			int *target_errno)
2896 {
2897   for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2898     {
2899       gdb::optional<std::string> ret
2900 	= t->fileio_readlink (inf, filename, target_errno);
2901 
2902       if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
2903 	continue;
2904 
2905       if (targetdebug)
2906 	fprintf_unfiltered (gdb_stdlog,
2907 			    "target_fileio_readlink (%d,%s)"
2908 			    " = %s (%d)\n",
2909 			    inf == NULL ? 0 : inf->num,
2910 			    filename, ret ? ret->c_str () : "(nil)",
2911 			    ret ? 0 : *target_errno);
2912       return ret;
2913     }
2914 
2915   *target_errno = FILEIO_ENOSYS;
2916   return {};
2917 }
2918 
2919 /* Like scoped_fd, but specific to target fileio.  */
2920 
2921 class scoped_target_fd
2922 {
2923 public:
2924   explicit scoped_target_fd (int fd) noexcept
2925     : m_fd (fd)
2926   {
2927   }
2928 
2929   ~scoped_target_fd ()
2930   {
2931     if (m_fd >= 0)
2932       {
2933 	int target_errno;
2934 
2935 	target_fileio_close (m_fd, &target_errno);
2936       }
2937   }
2938 
2939   DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
2940 
2941   int get () const noexcept
2942   {
2943     return m_fd;
2944   }
2945 
2946 private:
2947   int m_fd;
2948 };
2949 
2950 /* Read target file FILENAME, in the filesystem as seen by INF.  If
2951    INF is NULL, use the filesystem seen by the debugger (GDB or, for
2952    remote targets, the remote stub).  Store the result in *BUF_P and
2953    return the size of the transferred data.  PADDING additional bytes
2954    are available in *BUF_P.  This is a helper function for
2955    target_fileio_read_alloc; see the declaration of that function for
2956    more information.  */
2957 
2958 static LONGEST
2959 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
2960 			    gdb_byte **buf_p, int padding)
2961 {
2962   size_t buf_alloc, buf_pos;
2963   gdb_byte *buf;
2964   LONGEST n;
2965   int target_errno;
2966 
2967   scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
2968 					   0700, false, &target_errno));
2969   if (fd.get () == -1)
2970     return -1;
2971 
2972   /* Start by reading up to 4K at a time.  The target will throttle
2973      this number down if necessary.  */
2974   buf_alloc = 4096;
2975   buf = (gdb_byte *) xmalloc (buf_alloc);
2976   buf_pos = 0;
2977   while (1)
2978     {
2979       n = target_fileio_pread (fd.get (), &buf[buf_pos],
2980 			       buf_alloc - buf_pos - padding, buf_pos,
2981 			       &target_errno);
2982       if (n < 0)
2983 	{
2984 	  /* An error occurred.  */
2985 	  xfree (buf);
2986 	  return -1;
2987 	}
2988       else if (n == 0)
2989 	{
2990 	  /* Read all there was.  */
2991 	  if (buf_pos == 0)
2992 	    xfree (buf);
2993 	  else
2994 	    *buf_p = buf;
2995 	  return buf_pos;
2996 	}
2997 
2998       buf_pos += n;
2999 
3000       /* If the buffer is filling up, expand it.  */
3001       if (buf_alloc < buf_pos * 2)
3002 	{
3003 	  buf_alloc *= 2;
3004 	  buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3005 	}
3006 
3007       QUIT;
3008     }
3009 }
3010 
3011 /* See target.h.  */
3012 
3013 LONGEST
3014 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3015 			  gdb_byte **buf_p)
3016 {
3017   return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3018 }
3019 
3020 /* See target.h.  */
3021 
3022 gdb::unique_xmalloc_ptr<char>
3023 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3024 {
3025   gdb_byte *buffer;
3026   char *bufstr;
3027   LONGEST i, transferred;
3028 
3029   transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3030   bufstr = (char *) buffer;
3031 
3032   if (transferred < 0)
3033     return gdb::unique_xmalloc_ptr<char> (nullptr);
3034 
3035   if (transferred == 0)
3036     return make_unique_xstrdup ("");
3037 
3038   bufstr[transferred] = 0;
3039 
3040   /* Check for embedded NUL bytes; but allow trailing NULs.  */
3041   for (i = strlen (bufstr); i < transferred; i++)
3042     if (bufstr[i] != 0)
3043       {
3044 	warning (_("target file %s "
3045 		   "contained unexpected null characters"),
3046 		 filename);
3047 	break;
3048       }
3049 
3050   return gdb::unique_xmalloc_ptr<char> (bufstr);
3051 }
3052 
3053 
3054 static int
3055 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3056 				     CORE_ADDR addr, int len)
3057 {
