xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/target.c (revision cc576e1d8e4f4078fd4e81238abca9fca216f6ec)
1 /* Select target systems and architectures at runtime for GDB.
2 
3    Copyright (C) 1990-2015 Free Software Foundation, Inc.
4 
5    Contributed by Cygnus Support.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 
47 static void target_info (char *, int);
48 
49 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50 
51 static void default_terminal_info (struct target_ops *, const char *, int);
52 
53 static int default_watchpoint_addr_within_range (struct target_ops *,
54 						 CORE_ADDR, CORE_ADDR, int);
55 
56 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 						CORE_ADDR, int);
58 
59 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
60 
61 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 					 long lwp, long tid);
63 
64 static int default_follow_fork (struct target_ops *self, int follow_child,
65 				int detach_fork);
66 
67 static void default_mourn_inferior (struct target_ops *self);
68 
69 static int default_search_memory (struct target_ops *ops,
70 				  CORE_ADDR start_addr,
71 				  ULONGEST search_space_len,
72 				  const gdb_byte *pattern,
73 				  ULONGEST pattern_len,
74 				  CORE_ADDR *found_addrp);
75 
76 static int default_verify_memory (struct target_ops *self,
77 				  const gdb_byte *data,
78 				  CORE_ADDR memaddr, ULONGEST size);
79 
80 static struct address_space *default_thread_address_space
81      (struct target_ops *self, ptid_t ptid);
82 
83 static void tcomplain (void) ATTRIBUTE_NORETURN;
84 
85 static int return_zero (struct target_ops *);
86 
87 static int return_zero_has_execution (struct target_ops *, ptid_t);
88 
89 static void target_command (char *, int);
90 
91 static struct target_ops *find_default_run_target (char *);
92 
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 						    ptid_t ptid);
95 
96 static int dummy_find_memory_regions (struct target_ops *self,
97 				      find_memory_region_ftype ignore1,
98 				      void *ignore2);
99 
100 static char *dummy_make_corefile_notes (struct target_ops *self,
101 					bfd *ignore1, int *ignore2);
102 
103 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104 
105 static enum exec_direction_kind default_execution_direction
106     (struct target_ops *self);
107 
108 static struct target_ops debug_target;
109 
110 #include "target-delegates.c"
111 
112 static void init_dummy_target (void);
113 
114 static void update_current_target (void);
115 
116 /* Vector of existing target structures. */
117 typedef struct target_ops *target_ops_p;
118 DEF_VEC_P (target_ops_p);
119 static VEC (target_ops_p) *target_structs;
120 
121 /* The initial current target, so that there is always a semi-valid
122    current target.  */
123 
124 static struct target_ops dummy_target;
125 
126 /* Top of target stack.  */
127 
128 static struct target_ops *target_stack;
129 
130 /* The target structure we are currently using to talk to a process
131    or file or whatever "inferior" we have.  */
132 
133 struct target_ops current_target;
134 
135 /* Command list for target.  */
136 
137 static struct cmd_list_element *targetlist = NULL;
138 
139 /* Nonzero if we should trust readonly sections from the
140    executable when reading memory.  */
141 
142 static int trust_readonly = 0;
143 
144 /* Nonzero if we should show true memory content including
145    memory breakpoint inserted by gdb.  */
146 
147 static int show_memory_breakpoints = 0;
148 
149 /* These globals control whether GDB attempts to perform these
150    operations; they are useful for targets that need to prevent
151    inadvertant disruption, such as in non-stop mode.  */
152 
153 int may_write_registers = 1;
154 
155 int may_write_memory = 1;
156 
157 int may_insert_breakpoints = 1;
158 
159 int may_insert_tracepoints = 1;
160 
161 int may_insert_fast_tracepoints = 1;
162 
163 int may_stop = 1;
164 
165 /* Non-zero if we want to see trace of target level stuff.  */
166 
167 static unsigned int targetdebug = 0;
168 
169 static void
170 set_targetdebug  (char *args, int from_tty, struct cmd_list_element *c)
171 {
172   update_current_target ();
173 }
174 
175 static void
176 show_targetdebug (struct ui_file *file, int from_tty,
177 		  struct cmd_list_element *c, const char *value)
178 {
179   fprintf_filtered (file, _("Target debugging is %s.\n"), value);
180 }
181 
182 static void setup_target_debug (void);
183 
184 /* The user just typed 'target' without the name of a target.  */
185 
186 static void
187 target_command (char *arg, int from_tty)
188 {
189   fputs_filtered ("Argument required (target name).  Try `help target'\n",
190 		  gdb_stdout);
191 }
192 
193 /* Default target_has_* methods for process_stratum targets.  */
194 
195 int
196 default_child_has_all_memory (struct target_ops *ops)
197 {
198   /* If no inferior selected, then we can't read memory here.  */
199   if (ptid_equal (inferior_ptid, null_ptid))
200     return 0;
201 
202   return 1;
203 }
204 
205 int
206 default_child_has_memory (struct target_ops *ops)
207 {
208   /* If no inferior selected, then we can't read memory here.  */
209   if (ptid_equal (inferior_ptid, null_ptid))
210     return 0;
211 
212   return 1;
213 }
214 
215 int
216 default_child_has_stack (struct target_ops *ops)
217 {
218   /* If no inferior selected, there's no stack.  */
219   if (ptid_equal (inferior_ptid, null_ptid))
220     return 0;
221 
222   return 1;
223 }
224 
225 int
226 default_child_has_registers (struct target_ops *ops)
227 {
228   /* Can't read registers from no inferior.  */
229   if (ptid_equal (inferior_ptid, null_ptid))
230     return 0;
231 
232   return 1;
233 }
234 
235 int
236 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
237 {
238   /* If there's no thread selected, then we can't make it run through
239      hoops.  */
240   if (ptid_equal (the_ptid, null_ptid))
241     return 0;
242 
243   return 1;
244 }
245 
246 
247 int
248 target_has_all_memory_1 (void)
249 {
250   struct target_ops *t;
251 
252   for (t = current_target.beneath; t != NULL; t = t->beneath)
253     if (t->to_has_all_memory (t))
254       return 1;
255 
256   return 0;
257 }
258 
259 int
260 target_has_memory_1 (void)
261 {
262   struct target_ops *t;
263 
264   for (t = current_target.beneath; t != NULL; t = t->beneath)
265     if (t->to_has_memory (t))
266       return 1;
267 
268   return 0;
269 }
270 
271 int
272 target_has_stack_1 (void)
273 {
274   struct target_ops *t;
275 
276   for (t = current_target.beneath; t != NULL; t = t->beneath)
277     if (t->to_has_stack (t))
278       return 1;
279 
280   return 0;
281 }
282 
283 int
284 target_has_registers_1 (void)
285 {
286   struct target_ops *t;
287 
288   for (t = current_target.beneath; t != NULL; t = t->beneath)
289     if (t->to_has_registers (t))
290       return 1;
291 
292   return 0;
293 }
294 
295 int
296 target_has_execution_1 (ptid_t the_ptid)
297 {
298   struct target_ops *t;
299 
300   for (t = current_target.beneath; t != NULL; t = t->beneath)
301     if (t->to_has_execution (t, the_ptid))
302       return 1;
303 
304   return 0;
305 }
306 
307 int
308 target_has_execution_current (void)
309 {
310   return target_has_execution_1 (inferior_ptid);
311 }
312 
313 /* Complete initialization of T.  This ensures that various fields in
314    T are set, if needed by the target implementation.  */
315 
316 void
317 complete_target_initialization (struct target_ops *t)
318 {
319   /* Provide default values for all "must have" methods.  */
320 
321   if (t->to_has_all_memory == NULL)
322     t->to_has_all_memory = return_zero;
323 
324   if (t->to_has_memory == NULL)
325     t->to_has_memory = return_zero;
326 
327   if (t->to_has_stack == NULL)
328     t->to_has_stack = return_zero;
329 
330   if (t->to_has_registers == NULL)
331     t->to_has_registers = return_zero;
332 
333   if (t->to_has_execution == NULL)
334     t->to_has_execution = return_zero_has_execution;
335 
336   /* These methods can be called on an unpushed target and so require
337      a default implementation if the target might plausibly be the
338      default run target.  */
339   gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
340 					&& t->to_supports_non_stop != NULL));
341 
342   install_delegators (t);
343 }
344 
345 /* This is used to implement the various target commands.  */
346 
347 static void
348 open_target (char *args, int from_tty, struct cmd_list_element *command)
349 {
350   struct target_ops *ops = get_cmd_context (command);
351 
352   if (targetdebug)
353     fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
354 			ops->to_shortname);
355 
356   ops->to_open (args, from_tty);
357 
358   if (targetdebug)
359     fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
360 			ops->to_shortname, args, from_tty);
361 }
362 
363 /* Add possible target architecture T to the list and add a new
364    command 'target T->to_shortname'.  Set COMPLETER as the command's
365    completer if not NULL.  */
366 
367 void
368 add_target_with_completer (struct target_ops *t,
369 			   completer_ftype *completer)
370 {
371   struct cmd_list_element *c;
372 
373   complete_target_initialization (t);
374 
375   VEC_safe_push (target_ops_p, target_structs, t);
376 
377   if (targetlist == NULL)
378     add_prefix_cmd ("target", class_run, target_command, _("\
379 Connect to a target machine or process.\n\
380 The first argument is the type or protocol of the target machine.\n\
381 Remaining arguments are interpreted by the target protocol.  For more\n\
382 information on the arguments for a particular protocol, type\n\
383 `help target ' followed by the protocol name."),
384 		    &targetlist, "target ", 0, &cmdlist);
385   c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
386   set_cmd_sfunc (c, open_target);
387   set_cmd_context (c, t);
388   if (completer != NULL)
389     set_cmd_completer (c, completer);
390 }
391 
392 /* Add a possible target architecture to the list.  */
393 
394 void
395 add_target (struct target_ops *t)
396 {
397   add_target_with_completer (t, NULL);
398 }
399 
400 /* See target.h.  */
401 
402 void
403 add_deprecated_target_alias (struct target_ops *t, char *alias)
404 {
405   struct cmd_list_element *c;
406   char *alt;
407 
408   /* If we use add_alias_cmd, here, we do not get the deprecated warning,
409      see PR cli/15104.  */
410   c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
411   set_cmd_sfunc (c, open_target);
412   set_cmd_context (c, t);
413   alt = xstrprintf ("target %s", t->to_shortname);
414   deprecate_cmd (c, alt);
415 }
416 
417 /* Stub functions */
418 
419 void
420 target_kill (void)
421 {
422   current_target.to_kill (&current_target);
423 }
424 
425 void
426 target_load (const char *arg, int from_tty)
427 {
428   target_dcache_invalidate ();
429   (*current_target.to_load) (&current_target, arg, from_tty);
430 }
431 
432 /* Possible terminal states.  */
433 
434 enum terminal_state
435   {
436     /* The inferior's terminal settings are in effect.  */
437     terminal_is_inferior = 0,
438 
439     /* Some of our terminal settings are in effect, enough to get
440        proper output.  */
441     terminal_is_ours_for_output = 1,
442 
443     /* Our terminal settings are in effect, for output and input.  */
444     terminal_is_ours = 2
445   };
446 
447 static enum terminal_state terminal_state;
448 
449 /* See target.h.  */
450 
451 void
452 target_terminal_init (void)
453 {
454   (*current_target.to_terminal_init) (&current_target);
455 
456   terminal_state = terminal_is_ours;
457 }
458 
459 /* See target.h.  */
460 
461 int
462 target_terminal_is_inferior (void)
463 {
464   return (terminal_state == terminal_is_inferior);
465 }
466 
467 /* See target.h.  */
468 
469 void
470 target_terminal_inferior (void)
471 {
472   /* A background resume (``run&'') should leave GDB in control of the
473      terminal.  Use target_can_async_p, not target_is_async_p, since at
474      this point the target is not async yet.  However, if sync_execution
475      is not set, we know it will become async prior to resume.  */
476   if (target_can_async_p () && !sync_execution)
477     return;
478 
479   if (terminal_state == terminal_is_inferior)
480     return;
481 
482   /* If GDB is resuming the inferior in the foreground, install
483      inferior's terminal modes.  */
484   (*current_target.to_terminal_inferior) (&current_target);
485   terminal_state = terminal_is_inferior;
486 }
487 
488 /* See target.h.  */
489 
490 void
491 target_terminal_ours (void)
492 {
493   if (terminal_state == terminal_is_ours)
494     return;
495 
496   (*current_target.to_terminal_ours) (&current_target);
497   terminal_state = terminal_is_ours;
498 }
499 
500 /* See target.h.  */
501 
502 void
503 target_terminal_ours_for_output (void)
504 {
505   if (terminal_state != terminal_is_inferior)
506     return;
507   (*current_target.to_terminal_ours_for_output) (&current_target);
508   terminal_state = terminal_is_ours_for_output;
509 }
510 
511 /* See target.h.  */
512 
513 int
514 target_supports_terminal_ours (void)
515 {
516   struct target_ops *t;
517 
518   for (t = current_target.beneath; t != NULL; t = t->beneath)
519     {
520       if (t->to_terminal_ours != delegate_terminal_ours
521 	  && t->to_terminal_ours != tdefault_terminal_ours)
522 	return 1;
523     }
524 
525   return 0;
526 }
527 
528 /* Restore the terminal to its previous state (helper for
529    make_cleanup_restore_target_terminal). */
530 
531 static void
532 cleanup_restore_target_terminal (void *arg)
533 {
534   enum terminal_state *previous_state = arg;
535 
536   switch (*previous_state)
537     {
538     case terminal_is_ours:
539       target_terminal_ours ();
540       break;
541     case terminal_is_ours_for_output:
542       target_terminal_ours_for_output ();
543       break;
544     case terminal_is_inferior:
545       target_terminal_inferior ();
546       break;
547     }
548 }
549 
550 /* See target.h. */
551 
552 struct cleanup *
553 make_cleanup_restore_target_terminal (void)
554 {
555   enum terminal_state *ts = xmalloc (sizeof (*ts));
556 
557   *ts = terminal_state;
558 
559   return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
560 }
561 
562 static void
563 tcomplain (void)
564 {
565   error (_("You can't do that when your target is `%s'"),
566 	 current_target.to_shortname);
567 }
568 
569 void
570 noprocess (void)
571 {
572   error (_("You can't do that without a process to debug."));
573 }
574 
575 static void
576 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
577 {
578   printf_unfiltered (_("No saved terminal information.\n"));
579 }
580 
581 /* A default implementation for the to_get_ada_task_ptid target method.
582 
583    This function builds the PTID by using both LWP and TID as part of
584    the PTID lwp and tid elements.  The pid used is the pid of the
585    inferior_ptid.  */
586 
587 static ptid_t
588 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
589 {
590   return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
591 }
592 
593 static enum exec_direction_kind
594 default_execution_direction (struct target_ops *self)
595 {
596   if (!target_can_execute_reverse)
597     return EXEC_FORWARD;
598   else if (!target_can_async_p ())
599     return EXEC_FORWARD;
600   else
601     gdb_assert_not_reached ("\
602 to_execution_direction must be implemented for reverse async");
603 }
604 
605 /* Go through the target stack from top to bottom, copying over zero
606    entries in current_target, then filling in still empty entries.  In
607    effect, we are doing class inheritance through the pushed target
608    vectors.
