1 /* Select target systems and architectures at runtime for GDB. 2 3 Copyright (C) 1990-2015 Free Software Foundation, Inc. 4 5 Contributed by Cygnus Support. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 #include "defs.h" 23 #include "target.h" 24 #include "target-dcache.h" 25 #include "gdbcmd.h" 26 #include "symtab.h" 27 #include "inferior.h" 28 #include "infrun.h" 29 #include "bfd.h" 30 #include "symfile.h" 31 #include "objfiles.h" 32 #include "dcache.h" 33 #include <signal.h> 34 #include "regcache.h" 35 #include "gdbcore.h" 36 #include "target-descriptions.h" 37 #include "gdbthread.h" 38 #include "solib.h" 39 #include "exec.h" 40 #include "inline-frame.h" 41 #include "tracepoint.h" 42 #include "gdb/fileio.h" 43 #include "agent.h" 44 #include "auxv.h" 45 #include "target-debug.h" 46 47 static void target_info (char *, int); 48 49 static void generic_tls_error (void) ATTRIBUTE_NORETURN; 50 51 static void default_terminal_info (struct target_ops *, const char *, int); 52 53 static int default_watchpoint_addr_within_range (struct target_ops *, 54 CORE_ADDR, CORE_ADDR, int); 55 56 static int default_region_ok_for_hw_watchpoint (struct target_ops *, 57 CORE_ADDR, int); 58 59 static void default_rcmd (struct target_ops *, const char *, struct ui_file *); 60 61 static ptid_t default_get_ada_task_ptid (struct target_ops *self, 62 long lwp, long tid); 63 64 static int default_follow_fork (struct target_ops *self, int follow_child, 65 int detach_fork); 66 67 static void default_mourn_inferior (struct target_ops *self); 68 69 static int default_search_memory (struct target_ops *ops, 70 CORE_ADDR start_addr, 71 ULONGEST search_space_len, 72 const gdb_byte *pattern, 73 ULONGEST pattern_len, 74 CORE_ADDR *found_addrp); 75 76 static int default_verify_memory (struct target_ops *self, 77 const gdb_byte *data, 78 CORE_ADDR memaddr, ULONGEST size); 79 80 static struct address_space *default_thread_address_space 81 (struct target_ops *self, ptid_t ptid); 82 83 static void tcomplain (void) ATTRIBUTE_NORETURN; 84 85 static int return_zero (struct target_ops *); 86 87 static int return_zero_has_execution (struct target_ops *, ptid_t); 88 89 static void target_command (char *, int); 90 91 static struct target_ops *find_default_run_target (char *); 92 93 static struct gdbarch *default_thread_architecture (struct target_ops *ops, 94 ptid_t ptid); 95 96 static int dummy_find_memory_regions (struct target_ops *self, 97 find_memory_region_ftype ignore1, 98 void *ignore2); 99 100 static char *dummy_make_corefile_notes (struct target_ops *self, 101 bfd *ignore1, int *ignore2); 102 103 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid); 104 105 static enum exec_direction_kind default_execution_direction 106 (struct target_ops *self); 107 108 static struct target_ops debug_target; 109 110 #include "target-delegates.c" 111 112 static void init_dummy_target (void); 113 114 static void update_current_target (void); 115 116 /* Vector of existing target structures. */ 117 typedef struct target_ops *target_ops_p; 118 DEF_VEC_P (target_ops_p); 119 static VEC (target_ops_p) *target_structs; 120 121 /* The initial current target, so that there is always a semi-valid 122 current target. */ 123 124 static struct target_ops dummy_target; 125 126 /* Top of target stack. */ 127 128 static struct target_ops *target_stack; 129 130 /* The target structure we are currently using to talk to a process 131 or file or whatever "inferior" we have. */ 132 133 struct target_ops current_target; 134 135 /* Command list for target. */ 136 137 static struct cmd_list_element *targetlist = NULL; 138 139 /* Nonzero if we should trust readonly sections from the 140 executable when reading memory. */ 141 142 static int trust_readonly = 0; 143 144 /* Nonzero if we should show true memory content including 145 memory breakpoint inserted by gdb. */ 146 147 static int show_memory_breakpoints = 0; 148 149 /* These globals control whether GDB attempts to perform these 150 operations; they are useful for targets that need to prevent 151 inadvertant disruption, such as in non-stop mode. */ 152 153 int may_write_registers = 1; 154 155 int may_write_memory = 1; 156 157 int may_insert_breakpoints = 1; 158 159 int may_insert_tracepoints = 1; 160 161 int may_insert_fast_tracepoints = 1; 162 163 int may_stop = 1; 164 165 /* Non-zero if we want to see trace of target level stuff. */ 166 167 static unsigned int targetdebug = 0; 168 169 static void 170 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c) 171 { 172 update_current_target (); 173 } 174 175 static void 176 show_targetdebug (struct ui_file *file, int from_tty, 177 struct cmd_list_element *c, const char *value) 178 { 179 fprintf_filtered (file, _("Target debugging is %s.\n"), value); 180 } 181 182 static void setup_target_debug (void); 183 184 /* The user just typed 'target' without the name of a target. */ 185 186 static void 187 target_command (char *arg, int from_tty) 188 { 189 fputs_filtered ("Argument required (target name). Try `help target'\n", 190 gdb_stdout); 191 } 192 193 /* Default target_has_* methods for process_stratum targets. */ 194 195 int 196 default_child_has_all_memory (struct target_ops *ops) 197 { 198 /* If no inferior selected, then we can't read memory here. */ 199 if (ptid_equal (inferior_ptid, null_ptid)) 200 return 0; 201 202 return 1; 203 } 204 205 int 206 default_child_has_memory (struct target_ops *ops) 207 { 208 /* If no inferior selected, then we can't read memory here. */ 209 if (ptid_equal (inferior_ptid, null_ptid)) 210 return 0; 211 212 return 1; 213 } 214 215 int 216 default_child_has_stack (struct target_ops *ops) 217 { 218 /* If no inferior selected, there's no stack. */ 219 if (ptid_equal (inferior_ptid, null_ptid)) 220 return 0; 221 222 return 1; 223 } 224 225 int 226 default_child_has_registers (struct target_ops *ops) 227 { 228 /* Can't read registers from no inferior. */ 229 if (ptid_equal (inferior_ptid, null_ptid)) 230 return 0; 231 232 return 1; 233 } 234 235 int 236 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid) 237 { 238 /* If there's no thread selected, then we can't make it run through 239 hoops. */ 240 if (ptid_equal (the_ptid, null_ptid)) 241 return 0; 242 243 return 1; 244 } 245 246 247 int 248 target_has_all_memory_1 (void) 249 { 250 struct target_ops *t; 251 252 for (t = current_target.beneath; t != NULL; t = t->beneath) 253 if (t->to_has_all_memory (t)) 254 return 1; 255 256 return 0; 257 } 258 259 int 260 target_has_memory_1 (void) 261 { 262 struct target_ops *t; 263 264 for (t = current_target.beneath; t != NULL; t = t->beneath) 265 if (t->to_has_memory (t)) 266 return 1; 267 268 return 0; 269 } 270 271 int 272 target_has_stack_1 (void) 273 { 274 struct target_ops *t; 275 276 for (t = current_target.beneath; t != NULL; t = t->beneath) 277 if (t->to_has_stack (t)) 278 return 1; 279 280 return 0; 281 } 282 283 int 284 target_has_registers_1 (void) 285 { 286 struct target_ops *t; 287 288 for (t = current_target.beneath; t != NULL; t = t->beneath) 289 if (t->to_has_registers (t)) 290 return 1; 291 292 return 0; 293 } 294 295 int 296 target_has_execution_1 (ptid_t the_ptid) 297 { 298 struct target_ops *t; 299 300 for (t = current_target.beneath; t != NULL; t = t->beneath) 301 if (t->to_has_execution (t, the_ptid)) 302 return 1; 303 304 return 0; 305 } 306 307 int 308 target_has_execution_current (void) 309 { 310 return target_has_execution_1 (inferior_ptid); 311 } 312 313 /* Complete initialization of T. This ensures that various fields in 314 T are set, if needed by the target implementation. */ 315 316 void 317 complete_target_initialization (struct target_ops *t) 318 { 319 /* Provide default values for all "must have" methods. */ 320 321 if (t->to_has_all_memory == NULL) 322 t->to_has_all_memory = return_zero; 323 324 if (t->to_has_memory == NULL) 325 t->to_has_memory = return_zero; 326 327 if (t->to_has_stack == NULL) 328 t->to_has_stack = return_zero; 329 330 if (t->to_has_registers == NULL) 331 t->to_has_registers = return_zero; 332 333 if (t->to_has_execution == NULL) 334 t->to_has_execution = return_zero_has_execution; 335 336 /* These methods can be called on an unpushed target and so require 337 a default implementation if the target might plausibly be the 338 default run target. */ 339 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL 340 && t->to_supports_non_stop != NULL)); 341 342 install_delegators (t); 343 } 344 345 /* This is used to implement the various target commands. */ 346 347 static void 348 open_target (char *args, int from_tty, struct cmd_list_element *command) 349 { 350 struct target_ops *ops = get_cmd_context (command); 351 352 if (targetdebug) 353 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n", 354 ops->to_shortname); 355 356 ops->to_open (args, from_tty); 357 358 if (targetdebug) 359 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n", 360 ops->to_shortname, args, from_tty); 361 } 362 363 /* Add possible target architecture T to the list and add a new 364 command 'target T->to_shortname'. Set COMPLETER as the command's 365 completer if not NULL. */ 366 367 void 368 add_target_with_completer (struct target_ops *t, 369 completer_ftype *completer) 370 { 371 struct cmd_list_element *c; 372 373 complete_target_initialization (t); 374 375 VEC_safe_push (target_ops_p, target_structs, t); 376 377 if (targetlist == NULL) 378 add_prefix_cmd ("target", class_run, target_command, _("\ 379 Connect to a target machine or process.\n\ 380 The first argument is the type or protocol of the target machine.\n\ 381 Remaining arguments are interpreted by the target protocol. For more\n\ 382 information on the arguments for a particular protocol, type\n\ 383 `help target ' followed by the protocol name."), 384 &targetlist, "target ", 0, &cmdlist); 385 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist); 386 set_cmd_sfunc (c, open_target); 387 set_cmd_context (c, t); 388 if (completer != NULL) 389 set_cmd_completer (c, completer); 390 } 391 392 /* Add a possible target architecture to the list. */ 393 394 void 395 add_target (struct target_ops *t) 396 { 397 add_target_with_completer (t, NULL); 398 } 399 400 /* See target.h. */ 401 402 void 403 add_deprecated_target_alias (struct target_ops *t, char *alias) 404 { 405 struct cmd_list_element *c; 406 char *alt; 407 408 /* If we use add_alias_cmd, here, we do not get the deprecated warning, 409 see PR cli/15104. */ 410 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist); 411 set_cmd_sfunc (c, open_target); 412 set_cmd_context (c, t); 413 alt = xstrprintf ("target %s", t->to_shortname); 414 deprecate_cmd (c, alt); 415 } 416 417 /* Stub functions */ 418 419 void 420 target_kill (void) 421 { 422 current_target.to_kill (¤t_target); 423 } 424 425 void 426 target_load (const char *arg, int from_tty) 427 { 428 target_dcache_invalidate (); 429 (*current_target.to_load) (¤t_target, arg, from_tty); 430 } 431 432 /* Possible terminal states. */ 433 434 enum terminal_state 435 { 436 /* The inferior's terminal settings are in effect. */ 437 terminal_is_inferior = 0, 438 439 /* Some of our terminal settings are in effect, enough to get 440 proper output. */ 441 terminal_is_ours_for_output = 1, 442 443 /* Our terminal settings are in effect, for output and input. */ 444 terminal_is_ours = 2 445 }; 446 447 static enum terminal_state terminal_state; 448 449 /* See target.h. */ 450 451 void 452 target_terminal_init (void) 453 { 454 (*current_target.to_terminal_init) (¤t_target); 455 456 terminal_state = terminal_is_ours; 457 } 458 459 /* See target.h. */ 460 461 int 462 target_terminal_is_inferior (void) 463 { 464 return (terminal_state == terminal_is_inferior); 465 } 466 467 /* See target.h. */ 468 469 void 470 target_terminal_inferior (void) 471 { 472 /* A background resume (``run&'') should leave GDB in control of the 473 terminal. Use target_can_async_p, not target_is_async_p, since at 474 this point the target is not async yet. However, if sync_execution 475 is not set, we know it will become async prior to resume. */ 476 if (target_can_async_p () && !sync_execution) 477 return; 478 479 if (terminal_state == terminal_is_inferior) 480 return; 481 482 /* If GDB is resuming the inferior in the foreground, install 483 inferior's terminal modes. */ 484 (*current_target.to_terminal_inferior) (¤t_target); 485 terminal_state = terminal_is_inferior; 486 } 487 488 /* See target.h. */ 489 490 void 491 target_terminal_ours (void) 492 { 493 if (terminal_state == terminal_is_ours) 494 return; 495 496 (*current_target.to_terminal_ours) (¤t_target); 497 terminal_state = terminal_is_ours; 498 } 499 500 /* See target.h. */ 501 502 void 503 target_terminal_ours_for_output (void) 504 { 505 if (terminal_state != terminal_is_inferior) 506 return; 507 (*current_target.to_terminal_ours_for_output) (¤t_target); 508 terminal_state = terminal_is_ours_for_output; 509 } 510 511 /* See target.h. */ 512 513 int 514 target_supports_terminal_ours (void) 515 { 516 struct target_ops *t; 517 518 for (t = current_target.beneath; t != NULL; t = t->beneath) 519 { 520 if (t->to_terminal_ours != delegate_terminal_ours 521 && t->to_terminal_ours != tdefault_terminal_ours) 522 return 1; 523 } 524 525 return 0; 526 } 527 528 /* Restore the terminal to its previous state (helper for 529 make_cleanup_restore_target_terminal). */ 530 531 static void 532 cleanup_restore_target_terminal (void *arg) 533 { 534 enum terminal_state *previous_state = arg; 535 536 switch (*previous_state) 537 { 538 case terminal_is_ours: 539 target_terminal_ours (); 540 break; 541 case terminal_is_ours_for_output: 542 target_terminal_ours_for_output (); 543 break; 544 case terminal_is_inferior: 545 target_terminal_inferior (); 546 break; 547 } 548 } 549 550 /* See target.h. */ 551 552 struct cleanup * 553 make_cleanup_restore_target_terminal (void) 554 { 555 enum terminal_state *ts = xmalloc (sizeof (*ts)); 556 557 *ts = terminal_state; 558 559 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree); 560 } 561 562 static void 563 tcomplain (void) 564 { 565 error (_("You can't do that when your target is `%s'"), 566 current_target.to_shortname); 567 } 568 569 void 570 noprocess (void) 571 { 572 error (_("You can't do that without a process to debug.")); 573 } 574 575 static void 576 default_terminal_info (struct target_ops *self, const char *args, int from_tty) 577 { 578 printf_unfiltered (_("No saved terminal information.