3058   return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3059 }
3060 
3061 static int
3062 default_watchpoint_addr_within_range (struct target_ops *target,
3063 				      CORE_ADDR addr,
3064 				      CORE_ADDR start, int length)
3065 {
3066   return addr >= start && addr < start + length;
3067 }
3068 
3069 /* See target.h.  */
3070 
3071 target_ops *
3072 target_stack::find_beneath (const target_ops *t) const
3073 {
3074   /* Look for a non-empty slot at stratum levels beneath T's.  */
3075   for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
3076     if (m_stack[stratum] != NULL)
3077       return m_stack[stratum];
3078 
3079   return NULL;
3080 }
3081 
3082 /* See target.h.  */
3083 
3084 struct target_ops *
3085 find_target_at (enum strata stratum)
3086 {
3087   return current_inferior ()->target_at (stratum);
3088 }
3089 
3090 
3091 
3092 /* See target.h  */
3093 
3094 void
3095 target_announce_detach (int from_tty)
3096 {
3097   pid_t pid;
3098   const char *exec_file;
3099 
3100   if (!from_tty)
3101     return;
3102 
3103   exec_file = get_exec_file (0);
3104   if (exec_file == NULL)
3105     exec_file = "";
3106 
3107   pid = inferior_ptid.pid ();
3108   printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3109 		     target_pid_to_str (ptid_t (pid)).c_str ());
3110 }
3111 
3112 /* The inferior process has died.  Long live the inferior!  */
3113 
3114 void
3115 generic_mourn_inferior (void)
3116 {
3117   inferior *inf = current_inferior ();
3118 
3119   switch_to_no_thread ();
3120 
3121   /* Mark breakpoints uninserted in case something tries to delete a
3122      breakpoint while we delete the inferior's threads (which would
3123      fail, since the inferior is long gone).  */
3124   mark_breakpoints_out ();
3125 
3126   if (inf->pid != 0)
3127     exit_inferior (inf);
3128 
3129   /* Note this wipes step-resume breakpoints, so needs to be done
3130      after exit_inferior, which ends up referencing the step-resume
3131      breakpoints through clear_thread_inferior_resources.  */
3132   breakpoint_init_inferior (inf_exited);
3133 
3134   registers_changed ();
3135 
3136   reopen_exec_file ();
3137   reinit_frame_cache ();
3138 
3139   if (deprecated_detach_hook)
3140     deprecated_detach_hook ();
3141 }
3142 
3143 /* Convert a normal process ID to a string.  Returns the string in a
3144    static buffer.  */
3145 
3146 std::string
3147 normal_pid_to_str (ptid_t ptid)
3148 {
3149   return string_printf ("process %d", ptid.pid ());
3150 }
3151 
3152 static std::string
3153 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3154 {
3155   return normal_pid_to_str (ptid);
3156 }
3157 
3158 /* Error-catcher for target_find_memory_regions.  */
3159 static int
3160 dummy_find_memory_regions (struct target_ops *self,
3161 			   find_memory_region_ftype ignore1, void *ignore2)
3162 {
3163   error (_("Command not implemented for this target."));
3164   return 0;
3165 }
3166 
3167 /* Error-catcher for target_make_corefile_notes.  */
3168 static char *
3169 dummy_make_corefile_notes (struct target_ops *self,
3170 			   bfd *ignore1, int *ignore2)
3171 {
3172   error (_("Command not implemented for this target."));
3173   return NULL;
3174 }
3175 
3176 #include "target-delegates.c"
3177 
3178 /* The initial current target, so that there is always a semi-valid
3179    current target.  */
3180 
3181 static dummy_target the_dummy_target;
3182 
3183 /* See target.h.  */
3184 
3185 target_ops *
3186 get_dummy_target ()
3187 {
3188   return &the_dummy_target;
3189 }
3190 
3191 static const target_info dummy_target_info = {
3192   "None",
3193   N_("None"),
3194   ""
3195 };
3196 
3197 strata
3198 dummy_target::stratum () const
3199 {
3200   return dummy_stratum;
3201 }
3202 
3203 strata
3204 debug_target::stratum () const
3205 {
3206   return debug_stratum;
3207 }
3208 
3209 const target_info &
3210 dummy_target::info () const
3211 {
3212   return dummy_target_info;
3213 }
3214 
3215 const target_info &
3216 debug_target::info () const
3217 {
3218   return beneath ()->info ();
3219 }
3220 
3221 
3222 
3223 void
3224 target_close (struct target_ops *targ)
3225 {
3226   gdb_assert (!target_is_pushed (targ));
3227 
3228   fileio_handles_invalidate_target (targ);
3229 
3230   targ->close ();
3231 
3232   if (targetdebug)
