xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/target.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Select target systems and architectures at runtime for GDB.
2 
3    Copyright (C) 1990-2016 Free Software Foundation, Inc.
4 
5    Contributed by Cygnus Support.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 
49 static void target_info (char *, int);
50 
51 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
52 
53 static void default_terminal_info (struct target_ops *, const char *, int);
54 
55 static int default_watchpoint_addr_within_range (struct target_ops *,
56 						 CORE_ADDR, CORE_ADDR, int);
57 
58 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
59 						CORE_ADDR, int);
60 
61 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
62 
63 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
64 					 long lwp, long tid);
65 
66 static int default_follow_fork (struct target_ops *self, int follow_child,
67 				int detach_fork);
68 
69 static void default_mourn_inferior (struct target_ops *self);
70 
71 static int default_search_memory (struct target_ops *ops,
72 				  CORE_ADDR start_addr,
73 				  ULONGEST search_space_len,
74 				  const gdb_byte *pattern,
75 				  ULONGEST pattern_len,
76 				  CORE_ADDR *found_addrp);
77 
78 static int default_verify_memory (struct target_ops *self,
79 				  const gdb_byte *data,
80 				  CORE_ADDR memaddr, ULONGEST size);
81 
82 static struct address_space *default_thread_address_space
83      (struct target_ops *self, ptid_t ptid);
84 
85 static void tcomplain (void) ATTRIBUTE_NORETURN;
86 
87 static int return_zero (struct target_ops *);
88 
89 static int return_zero_has_execution (struct target_ops *, ptid_t);
90 
91 static void target_command (char *, int);
92 
93 static struct target_ops *find_default_run_target (char *);
94 
95 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
96 						    ptid_t ptid);
97 
98 static int dummy_find_memory_regions (struct target_ops *self,
99 				      find_memory_region_ftype ignore1,
100 				      void *ignore2);
101 
102 static char *dummy_make_corefile_notes (struct target_ops *self,
103 					bfd *ignore1, int *ignore2);
104 
105 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
106 
107 static enum exec_direction_kind default_execution_direction
108     (struct target_ops *self);
109 
110 static struct target_ops debug_target;
111 
112 #include "target-delegates.c"
113 
114 static void init_dummy_target (void);
115 
116 static void update_current_target (void);
117 
118 /* Vector of existing target structures. */
119 typedef struct target_ops *target_ops_p;
120 DEF_VEC_P (target_ops_p);
121 static VEC (target_ops_p) *target_structs;
122 
123 /* The initial current target, so that there is always a semi-valid
124    current target.  */
125 
126 static struct target_ops dummy_target;
127 
128 /* Top of target stack.  */
129 
130 static struct target_ops *target_stack;
131 
132 /* The target structure we are currently using to talk to a process
133    or file or whatever "inferior" we have.  */
134 
135 struct target_ops current_target;
136 
137 /* Command list for target.  */
138 
139 static struct cmd_list_element *targetlist = NULL;
140 
141 /* Nonzero if we should trust readonly sections from the
142    executable when reading memory.  */
143 
144 static int trust_readonly = 0;
145 
146 /* Nonzero if we should show true memory content including
147    memory breakpoint inserted by gdb.  */
148 
149 static int show_memory_breakpoints = 0;
150 
151 /* These globals control whether GDB attempts to perform these
152    operations; they are useful for targets that need to prevent
153    inadvertant disruption, such as in non-stop mode.  */
154 
155 int may_write_registers = 1;
156 
157 int may_write_memory = 1;
158 
159 int may_insert_breakpoints = 1;
160 
161 int may_insert_tracepoints = 1;
162 
163 int may_insert_fast_tracepoints = 1;
164 
165 int may_stop = 1;
166 
167 /* Non-zero if we want to see trace of target level stuff.  */
168 
169 static unsigned int targetdebug = 0;
170 
171 static void
172 set_targetdebug  (char *args, int from_tty, struct cmd_list_element *c)
173 {
174   update_current_target ();
175 }
176 
177 static void
178 show_targetdebug (struct ui_file *file, int from_tty,
179 		  struct cmd_list_element *c, const char *value)
180 {
181   fprintf_filtered (file, _("Target debugging is %s.\n"), value);
182 }
183 
184 static void setup_target_debug (void);
185 
186 /* The user just typed 'target' without the name of a target.  */
187 
188 static void
189 target_command (char *arg, int from_tty)
190 {
191   fputs_filtered ("Argument required (target name).  Try `help target'\n",
192 		  gdb_stdout);
193 }
194 
195 /* Default target_has_* methods for process_stratum targets.  */
196 
197 int
198 default_child_has_all_memory (struct target_ops *ops)
199 {
200   /* If no inferior selected, then we can't read memory here.  */
201   if (ptid_equal (inferior_ptid, null_ptid))
202     return 0;
203 
204   return 1;
205 }
206 
207 int
208 default_child_has_memory (struct target_ops *ops)
209 {
210   /* If no inferior selected, then we can't read memory here.  */
211   if (ptid_equal (inferior_ptid, null_ptid))
212     return 0;
213 
214   return 1;
215 }
216 
217 int
218 default_child_has_stack (struct target_ops *ops)
219 {
220   /* If no inferior selected, there's no stack.  */
221   if (ptid_equal (inferior_ptid, null_ptid))
222     return 0;
223 
224   return 1;
225 }
226 
227 int
228 default_child_has_registers (struct target_ops *ops)
229 {
230   /* Can't read registers from no inferior.  */
231   if (ptid_equal (inferior_ptid, null_ptid))
232     return 0;
233 
234   return 1;
235 }
236 
237 int
238 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
239 {
240   /* If there's no thread selected, then we can't make it run through
241      hoops.  */
242   if (ptid_equal (the_ptid, null_ptid))
243     return 0;
244 
245   return 1;
246 }
247 
248 
249 int
250 target_has_all_memory_1 (void)
251 {
252   struct target_ops *t;
253 
254   for (t = current_target.beneath; t != NULL; t = t->beneath)
255     if (t->to_has_all_memory (t))
256       return 1;
257 
258   return 0;
259 }
260 
261 int
262 target_has_memory_1 (void)
263 {
264   struct target_ops *t;
265 
266   for (t = current_target.beneath; t != NULL; t = t->beneath)
267     if (t->to_has_memory (t))
268       return 1;
269 
270   return 0;
271 }
272 
273 int
274 target_has_stack_1 (void)
275 {
276   struct target_ops *t;
277 
278   for (t = current_target.beneath; t != NULL; t = t->beneath)
279     if (t->to_has_stack (t))
280       return 1;
281 
282   return 0;
283 }
284 
285 int
286 target_has_registers_1 (void)
287 {
288   struct target_ops *t;
289 
290   for (t = current_target.beneath; t != NULL; t = t->beneath)
291     if (t->to_has_registers (t))
292       return 1;
293 
294   return 0;
295 }
296 
297 int
298 target_has_execution_1 (ptid_t the_ptid)
299 {
300   struct target_ops *t;
301 
302   for (t = current_target.beneath; t != NULL; t = t->beneath)
303     if (t->to_has_execution (t, the_ptid))
304       return 1;
305 
306   return 0;
307 }
308 
309 int
310 target_has_execution_current (void)
311 {
312   return target_has_execution_1 (inferior_ptid);
313 }
314 
315 /* Complete initialization of T.  This ensures that various fields in
316    T are set, if needed by the target implementation.  */
317 
318 void
319 complete_target_initialization (struct target_ops *t)
320 {
321   /* Provide default values for all "must have" methods.  */
322 
323   if (t->to_has_all_memory == NULL)
324     t->to_has_all_memory = return_zero;
325 
326   if (t->to_has_memory == NULL)
327     t->to_has_memory = return_zero;
328 
329   if (t->to_has_stack == NULL)
330     t->to_has_stack = return_zero;
331 
332   if (t->to_has_registers == NULL)
333     t->to_has_registers = return_zero;
334 
335   if (t->to_has_execution == NULL)
336     t->to_has_execution = return_zero_has_execution;
337 
338   /* These methods can be called on an unpushed target and so require
339      a default implementation if the target might plausibly be the
340      default run target.  */
341   gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
342 					&& t->to_supports_non_stop != NULL));
343 
344   install_delegators (t);
345 }
346 
347 /* This is used to implement the various target commands.  */
348 
349 static void
350 open_target (char *args, int from_tty, struct cmd_list_element *command)
351 {
352   struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
353 
354   if (targetdebug)
355     fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
356 			ops->to_shortname);
357 
358   ops->to_open (args, from_tty);
359 
360   if (targetdebug)
361     fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
362 			ops->to_shortname, args, from_tty);
363 }
364 
365 /* Add possible target architecture T to the list and add a new
366    command 'target T->to_shortname'.  Set COMPLETER as the command's
367    completer if not NULL.  */
368 
369 void
370 add_target_with_completer (struct target_ops *t,
371 			   completer_ftype *completer)
372 {
373   struct cmd_list_element *c;
374 
375   complete_target_initialization (t);
376 
377   VEC_safe_push (target_ops_p, target_structs, t);
378 
379   if (targetlist == NULL)
380     add_prefix_cmd ("target", class_run, target_command, _("\
381 Connect to a target machine or process.\n\
382 The first argument is the type or protocol of the target machine.\n\
383 Remaining arguments are interpreted by the target protocol.  For more\n\
384 information on the arguments for a particular protocol, type\n\
385 `help target ' followed by the protocol name."),
386 		    &targetlist, "target ", 0, &cmdlist);
387   c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
388   set_cmd_sfunc (c, open_target);
389   set_cmd_context (c, t);
390   if (completer != NULL)
391     set_cmd_completer (c, completer);
392 }
393 
394 /* Add a possible target architecture to the list.  */