\n")); 579 } 580 581 /* A default implementation for the to_get_ada_task_ptid target method. 582 583 This function builds the PTID by using both LWP and TID as part of 584 the PTID lwp and tid elements. The pid used is the pid of the 585 inferior_ptid. */ 586 587 static ptid_t 588 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid) 589 { 590 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid); 591 } 592 593 static enum exec_direction_kind 594 default_execution_direction (struct target_ops *self) 595 { 596 if (!target_can_execute_reverse) 597 return EXEC_FORWARD; 598 else if (!target_can_async_p ()) 599 return EXEC_FORWARD; 600 else 601 gdb_assert_not_reached ("\ 602 to_execution_direction must be implemented for reverse async"); 603 } 604 605 /* Go through the target stack from top to bottom, copying over zero 606 entries in current_target, then filling in still empty entries. In 607 effect, we are doing class inheritance through the pushed target 608 vectors. 609 610 NOTE: cagney/2003-10-17: The problem with this inheritance, as it 611 is currently implemented, is that it discards any knowledge of 612 which target an inherited method originally belonged to. 613 Consequently, new new target methods should instead explicitly and 614 locally search the target stack for the target that can handle the 615 request. */ 616 617 static void 618 update_current_target (void) 619 { 620 struct target_ops *t; 621 622 /* First, reset current's contents. */ 623 memset (¤t_target, 0, sizeof (current_target)); 624 625 /* Install the delegators. */ 626 install_delegators (¤t_target); 627 628 current_target.to_stratum = target_stack->to_stratum; 629 630 #define INHERIT(FIELD, TARGET) \ 631 if (!current_target.FIELD) \ 632 current_target.FIELD = (TARGET)->FIELD 633 634 /* Do not add any new INHERITs here. Instead, use the delegation 635 mechanism provided by make-target-delegates. */ 636 for (t = target_stack; t; t = t->beneath) 637 { 638 INHERIT (to_shortname, t); 639 INHERIT (to_longname, t); 640 INHERIT (to_attach_no_wait, t); 641 INHERIT (to_have_steppable_watchpoint, t); 642 INHERIT (to_have_continuable_watchpoint, t); 643 INHERIT (to_has_thread_control, t); 644 } 645 #undef INHERIT 646 647 /* Finally, position the target-stack beneath the squashed 648 "current_target". That way code looking for a non-inherited 649 target method can quickly and simply find it. */ 650 current_target.beneath = target_stack; 651 652 if (targetdebug) 653 setup_target_debug (); 654 } 655 656 /* Push a new target type into the stack of the existing target accessors, 657 possibly superseding some of the existing accessors. 658 659 Rather than allow an empty stack, we always have the dummy target at 660 the bottom stratum, so we can call the function vectors without 661 checking them. */ 662 663 void 664 push_target (struct target_ops *t) 665 { 666 struct target_ops **cur; 667 668 /* Check magic number. If wrong, it probably means someone changed 669 the struct definition, but not all the places that initialize one. */ 670 if (t->to_magic != OPS_MAGIC) 671 { 672 fprintf_unfiltered (gdb_stderr, 673 "Magic number of %s target struct wrong\n", 674 t->to_shortname); 675 internal_error (__FILE__, __LINE__, 676 _("failed internal consistency check")); 677 } 678 679 /* Find the proper stratum to install this target in. */ 680 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath) 681 { 682 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum) 683 break; 684 } 685 686 /* If there's already targets at this stratum, remove them. */ 687 /* FIXME: cagney/2003-10-15: I think this should be popping all 688 targets to CUR, and not just those at this stratum level. */ 689 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum) 690 { 691 /* There's already something at this stratum level. Close it, 692 and un-hook it from the stack. */ 693 struct target_ops *tmp = (*cur); 694 695 (*cur) = (*cur)->beneath; 696 tmp->beneath = NULL; 697 target_close (tmp); 698 } 699 700 /* We have removed all targets in our stratum, now add the new one. */ 701 t->beneath = (*cur); 702 (*cur) = t; 703 704 update_current_target (); 705 } 706 707 /* Remove a target_ops vector from the stack, wherever it may be. 708 Return how many times it was removed (0 or 1). */ 709 710 int 711 unpush_target (struct target_ops *t) 712 { 713 struct target_ops **cur; 714 struct target_ops *tmp; 715 716 if (t->to_stratum == dummy_stratum) 717 internal_error (__FILE__, __LINE__, 718 _("Attempt to unpush the dummy target")); 719 720 /* Look for the specified target. Note that we assume that a target 721 can only occur once in the target stack. */ 722 723 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath) 724 { 725 if ((*cur) == t) 726 break; 727 } 728 729 /* If we don't find target_ops, quit. Only open targets should be 730 closed. */ 731 if ((*cur) == NULL) 732 return 0; 733 734 /* Unchain the target. */ 735 tmp = (*cur); 736 (*cur) = (*cur)->beneath; 737 tmp->beneath = NULL; 738 739 update_current_target (); 740 741 /* Finally close the target. Note we do this after unchaining, so 742 any target method calls from within the target_close 743 implementation don't end up in T anymore. */ 744 target_close (t); 745 746 return 1; 747 } 748 749 void 750 pop_all_targets_above (enum strata above_stratum) 751 { 752 while ((int) (current_target.to_stratum) > (int) above_stratum) 753 { 754 if (!unpush_target (target_stack)) 755 { 756 fprintf_unfiltered (gdb_stderr, 757 "pop_all_targets couldn't find target %s\n", 758 target_stack->to_shortname); 759 internal_error (__FILE__, __LINE__, 760 _("failed internal consistency check")); 761 break; 762 } 763 } 764 } 765 766 void 767 pop_all_targets (void) 768 { 769 pop_all_targets_above (dummy_stratum); 770 } 771 772 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */ 773 774 int 775 target_is_pushed (struct target_ops *t) 776 { 777 struct target_ops *cur; 778 779 /* Check magic number. If wrong, it probably means someone changed 780 the struct definition, but not all the places that initialize one. */ 781 if (t->to_magic != OPS_MAGIC) 782 { 783 fprintf_unfiltered (gdb_stderr, 784 "Magic number of %s target struct wrong\n", 785 t->to_shortname); 786 internal_error (__FILE__, __LINE__, 787 _("failed internal consistency check")); 788 } 789 790 for (cur = target_stack; cur != NULL; cur = cur->beneath) 791 if (cur == t) 792 return 1; 793 794 return 0; 795 } 796 797 /* Default implementation of to_get_thread_local_address. */ 798 799 static void 800 generic_tls_error (void) 801 { 802 throw_error (TLS_GENERIC_ERROR, 803 _("Cannot find thread-local variables on this target")); 804 } 805 806 /* Using the objfile specified in OBJFILE, find the address for the 807 current thread's thread-local storage with offset OFFSET. */ 808 CORE_ADDR 809 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset) 810 { 811 volatile CORE_ADDR addr = 0; 812 struct target_ops *target = ¤t_target; 813 814 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ())) 815 { 816 ptid_t ptid = inferior_ptid; 817 818 TRY 819 { 820 CORE_ADDR lm_addr; 821 822 /* Fetch the load module address for this objfile. */ 823 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (), 824 objfile); 825 826 addr = target->to_get_thread_local_address (target, ptid, 827 lm_addr, offset); 828 } 829 /* If an error occurred, print TLS related messages here. Otherwise, 830 throw the error to some higher catcher. */ 831 CATCH (ex, RETURN_MASK_ALL) 832 { 833 int objfile_is_library = (objfile->flags & OBJF_SHARED); 834 835 switch (ex.error) 836 { 837 case TLS_NO_LIBRARY_SUPPORT_ERROR: 838 error (_("Cannot find thread-local variables " 839 "in this thread library.")); 840 break; 841 case TLS_LOAD_MODULE_NOT_FOUND_ERROR: 842 if (objfile_is_library) 843 error (_("Cannot find shared library `%s' in dynamic" 844 " linker's load module list"), objfile_name (objfile)); 845 else 846 error (_("Cannot find executable file `%s' in dynamic" 847 " linker's load module list"), objfile_name (objfile)); 848 break; 849 case TLS_NOT_ALLOCATED_YET_ERROR: 850 if (objfile_is_library) 851 error (_("The inferior has not yet allocated storage for" 852 " thread-local variables in\n" 853 "the shared library `%s'\n" 854 "for %s"), 855 objfile_name (objfile), target_pid_to_str (ptid)); 856 else 857 error (_("The inferior has not yet allocated storage for" 858 " thread-local variables in\n" 859 "the executable `%s'\n" 860 "for %s"), 861 objfile_name (objfile), target_pid_to_str (ptid)); 862 break; 863 case TLS_GENERIC_ERROR: 864 if (objfile_is_library) 865 error (_("Cannot find thread-local storage for %s, " 866 "shared library %s:\n%s"), 867 target_pid_to_str (ptid), 868 objfile_name (objfile), ex.message); 869 else 870 error (_("Cannot find thread-local storage for %s, " 871 "executable file %s:\n%s"), 872 target_pid_to_str (ptid), 873 objfile_name (objfile), ex.message); 874 break; 875 default: 876 throw_exception (ex); 877 break; 878 } 879 } 880 END_CATCH 881 } 882 /* It wouldn't be wrong here to try a gdbarch method, too; finding 883 TLS is an ABI-specific thing. But we don't do that yet. */ 884 else 885 error (_("Cannot find thread-local variables on this target")); 886 887 return addr; 888 } 889 890 const char * 891 target_xfer_status_to_string (enum target_xfer_status status) 892 { 893 #define CASE(X) case X: return #X 894 switch (status) 895 { 896 CASE(TARGET_XFER_E_IO); 897 CASE(TARGET_XFER_UNAVAILABLE); 898 default: 899 return "<unknown>"; 900 } 901 #undef CASE 902 }; 903 904 905 #undef MIN 906 #define MIN(A, B) (((A) <= (B)) ? (A) : (B)) 907 908 /* target_read_string -- read a null terminated string, up to LEN bytes, 909 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful. 910 Set *STRING to a pointer to malloc'd memory containing the data; the caller 911 is responsible for freeing it. Return the number of bytes successfully 912 read. */ 913 914 int 915 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop) 916 { 917 int tlen, offset, i; 918 gdb_byte buf[4]; 919 int errcode = 0; 920 char *buffer; 921 int buffer_allocated; 922 char *bufptr; 923 unsigned int nbytes_read = 0; 924 925 gdb_assert (string); 926 927 /* Small for testing. */ 928 buffer_allocated = 4; 929 buffer = xmalloc (buffer_allocated); 930 bufptr = buffer; 931 932 while (len > 0) 933 { 934 tlen = MIN (len, 4 - (memaddr & 3)); 935 offset = memaddr & 3; 936 937 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf); 938 if (errcode != 0) 939 { 940 /* The transfer request might have crossed the boundary to an 941 unallocated region of memory. Retry the transfer, requesting 942 a single byte. */ 943 tlen = 1; 944 offset = 0; 945 errcode = target_read_memory (memaddr, buf, 1); 946 if (errcode != 0) 947 goto done; 948 } 949 950 if (bufptr - buffer + tlen > buffer_allocated) 951 { 952 unsigned int bytes; 953 954 bytes = bufptr - buffer; 955 buffer_allocated *= 2; 956 buffer = xrealloc (buffer, buffer_allocated); 957 bufptr = buffer + bytes; 958 } 959 960 for (i = 0; i < tlen; i++) 961 { 962 *bufptr++ = buf[i + offset]; 963 if (buf[i + offset] == '\000') 964 { 965 nbytes_read += i + 1; 966 goto done; 967 } 968 } 969 970 memaddr += tlen; 971 len -= tlen; 972 nbytes_read += tlen; 973 } 974 done: 975 *string = buffer; 976 if (errnop != NULL) 977 *errnop = errcode; 978 return nbytes_read; 979 } 980 981 struct target_section_table * 982 target_get_section_table (struct target_ops *target) 983 { 984 return (*target->to_get_section_table) (target); 985 } 986 987 /* Find a section containing ADDR. */ 988 989 struct target_section * 990 target_section_by_addr (struct target_ops *target, CORE_ADDR addr) 991 { 992 struct target_section_table *table = target_get_section_table (target); 993 struct target_section *secp; 994 995 if (table == NULL) 996 return NULL; 997 998 for (secp = table->sections; secp < table->sections_end; secp++) 999 { 1000 if (addr >= secp->addr && addr < secp->endaddr) 1001 return secp; 1002 } 1003 return NULL; 1004 } 1005 1006 1007 /* Helper for the memory xfer routines. Checks the attributes of the 1008 memory region of MEMADDR against the read or write being attempted. 1009 If the access is permitted returns true, otherwise returns false. 1010 REGION_P is an optional output parameter. If not-NULL, it is 1011 filled with a pointer to the memory region of MEMADDR. REG_LEN 1012 returns LEN trimmed to the end of the region. This is how much the 1013 caller can continue requesting, if the access is permitted. A 1014 single xfer request must not straddle memory region boundaries. */ 1015 1016 static int 1017 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf, 1018 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len, 1019 struct mem_region **region_p) 1020 { 1021 struct mem_region *region; 1022 1023 region = lookup_mem_region (memaddr); 1024 1025 if (region_p != NULL) 1026 *region_p = region; 1027 1028 switch (region->attrib.mode) 1029 { 1030 case MEM_RO: 1031 if (writebuf != NULL) 1032 return 0; 1033 break; 1034 1035 case MEM_WO: 1036 if (readbuf != NULL) 1037 return 0; 1038 break; 1039 1040 case MEM_FLASH: 1041 /* We only support writing to flash during "load" for now. */ 1042 if (writebuf != NULL) 1043 error (_("Writing to flash memory forbidden in this context")); 1044 break; 1045 1046 case MEM_NONE: 1047 return 0; 1048 } 1049 1050 /* region->hi == 0 means there's no upper bound. */ 1051 if (memaddr + len < region->hi || region->hi == 0) 1052 *reg_len = len; 1053 else 1054 *reg_len = region->hi - memaddr; 1055 1056 return 1; 1057 } 1058 1059 /* Read memory from more than one valid target. A core file, for 1060 instance, could have some of memory but delegate other bits to 1061 the target below it. So, we must manually try all targets. */ 1062 1063 enum target_xfer_status 1064 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf, 1065 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len, 1066 ULONGEST *xfered_len) 1067 { 1068 enum target_xfer_status res; 1069 1070 do 1071 { 1072 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL, 1073 readbuf, writebuf, memaddr, len, 1074 xfered_len); 1075 if (res == TARGET_XFER_OK) 1076 break; 1077 1078 /* Stop if the target reports that the memory is not available. */ 1079 if (res == TARGET_XFER_UNAVAILABLE) 1080 break; 1081 1082 /* We want to continue past core files to executables, but not 1083 past a running target's memory. */ 1084 if (ops->to_has_all_memory (ops)) 1085 break; 1086 1087 ops = ops->beneath; 1088 } 1089 while (ops != NULL); 1090 1091 /* The cache works at the raw memory level. Make sure the cache 1092 gets updated with raw contents no matter what kind of memory 1093 object was originally being written. Note we do write-through 1094 first, so that if it fails, we don't write to the cache contents 1095 that never made it to the target. */ 1096 if (writebuf != NULL 1097 && !ptid_equal (inferior_ptid, null_ptid) 1098 && target_dcache_init_p () 1099 && (stack_cache_enabled_p () || code_cache_enabled_p ())) 1100 { 1101 DCACHE *dcache = target_dcache_get (); 1102 1103 /* Note that writing to an area of memory which wasn't present 1104 in the cache doesn't cause it to be loaded in. */ 1105 dcache_update (dcache, res, memaddr, writebuf, *xfered_len); 1106 } 1107 1108 return res; 1109 } 1110 1111 /* Perform a partial memory transfer. 