3233     fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3234 }
3235 
3236 int
3237 target_thread_alive (ptid_t ptid)
3238 {
3239   return current_top_target ()->thread_alive (ptid);
3240 }
3241 
3242 void
3243 target_update_thread_list (void)
3244 {
3245   current_top_target ()->update_thread_list ();
3246 }
3247 
3248 void
3249 target_stop (ptid_t ptid)
3250 {
3251   if (!may_stop)
3252     {
3253       warning (_("May not interrupt or stop the target, ignoring attempt"));
3254       return;
3255     }
3256 
3257   current_top_target ()->stop (ptid);
3258 }
3259 
3260 void
3261 target_interrupt ()
3262 {
3263   if (!may_stop)
3264     {
3265       warning (_("May not interrupt or stop the target, ignoring attempt"));
3266       return;
3267     }
3268 
3269   current_top_target ()->interrupt ();
3270 }
3271 
3272 /* See target.h.  */
3273 
3274 void
3275 target_pass_ctrlc (void)
3276 {
3277   /* Pass the Ctrl-C to the first target that has a thread
3278      running.  */
3279   for (inferior *inf : all_inferiors ())
3280     {
3281       target_ops *proc_target = inf->process_target ();
3282       if (proc_target == NULL)
3283 	continue;
3284 
3285       for (thread_info *thr : inf->non_exited_threads ())
3286 	{
3287 	  /* A thread can be THREAD_STOPPED and executing, while
3288 	     running an infcall.  */
3289 	  if (thr->state == THREAD_RUNNING || thr->executing)
3290 	    {
3291 	      /* We can get here quite deep in target layers.  Avoid
3292 		 switching thread context or anything that would
3293 		 communicate with the target (e.g., to fetch
3294 		 registers), or flushing e.g., the frame cache.  We
3295 		 just switch inferior in order to be able to call
3296 		 through the target_stack.  */
3297 	      scoped_restore_current_inferior restore_inferior;
3298 	      set_current_inferior (inf);
3299 	      current_top_target ()->pass_ctrlc ();
3300 	      return;
3301 	    }
3302 	}
3303     }
3304 }
3305 
3306 /* See target.h.  */
3307 
3308 void
3309 default_target_pass_ctrlc (struct target_ops *ops)
3310 {
3311   target_interrupt ();
3312 }
3313 
3314 /* See target/target.h.  */
3315 
3316 void
3317 target_stop_and_wait (ptid_t ptid)
3318 {
3319   struct target_waitstatus status;
3320   bool was_non_stop = non_stop;
3321 
3322   non_stop = true;
3323   target_stop (ptid);
3324 
3325   memset (&status, 0, sizeof (status));
3326   target_wait (ptid, &status, 0);
3327 
3328   non_stop = was_non_stop;
3329 }
3330 
3331 /* See target/target.h.  */
3332 
3333 void
3334 target_continue_no_signal (ptid_t ptid)
3335 {
3336   target_resume (ptid, 0, GDB_SIGNAL_0);
3337 }
3338 
3339 /* See target/target.h.  */
3340 
3341 void
3342 target_continue (ptid_t ptid, enum gdb_signal signal)
3343 {
3344   target_resume (ptid, 0, signal);
3345 }
3346 
3347 /* Concatenate ELEM to LIST, a comma-separated list.  */
3348 
3349 static void
3350 str_comma_list_concat_elem (std::string *list, const char *elem)
3351 {
3352   if (!list->empty ())
3353     list->append (", ");
3354 
3355   list->append (elem);
3356 }
3357 
3358 /* Helper for target_options_to_string.  If OPT is present in
3359    TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3360    OPT is removed from TARGET_OPTIONS.  */
3361 
3362 static void
3363 do_option (int *target_options, std::string *ret,
3364 	   int opt, const char *opt_str)
3365 {
3366   if ((*target_options & opt) != 0)
3367     {
3368       str_comma_list_concat_elem (ret, opt_str);
3369       *target_options &= ~opt;
3370     }
3371 }
3372 
3373 /* See target.h.  */
3374 
3375 std::string
3376 target_options_to_string (int target_options)
3377 {
3378   std::string ret;
3379 
3380 #define DO_TARG_OPTION(OPT) \
3381   do_option (&target_options, &ret, OPT, #OPT)
3382 
3383   DO_TARG_OPTION (TARGET_WNOHANG);
3384 
3385   if (target_options != 0)
3386     str_comma_list_concat_elem (&ret, "unknown???");
3387 
3388   return ret;
3389 }
3390 
3391 void
3392 target_fetch_registers (struct regcache *regcache, int regno)
3393 {
3394   current_top_target ()->fetch_registers (regcache, regno);
3395   if (targetdebug)
3396     regcache->debug_print_register ("target_fetch_registers", regno);
3397 }
3398 
3399 void
3400 target_store_registers (struct regcache *regcache, int regno)
3401 {
3402   if (!may_write_registers)