395 
396 void
397 add_target (struct target_ops *t)
398 {
399   add_target_with_completer (t, NULL);
400 }
401 
402 /* See target.h.  */
403 
404 void
405 add_deprecated_target_alias (struct target_ops *t, char *alias)
406 {
407   struct cmd_list_element *c;
408   char *alt;
409 
410   /* If we use add_alias_cmd, here, we do not get the deprecated warning,
411      see PR cli/15104.  */
412   c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
413   set_cmd_sfunc (c, open_target);
414   set_cmd_context (c, t);
415   alt = xstrprintf ("target %s", t->to_shortname);
416   deprecate_cmd (c, alt);
417 }
418 
419 /* Stub functions */
420 
421 void
422 target_kill (void)
423 {
424   current_target.to_kill (&current_target);
425 }
426 
427 void
428 target_load (const char *arg, int from_tty)
429 {
430   target_dcache_invalidate ();
431   (*current_target.to_load) (&current_target, arg, from_tty);
432 }
433 
434 /* Possible terminal states.  */
435 
436 enum terminal_state
437   {
438     /* The inferior's terminal settings are in effect.  */
439     terminal_is_inferior = 0,
440 
441     /* Some of our terminal settings are in effect, enough to get
442        proper output.  */
443     terminal_is_ours_for_output = 1,
444 
445     /* Our terminal settings are in effect, for output and input.  */
446     terminal_is_ours = 2
447   };
448 
449 static enum terminal_state terminal_state = terminal_is_ours;
450 
451 /* See target.h.  */
452 
453 void
454 target_terminal_init (void)
455 {
456   (*current_target.to_terminal_init) (&current_target);
457 
458   terminal_state = terminal_is_ours;
459 }
460 
461 /* See target.h.  */
462 
463 int
464 target_terminal_is_inferior (void)
465 {
466   return (terminal_state == terminal_is_inferior);
467 }
468 
469 /* See target.h.  */
470 
471 int
472 target_terminal_is_ours (void)
473 {
474   return (terminal_state == terminal_is_ours);
475 }
476 
477 /* See target.h.  */
478 
479 void
480 target_terminal_inferior (void)
481 {
482   struct ui *ui = current_ui;
483 
484   /* A background resume (``run&'') should leave GDB in control of the
485      terminal.  */
486   if (ui->prompt_state != PROMPT_BLOCKED)
487     return;
488 
489   /* Since we always run the inferior in the main console (unless "set
490      inferior-tty" is in effect), when some UI other than the main one
491      calls target_terminal_inferior/target_terminal_inferior, then we
492      leave the main UI's terminal settings as is.  */
493   if (ui != main_ui)
494     return;
495 
496   if (terminal_state == terminal_is_inferior)
497     return;
498 
499   /* If GDB is resuming the inferior in the foreground, install
500      inferior's terminal modes.  */
501   (*current_target.to_terminal_inferior) (&current_target);
502   terminal_state = terminal_is_inferior;
503 
504   /* If the user hit C-c before, pretend that it was hit right
505      here.  */
506   if (check_quit_flag ())
507     target_pass_ctrlc ();
508 }
509 
510 /* See target.h.  */
511 
512 void
513 target_terminal_ours (void)
514 {
515   struct ui *ui = current_ui;
516 
517   /* See target_terminal_inferior.  */
518   if (ui != main_ui)
519     return;
520 
521   if (terminal_state == terminal_is_ours)
522     return;
523 
524   (*current_target.to_terminal_ours) (&current_target);
525   terminal_state = terminal_is_ours;
526 }
527 
528 /* See target.h.  */
529 
530 void
531 target_terminal_ours_for_output (void)
532 {
533   struct ui *ui = current_ui;
534 
535   /* See target_terminal_inferior.  */
536   if (ui != main_ui)
537     return;
538 
539   if (terminal_state != terminal_is_inferior)
540     return;
541   (*current_target.to_terminal_ours_for_output) (&current_target);
542   terminal_state = terminal_is_ours_for_output;
543 }
544 
545 /* See target.h.  */
546 
547 int
548 target_supports_terminal_ours (void)
549 {
550   struct target_ops *t;
551 
552   for (t = current_target.beneath; t != NULL; t = t->beneath)
553     {
554       if (t->to_terminal_ours != delegate_terminal_ours
555 	  && t->to_terminal_ours != tdefault_terminal_ours)
556 	return 1;
557     }
558 
559   return 0;
560 }
561 
562 /* Restore the terminal to its previous state (helper for
563    make_cleanup_restore_target_terminal). */
564 
565 static void
566 cleanup_restore_target_terminal (void *arg)
567 {
568   enum terminal_state *previous_state = (enum terminal_state *) arg;
569 
570   switch (*previous_state)
571     {
572     case terminal_is_ours:
573       target_terminal_ours ();
574       break;
575     case terminal_is_ours_for_output:
576       target_terminal_ours_for_output ();
577       break;
578     case terminal_is_inferior:
579       target_terminal_inferior ();
580       break;
581     }
582 }
583 
584 /* See target.h. */
585 
586 struct cleanup *
587 make_cleanup_restore_target_terminal (void)
588 {
589   enum terminal_state *ts = XNEW (enum terminal_state);
590 
591   *ts = terminal_state;
592 
593   return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
594 }
595 
596 static void
597 tcomplain (void)
598 {
599   error (_("You can't do that when your target is `%s'"),
600 	 current_target.to_shortname);
601 }
602 
603 void
604 noprocess (void)
605 {
606   error (_("You can't do that without a process to debug."));
607 }
608 
609 static void
610 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
611 {
612   printf_unfiltered (_("No saved terminal information.\n"));
613 }
614 
615 /* A default implementation for the to_get_ada_task_ptid target method.
616 
617    This function builds the PTID by using both LWP and TID as part of
618    the PTID lwp and tid elements.  The pid used is the pid of the
619    inferior_ptid.  */
620 
621 static ptid_t
622 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
623 {
624   return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
625 }
626 
627 static enum exec_direction_kind
628 default_execution_direction (struct target_ops *self)
629 {
630   if (!target_can_execute_reverse)
631     return EXEC_FORWARD;
632   else if (!target_can_async_p ())
633     return EXEC_FORWARD;
634   else
635     gdb_assert_not_reached ("\
636 to_execution_direction must be implemented for reverse async");
637 }
638 
639 /* Go through the target stack from top to bottom, copying over zero
640    entries in current_target, then filling in still empty entries.  In
641    effect, we are doing class inheritance through the pushed target
642    vectors.
643 
644    NOTE: cagney/2003-10-17: The problem with this inheritance, as it
645    is currently implemented, is that it discards any knowledge of
646    which target an inherited method originally belonged to.
647    Consequently, new new target methods should instead explicitly and
648    locally search the target stack for the target that can handle the
649    request.  */
650 
651 static void
652 update_current_target (void)
653 {
654   struct target_ops *t;
655 
656   /* First, reset current's contents.  */
657   memset (&current_target, 0, sizeof (current_target));
658 
659   /* Install the delegators.  */
660   install_delegators (&current_target);
661 
662   current_target.to_stratum = target_stack->to_stratum;
663 
664 #define INHERIT(FIELD, TARGET) \
665       if (!current_target.FIELD) \
666 	current_target.FIELD = (TARGET)->FIELD
667 
668   /* Do not add any new INHERITs here.  Instead, use the delegation
669      mechanism provided by make-target-delegates.  */
670   for (t = target_stack; t; t = t->beneath)
671     {
672       INHERIT (to_shortname, t);
673       INHERIT (to_longname, t);
674       INHERIT (to_attach_no_wait, t);
675       INHERIT (to_have_steppable_watchpoint, t);
676       INHERIT (to_have_continuable_watchpoint, t);
677       INHERIT (to_has_thread_control, t);
678     }
679 #undef INHERIT
680 
681   /* Finally, position the target-stack beneath the squashed
682      "current_target".  That way code looking for a non-inherited
683      target method can quickly and simply find it.  */
684   current_target.beneath = target_stack;
685 
686   if (targetdebug)
687     setup_target_debug ();
688 }
689 
690 /* Push a new target type into the stack of the existing target accessors,
691    possibly superseding some of the existing accessors.
692 
693    Rather than allow an empty stack, we always have the dummy target at
694    the bottom stratum, so we can call the function vectors without
695    checking them.  */
696 
697 void
698 push_target (struct target_ops *t)
699 {
700   struct target_ops **cur;
701 
702   /* Check magic number.  If wrong, it probably means someone changed
703      the struct definition, but not all the places that initialize one.  */
704   if (t->to_magic != OPS_MAGIC)
705     {
706       fprintf_unfiltered (gdb_stderr,
707 			  "Magic number of %s target struct wrong\n",
708 			  t->to_shortname);
709       internal_error (__FILE__, __LINE__,
710 		      _("failed internal consistency check"));
711     }
712 
713   /* Find the proper stratum to install this target in.  */
714   for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
715     {
716       if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
717 	break;
718     }
719 
720   /* If there's already targets at this stratum, remove them.  */
721   /* FIXME: cagney/2003-10-15: I think this should be popping all
722      targets to CUR, and not just those at this stratum level.  */
723   while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
724     {
725       /* There's already something at this stratum level.  Close it,
726          and un-hook it from the stack.  */
727       struct target_ops *tmp = (*cur);
728 
729       (*cur) = (*cur)->beneath;
730       tmp->beneath = NULL;
731       target_close (tmp);
732     }
733 
734   /* We have removed all targets in our stratum, now add the new one.  */
735   t->beneath = (*cur);
736   (*cur) = t;
737 
738   update_current_target ();
739 }
740 
741 /* Remove a target_ops vector from the stack, wherever it may be.