1112 For docs see target.h, to_xfer_partial. */ 1113 1114 static enum target_xfer_status 1115 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object, 1116 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr, 1117 ULONGEST len, ULONGEST *xfered_len) 1118 { 1119 enum target_xfer_status res; 1120 ULONGEST reg_len; 1121 struct mem_region *region; 1122 struct inferior *inf; 1123 1124 /* For accesses to unmapped overlay sections, read directly from 1125 files. Must do this first, as MEMADDR may need adjustment. */ 1126 if (readbuf != NULL && overlay_debugging) 1127 { 1128 struct obj_section *section = find_pc_overlay (memaddr); 1129 1130 if (pc_in_unmapped_range (memaddr, section)) 1131 { 1132 struct target_section_table *table 1133 = target_get_section_table (ops); 1134 const char *section_name = section->the_bfd_section->name; 1135 1136 memaddr = overlay_mapped_address (memaddr, section); 1137 return section_table_xfer_memory_partial (readbuf, writebuf, 1138 memaddr, len, xfered_len, 1139 table->sections, 1140 table->sections_end, 1141 section_name); 1142 } 1143 } 1144 1145 /* Try the executable files, if "trust-readonly-sections" is set. */ 1146 if (readbuf != NULL && trust_readonly) 1147 { 1148 struct target_section *secp; 1149 struct target_section_table *table; 1150 1151 secp = target_section_by_addr (ops, memaddr); 1152 if (secp != NULL 1153 && (bfd_get_section_flags (secp->the_bfd_section->owner, 1154 secp->the_bfd_section) 1155 & SEC_READONLY)) 1156 { 1157 table = target_get_section_table (ops); 1158 return section_table_xfer_memory_partial (readbuf, writebuf, 1159 memaddr, len, xfered_len, 1160 table->sections, 1161 table->sections_end, 1162 NULL); 1163 } 1164 } 1165 1166 /* Try GDB's internal data cache. */ 1167 1168 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, ®_len, 1169 ®ion)) 1170 return TARGET_XFER_E_IO; 1171 1172 if (!ptid_equal (inferior_ptid, null_ptid)) 1173 inf = find_inferior_ptid (inferior_ptid); 1174 else 1175 inf = NULL; 1176 1177 if (inf != NULL 1178 && readbuf != NULL 1179 /* The dcache reads whole cache lines; that doesn't play well 1180 with reading from a trace buffer, because reading outside of 1181 the collected memory range fails. */ 1182 && get_traceframe_number () == -1 1183 && (region->attrib.cache 1184 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY) 1185 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY))) 1186 { 1187 DCACHE *dcache = target_dcache_get_or_init (); 1188 1189 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf, 1190 reg_len, xfered_len); 1191 } 1192 1193 /* If none of those methods found the memory we wanted, fall back 1194 to a target partial transfer. Normally a single call to 1195 to_xfer_partial is enough; if it doesn't recognize an object 1196 it will call the to_xfer_partial of the next target down. 1197 But for memory this won't do. Memory is the only target 1198 object which can be read from more than one valid target. 1199 A core file, for instance, could have some of memory but 1200 delegate other bits to the target below it. So, we must 1201 manually try all targets. */ 1202 1203 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len, 1204 xfered_len); 1205 1206 /* If we still haven't got anything, return the last error. We 1207 give up. */ 1208 return res; 1209 } 1210 1211 /* Perform a partial memory transfer. For docs see target.h, 1212 to_xfer_partial. */ 1213 1214 static enum target_xfer_status 1215 memory_xfer_partial (struct target_ops *ops, enum target_object object, 1216 gdb_byte *readbuf, const gdb_byte *writebuf, 1217 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len) 1218 { 1219 enum target_xfer_status res; 1220 1221 /* Zero length requests are ok and require no work. */ 1222 if (len == 0) 1223 return TARGET_XFER_EOF; 1224 1225 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with 1226 breakpoint insns, thus hiding out from higher layers whether 1227 there are software breakpoints inserted in the code stream. */ 1228 if (readbuf != NULL) 1229 { 1230 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len, 1231 xfered_len); 1232 1233 if (res == TARGET_XFER_OK && !show_memory_breakpoints) 1234 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len); 1235 } 1236 else 1237 { 1238 void *buf; 1239 struct cleanup *old_chain; 1240 1241 /* A large write request is likely to be partially satisfied 1242 by memory_xfer_partial_1. We will continually malloc 1243 and free a copy of the entire write request for breakpoint 1244 shadow handling even though we only end up writing a small 1245 subset of it. Cap writes to 4KB to mitigate this. */ 1246 len = min (4096, len); 1247 1248 buf = xmalloc (len); 1249 old_chain = make_cleanup (xfree, buf); 1250 memcpy (buf, writebuf, len); 1251 1252 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len); 1253 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len, 1254 xfered_len); 1255 1256 do_cleanups (old_chain); 1257 } 1258 1259 return res; 1260 } 1261 1262 static void 1263 restore_show_memory_breakpoints (void *arg) 1264 { 1265 show_memory_breakpoints = (uintptr_t) arg; 1266 } 1267 1268 struct cleanup * 1269 make_show_memory_breakpoints_cleanup (int show) 1270 { 1271 int current = show_memory_breakpoints; 1272 1273 show_memory_breakpoints = show; 1274 return make_cleanup (restore_show_memory_breakpoints, 1275 (void *) (uintptr_t) current); 1276 } 1277 1278 /* For docs see target.h, to_xfer_partial. */ 1279 1280 enum target_xfer_status 1281 target_xfer_partial (struct target_ops *ops, 1282 enum target_object object, const char *annex, 1283 gdb_byte *readbuf, const gdb_byte *writebuf, 1284 ULONGEST offset, ULONGEST len, 1285 ULONGEST *xfered_len) 1286 { 1287 enum target_xfer_status retval; 1288 1289 gdb_assert (ops->to_xfer_partial != NULL); 1290 1291 /* Transfer is done when LEN is zero. */ 1292 if (len == 0) 1293 return TARGET_XFER_EOF; 1294 1295 if (writebuf && !may_write_memory) 1296 error (_("Writing to memory is not allowed (addr %s, len %s)"), 1297 core_addr_to_string_nz (offset), plongest (len)); 1298 1299 *xfered_len = 0; 1300 1301 /* If this is a memory transfer, let the memory-specific code 1302 have a look at it instead. Memory transfers are more 1303 complicated. */ 1304 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY 1305 || object == TARGET_OBJECT_CODE_MEMORY) 1306 retval = memory_xfer_partial (ops, object, readbuf, 1307 writebuf, offset, len, xfered_len); 1308 else if (object == TARGET_OBJECT_RAW_MEMORY) 1309 { 1310 /* Skip/avoid accessing the target if the memory region 1311 attributes block the access. Check this here instead of in 1312 raw_memory_xfer_partial as otherwise we'd end up checking 1313 this twice in the case of the memory_xfer_partial path is 1314 taken; once before checking the dcache, and another in the 1315 tail call to raw_memory_xfer_partial. */ 1316 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len, 1317 NULL)) 1318 return TARGET_XFER_E_IO; 1319 1320 /* Request the normal memory object from other layers. */ 1321 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len, 1322 xfered_len); 1323 } 1324 else 1325 retval = ops->to_xfer_partial (ops, object, annex, readbuf, 1326 writebuf, offset, len, xfered_len); 1327 1328 if (targetdebug) 1329 { 1330 const unsigned char *myaddr = NULL; 1331 1332 fprintf_unfiltered (gdb_stdlog, 1333 "%s:target_xfer_partial " 1334 "(%d, %s, %s, %s, %s, %s) = %d, %s", 1335 ops->to_shortname, 1336 (int) object, 1337 (annex ? annex : "(null)"), 1338 host_address_to_string (readbuf), 1339 host_address_to_string (writebuf), 1340 core_addr_to_string_nz (offset), 1341 pulongest (len), retval, 1342 pulongest (*xfered_len)); 1343 1344 if (readbuf) 1345 myaddr = readbuf; 1346 if (writebuf) 1347 myaddr = writebuf; 1348 if (retval == TARGET_XFER_OK && myaddr != NULL) 1349 { 1350 int i; 1351 1352 fputs_unfiltered (", bytes =", gdb_stdlog); 1353 for (i = 0; i < *xfered_len; i++) 1354 { 1355 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0) 1356 { 1357 if (targetdebug < 2 && i > 0) 1358 { 1359 fprintf_unfiltered (gdb_stdlog, " ..."); 1360 break; 1361 } 1362 fprintf_unfiltered (gdb_stdlog, "\n"); 1363 } 1364 1365 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff); 1366 } 1367 } 1368 1369 fputc_unfiltered ('\n', gdb_stdlog); 1370 } 1371 1372 /* Check implementations of to_xfer_partial update *XFERED_LEN 1373 properly. Do assertion after printing debug messages, so that we 1374 can find more clues on assertion failure from debugging messages. */ 1375 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE) 1376 gdb_assert (*xfered_len > 0); 1377 1378 return retval; 1379 } 1380 1381 /* Read LEN bytes of target memory at address MEMADDR, placing the 1382 results in GDB's memory at MYADDR. Returns either 0 for success or 1383 TARGET_XFER_E_IO if any error occurs. 1384 1385 If an error occurs, no guarantee is made about the contents of the data at 1386 MYADDR. In particular, the caller should not depend upon partial reads 1387 filling the buffer with good data. There is no way for the caller to know 1388 how much good data might have been transfered anyway. Callers that can 1389 deal with partial reads should call target_read (which will retry until 1390 it makes no progress, and then return how much was transferred). */ 1391 1392 int 1393 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) 1394 { 1395 /* Dispatch to the topmost target, not the flattened current_target. 1396 Memory accesses check target->to_has_(all_)memory, and the 1397 flattened target doesn't inherit those. */ 1398 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL, 1399 myaddr, memaddr, len) == len) 1400 return 0; 1401 else 1402 return TARGET_XFER_E_IO; 1403 } 1404 1405 /* See target/target.h. */ 1406 1407 int 1408 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result) 1409 { 1410 gdb_byte buf[4]; 1411 int r; 1412 1413 r = target_read_memory (memaddr, buf, sizeof buf); 1414 if (r != 0) 1415 return r; 1416 *result = extract_unsigned_integer (buf, sizeof buf, 1417 gdbarch_byte_order (target_gdbarch ())); 1418 return 0; 1419 } 1420 1421 /* Like target_read_memory, but specify explicitly that this is a read 1422 from the target's raw memory. That is, this read bypasses the 1423 dcache, breakpoint shadowing, etc. */ 1424 1425 int 1426 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) 1427 { 1428 /* See comment in target_read_memory about why the request starts at 1429 current_target.beneath. */ 1430 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL, 1431 myaddr, memaddr, len) == len) 1432 return 0; 1433 else 1434 return TARGET_XFER_E_IO; 1435 } 1436 1437 /* Like target_read_memory, but specify explicitly that this is a read from 1438 the target's stack. This may trigger different cache behavior. */ 1439 1440 int 1441 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) 1442 { 1443 /* See comment in target_read_memory about why the request starts at 1444 current_target.beneath. */ 1445 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL, 1446 myaddr, memaddr, len) == len) 1447 return 0; 1448 else 1449 return TARGET_XFER_E_IO; 1450 } 1451 1452 /* Like target_read_memory, but specify explicitly that this is a read from 1453 the target's code. This may trigger different cache behavior. */ 1454 1455 int 1456 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) 1457 { 1458 /* See comment in target_read_memory about why the request starts at 1459 current_target.beneath. */ 1460 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL, 1461 myaddr, memaddr, len) == len) 1462 return 0; 1463 else 1464 return TARGET_XFER_E_IO; 1465 } 1466 1467 /* Write LEN bytes from MYADDR to target memory at address MEMADDR. 