3403     error (_("Writing to registers is not allowed (regno %d)"), regno);
3404 
3405   current_top_target ()->store_registers (regcache, regno);
3406   if (targetdebug)
3407     {
3408       regcache->debug_print_register ("target_store_registers", regno);
3409     }
3410 }
3411 
3412 int
3413 target_core_of_thread (ptid_t ptid)
3414 {
3415   return current_top_target ()->core_of_thread (ptid);
3416 }
3417 
3418 int
3419 simple_verify_memory (struct target_ops *ops,
3420 		      const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3421 {
3422   LONGEST total_xfered = 0;
3423 
3424   while (total_xfered < size)
3425     {
3426       ULONGEST xfered_len;
3427       enum target_xfer_status status;
3428       gdb_byte buf[1024];
3429       ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3430 
3431       status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3432 				    buf, NULL, lma + total_xfered, howmuch,
3433 				    &xfered_len);
3434       if (status == TARGET_XFER_OK
3435 	  && memcmp (data + total_xfered, buf, xfered_len) == 0)
3436 	{
3437 	  total_xfered += xfered_len;
3438 	  QUIT;
3439 	}
3440       else
3441 	return 0;
3442     }
3443   return 1;
3444 }
3445 
3446 /* Default implementation of memory verification.  */
3447 
3448 static int
3449 default_verify_memory (struct target_ops *self,
3450 		       const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3451 {
3452   /* Start over from the top of the target stack.  */
3453   return simple_verify_memory (current_top_target (),
3454 			       data, memaddr, size);
3455 }
3456 
3457 int
3458 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3459 {
3460   return current_top_target ()->verify_memory (data, memaddr, size);
3461 }
3462 
3463 /* The documentation for this function is in its prototype declaration in
3464    target.h.  */
3465 
3466 int
3467 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3468 			       enum target_hw_bp_type rw)
3469 {
3470   return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3471 }
3472 
3473 /* The documentation for this function is in its prototype declaration in
3474    target.h.  */
3475 
3476 int
3477 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3478 			       enum target_hw_bp_type rw)
3479 {
3480   return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3481 }
3482 
3483 /* The documentation for this function is in its prototype declaration
3484    in target.h.  */
3485 
3486 int
3487 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3488 {
3489   return current_top_target ()->masked_watch_num_registers (addr, mask);
3490 }
3491 
3492 /* The documentation for this function is in its prototype declaration
3493    in target.h.  */
3494 
3495 int
3496 target_ranged_break_num_registers (void)
3497 {
3498   return current_top_target ()->ranged_break_num_registers ();
3499 }
3500 
3501 /* See target.h.  */
3502 
3503 struct btrace_target_info *
3504 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3505 {
3506   return current_top_target ()->enable_btrace (ptid, conf);
3507 }
3508 
3509 /* See target.h.  */
3510 
3511 void
3512 target_disable_btrace (struct btrace_target_info *btinfo)
3513 {
3514   current_top_target ()->disable_btrace (btinfo);
3515 }
3516 
3517 /* See target.h.  */
3518 
3519 void
3520 target_teardown_btrace (struct btrace_target_info *btinfo)
3521 {
3522   current_top_target ()->teardown_btrace (btinfo);
3523 }
3524 
3525 /* See target.h.  */
3526 
3527 enum btrace_error
3528 target_read_btrace (struct btrace_data *btrace,
3529 		    struct btrace_target_info *btinfo,
3530 		    enum btrace_read_type type)
3531 {
3532   return current_top_target ()->read_btrace (btrace, btinfo, type);
3533 }
3534 
3535 /* See target.h.  */
3536 
3537 const struct btrace_config *
3538 target_btrace_conf (const struct btrace_target_info *btinfo)
3539 {
3540   return current_top_target ()->btrace_conf (btinfo);
3541 }
3542 
3543 /* See target.h.  */
3544 
3545 void
3546 target_stop_recording (void)
3547 {
3548   current_top_target ()->stop_recording ();
3549 }
3550 
3551 /* See target.h.  */
3552 
3553 void
3554 target_save_record (const char *filename)
3555 {
3556   current_top_target ()->save_record (filename);
3557 }
3558 
3559 /* See target.h.  */
3560 
3561 int
3562 target_supports_delete_record ()
3563 {