609 
610    NOTE: cagney/2003-10-17: The problem with this inheritance, as it
611    is currently implemented, is that it discards any knowledge of
612    which target an inherited method originally belonged to.
613    Consequently, new new target methods should instead explicitly and
614    locally search the target stack for the target that can handle the
615    request.  */
616 
617 static void
618 update_current_target (void)
619 {
620   struct target_ops *t;
621 
622   /* First, reset current's contents.  */
623   memset (&current_target, 0, sizeof (current_target));
624 
625   /* Install the delegators.  */
626   install_delegators (&current_target);
627 
628   current_target.to_stratum = target_stack->to_stratum;
629 
630 #define INHERIT(FIELD, TARGET) \
631       if (!current_target.FIELD) \
632 	current_target.FIELD = (TARGET)->FIELD
633 
634   /* Do not add any new INHERITs here.  Instead, use the delegation
635      mechanism provided by make-target-delegates.  */
636   for (t = target_stack; t; t = t->beneath)
637     {
638       INHERIT (to_shortname, t);
639       INHERIT (to_longname, t);
640       INHERIT (to_attach_no_wait, t);
641       INHERIT (to_have_steppable_watchpoint, t);
642       INHERIT (to_have_continuable_watchpoint, t);
643       INHERIT (to_has_thread_control, t);
644     }
645 #undef INHERIT
646 
647   /* Finally, position the target-stack beneath the squashed
648      "current_target".  That way code looking for a non-inherited
649      target method can quickly and simply find it.  */
650   current_target.beneath = target_stack;
651 
652   if (targetdebug)
653     setup_target_debug ();
654 }
655 
656 /* Push a new target type into the stack of the existing target accessors,
657    possibly superseding some of the existing accessors.
658 
659    Rather than allow an empty stack, we always have the dummy target at
660    the bottom stratum, so we can call the function vectors without
661    checking them.  */
662 
663 void
664 push_target (struct target_ops *t)
665 {
666   struct target_ops **cur;
667 
668   /* Check magic number.  If wrong, it probably means someone changed
669      the struct definition, but not all the places that initialize one.  */
670   if (t->to_magic != OPS_MAGIC)
671     {
672       fprintf_unfiltered (gdb_stderr,
673 			  "Magic number of %s target struct wrong\n",
674 			  t->to_shortname);
675       internal_error (__FILE__, __LINE__,
676 		      _("failed internal consistency check"));
677     }
678 
679   /* Find the proper stratum to install this target in.  */
680   for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
681     {
682       if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
683 	break;
684     }
685 
686   /* If there's already targets at this stratum, remove them.  */
687   /* FIXME: cagney/2003-10-15: I think this should be popping all
688      targets to CUR, and not just those at this stratum level.  */
689   while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
690     {
691       /* There's already something at this stratum level.  Close it,
692          and un-hook it from the stack.  */
693       struct target_ops *tmp = (*cur);
694 
695       (*cur) = (*cur)->beneath;
696       tmp->beneath = NULL;
697       target_close (tmp);
698     }
699 
700   /* We have removed all targets in our stratum, now add the new one.  */
701   t->beneath = (*cur);
702   (*cur) = t;
703 
704   update_current_target ();
705 }
706 
707 /* Remove a target_ops vector from the stack, wherever it may be.
708    Return how many times it was removed (0 or 1).  */
709 
710 int
711 unpush_target (struct target_ops *t)
712 {
713   struct target_ops **cur;
714   struct target_ops *tmp;
715 
716   if (t->to_stratum == dummy_stratum)
717     internal_error (__FILE__, __LINE__,
718 		    _("Attempt to unpush the dummy target"));
719 
720   /* Look for the specified target.  Note that we assume that a target
721      can only occur once in the target stack.  */
722 
723   for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
724     {
725       if ((*cur) == t)
726 	break;
727     }
728 
729   /* If we don't find target_ops, quit.  Only open targets should be
730      closed.  */
731   if ((*cur) == NULL)
732     return 0;
733 
734   /* Unchain the target.  */
735   tmp = (*cur);
736   (*cur) = (*cur)->beneath;
737   tmp->beneath = NULL;
738 
739   update_current_target ();
740 
741   /* Finally close the target.  Note we do this after unchaining, so
742      any target method calls from within the target_close
743      implementation don't end up in T anymore.  */
744   target_close (t);
745 
746   return 1;
747 }
748 
749 void
750 pop_all_targets_above (enum strata above_stratum)
751 {
752   while ((int) (current_target.to_stratum) > (int) above_stratum)
753     {
754       if (!unpush_target (target_stack))
755 	{
756 	  fprintf_unfiltered (gdb_stderr,
757 			      "pop_all_targets couldn't find target %s\n",
758 			      target_stack->to_shortname);
759 	  internal_error (__FILE__, __LINE__,
760 			  _("failed internal consistency check"));
761 	  break;
762 	}
763     }
764 }
765 
766 void
767 pop_all_targets (void)
768 {
769   pop_all_targets_above (dummy_stratum);
770 }
771 
772 /* Return 1 if T is now pushed in the target stack.  Return 0 otherwise.  */
773 
774 int
775 target_is_pushed (struct target_ops *t)
776 {
777   struct target_ops *cur;
778 
779   /* Check magic number.  If wrong, it probably means someone changed
780      the struct definition, but not all the places that initialize one.  */
781   if (t->to_magic != OPS_MAGIC)
782     {
783       fprintf_unfiltered (gdb_stderr,
784 			  "Magic number of %s target struct wrong\n",
785 			  t->to_shortname);
786       internal_error (__FILE__, __LINE__,
787 		      _("failed internal consistency check"));
788     }
789 
790   for (cur = target_stack; cur != NULL; cur = cur->beneath)
791     if (cur == t)
792       return 1;
793 
794   return 0;
795 }
796 
797 /* Default implementation of to_get_thread_local_address.  */
798 
799 static void
800 generic_tls_error (void)
801 {
802   throw_error (TLS_GENERIC_ERROR,
803 	       _("Cannot find thread-local variables on this target"));
804 }
805 
806 /* Using the objfile specified in OBJFILE, find the address for the
807    current thread's thread-local storage with offset OFFSET.  */
808 CORE_ADDR
809 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
810 {
811   volatile CORE_ADDR addr = 0;
812   struct target_ops *target = &current_target;
813 
814   if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
815     {
816       ptid_t ptid = inferior_ptid;
817 
818       TRY
819 	{
820 	  CORE_ADDR lm_addr;
821 
822 	  /* Fetch the load module address for this objfile.  */
823 	  lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
824 	                                                   objfile);
825 
826 	  addr = target->to_get_thread_local_address (target, ptid,
827 						      lm_addr, offset);
828 	}
829       /* If an error occurred, print TLS related messages here.  Otherwise,
830          throw the error to some higher catcher.  */
831       CATCH (ex, RETURN_MASK_ALL)
832 	{
833 	  int objfile_is_library = (objfile->flags & OBJF_SHARED);
834 
835 	  switch (ex.error)
836 	    {
837 	    case TLS_NO_LIBRARY_SUPPORT_ERROR:
838 	      error (_("Cannot find thread-local variables "
839 		       "in this thread library."));
840 	      break;
841 	    case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
842 	      if (objfile_is_library)
843 		error (_("Cannot find shared library `%s' in dynamic"
844 		         " linker's load module list"), objfile_name (objfile));
845 	      else
846 		error (_("Cannot find executable file `%s' in dynamic"
847 		         " linker's load module list"), objfile_name (objfile));
848 	      break;
849 	    case TLS_NOT_ALLOCATED_YET_ERROR:
850 	      if (objfile_is_library)
851 		error (_("The inferior has not yet allocated storage for"
852 		         " thread-local variables in\n"
853 		         "the shared library `%s'\n"
854 		         "for %s"),
855 		       objfile_name (objfile), target_pid_to_str (ptid));
856 	      else
857 		error (_("The inferior has not yet allocated storage for"
858 		         " thread-local variables in\n"
859 		         "the executable `%s'\n"
860 		         "for %s"),
861 		       objfile_name (objfile), target_pid_to_str (ptid));
862 	      break;
863 	    case TLS_GENERIC_ERROR:
864 	      if (objfile_is_library)
865 		error (_("Cannot find thread-local storage for %s, "
866 		         "shared library %s:\n%s"),
867 		       target_pid_to_str (ptid),
868 		       objfile_name (objfile), ex.message);
869 	      else
870 		error (_("Cannot find thread-local storage for %s, "
871 		         "executable file %s:\n%s"),
872 		       target_pid_to_str (ptid),
873 		       objfile_name (objfile), ex.message);
874 	      break;
875 	    default:
876 	      throw_exception (ex);
877 	      break;
878 	    }
879 	}
880       END_CATCH
881     }
882   /* It wouldn't be wrong here to try a gdbarch method, too; finding
883      TLS is an ABI-specific thing.  But we don't do that yet.  */
884   else
885     error (_("Cannot find thread-local variables on this target"));
886 
887   return addr;
888 }
889 
890 const char *
891 target_xfer_status_to_string (enum target_xfer_status status)
892 {
893 #define CASE(X) case X: return #X
894   switch (status)
895     {
896       CASE(TARGET_XFER_E_IO);
897       CASE(TARGET_XFER_UNAVAILABLE);
898     default:
899       return "<unknown>";
900     }
901 #undef CASE
902 };
903 
904 
905 #undef	MIN
906 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
907 
908 /* target_read_string -- read a null terminated string, up to LEN bytes,
909    from MEMADDR in target.  Set *ERRNOP to the errno code, or 0 if successful.
910    Set *STRING to a pointer to malloc'd memory containing the data; the caller
911    is responsible for freeing it.  Return the number of bytes successfully
912    read.  */
913 
914 int
915 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
916 {
917   int tlen, offset, i;
918   gdb_byte buf[4];
919   int errcode = 0;
920   char *buffer;
921   int buffer_allocated;
922   char *bufptr;
923   unsigned int nbytes_read = 0;
924 
925   gdb_assert (string);
926 
927   /* Small for testing.  */
928   buffer_allocated = 4;
929   buffer = xmalloc (buffer_allocated);
930   bufptr = buffer;
931 
932   while (len > 0)
933     {
934       tlen = MIN (len, 4 - (memaddr & 3));
935       offset = memaddr & 3;
936 
937       errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
938       if (errcode != 0)
939 	{
940 	  /* The transfer request might have crossed the boundary to an
941 	     unallocated region of memory.  Retry the transfer, requesting
942 	     a single byte.  */
943 	  tlen = 1;
944 	  offset = 0;
945 	  errcode = target_read_memory (memaddr, buf, 1);
946 	  if (errcode != 0)
947 	    goto done;
948 	}
949 
950       if (bufptr - buffer + tlen > buffer_allocated)
951 	{
952 	  unsigned int bytes;
953 
954 	  bytes = bufptr - buffer;
955 	  buffer_allocated *= 2;
956 	  buffer = xrealloc (buffer, buffer_allocated);
957 	  bufptr = buffer + bytes;
958 	}
959 
960       for (i = 0; i < tlen; i++)
961 	{
962 	  *bufptr++ = buf[i + offset];
963 	  if (buf[i + offset] == '\000')
964 	    {
965 	      nbytes_read += i + 1;
966 	      goto done;
967 	    }
968 	}
969 
970       memaddr += tlen;
971       len -= tlen;
972       nbytes_read += tlen;
973     }
974 done:
975   *string = buffer;
976   if (errnop != NULL)
977     *errnop = errcode;
978   return nbytes_read;
979 }
980 
981 struct target_section_table *
982 target_get_section_table (struct target_ops *target)
983 {
984   return (*target->to_get_section_table) (target);
985 }
986 
987 /* Find a section containing ADDR.  */
988 
989 struct target_section *
990 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
991 {
992   struct target_section_table *table = target_get_section_table (target);
993   struct target_section *secp;
994 
995   if (table == NULL)
996     return NULL;
997 
998   for (secp = table->sections; secp < table->sections_end; secp++)
999     {
1000       if (addr >= secp->addr && addr < secp->endaddr)
1001 	return secp;
1002     }
1003   return NULL;
1004 }
1005 
1006 
1007 /* Helper for the memory xfer routines.  Checks the attributes of the
1008    memory region of MEMADDR against the read or write being attempted.
1009    If the access is permitted returns true, otherwise returns false.
1010    REGION_P is an optional output parameter.  If not-NULL, it is
1011    filled with a pointer to the memory region of MEMADDR.  REG_LEN
1012    returns LEN trimmed to the end of the region.  This is how much the
1013    caller can continue requesting, if the access is permitted.  A
1014    single xfer request must not straddle memory region boundaries.  */
1015 
1016 static int
1017 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1018 			  ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1019 			  struct mem_region **region_p)
1020 {
1021   struct mem_region *region;
1022 
1023   region = lookup_mem_region (memaddr);
1024 
1025   if (region_p != NULL)
1026     *region_p = region;
1027 
1028   switch (region->attrib.mode)
1029     {
1030     case MEM_RO:
1031       if (writebuf != NULL)
1032 	return 0;
1033       break;
1034 
1035     case MEM_WO:
1036       if (readbuf != NULL)
1037 	return 0;
1038       break;
1039 
1040     case MEM_FLASH:
1041       /* We only support writing to flash during "load" for now.  */
1042       if (writebuf != NULL)
1043 	error (_("Writing to flash memory forbidden in this context"));
1044       break;
1045 
1046     case MEM_NONE:
1047       return 0;
1048     }
1049 
1050   /* region->hi == 0 means there's no upper bound.  */
1051   if (memaddr + len < region->hi || region->hi == 0)
1052     *reg_len = len;
1053   else
1054     *reg_len = region->hi - memaddr;
1055 
1056   return 1;
1057 }
1058 
1059 /* Read memory from more than one valid target.  A core file, for
1060    instance, could have some of memory but delegate other bits to
1061    the target below it.  So, we must manually try all targets.  */
1062 
1063 enum target_xfer_status
1064 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1065 			 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1066 			 ULONGEST *xfered_len)
1067 {
1068   enum target_xfer_status res;
1069 
1070   do
1071     {
1072       res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1073 				  readbuf, writebuf, memaddr, len,
1074 				  xfered_len);
1075       if (res == TARGET_XFER_OK)
1076 	break;
1077 
1078       /* Stop if the target reports that the memory is not available.  */
1079       if (res == TARGET_XFER_UNAVAILABLE)
1080 	break;
1081 
1082       /* We want to continue past core files to executables, but not
1083 	 past a running target's memory.  */
1084       if (ops->to_has_all_memory (ops))
1085 	break;
1086 
1087       ops = ops->beneath;
1088     }
1089   while (ops != NULL);
1090 
1091   /* The cache works at the raw memory level.  Make sure the cache
1092      gets updated with raw contents no matter what kind of memory
1093      object was originally being written.  Note we do write-through
1094      first, so that if it fails, we don't write to the cache contents
1095      that never made it to the target.  */
1096   if (writebuf != NULL
1097       && !ptid_equal (inferior_ptid, null_ptid)
1098       && target_dcache_init_p ()
1099       && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1100     {
1101       DCACHE *dcache = target_dcache_get ();
1102 
1103       /* Note that writing to an area of memory which wasn't present
1104 	 in the cache doesn't cause it to be loaded in.  */
1105       dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1106     }
1107 
1108   return res;
1109 }
1110 
1111 /* Perform a partial memory transfer.