1468 Returns either 0 for success or TARGET_XFER_E_IO if any 1469 error occurs. If an error occurs, no guarantee is made about how 1470 much data got written. Callers that can deal with partial writes 1471 should call target_write. */ 1472 1473 int 1474 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len) 1475 { 1476 /* See comment in target_read_memory about why the request starts at 1477 current_target.beneath. */ 1478 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL, 1479 myaddr, memaddr, len) == len) 1480 return 0; 1481 else 1482 return TARGET_XFER_E_IO; 1483 } 1484 1485 /* Write LEN bytes from MYADDR to target raw memory at address 1486 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO 1487 if any error occurs. If an error occurs, no guarantee is made 1488 about how much data got written. Callers that can deal with 1489 partial writes should call target_write. */ 1490 1491 int 1492 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len) 1493 { 1494 /* See comment in target_read_memory about why the request starts at 1495 current_target.beneath. */ 1496 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL, 1497 myaddr, memaddr, len) == len) 1498 return 0; 1499 else 1500 return TARGET_XFER_E_IO; 1501 } 1502 1503 /* Fetch the target's memory map. */ 1504 1505 VEC(mem_region_s) * 1506 target_memory_map (void) 1507 { 1508 VEC(mem_region_s) *result; 1509 struct mem_region *last_one, *this_one; 1510 int ix; 1511 struct target_ops *t; 1512 1513 result = current_target.to_memory_map (¤t_target); 1514 if (result == NULL) 1515 return NULL; 1516 1517 qsort (VEC_address (mem_region_s, result), 1518 VEC_length (mem_region_s, result), 1519 sizeof (struct mem_region), mem_region_cmp); 1520 1521 /* Check that regions do not overlap. Simultaneously assign 1522 a numbering for the "mem" commands to use to refer to 1523 each region. */ 1524 last_one = NULL; 1525 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++) 1526 { 1527 this_one->number = ix; 1528 1529 if (last_one && last_one->hi > this_one->lo) 1530 { 1531 warning (_("Overlapping regions in memory map: ignoring")); 1532 VEC_free (mem_region_s, result); 1533 return NULL; 1534 } 1535 last_one = this_one; 1536 } 1537 1538 return result; 1539 } 1540 1541 void 1542 target_flash_erase (ULONGEST address, LONGEST length) 1543 { 1544 current_target.to_flash_erase (¤t_target, address, length); 1545 } 1546 1547 void 1548 target_flash_done (void) 1549 { 1550 current_target.to_flash_done (¤t_target); 1551 } 1552 1553 static void 1554 show_trust_readonly (struct ui_file *file, int from_tty, 1555 struct cmd_list_element *c, const char *value) 1556 { 1557 fprintf_filtered (file, 1558 _("Mode for reading from readonly sections is %s.\n"), 1559 value); 1560 } 1561 1562 /* Target vector read/write partial wrapper functions. */ 1563 1564 static enum target_xfer_status 1565 target_read_partial (struct target_ops *ops, 1566 enum target_object object, 1567 const char *annex, gdb_byte *buf, 1568 ULONGEST offset, ULONGEST len, 1569 ULONGEST *xfered_len) 1570 { 1571 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len, 1572 xfered_len); 1573 } 1574 1575 static enum target_xfer_status 1576 target_write_partial (struct target_ops *ops, 1577 enum target_object object, 1578 const char *annex, const gdb_byte *buf, 1579 ULONGEST offset, LONGEST len, ULONGEST *xfered_len) 1580 { 1581 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len, 1582 xfered_len); 1583 } 1584 1585 /* Wrappers to perform the full transfer. */ 1586 1587 /* For docs on target_read see target.h. */ 1588 1589 LONGEST 1590 target_read (struct target_ops *ops, 1591 enum target_object object, 1592 const char *annex, gdb_byte *buf, 1593 ULONGEST offset, LONGEST len) 1594 { 1595 LONGEST xfered_total = 0; 1596 int unit_size = 1; 1597 1598 /* If we are reading from a memory object, find the length of an addressable 1599 unit for that architecture. */ 1600 if (object == TARGET_OBJECT_MEMORY 1601 || object == TARGET_OBJECT_STACK_MEMORY 1602 || object == TARGET_OBJECT_CODE_MEMORY 1603 || object == TARGET_OBJECT_RAW_MEMORY) 1604 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ()); 1605 1606 while (xfered_total < len) 1607 { 1608 ULONGEST xfered_partial; 1609 enum target_xfer_status status; 1610 1611 status = target_read_partial (ops, object, annex, 1612 buf + xfered_total * unit_size, 1613 offset + xfered_total, len - xfered_total, 1614 &xfered_partial); 1615 1616 /* Call an observer, notifying them of the xfer progress? */ 1617 if (status == TARGET_XFER_EOF) 1618 return xfered_total; 1619 else if (status == TARGET_XFER_OK) 1620 { 1621 xfered_total += xfered_partial; 1622 QUIT; 1623 } 1624 else 1625 return TARGET_XFER_E_IO; 1626 1627 } 1628 return len; 1629 } 1630 1631 /* Assuming that the entire [begin, end) range of memory cannot be 1632 read, try to read whatever subrange is possible to read. 1633 1634 The function returns, in RESULT, either zero or one memory block. 1635 If there's a readable subrange at the beginning, it is completely 1636 read and returned. Any further readable subrange will not be read. 1637 Otherwise, if there's a readable subrange at the end, it will be 1638 completely read and returned. Any readable subranges before it 1639 (obviously, not starting at the beginning), will be ignored. In 1640 other cases -- either no readable subrange, or readable subrange(s) 1641 that is neither at the beginning, or end, nothing is returned. 1642 1643 The purpose of this function is to handle a read across a boundary 1644 of accessible memory in a case when memory map is not available. 1645 The above restrictions are fine for this case, but will give 1646 incorrect results if the memory is 'patchy'. However, supporting 1647 'patchy' memory would require trying to read every single byte, 1648 and it seems unacceptable solution. Explicit memory map is 1649 recommended for this case -- and target_read_memory_robust will 1650 take care of reading multiple ranges then. */ 1651 1652 static void 1653 read_whatever_is_readable (struct target_ops *ops, 1654 const ULONGEST begin, const ULONGEST end, 1655 int unit_size, 1656 VEC(memory_read_result_s) **result) 1657 { 1658 gdb_byte *buf = xmalloc (end - begin); 1659 ULONGEST current_begin = begin; 1660 ULONGEST current_end = end; 1661 int forward; 1662 memory_read_result_s r; 1663 ULONGEST xfered_len; 1664 1665 /* If we previously failed to read 1 byte, nothing can be done here. */ 1666 if (end - begin <= 1) 1667 { 1668 xfree (buf); 1669 return; 1670 } 1671 1672 /* Check that either first or the last byte is readable, and give up 1673 if not. This heuristic is meant to permit reading accessible memory 1674 at the boundary of accessible region. */ 1675 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL, 1676 buf, begin, 1, &xfered_len) == TARGET_XFER_OK) 1677 { 1678 forward = 1; 1679 ++current_begin; 1680 } 1681 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL, 1682 buf + (end - begin) - 1, end - 1, 1, 1683 &xfered_len) == TARGET_XFER_OK) 1684 { 1685 forward = 0; 1686 --current_end; 1687 } 1688 else 1689 { 1690 xfree (buf); 1691 return; 1692 } 1693 1694 /* Loop invariant is that the [current_begin, current_end) was previously 1695 found to be not readable as a whole. 1696 1697 Note loop condition -- if the range has 1 byte, we can't divide the range 1698 so there's no point trying further. */ 1699 while (current_end - current_begin > 1) 1700 { 1701 ULONGEST first_half_begin, first_half_end; 1702 ULONGEST second_half_begin, second_half_end; 1703 LONGEST xfer; 1704 ULONGEST middle = current_begin + (current_end - current_begin) / 2; 1705 1706 if (forward) 1707 { 1708 first_half_begin = current_begin; 1709 first_half_end = middle; 1710 second_half_begin = middle; 1711 second_half_end = current_end; 1712 } 1713 else 1714 { 1715 first_half_begin = middle; 1716 first_half_end = current_end; 1717 second_half_begin = current_begin; 1718 second_half_end = middle; 1719 } 1720 1721 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL, 1722 buf + (first_half_begin - begin) * unit_size, 1723 first_half_begin, 1724 first_half_end - first_half_begin); 1725 1726 if (xfer == first_half_end - first_half_begin) 1727 { 1728 /* This half reads up fine. So, the error must be in the 1729 other half. */ 1730 current_begin = second_half_begin; 1731 current_end = second_half_end; 1732 } 1733 else 1734 { 1735 /* This half is not readable. Because we've tried one byte, we 1736 know some part of this half if actually readable. Go to the next 1737 iteration to divide again and try to read. 1738 1739 We don't handle the other half, because this function only tries 1740 to read a single readable subrange. */ 1741 current_begin = first_half_begin; 1742 current_end = first_half_end; 1743 } 1744 } 1745 1746 if (forward) 1747 { 1748 /* The [begin, current_begin) range has been read. */ 1749 r.begin = begin; 1750 r.end = current_begin; 1751 r.data = buf; 1752 } 1753 else 1754 { 1755 /* The [current_end, end) range has been read. */ 1756 LONGEST region_len = end - current_end; 1757 1758 r.data = xmalloc (region_len * unit_size); 1759 memcpy (r.data, buf + (current_end - begin) * unit_size, 1760 region_len * unit_size); 1761 r.begin = current_end; 1762 r.end = end; 1763 xfree (buf); 1764 } 1765 VEC_safe_push(memory_read_result_s, (*result), &r); 1766 } 1767 1768 void 1769 free_memory_read_result_vector (void *x) 1770 { 1771 VEC(memory_read_result_s) *v = x; 1772 memory_read_result_s *current; 1773 int ix; 1774 1775 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix) 1776 { 1777 xfree (current->data); 1778 } 1779 VEC_free (memory_read_result_s, v); 1780 } 1781 1782 VEC(memory_read_result_s) * 1783 read_memory_robust (struct target_ops *ops, 1784 const ULONGEST offset, const LONGEST len) 1785 { 1786 VEC(memory_read_result_s) *result = 0; 1787 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ()); 1788 1789 LONGEST xfered_total = 0; 1790 while (xfered_total < len) 1791 { 1792 struct mem_region *region = lookup_mem_region (offset + xfered_total); 1793 LONGEST region_len; 1794 1795 /* If there is no explicit region, a fake one should be created. */ 1796 gdb_assert (region); 1797 1798 if (region->hi == 0) 1799 region_len = len - xfered_total; 1800 else 1801 region_len = region->hi - offset; 1802 1803 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO) 1804 { 1805 /* Cannot read this region. Note that we can end up here only 1806 if the region is explicitly marked inaccessible, or 1807 'inaccessible-by-default' is in effect. */ 1808 xfered_total += region_len; 1809 } 1810 else 1811 { 1812 LONGEST to_read = min (len - xfered_total, region_len); 1813 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size); 1814 1815 LONGEST xfered_partial = 1816 target_read (ops, TARGET_OBJECT_MEMORY, NULL, 1817 (gdb_byte *) buffer, 1818 offset + xfered_total, to_read); 1819 /* Call an observer, notifying them of the xfer progress? */ 1820 if (xfered_partial <= 0) 1821 { 1822 /* Got an error reading full chunk. See if maybe we can read 1823 some subrange. */ 1824 xfree (buffer); 1825 read_whatever_is_readable (ops, offset + xfered_total, unit_size, 1826 offset + xfered_total + to_read, &result); 1827 xfered_total += to_read; 1828 } 1829 else 1830 { 1831 struct memory_read_result r; 1832 r.data = buffer; 1833 r.begin = offset + xfered_total; 1834 r.end = r.begin + xfered_partial; 1835 VEC_safe_push (memory_read_result_s, result, &r); 1836 xfered_total += xfered_partial; 1837 } 1838 QUIT; 1839 } 1840 } 1841 return result; 1842 } 1843 1844 1845 /* An alternative to target_write with progress callbacks. */ 1846 1847 LONGEST 1848 target_write_with_progress (struct target_ops *ops, 1849 enum target_object object, 1850 const char *annex, const gdb_byte *buf, 1851 ULONGEST offset, LONGEST len, 1852 void (*progress) (ULONGEST, void *), void *baton) 1853 { 1854 LONGEST xfered_total = 0; 1855 int unit_size = 1; 1856 1857 /* If we are writing to a memory object, find the length of an addressable 1858 unit for that architecture. */ 1859 if (object == TARGET_OBJECT_MEMORY 1860 || object == TARGET_OBJECT_STACK_MEMORY 1861 || object == TARGET_OBJECT_CODE_MEMORY 1862 || object == TARGET_OBJECT_RAW_MEMORY) 1863 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ()); 1864 1865 /* Give the progress callback a chance to set up. */ 1866 if (progress) 1867 (*progress) (0, baton); 1868 1869 while (xfered_total < len) 1870 { 1871 ULONGEST xfered_partial; 1872 enum target_xfer_status status; 1873 1874 status = target_write_partial (ops, object, annex, 1875 buf + xfered_total * unit_size, 1876 offset + xfered_total, len - xfered_total, 1877 &xfered_partial); 1878 1879 if (status != TARGET_XFER_OK) 1880 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO; 1881 1882 if (progress) 1883 (*progress) (xfered_partial, baton); 1884 1885 xfered_total += xfered_partial; 1886 QUIT; 1887 } 1888 return len; 1889 } 1890 1891 /* For docs on target_write see target.h. */ 1892 1893 LONGEST 1894 target_write (struct target_ops *ops, 1895 enum target_object object, 1896 const char *annex, const gdb_byte *buf, 1897 ULONGEST offset, LONGEST len) 1898 { 1899 return target_write_with_progress (ops, object, annex, buf, offset, len, 1900 NULL, NULL); 1901 } 1902 1903 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return 1904 the size of the transferred data. PADDING additional bytes are 1905 available in *BUF_P. This is a helper function for 1906 target_read_alloc; see the declaration of that function for more 1907 information. */ 1908 1909 static LONGEST 1910 target_read_alloc_1 (struct target_ops *ops, enum target_object object, 1911 const char *annex, gdb_byte **buf_p, int padding) 1912 { 1913 size_t buf_alloc, buf_pos; 1914 gdb_byte *buf; 1915 1916 /* This function does not have a length parameter; it reads the 1917 entire OBJECT). Also, it doesn't support objects fetched partly 1918 from one target and partly from another (in a different stratum, 1919 e.g. a core file and an executable). Both reasons make it 1920 unsuitable for reading memory. */ 1921 gdb_assert (object != TARGET_OBJECT_MEMORY); 1922 1923 /* Start by reading up to 4K at a time. The target will throttle 1924 this number down if necessary. */ 1925 buf_alloc = 4096; 1926 buf = xmalloc (buf_alloc); 1927 buf_pos = 0; 1928 while (1) 1929 { 1930 ULONGEST xfered_len; 1931 enum target_xfer_status status; 1932 1933 status = target_read_partial (ops, object, annex, &buf[buf_pos], 1934 buf_pos, buf_alloc - buf_pos - padding, 1935 &xfered_len); 1936 1937 if (status == TARGET_XFER_EOF) 1938 { 1939 /* Read all there was. */ 1940 if (buf_pos == 0) 1941 xfree (buf); 1942 else 1943 *buf_p = buf; 1944 return buf_pos; 1945 } 1946 else if (status != TARGET_XFER_OK) 1947 { 1948 /* An error occurred. */ 1949 xfree (buf); 1950 return TARGET_XFER_E_IO; 1951 } 1952 1953 buf_pos += xfered_len; 1954 1955 /* If the buffer is filling up, expand it. */ 1956 if (buf_alloc < buf_pos * 2) 1957 { 1958 buf_alloc *= 2; 1959 buf = xrealloc (buf, buf_alloc); 1960 } 1961 1962 QUIT; 1963 } 1964 } 1965 1966 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return 1967 the size of the transferred data. See the declaration in "target.h" 1968 function for more information about the return value. */ 1969 1970 LONGEST 1971 target_read_alloc (struct target_ops *ops, enum target_object object, 1972 const char *annex, gdb_byte **buf_p) 1973 { 1974 return target_read_alloc_1 (ops, object, annex, buf_p, 0); 1975 } 1976 1977 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and 1978 returned as a string, allocated using xmalloc. If an error occurs 1979 or the transfer is unsupported, NULL is returned. Empty objects 1980 are returned as allocated but empty strings. A warning is issued 1981 if the result contains any embedded NUL bytes. */ 1982 1983 char * 1984 target_read_stralloc (struct target_ops *ops, enum target_object object, 1985 const char *annex) 1986 { 1987 gdb_byte *buffer; 1988 char *bufstr; 1989 LONGEST i, transferred; 1990 1991 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1); 1992 bufstr = (char *) buffer; 1993 1994 if (transferred < 0) 1995 return NULL; 1996 1997 if (transferred == 0) 1998 return xstrdup (""); 1999 2000 bufstr[transferred] = 0; 2001 2002 /* Check for embedded NUL bytes; but allow trailing NULs. */ 2003 for (i = strlen (bufstr); i < transferred; i++) 2004 if (bufstr[i] != 0) 2005 { 2006 warning (_("target object %d, annex %s, " 2007 "contained unexpected null characters"), 2008 (int) object, annex ? annex : "(none)"); 2009 break; 2010 } 2011 2012 return bufstr; 2013 } 2014 2015 /* Memory transfer methods. */ 2016 2017 void 2018 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf, 2019 LONGEST len) 2020 { 2021 /* This method is used to read from an alternate, non-current 2022 target. This read must bypass the overlay support (as symbols 2023 don't match this target), and GDB's internal cache (wrong cache 2024 for this target). */ 2025 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len) 2026 != len) 2027 memory_error (TARGET_XFER_E_IO, addr); 2028 } 2029 2030 ULONGEST 2031 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr, 2032 int len, enum bfd_endian byte_order) 2033 { 2034 gdb_byte buf[sizeof (ULONGEST)]; 2035 2036 gdb_assert (len <= sizeof (buf)); 2037 get_target_memory (ops, addr, buf, len); 2038 return extract_unsigned_integer (buf, len, byte_order); 2039 } 2040 2041 /* See target.h. */ 2042 2043 int 2044 target_insert_breakpoint (struct gdbarch *gdbarch, 2045 struct bp_target_info *bp_tgt) 2046 { 2047 if (!may_insert_breakpoints) 2048 { 2049 warning (_("May not insert breakpoints")); 2050 return 1; 2051 } 2052 2053 return current_target.to_insert_breakpoint (¤t_target, 2054 gdbarch, bp_tgt); 2055 } 2056 2057 /* See target.h. */ 2058 2059 int 2060 target_remove_breakpoint (struct gdbarch *gdbarch, 2061 struct bp_target_info *bp_tgt) 2062 { 2063 /* This is kind of a weird case to handle, but the permission might 2064 have been changed after breakpoints were inserted - in which case 2065 we should just take the user literally and assume that any 2066 breakpoints should be left in place. */ 2067 if (!may_insert_breakpoints) 2068 { 2069 warning (_("May not remove breakpoints")); 2070 return 1; 2071 } 2072 2073 return current_target.to_remove_breakpoint (¤t_target, 2074 gdbarch, bp_tgt); 2075 } 2076 2077 static void 2078 target_info (char *args, int from_tty) 2079 { 2080 struct target_ops *t; 2081 int has_all_mem = 0; 2082 2083 if (symfile_objfile != NULL) 2084 printf_unfiltered (_("Symbols from \"%s\".\n"), 2085 objfile_name (symfile_objfile)); 2086 2087 for (t = target_stack; t != NULL; t = t->beneath) 2088 { 2089 if (!(*t->to_has_memory) (t)) 2090 continue; 2091 2092 if ((int) (t->to_stratum) <= (int) dummy_stratum) 2093 continue; 2094 if (has_all_mem) 2095 printf_unfiltered (_("\tWhile running this, " 2096 "GDB does not access memory from...\n")); 2097 printf_unfiltered ("%s:\n", t->to_longname); 2098 (t->to_files_info) (t); 2099 has_all_mem = (*t->to_has_all_memory) (t); 2100 } 2101 } 2102 2103 /* This function is called before any new inferior is created, e.g. 2104 by running a program, attaching, or connecting to a target. 2105 It cleans up any state from previous invocations which might 2106 change between runs. This is a subset of what target_preopen 2107 resets (things which might change between targets). */ 2108 2109 void 2110 target_pre_inferior (int from_tty) 2111 { 2112 /* Clear out solib state. Otherwise the solib state of the previous 2113 inferior might have survived and is entirely wrong for the new 2114 target. This has been observed on GNU/Linux using glibc 2.3. How 2115 to reproduce: 2116 2117 bash$ ./foo& 2118 [1] 4711 2119 bash$ ./foo& 2120 [1] 4712 2121 bash$ gdb ./foo 2122 [...] 2123 (gdb) attach 4711 2124 (gdb) detach 2125 (gdb) attach 4712 2126 Cannot access memory at address 0xdeadbeef 2127 */ 2128 2129 /* In some OSs, the shared library list is the same/global/shared 2130 across inferiors. If code is shared between processes, so are 2131 memory regions and features. */ 2132 if (!gdbarch_has_global_solist (target_gdbarch ())) 2133 { 2134 no_shared_libraries (NULL, from_tty); 2135 2136 invalidate_target_mem_regions (); 2137 2138 target_clear_description (); 2139 } 2140 2141 agent_capability_invalidate (); 2142 } 2143 2144 /* Callback for iterate_over_inferiors. Gets rid of the given 2145 inferior. */ 2146 2147 static int 2148 dispose_inferior (struct inferior *inf, void *args) 2149 { 2150 struct thread_info *thread; 2151 2152 thread = any_thread_of_process (inf->pid); 2153 if (thread) 2154 { 2155 switch_to_thread (thread->ptid); 2156 2157 /* Core inferiors actually should be detached, not killed. */ 2158 if (target_has_execution) 2159 target_kill (); 2160 else 2161 target_detach (NULL, 0); 2162 } 2163 2164 return 0; 2165 } 2166 2167 /* This is to be called by the open routine before it does 2168 anything. */ 2169 2170 void 2171 target_preopen (int from_tty) 2172 { 2173 dont_repeat (); 2174 2175 if (have_inferiors ()) 2176 { 2177 if (!from_tty 2178 || !have_live_inferiors () 2179 || query (_("A program is being debugged already. Kill it? "))) 2180 iterate_over_inferiors (dispose_inferior, NULL); 2181 else 2182 error (_("Program not killed.")); 2183 } 2184 2185 /* Calling target_kill may remove the target from the stack. But if 2186 it doesn't (which seems like a win for UDI), remove it now. */ 2187 /* Leave the exec target, though. The user may be switching from a 2188 live process to a core of the same program. */ 2189 pop_all_targets_above (file_stratum); 2190 2191 target_pre_inferior (from_tty); 2192 } 2193 2194 /* Detach a target after doing deferred register stores. */ 2195 2196 void 2197 target_detach (const char *args, int from_tty) 2198 { 2199 struct target_ops* t; 2200 2201 if (gdbarch_has_global_breakpoints (target_gdbarch ())) 2202 /* Don't remove global breakpoints here. They're removed on 2203 disconnection from the target. */ 2204 ; 2205 else 2206 /* If we're in breakpoints-always-inserted mode, have to remove 2207 them before detaching. */ 2208 remove_breakpoints_pid (ptid_get_pid (inferior_ptid)); 2209 2210 prepare_for_detach (); 2211 2212 current_target.to_detach (¤t_target, args, from_tty); 2213 } 2214 2215 void 2216 target_disconnect (const char *args, int from_tty) 2217 { 2218 /* If we're in breakpoints-always-inserted mode or if breakpoints 2219 are global across processes, we have to remove them before 2220 disconnecting. */ 2221 remove_breakpoints (); 2222 2223 current_target.to_disconnect (¤t_target, args, from_tty); 2224 } 2225 2226 ptid_t 2227 target_wait (ptid_t ptid, struct target_waitstatus *status, int options) 2228 { 2229 return (current_target.to_wait) (¤t_target, ptid, status, options); 2230 } 2231 2232 char * 2233 target_pid_to_str (ptid_t ptid) 2234 { 2235 return (*current_target.to_pid_to_str) (¤t_target, ptid); 2236 } 2237 2238 char * 2239 target_thread_name (struct thread_info *info) 2240 { 2241 return current_target.to_thread_name (¤t_target, info); 2242 } 2243 2244 void 2245 target_resume (ptid_t ptid, int step, enum gdb_signal signal) 2246 { 2247 struct target_ops *t; 2248 2249 target_dcache_invalidate (); 2250 2251 current_target.to_resume (¤t_target, ptid, step, signal); 2252 2253 registers_changed_ptid (ptid); 2254 /* We only set the internal executing state here. The user/frontend 2255 running state is set at a higher level. */ 2256 set_executing (ptid, 1); 2257 clear_inline_frame_state (ptid); 2258 } 2259 2260 void 2261 target_pass_signals (int numsigs, unsigned char *pass_signals) 2262 { 2263 (*current_target.to_pass_signals) (¤t_target, numsigs, pass_signals); 2264 } 2265 2266 void 2267 target_program_signals (int numsigs, unsigned char *program_signals) 2268 { 2269 (*current_target.to_program_signals) (¤t_target, 2270 numsigs, program_signals); 2271 } 2272 2273 static int 2274 default_follow_fork (struct target_ops *self, int follow_child, 2275 int detach_fork) 2276 { 2277 /* Some target returned a fork event, but did not know how to follow it. */ 2278 internal_error (__FILE__, __LINE__, 2279 _("could not find a target to follow fork")); 2280 } 2281 2282 /* Look through the list of possible targets for a target that can 2283 follow forks. */ 2284 2285 int 2286 target_follow_fork (int follow_child, int detach_fork) 2287 { 2288 return current_target.to_follow_fork (¤t_target, 2289 follow_child, detach_fork); 2290 } 2291 2292 static void 2293 default_mourn_inferior (struct target_ops *self) 2294 { 2295 internal_error (__FILE__, __LINE__, 2296 _("could not find a target to follow mourn inferior")); 2297 } 2298 2299 void 2300 target_mourn_inferior (void) 2301 { 2302 current_target.to_mourn_inferior (¤t_target); 2303 2304 /* We no longer need to keep handles on any of the object files. 2305 Make sure to release them to avoid unnecessarily locking any 2306 of them while we're not actually debugging. */ 2307 bfd_cache_close_all (); 2308 } 2309 2310 /* Look for a target which can describe architectural features, starting 2311 from TARGET. If we find one, return its description. */ 2312 2313 const struct target_desc * 2314 target_read_description (struct target_ops *target) 2315 { 2316 return target->to_read_description (target); 2317 } 2318 2319 /* This implements a basic search of memory, reading target memory and 2320 performing the search here (as opposed to performing the search in on the 2321 target side with, for example, gdbserver). */ 2322 2323 int 2324 simple_search_memory (struct target_ops *ops, 2325 CORE_ADDR start_addr, ULONGEST search_space_len, 2326 const gdb_byte *pattern, ULONGEST pattern_len, 2327 CORE_ADDR *found_addrp) 2328 { 2329 /* NOTE: also defined in find.c testcase. */ 2330 #define SEARCH_CHUNK_SIZE 16000 2331 const unsigned chunk_size = SEARCH_CHUNK_SIZE; 2332 /* Buffer to hold memory contents for searching. */ 2333 gdb_byte *search_buf; 2334 unsigned search_buf_size; 2335 struct cleanup *old_cleanups; 2336 2337 search_buf_size = chunk_size + pattern_len - 1; 2338 2339 /* No point in trying to allocate a buffer larger than the search space. */ 2340 if (search_space_len < search_buf_size) 2341 search_buf_size = search_space_len; 2342 2343 search_buf = malloc (search_buf_size); 2344 if (search_buf == NULL) 2345 error (_("Unable to allocate memory to perform the search.")); 2346 old_cleanups = make_cleanup (free_current_contents, &search_buf); 2347 2348 /* Prime the search buffer. */ 2349 2350 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, 2351 search_buf, start_addr, search_buf_size) != search_buf_size) 2352 { 2353 warning (_("Unable to access %s bytes of target " 2354 "memory at %s, halting search."), 2355 pulongest (search_buf_size), hex_string (start_addr)); 2356 do_cleanups (old_cleanups); 2357 return -1; 2358 } 2359 2360 /* Perform the search. 2361 2362 The loop is kept simple by allocating [N + pattern-length - 1] bytes. 2363 When we've scanned N bytes we copy the trailing bytes to the start and 2364 read in another N bytes. */ 2365 2366 while (search_space_len >= pattern_len) 2367 { 2368 gdb_byte *found_ptr; 2369 unsigned nr_search_bytes = min (search_space_len, search_buf_size); 2370 2371 found_ptr = memmem (search_buf, nr_search_bytes, 2372 pattern, pattern_len); 2373 2374 if (found_ptr != NULL) 2375 { 2376 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf); 2377 2378 *found_addrp = found_addr; 2379 do_cleanups (old_cleanups); 2380 return 1; 2381 } 2382 2383 /* Not found in this chunk, skip to next chunk. */ 2384 2385 /* Don't let search_space_len wrap here, it's unsigned. */ 2386 if (search_space_len >= chunk_size) 2387 search_space_len -= chunk_size; 2388 else 2389 search_space_len = 0; 2390 2391 if (search_space_len >= pattern_len) 2392 { 2393 unsigned keep_len = search_buf_size - chunk_size; 2394 CORE_ADDR read_addr = start_addr + chunk_size + keep_len; 2395 int nr_to_read; 2396 2397 /* Copy the trailing part of the previous iteration to the front 2398 of the buffer for the next iteration. */ 2399 gdb_assert (keep_len == pattern_len - 1); 2400 memcpy (search_buf, search_buf + chunk_size, keep_len); 2401 2402 nr_to_read = min (search_space_len - keep_len, chunk_size); 2403 2404 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, 2405 search_buf + keep_len, read_addr, 2406 nr_to_read) != nr_to_read) 2407 { 2408 warning (_("Unable to access %s bytes of target " 2409 "memory at %s, halting search."), 2410 plongest (nr_to_read), 2411 hex_string (read_addr)); 2412 do_cleanups (old_cleanups); 2413 return -1; 2414 } 2415 2416 start_addr += chunk_size; 2417 } 2418 } 2419 2420 /* Not found. */ 2421 2422 do_cleanups (old_cleanups); 2423 return 0; 2424 } 2425 2426 /* Default implementation of memory-searching. */ 2427 2428 static int 2429 default_search_memory (struct target_ops *self, 2430 CORE_ADDR start_addr, ULONGEST search_space_len, 2431 const gdb_byte *pattern, ULONGEST pattern_len, 2432 CORE_ADDR *found_addrp) 2433 { 2434 /* Start over from the top of the target stack. */ 2435 return simple_search_memory (current_target.beneath, 2436 start_addr, search_space_len, 2437 pattern, pattern_len, found_addrp); 2438 } 2439 2440 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the 2441 sequence of bytes in PATTERN with length PATTERN_LEN. 2442 2443 The result is 1 if found, 0 if not found, and -1 if there was an error 2444 requiring halting of the search (e.g. memory read error). 