742    Return how many times it was removed (0 or 1).  */
743 
744 int
745 unpush_target (struct target_ops *t)
746 {
747   struct target_ops **cur;
748   struct target_ops *tmp;
749 
750   if (t->to_stratum == dummy_stratum)
751     internal_error (__FILE__, __LINE__,
752 		    _("Attempt to unpush the dummy target"));
753 
754   /* Look for the specified target.  Note that we assume that a target
755      can only occur once in the target stack.  */
756 
757   for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
758     {
759       if ((*cur) == t)
760 	break;
761     }
762 
763   /* If we don't find target_ops, quit.  Only open targets should be
764      closed.  */
765   if ((*cur) == NULL)
766     return 0;
767 
768   /* Unchain the target.  */
769   tmp = (*cur);
770   (*cur) = (*cur)->beneath;
771   tmp->beneath = NULL;
772 
773   update_current_target ();
774 
775   /* Finally close the target.  Note we do this after unchaining, so
776      any target method calls from within the target_close
777      implementation don't end up in T anymore.  */
778   target_close (t);
779 
780   return 1;
781 }
782 
783 /* Unpush TARGET and assert that it worked.  */
784 
785 static void
786 unpush_target_and_assert (struct target_ops *target)
787 {
788   if (!unpush_target (target))
789     {
790       fprintf_unfiltered (gdb_stderr,
791 			  "pop_all_targets couldn't find target %s\n",
792 			  target->to_shortname);
793       internal_error (__FILE__, __LINE__,
794 		      _("failed internal consistency check"));
795     }
796 }
797 
798 void
799 pop_all_targets_above (enum strata above_stratum)
800 {
801   while ((int) (current_target.to_stratum) > (int) above_stratum)
802     unpush_target_and_assert (target_stack);
803 }
804 
805 /* See target.h.  */
806 
807 void
808 pop_all_targets_at_and_above (enum strata stratum)
809 {
810   while ((int) (current_target.to_stratum) >= (int) stratum)
811     unpush_target_and_assert (target_stack);
812 }
813 
814 void
815 pop_all_targets (void)
816 {
817   pop_all_targets_above (dummy_stratum);
818 }
819 
820 /* Return 1 if T is now pushed in the target stack.  Return 0 otherwise.  */
821 
822 int
823 target_is_pushed (struct target_ops *t)
824 {
825   struct target_ops *cur;
826 
827   /* Check magic number.  If wrong, it probably means someone changed
828      the struct definition, but not all the places that initialize one.  */
829   if (t->to_magic != OPS_MAGIC)
830     {
831       fprintf_unfiltered (gdb_stderr,
832 			  "Magic number of %s target struct wrong\n",
833 			  t->to_shortname);
834       internal_error (__FILE__, __LINE__,
835 		      _("failed internal consistency check"));
836     }
837 
838   for (cur = target_stack; cur != NULL; cur = cur->beneath)
839     if (cur == t)
840       return 1;
841 
842   return 0;
843 }
844 
845 /* Default implementation of to_get_thread_local_address.  */
846 
847 static void
848 generic_tls_error (void)
849 {
850   throw_error (TLS_GENERIC_ERROR,
851 	       _("Cannot find thread-local variables on this target"));
852 }
853 
854 /* Using the objfile specified in OBJFILE, find the address for the
855    current thread's thread-local storage with offset OFFSET.  */
856 CORE_ADDR
857 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
858 {
859   volatile CORE_ADDR addr = 0;
860   struct target_ops *target = &current_target;
861 
862   if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
863     {
864       ptid_t ptid = inferior_ptid;
865 
866       TRY
867 	{
868 	  CORE_ADDR lm_addr;
869 
870 	  /* Fetch the load module address for this objfile.  */
871 	  lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
872 	                                                   objfile);
873 
874 	  addr = target->to_get_thread_local_address (target, ptid,
875 						      lm_addr, offset);
876 	}
877       /* If an error occurred, print TLS related messages here.  Otherwise,
878          throw the error to some higher catcher.  */
879       CATCH (ex, RETURN_MASK_ALL)
880 	{
881 	  int objfile_is_library = (objfile->flags & OBJF_SHARED);
882 
883 	  switch (ex.error)
884 	    {
885 	    case TLS_NO_LIBRARY_SUPPORT_ERROR:
886 	      error (_("Cannot find thread-local variables "
887 		       "in this thread library."));
888 	      break;
889 	    case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
890 	      if (objfile_is_library)
891 		error (_("Cannot find shared library `%s' in dynamic"
892 		         " linker's load module list"), objfile_name (objfile));
893 	      else
894 		error (_("Cannot find executable file `%s' in dynamic"
895 		         " linker's load module list"), objfile_name (objfile));
896 	      break;
897 	    case TLS_NOT_ALLOCATED_YET_ERROR:
898 	      if (objfile_is_library)
899 		error (_("The inferior has not yet allocated storage for"
900 		         " thread-local variables in\n"
901 		         "the shared library `%s'\n"
902 		         "for %s"),
903 		       objfile_name (objfile), target_pid_to_str (ptid));
904 	      else
905 		error (_("The inferior has not yet allocated storage for"
906 		         " thread-local variables in\n"
907 		         "the executable `%s'\n"
908 		         "for %s"),
909 		       objfile_name (objfile), target_pid_to_str (ptid));
910 	      break;
911 	    case TLS_GENERIC_ERROR:
912 	      if (objfile_is_library)
913 		error (_("Cannot find thread-local storage for %s, "
914 		         "shared library %s:\n%s"),
915 		       target_pid_to_str (ptid),
916 		       objfile_name (objfile), ex.message);
917 	      else
918 		error (_("Cannot find thread-local storage for %s, "
919 		         "executable file %s:\n%s"),
920 		       target_pid_to_str (ptid),
921 		       objfile_name (objfile), ex.message);
922 	      break;
923 	    default:
924 	      throw_exception (ex);
925 	      break;
926 	    }
927 	}
928       END_CATCH
929     }
930   /* It wouldn't be wrong here to try a gdbarch method, too; finding
931      TLS is an ABI-specific thing.  But we don't do that yet.  */
932   else
933     error (_("Cannot find thread-local variables on this target"));
934 
935   return addr;
936 }
937 
938 const char *
939 target_xfer_status_to_string (enum target_xfer_status status)
940 {
941 #define CASE(X) case X: return #X
942   switch (status)
943     {
944       CASE(TARGET_XFER_E_IO);
945       CASE(TARGET_XFER_UNAVAILABLE);
946     default:
947       return "<unknown>";
948     }
949 #undef CASE
950 };
951 
952 
953 #undef	MIN
954 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
955 
956 /* target_read_string -- read a null terminated string, up to LEN bytes,
957    from MEMADDR in target.  Set *ERRNOP to the errno code, or 0 if successful.
958    Set *STRING to a pointer to malloc'd memory containing the data; the caller
959    is responsible for freeing it.  Return the number of bytes successfully
960    read.  */
961 
962 int
963 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
964 {
965   int tlen, offset, i;
966   gdb_byte buf[4];
967   int errcode = 0;
968   char *buffer;
969   int buffer_allocated;
970   char *bufptr;
971   unsigned int nbytes_read = 0;
972 
973   gdb_assert (string);
974 
975   /* Small for testing.  */
976   buffer_allocated = 4;
977   buffer = (char *) xmalloc (buffer_allocated);
978   bufptr = buffer;
979 
980   while (len > 0)
981     {
982       tlen = MIN (len, 4 - (memaddr & 3));
983       offset = memaddr & 3;
984 
985       errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
986       if (errcode != 0)
987 	{
988 	  /* The transfer request might have crossed the boundary to an
989 	     unallocated region of memory.  Retry the transfer, requesting
990 	     a single byte.  */
991 	  tlen = 1;
992 	  offset = 0;
993 	  errcode = target_read_memory (memaddr, buf, 1);
994 	  if (errcode != 0)
995 	    goto done;
996 	}
997 
998       if (bufptr - buffer + tlen > buffer_allocated)
999 	{
1000 	  unsigned int bytes;
1001 
1002 	  bytes = bufptr - buffer;
1003 	  buffer_allocated *= 2;
1004 	  buffer = (char *) xrealloc (buffer, buffer_allocated);
1005 	  bufptr = buffer + bytes;
1006 	}
1007 
1008       for (i = 0; i < tlen; i++)
1009 	{
1010 	  *bufptr++ = buf[i + offset];
1011 	  if (buf[i + offset] == '\000')
1012 	    {
1013 	      nbytes_read += i + 1;
1014 	      goto done;
1015 	    }
1016 	}
1017 
1018       memaddr += tlen;
1019       len -= tlen;
1020       nbytes_read += tlen;
1021     }
1022 done:
1023   *string = buffer;
1024   if (errnop != NULL)
1025     *errnop = errcode;
1026   return nbytes_read;
1027 }
1028 
1029 struct target_section_table *
1030 target_get_section_table (struct target_ops *target)
1031 {
1032   return (*target->to_get_section_table) (target);
1033 }
1034 
1035 /* Find a section containing ADDR.  */
1036 
1037 struct target_section *
1038 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1039 {
1040   struct target_section_table *table = target_get_section_table (target);
1041   struct target_section *secp;
1042 
1043   if (table == NULL)
1044     return NULL;
1045 
1046   for (secp = table->sections; secp < table->sections_end; secp++)
1047     {
1048       if (addr >= secp->addr && addr < secp->endaddr)
1049 	return secp;
1050     }
1051   return NULL;
1052 }
1053 
1054 
1055 /* Helper for the memory xfer routines.  Checks the attributes of the
1056    memory region of MEMADDR against the read or write being attempted.