1112    For docs see target.h, to_xfer_partial.  */
1113 
1114 static enum target_xfer_status
1115 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1116 		       gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1117 		       ULONGEST len, ULONGEST *xfered_len)
1118 {
1119   enum target_xfer_status res;
1120   ULONGEST reg_len;
1121   struct mem_region *region;
1122   struct inferior *inf;
1123 
1124   /* For accesses to unmapped overlay sections, read directly from
1125      files.  Must do this first, as MEMADDR may need adjustment.  */
1126   if (readbuf != NULL && overlay_debugging)
1127     {
1128       struct obj_section *section = find_pc_overlay (memaddr);
1129 
1130       if (pc_in_unmapped_range (memaddr, section))
1131 	{
1132 	  struct target_section_table *table
1133 	    = target_get_section_table (ops);
1134 	  const char *section_name = section->the_bfd_section->name;
1135 
1136 	  memaddr = overlay_mapped_address (memaddr, section);
1137 	  return section_table_xfer_memory_partial (readbuf, writebuf,
1138 						    memaddr, len, xfered_len,
1139 						    table->sections,
1140 						    table->sections_end,
1141 						    section_name);
1142 	}
1143     }
1144 
1145   /* Try the executable files, if "trust-readonly-sections" is set.  */
1146   if (readbuf != NULL && trust_readonly)
1147     {
1148       struct target_section *secp;
1149       struct target_section_table *table;
1150 
1151       secp = target_section_by_addr (ops, memaddr);
1152       if (secp != NULL
1153 	  && (bfd_get_section_flags (secp->the_bfd_section->owner,
1154 				     secp->the_bfd_section)
1155 	      & SEC_READONLY))
1156 	{
1157 	  table = target_get_section_table (ops);
1158 	  return section_table_xfer_memory_partial (readbuf, writebuf,
1159 						    memaddr, len, xfered_len,
1160 						    table->sections,
1161 						    table->sections_end,
1162 						    NULL);
1163 	}
1164     }
1165 
1166   /* Try GDB's internal data cache.  */
1167 
1168   if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1169 				 &region))
1170     return TARGET_XFER_E_IO;
1171 
1172   if (!ptid_equal (inferior_ptid, null_ptid))
1173     inf = find_inferior_ptid (inferior_ptid);
1174   else
1175     inf = NULL;
1176 
1177   if (inf != NULL
1178       && readbuf != NULL
1179       /* The dcache reads whole cache lines; that doesn't play well
1180 	 with reading from a trace buffer, because reading outside of
1181 	 the collected memory range fails.  */
1182       && get_traceframe_number () == -1
1183       && (region->attrib.cache
1184 	  || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1185 	  || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1186     {
1187       DCACHE *dcache = target_dcache_get_or_init ();
1188 
1189       return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1190 					 reg_len, xfered_len);
1191     }
1192 
1193   /* If none of those methods found the memory we wanted, fall back
1194      to a target partial transfer.  Normally a single call to
1195      to_xfer_partial is enough; if it doesn't recognize an object
1196      it will call the to_xfer_partial of the next target down.
1197      But for memory this won't do.  Memory is the only target
1198      object which can be read from more than one valid target.
1199      A core file, for instance, could have some of memory but
1200      delegate other bits to the target below it.  So, we must
1201      manually try all targets.  */
1202 
1203   res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1204 				 xfered_len);
1205 
1206   /* If we still haven't got anything, return the last error.  We
1207      give up.  */
1208   return res;
1209 }
1210 
1211 /* Perform a partial memory transfer.  For docs see target.h,
1212    to_xfer_partial.  */
1213 
1214 static enum target_xfer_status
1215 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1216 		     gdb_byte *readbuf, const gdb_byte *writebuf,
1217 		     ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1218 {
1219   enum target_xfer_status res;
1220 
1221   /* Zero length requests are ok and require no work.  */
1222   if (len == 0)
1223     return TARGET_XFER_EOF;
1224 
1225   /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1226      breakpoint insns, thus hiding out from higher layers whether
1227      there are software breakpoints inserted in the code stream.  */
1228   if (readbuf != NULL)
1229     {
1230       res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1231 				   xfered_len);
1232 
1233       if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1234 	breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1235     }
1236   else
1237     {
1238       void *buf;
1239       struct cleanup *old_chain;
1240 
1241       /* A large write request is likely to be partially satisfied
1242 	 by memory_xfer_partial_1.  We will continually malloc
1243 	 and free a copy of the entire write request for breakpoint
1244 	 shadow handling even though we only end up writing a small
1245 	 subset of it.  Cap writes to 4KB to mitigate this.  */
1246       len = min (4096, len);
1247 
1248       buf = xmalloc (len);
1249       old_chain = make_cleanup (xfree, buf);
1250       memcpy (buf, writebuf, len);
1251 
1252       breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1253       res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1254 				   xfered_len);
1255 
1256       do_cleanups (old_chain);
1257     }
1258 
1259   return res;
1260 }
1261 
1262 static void
1263 restore_show_memory_breakpoints (void *arg)
1264 {
1265   show_memory_breakpoints = (uintptr_t) arg;
1266 }
1267 
1268 struct cleanup *
1269 make_show_memory_breakpoints_cleanup (int show)
1270 {
1271   int current = show_memory_breakpoints;
1272 
1273   show_memory_breakpoints = show;
1274   return make_cleanup (restore_show_memory_breakpoints,
1275 		       (void *) (uintptr_t) current);
1276 }
1277 
1278 /* For docs see target.h, to_xfer_partial.  */
1279 
1280 enum target_xfer_status
1281 target_xfer_partial (struct target_ops *ops,
1282 		     enum target_object object, const char *annex,
1283 		     gdb_byte *readbuf, const gdb_byte *writebuf,
1284 		     ULONGEST offset, ULONGEST len,
1285 		     ULONGEST *xfered_len)
1286 {
1287   enum target_xfer_status retval;
1288 
1289   gdb_assert (ops->to_xfer_partial != NULL);
1290 
1291   /* Transfer is done when LEN is zero.  */
1292   if (len == 0)
1293     return TARGET_XFER_EOF;
1294 
1295   if (writebuf && !may_write_memory)
1296     error (_("Writing to memory is not allowed (addr %s, len %s)"),
1297 	   core_addr_to_string_nz (offset), plongest (len));
1298 
1299   *xfered_len = 0;
1300 
1301   /* If this is a memory transfer, let the memory-specific code
1302      have a look at it instead.  Memory transfers are more
1303      complicated.  */
1304   if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1305       || object == TARGET_OBJECT_CODE_MEMORY)
1306     retval = memory_xfer_partial (ops, object, readbuf,
1307 				  writebuf, offset, len, xfered_len);
1308   else if (object == TARGET_OBJECT_RAW_MEMORY)
1309     {
1310       /* Skip/avoid accessing the target if the memory region
1311 	 attributes block the access.  Check this here instead of in
1312 	 raw_memory_xfer_partial as otherwise we'd end up checking
1313 	 this twice in the case of the memory_xfer_partial path is
1314 	 taken; once before checking the dcache, and another in the
1315 	 tail call to raw_memory_xfer_partial.  */
1316       if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1317 				     NULL))
1318 	return TARGET_XFER_E_IO;
1319 
1320       /* Request the normal memory object from other layers.  */
1321       retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1322 					xfered_len);
1323     }
1324   else
1325     retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1326 				   writebuf, offset, len, xfered_len);
1327 
1328   if (targetdebug)
1329     {
1330       const unsigned char *myaddr = NULL;
1331 
1332       fprintf_unfiltered (gdb_stdlog,
1333 			  "%s:target_xfer_partial "
1334 			  "(%d, %s, %s, %s, %s, %s) = %d, %s",
1335 			  ops->to_shortname,
1336 			  (int) object,
1337 			  (annex ? annex : "(null)"),
1338 			  host_address_to_string (readbuf),
1339 			  host_address_to_string (writebuf),
1340 			  core_addr_to_string_nz (offset),
1341 			  pulongest (len), retval,
1342 			  pulongest (*xfered_len));
1343 
1344       if (readbuf)
1345 	myaddr = readbuf;
1346       if (writebuf)
1347 	myaddr = writebuf;
1348       if (retval == TARGET_XFER_OK && myaddr != NULL)
1349 	{
1350 	  int i;
1351 
1352 	  fputs_unfiltered (", bytes =", gdb_stdlog);
1353 	  for (i = 0; i < *xfered_len; i++)
1354 	    {
1355 	      if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1356 		{
1357 		  if (targetdebug < 2 && i > 0)
1358 		    {
1359 		      fprintf_unfiltered (gdb_stdlog, " ...");
1360 		      break;
1361 		    }
1362 		  fprintf_unfiltered (gdb_stdlog, "\n");
1363 		}
1364 
1365 	      fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1366 	    }
1367 	}
1368 
1369       fputc_unfiltered ('\n', gdb_stdlog);
1370     }
1371 
1372   /* Check implementations of to_xfer_partial update *XFERED_LEN
1373      properly.  Do assertion after printing debug messages, so that we
1374      can find more clues on assertion failure from debugging messages.  */
1375   if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1376     gdb_assert (*xfered_len > 0);
1377 
1378   return retval;
1379 }
1380 
1381 /* Read LEN bytes of target memory at address MEMADDR, placing the
1382    results in GDB's memory at MYADDR.  Returns either 0 for success or
1383    TARGET_XFER_E_IO if any error occurs.
1384 
1385    If an error occurs, no guarantee is made about the contents of the data at
1386    MYADDR.  In particular, the caller should not depend upon partial reads
1387    filling the buffer with good data.  There is no way for the caller to know
1388    how much good data might have been transfered anyway.  Callers that can
1389    deal with partial reads should call target_read (which will retry until
1390    it makes no progress, and then return how much was transferred).  */
1391 
1392 int
1393 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1394 {
1395   /* Dispatch to the topmost target, not the flattened current_target.
1396      Memory accesses check target->to_has_(all_)memory, and the
1397      flattened target doesn't inherit those.  */
1398   if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1399 		   myaddr, memaddr, len) == len)
1400     return 0;
1401   else
1402     return TARGET_XFER_E_IO;
1403 }
1404 
1405 /* See target/target.h.  */
1406 
1407 int
1408 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1409 {
1410   gdb_byte buf[4];
1411   int r;
1412 
1413   r = target_read_memory (memaddr, buf, sizeof buf);
1414   if (r != 0)
1415     return r;
1416   *result = extract_unsigned_integer (buf, sizeof buf,
1417 				      gdbarch_byte_order (target_gdbarch ()));
1418   return 0;
1419 }
1420 
1421 /* Like target_read_memory, but specify explicitly that this is a read
1422    from the target's raw memory.  That is, this read bypasses the
1423    dcache, breakpoint shadowing, etc.  */
1424 
1425 int
1426 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1427 {
1428   /* See comment in target_read_memory about why the request starts at
1429      current_target.beneath.  */
1430   if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1431 		   myaddr, memaddr, len) == len)
1432     return 0;
1433   else
1434     return TARGET_XFER_E_IO;
1435 }
1436 
1437 /* Like target_read_memory, but specify explicitly that this is a read from
1438    the target's stack.  This may trigger different cache behavior.  */
1439 
1440 int
1441 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1442 {
1443   /* See comment in target_read_memory about why the request starts at
1444      current_target.beneath.  */
1445   if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1446 		   myaddr, memaddr, len) == len)
1447     return 0;
1448   else
1449     return TARGET_XFER_E_IO;
1450 }
1451 
1452 /* Like target_read_memory, but specify explicitly that this is a read from
1453    the target's code.  This may trigger different cache behavior.  */
1454 
1455 int
1456 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1457 {
1458   /* See comment in target_read_memory about why the request starts at
1459      current_target.beneath.  */
1460   if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1461 		   myaddr, memaddr, len) == len)
1462     return 0;
1463   else
1464     return TARGET_XFER_E_IO;
1465 }
1466 
1467 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1468    Returns either 0 for success or TARGET_XFER_E_IO if any
1469    error occurs.  If an error occurs, no guarantee is made about how
1470    much data got written.  Callers that can deal with partial writes
1471    should call target_write.  */
1472 
1473 int
1474 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1475 {
1476   /* See comment in target_read_memory about why the request starts at
1477      current_target.beneath.  */
1478   if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1479 		    myaddr, memaddr, len) == len)
1480     return 0;
1481   else
1482     return TARGET_XFER_E_IO;
1483 }
1484 
1485 /* Write LEN bytes from MYADDR to target raw memory at address
1486    MEMADDR.  Returns either 0 for success or TARGET_XFER_E_IO
1487    if any error occurs.  If an error occurs, no guarantee is made
1488    about how much data got written.  Callers that can deal with
1489    partial writes should call target_write.  */
1490 
1491 int
1492 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1493 {
1494   /* See comment in target_read_memory about why the request starts at
1495      current_target.beneath.  */
1496   if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1497 		    myaddr, memaddr, len) == len)
1498     return 0;
1499   else
1500     return TARGET_XFER_E_IO;
1501 }
1502 
1503 /* Fetch the target's memory map.  */
1504 
1505 VEC(mem_region_s) *
1506 target_memory_map (void)
1507 {
1508   VEC(mem_region_s) *result;
1509   struct mem_region *last_one, *this_one;
1510   int ix;
1511   struct target_ops *t;
1512 
1513   result = current_target.to_memory_map (&current_target);
1514   if (result == NULL)
1515     return NULL;
1516 
1517   qsort (VEC_address (mem_region_s, result),
1518 	 VEC_length (mem_region_s, result),
1519 	 sizeof (struct mem_region), mem_region_cmp);
1520 
1521   /* Check that regions do not overlap.  Simultaneously assign
1522      a numbering for the "mem" commands to use to refer to
1523      each region.  */
1524   last_one = NULL;
1525   for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1526     {
1527       this_one->number = ix;
1528 
1529       if (last_one && last_one->hi > this_one->lo)
1530 	{
1531 	  warning (_("Overlapping regions in memory map: ignoring"));
1532 	  VEC_free (mem_region_s, result);
1533 	  return NULL;
1534 	}
1535       last_one = this_one;
1536     }
1537 
1538   return result;
1539 }
1540 
1541 void
1542 target_flash_erase (ULONGEST address, LONGEST length)
1543 {
1544   current_target.to_flash_erase (&current_target, address, length);
1545 }
1546 
1547 void
1548 target_flash_done (void)
1549 {
1550   current_target.to_flash_done (&current_target);
1551 }
1552 
1553 static void
1554 show_trust_readonly (struct ui_file *file, int from_tty,
1555 		     struct cmd_list_element *c, const char *value)
1556 {
1557   fprintf_filtered (file,
1558 		    _("Mode for reading from readonly sections is %s.\n"),
1559 		    value);
1560 }
1561 
1562 /* Target vector read/write partial wrapper functions.  */
1563 
1564 static enum target_xfer_status
1565 target_read_partial (struct target_ops *ops,
1566 		     enum target_object object,
1567 		     const char *annex, gdb_byte *buf,
1568 		     ULONGEST offset, ULONGEST len,
1569 		     ULONGEST *xfered_len)
1570 {
1571   return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1572 			      xfered_len);
1573 }
1574 
1575 static enum target_xfer_status
1576 target_write_partial (struct target_ops *ops,
1577 		      enum target_object object,
1578 		      const char *annex, const gdb_byte *buf,
1579 		      ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1580 {
1581   return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1582 			      xfered_len);
1583 }
1584 
1585 /* Wrappers to perform the full transfer.  */
1586 
1587 /* For docs on target_read see target.h.  */
1588 
1589 LONGEST
1590 target_read (struct target_ops *ops,
1591 	     enum target_object object,
1592 	     const char *annex, gdb_byte *buf,
1593 	     ULONGEST offset, LONGEST len)
1594 {
1595   LONGEST xfered_total = 0;
1596   int unit_size = 1;
1597 
1598   /* If we are reading from a memory object, find the length of an addressable
1599      unit for that architecture.  */
1600   if (object == TARGET_OBJECT_MEMORY
1601       || object == TARGET_OBJECT_STACK_MEMORY
1602       || object == TARGET_OBJECT_CODE_MEMORY
1603       || object == TARGET_OBJECT_RAW_MEMORY)
1604     unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1605 
1606   while (xfered_total < len)
1607     {
1608       ULONGEST xfered_partial;
1609       enum target_xfer_status status;
1610 
1611       status = target_read_partial (ops, object, annex,
1612 				    buf + xfered_total * unit_size,
1613 				    offset + xfered_total, len - xfered_total,
1614 				    &xfered_partial);
1615 
1616       /* Call an observer, notifying them of the xfer progress?  */
1617       if (status == TARGET_XFER_EOF)
1618 	return xfered_total;
1619       else if (status == TARGET_XFER_OK)
1620 	{
1621 	  xfered_total += xfered_partial;
1622 	  QUIT;
1623 	}
1624       else
1625 	return TARGET_XFER_E_IO;
1626 
1627     }
1628   return len;
1629 }
1630 
1631 /* Assuming that the entire [begin, end) range of memory cannot be
1632    read, try to read whatever subrange is possible to read.