2445 If the pattern is found the address is recorded in FOUND_ADDRP. */ 2446 2447 int 2448 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len, 2449 const gdb_byte *pattern, ULONGEST pattern_len, 2450 CORE_ADDR *found_addrp) 2451 { 2452 return current_target.to_search_memory (¤t_target, start_addr, 2453 search_space_len, 2454 pattern, pattern_len, found_addrp); 2455 } 2456 2457 /* Look through the currently pushed targets. If none of them will 2458 be able to restart the currently running process, issue an error 2459 message. */ 2460 2461 void 2462 target_require_runnable (void) 2463 { 2464 struct target_ops *t; 2465 2466 for (t = target_stack; t != NULL; t = t->beneath) 2467 { 2468 /* If this target knows how to create a new program, then 2469 assume we will still be able to after killing the current 2470 one. Either killing and mourning will not pop T, or else 2471 find_default_run_target will find it again. */ 2472 if (t->to_create_inferior != NULL) 2473 return; 2474 2475 /* Do not worry about targets at certain strata that can not 2476 create inferiors. Assume they will be pushed again if 2477 necessary, and continue to the process_stratum. */ 2478 if (t->to_stratum == thread_stratum 2479 || t->to_stratum == record_stratum 2480 || t->to_stratum == arch_stratum) 2481 continue; 2482 2483 error (_("The \"%s\" target does not support \"run\". " 2484 "Try \"help target\" or \"continue\"."), 2485 t->to_shortname); 2486 } 2487 2488 /* This function is only called if the target is running. In that 2489 case there should have been a process_stratum target and it 2490 should either know how to create inferiors, or not... */ 2491 internal_error (__FILE__, __LINE__, _("No targets found")); 2492 } 2493 2494 /* Whether GDB is allowed to fall back to the default run target for 2495 "run", "attach", etc. when no target is connected yet. */ 2496 static int auto_connect_native_target = 1; 2497 2498 static void 2499 show_auto_connect_native_target (struct ui_file *file, int from_tty, 2500 struct cmd_list_element *c, const char *value) 2501 { 2502 fprintf_filtered (file, 2503 _("Whether GDB may automatically connect to the " 2504 "native target is %s.\n"), 2505 value); 2506 } 2507 2508 /* Look through the list of possible targets for a target that can 2509 execute a run or attach command without any other data. This is 2510 used to locate the default process stratum. 2511 2512 If DO_MESG is not NULL, the result is always valid (error() is 2513 called for errors); else, return NULL on error. */ 2514 2515 static struct target_ops * 2516 find_default_run_target (char *do_mesg) 2517 { 2518 struct target_ops *runable = NULL; 2519 2520 if (auto_connect_native_target) 2521 { 2522 struct target_ops *t; 2523 int count = 0; 2524 int i; 2525 2526 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i) 2527 { 2528 if (t->to_can_run != delegate_can_run && target_can_run (t)) 2529 { 2530 runable = t; 2531 ++count; 2532 } 2533 } 2534 2535 if (count != 1) 2536 runable = NULL; 2537 } 2538 2539 if (runable == NULL) 2540 { 2541 if (do_mesg) 2542 error (_("Don't know how to %s. Try \"help target\"."), do_mesg); 2543 else 2544 return NULL; 2545 } 2546 2547 return runable; 2548 } 2549 2550 /* See target.h. */ 2551 2552 struct target_ops * 2553 find_attach_target (void) 2554 { 2555 struct target_ops *t; 2556 2557 /* If a target on the current stack can attach, use it. */ 2558 for (t = current_target.beneath; t != NULL; t = t->beneath) 2559 { 2560 if (t->to_attach != NULL) 2561 break; 2562 } 2563 2564 /* Otherwise, use the default run target for attaching. */ 2565 if (t == NULL) 2566 t = find_default_run_target ("attach"); 2567 2568 return t; 2569 } 2570 2571 /* See target.h. */ 2572 2573 struct target_ops * 2574 find_run_target (void) 2575 { 2576 struct target_ops *t; 2577 2578 /* If a target on the current stack can attach, use it. */ 2579 for (t = current_target.beneath; t != NULL; t = t->beneath) 2580 { 2581 if (t->to_create_inferior != NULL) 2582 break; 2583 } 2584 2585 /* Otherwise, use the default run target. */ 2586 if (t == NULL) 2587 t = find_default_run_target ("run"); 2588 2589 return t; 2590 } 2591 2592 /* Implement the "info proc" command. */ 2593 2594 int 2595 target_info_proc (const char *args, enum info_proc_what what) 2596 { 2597 struct target_ops *t; 2598 2599 /* If we're already connected to something that can get us OS 2600 related data, use it. Otherwise, try using the native 2601 target. */ 2602 if (current_target.to_stratum >= process_stratum) 2603 t = current_target.beneath; 2604 else 2605 t = find_default_run_target (NULL); 2606 2607 for (; t != NULL; t = t->beneath) 2608 { 2609 if (t->to_info_proc != NULL) 2610 { 2611 t->to_info_proc (t, args, what); 2612 2613 if (targetdebug) 2614 fprintf_unfiltered (gdb_stdlog, 2615 "target_info_proc (\"%s\", %d)\n", args, what); 2616 2617 return 1; 2618 } 2619 } 2620 2621 return 0; 2622 } 2623 2624 static int 2625 find_default_supports_disable_randomization (struct target_ops *self) 2626 { 2627 struct target_ops *t; 2628 2629 t = find_default_run_target (NULL); 2630 if (t && t->to_supports_disable_randomization) 2631 return (t->to_supports_disable_randomization) (t); 2632 return 0; 2633 } 2634 2635 int 2636 target_supports_disable_randomization (void) 2637 { 2638 struct target_ops *t; 2639 2640 for (t = ¤t_target; t != NULL; t = t->beneath) 2641 if (t->to_supports_disable_randomization) 2642 return t->to_supports_disable_randomization (t); 2643 2644 return 0; 2645 } 2646 2647 char * 2648 target_get_osdata (const char *type) 2649 { 2650 struct target_ops *t; 2651 2652 /* If we're already connected to something that can get us OS 2653 related data, use it. Otherwise, try using the native 2654 target. */ 2655 if (current_target.to_stratum >= process_stratum) 2656 t = current_target.beneath; 2657 else 2658 t = find_default_run_target ("get OS data"); 2659 2660 if (!t) 2661 return NULL; 2662 2663 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type); 2664 } 2665 2666 static struct address_space * 2667 default_thread_address_space (struct target_ops *self, ptid_t ptid) 2668 { 2669 struct inferior *inf; 2670 2671 /* Fall-back to the "main" address space of the inferior. */ 2672 inf = find_inferior_ptid (ptid); 2673 2674 if (inf == NULL || inf->aspace == NULL) 2675 internal_error (__FILE__, __LINE__, 2676 _("Can't determine the current " 2677 "address space of thread %s\n"), 2678 target_pid_to_str (ptid)); 2679 2680 return inf->aspace; 2681 } 2682 2683 /* Determine the current address space of thread PTID. */ 2684 2685 struct address_space * 2686 target_thread_address_space (ptid_t ptid) 2687 { 2688 struct address_space *aspace; 2689 2690 aspace = current_target.to_thread_address_space (¤t_target, ptid); 2691 gdb_assert (aspace != NULL); 2692 2693 return aspace; 2694 } 2695 2696 2697 /* Target file operations. */ 2698 2699 static struct target_ops * 2700 default_fileio_target (void) 2701 { 2702 /* If we're already connected to something that can perform 2703 file I/O, use it. Otherwise, try using the native target. */ 2704 if (current_target.to_stratum >= process_stratum) 2705 return current_target.beneath; 2706 else 2707 return find_default_run_target ("file I/O"); 2708 } 2709 2710 /* File handle for target file operations. */ 2711 2712 typedef struct 2713 { 2714 /* The target on which this file is open. */ 2715 struct target_ops *t; 2716 2717 /* The file descriptor on the target. */ 2718 int fd; 2719 } fileio_fh_t; 2720 2721 DEF_VEC_O (fileio_fh_t); 2722 2723 /* Vector of currently open file handles. The value returned by 2724 target_fileio_open and passed as the FD argument to other 2725 target_fileio_* functions is an index into this vector. This 2726 vector's entries are never freed; instead, files are marked as 2727 closed, and the handle becomes available for reuse. */ 2728 static VEC (fileio_fh_t) *fileio_fhandles; 2729 2730 /* Macro to check whether a fileio_fh_t represents a closed file. */ 2731 #define is_closed_fileio_fh(fd) ((fd) < 0) 2732 2733 /* Index into fileio_fhandles of the lowest handle that might be 2734 closed. This permits handle reuse without searching the whole 2735 list each time a new file is opened. */ 2736 static int lowest_closed_fd; 2737 2738 /* Acquire a target fileio file descriptor. */ 2739 2740 static int 2741 acquire_fileio_fd (struct target_ops *t, int fd) 2742 { 2743 fileio_fh_t *fh, buf; 2744 2745 gdb_assert (!is_closed_fileio_fh (fd)); 2746 2747 /* Search for closed handles to reuse. */ 2748 for (; 2749 VEC_iterate (fileio_fh_t, fileio_fhandles, 2750 lowest_closed_fd, fh); 2751 lowest_closed_fd++) 2752 if (is_closed_fileio_fh (fh->fd)) 2753 break; 2754 2755 /* Push a new handle if no closed handles were found. */ 2756 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles)) 2757 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL); 2758 2759 /* Fill in the handle. */ 2760 fh->t = t; 2761 fh->fd = fd; 2762 2763 /* Return its index, and start the next lookup at 2764 the next index. */ 2765 return lowest_closed_fd++; 2766 } 2767 2768 /* Release a target fileio file descriptor. */ 2769 2770 static void 2771 release_fileio_fd (int fd, fileio_fh_t *fh) 2772 { 2773 fh->fd = -1; 2774 lowest_closed_fd = min (lowest_closed_fd, fd); 2775 } 2776 2777 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */ 2778 2779 #define fileio_fd_to_fh(fd) \ 2780 VEC_index (fileio_fh_t, fileio_fhandles, (fd)) 2781 2782 /* Helper for target_fileio_open and 2783 target_fileio_open_warn_if_slow. */ 2784 2785 static int 2786 target_fileio_open_1 (struct inferior *inf, const char *filename, 2787 int flags, int mode, int warn_if_slow, 2788 int *target_errno) 2789 { 2790 struct target_ops *t; 2791 2792 for (t = default_fileio_target (); t != NULL; t = t->beneath) 2793 { 2794 if (t->to_fileio_open != NULL) 2795 { 2796 int fd = t->to_fileio_open (t, inf, filename, flags, mode, 2797 warn_if_slow, target_errno); 2798 2799 if (fd < 0) 2800 fd = -1; 2801 else 2802 fd = acquire_fileio_fd (t, fd); 2803 2804 if (targetdebug) 2805 fprintf_unfiltered (gdb_stdlog, 2806 "target_fileio_open (%d,%s,0x%x,0%o,%d)" 2807 " = %d (%d)\n", 2808 inf == NULL ? 0 : inf->num, 2809 filename, flags, mode, 2810 warn_if_slow, fd, 2811 fd != -1 ? 0 : *target_errno); 2812 return fd; 2813 } 2814 } 2815 2816 *target_errno = FILEIO_ENOSYS; 2817 return -1; 2818 } 2819 2820 /* See target.h. */ 2821 2822 int 2823 target_fileio_open (struct inferior *inf, const char *filename, 2824 int flags, int mode, int *target_errno) 2825 { 2826 return target_fileio_open_1 (inf, filename, flags, mode, 0, 2827 target_errno); 2828 } 2829 2830 /* See target.h. */ 2831 2832 int 2833 target_fileio_open_warn_if_slow (struct inferior *inf, 2834 const char *filename, 2835 int flags, int mode, int *target_errno) 2836 { 2837 return target_fileio_open_1 (inf, filename, flags, mode, 1, 2838 target_errno); 2839 } 2840 2841 /* See target.h. */ 2842 2843 int 2844 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len, 2845 ULONGEST offset, int *target_errno) 2846 { 2847 fileio_fh_t *fh = fileio_fd_to_fh (fd); 2848 int ret = -1; 2849 2850 if (is_closed_fileio_fh (fh->fd)) 2851 *target_errno = EBADF; 2852 else 2853 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf, 2854 len, offset, target_errno); 2855 2856 if (targetdebug) 2857 fprintf_unfiltered (gdb_stdlog, 2858 "target_fileio_pwrite (%d,...,%d,%s) " 2859 "= %d (%d)\n", 2860 fd, len, pulongest (offset), 2861 ret, ret != -1 ? 0 : *target_errno); 2862 return ret; 2863 } 2864 2865 /* See target.h. */ 2866 2867 int 2868 target_fileio_pread (int fd, gdb_byte *read_buf, int len, 2869 ULONGEST offset, int *target_errno) 2870 { 2871 fileio_fh_t *fh = fileio_fd_to_fh (fd); 2872 int ret = -1; 2873 2874 if (is_closed_fileio_fh (fh->fd)) 2875 *target_errno = EBADF; 2876 else 2877 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf, 2878 len, offset, target_errno); 2879 2880 if (targetdebug) 2881 fprintf_unfiltered (gdb_stdlog, 2882 "target_fileio_pread (%d,...,%d,%s) " 2883 "= %d (%d)\n", 2884 fd, len, pulongest (offset), 2885 ret, ret != -1 ? 0 : *target_errno); 2886 return ret; 2887 } 2888 2889 /* See target.h. */ 2890 2891 int 2892 target_fileio_fstat (int fd, struct stat *sb, int *target_errno) 2893 { 2894 fileio_fh_t *fh = fileio_fd_to_fh (fd); 2895 int ret = -1; 2896 2897 if (is_closed_fileio_fh (fh->fd)) 2898 *target_errno = EBADF; 2899 else 2900 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno); 2901 2902 if (targetdebug) 2903 fprintf_unfiltered (gdb_stdlog, 2904 "target_fileio_fstat (%d) = %d (%d)\n", 2905 fd, ret, ret != -1 ? 0 : *target_errno); 2906 return ret; 2907 } 2908 2909 /* See target.h. */ 2910 2911 int 2912 target_fileio_close (int fd, int *target_errno) 2913 { 2914 fileio_fh_t *fh = fileio_fd_to_fh (fd); 2915 int ret = -1; 2916 2917 if (is_closed_fileio_fh (fh->fd)) 2918 *target_errno = EBADF; 2919 else 2920 { 2921 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno); 2922 release_fileio_fd (fd, fh); 2923 } 2924 2925 if (targetdebug) 2926 fprintf_unfiltered (gdb_stdlog, 2927 "target_fileio_close (%d) = %d (%d)\n", 2928 fd, ret, ret != -1 ? 0 : *target_errno); 2929 return ret; 2930 } 2931 2932 /* See target.h. */ 2933 2934 int 2935 target_fileio_unlink (struct inferior *inf, const char *filename, 2936 int *target_errno) 2937 { 2938 struct target_ops *t; 2939 2940 for (t = default_fileio_target (); t != NULL; t = t->beneath) 2941 { 2942 if (t->to_fileio_unlink != NULL) 2943 { 2944 int ret = t->to_fileio_unlink (t, inf, filename, 2945 target_errno); 2946 2947 if (targetdebug) 2948 fprintf_unfiltered (gdb_stdlog, 2949 "target_fileio_unlink (%d,%s)" 2950 " = %d (%d)\n", 2951 inf == NULL ? 