1057    If the access is permitted returns true, otherwise returns false.
1058    REGION_P is an optional output parameter.  If not-NULL, it is
1059    filled with a pointer to the memory region of MEMADDR.  REG_LEN
1060    returns LEN trimmed to the end of the region.  This is how much the
1061    caller can continue requesting, if the access is permitted.  A
1062    single xfer request must not straddle memory region boundaries.  */
1063 
1064 static int
1065 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1066 			  ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1067 			  struct mem_region **region_p)
1068 {
1069   struct mem_region *region;
1070 
1071   region = lookup_mem_region (memaddr);
1072 
1073   if (region_p != NULL)
1074     *region_p = region;
1075 
1076   switch (region->attrib.mode)
1077     {
1078     case MEM_RO:
1079       if (writebuf != NULL)
1080 	return 0;
1081       break;
1082 
1083     case MEM_WO:
1084       if (readbuf != NULL)
1085 	return 0;
1086       break;
1087 
1088     case MEM_FLASH:
1089       /* We only support writing to flash during "load" for now.  */
1090       if (writebuf != NULL)
1091 	error (_("Writing to flash memory forbidden in this context"));
1092       break;
1093 
1094     case MEM_NONE:
1095       return 0;
1096     }
1097 
1098   /* region->hi == 0 means there's no upper bound.  */
1099   if (memaddr + len < region->hi || region->hi == 0)
1100     *reg_len = len;
1101   else
1102     *reg_len = region->hi - memaddr;
1103 
1104   return 1;
1105 }
1106 
1107 /* Read memory from more than one valid target.  A core file, for
1108    instance, could have some of memory but delegate other bits to
1109    the target below it.  So, we must manually try all targets.  */
1110 
1111 enum target_xfer_status
1112 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1113 			 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1114 			 ULONGEST *xfered_len)
1115 {
1116   enum target_xfer_status res;
1117 
1118   do
1119     {
1120       res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1121 				  readbuf, writebuf, memaddr, len,
1122 				  xfered_len);
1123       if (res == TARGET_XFER_OK)
1124 	break;
1125 
1126       /* Stop if the target reports that the memory is not available.  */
1127       if (res == TARGET_XFER_UNAVAILABLE)
1128 	break;
1129 
1130       /* We want to continue past core files to executables, but not
1131 	 past a running target's memory.  */
1132       if (ops->to_has_all_memory (ops))
1133 	break;
1134 
1135       ops = ops->beneath;
1136     }
1137   while (ops != NULL);
1138 
1139   /* The cache works at the raw memory level.  Make sure the cache
1140      gets updated with raw contents no matter what kind of memory
1141      object was originally being written.  Note we do write-through
1142      first, so that if it fails, we don't write to the cache contents
1143      that never made it to the target.  */
1144   if (writebuf != NULL
1145       && !ptid_equal (inferior_ptid, null_ptid)
1146       && target_dcache_init_p ()
1147       && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1148     {
1149       DCACHE *dcache = target_dcache_get ();
1150 
1151       /* Note that writing to an area of memory which wasn't present
1152 	 in the cache doesn't cause it to be loaded in.  */
1153       dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1154     }
1155 
1156   return res;
1157 }
1158 
1159 /* Perform a partial memory transfer.
1160    For docs see target.h, to_xfer_partial.  */
1161 
1162 static enum target_xfer_status
1163 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1164 		       gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1165 		       ULONGEST len, ULONGEST *xfered_len)
1166 {
1167   enum target_xfer_status res;
1168   ULONGEST reg_len;
1169   struct mem_region *region;
1170   struct inferior *inf;
1171 
1172   /* For accesses to unmapped overlay sections, read directly from
1173      files.  Must do this first, as MEMADDR may need adjustment.  */
1174   if (readbuf != NULL && overlay_debugging)
1175     {
1176       struct obj_section *section = find_pc_overlay (memaddr);
1177 
1178       if (pc_in_unmapped_range (memaddr, section))
1179 	{
1180 	  struct target_section_table *table
1181 	    = target_get_section_table (ops);
1182 	  const char *section_name = section->the_bfd_section->name;
1183 
1184 	  memaddr = overlay_mapped_address (memaddr, section);
1185 	  return section_table_xfer_memory_partial (readbuf, writebuf,
1186 						    memaddr, len, xfered_len,
1187 						    table->sections,
1188 						    table->sections_end,
1189 						    section_name);
1190 	}
1191     }
1192 
1193   /* Try the executable files, if "trust-readonly-sections" is set.  */
1194   if (readbuf != NULL && trust_readonly)
1195     {
1196       struct target_section *secp;
1197       struct target_section_table *table;
1198 
1199       secp = target_section_by_addr (ops, memaddr);
1200       if (secp != NULL
1201 	  && (bfd_get_section_flags (secp->the_bfd_section->owner,
1202 				     secp->the_bfd_section)
1203 	      & SEC_READONLY))
1204 	{
1205 	  table = target_get_section_table (ops);
1206 	  return section_table_xfer_memory_partial (readbuf, writebuf,
1207 						    memaddr, len, xfered_len,
1208 						    table->sections,
1209 						    table->sections_end,
1210 						    NULL);
1211 	}
1212     }
1213 
1214   /* Try GDB's internal data cache.  */
1215 
1216   if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1217 				 &region))
1218     return TARGET_XFER_E_IO;
1219 
1220   if (!ptid_equal (inferior_ptid, null_ptid))
1221     inf = find_inferior_ptid (inferior_ptid);
1222   else
1223     inf = NULL;
1224 
1225   if (inf != NULL
1226       && readbuf != NULL
1227       /* The dcache reads whole cache lines; that doesn't play well
1228 	 with reading from a trace buffer, because reading outside of
1229 	 the collected memory range fails.  */
1230       && get_traceframe_number () == -1
1231       && (region->attrib.cache
1232 	  || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1233 	  || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1234     {
1235       DCACHE *dcache = target_dcache_get_or_init ();
1236 
1237       return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1238 					 reg_len, xfered_len);
1239     }
1240 
1241   /* If none of those methods found the memory we wanted, fall back
1242      to a target partial transfer.  Normally a single call to
1243      to_xfer_partial is enough; if it doesn't recognize an object
1244      it will call the to_xfer_partial of the next target down.
1245      But for memory this won't do.  Memory is the only target
1246      object which can be read from more than one valid target.