1633 
1634    The function returns, in RESULT, either zero or one memory block.
1635    If there's a readable subrange at the beginning, it is completely
1636    read and returned.  Any further readable subrange will not be read.
1637    Otherwise, if there's a readable subrange at the end, it will be
1638    completely read and returned.  Any readable subranges before it
1639    (obviously, not starting at the beginning), will be ignored.  In
1640    other cases -- either no readable subrange, or readable subrange(s)
1641    that is neither at the beginning, or end, nothing is returned.
1642 
1643    The purpose of this function is to handle a read across a boundary
1644    of accessible memory in a case when memory map is not available.
1645    The above restrictions are fine for this case, but will give
1646    incorrect results if the memory is 'patchy'.  However, supporting
1647    'patchy' memory would require trying to read every single byte,
1648    and it seems unacceptable solution.  Explicit memory map is
1649    recommended for this case -- and target_read_memory_robust will
1650    take care of reading multiple ranges then.  */
1651 
1652 static void
1653 read_whatever_is_readable (struct target_ops *ops,
1654 			   const ULONGEST begin, const ULONGEST end,
1655 			   int unit_size,
1656 			   VEC(memory_read_result_s) **result)
1657 {
1658   gdb_byte *buf = xmalloc (end - begin);
1659   ULONGEST current_begin = begin;
1660   ULONGEST current_end = end;
1661   int forward;
1662   memory_read_result_s r;
1663   ULONGEST xfered_len;
1664 
1665   /* If we previously failed to read 1 byte, nothing can be done here.  */
1666   if (end - begin <= 1)
1667     {
1668       xfree (buf);
1669       return;
1670     }
1671 
1672   /* Check that either first or the last byte is readable, and give up
1673      if not.  This heuristic is meant to permit reading accessible memory
1674      at the boundary of accessible region.  */
1675   if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1676 			   buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1677     {
1678       forward = 1;
1679       ++current_begin;
1680     }
1681   else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1682 				buf + (end - begin) - 1, end - 1, 1,
1683 				&xfered_len) == TARGET_XFER_OK)
1684     {
1685       forward = 0;
1686       --current_end;
1687     }
1688   else
1689     {
1690       xfree (buf);
1691       return;
1692     }
1693 
1694   /* Loop invariant is that the [current_begin, current_end) was previously
1695      found to be not readable as a whole.
1696 
1697      Note loop condition -- if the range has 1 byte, we can't divide the range
1698      so there's no point trying further.  */
1699   while (current_end - current_begin > 1)
1700     {
1701       ULONGEST first_half_begin, first_half_end;
1702       ULONGEST second_half_begin, second_half_end;
1703       LONGEST xfer;
1704       ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1705 
1706       if (forward)
1707 	{
1708 	  first_half_begin = current_begin;
1709 	  first_half_end = middle;
1710 	  second_half_begin = middle;
1711 	  second_half_end = current_end;
1712 	}
1713       else
1714 	{
1715 	  first_half_begin = middle;
1716 	  first_half_end = current_end;
1717 	  second_half_begin = current_begin;
1718 	  second_half_end = middle;
1719 	}
1720 
1721       xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1722 			  buf + (first_half_begin - begin) * unit_size,
1723 			  first_half_begin,
1724 			  first_half_end - first_half_begin);
1725 
1726       if (xfer == first_half_end - first_half_begin)
1727 	{
1728 	  /* This half reads up fine.  So, the error must be in the
1729 	     other half.  */
1730 	  current_begin = second_half_begin;
1731 	  current_end = second_half_end;
1732 	}
1733       else
1734 	{
1735 	  /* This half is not readable.  Because we've tried one byte, we
1736 	     know some part of this half if actually readable.  Go to the next
1737 	     iteration to divide again and try to read.
1738 
1739 	     We don't handle the other half, because this function only tries
1740 	     to read a single readable subrange.  */
1741 	  current_begin = first_half_begin;
1742 	  current_end = first_half_end;
1743 	}
1744     }
1745 
1746   if (forward)
1747     {
1748       /* The [begin, current_begin) range has been read.  */
1749       r.begin = begin;
1750       r.end = current_begin;
1751       r.data = buf;
1752     }
1753   else
1754     {
1755       /* The [current_end, end) range has been read.  */
1756       LONGEST region_len = end - current_end;
1757 
1758       r.data = xmalloc (region_len * unit_size);
1759       memcpy (r.data, buf + (current_end - begin) * unit_size,
1760 	      region_len * unit_size);
1761       r.begin = current_end;
1762       r.end = end;
1763       xfree (buf);
1764     }
1765   VEC_safe_push(memory_read_result_s, (*result), &r);
1766 }
1767 
1768 void
1769 free_memory_read_result_vector (void *x)
1770 {
1771   VEC(memory_read_result_s) *v = x;
1772   memory_read_result_s *current;
1773   int ix;
1774 
1775   for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1776     {
1777       xfree (current->data);
1778     }
1779   VEC_free (memory_read_result_s, v);
1780 }
1781 
1782 VEC(memory_read_result_s) *
1783 read_memory_robust (struct target_ops *ops,
1784 		    const ULONGEST offset, const LONGEST len)
1785 {
1786   VEC(memory_read_result_s) *result = 0;
1787   int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1788 
1789   LONGEST xfered_total = 0;
1790   while (xfered_total < len)
1791     {
1792       struct mem_region *region = lookup_mem_region (offset + xfered_total);
1793       LONGEST region_len;
1794 
1795       /* If there is no explicit region, a fake one should be created.  */
1796       gdb_assert (region);
1797 
1798       if (region->hi == 0)
1799 	region_len = len - xfered_total;
1800       else
1801 	region_len = region->hi - offset;
1802 
1803       if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1804 	{
1805 	  /* Cannot read this region.  Note that we can end up here only
1806 	     if the region is explicitly marked inaccessible, or
1807 	     'inaccessible-by-default' is in effect.  */
1808 	  xfered_total += region_len;
1809 	}
1810       else
1811 	{
1812 	  LONGEST to_read = min (len - xfered_total, region_len);
1813 	  gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1814 
1815 	  LONGEST xfered_partial =
1816 	      target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1817 			   (gdb_byte *) buffer,
1818 			   offset + xfered_total, to_read);
1819 	  /* Call an observer, notifying them of the xfer progress?  */
1820 	  if (xfered_partial <= 0)
1821 	    {
1822 	      /* Got an error reading full chunk.  See if maybe we can read
1823 		 some subrange.  */
1824 	      xfree (buffer);
1825 	      read_whatever_is_readable (ops, offset + xfered_total, unit_size,
1826 					 offset + xfered_total + to_read, &result);
1827 	      xfered_total += to_read;
1828 	    }
1829 	  else
1830 	    {
1831 	      struct memory_read_result r;
1832 	      r.data = buffer;
1833 	      r.begin = offset + xfered_total;
1834 	      r.end = r.begin + xfered_partial;
1835 	      VEC_safe_push (memory_read_result_s, result, &r);
1836 	      xfered_total += xfered_partial;
1837 	    }
1838 	  QUIT;
1839 	}
1840     }
1841   return result;
1842 }
1843 
1844 
1845 /* An alternative to target_write with progress callbacks.  */
1846 
1847 LONGEST
1848 target_write_with_progress (struct target_ops *ops,
1849 			    enum target_object object,
1850 			    const char *annex, const gdb_byte *buf,
1851 			    ULONGEST offset, LONGEST len,
1852 			    void (*progress) (ULONGEST, void *), void *baton)
1853 {
1854   LONGEST xfered_total = 0;
1855   int unit_size = 1;
1856 
1857   /* If we are writing to a memory object, find the length of an addressable
1858      unit for that architecture.  */
1859   if (object == TARGET_OBJECT_MEMORY
1860       || object == TARGET_OBJECT_STACK_MEMORY
1861       || object == TARGET_OBJECT_CODE_MEMORY
1862       || object == TARGET_OBJECT_RAW_MEMORY)
1863     unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1864 
1865   /* Give the progress callback a chance to set up.  */
1866   if (progress)
1867     (*progress) (0, baton);
1868 
1869   while (xfered_total < len)
1870     {
1871       ULONGEST xfered_partial;
1872       enum target_xfer_status status;
1873 
1874       status = target_write_partial (ops, object, annex,
1875 				     buf + xfered_total * unit_size,
1876 				     offset + xfered_total, len - xfered_total,
1877 				     &xfered_partial);
1878 
1879       if (status != TARGET_XFER_OK)
1880 	return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1881 
1882       if (progress)
1883 	(*progress) (xfered_partial, baton);
1884 
1885       xfered_total += xfered_partial;
1886       QUIT;
1887     }
1888   return len;
1889 }
1890 
1891 /* For docs on target_write see target.h.  */
1892 
1893 LONGEST
1894 target_write (struct target_ops *ops,
1895 	      enum target_object object,
1896 	      const char *annex, const gdb_byte *buf,
1897 	      ULONGEST offset, LONGEST len)
1898 {
1899   return target_write_with_progress (ops, object, annex, buf, offset, len,
1900 				     NULL, NULL);
1901 }
1902 
1903 /* Read OBJECT/ANNEX using OPS.  Store the result in *BUF_P and return
1904    the size of the transferred data.  PADDING additional bytes are
1905    available in *BUF_P.  This is a helper function for
1906    target_read_alloc; see the declaration of that function for more
1907    information.  */
1908 
1909 static LONGEST
1910 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1911 		     const char *annex, gdb_byte **buf_p, int padding)
1912 {
1913   size_t buf_alloc, buf_pos;
1914   gdb_byte *buf;
1915 
1916   /* This function does not have a length parameter; it reads the
1917      entire OBJECT).  Also, it doesn't support objects fetched partly
1918      from one target and partly from another (in a different stratum,
1919      e.g. a core file and an executable).  Both reasons make it
1920      unsuitable for reading memory.  */
1921   gdb_assert (object != TARGET_OBJECT_MEMORY);
1922 
1923   /* Start by reading up to 4K at a time.  The target will throttle
1924      this number down if necessary.  */
1925   buf_alloc = 4096;
1926   buf = xmalloc (buf_alloc);
1927   buf_pos = 0;
1928   while (1)
1929     {
1930       ULONGEST xfered_len;
1931       enum target_xfer_status status;
1932 
1933       status = target_read_partial (ops, object, annex, &buf[buf_pos],
1934 				    buf_pos, buf_alloc - buf_pos - padding,
1935 				    &xfered_len);
1936 
1937       if (status == TARGET_XFER_EOF)
1938 	{
1939 	  /* Read all there was.  */
1940 	  if (buf_pos == 0)
1941 	    xfree (buf);
1942 	  else
1943 	    *buf_p = buf;
1944 	  return buf_pos;
1945 	}
1946       else if (status != TARGET_XFER_OK)
1947 	{
1948 	  /* An error occurred.  */
1949 	  xfree (buf);
1950 	  return TARGET_XFER_E_IO;
1951 	}
1952 
1953       buf_pos += xfered_len;
1954 
1955       /* If the buffer is filling up, expand it.  */
1956       if (buf_alloc < buf_pos * 2)
1957 	{
1958 	  buf_alloc *= 2;
1959 	  buf = xrealloc (buf, buf_alloc);
1960 	}
1961 
1962       QUIT;
1963     }
1964 }
1965 
1966 /* Read OBJECT/ANNEX using OPS.  Store the result in *BUF_P and return
1967    the size of the transferred data.  See the declaration in "target.h"
1968    function for more information about the return value.  */
1969 
1970 LONGEST
1971 target_read_alloc (struct target_ops *ops, enum target_object object,
1972 		   const char *annex, gdb_byte **buf_p)
1973 {
1974   return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1975 }
1976 
1977 /* Read OBJECT/ANNEX using OPS.  The result is NUL-terminated and
1978    returned as a string, allocated using xmalloc.  If an error occurs
1979    or the transfer is unsupported, NULL is returned.  Empty objects
1980    are returned as allocated but empty strings.  A warning is issued
1981    if the result contains any embedded NUL bytes.  */
1982 
1983 char *
1984 target_read_stralloc (struct target_ops *ops, enum target_object object,
1985 		      const char *annex)
1986 {
1987   gdb_byte *buffer;
1988   char *bufstr;
1989   LONGEST i, transferred;
1990 
1991   transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1992   bufstr = (char *) buffer;
1993 
1994   if (transferred < 0)
1995     return NULL;
1996 
1997   if (transferred == 0)
1998     return xstrdup ("");
1999 
2000   bufstr[transferred] = 0;
2001 
2002   /* Check for embedded NUL bytes; but allow trailing NULs.  */
2003   for (i = strlen (bufstr); i < transferred; i++)
2004     if (bufstr[i] != 0)
2005       {
2006 	warning (_("target object %d, annex %s, "
2007 		   "contained unexpected null characters"),
2008 		 (int) object, annex ? annex : "(none)");
2009 	break;
2010       }
2011 
2012   return bufstr;
2013 }
2014 
2015 /* Memory transfer methods.  */
2016 
2017 void
2018 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2019 		   LONGEST len)
2020 {
2021   /* This method is used to read from an alternate, non-current
2022      target.  This read must bypass the overlay support (as symbols
2023      don't match this target), and GDB's internal cache (wrong cache
2024      for this target).  */
2025   if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2026       != len)
2027     memory_error (TARGET_XFER_E_IO, addr);
2028 }
2029 
2030 ULONGEST
2031 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2032 			    int len, enum bfd_endian byte_order)
2033 {
2034   gdb_byte buf[sizeof (ULONGEST)];
2035 
2036   gdb_assert (len <= sizeof (buf));
2037   get_target_memory (ops, addr, buf, len);
2038   return extract_unsigned_integer (buf, len, byte_order);
2039 }
2040 
2041 /* See target.h.  */
2042 
2043 int
2044 target_insert_breakpoint (struct gdbarch *gdbarch,
2045 			  struct bp_target_info *bp_tgt)
2046 {
2047   if (!may_insert_breakpoints)
2048     {
2049       warning (_("May not insert breakpoints"));
2050       return 1;
2051     }
2052 
2053   return current_target.to_insert_breakpoint (&current_target,
2054 					      gdbarch, bp_tgt);
2055 }
2056 
2057 /* See target.h.  */
2058 
2059 int
2060 target_remove_breakpoint (struct gdbarch *gdbarch,
2061 			  struct bp_target_info *bp_tgt)
2062 {
2063   /* This is kind of a weird case to handle, but the permission might
2064      have been changed after breakpoints were inserted - in which case
2065      we should just take the user literally and assume that any
2066      breakpoints should be left in place.  */
2067   if (!may_insert_breakpoints)
2068     {
2069       warning (_("May not remove breakpoints"));
2070       return 1;
2071     }
2072 
2073   return current_target.to_remove_breakpoint (&current_target,
2074 					      gdbarch, bp_tgt);
2075 }
2076 
2077 static void
2078 target_info (char *args, int from_tty)
2079 {
2080   struct target_ops *t;
2081   int has_all_mem = 0;
2082 
2083   if (symfile_objfile != NULL)
2084     printf_unfiltered (_("Symbols from \"%s\".\n"),
2085 		       objfile_name (symfile_objfile));
2086 
2087   for (t = target_stack; t != NULL; t = t->beneath)
2088     {
2089       if (!(*t->to_has_memory) (t))
2090 	continue;
2091 
2092       if ((int) (t->to_stratum) <= (int) dummy_stratum)
2093 	continue;
2094       if (has_all_mem)
2095 	printf_unfiltered (_("\tWhile running this, "
2096 			     "GDB does not access memory from...\n"));
2097       printf_unfiltered ("%s:\n", t->to_longname);
2098       (t->to_files_info) (t);
2099       has_all_mem = (*t->to_has_all_memory) (t);
2100     }
2101 }
2102 
2103 /* This function is called before any new inferior is created, e.g.