3564   return current_top_target ()->supports_delete_record ();
3565 }
3566 
3567 /* See target.h.  */
3568 
3569 void
3570 target_delete_record (void)
3571 {
3572   current_top_target ()->delete_record ();
3573 }
3574 
3575 /* See target.h.  */
3576 
3577 enum record_method
3578 target_record_method (ptid_t ptid)
3579 {
3580   return current_top_target ()->record_method (ptid);
3581 }
3582 
3583 /* See target.h.  */
3584 
3585 int
3586 target_record_is_replaying (ptid_t ptid)
3587 {
3588   return current_top_target ()->record_is_replaying (ptid);
3589 }
3590 
3591 /* See target.h.  */
3592 
3593 int
3594 target_record_will_replay (ptid_t ptid, int dir)
3595 {
3596   return current_top_target ()->record_will_replay (ptid, dir);
3597 }
3598 
3599 /* See target.h.  */
3600 
3601 void
3602 target_record_stop_replaying (void)
3603 {
3604   current_top_target ()->record_stop_replaying ();
3605 }
3606 
3607 /* See target.h.  */
3608 
3609 void
3610 target_goto_record_begin (void)
3611 {
3612   current_top_target ()->goto_record_begin ();
3613 }
3614 
3615 /* See target.h.  */
3616 
3617 void
3618 target_goto_record_end (void)
3619 {
3620   current_top_target ()->goto_record_end ();
3621 }
3622 
3623 /* See target.h.  */
3624 
3625 void
3626 target_goto_record (ULONGEST insn)
3627 {
3628   current_top_target ()->goto_record (insn);
3629 }
3630 
3631 /* See target.h.  */
3632 
3633 void
3634 target_insn_history (int size, gdb_disassembly_flags flags)
3635 {
3636   current_top_target ()->insn_history (size, flags);
3637 }
3638 
3639 /* See target.h.  */
3640 
3641 void
3642 target_insn_history_from (ULONGEST from, int size,
3643 			  gdb_disassembly_flags flags)
3644 {
3645   current_top_target ()->insn_history_from (from, size, flags);
3646 }
3647 
3648 /* See target.h.  */
3649 
3650 void
3651 target_insn_history_range (ULONGEST begin, ULONGEST end,
3652 			   gdb_disassembly_flags flags)
3653 {
3654   current_top_target ()->insn_history_range (begin, end, flags);
3655 }
3656 
3657 /* See target.h.  */
3658 
3659 void
3660 target_call_history (int size, record_print_flags flags)
3661 {
3662   current_top_target ()->call_history (size, flags);
3663 }
3664 
3665 /* See target.h.  */
3666 
3667 void
3668 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3669 {
3670   current_top_target ()->call_history_from (begin, size, flags);
3671 }
3672 
3673 /* See target.h.  */
3674 
3675 void
3676 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3677 {
3678   current_top_target ()->call_history_range (begin, end, flags);
3679 }
3680 
3681 /* See target.h.  */
3682 
3683 const struct frame_unwind *
3684 target_get_unwinder (void)
3685 {
3686   return current_top_target ()->get_unwinder ();
3687 }
3688 
3689 /* See target.h.  */
3690 
3691 const struct frame_unwind *
3692 target_get_tailcall_unwinder (void)
3693 {
3694   return current_top_target ()->get_tailcall_unwinder ();
3695 }
3696 
3697 /* See target.h.  */
3698 
3699 void
3700 target_prepare_to_generate_core (void)
3701 {
3702   current_top_target ()->prepare_to_generate_core ();
3703 }
3704 
3705 /* See target.h.  */
3706 
3707 void
3708 target_done_generating_core (void)
3709 {
3710   current_top_target ()->done_generating_core ();
3711 }
3712 
3713 
3714 
3715 static char targ_desc[] =
3716 "Names of targets and files being debugged.\nShows the entire \
3717 stack of targets currently in use (including the exec-file,\n\
3718 core-file, and process, if any), as well as the symbol file name.";
3719 
3720 static void
3721 default_rcmd (struct target_ops *self, const char *command,
3722 	      struct ui_file *output)
3723 {
3724   error (_("\"monitor\" command not supported by this target."));
3725 }
3726 
3727 static void
3728 do_monitor_command (const char *cmd, int from_tty)
3729 {
3730   target_rcmd (cmd, gdb_stdtarg);
3731 }
3732 
3733 /* Erases all the memory regions marked as flash.  CMD and FROM_TTY are
3734    ignored.  */
3735 
3736 void
3737 flash_erase_command (const char *cmd, int from_tty)
3738 {
3739   /* Used to communicate termination of flash operations to the target.  */
3740   bool found_flash_region = false;
3741   struct gdbarch *gdbarch = target_gdbarch ();
3742 
3743   std::vector<mem_region> mem_regions = target_memory_map ();
3744 
3745   /* Iterate over all memory regions.  */
3746   for (const mem_region &m : mem_regions)