1247      A core file, for instance, could have some of memory but
1248      delegate other bits to the target below it.  So, we must
1249      manually try all targets.  */
1250 
1251   res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1252 				 xfered_len);
1253 
1254   /* If we still haven't got anything, return the last error.  We
1255      give up.  */
1256   return res;
1257 }
1258 
1259 /* Perform a partial memory transfer.  For docs see target.h,
1260    to_xfer_partial.  */
1261 
1262 static enum target_xfer_status
1263 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1264 		     gdb_byte *readbuf, const gdb_byte *writebuf,
1265 		     ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1266 {
1267   enum target_xfer_status res;
1268 
1269   /* Zero length requests are ok and require no work.  */
1270   if (len == 0)
1271     return TARGET_XFER_EOF;
1272 
1273   /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1274      breakpoint insns, thus hiding out from higher layers whether
1275      there are software breakpoints inserted in the code stream.  */
1276   if (readbuf != NULL)
1277     {
1278       res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1279 				   xfered_len);
1280 
1281       if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1282 	breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1283     }
1284   else
1285     {
1286       gdb_byte *buf;
1287       struct cleanup *old_chain;
1288 
1289       /* A large write request is likely to be partially satisfied
1290 	 by memory_xfer_partial_1.  We will continually malloc
1291 	 and free a copy of the entire write request for breakpoint
1292 	 shadow handling even though we only end up writing a small
1293 	 subset of it.  Cap writes to a limit specified by the target
1294 	 to mitigate this.  */
1295       len = min (ops->to_get_memory_xfer_limit (ops), len);
1296 
1297       buf = (gdb_byte *) xmalloc (len);
1298       old_chain = make_cleanup (xfree, buf);
1299       memcpy (buf, writebuf, len);
1300 
1301       breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1302       res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1303 				   xfered_len);
1304 
1305       do_cleanups (old_chain);
1306     }
1307 
1308   return res;
1309 }
1310 
1311 static void
1312 restore_show_memory_breakpoints (void *arg)
1313 {
1314   show_memory_breakpoints = (uintptr_t) arg;
1315 }
1316 
1317 struct cleanup *
1318 make_show_memory_breakpoints_cleanup (int show)
1319 {
1320   int current = show_memory_breakpoints;
1321 
1322   show_memory_breakpoints = show;
1323   return make_cleanup (restore_show_memory_breakpoints,
1324 		       (void *) (uintptr_t) current);
1325 }
1326 
1327 /* For docs see target.h, to_xfer_partial.  */
1328 
1329 enum target_xfer_status
1330 target_xfer_partial (struct target_ops *ops,
1331 		     enum target_object object, const char *annex,
1332 		     gdb_byte *readbuf, const gdb_byte *writebuf,
1333 		     ULONGEST offset, ULONGEST len,
1334 		     ULONGEST *xfered_len)
1335 {
1336   enum target_xfer_status retval;
1337 
1338   gdb_assert (ops->to_xfer_partial != NULL);
1339 
1340   /* Transfer is done when LEN is zero.  */
1341   if (len == 0)
1342     return TARGET_XFER_EOF;
1343 
1344   if (writebuf && !may_write_memory)
1345     error (_("Writing to memory is not allowed (addr %s, len %s)"),
1346 	   core_addr_to_string_nz (offset), plongest (len));
1347 
1348   *xfered_len = 0;
1349 
1350   /* If this is a memory transfer, let the memory-specific code
1351      have a look at it instead.  Memory transfers are more
1352      complicated.  */
1353   if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1354       || object == TARGET_OBJECT_CODE_MEMORY)
1355     retval = memory_xfer_partial (ops, object, readbuf,
1356 				  writebuf, offset, len, xfered_len);
1357   else if (object == TARGET_OBJECT_RAW_MEMORY)
1358     {
1359       /* Skip/avoid accessing the target if the memory region
1360 	 attributes block the access.  Check this here instead of in
1361 	 raw_memory_xfer_partial as otherwise we'd end up checking
1362 	 this twice in the case of the memory_xfer_partial path is
1363 	 taken; once before checking the dcache, and another in the
1364 	 tail call to raw_memory_xfer_partial.  */
1365       if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1366 				     NULL))
1367 	return TARGET_XFER_E_IO;
1368 
1369       /* Request the normal memory object from other layers.  */
1370       retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1371 					xfered_len);
1372     }
1373   else
1374     retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1375 				   writebuf, offset, len, xfered_len);
1376 
1377   if (targetdebug)
1378     {
1379       const unsigned char *myaddr = NULL;
1380 
1381       fprintf_unfiltered (gdb_stdlog,
1382 			  "%s:target_xfer_partial "
1383 			  "(%d, %s, %s, %s, %s, %s) = %d, %s",
1384 			  ops->to_shortname,
1385 			  (int) object,
1386 			  (annex ? annex : "(null)"),
1387 			  host_address_to_string (readbuf),
1388 			  host_address_to_string (writebuf),
1389 			  core_addr_to_string_nz (offset),
1390 			  pulongest (len), retval,
1391 			  pulongest (*xfered_len));
1392 
1393       if (readbuf)
1394 	myaddr = readbuf;
1395       if (writebuf)
1396 	myaddr = writebuf;
1397       if (retval == TARGET_XFER_OK && myaddr != NULL)
1398 	{
1399 	  int i;
1400 
1401 	  fputs_unfiltered (", bytes =", gdb_stdlog);
1402 	  for (i = 0; i < *xfered_len; i++)
1403 	    {
1404 	      if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1405 		{
1406 		  if (targetdebug < 2 && i > 0)
1407 		    {
1408 		      fprintf_unfiltered (gdb_stdlog, " ...");
1409 		      break;
1410 		    }
1411 		  fprintf_unfiltered (gdb_stdlog, "\n");
1412 		}
1413 
1414 	      fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1415 	    }
1416 	}
1417 
1418       fputc_unfiltered ('\n', gdb_stdlog);
1419     }
1420 
1421   /* Check implementations of to_xfer_partial update *XFERED_LEN
1422      properly.  Do assertion after printing debug messages, so that we
1423      can find more clues on assertion failure from debugging messages.  */
1424   if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1425     gdb_assert (*xfered_len > 0);
1426 
1427   return retval;
1428 }
1429 
1430 /* Read LEN bytes of target memory at address MEMADDR, placing the
1431    results in GDB's memory at MYADDR.  Returns either 0 for success or
1432    -1 if any error occurs.
1433 
1434    If an error occurs, no guarantee is made about the contents of the data at
1435    MYADDR.  In particular, the caller should not depend upon partial reads
1436    filling the buffer with good data.  There is no way for the caller to know
1437    how much good data might have been transfered anyway.  Callers that can
1438    deal with partial reads should call target_read (which will retry until
1439    it makes no progress, and then return how much was transferred).  */
1440 
1441 int
1442 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1443 {
1444   /* Dispatch to the topmost target, not the flattened current_target.
1445      Memory accesses check target->to_has_(all_)memory, and the
1446      flattened target doesn't inherit those.  */
1447   if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1448 		   myaddr, memaddr, len) == len)
1449     return 0;
1450   else
1451     return -1;
1452 }
1453 
1454 /* See target/target.h.  */
1455 
1456 int
1457 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1458 {
1459   gdb_byte buf[4];
1460   int r;
1461 
1462   r = target_read_memory (memaddr, buf, sizeof buf);
1463   if (r != 0)
1464     return r;
1465   *result = extract_unsigned_integer (buf, sizeof buf,
1466 				      gdbarch_byte_order (target_gdbarch ()));
1467   return 0;
1468 }
1469 
1470 /* Like target_read_memory, but specify explicitly that this is a read
1471    from the target's raw memory.  That is, this read bypasses the
1472    dcache, breakpoint shadowing, etc.  */
1473 
1474 int
1475 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1476 {
1477   /* See comment in target_read_memory about why the request starts at
1478      current_target.beneath.  */
1479   if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1480 		   myaddr, memaddr, len) == len)
1481     return 0;
1482   else
1483     return -1;
1484 }
1485 
1486 /* Like target_read_memory, but specify explicitly that this is a read from
1487    the target's stack.  This may trigger different cache behavior.  */
1488 
1489 int
1490 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1491 {
1492   /* See comment in target_read_memory about why the request starts at
1493      current_target.beneath.  */
1494   if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1495 		   myaddr, memaddr, len) == len)
1496     return 0;
1497   else
1498     return -1;
1499 }
1500 
1501 /* Like target_read_memory, but specify explicitly that this is a read from
1502    the target's code.  This may trigger different cache behavior.  */
1503 
1504 int
1505 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1506 {
1507   /* See comment in target_read_memory about why the request starts at
1508      current_target.beneath.  */
1509   if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1510 		   myaddr, memaddr, len) == len)
1511     return 0;
1512   else
1513     return -1;
1514 }
1515 
1516 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1517    Returns either 0 for success or -1 if any error occurs.  If an
1518    error occurs, no guarantee is made about how much data got written.
1519    Callers that can deal with partial writes should call
1520    target_write.  */
1521 
1522 int
1523 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1524 {
1525   /* See comment in target_read_memory about why the request starts at
1526      current_target.beneath.  */
1527   if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1528 		    myaddr, memaddr, len) == len)
1529     return 0;
1530   else
1531     return -1;
1532 }
1533 
1534 /* Write LEN bytes from MYADDR to target raw memory at address
1535    MEMADDR.  Returns either 0 for success or -1 if any error occurs.
1536    If an error occurs, no guarantee is made about how much data got
1537    written.  Callers that can deal with partial writes should call
1538    target_write.  */
1539 
1540 int
1541 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1542 {
1543   /* See comment in target_read_memory about why the request starts at
1544      current_target.beneath.  */
1545   if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1546 		    myaddr, memaddr, len) == len)
1547     return 0;
1548   else
1549     return -1;
1550 }
1551 
1552 /* Fetch the target's memory map.  */
1553 
1554 VEC(mem_region_s) *
1555 target_memory_map (void)
1556 {
1557   VEC(mem_region_s) *result;
1558   struct mem_region *last_one, *this_one;
1559   int ix;
1560   result = current_target.to_memory_map (&current_target);
1561   if (result == NULL)
1562     return NULL;
1563 
1564   qsort (VEC_address (mem_region_s, result),
1565 	 VEC_length (mem_region_s, result),
1566 	 sizeof (struct mem_region), mem_region_cmp);
1567 
1568   /* Check that regions do not overlap.  Simultaneously assign
1569      a numbering for the "mem" commands to use to refer to
1570      each region.  */
1571   last_one = NULL;
1572   for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1573     {
1574       this_one->number = ix;
1575 
1576       if (last_one && last_one->hi > this_one->lo)
1577 	{
1578 	  warning (_("Overlapping regions in memory map: ignoring"));
1579 	  VEC_free (mem_region_s, result);
1580 	  return NULL;
1581 	}
1582       last_one = this_one;
1583     }
1584 
1585   return result;
1586 }
1587 
1588 void
1589 target_flash_erase (ULONGEST address, LONGEST length)
1590 {
1591   current_target.to_flash_erase (&current_target, address, length);
1592 }
1593 
1594 void
1595 target_flash_done (void)
1596 {
1597   current_target.to_flash_done (&current_target);
1598 }
1599 
1600 static void
1601 show_trust_readonly (struct ui_file *file, int from_tty,
1602 		     struct cmd_list_element *c, const char *value)
1603 {
1604   fprintf_filtered (file,
1605 		    _("Mode for reading from readonly sections is %s.\n"),
1606 		    value);
1607 }
1608 
1609 /* Target vector read/write partial wrapper functions.  */
1610 
1611 static enum target_xfer_status
1612 target_read_partial (struct target_ops *ops,
1613 		     enum target_object object,
1614 		     const char *annex, gdb_byte *buf,
1615 		     ULONGEST offset, ULONGEST len,
1616 		     ULONGEST *xfered_len)
1617 {
1618   return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1619 			      xfered_len);
1620 }
1621 
1622 static enum target_xfer_status
1623 target_write_partial (struct target_ops *ops,
1624 		      enum target_object object,
1625 		      const char *annex, const gdb_byte *buf,
1626 		      ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1627 {
1628   return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1629 			      xfered_len);
1630 }
1631 
1632 /* Wrappers to perform the full transfer.  */
1633 
1634 /* For docs on target_read see target.h.  */
1635 
1636 LONGEST
1637 target_read (struct target_ops *ops,
1638 	     enum target_object object,
1639 	     const char *annex, gdb_byte *buf,
1640 	     ULONGEST offset, LONGEST len)
1641 {
1642   LONGEST xfered_total = 0;
1643   int unit_size = 1;
1644 
1645   /* If we are reading from a memory object, find the length of an addressable
1646      unit for that architecture.  */
1647   if (object == TARGET_OBJECT_MEMORY
1648       || object == TARGET_OBJECT_STACK_MEMORY
1649       || object == TARGET_OBJECT_CODE_MEMORY
1650       || object == TARGET_OBJECT_RAW_MEMORY)
1651     unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1652 
1653   while (xfered_total < len)
1654     {
1655       ULONGEST xfered_partial;
1656       enum target_xfer_status status;
1657 
1658       status = target_read_partial (ops, object, annex,
1659 				    buf + xfered_total * unit_size,
1660 				    offset + xfered_total, len - xfered_total,
1661 				    &xfered_partial);
1662 
1663       /* Call an observer, notifying them of the xfer progress?  */
1664       if (status == TARGET_XFER_EOF)
1665 	return xfered_total;
1666       else if (status == TARGET_XFER_OK)
1667 	{
1668 	  xfered_total += xfered_partial;
1669 	  QUIT;
1670 	}
1671       else
1672 	return TARGET_XFER_E_IO;
1673 
1674     }
1675   return len;
1676 }
1677 
1678 /* Assuming that the entire [begin, end) range of memory cannot be
1679    read, try to read whatever subrange is possible to read.