2104    by running a program, attaching, or connecting to a target.
2105    It cleans up any state from previous invocations which might
2106    change between runs.  This is a subset of what target_preopen
2107    resets (things which might change between targets).  */
2108 
2109 void
2110 target_pre_inferior (int from_tty)
2111 {
2112   /* Clear out solib state.  Otherwise the solib state of the previous
2113      inferior might have survived and is entirely wrong for the new
2114      target.  This has been observed on GNU/Linux using glibc 2.3.  How
2115      to reproduce:
2116 
2117      bash$ ./foo&
2118      [1] 4711
2119      bash$ ./foo&
2120      [1] 4712
2121      bash$ gdb ./foo
2122      [...]
2123      (gdb) attach 4711
2124      (gdb) detach
2125      (gdb) attach 4712
2126      Cannot access memory at address 0xdeadbeef
2127   */
2128 
2129   /* In some OSs, the shared library list is the same/global/shared
2130      across inferiors.  If code is shared between processes, so are
2131      memory regions and features.  */
2132   if (!gdbarch_has_global_solist (target_gdbarch ()))
2133     {
2134       no_shared_libraries (NULL, from_tty);
2135 
2136       invalidate_target_mem_regions ();
2137 
2138       target_clear_description ();
2139     }
2140 
2141   agent_capability_invalidate ();
2142 }
2143 
2144 /* Callback for iterate_over_inferiors.  Gets rid of the given
2145    inferior.  */
2146 
2147 static int
2148 dispose_inferior (struct inferior *inf, void *args)
2149 {
2150   struct thread_info *thread;
2151 
2152   thread = any_thread_of_process (inf->pid);
2153   if (thread)
2154     {
2155       switch_to_thread (thread->ptid);
2156 
2157       /* Core inferiors actually should be detached, not killed.  */
2158       if (target_has_execution)
2159 	target_kill ();
2160       else
2161 	target_detach (NULL, 0);
2162     }
2163 
2164   return 0;
2165 }
2166 
2167 /* This is to be called by the open routine before it does
2168    anything.  */
2169 
2170 void
2171 target_preopen (int from_tty)
2172 {
2173   dont_repeat ();
2174 
2175   if (have_inferiors ())
2176     {
2177       if (!from_tty
2178 	  || !have_live_inferiors ()
2179 	  || query (_("A program is being debugged already.  Kill it? ")))
2180 	iterate_over_inferiors (dispose_inferior, NULL);
2181       else
2182 	error (_("Program not killed."));
2183     }
2184 
2185   /* Calling target_kill may remove the target from the stack.  But if
2186      it doesn't (which seems like a win for UDI), remove it now.  */
2187   /* Leave the exec target, though.  The user may be switching from a
2188      live process to a core of the same program.  */
2189   pop_all_targets_above (file_stratum);
2190 
2191   target_pre_inferior (from_tty);
2192 }
2193 
2194 /* Detach a target after doing deferred register stores.  */
2195 
2196 void
2197 target_detach (const char *args, int from_tty)
2198 {
2199   struct target_ops* t;
2200 
2201   if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2202     /* Don't remove global breakpoints here.  They're removed on
2203        disconnection from the target.  */
2204     ;
2205   else
2206     /* If we're in breakpoints-always-inserted mode, have to remove
2207        them before detaching.  */
2208     remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2209 
2210   prepare_for_detach ();
2211 
2212   current_target.to_detach (&current_target, args, from_tty);
2213 }
2214 
2215 void
2216 target_disconnect (const char *args, int from_tty)
2217 {
2218   /* If we're in breakpoints-always-inserted mode or if breakpoints
2219      are global across processes, we have to remove them before
2220      disconnecting.  */
2221   remove_breakpoints ();
2222 
2223   current_target.to_disconnect (&current_target, args, from_tty);
2224 }
2225 
2226 ptid_t
2227 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2228 {
2229   return (current_target.to_wait) (&current_target, ptid, status, options);
2230 }
2231 
2232 char *
2233 target_pid_to_str (ptid_t ptid)
2234 {
2235   return (*current_target.to_pid_to_str) (&current_target, ptid);
2236 }
2237 
2238 char *
2239 target_thread_name (struct thread_info *info)
2240 {
2241   return current_target.to_thread_name (&current_target, info);
2242 }
2243 
2244 void
2245 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2246 {
2247   struct target_ops *t;
2248 
2249   target_dcache_invalidate ();
2250 
2251   current_target.to_resume (&current_target, ptid, step, signal);
2252 
2253   registers_changed_ptid (ptid);
2254   /* We only set the internal executing state here.  The user/frontend
2255      running state is set at a higher level.  */
2256   set_executing (ptid, 1);
2257   clear_inline_frame_state (ptid);
2258 }
2259 
2260 void
2261 target_pass_signals (int numsigs, unsigned char *pass_signals)
2262 {
2263   (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2264 }
2265 
2266 void
2267 target_program_signals (int numsigs, unsigned char *program_signals)
2268 {
2269   (*current_target.to_program_signals) (&current_target,
2270 					numsigs, program_signals);
2271 }
2272 
2273 static int
2274 default_follow_fork (struct target_ops *self, int follow_child,
2275 		     int detach_fork)
2276 {
2277   /* Some target returned a fork event, but did not know how to follow it.  */
2278   internal_error (__FILE__, __LINE__,
2279 		  _("could not find a target to follow fork"));
2280 }
2281 
2282 /* Look through the list of possible targets for a target that can
2283    follow forks.  */
2284 
2285 int
2286 target_follow_fork (int follow_child, int detach_fork)
2287 {
2288   return current_target.to_follow_fork (&current_target,
2289 					follow_child, detach_fork);
2290 }
2291 
2292 static void
2293 default_mourn_inferior (struct target_ops *self)
2294 {
2295   internal_error (__FILE__, __LINE__,
2296 		  _("could not find a target to follow mourn inferior"));
2297 }
2298 
2299 void
2300 target_mourn_inferior (void)
2301 {
2302   current_target.to_mourn_inferior (&current_target);
2303 
2304   /* We no longer need to keep handles on any of the object files.
2305      Make sure to release them to avoid unnecessarily locking any
2306      of them while we're not actually debugging.  */
2307   bfd_cache_close_all ();
2308 }
2309 
2310 /* Look for a target which can describe architectural features, starting
2311    from TARGET.  If we find one, return its description.  */
2312 
2313 const struct target_desc *
2314 target_read_description (struct target_ops *target)
2315 {
2316   return target->to_read_description (target);
2317 }
2318 
2319 /* This implements a basic search of memory, reading target memory and
2320    performing the search here (as opposed to performing the search in on the
2321    target side with, for example, gdbserver).  */
2322 
2323 int
2324 simple_search_memory (struct target_ops *ops,
2325 		      CORE_ADDR start_addr, ULONGEST search_space_len,
2326 		      const gdb_byte *pattern, ULONGEST pattern_len,
2327 		      CORE_ADDR *found_addrp)
2328 {
2329   /* NOTE: also defined in find.c testcase.  */
2330 #define SEARCH_CHUNK_SIZE 16000
2331   const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2332   /* Buffer to hold memory contents for searching.  */
2333   gdb_byte *search_buf;
2334   unsigned search_buf_size;
2335   struct cleanup *old_cleanups;
2336 
2337   search_buf_size = chunk_size + pattern_len - 1;
2338 
2339   /* No point in trying to allocate a buffer larger than the search space.  */
2340   if (search_space_len < search_buf_size)
2341     search_buf_size = search_space_len;
2342 
2343   search_buf = malloc (search_buf_size);
2344   if (search_buf == NULL)
2345     error (_("Unable to allocate memory to perform the search."));
2346   old_cleanups = make_cleanup (free_current_contents, &search_buf);
2347 
2348   /* Prime the search buffer.  */
2349 
2350   if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2351 		   search_buf, start_addr, search_buf_size) != search_buf_size)
2352     {
2353       warning (_("Unable to access %s bytes of target "
2354 		 "memory at %s, halting search."),
2355 	       pulongest (search_buf_size), hex_string (start_addr));
2356       do_cleanups (old_cleanups);
2357       return -1;
2358     }
2359 
2360   /* Perform the search.
2361 
2362      The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2363      When we've scanned N bytes we copy the trailing bytes to the start and
2364      read in another N bytes.  */
2365 
2366   while (search_space_len >= pattern_len)
2367     {
2368       gdb_byte *found_ptr;
2369       unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2370 
2371       found_ptr = memmem (search_buf, nr_search_bytes,
2372 			  pattern, pattern_len);
2373 
2374       if (found_ptr != NULL)
2375 	{
2376 	  CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2377 
2378 	  *found_addrp = found_addr;
2379 	  do_cleanups (old_cleanups);
2380 	  return 1;
2381 	}
2382 
2383       /* Not found in this chunk, skip to next chunk.  */
2384 
2385       /* Don't let search_space_len wrap here, it's unsigned.  */
2386       if (search_space_len >= chunk_size)
2387 	search_space_len -= chunk_size;
2388       else
2389 	search_space_len = 0;
2390 
2391       if (search_space_len >= pattern_len)
2392 	{
2393 	  unsigned keep_len = search_buf_size - chunk_size;
2394 	  CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2395 	  int nr_to_read;
2396 
2397 	  /* Copy the trailing part of the previous iteration to the front
2398 	     of the buffer for the next iteration.  */
2399 	  gdb_assert (keep_len == pattern_len - 1);
2400 	  memcpy (search_buf, search_buf + chunk_size, keep_len);
2401 
2402 	  nr_to_read = min (search_space_len - keep_len, chunk_size);
2403 
2404 	  if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2405 			   search_buf + keep_len, read_addr,
2406 			   nr_to_read) != nr_to_read)
2407 	    {
2408 	      warning (_("Unable to access %s bytes of target "
2409 			 "memory at %s, halting search."),
2410 		       plongest (nr_to_read),
2411 		       hex_string (read_addr));
2412 	      do_cleanups (old_cleanups);
2413 	      return -1;
2414 	    }
2415 
2416 	  start_addr += chunk_size;
2417 	}
2418     }
2419 
2420   /* Not found.  */
2421 
2422   do_cleanups (old_cleanups);
2423   return 0;
2424 }
2425 
2426 /* Default implementation of memory-searching.  */
2427 
2428 static int
2429 default_search_memory (struct target_ops *self,
2430 		       CORE_ADDR start_addr, ULONGEST search_space_len,
2431 		       const gdb_byte *pattern, ULONGEST pattern_len,
2432 		       CORE_ADDR *found_addrp)
2433 {
2434   /* Start over from the top of the target stack.  */
2435   return simple_search_memory (current_target.beneath,
2436 			       start_addr, search_space_len,
2437 			       pattern, pattern_len, found_addrp);
2438 }
2439 
2440 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2441    sequence of bytes in PATTERN with length PATTERN_LEN.
2442 
2443    The result is 1 if found, 0 if not found, and -1 if there was an error
2444    requiring halting of the search (e.g. memory read error).