3747     {
3748       /* Is this a flash memory region?  */
3749       if (m.attrib.mode == MEM_FLASH)
3750         {
3751           found_flash_region = true;
3752           target_flash_erase (m.lo, m.hi - m.lo);
3753 
3754 	  ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3755 
3756           current_uiout->message (_("Erasing flash memory region at address "));
3757           current_uiout->field_core_addr ("address", gdbarch, m.lo);
3758           current_uiout->message (", size = ");
3759           current_uiout->field_string ("size", hex_string (m.hi - m.lo));
3760           current_uiout->message ("\n");
3761         }
3762     }
3763 
3764   /* Did we do any flash operations?  If so, we need to finalize them.  */
3765   if (found_flash_region)
3766     target_flash_done ();
3767   else
3768     current_uiout->message (_("No flash memory regions found.\n"));
3769 }
3770 
3771 /* Print the name of each layers of our target stack.  */
3772 
3773 static void
3774 maintenance_print_target_stack (const char *cmd, int from_tty)
3775 {
3776   printf_filtered (_("The current target stack is:\n"));
3777 
3778   for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3779     {
3780       if (t->stratum () == debug_stratum)
3781 	continue;
3782       printf_filtered ("  - %s (%s)\n", t->shortname (), t->longname ());
3783     }
3784 }
3785 
3786 /* See target.h.  */
3787 
3788 void
3789 target_async (int enable)
3790 {
3791   infrun_async (enable);
3792   current_top_target ()->async (enable);
3793 }
3794 
3795 /* See target.h.  */
3796 
3797 void
3798 target_thread_events (int enable)
3799 {
3800   current_top_target ()->thread_events (enable);
3801 }
3802 
3803 /* Controls if targets can report that they can/are async.  This is
3804    just for maintainers to use when debugging gdb.  */
3805 bool target_async_permitted = true;
3806 
3807 /* The set command writes to this variable.  If the inferior is
3808    executing, target_async_permitted is *not* updated.  */
3809 static bool target_async_permitted_1 = true;
3810 
3811 static void
3812 maint_set_target_async_command (const char *args, int from_tty,
3813 				struct cmd_list_element *c)
3814 {
3815   if (have_live_inferiors ())
3816     {
3817       target_async_permitted_1 = target_async_permitted;
3818       error (_("Cannot change this setting while the inferior is running."));
3819     }
3820 
3821   target_async_permitted = target_async_permitted_1;
3822 }
3823 
3824 static void
3825 maint_show_target_async_command (struct ui_file *file, int from_tty,
3826 				 struct cmd_list_element *c,
3827 				 const char *value)
3828 {
3829   fprintf_filtered (file,
3830 		    _("Controlling the inferior in "
3831 		      "asynchronous mode is %s.\n"), value);
3832 }
3833 
3834 /* Return true if the target operates in non-stop mode even with "set
3835    non-stop off".  */
3836 
3837 static int
3838 target_always_non_stop_p (void)
3839 {
3840   return current_top_target ()->always_non_stop_p ();
3841 }
3842 
3843 /* See target.h.  */
3844 
3845 int
3846 target_is_non_stop_p (void)
3847 {
3848   return (non_stop
3849 	  || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3850 	  || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3851 	      && target_always_non_stop_p ()));
3852 }
3853 
3854 /* See target.h.  */
3855 
3856 bool
3857 exists_non_stop_target ()
3858 {
3859   if (target_is_non_stop_p ())
3860     return true;
3861 
3862   scoped_restore_current_thread restore_thread;
3863 
3864   for (inferior *inf : all_inferiors ())
3865     {
3866       switch_to_inferior_no_thread (inf);
3867       if (target_is_non_stop_p ())
3868 	return true;
3869     }
3870 
3871   return false;
3872 }
3873 
3874 /* Controls if targets can report that they always run in non-stop
3875    mode.  This is just for maintainers to use when debugging gdb.  */
3876 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3877 
3878 /* The set command writes to this variable.  If the inferior is
3879    executing, target_non_stop_enabled is *not* updated.  */
3880 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3881 
3882 /* Implementation of "maint set target-non-stop".  */
3883 
3884 static void
3885 maint_set_target_non_stop_command (const char *args, int from_tty,
3886 				   struct cmd_list_element *c)