1680 
1681    The function returns, in RESULT, either zero or one memory block.
1682    If there's a readable subrange at the beginning, it is completely
1683    read and returned.  Any further readable subrange will not be read.
1684    Otherwise, if there's a readable subrange at the end, it will be
1685    completely read and returned.  Any readable subranges before it
1686    (obviously, not starting at the beginning), will be ignored.  In
1687    other cases -- either no readable subrange, or readable subrange(s)
1688    that is neither at the beginning, or end, nothing is returned.
1689 
1690    The purpose of this function is to handle a read across a boundary
1691    of accessible memory in a case when memory map is not available.
1692    The above restrictions are fine for this case, but will give
1693    incorrect results if the memory is 'patchy'.  However, supporting
1694    'patchy' memory would require trying to read every single byte,
1695    and it seems unacceptable solution.  Explicit memory map is
1696    recommended for this case -- and target_read_memory_robust will
1697    take care of reading multiple ranges then.  */
1698 
1699 static void
1700 read_whatever_is_readable (struct target_ops *ops,
1701 			   const ULONGEST begin, const ULONGEST end,
1702 			   int unit_size,
1703 			   VEC(memory_read_result_s) **result)
1704 {
1705   gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1706   ULONGEST current_begin = begin;
1707   ULONGEST current_end = end;
1708   int forward;
1709   memory_read_result_s r;
1710   ULONGEST xfered_len;
1711 
1712   /* If we previously failed to read 1 byte, nothing can be done here.  */
1713   if (end - begin <= 1)
1714     {
1715       xfree (buf);
1716       return;
1717     }
1718 
1719   /* Check that either first or the last byte is readable, and give up
1720      if not.  This heuristic is meant to permit reading accessible memory
1721      at the boundary of accessible region.  */
1722   if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1723 			   buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1724     {
1725       forward = 1;
1726       ++current_begin;
1727     }
1728   else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1729 				buf + (end - begin) - 1, end - 1, 1,
1730 				&xfered_len) == TARGET_XFER_OK)
1731     {
1732       forward = 0;
1733       --current_end;
1734     }
1735   else
1736     {
1737       xfree (buf);
1738       return;
1739     }
1740 
1741   /* Loop invariant is that the [current_begin, current_end) was previously
1742      found to be not readable as a whole.
1743 
1744      Note loop condition -- if the range has 1 byte, we can't divide the range
1745      so there's no point trying further.  */
1746   while (current_end - current_begin > 1)
1747     {
1748       ULONGEST first_half_begin, first_half_end;
1749       ULONGEST second_half_begin, second_half_end;
1750       LONGEST xfer;
1751       ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1752 
1753       if (forward)
1754 	{
1755 	  first_half_begin = current_begin;
1756 	  first_half_end = middle;
1757 	  second_half_begin = middle;
1758 	  second_half_end = current_end;
1759 	}
1760       else
1761 	{
1762 	  first_half_begin = middle;
1763 	  first_half_end = current_end;
1764 	  second_half_begin = current_begin;
1765 	  second_half_end = middle;
1766 	}
1767 
1768       xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1769 			  buf + (first_half_begin - begin) * unit_size,
1770 			  first_half_begin,
1771 			  first_half_end - first_half_begin);
1772 
1773       if (xfer == first_half_end - first_half_begin)
1774 	{
1775 	  /* This half reads up fine.  So, the error must be in the
1776 	     other half.  */
1777 	  current_begin = second_half_begin;
1778 	  current_end = second_half_end;
1779 	}
1780       else
1781 	{
1782 	  /* This half is not readable.  Because we've tried one byte, we
1783 	     know some part of this half if actually readable.  Go to the next
1784 	     iteration to divide again and try to read.
1785 
1786 	     We don't handle the other half, because this function only tries
1787 	     to read a single readable subrange.  */
1788 	  current_begin = first_half_begin;
1789 	  current_end = first_half_end;
1790 	}
1791     }
1792 
1793   if (forward)
1794     {
1795       /* The [begin, current_begin) range has been read.  */
1796       r.begin = begin;
1797       r.end = current_begin;
1798       r.data = buf;
1799     }
1800   else
1801     {
1802       /* The [current_end, end) range has been read.  */
1803       LONGEST region_len = end - current_end;
1804 
1805       r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1806       memcpy (r.data, buf + (current_end - begin) * unit_size,
1807 	      region_len * unit_size);
1808       r.begin = current_end;
1809       r.end = end;
1810       xfree (buf);
1811     }
1812   VEC_safe_push(memory_read_result_s, (*result), &r);
1813 }
1814 
1815 void
1816 free_memory_read_result_vector (void *x)
1817 {
1818   VEC(memory_read_result_s) **v = (VEC(memory_read_result_s) **) x;
1819   memory_read_result_s *current;
1820   int ix;
1821 
1822   for (ix = 0; VEC_iterate (memory_read_result_s, *v, ix, current); ++ix)
1823     {
1824       xfree (current->data);
1825     }
1826   VEC_free (memory_read_result_s, *v);
1827 }
1828 
1829 VEC(memory_read_result_s) *
1830 read_memory_robust (struct target_ops *ops,
1831 		    const ULONGEST offset, const LONGEST len)
1832 {
1833   VEC(memory_read_result_s) *result = 0;
1834   int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1835   struct cleanup *cleanup = make_cleanup (free_memory_read_result_vector,
1836 					  &result);
1837 
1838   LONGEST xfered_total = 0;
1839   while (xfered_total < len)
1840     {
1841       struct mem_region *region = lookup_mem_region (offset + xfered_total);
1842       LONGEST region_len;
1843 
1844       /* If there is no explicit region, a fake one should be created.  */
1845       gdb_assert (region);
1846 
1847       if (region->hi == 0)
1848 	region_len = len - xfered_total;
1849       else
1850 	region_len = region->hi - offset;
1851 
1852       if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1853 	{
1854 	  /* Cannot read this region.  Note that we can end up here only
1855 	     if the region is explicitly marked inaccessible, or
1856 	     'inaccessible-by-default' is in effect.  */
1857 	  xfered_total += region_len;
1858 	}
1859       else
1860 	{
1861 	  LONGEST to_read = min (len - xfered_total, region_len);
1862 	  gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1863 	  struct cleanup *inner_cleanup = make_cleanup (xfree, buffer);
1864 
1865 	  LONGEST xfered_partial =
1866 	      target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1867 			   (gdb_byte *) buffer,
1868 			   offset + xfered_total, to_read);
1869 	  /* Call an observer, notifying them of the xfer progress?  */
1870 	  if (xfered_partial <= 0)
1871 	    {
1872 	      /* Got an error reading full chunk.  See if maybe we can read
1873 		 some subrange.  */
1874 	      do_cleanups (inner_cleanup);
1875 	      read_whatever_is_readable (ops, offset + xfered_total,
1876 					 offset + xfered_total + to_read,
1877 					 unit_size, &result);
1878 	      xfered_total += to_read;
1879 	    }
1880 	  else
1881 	    {
1882 	      struct memory_read_result r;
1883 
1884 	      discard_cleanups (inner_cleanup);
1885 	      r.data = buffer;
1886 	      r.begin = offset + xfered_total;
1887 	      r.end = r.begin + xfered_partial;
1888 	      VEC_safe_push (memory_read_result_s, result, &r);
1889 	      xfered_total += xfered_partial;
1890 	    }
1891 	  QUIT;
1892 	}
1893     }
1894 
1895   discard_cleanups (cleanup);
1896   return result;
1897 }
1898 
1899 
1900 /* An alternative to target_write with progress callbacks.  */
1901 
1902 LONGEST
1903 target_write_with_progress (struct target_ops *ops,
1904 			    enum target_object object,
1905 			    const char *annex, const gdb_byte *buf,
1906 			    ULONGEST offset, LONGEST len,
1907 			    void (*progress) (ULONGEST, void *), void *baton)
1908 {
1909   LONGEST xfered_total = 0;
1910   int unit_size = 1;
1911 
1912   /* If we are writing to a memory object, find the length of an addressable
1913      unit for that architecture.  */
1914   if (object == TARGET_OBJECT_MEMORY
1915       || object == TARGET_OBJECT_STACK_MEMORY
1916       || object == TARGET_OBJECT_CODE_MEMORY