2445    If the pattern is found the address is recorded in FOUND_ADDRP.  */
2446 
2447 int
2448 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2449 		      const gdb_byte *pattern, ULONGEST pattern_len,
2450 		      CORE_ADDR *found_addrp)
2451 {
2452   return current_target.to_search_memory (&current_target, start_addr,
2453 					  search_space_len,
2454 					  pattern, pattern_len, found_addrp);
2455 }
2456 
2457 /* Look through the currently pushed targets.  If none of them will
2458    be able to restart the currently running process, issue an error
2459    message.  */
2460 
2461 void
2462 target_require_runnable (void)
2463 {
2464   struct target_ops *t;
2465 
2466   for (t = target_stack; t != NULL; t = t->beneath)
2467     {
2468       /* If this target knows how to create a new program, then
2469 	 assume we will still be able to after killing the current
2470 	 one.  Either killing and mourning will not pop T, or else
2471 	 find_default_run_target will find it again.  */
2472       if (t->to_create_inferior != NULL)
2473 	return;
2474 
2475       /* Do not worry about targets at certain strata that can not
2476 	 create inferiors.  Assume they will be pushed again if
2477 	 necessary, and continue to the process_stratum.  */
2478       if (t->to_stratum == thread_stratum
2479 	  || t->to_stratum == record_stratum
2480 	  || t->to_stratum == arch_stratum)
2481 	continue;
2482 
2483       error (_("The \"%s\" target does not support \"run\".  "
2484 	       "Try \"help target\" or \"continue\"."),
2485 	     t->to_shortname);
2486     }
2487 
2488   /* This function is only called if the target is running.  In that
2489      case there should have been a process_stratum target and it
2490      should either know how to create inferiors, or not...  */
2491   internal_error (__FILE__, __LINE__, _("No targets found"));
2492 }
2493 
2494 /* Whether GDB is allowed to fall back to the default run target for
2495    "run", "attach", etc. when no target is connected yet.  */
2496 static int auto_connect_native_target = 1;
2497 
2498 static void
2499 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2500 				 struct cmd_list_element *c, const char *value)
2501 {
2502   fprintf_filtered (file,
2503 		    _("Whether GDB may automatically connect to the "
2504 		      "native target is %s.\n"),
2505 		    value);
2506 }
2507 
2508 /* Look through the list of possible targets for a target that can
2509    execute a run or attach command without any other data.  This is
2510    used to locate the default process stratum.
2511 
2512    If DO_MESG is not NULL, the result is always valid (error() is
2513    called for errors); else, return NULL on error.  */
2514 
2515 static struct target_ops *
2516 find_default_run_target (char *do_mesg)
2517 {
2518   struct target_ops *runable = NULL;
2519 
2520   if (auto_connect_native_target)
2521     {
2522       struct target_ops *t;
2523       int count = 0;
2524       int i;
2525 
2526       for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2527 	{
2528 	  if (t->to_can_run != delegate_can_run && target_can_run (t))
2529 	    {
2530 	      runable = t;
2531 	      ++count;
2532 	    }
2533 	}
2534 
2535       if (count != 1)
2536 	runable = NULL;
2537     }
2538 
2539   if (runable == NULL)
2540     {
2541       if (do_mesg)
2542 	error (_("Don't know how to %s.  Try \"help target\"."), do_mesg);
2543       else
2544 	return NULL;
2545     }
2546 
2547   return runable;
2548 }
2549 
2550 /* See target.h.  */
2551 
2552 struct target_ops *
2553 find_attach_target (void)
2554 {
2555   struct target_ops *t;
2556 
2557   /* If a target on the current stack can attach, use it.  */
2558   for (t = current_target.beneath; t != NULL; t = t->beneath)
2559     {
2560       if (t->to_attach != NULL)
2561 	break;
2562     }
2563 
2564   /* Otherwise, use the default run target for attaching.  */
2565   if (t == NULL)
2566     t = find_default_run_target ("attach");
2567 
2568   return t;
2569 }
2570 
2571 /* See target.h.  */
2572 
2573 struct target_ops *
2574 find_run_target (void)
2575 {
2576   struct target_ops *t;
2577 
2578   /* If a target on the current stack can attach, use it.  */
2579   for (t = current_target.beneath; t != NULL; t = t->beneath)
2580     {
2581       if (t->to_create_inferior != NULL)
2582 	break;
2583     }
2584 
2585   /* Otherwise, use the default run target.  */
2586   if (t == NULL)
2587     t = find_default_run_target ("run");
2588 
2589   return t;
2590 }
2591 
2592 /* Implement the "info proc" command.  */
2593 
2594 int
2595 target_info_proc (const char *args, enum info_proc_what what)
2596 {
2597   struct target_ops *t;
2598 
2599   /* If we're already connected to something that can get us OS
2600      related data, use it.  Otherwise, try using the native
2601      target.  */
2602   if (current_target.to_stratum >= process_stratum)
2603     t = current_target.beneath;
2604   else
2605     t = find_default_run_target (NULL);
2606 
2607   for (; t != NULL; t = t->beneath)
2608     {
2609       if (t->to_info_proc != NULL)
2610 	{
2611 	  t->to_info_proc (t, args, what);
2612 
2613 	  if (targetdebug)
2614 	    fprintf_unfiltered (gdb_stdlog,
2615 				"target_info_proc (\"%s\", %d)\n", args, what);
2616 
2617 	  return 1;
2618 	}
2619     }
2620 
2621   return 0;
2622 }
2623 
2624 static int
2625 find_default_supports_disable_randomization (struct target_ops *self)
2626 {
2627   struct target_ops *t;
2628 
2629   t = find_default_run_target (NULL);
2630   if (t && t->to_supports_disable_randomization)
2631     return (t->to_supports_disable_randomization) (t);
2632   return 0;
2633 }
2634 
2635 int
2636 target_supports_disable_randomization (void)
2637 {
2638   struct target_ops *t;
2639 
2640   for (t = &current_target; t != NULL; t = t->beneath)
2641     if (t->to_supports_disable_randomization)
2642       return t->to_supports_disable_randomization (t);
2643 
2644   return 0;
2645 }
2646 
2647 char *
2648 target_get_osdata (const char *type)
2649 {
2650   struct target_ops *t;
2651 
2652   /* If we're already connected to something that can get us OS
2653      related data, use it.  Otherwise, try using the native
2654      target.  */
2655   if (current_target.to_stratum >= process_stratum)
2656     t = current_target.beneath;
2657   else
2658     t = find_default_run_target ("get OS data");
2659 
2660   if (!t)
2661     return NULL;
2662 
2663   return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2664 }
2665 
2666 static struct address_space *
2667 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2668 {
2669   struct inferior *inf;
2670 
2671   /* Fall-back to the "main" address space of the inferior.  */
2672   inf = find_inferior_ptid (ptid);
2673 
2674   if (inf == NULL || inf->aspace == NULL)
2675     internal_error (__FILE__, __LINE__,
2676 		    _("Can't determine the current "
2677 		      "address space of thread %s\n"),
2678 		    target_pid_to_str (ptid));
2679 
2680   return inf->aspace;
2681 }
2682 
2683 /* Determine the current address space of thread PTID.  */
2684 
2685 struct address_space *
2686 target_thread_address_space (ptid_t ptid)
2687 {
2688   struct address_space *aspace;
2689 
2690   aspace = current_target.to_thread_address_space (&current_target, ptid);
2691   gdb_assert (aspace != NULL);
2692 
2693   return aspace;
2694 }
2695 
2696 
2697 /* Target file operations.  */
2698 
2699 static struct target_ops *
2700 default_fileio_target (void)
2701 {
2702   /* If we're already connected to something that can perform
2703      file I/O, use it. Otherwise, try using the native target.  */
2704   if (current_target.to_stratum >= process_stratum)
2705     return current_target.beneath;
2706   else
2707     return find_default_run_target ("file I/O");
2708 }
2709 
2710 /* File handle for target file operations.  */
2711 
2712 typedef struct
2713 {
2714   /* The target on which this file is open.  */
2715   struct target_ops *t;
2716 
2717   /* The file descriptor on the target.  */
2718   int fd;
2719 } fileio_fh_t;
2720 
2721 DEF_VEC_O (fileio_fh_t);
2722 
2723 /* Vector of currently open file handles.  The value returned by
2724    target_fileio_open and passed as the FD argument to other
2725    target_fileio_* functions is an index into this vector.  This
2726    vector's entries are never freed; instead, files are marked as
2727    closed, and the handle becomes available for reuse.  */
2728 static VEC (fileio_fh_t) *fileio_fhandles;
2729 
2730 /* Macro to check whether a fileio_fh_t represents a closed file.  */
2731 #define is_closed_fileio_fh(fd) ((fd) < 0)
2732 
2733 /* Index into fileio_fhandles of the lowest handle that might be
2734    closed.  This permits handle reuse without searching the whole
2735    list each time a new file is opened.  */
2736 static int lowest_closed_fd;
2737 
2738 /* Acquire a target fileio file descriptor.  */
2739 
2740 static int
2741 acquire_fileio_fd (struct target_ops *t, int fd)
2742 {
2743   fileio_fh_t *fh, buf;
2744 
2745   gdb_assert (!is_closed_fileio_fh (fd));
2746 
2747   /* Search for closed handles to reuse.  */
2748   for (;
2749        VEC_iterate (fileio_fh_t, fileio_fhandles,
2750                     lowest_closed_fd, fh);
2751        lowest_closed_fd++)
2752     if (is_closed_fileio_fh (fh->fd))
2753       break;
2754 
2755   /* Push a new handle if no closed handles were found.  */
2756   if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2757     fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2758 
2759   /* Fill in the handle.  */
2760   fh->t = t;
2761   fh->fd = fd;
2762 
2763   /* Return its index, and start the next lookup at
2764      the next index.  */
2765   return lowest_closed_fd++;
2766 }
2767 
2768 /* Release a target fileio file descriptor.  */
2769 
2770 static void
2771 release_fileio_fd (int fd, fileio_fh_t *fh)
2772 {
2773   fh->fd = -1;
2774   lowest_closed_fd = min (lowest_closed_fd, fd);
2775 }
2776 
2777 /* Return a pointer to the fileio_fhandle_t corresponding to FD.  */
2778 
2779 #define fileio_fd_to_fh(fd) \
2780   VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2781 
2782 /* Helper for target_fileio_open and
2783    target_fileio_open_warn_if_slow.  */
2784 
2785 static int
2786 target_fileio_open_1 (struct inferior *inf, const char *filename,
2787 		      int flags, int mode, int warn_if_slow,
2788 		      int *target_errno)
2789 {
2790   struct target_ops *t;
2791 
2792   for (t = default_fileio_target (); t != NULL; t = t->beneath)
2793     {
2794       if (t->to_fileio_open != NULL)
2795 	{
2796 	  int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2797 				      warn_if_slow, target_errno);
2798 
2799 	  if (fd < 0)
2800 	    fd = -1;
2801 	  else
2802 	    fd = acquire_fileio_fd (t, fd);
2803 
2804 	  if (targetdebug)
2805 	    fprintf_unfiltered (gdb_stdlog,
2806 				"target_fileio_open (%d,%s,0x%x,0%o,%d)"
2807 				" = %d (%d)\n",
2808 				inf == NULL ? 0 : inf->num,
2809 				filename, flags, mode,
2810 				warn_if_slow, fd,
2811 				fd != -1 ? 0 : *target_errno);
2812 	  return fd;
2813 	}
2814     }
2815 
2816   *target_errno = FILEIO_ENOSYS;
2817   return -1;
2818 }
2819 
2820 /* See target.h.  */
2821 
2822 int
2823 target_fileio_open (struct inferior *inf, const char *filename,
2824 		    int flags, int mode, int *target_errno)
2825 {
2826   return target_fileio_open_1 (inf, filename, flags, mode, 0,
2827 			       target_errno);
2828 }
2829 
2830 /* See target.h.  */
2831 
2832 int
2833 target_fileio_open_warn_if_slow (struct inferior *inf,
2834 				 const char *filename,
2835 				 int flags, int mode, int *target_errno)
2836 {
2837   return target_fileio_open_1 (inf, filename, flags, mode, 1,
2838 			       target_errno);
2839 }
2840 
2841 /* See target.h.  */
2842 
2843 int
2844 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2845 		      ULONGEST offset, int *target_errno)
2846 {
2847   fileio_fh_t *fh = fileio_fd_to_fh (fd);
2848   int ret = -1;
2849 
2850   if (is_closed_fileio_fh (fh->fd))
2851     *target_errno = EBADF;
2852   else
2853     ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2854 				   len, offset, target_errno);
2855 
2856   if (targetdebug)
2857     fprintf_unfiltered (gdb_stdlog,
2858 			"target_fileio_pwrite (%d,...,%d,%s) "
2859 			"= %d (%d)\n",
2860 			fd, len, pulongest (offset),
2861 			ret, ret != -1 ? 0 : *target_errno);
2862   return ret;
2863 }
2864 
2865 /* See target.h.  */
2866 
2867 int
2868 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2869 		     ULONGEST offset, int *target_errno)
2870 {
2871   fileio_fh_t *fh = fileio_fd_to_fh (fd);
2872   int ret = -1;
2873 
2874   if (is_closed_fileio_fh (fh->fd))
2875     *target_errno = EBADF;
2876   else
2877     ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2878 				  len, offset, target_errno);
2879 
2880   if (targetdebug)
2881     fprintf_unfiltered (gdb_stdlog,
2882 			"target_fileio_pread (%d,...,%d,%s) "
2883 			"= %d (%d)\n",
2884 			fd, len, pulongest (offset),
2885 			ret, ret != -1 ? 0 : *target_errno);
2886   return ret;
2887 }
2888 
2889 /* See target.h.  */
2890 
2891 int
2892 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2893 {
2894   fileio_fh_t *fh = fileio_fd_to_fh (fd);
2895   int ret = -1;
2896 
2897   if (is_closed_fileio_fh (fh->fd))
2898     *target_errno = EBADF;
2899   else
2900     ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2901 
2902   if (targetdebug)
2903     fprintf_unfiltered (gdb_stdlog,
2904 			"target_fileio_fstat (%d) = %d (%d)\n",
2905 			fd, ret, ret != -1 ? 0 : *target_errno);
2906   return ret;
2907 }
2908 
2909 /* See target.h.  */
2910 
2911 int
2912 target_fileio_close (int fd, int *target_errno)
2913 {
2914   fileio_fh_t *fh = fileio_fd_to_fh (fd);
2915   int ret = -1;
2916 
2917   if (is_closed_fileio_fh (fh->fd))
2918     *target_errno = EBADF;
2919   else
2920     {
2921       ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2922       release_fileio_fd (fd, fh);
2923     }
2924 
2925   if (targetdebug)
2926     fprintf_unfiltered (gdb_stdlog,
2927 			"target_fileio_close (%d) = %d (%d)\n",
2928 			fd, ret, ret != -1 ? 0 : *target_errno);
2929   return ret;
2930 }
2931 
2932 /* See target.h.  */
2933 
2934 int
2935 target_fileio_unlink (struct inferior *inf, const char *filename,
2936 		      int *target_errno)
2937 {
2938   struct target_ops *t;
2939 
2940   for (t = default_fileio_target (); t != NULL; t = t->beneath)
2941     {
2942       if (t->to_fileio_unlink != NULL)
2943 	{
2944 	  int ret = t->to_fileio_unlink (t, inf, filename,
2945 					 target_errno);
2946 
2947 	  if (targetdebug)
2948 	    fprintf_unfiltered (gdb_stdlog,
2949 				"target_fileio_unlink (%d,%s)"
2950 				" = %d (%d)\n",
2951 				inf == NULL ? 0 : inf->num, filename,
2952 				ret, ret != -1 ? 0 : *target_errno);
2953 	  return ret;
2954 	}
2955     }
2956 
2957   *target_errno = FILEIO_ENOSYS;