3887 {
3888   if (have_live_inferiors ())
3889     {
3890       target_non_stop_enabled_1 = target_non_stop_enabled;
3891       error (_("Cannot change this setting while the inferior is running."));
3892     }
3893 
3894   target_non_stop_enabled = target_non_stop_enabled_1;
3895 }
3896 
3897 /* Implementation of "maint show target-non-stop".  */
3898 
3899 static void
3900 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3901 				    struct cmd_list_element *c,
3902 				    const char *value)
3903 {
3904   if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3905     fprintf_filtered (file,
3906 		      _("Whether the target is always in non-stop mode "
3907 			"is %s (currently %s).\n"), value,
3908 		      target_always_non_stop_p () ? "on" : "off");
3909   else
3910     fprintf_filtered (file,
3911 		      _("Whether the target is always in non-stop mode "
3912 			"is %s.\n"), value);
3913 }
3914 
3915 /* Temporary copies of permission settings.  */
3916 
3917 static bool may_write_registers_1 = true;
3918 static bool may_write_memory_1 = true;
3919 static bool may_insert_breakpoints_1 = true;
3920 static bool may_insert_tracepoints_1 = true;
3921 static bool may_insert_fast_tracepoints_1 = true;
3922 static bool may_stop_1 = true;
3923 
3924 /* Make the user-set values match the real values again.  */
3925 
3926 void
3927 update_target_permissions (void)
3928 {
3929   may_write_registers_1 = may_write_registers;
3930   may_write_memory_1 = may_write_memory;
3931   may_insert_breakpoints_1 = may_insert_breakpoints;
3932   may_insert_tracepoints_1 = may_insert_tracepoints;
3933   may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3934   may_stop_1 = may_stop;
3935 }
3936 
3937 /* The one function handles (most of) the permission flags in the same
3938    way.  */
3939 
3940 static void
3941 set_target_permissions (const char *args, int from_tty,
3942 			struct cmd_list_element *c)
3943 {
3944   if (target_has_execution)
3945     {
3946       update_target_permissions ();
3947       error (_("Cannot change this setting while the inferior is running."));
3948     }
3949 
3950   /* Make the real values match the user-changed values.  */
3951   may_write_registers = may_write_registers_1;
3952   may_insert_breakpoints = may_insert_breakpoints_1;
3953   may_insert_tracepoints = may_insert_tracepoints_1;
3954   may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3955   may_stop = may_stop_1;
3956   update_observer_mode ();
3957 }
3958 
3959 /* Set memory write permission independently of observer mode.  */
3960 
3961 static void
3962 set_write_memory_permission (const char *args, int from_tty,
3963 			struct cmd_list_element *c)
3964 {
3965   /* Make the real values match the user-changed values.  */
3966   may_write_memory = may_write_memory_1;
3967   update_observer_mode ();
3968 }
3969 
3970 void _initialize_target ();
3971 
3972 void
3973 _initialize_target ()
3974 {
3975   the_debug_target = new debug_target ();
3976 
3977   add_info ("target", info_target_command, targ_desc);
3978   add_info ("files", info_target_command, targ_desc);
3979 
3980   add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3981 Set target debugging."), _("\
3982 Show target debugging."), _("\
3983 When non-zero, target debugging is enabled.  Higher numbers are more\n\
3984 verbose."),
3985 			     set_targetdebug,
3986 			     show_targetdebug,
3987 			     &setdebuglist, &showdebuglist);
3988 
3989   add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3990 			   &trust_readonly, _("\
3991 Set mode for reading from readonly sections."), _("\
3992 Show mode for reading from readonly sections."), _("\
3993 When this mode is on, memory reads from readonly sections (such as .text)\n\
3994 will be read from the object file instead of from the target.  This will\n\
3995 result in significant performance improvement for remote targets."),
3996 			   NULL,
3997 			   show_trust_readonly,
3998 			   &setlist, &showlist);
3999 
4000   add_com ("monitor", class_obscure, do_monitor_command,
4001 	   _("Send a command to the remote monitor (remote targets only)."));
4002 
4003   add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4004            _("Print the name of each layer of the internal target stack."),
4005            &maintenanceprintlist);
4006 