1917       || object == TARGET_OBJECT_RAW_MEMORY)
1918     unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1919 
1920   /* Give the progress callback a chance to set up.  */
1921   if (progress)
1922     (*progress) (0, baton);
1923 
1924   while (xfered_total < len)
1925     {
1926       ULONGEST xfered_partial;
1927       enum target_xfer_status status;
1928 
1929       status = target_write_partial (ops, object, annex,
1930 				     buf + xfered_total * unit_size,
1931 				     offset + xfered_total, len - xfered_total,
1932 				     &xfered_partial);
1933 
1934       if (status != TARGET_XFER_OK)
1935 	return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1936 
1937       if (progress)
1938 	(*progress) (xfered_partial, baton);
1939 
1940       xfered_total += xfered_partial;
1941       QUIT;
1942     }
1943   return len;
1944 }
1945 
1946 /* For docs on target_write see target.h.  */
1947 
1948 LONGEST
1949 target_write (struct target_ops *ops,
1950 	      enum target_object object,
1951 	      const char *annex, const gdb_byte *buf,
1952 	      ULONGEST offset, LONGEST len)
1953 {
1954   return target_write_with_progress (ops, object, annex, buf, offset, len,
1955 				     NULL, NULL);
1956 }
1957 
1958 /* Read OBJECT/ANNEX using OPS.  Store the result in *BUF_P and return
1959    the size of the transferred data.  PADDING additional bytes are
1960    available in *BUF_P.  This is a helper function for
1961    target_read_alloc; see the declaration of that function for more
1962    information.  */
1963 
1964 static LONGEST
1965 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1966 		     const char *annex, gdb_byte **buf_p, int padding)
1967 {
1968   size_t buf_alloc, buf_pos;
1969   gdb_byte *buf;
1970 
1971   /* This function does not have a length parameter; it reads the
1972      entire OBJECT).  Also, it doesn't support objects fetched partly
1973      from one target and partly from another (in a different stratum,
1974      e.g. a core file and an executable).  Both reasons make it
1975      unsuitable for reading memory.  */
1976   gdb_assert (object != TARGET_OBJECT_MEMORY);
1977 
1978   /* Start by reading up to 4K at a time.  The target will throttle
1979      this number down if necessary.  */
1980   buf_alloc = 4096;
1981   buf = (gdb_byte *) xmalloc (buf_alloc);
1982   buf_pos = 0;
1983   while (1)
1984     {
1985       ULONGEST xfered_len;
1986       enum target_xfer_status status;
1987 
1988       status = target_read_partial (ops, object, annex, &buf[buf_pos],
1989 				    buf_pos, buf_alloc - buf_pos - padding,
1990 				    &xfered_len);
1991 
1992       if (status == TARGET_XFER_EOF)
1993 	{
1994 	  /* Read all there was.  */
1995 	  if (buf_pos == 0)
1996 	    xfree (buf);
1997 	  else
1998 	    *buf_p = buf;
1999 	  return buf_pos;
2000 	}
2001       else if (status != TARGET_XFER_OK)
2002 	{
2003 	  /* An error occurred.  */
2004 	  xfree (buf);
2005 	  return TARGET_XFER_E_IO;
2006 	}
2007 
2008       buf_pos += xfered_len;
2009 
2010       /* If the buffer is filling up, expand it.  */
2011       if (buf_alloc < buf_pos * 2)
2012 	{
2013 	  buf_alloc *= 2;
2014 	  buf = (gdb_byte *) xrealloc (buf, buf_alloc);
2015 	}
2016 
2017       QUIT;
2018     }
2019 }
2020 
2021 /* Read OBJECT/ANNEX using OPS.  Store the result in *BUF_P and return
2022    the size of the transferred data.  See the declaration in "target.h"
2023    function for more information about the return value.  */
2024 
2025 LONGEST
2026 target_read_alloc (struct target_ops *ops, enum target_object object,
2027 		   const char *annex, gdb_byte **buf_p)
2028 {
2029   return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2030 }
2031 
2032 /* Read OBJECT/ANNEX using OPS.  The result is NUL-terminated and
2033    returned as a string, allocated using xmalloc.  If an error occurs
2034    or the transfer is unsupported, NULL is returned.  Empty objects
2035    are returned as allocated but empty strings.  A warning is issued
2036    if the result contains any embedded NUL bytes.  */
2037 
2038 char *
2039 target_read_stralloc (struct target_ops *ops, enum target_object object,
2040 		      const char *annex)
2041 {
2042   gdb_byte *buffer;
2043   char *bufstr;
2044   LONGEST i, transferred;
2045 
2046   transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2047   bufstr = (char *) buffer;
2048 
2049   if (transferred < 0)
2050     return NULL;
2051 
2052   if (transferred == 0)
2053     return xstrdup ("");
2054 
2055   bufstr[transferred] = 0;
2056 
2057   /* Check for embedded NUL bytes; but allow trailing NULs.  */
2058   for (i = strlen (bufstr); i < transferred; i++)
2059     if (bufstr[i] != 0)
2060       {
2061 	warning (_("target object %d, annex %s, "
2062 		   "contained unexpected null characters"),
2063 		 (int) object, annex ? annex : "(none)");
2064 	break;
2065       }
2066 
2067   return bufstr;
2068 }
2069 
2070 /* Memory transfer methods.  */
2071 
2072 void
2073 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2074 		   LONGEST len)
2075 {
2076   /* This method is used to read from an alternate, non-current
2077      target.  This read must bypass the overlay support (as symbols
2078      don't match this target), and GDB's internal cache (wrong cache
2079      for this target).  */
2080   if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2081       != len)
2082     memory_error (TARGET_XFER_E_IO, addr);
2083 }
2084 
2085 ULONGEST
2086 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2087 			    int len, enum bfd_endian byte_order)
2088 {
2089   gdb_byte buf[sizeof (ULONGEST)];
2090 
2091   gdb_assert (len <= sizeof (buf));
2092   get_target_memory (ops, addr, buf, len);
2093   return extract_unsigned_integer (buf, len, byte_order);
2094 }
2095 
2096 /* See target.h.  */
2097 
2098 int
2099 target_insert_breakpoint (struct gdbarch *gdbarch,
2100 			  struct bp_target_info *bp_tgt)
2101 {
2102   if (!may_insert_breakpoints)
2103     {
2104       warning (_("May not insert breakpoints"));
2105       return 1;
2106     }
2107 
2108   return current_target.to_insert_breakpoint (&current_target,
2109 					      gdbarch, bp_tgt);
2110 }
2111 
2112 /* See target.h.  */
2113 
2114 int
2115 target_remove_breakpoint (struct gdbarch *gdbarch,
2116 			  struct bp_target_info *bp_tgt,
2117 			  enum remove_bp_reason reason)
2118 {
2119   /* This is kind of a weird case to handle, but the permission might
2120      have been changed after breakpoints were inserted - in which case
2121      we should just take the user literally and assume that any
2122      breakpoints should be left in place.  */
2123   if (!may_insert_breakpoints)
2124     {
2125       warning (_("May not remove breakpoints"));
2126       return 1;
2127     }
2128 
2129   return current_target.to_remove_breakpoint (&current_target,
2130 					      gdbarch, bp_tgt, reason);
2131 }
2132 
2133 static void
2134 target_info (char *args, int from_tty)
2135 {
2136   struct target_ops *t;
2137   int has_all_mem = 0;
2138 
2139   if (symfile_objfile != NULL)
2140     printf_unfiltered (_("Symbols from \"%s\".\n"),
2141 		       objfile_name (symfile_objfile));
2142 
2143   for (t = target_stack; t != NULL; t = t->beneath)
2144     {
2145       if (!(*t->to_has_memory) (t))
2146 	continue;
2147 
2148       if ((int) (t->to_stratum) <= (int) dummy_stratum)
2149 	continue;
2150       if (has_all_mem)
2151 	printf_unfiltered (_("\tWhile running this, "
2152 			     "GDB does not access memory from...\n"));
2153       printf_unfiltered ("%s:\n", t->to_longname);
2154       (t->to_files_info) (t);
2155       has_all_mem = (*t->to_has_all_memory) (t);
2156     }
2157 }
2158 
2159 /* This function is called before any new inferior is created, e.g.
2160    by running a program, attaching, or connecting to a target.
2161    It cleans up any state from previous invocations which might
2162    change between runs.  This is a subset of what target_preopen
2163    resets (things which might change between targets).  */
2164 
2165 void
2166 target_pre_inferior (int from_tty)
2167 {
2168   /* Clear out solib state.  Otherwise the solib state of the previous
2169      inferior might have survived and is entirely wrong for the new
2170      target.  This has been observed on GNU/Linux using glibc 2.3.  How
2171      to reproduce:
2172 
2173      bash$ ./foo&
2174      [1] 4711
2175      bash$ ./foo&
2176      [1] 4712
2177      bash$ gdb ./foo
2178      [...]