2958   return -1;
2959 }
2960 
2961 /* See target.h.  */
2962 
2963 char *
2964 target_fileio_readlink (struct inferior *inf, const char *filename,
2965 			int *target_errno)
2966 {
2967   struct target_ops *t;
2968 
2969   for (t = default_fileio_target (); t != NULL; t = t->beneath)
2970     {
2971       if (t->to_fileio_readlink != NULL)
2972 	{
2973 	  char *ret = t->to_fileio_readlink (t, inf, filename,
2974 					     target_errno);
2975 
2976 	  if (targetdebug)
2977 	    fprintf_unfiltered (gdb_stdlog,
2978 				"target_fileio_readlink (%d,%s)"
2979 				" = %s (%d)\n",
2980 				inf == NULL ? 0 : inf->num,
2981 				filename, ret? ret : "(nil)",
2982 				ret? 0 : *target_errno);
2983 	  return ret;
2984 	}
2985     }
2986 
2987   *target_errno = FILEIO_ENOSYS;
2988   return NULL;
2989 }
2990 
2991 static void
2992 target_fileio_close_cleanup (void *opaque)
2993 {
2994   int fd = *(int *) opaque;
2995   int target_errno;
2996 
2997   target_fileio_close (fd, &target_errno);
2998 }
2999 
3000 /* Read target file FILENAME, in the filesystem as seen by INF.  If
3001    INF is NULL, use the filesystem seen by the debugger (GDB or, for
3002    remote targets, the remote stub).  Store the result in *BUF_P and
3003    return the size of the transferred data.  PADDING additional bytes
3004    are available in *BUF_P.  This is a helper function for
3005    target_fileio_read_alloc; see the declaration of that function for
3006    more information.  */
3007 
3008 static LONGEST
3009 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3010 			    gdb_byte **buf_p, int padding)
3011 {
3012   struct cleanup *close_cleanup;
3013   size_t buf_alloc, buf_pos;
3014   gdb_byte *buf;
3015   LONGEST n;
3016   int fd;
3017   int target_errno;
3018 
3019   fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3020 			   &target_errno);
3021   if (fd == -1)
3022     return -1;
3023 
3024   close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3025 
3026   /* Start by reading up to 4K at a time.  The target will throttle
3027      this number down if necessary.  */
3028   buf_alloc = 4096;
3029   buf = xmalloc (buf_alloc);
3030   buf_pos = 0;
3031   while (1)
3032     {
3033       n = target_fileio_pread (fd, &buf[buf_pos],
3034 			       buf_alloc - buf_pos - padding, buf_pos,
3035 			       &target_errno);
3036       if (n < 0)
3037 	{
3038 	  /* An error occurred.  */
3039 	  do_cleanups (close_cleanup);
3040 	  xfree (buf);
3041 	  return -1;
3042 	}
3043       else if (n == 0)
3044 	{
3045 	  /* Read all there was.  */
3046 	  do_cleanups (close_cleanup);
3047 	  if (buf_pos == 0)
3048 	    xfree (buf);
3049 	  else
3050 	    *buf_p = buf;
3051 	  return buf_pos;
3052 	}
3053 
3054       buf_pos += n;
3055 
3056       /* If the buffer is filling up, expand it.  */
3057       if (buf_alloc < buf_pos * 2)
3058 	{
3059 	  buf_alloc *= 2;
3060 	  buf = xrealloc (buf, buf_alloc);
3061 	}
3062 
3063       QUIT;
3064     }
3065 }
3066 
3067 /* See target.h.  */
3068 
3069 LONGEST
3070 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3071 			  gdb_byte **buf_p)
3072 {
3073   return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3074 }
3075 
3076 /* See target.h.  */
3077 
3078 char *
3079 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3080 {
3081   gdb_byte *buffer;
3082   char *bufstr;
3083   LONGEST i, transferred;
3084 
3085   transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3086   bufstr = (char *) buffer;
3087 
3088   if (transferred < 0)
3089     return NULL;
3090 
3091   if (transferred == 0)
3092     return xstrdup ("");
3093 
3094   bufstr[transferred] = 0;
3095 
3096   /* Check for embedded NUL bytes; but allow trailing NULs.  */
3097   for (i = strlen (bufstr); i < transferred; i++)
3098     if (bufstr[i] != 0)
3099       {
3100 	warning (_("target file %s "
3101 		   "contained unexpected null characters"),
3102 		 filename);
3103 	break;
3104       }
3105 
3106   return bufstr;
3107 }
3108 
3109 
3110 static int
3111 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3112 				     CORE_ADDR addr, int len)
3113 {
3114   return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3115 }
3116 
3117 static int
3118 default_watchpoint_addr_within_range (struct target_ops *target,
3119 				      CORE_ADDR addr,
3120 				      CORE_ADDR start, int length)
3121 {
3122   return addr >= start && addr < start + length;
3123 }
3124 
3125 static struct gdbarch *
3126 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3127 {
3128   return target_gdbarch ();
3129 }
3130 
3131 static int
3132 return_zero (struct target_ops *ignore)
3133 {
3134   return 0;
3135 }
3136 
3137 static int
3138 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3139 {
3140   return 0;
3141 }
3142 
3143 /*
3144  * Find the next target down the stack from the specified target.
3145  */
3146 
3147 struct target_ops *
3148 find_target_beneath (struct target_ops *t)
3149 {
3150   return t->beneath;
3151 }
3152 
3153 /* See target.h.  */
3154 
3155 struct target_ops *
3156 find_target_at (enum strata stratum)
3157 {
3158   struct target_ops *t;
3159 
3160   for (t = current_target.beneath; t != NULL; t = t->beneath)
3161     if (t->to_stratum == stratum)
3162       return t;
3163 
3164   return NULL;
3165 }
3166 
3167 
3168 /* The inferior process has died.  Long live the inferior!  */
3169 
3170 void
3171 generic_mourn_inferior (void)
3172 {
3173   ptid_t ptid;
3174 
3175   ptid = inferior_ptid;
3176   inferior_ptid = null_ptid;
3177 
3178   /* Mark breakpoints uninserted in case something tries to delete a
3179      breakpoint while we delete the inferior's threads (which would
3180      fail, since the inferior is long gone).  */
3181   mark_breakpoints_out ();
3182 
3183   if (!ptid_equal (ptid, null_ptid))
3184     {
3185       int pid = ptid_get_pid (ptid);
3186       exit_inferior (pid);
3187     }
3188 
3189   /* Note this wipes step-resume breakpoints, so needs to be done
3190      after exit_inferior, which ends up referencing the step-resume
3191      breakpoints through clear_thread_inferior_resources.  */
3192   breakpoint_init_inferior (inf_exited);
3193 
3194   registers_changed ();
3195 
3196   reopen_exec_file ();
3197   reinit_frame_cache ();
3198 
3199   if (deprecated_detach_hook)
3200     deprecated_detach_hook ();
3201 }
3202 
3203 /* Convert a normal process ID to a string.  Returns the string in a
3204    static buffer.  */
3205 
3206 char *
3207 normal_pid_to_str (ptid_t ptid)
3208 {
3209   static char buf[32];
3210 
3211   xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3212   return buf;
3213 }
3214 
3215 static char *
3216 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3217 {
3218   return normal_pid_to_str (ptid);
3219 }
3220 
3221 /* Error-catcher for target_find_memory_regions.  */
3222 static int
3223 dummy_find_memory_regions (struct target_ops *self,
3224 			   find_memory_region_ftype ignore1, void *ignore2)
3225 {
3226   error (_("Command not implemented for this target."));
3227   return 0;
3228 }
3229 
3230 /* Error-catcher for target_make_corefile_notes.  */
3231 static char *
3232 dummy_make_corefile_notes (struct target_ops *self,
3233 			   bfd *ignore1, int *ignore2)
3234 {
3235   error (_("Command not implemented for this target."));
3236   return NULL;
3237 }
3238 
3239 /* Set up the handful of non-empty slots needed by the dummy target
3240    vector.  */
3241 
3242 static void
3243 init_dummy_target (void)
3244 {
3245   dummy_target.to_shortname = "None";
3246   dummy_target.to_longname = "None";
3247   dummy_target.to_doc = "";
3248   dummy_target.to_supports_disable_randomization
3249     = find_default_supports_disable_randomization;
3250   dummy_target.to_stratum = dummy_stratum;
3251   dummy_target.to_has_all_memory = return_zero;
3252   dummy_target.to_has_memory = return_zero;
3253   dummy_target.to_has_stack = return_zero;
3254   dummy_target.to_has_registers = return_zero;
3255   dummy_target.to_has_execution = return_zero_has_execution;
3256   dummy_target.to_magic = OPS_MAGIC;
3257 
3258   install_dummy_methods (&dummy_target);
3259 }
3260 
3261 
3262 void
3263 target_close (struct target_ops *targ)
3264 {
3265   gdb_assert (!target_is_pushed (targ));
3266 
3267   if (targ->to_xclose != NULL)
3268     targ->to_xclose (targ);
3269   else if (targ->to_close != NULL)
3270     targ->to_close (targ);
3271 
3272   if (targetdebug)
3273     fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3274 }
3275 
3276 int
3277 target_thread_alive (ptid_t ptid)
3278 {
3279   return current_target.to_thread_alive (&current_target, ptid);
3280 }
3281 
3282 void
3283 target_update_thread_list (void)
3284 {
3285   current_target.to_update_thread_list (&current_target);
3286 }
3287 
3288 void
3289 target_stop (ptid_t ptid)
3290 {
3291   if (!may_stop)
3292     {
3293       warning (_("May not interrupt or stop the target, ignoring attempt"));
3294       return;
3295     }
3296 
3297   (*current_target.to_stop) (&current_target, ptid);
3298 }
3299 
3300 /* See target.h.  */
3301 
3302 void
3303 target_check_pending_interrupt (void)
3304 {
3305   (*current_target.to_check_pending_interrupt) (&current_target);
3306 }
3307 
3308 /* See target/target.h.  */
3309 
3310 void
3311 target_stop_and_wait (ptid_t ptid)
3312 {
3313   struct target_waitstatus status;
3314   int was_non_stop = non_stop;
3315 
3316   non_stop = 1;
3317   target_stop (ptid);
3318 
3319   memset (&status, 0, sizeof (status));
3320   target_wait (ptid, &status, 0);
3321 
3322   non_stop = was_non_stop;
3323 }
3324 
3325 /* See target/target.h.  */
3326 
3327 void
3328 target_continue_no_signal (ptid_t ptid)
3329 {
3330   target_resume (ptid, 0, GDB_SIGNAL_0);
3331 }
3332 
3333 /* Concatenate ELEM to LIST, a comma separate list, and return the
3334    result.  The LIST incoming argument is released.  */
3335 
3336 static char *
3337 str_comma_list_concat_elem (char *list, const char *elem)
3338 {
3339   if (list == NULL)
3340     return xstrdup (elem);
3341   else
3342     return reconcat (list, list, ", ", elem, (char *) NULL);
3343 }
3344 
3345 /* Helper for target_options_to_string.  If OPT is present in
3346    TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3347    Returns the new resulting string.  OPT is removed from
3348    TARGET_OPTIONS.  */
3349 
3350 static char *
3351 do_option (int *target_options, char *ret,
3352 	   int opt, char *opt_str)
3353 {
3354   if ((*target_options & opt) != 0)
3355     {
3356       ret = str_comma_list_concat_elem (ret, opt_str);
3357       *target_options &= ~opt;
3358     }
3359 
3360   return ret;
3361 }
3362 
3363 char *
3364 target_options_to_string (int target_options)
3365 {
3366   char *ret = NULL;
3367 
3368 #define DO_TARG_OPTION(OPT) \
3369   ret = do_option (&target_options, ret, OPT, #OPT)
3370 
3371   DO_TARG_OPTION (TARGET_WNOHANG);
3372 
3373   if (target_options != 0)
3374     ret = str_comma_list_concat_elem (ret, "unknown???");
3375 
3376   if (ret == NULL)
3377     ret = xstrdup ("");
3378   return ret;
3379 }
3380 
3381 static void
3382 debug_print_register (const char * func,
3383 		      struct regcache *regcache, int regno)
3384 {
3385   struct gdbarch *gdbarch = get_regcache_arch (regcache);
3386 
3387   fprintf_unfiltered (gdb_stdlog, "%s ", func);
3388   if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3389       && gdbarch_register_name (gdbarch, regno) != NULL
3390       && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3391     fprintf_unfiltered (gdb_stdlog, "(%s)",
3392 			gdbarch_register_name (gdbarch, regno));
3393   else
3394     fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3395   if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3396     {
3397       enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3398       int i, size = register_size (gdbarch, regno);
3399       gdb_byte buf[MAX_REGISTER_SIZE];
3400 
3401       regcache_raw_collect (regcache, regno, buf);
3402       fprintf_unfiltered (gdb_stdlog, " = ");
3403       for (i = 0; i < size; i++)
3404 	{
3405 	  fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3406 	}
3407       if (size <= sizeof (LONGEST))
3408 	{
3409 	  ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3410 
3411 	  fprintf_unfiltered (gdb_stdlog, " %s %s",
3412 			      core_addr_to_string_nz (val), plongest (val));
3413 	}
3414     }
3415   fprintf_unfiltered (gdb_stdlog, "\n");
3416 }
3417 
3418 void
3419 target_fetch_registers (struct regcache *regcache, int regno)
3420 {
3421   current_target.to_fetch_registers (&current_target, regcache, regno);
3422   if (targetdebug)
3423     debug_print_register ("target_fetch_registers", regcache, regno);
3424 }
3425 
3426 void
3427 target_store_registers (struct regcache *regcache, int regno)
3428 {
3429   struct target_ops *t;
3430 
3431   if (!may_write_registers)
3432     error (_("Writing to registers is not allowed (regno %d)"), regno);
3433 
3434   current_target.to_store_registers (&current_target, regcache, regno);
3435   if (targetdebug)
3436     {
3437       debug_print_register ("target_store_registers", regcache, regno);
3438     }
3439 }
3440 
3441 int
3442 target_core_of_thread (ptid_t ptid)
3443 {
3444   return current_target.to_core_of_thread (&current_target, ptid);
3445 }
3446 
3447 int
3448 simple_verify_memory (struct target_ops *ops,
3449 		      const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3450 {
3451   LONGEST total_xfered = 0;
3452 
3453   while (total_xfered < size)
3454     {
3455       ULONGEST xfered_len;
3456       enum target_xfer_status status;
3457       gdb_byte buf[1024];
3458       ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3459 
3460       status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3461 				    buf, NULL, lma + total_xfered, howmuch,
3462 				    &xfered_len);
3463       if (status == TARGET_XFER_OK
3464 	  && memcmp (data + total_xfered, buf, xfered_len) == 0)
3465 	{
3466 	  total_xfered += xfered_len;
3467 	  QUIT;
3468 	}
3469       else
3470 	return 0;
3471     }
3472   return 1;
3473 }
3474 
3475 /* Default implementation of memory verification.  */
3476 
3477 static int
3478 default_verify_memory (struct target_ops *self,
3479 		       const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3480 {
3481   /* Start over from the top of the target stack.  */
3482   return simple_verify_memory (current_target.beneath,
3483 			       data, memaddr, size);
3484 }
3485 
3486 int
3487 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3488 {
3489   return current_target.to_verify_memory (&current_target,
3490 					  data, memaddr, size);
3491 }
3492 
3493 /* The documentation for this function is in its prototype declaration in
3494    target.h.  */
3495 
3496 int
3497 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3498 {
3499   return current_target.to_insert_mask_watchpoint (&current_target,