0 : inf->num, filename, 2952 ret, ret != -1 ? 0 : *target_errno); 2953 return ret; 2954 } 2955 } 2956 2957 *target_errno = FILEIO_ENOSYS; 2958 return -1; 2959 } 2960 2961 /* See target.h. */ 2962 2963 char * 2964 target_fileio_readlink (struct inferior *inf, const char *filename, 2965 int *target_errno) 2966 { 2967 struct target_ops *t; 2968 2969 for (t = default_fileio_target (); t != NULL; t = t->beneath) 2970 { 2971 if (t->to_fileio_readlink != NULL) 2972 { 2973 char *ret = t->to_fileio_readlink (t, inf, filename, 2974 target_errno); 2975 2976 if (targetdebug) 2977 fprintf_unfiltered (gdb_stdlog, 2978 "target_fileio_readlink (%d,%s)" 2979 " = %s (%d)\n", 2980 inf == NULL ? 0 : inf->num, 2981 filename, ret? ret : "(nil)", 2982 ret? 0 : *target_errno); 2983 return ret; 2984 } 2985 } 2986 2987 *target_errno = FILEIO_ENOSYS; 2988 return NULL; 2989 } 2990 2991 static void 2992 target_fileio_close_cleanup (void *opaque) 2993 { 2994 int fd = *(int *) opaque; 2995 int target_errno; 2996 2997 target_fileio_close (fd, &target_errno); 2998 } 2999 3000 /* Read target file FILENAME, in the filesystem as seen by INF. If 3001 INF is NULL, use the filesystem seen by the debugger (GDB or, for 3002 remote targets, the remote stub). Store the result in *BUF_P and 3003 return the size of the transferred data. PADDING additional bytes 3004 are available in *BUF_P. This is a helper function for 3005 target_fileio_read_alloc; see the declaration of that function for 3006 more information. */ 3007 3008 static LONGEST 3009 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename, 3010 gdb_byte **buf_p, int padding) 3011 { 3012 struct cleanup *close_cleanup; 3013 size_t buf_alloc, buf_pos; 3014 gdb_byte *buf; 3015 LONGEST n; 3016 int fd; 3017 int target_errno; 3018 3019 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700, 3020 &target_errno); 3021 if (fd == -1) 3022 return -1; 3023 3024 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd); 3025 3026 /* Start by reading up to 4K at a time. The target will throttle 3027 this number down if necessary. */ 3028 buf_alloc = 4096; 3029 buf = xmalloc (buf_alloc); 3030 buf_pos = 0; 3031 while (1) 3032 { 3033 n = target_fileio_pread (fd, &buf[buf_pos], 3034 buf_alloc - buf_pos - padding, buf_pos, 3035 &target_errno); 3036 if (n < 0) 3037 { 3038 /* An error occurred. */ 3039 do_cleanups (close_cleanup); 3040 xfree (buf); 3041 return -1; 3042 } 3043 else if (n == 0) 3044 { 3045 /* Read all there was. */ 3046 do_cleanups (close_cleanup); 3047 if (buf_pos == 0) 3048 xfree (buf); 3049 else 3050 *buf_p = buf; 3051 return buf_pos; 3052 } 3053 3054 buf_pos += n; 3055 3056 /* If the buffer is filling up, expand it. */ 3057 if (buf_alloc < buf_pos * 2) 3058 { 3059 buf_alloc *= 2; 3060 buf = xrealloc (buf, buf_alloc); 3061 } 3062 3063 QUIT; 3064 } 3065 } 3066 3067 /* See target.h. */ 3068 3069 LONGEST 3070 target_fileio_read_alloc (struct inferior *inf, const char *filename, 3071 gdb_byte **buf_p) 3072 { 3073 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0); 3074 } 3075 3076 /* See target.h. */ 3077 3078 char * 3079 target_fileio_read_stralloc (struct inferior *inf, const char *filename) 3080 { 3081 gdb_byte *buffer; 3082 char *bufstr; 3083 LONGEST i, transferred; 3084 3085 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1); 3086 bufstr = (char *) buffer; 3087 3088 if (transferred < 0) 3089 return NULL; 3090 3091 if (transferred == 0) 3092 return xstrdup (""); 3093 3094 bufstr[transferred] = 0; 3095 3096 /* Check for embedded NUL bytes; but allow trailing NULs. */ 3097 for (i = strlen (bufstr); i < transferred; i++) 3098 if (bufstr[i] != 0) 3099 { 3100 warning (_("target file %s " 3101 "contained unexpected null characters"), 3102 filename); 3103 break; 3104 } 3105 3106 return bufstr; 3107 } 3108 3109 3110 static int 3111 default_region_ok_for_hw_watchpoint (struct target_ops *self, 3112 CORE_ADDR addr, int len) 3113 { 3114 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT); 3115 } 3116 3117 static int 3118 default_watchpoint_addr_within_range (struct target_ops *target, 3119 CORE_ADDR addr, 3120 CORE_ADDR start, int length) 3121 { 3122 return addr >= start && addr < start + length; 3123 } 3124 3125 static struct gdbarch * 3126 default_thread_architecture (struct target_ops *ops, ptid_t ptid) 3127 { 3128 return target_gdbarch (); 3129 } 3130 3131 static int 3132 return_zero (struct target_ops *ignore) 3133 { 3134 return 0; 3135 } 3136 3137 static int 3138 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2) 3139 { 3140 return 0; 3141 } 3142 3143 /* 3144 * Find the next target down the stack from the specified target. 3145 */ 3146 3147 struct target_ops * 3148 find_target_beneath (struct target_ops *t) 3149 { 3150 return t->beneath; 3151 } 3152 3153 /* See target.h. */ 3154 3155 struct target_ops * 3156 find_target_at (enum strata stratum) 3157 { 3158 struct target_ops *t; 3159 3160 for (t = current_target.beneath; t != NULL; t = t->beneath) 3161 if (t->to_stratum == stratum) 3162 return t; 3163 3164 return NULL; 3165 } 3166 3167 3168 /* The inferior process has died. Long live the inferior! */ 3169 3170 void 3171 generic_mourn_inferior (void) 3172 { 3173 ptid_t ptid; 3174 3175 ptid = inferior_ptid; 3176 inferior_ptid = null_ptid; 3177 3178 /* Mark breakpoints uninserted in case something tries to delete a 3179 breakpoint while we delete the inferior's threads (which would 3180 fail, since the inferior is long gone). */ 3181 mark_breakpoints_out (); 3182 3183 if (!ptid_equal (ptid, null_ptid)) 3184 { 3185 int pid = ptid_get_pid (ptid); 3186 exit_inferior (pid); 3187 } 3188 3189 /* Note this wipes step-resume breakpoints, so needs to be done 3190 after exit_inferior, which ends up referencing the step-resume 3191 breakpoints through clear_thread_inferior_resources. */ 3192 breakpoint_init_inferior (inf_exited); 3193 3194 registers_changed (); 3195 3196 reopen_exec_file (); 3197 reinit_frame_cache (); 3198 3199 if (deprecated_detach_hook) 3200 deprecated_detach_hook (); 3201 } 3202 3203 /* Convert a normal process ID to a string. Returns the string in a 3204 static buffer. */ 3205 3206 char * 3207 normal_pid_to_str (ptid_t ptid) 3208 { 3209 static char buf[32]; 3210 3211 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid)); 3212 return buf; 3213 } 3214 3215 static char * 3216 default_pid_to_str (struct target_ops *ops, ptid_t ptid) 3217 { 3218 return normal_pid_to_str (ptid); 3219 } 3220 3221 /* Error-catcher for target_find_memory_regions. */ 3222 static int 3223 dummy_find_memory_regions (struct target_ops *self, 3224 find_memory_region_ftype ignore1, void *ignore2) 3225 { 3226 error (_("Command not implemented for this target.")); 3227 return 0; 3228 } 3229 3230 /* Error-catcher for target_make_corefile_notes. */ 3231 static char * 3232 dummy_make_corefile_notes (struct target_ops *self, 3233 bfd *ignore1, int *ignore2) 3234 { 3235 error (_("Command not implemented for this target.")); 3236 return NULL; 3237 } 3238 3239 /* Set up the handful of non-empty slots needed by the dummy target 3240 vector. */ 3241 3242 static void 3243 init_dummy_target (void) 3244 { 3245 dummy_target.to_shortname = "None"; 3246 dummy_target.to_longname = "None"; 3247 dummy_target.to_doc = ""; 3248 dummy_target.to_supports_disable_randomization 3249 = find_default_supports_disable_randomization; 3250 dummy_target.to_stratum = dummy_stratum; 3251 dummy_target.to_has_all_memory = return_zero; 3252 dummy_target.to_has_memory = return_zero; 3253 dummy_target.to_has_stack = return_zero; 3254 dummy_target.to_has_registers = return_zero; 3255 dummy_target.to_has_execution = return_zero_has_execution; 3256 dummy_target.to_magic = OPS_MAGIC; 3257 3258 install_dummy_methods (&dummy_target); 3259 } 3260 3261 3262 void 3263 target_close (struct target_ops *targ) 3264 { 3265 gdb_assert (!target_is_pushed (targ)); 3266 3267 if (targ->to_xclose != NULL) 3268 targ->to_xclose (targ); 3269 else if (targ->to_close != NULL) 3270 targ->to_close (targ); 3271 3272 if (targetdebug) 3273 fprintf_unfiltered (gdb_stdlog, "target_close ()\n"); 3274 } 3275 3276 int 3277 target_thread_alive (ptid_t ptid) 3278 { 3279 return current_target.to_thread_alive (¤t_target, ptid); 3280 } 3281 3282 void 3283 target_update_thread_list (void) 3284 { 3285 current_target.to_update_thread_list (¤t_target); 3286 } 3287 3288 void 3289 target_stop (ptid_t ptid) 3290 { 3291 if (!may_stop) 3292 { 3293 warning (_("May not interrupt or stop the target, ignoring attempt")); 3294 return; 3295 } 3296 3297 (*current_target.to_stop) (¤t_target, ptid); 3298 } 3299 3300 /* See target.h. */ 3301 3302 void 3303 target_check_pending_interrupt (void) 3304 { 3305 (*current_target.to_check_pending_interrupt) (¤t_target); 3306 } 3307 3308 /* See target/target.h. */ 3309 3310 void 3311 target_stop_and_wait (ptid_t ptid) 3312 { 3313 struct target_waitstatus status; 3314 int was_non_stop = non_stop; 3315 3316 non_stop = 1; 3317 target_stop (ptid); 3318 3319 memset (&status, 0, sizeof (status)); 3320 target_wait (ptid, &status, 0); 3321 3322 non_stop = was_non_stop; 3323 } 3324 3325 /* See target/target.h. */ 3326 3327 void 3328 target_continue_no_signal (ptid_t ptid) 3329 { 3330 target_resume (ptid, 0, GDB_SIGNAL_0); 3331 } 3332 3333 /* Concatenate ELEM to LIST, a comma separate list, and return the 3334 result. The LIST incoming argument is released. */ 3335 3336 static char * 3337 str_comma_list_concat_elem (char *list, const char *elem) 3338 { 3339 if (list == NULL) 3340 return xstrdup (elem); 3341 else 3342 return reconcat (list, list, ", ", elem, (char *) NULL); 3343 } 3344 3345 /* Helper for target_options_to_string. If OPT is present in 3346 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET. 3347 Returns the new resulting string. OPT is removed from 3348 TARGET_OPTIONS. */ 3349 3350 static char * 3351 do_option (int *target_options, char *ret, 3352 int opt, char *opt_str) 3353 { 3354 if ((*target_options & opt) != 0) 3355 { 3356 ret = str_comma_list_concat_elem (ret, opt_str); 3357 *target_options &= ~opt; 3358 } 3359 3360 return ret; 3361 } 3362 3363 char * 3364 target_options_to_string (int target_options) 3365 { 3366 char *ret = NULL; 3367 3368 #define DO_TARG_OPTION(OPT) \ 3369 ret = do_option (&target_options, ret, OPT, #OPT) 3370 3371 DO_TARG_OPTION (TARGET_WNOHANG); 3372 3373 if (target_options != 0) 3374 ret = str_comma_list_concat_elem (ret, "unknown???"); 3375 3376 if (ret == NULL) 3377 ret = xstrdup (""); 3378 return ret; 3379 } 3380 3381 static void 3382 debug_print_register (const char * func, 3383 struct regcache *regcache, int regno) 3384 { 3385 struct gdbarch *gdbarch = get_regcache_arch (regcache); 3386 3387 fprintf_unfiltered (gdb_stdlog, "%s ", func); 3388 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch) 3389 && gdbarch_register_name (gdbarch, regno) != NULL 3390 && gdbarch_register_name (gdbarch, regno)[0] != '\0') 3391 fprintf_unfiltered (gdb_stdlog, "(%s)", 3392 gdbarch_register_name (gdbarch, regno)); 3393 else 3394 fprintf_unfiltered (gdb_stdlog, "(%d)", regno); 3395 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)) 3396 { 3397 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 3398 int i, size = register_size (gdbarch, regno); 3399 gdb_byte buf[MAX_REGISTER_SIZE]; 3400 3401 regcache_raw_collect (regcache, regno, buf); 3402 fprintf_unfiltered (gdb_stdlog, " = "); 3403 for (i = 0; i < size; i++) 3404 { 3405 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]); 3406 } 3407 if (size <= sizeof (LONGEST)) 3408 { 3409 ULONGEST val = extract_unsigned_integer (buf, size, byte_order); 3410 3411 fprintf_unfiltered (gdb_stdlog, " %s %s", 3412 core_addr_to_string_nz (val), plongest (val)); 3413 } 3414 } 3415 fprintf_unfiltered (gdb_stdlog, "\n"); 3416 } 3417 3418 void 3419 target_fetch_registers (struct regcache *regcache, int regno) 3420 { 3421 current_target.to_fetch_registers (¤t_target, regcache, regno); 3422 if (targetdebug) 3423 debug_print_register ("target_fetch_registers", regcache, regno); 3424 } 3425 3426 void 3427 target_store_registers (struct regcache *regcache, int regno) 3428 { 3429 struct target_ops *t; 3430 3431 if (!may_write_registers) 3432 error (_("Writing to registers is not allowed (regno %d)"), regno); 3433 3434 current_target.to_store_registers (¤t_target, regcache, regno); 3435 if (targetdebug) 3436 { 3437 debug_print_register ("target_store_registers", regcache, regno); 3438 } 3439 } 3440 3441 int 3442 target_core_of_thread (ptid_t ptid) 3443 { 3444 return current_target.to_core_of_thread (¤t_target, ptid); 3445 } 3446 3447 int 3448 simple_verify_memory (struct target_ops *ops, 3449 const gdb_byte *data, CORE_ADDR lma, ULONGEST size) 3450 { 3451 LONGEST total_xfered = 0; 3452 3453 while (total_xfered < size) 3454 { 3455 ULONGEST xfered_len; 3456 enum target_xfer_status status; 3457 gdb_byte buf[1024]; 3458 ULONGEST howmuch = min (sizeof (buf), size - total_xfered); 3459 3460 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL, 3461 buf, NULL, lma + total_xfered, howmuch, 3462 &xfered_len); 3463 if (status == TARGET_XFER_OK 3464 && memcmp (data + total_xfered, buf, xfered_len) == 0) 3465 { 3466 total_xfered += xfered_len; 3467 QUIT; 3468 } 3469 else 3470 return 0; 3471 } 3472 return 1; 3473 } 3474 3475 /* Default implementation of memory verification. */ 3476 3477 static int 3478 default_verify_memory (struct target_ops *self, 3479 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size) 3480 { 3481 /* Start over from the top of the target stack. */ 3482 return simple_verify_memory (current_target.beneath, 3483 data, memaddr, size); 3484 } 3485 3486 int 3487 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size) 3488 { 3489 return current_target.to_verify_memory (¤t_target, 3490 data, memaddr, size); 3491 } 3492 3493 /* The documentation for this function is in its prototype declaration in 3494 target.h. */ 3495 3496 int 3497 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw) 3498 { 3499 return current_target.to_insert_mask_watchpoint (¤t_target, 3500 addr, mask, rw); 3501 } 3502 3503 /* The documentation for this function is in its