4007   add_setshow_boolean_cmd ("target-async", no_class,
4008 			   &target_async_permitted_1, _("\
4009 Set whether gdb controls the inferior in asynchronous mode."), _("\
4010 Show whether gdb controls the inferior in asynchronous mode."), _("\
4011 Tells gdb whether to control the inferior in asynchronous mode."),
4012 			   maint_set_target_async_command,
4013 			   maint_show_target_async_command,
4014 			   &maintenance_set_cmdlist,
4015 			   &maintenance_show_cmdlist);
4016 
4017   add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4018 				&target_non_stop_enabled_1, _("\
4019 Set whether gdb always controls the inferior in non-stop mode."), _("\
4020 Show whether gdb always controls the inferior in non-stop mode."), _("\
4021 Tells gdb whether to control the inferior in non-stop mode."),
4022 			   maint_set_target_non_stop_command,
4023 			   maint_show_target_non_stop_command,
4024 			   &maintenance_set_cmdlist,
4025 			   &maintenance_show_cmdlist);
4026 
4027   add_setshow_boolean_cmd ("may-write-registers", class_support,
4028 			   &may_write_registers_1, _("\
4029 Set permission to write into registers."), _("\
4030 Show permission to write into registers."), _("\
4031 When this permission is on, GDB may write into the target's registers.\n\
4032 Otherwise, any sort of write attempt will result in an error."),
4033 			   set_target_permissions, NULL,
4034 			   &setlist, &showlist);
4035 
4036   add_setshow_boolean_cmd ("may-write-memory", class_support,
4037 			   &may_write_memory_1, _("\
4038 Set permission to write into target memory."), _("\
4039 Show permission to write into target memory."), _("\
4040 When this permission is on, GDB may write into the target's memory.\n\
4041 Otherwise, any sort of write attempt will result in an error."),
4042 			   set_write_memory_permission, NULL,
4043 			   &setlist, &showlist);
4044 
4045   add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4046 			   &may_insert_breakpoints_1, _("\
4047 Set permission to insert breakpoints in the target."), _("\
4048 Show permission to insert breakpoints in the target."), _("\
4049 When this permission is on, GDB may insert breakpoints in the program.\n\
4050 Otherwise, any sort of insertion attempt will result in an error."),
4051 			   set_target_permissions, NULL,
4052 			   &setlist, &showlist);
4053 
4054   add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4055 			   &may_insert_tracepoints_1, _("\
4056 Set permission to insert tracepoints in the target."), _("\
4057 Show permission to insert tracepoints in the target."), _("\
4058 When this permission is on, GDB may insert tracepoints in the program.\n\
4059 Otherwise, any sort of insertion attempt will result in an error."),
4060 			   set_target_permissions, NULL,
4061 			   &setlist, &showlist);
4062 
4063   add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4064 			   &may_insert_fast_tracepoints_1, _("\
4065 Set permission to insert fast tracepoints in the target."), _("\
4066 Show permission to insert fast tracepoints in the target."), _("\
4067 When this permission is on, GDB may insert fast tracepoints.\n\
4068 Otherwise, any sort of insertion attempt will result in an error."),
4069 			   set_target_permissions, NULL,
4070 			   &setlist, &showlist);
4071 
4072   add_setshow_boolean_cmd ("may-interrupt", class_support,
4073 			   &may_stop_1, _("\
4074 Set permission to interrupt or signal the target."), _("\
4075 Show permission to interrupt or signal the target."), _("\
4076 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4077 Otherwise, any attempt to interrupt or stop will be ignored."),
4078 			   set_target_permissions, NULL,
4079 			   &setlist, &showlist);
4080 
4081   add_com ("flash-erase", no_class, flash_erase_command,
4082            _("Erase all flash memory regions."));
4083 
4084   add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4085 			   &auto_connect_native_target, _("\
4086 Set whether GDB may automatically connect to the native target."), _("\
4087 Show whether GDB may automatically connect to the native target."), _("\
4088 When on, and GDB is not connected to a target yet, GDB\n\
4089 attempts \"run\" and other commands with the native target."),
4090 			   NULL, show_auto_connect_native_target,
4091 			   &setlist, &showlist);
4092 }
4093