3500 						   addr, mask, rw);
3501 }
3502 
3503 /* The documentation for this function is in its prototype declaration in
3504    target.h.  */
3505 
3506 int
3507 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3508 {
3509   return current_target.to_remove_mask_watchpoint (&current_target,
3510 						   addr, mask, rw);
3511 }
3512 
3513 /* The documentation for this function is in its prototype declaration
3514    in target.h.  */
3515 
3516 int
3517 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3518 {
3519   return current_target.to_masked_watch_num_registers (&current_target,
3520 						       addr, mask);
3521 }
3522 
3523 /* The documentation for this function is in its prototype declaration
3524    in target.h.  */
3525 
3526 int
3527 target_ranged_break_num_registers (void)
3528 {
3529   return current_target.to_ranged_break_num_registers (&current_target);
3530 }
3531 
3532 /* See target.h.  */
3533 
3534 int
3535 target_supports_btrace (enum btrace_format format)
3536 {
3537   return current_target.to_supports_btrace (&current_target, format);
3538 }
3539 
3540 /* See target.h.  */
3541 
3542 struct btrace_target_info *
3543 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3544 {
3545   return current_target.to_enable_btrace (&current_target, ptid, conf);
3546 }
3547 
3548 /* See target.h.  */
3549 
3550 void
3551 target_disable_btrace (struct btrace_target_info *btinfo)
3552 {
3553   current_target.to_disable_btrace (&current_target, btinfo);
3554 }
3555 
3556 /* See target.h.  */
3557 
3558 void
3559 target_teardown_btrace (struct btrace_target_info *btinfo)
3560 {
3561   current_target.to_teardown_btrace (&current_target, btinfo);
3562 }
3563 
3564 /* See target.h.  */
3565 
3566 enum btrace_error
3567 target_read_btrace (struct btrace_data *btrace,
3568 		    struct btrace_target_info *btinfo,
3569 		    enum btrace_read_type type)
3570 {
3571   return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3572 }
3573 
3574 /* See target.h.  */
3575 
3576 const struct btrace_config *
3577 target_btrace_conf (const struct btrace_target_info *btinfo)
3578 {
3579   return current_target.to_btrace_conf (&current_target, btinfo);
3580 }
3581 
3582 /* See target.h.  */
3583 
3584 void
3585 target_stop_recording (void)
3586 {
3587   current_target.to_stop_recording (&current_target);
3588 }
3589 
3590 /* See target.h.  */
3591 
3592 void
3593 target_save_record (const char *filename)
3594 {
3595   current_target.to_save_record (&current_target, filename);
3596 }
3597 
3598 /* See target.h.  */
3599 
3600 int
3601 target_supports_delete_record (void)
3602 {
3603   struct target_ops *t;
3604 
3605   for (t = current_target.beneath; t != NULL; t = t->beneath)
3606     if (t->to_delete_record != delegate_delete_record
3607 	&& t->to_delete_record != tdefault_delete_record)
3608       return 1;
3609 
3610   return 0;
3611 }
3612 
3613 /* See target.h.  */
3614 
3615 void
3616 target_delete_record (void)
3617 {
3618   current_target.to_delete_record (&current_target);
3619 }
3620 
3621 /* See target.h.  */
3622 
3623 int
3624 target_record_is_replaying (void)
3625 {
3626   return current_target.to_record_is_replaying (&current_target);
3627 }
3628 
3629 /* See target.h.  */
3630 
3631 void
3632 target_goto_record_begin (void)
3633 {
3634   current_target.to_goto_record_begin (&current_target);
3635 }
3636 
3637 /* See target.h.  */
3638 
3639 void
3640 target_goto_record_end (void)
3641 {
3642   current_target.to_goto_record_end (&current_target);
3643 }
3644 
3645 /* See target.h.  */
3646 
3647 void
3648 target_goto_record (ULONGEST insn)
3649 {
3650   current_target.to_goto_record (&current_target, insn);
3651 }
3652 
3653 /* See target.h.  */
3654 
3655 void
3656 target_insn_history (int size, int flags)
3657 {
3658   current_target.to_insn_history (&current_target, size, flags);
3659 }
3660 
3661 /* See target.h.  */
3662 
3663 void
3664 target_insn_history_from (ULONGEST from, int size, int flags)
3665 {
3666   current_target.to_insn_history_from (&current_target, from, size, flags);
3667 }
3668 
3669 /* See target.h.  */
3670 
3671 void
3672 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3673 {
3674   current_target.to_insn_history_range (&current_target, begin, end, flags);
3675 }
3676 
3677 /* See target.h.  */
3678 
3679 void
3680 target_call_history (int size, int flags)
3681 {
3682   current_target.to_call_history (&current_target, size, flags);
3683 }
3684 
3685 /* See target.h.  */
3686 
3687 void
3688 target_call_history_from (ULONGEST begin, int size, int flags)
3689 {
3690   current_target.to_call_history_from (&current_target, begin, size, flags);
3691 }
3692 
3693 /* See target.h.  */
3694 
3695 void
3696 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3697 {
3698   current_target.to_call_history_range (&current_target, begin, end, flags);
3699 }
3700 
3701 /* See target.h.  */
3702 
3703 const struct frame_unwind *
3704 target_get_unwinder (void)
3705 {
3706   return current_target.to_get_unwinder (&current_target);
3707 }
3708 
3709 /* See target.h.  */
3710 
3711 const struct frame_unwind *
3712 target_get_tailcall_unwinder (void)
3713 {
3714   return current_target.to_get_tailcall_unwinder (&current_target);
3715 }
3716 
3717 /* See target.h.  */
3718 
3719 void
3720 target_prepare_to_generate_core (void)
3721 {
3722   current_target.to_prepare_to_generate_core (&current_target);
3723 }
3724 
3725 /* See target.h.  */
3726 
3727 void
3728 target_done_generating_core (void)
3729 {
3730   current_target.to_done_generating_core (&current_target);
3731 }
3732 
3733 static void
3734 setup_target_debug (void)
3735 {
3736   memcpy (&debug_target, &current_target, sizeof debug_target);
3737 
3738   init_debug_target (&current_target);
3739 }
3740 
3741 
3742 static char targ_desc[] =
3743 "Names of targets and files being debugged.\nShows the entire \
3744 stack of targets currently in use (including the exec-file,\n\
3745 core-file, and process, if any), as well as the symbol file name.";
3746 
3747 static void
3748 default_rcmd (struct target_ops *self, const char *command,
3749 	      struct ui_file *output)
3750 {
3751   error (_("\"monitor\" command not supported by this target."));
3752 }
3753 
3754 static void
3755 do_monitor_command (char *cmd,
3756 		 int from_tty)
3757 {
3758   target_rcmd (cmd, gdb_stdtarg);
3759 }
3760 
3761 /* Print the name of each layers of our target stack.  */
3762 
3763 static void
3764 maintenance_print_target_stack (char *cmd, int from_tty)
3765 {
3766   struct target_ops *t;
3767 
3768   printf_filtered (_("The current target stack is:\n"));
3769 
3770   for (t = target_stack; t != NULL; t = t->beneath)
3771     {
3772       printf_filtered ("  - %s (%s)\n", t->to_shortname, t->to_longname);
3773     }
3774 }
3775 
3776 /* Controls if targets can report that they can/are async.  This is
3777    just for maintainers to use when debugging gdb.  */
3778 int target_async_permitted = 1;
3779 
3780 /* The set command writes to this variable.  If the inferior is
3781    executing, target_async_permitted is *not* updated.  */
3782 static int target_async_permitted_1 = 1;
3783 
3784 static void
3785 maint_set_target_async_command (char *args, int from_tty,
3786 				struct cmd_list_element *c)
3787 {
3788   if (have_live_inferiors ())
3789     {
3790       target_async_permitted_1 = target_async_permitted;
3791       error (_("Cannot change this setting while the inferior is running."));
3792     }
3793 
3794   target_async_permitted = target_async_permitted_1;
3795 }
3796 
3797 static void
3798 maint_show_target_async_command (struct ui_file *file, int from_tty,
3799 				 struct cmd_list_element *c,
3800 				 const char *value)
3801 {
3802   fprintf_filtered (file,
3803 		    _("Controlling the inferior in "
3804 		      "asynchronous mode is %s.\n"), value);
3805 }
3806 
3807 /* Temporary copies of permission settings.  */
3808 
3809 static int may_write_registers_1 = 1;
3810 static int may_write_memory_1 = 1;
3811 static int may_insert_breakpoints_1 = 1;
3812 static int may_insert_tracepoints_1 = 1;
3813 static int may_insert_fast_tracepoints_1 = 1;
3814 static int may_stop_1 = 1;
3815 
3816 /* Make the user-set values match the real values again.  */
3817 
3818 void
3819 update_target_permissions (void)
3820 {
3821   may_write_registers_1 = may_write_registers;
3822   may_write_memory_1 = may_write_memory;
3823   may_insert_breakpoints_1 = may_insert_breakpoints;
3824   may_insert_tracepoints_1 = may_insert_tracepoints;
3825   may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3826   may_stop_1 = may_stop;
3827 }
3828 
3829 /* The one function handles (most of) the permission flags in the same
3830    way.  */
3831 
3832 static void
3833 set_target_permissions (char *args, int from_tty,
3834 			struct cmd_list_element *c)
3835 {
3836   if (target_has_execution)
3837     {
3838       update_target_permissions ();
3839       error (_("Cannot change this setting while the inferior is running."));
3840     }
3841 
3842   /* Make the real values match the user-changed values.  */
3843   may_write_registers = may_write_registers_1;
3844   may_insert_breakpoints = may_insert_breakpoints_1;
3845   may_insert_tracepoints = may_insert_tracepoints_1;
3846   may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3847   may_stop = may_stop_1;
3848   update_observer_mode ();
3849 }
3850 
3851 /* Set memory write permission independently of observer mode.  */
3852 
3853 static void
3854 set_write_memory_permission (char *args, int from_tty,
3855 			struct cmd_list_element *c)
3856 {
3857   /* Make the real values match the user-changed values.  */
3858   may_write_memory = may_write_memory_1;
3859   update_observer_mode ();
3860 }
3861 
3862 
3863 void
3864 initialize_targets (void)
3865 {
3866   init_dummy_target ();
3867   push_target (&dummy_target);
3868 
3869   add_info ("target", target_info, targ_desc);
3870   add_info ("files", target_info, targ_desc);
3871 
3872   add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3873 Set target debugging."), _("\
3874 Show target debugging."), _("\
3875 When non-zero, target debugging is enabled.  Higher numbers are more\n\
3876 verbose."),
3877 			     set_targetdebug,
3878 			     show_targetdebug,
3879 			     &setdebuglist, &showdebuglist);
3880 
3881   add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3882 			   &trust_readonly, _("\
3883 Set mode for reading from readonly sections."), _("\
3884 Show mode for reading from readonly sections."), _("\
3885 When this mode is on, memory reads from readonly sections (such as .text)\n\
3886 will be read from the object file instead of from the target.  This will\n\
3887 result in significant performance improvement for remote targets."),
3888 			   NULL,
3889 			   show_trust_readonly,
3890 			   &setlist, &showlist);
3891 
3892   add_com ("monitor", class_obscure, do_monitor_command,
3893 	   _("Send a command to the remote monitor (remote targets only)."));
3894 
3895   add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3896            _("Print the name of each layer of the internal target stack."),
3897            &maintenanceprintlist);
3898 
3899   add_setshow_boolean_cmd ("target-async", no_class,
3900 			   &target_async_permitted_1, _("\
3901 Set whether gdb controls the inferior in asynchronous mode."), _("\
3902 Show whether gdb controls the inferior in asynchronous mode."), _("\
3903 Tells gdb whether to control the inferior in asynchronous mode."),
3904 			   maint_set_target_async_command,
3905 			   maint_show_target_async_command,
3906 			   &maintenance_set_cmdlist,
3907 			   &maintenance_show_cmdlist);
3908 
3909   add_setshow_boolean_cmd ("may-write-registers", class_support,
3910 			   &may_write_registers_1, _("\
3911 Set permission to write into registers."), _("\
3912 Show permission to write into registers."), _("\
3913 When this permission is on, GDB may write into the target's registers.\n\
3914 Otherwise, any sort of write attempt will result in an error."),
3915 			   set_target_permissions, NULL,
3916 			   &setlist, &showlist);
3917 
3918   add_setshow_boolean_cmd ("may-write-memory", class_support,
3919 			   &may_write_memory_1, _("\
3920 Set permission to write into target memory."), _("\
3921 Show permission to write into target memory."), _("\
3922 When this permission is on, GDB may write into the target's memory.\n\
3923 Otherwise, any sort of write attempt will result in an error."),
3924 			   set_write_memory_permission, NULL,
3925 			   &setlist, &showlist);
3926 
3927   add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3928 			   &may_insert_breakpoints_1, _("\
3929 Set permission to insert breakpoints in the target."), _("\
3930 Show permission to insert breakpoints in the target."), _("\
3931 When this permission is on, GDB may insert breakpoints in the program.\n\
3932 Otherwise, any sort of insertion attempt will result in an error."),
3933 			   set_target_permissions, NULL,
3934 			   &setlist, &showlist);
3935 
3936   add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3937 			   &may_insert_tracepoints_1, _("\
3938 Set permission to insert tracepoints in the target."), _("\
3939 Show permission to insert tracepoints in the target."), _("\
3940 When this permission is on, GDB may insert tracepoints in the program.\n\
3941 Otherwise, any sort of insertion attempt will result in an error."),
3942 			   set_target_permissions, NULL,
3943 			   &setlist, &showlist);
3944 
3945   add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3946 			   &may_insert_fast_tracepoints_1, _("\
3947 Set permission to insert fast tracepoints in the target."), _("\
3948 Show permission to insert fast tracepoints in the target."), _("\
3949 When this permission is on, GDB may insert fast tracepoints.\n\
3950 Otherwise, any sort of insertion attempt will result in an error."),
3951 			   set_target_permissions, NULL,
3952 			   &setlist, &showlist);
3953 
3954   add_setshow_boolean_cmd ("may-interrupt", class_support,
3955 			   &may_stop_1, _("\
3956 Set permission to interrupt or signal the target."), _("\
3957 Show permission to interrupt or signal the target."), _("\
3958 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3959 Otherwise, any attempt to interrupt or stop will be ignored."),
3960 			   set_target_permissions, NULL,
3961 			   &setlist, &showlist);
3962 
3963   add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3964 			   &auto_connect_native_target, _("\
3965 Set whether GDB may automatically connect to the native target."), _("\
3966 Show whether GDB may automatically connect to the native target."), _("\
3967 When on, and GDB is not connected to a target yet, GDB\n\
3968 attempts \"run\" and other commands with the native target."),
3969 			   NULL, show_auto_connect_native_target,
3970 			   &setlist, &showlist);
3971 }
3972