prototype declaration in 3504 target.h. */ 3505 3506 int 3507 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw) 3508 { 3509 return current_target.to_remove_mask_watchpoint (¤t_target, 3510 addr, mask, rw); 3511 } 3512 3513 /* The documentation for this function is in its prototype declaration 3514 in target.h. */ 3515 3516 int 3517 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask) 3518 { 3519 return current_target.to_masked_watch_num_registers (¤t_target, 3520 addr, mask); 3521 } 3522 3523 /* The documentation for this function is in its prototype declaration 3524 in target.h. */ 3525 3526 int 3527 target_ranged_break_num_registers (void) 3528 { 3529 return current_target.to_ranged_break_num_registers (¤t_target); 3530 } 3531 3532 /* See target.h. */ 3533 3534 int 3535 target_supports_btrace (enum btrace_format format) 3536 { 3537 return current_target.to_supports_btrace (¤t_target, format); 3538 } 3539 3540 /* See target.h. */ 3541 3542 struct btrace_target_info * 3543 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf) 3544 { 3545 return current_target.to_enable_btrace (¤t_target, ptid, conf); 3546 } 3547 3548 /* See target.h. */ 3549 3550 void 3551 target_disable_btrace (struct btrace_target_info *btinfo) 3552 { 3553 current_target.to_disable_btrace (¤t_target, btinfo); 3554 } 3555 3556 /* See target.h. */ 3557 3558 void 3559 target_teardown_btrace (struct btrace_target_info *btinfo) 3560 { 3561 current_target.to_teardown_btrace (¤t_target, btinfo); 3562 } 3563 3564 /* See target.h. */ 3565 3566 enum btrace_error 3567 target_read_btrace (struct btrace_data *btrace, 3568 struct btrace_target_info *btinfo, 3569 enum btrace_read_type type) 3570 { 3571 return current_target.to_read_btrace (¤t_target, btrace, btinfo, type); 3572 } 3573 3574 /* See target.h. */ 3575 3576 const struct btrace_config * 3577 target_btrace_conf (const struct btrace_target_info *btinfo) 3578 { 3579 return current_target.to_btrace_conf (¤t_target, btinfo); 3580 } 3581 3582 /* See target.h. */ 3583 3584 void 3585 target_stop_recording (void) 3586 { 3587 current_target.to_stop_recording (¤t_target); 3588 } 3589 3590 /* See target.h. */ 3591 3592 void 3593 target_save_record (const char *filename) 3594 { 3595 current_target.to_save_record (¤t_target, filename); 3596 } 3597 3598 /* See target.h. */ 3599 3600 int 3601 target_supports_delete_record (void) 3602 { 3603 struct target_ops *t; 3604 3605 for (t = current_target.beneath; t != NULL; t = t->beneath) 3606 if (t->to_delete_record != delegate_delete_record 3607 && t->to_delete_record != tdefault_delete_record) 3608 return 1; 3609 3610 return 0; 3611 } 3612 3613 /* See target.h. */ 3614 3615 void 3616 target_delete_record (void) 3617 { 3618 current_target.to_delete_record (¤t_target); 3619 } 3620 3621 /* See target.h. */ 3622 3623 int 3624 target_record_is_replaying (void) 3625 { 3626 return current_target.to_record_is_replaying (¤t_target); 3627 } 3628 3629 /* See target.h. */ 3630 3631 void 3632 target_goto_record_begin (void) 3633 { 3634 current_target.to_goto_record_begin (¤t_target); 3635 } 3636 3637 /* See target.h. */ 3638 3639 void 3640 target_goto_record_end (void) 3641 { 3642 current_target.to_goto_record_end (¤t_target); 3643 } 3644 3645 /* See target.h. */ 3646 3647 void 3648 target_goto_record (ULONGEST insn) 3649 { 3650 current_target.to_goto_record (¤t_target, insn); 3651 } 3652 3653 /* See target.h. */ 3654 3655 void 3656 target_insn_history (int size, int flags) 3657 { 3658 current_target.to_insn_history (¤t_target, size, flags); 3659 } 3660 3661 /* See target.h. */ 3662 3663 void 3664 target_insn_history_from (ULONGEST from, int size, int flags) 3665 { 3666 current_target.to_insn_history_from (¤t_target, from, size, flags); 3667 } 3668 3669 /* See target.h. */ 3670 3671 void 3672 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags) 3673 { 3674 current_target.to_insn_history_range (¤t_target, begin, end, flags); 3675 } 3676 3677 /* See target.h. */ 3678 3679 void 3680 target_call_history (int size, int flags) 3681 { 3682 current_target.to_call_history (¤t_target, size, flags); 3683 } 3684 3685 /* See target.h. */ 3686 3687 void 3688 target_call_history_from (ULONGEST begin, int size, int flags) 3689 { 3690 current_target.to_call_history_from (¤t_target, begin, size, flags); 3691 } 3692 3693 /* See target.h. */ 3694 3695 void 3696 target_call_history_range (ULONGEST begin, ULONGEST end, int flags) 3697 { 3698 current_target.to_call_history_range (¤t_target, begin, end, flags); 3699 } 3700 3701 /* See target.h. */ 3702 3703 const struct frame_unwind * 3704 target_get_unwinder (void) 3705 { 3706 return current_target.to_get_unwinder (¤t_target); 3707 } 3708 3709 /* See target.h. */ 3710 3711 const struct frame_unwind * 3712 target_get_tailcall_unwinder (void) 3713 { 3714 return current_target.to_get_tailcall_unwinder (¤t_target); 3715 } 3716 3717 /* See target.h. */ 3718 3719 void 3720 target_prepare_to_generate_core (void) 3721 { 3722 current_target.to_prepare_to_generate_core (¤t_target); 3723 } 3724 3725 /* See target.h. */ 3726 3727 void 3728 target_done_generating_core (void) 3729 { 3730 current_target.to_done_generating_core (¤t_target); 3731 } 3732 3733 static void 3734 setup_target_debug (void) 3735 { 3736 memcpy (&debug_target, ¤t_target, sizeof debug_target); 3737 3738 init_debug_target (¤t_target); 3739 } 3740 3741 3742 static char targ_desc[] = 3743 "Names of targets and files being debugged.\nShows the entire \ 3744 stack of targets currently in use (including the exec-file,\n\ 3745 core-file, and process, if any), as well as the symbol file name."; 3746 3747 static void 3748 default_rcmd (struct target_ops *self, const char *command, 3749 struct ui_file *output) 3750 { 3751 error (_("\"monitor\" command not supported by this target.")); 3752 } 3753 3754 static void 3755 do_monitor_command (char *cmd, 3756 int from_tty) 3757 { 3758 target_rcmd (cmd, gdb_stdtarg); 3759 } 3760 3761 /* Print the name of each layers of our target stack. */ 3762 3763 static void 3764 maintenance_print_target_stack (char *cmd, int from_tty) 3765 { 3766 struct target_ops *t; 3767 3768 printf_filtered (_("The current target stack is:\n")); 3769 3770 for (t = target_stack; t != NULL; t = t->beneath) 3771 { 3772 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname); 3773 } 3774 } 3775 3776 /* Controls if targets can report that they can/are async. This is 3777 just for maintainers to use when debugging gdb. */ 3778 int target_async_permitted = 1; 3779 3780 /* The set command writes to this variable. If the inferior is 3781 executing, target_async_permitted is *not* updated. */ 3782 static int target_async_permitted_1 = 1; 3783 3784 static void 3785 maint_set_target_async_command (char *args, int from_tty, 3786 struct cmd_list_element *c) 3787 { 3788 if (have_live_inferiors ()) 3789 { 3790 target_async_permitted_1 = target_async_permitted; 3791 error (_("Cannot change this setting while the inferior is running.")); 3792 } 3793 3794 target_async_permitted = target_async_permitted_1; 3795 } 3796 3797 static void 3798 maint_show_target_async_command (struct ui_file *file, int from_tty, 3799 struct cmd_list_element *c, 3800 const char *value) 3801 { 3802 fprintf_filtered (file, 3803 _("Controlling the inferior in " 3804 "asynchronous mode is %s.\n"), value); 3805 } 3806 3807 /* Temporary copies of permission settings. */ 3808 3809 static int may_write_registers_1 = 1; 3810 static int may_write_memory_1 = 1; 3811 static int may_insert_breakpoints_1 = 1; 3812 static int may_insert_tracepoints_1 = 1; 3813 static int may_insert_fast_tracepoints_1 = 1; 3814 static int may_stop_1 = 1; 3815 3816 /* Make the user-set values match the real values again. */ 3817 3818 void 3819 update_target_permissions (void) 3820 { 3821 may_write_registers_1 = may_write_registers; 3822 may_write_memory_1 = may_write_memory; 3823 may_insert_breakpoints_1 = may_insert_breakpoints; 3824 may_insert_tracepoints_1 = may_insert_tracepoints; 3825 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints; 3826 may_stop_1 = may_stop; 3827 } 3828 3829 /* The one function handles (most of) the permission flags in the same 3830 way. */ 3831 3832 static void 3833 set_target_permissions (char *args, int from_tty, 3834 struct cmd_list_element *c) 3835 { 3836 if (target_has_execution) 3837 { 3838 update_target_permissions (); 3839 error (_("Cannot change this setting while the inferior is running.")); 3840 } 3841 3842 /* Make the real values match the user-changed values. */ 3843 may_write_registers = may_write_registers_1; 3844 may_insert_breakpoints = may_insert_breakpoints_1; 3845 may_insert_tracepoints = may_insert_tracepoints_1; 3846 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1; 3847 may_stop = may_stop_1; 3848 update_observer_mode (); 3849 } 3850 3851 /* Set memory write permission independently of observer mode. */ 3852 3853 static void 3854 set_write_memory_permission (char *args, int from_tty, 3855 struct cmd_list_element *c) 3856 { 3857 /* Make the real values match the user-changed values. */ 3858 may_write_memory = may_write_memory_1; 3859 update_observer_mode (); 3860 } 3861 3862 3863 void 3864 initialize_targets (void) 3865 { 3866 init_dummy_target (); 3867 push_target (&dummy_target); 3868 3869 add_info ("target", target_info, targ_desc); 3870 add_info ("files", target_info, targ_desc); 3871 3872 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\ 3873 Set target debugging."), _("\ 3874 Show target debugging."), _("\ 3875 When non-zero, target debugging is enabled. Higher numbers are more\n\ 3876 verbose."), 3877 set_targetdebug, 3878 show_targetdebug, 3879 &setdebuglist, &showdebuglist); 3880 3881 add_setshow_boolean_cmd ("trust-readonly-sections", class_support, 3882 &trust_readonly, _("\ 3883 Set mode for reading from readonly sections."), _("\ 3884 Show mode for reading from readonly sections."), _("\ 3885 When this mode is on, memory reads from readonly sections (such as .text)\n\ 3886 will be read from the object file instead of from the target. This will\n\ 3887 result in significant performance improvement for remote targets."), 3888 NULL, 3889 show_trust_readonly, 3890 &setlist, &showlist); 3891 3892 add_com ("monitor", class_obscure, do_monitor_command, 3893 _("Send a command to the remote monitor (remote targets only).")); 3894 3895 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack, 3896 _("Print the name of each layer of the internal target stack."), 3897 &maintenanceprintlist); 3898 3899 add_setshow_boolean_cmd ("target-async", no_class, 3900 &target_async_permitted_1, _("\ 3901 Set whether gdb controls the inferior in asynchronous mode."), _("\ 3902 Show whether gdb controls the inferior in asynchronous mode."), _("\ 3903 Tells gdb whether to control the inferior in asynchronous mode."), 3904 maint_set_target_async_command, 3905 maint_show_target_async_command, 3906 &maintenance_set_cmdlist, 3907 &maintenance_show_cmdlist); 3908 3909 add_setshow_boolean_cmd ("may-write-registers", class_support, 3910 &may_write_registers_1, _("\ 3911 Set permission to write into registers."), _("\ 3912 Show permission to write into registers."), _("\ 3913 When this permission is on, GDB may write into the target's registers.\n\ 3914 Otherwise, any sort of write attempt will result in an error."), 3915 set_target_permissions, NULL, 3916 &setlist, &showlist); 3917 3918 add_setshow_boolean_cmd ("may-write-memory", class_support, 3919 &may_write_memory_1, _("\ 3920 Set permission to write into target memory."), _("\ 3921 Show permission to write into target memory."), _("\ 3922 When this permission is on, GDB may write into the target's memory.\n\ 3923 Otherwise, any sort of write attempt will result in an error."), 3924 set_write_memory_permission, NULL, 3925 &setlist, &showlist); 3926 3927 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support, 3928 &may_insert_breakpoints_1, _("\ 3929 Set permission to insert breakpoints in the target."), _("\ 3930 Show permission to insert breakpoints in the target."), _("\ 3931 When this permission is on, GDB may insert breakpoints in the program.\n\ 3932 Otherwise, any sort of insertion attempt will result in an error."), 3933 set_target_permissions, NULL, 3934 &setlist, &showlist); 3935 3936 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support, 3937 &may_insert_tracepoints_1, _("\ 3938 Set permission to insert tracepoints in the target."), _("\ 3939 Show permission to insert tracepoints in the target."), _("\ 3940 When this permission is on, GDB may insert tracepoints in the program.\n\ 3941 Otherwise, any sort of insertion attempt will result in an error."), 3942 set_target_permissions, NULL, 3943 &setlist, &showlist); 3944 3945 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support, 3946 &may_insert_fast_tracepoints_1, _("\ 3947 Set permission to insert fast tracepoints in the target."), _("\ 3948 Show permission to insert fast tracepoints in the target."), _("\ 3949 When this permission is on, GDB may insert fast tracepoints.\n\ 3950 Otherwise, any sort of insertion attempt will result in an error."), 3951 set_target_permissions, NULL, 3952 &setlist, &showlist); 3953 3954 add_setshow_boolean_cmd ("may-interrupt", class_support, 3955 &may_stop_1, _("\ 3956 Set permission to interrupt or signal the target."), _("\ 3957 Show permission to interrupt or signal the target."), _("\ 3958 When this permission is on, GDB may interrupt/stop the target's execution.\n\ 3959 Otherwise, any attempt to interrupt or stop will be ignored."), 3960 set_target_permissions, NULL, 3961 &setlist, &showlist); 3962 3963 add_setshow_boolean_cmd ("auto-connect-native-target", class_support, 3964 &auto_connect_native_target, _("\ 3965 Set whether GDB may automatically connect to the native target."), _("\ 3966 Show whether GDB may automatically connect to the native target."), _("\ 3967 When on, and GDB is not connected to a target yet, GDB\n\ 3968 attempts \"run\" and other commands with the native target."), 3969 NULL, show_auto_connect_native_target, 3970 &setlist, &showlist); 3971 } 3972