2179      (gdb) attach 4711
2180      (gdb) detach
2181      (gdb) attach 4712
2182      Cannot access memory at address 0xdeadbeef
2183   */
2184 
2185   /* In some OSs, the shared library list is the same/global/shared
2186      across inferiors.  If code is shared between processes, so are
2187      memory regions and features.  */
2188   if (!gdbarch_has_global_solist (target_gdbarch ()))
2189     {
2190       no_shared_libraries (NULL, from_tty);
2191 
2192       invalidate_target_mem_regions ();
2193 
2194       target_clear_description ();
2195     }
2196 
2197   /* attach_flag may be set if the previous process associated with
2198      the inferior was attached to.  */
2199   current_inferior ()->attach_flag = 0;
2200 
2201   current_inferior ()->highest_thread_num = 0;
2202 
2203   agent_capability_invalidate ();
2204 }
2205 
2206 /* Callback for iterate_over_inferiors.  Gets rid of the given
2207    inferior.  */
2208 
2209 static int
2210 dispose_inferior (struct inferior *inf, void *args)
2211 {
2212   struct thread_info *thread;
2213 
2214   thread = any_thread_of_process (inf->pid);
2215   if (thread)
2216     {
2217       switch_to_thread (thread->ptid);
2218 
2219       /* Core inferiors actually should be detached, not killed.  */
2220       if (target_has_execution)
2221 	target_kill ();
2222       else
2223 	target_detach (NULL, 0);
2224     }
2225 
2226   return 0;
2227 }
2228 
2229 /* This is to be called by the open routine before it does
2230    anything.  */
2231 
2232 void
2233 target_preopen (int from_tty)
2234 {
2235   dont_repeat ();
2236 
2237   if (have_inferiors ())
2238     {
2239       if (!from_tty
2240 	  || !have_live_inferiors ()
2241 	  || query (_("A program is being debugged already.  Kill it? ")))
2242 	iterate_over_inferiors (dispose_inferior, NULL);
2243       else
2244 	error (_("Program not killed."));
2245     }
2246 
2247   /* Calling target_kill may remove the target from the stack.  But if
2248      it doesn't (which seems like a win for UDI), remove it now.  */
2249   /* Leave the exec target, though.  The user may be switching from a
2250      live process to a core of the same program.  */
2251   pop_all_targets_above (file_stratum);
2252 
2253   target_pre_inferior (from_tty);
2254 }
2255 
2256 /* Detach a target after doing deferred register stores.  */
2257 
2258 void
2259 target_detach (const char *args, int from_tty)
2260 {
2261   if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2262     /* Don't remove global breakpoints here.  They're removed on
2263        disconnection from the target.  */
2264     ;
2265   else
2266     /* If we're in breakpoints-always-inserted mode, have to remove
2267        them before detaching.  */
2268     remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2269 
2270   prepare_for_detach ();
2271 
2272   current_target.to_detach (&current_target, args, from_tty);
2273 }
2274 
2275 void
2276 target_disconnect (const char *args, int from_tty)
2277 {
2278   /* If we're in breakpoints-always-inserted mode or if breakpoints
2279      are global across processes, we have to remove them before
2280      disconnecting.  */
2281   remove_breakpoints ();
2282 
2283   current_target.to_disconnect (&current_target, args, from_tty);
2284 }
2285 
2286 ptid_t
2287 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2288 {
2289   return (current_target.to_wait) (&current_target, ptid, status, options);
2290 }
2291 
2292 /* See target.h.  */
2293 
2294 ptid_t
2295 default_target_wait (struct target_ops *ops,
2296 		     ptid_t ptid, struct target_waitstatus *status,
2297 		     int options)
2298 {
2299   status->kind = TARGET_WAITKIND_IGNORE;
2300   return minus_one_ptid;
2301 }
2302 
2303 char *
2304 target_pid_to_str (ptid_t ptid)
2305 {
2306   return (*current_target.to_pid_to_str) (&current_target, ptid);
2307 }
2308 
2309 const char *
2310 target_thread_name (struct thread_info *info)
2311 {
2312   return current_target.to_thread_name (&current_target, info);
2313 }
2314 
2315 void
2316 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2317 {
2318   target_dcache_invalidate ();
2319 
2320   current_target.to_resume (&current_target, ptid, step, signal);
2321 
2322   registers_changed_ptid (ptid);
2323   /* We only set the internal executing state here.  The user/frontend
2324      running state is set at a higher level.  */
2325   set_executing (ptid, 1);
2326   clear_inline_frame_state (ptid);
2327 }
2328 
2329 void
2330 target_pass_signals (int numsigs, unsigned char *pass_signals)
2331 {
2332   (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2333 }
2334 
2335 void
2336 target_program_signals (int numsigs, unsigned char *program_signals)
2337 {
2338   (*current_target.to_program_signals) (&current_target,
2339 					numsigs, program_signals);
2340 }
2341 
2342 static int
2343 default_follow_fork (struct target_ops *self, int follow_child,
2344 		     int detach_fork)
2345 {
2346   /* Some target returned a fork event, but did not know how to follow it.  */
2347   internal_error (__FILE__, __LINE__,
2348 		  _("could not find a target to follow fork"));
2349 }
2350 
2351 /* Look through the list of possible targets for a target that can
2352    follow forks.  */
2353 
2354 int
2355 target_follow_fork (int follow_child, int detach_fork)
2356 {
2357   return current_target.to_follow_fork (&current_target,
2358 					follow_child, detach_fork);
2359 }
2360 
2361 /* Target wrapper for follow exec hook.  */
2362 
2363 void
2364 target_follow_exec (struct inferior *inf, char *execd_pathname)
2365 {
2366   current_target.to_follow_exec (&current_target, inf, execd_pathname);
2367 }
2368 
2369 static void
2370 default_mourn_inferior (struct target_ops *self)
2371 {
2372   internal_error (__FILE__, __LINE__,
2373 		  _("could not find a target to follow mourn inferior"));
2374 }
2375 
2376 void
2377 target_mourn_inferior (void)
2378 {
2379   current_target.to_mourn_inferior (&current_target);
2380 
2381   /* We no longer need to keep handles on any of the object files.
2382      Make sure to release them to avoid unnecessarily locking any
2383      of them while we're not actually debugging.  */
2384   bfd_cache_close_all ();
2385 }
2386 
2387 /* Look for a target which can describe architectural features, starting
2388    from TARGET.  If we find one, return its description.  */
2389 
2390 const struct target_desc *
2391 target_read_description (struct target_ops *target)
2392 {
2393   return target->to_read_description (target);
2394 }
2395 
2396 /* This implements a basic search of memory, reading target memory and
2397    performing the search here (as opposed to performing the search in on the
2398    target side with, for example, gdbserver).  */
2399 
2400 int
2401 simple_search_memory (struct target_ops *ops,
2402 		      CORE_ADDR start_addr, ULONGEST search_space_len,
2403 		      const gdb_byte *pattern, ULONGEST pattern_len,
2404 		      CORE_ADDR *found_addrp)
2405 {
2406   /* NOTE: also defined in find.c testcase.  */
2407 #define SEARCH_CHUNK_SIZE 16000
2408   const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2409   /* Buffer to hold memory contents for searching.  */
2410   gdb_byte *search_buf;
2411   unsigned search_buf_size;
2412   struct cleanup *old_cleanups;
2413 
2414   search_buf_size = chunk_size + pattern_len - 1;
2415 
2416   /* No point in trying to allocate a buffer larger than the search space.  */
2417   if (search_space_len < search_buf_size)
2418     search_buf_size = search_space_len;
2419 
2420   search_buf = (gdb_byte *) malloc (search_buf_size);
2421   if (search_buf == NULL)
2422     error (_("Unable to allocate memory to perform the search."));
2423   old_cleanups = make_cleanup (free_current_contents, &search_buf);
2424 
2425   /* Prime the search buffer.  */
2426 
2427   if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2428 		   search_buf, start_addr, search_buf_size) != search_buf_size)
2429     {
2430       warning (_("Unable to access %s bytes of target "
2431 		 "memory at %s, halting search."),
2432 	       pulongest (search_buf_size), hex_string (start_addr));
2433       do_cleanups (old_cleanups);
2434       return -1;
2435     }
2436 
2437   /* Perform the search.
2438 
2439      The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2440      When we've scanned N bytes we copy the trailing bytes to the start and
2441      read in another N bytes.  */
2442 
2443   while (search_space_len >= pattern_len)
2444     {
2445       gdb_byte *found_ptr;
2446       unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2447 
2448       found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2449 				       pattern, pattern_len);
2450 
2451       if (found_ptr != NULL)
2452 	{
2453 	  CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2454 
2455 	  *found_addrp = found_addr;
2456 	  do_cleanups (old_cleanups);
2457 	  return 1;
2458 	}
2459 
2460       /* Not found in this chunk, skip to next chunk.  */
2461 
2462       /* Don't let search_space_len wrap here, it's unsigned.  */
2463       if (search_space_len >= chunk_size)
2464 	search_space_len -= chunk_size;
2465       else
2466 	search_space_len = 0;
2467 
2468       if (search_space_len >= pattern_len)
2469 	{
2470 	  unsigned keep_len = search_buf_size - chunk_size;
2471 	  CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2472 	  int nr_to_read;
2473 
2474 	  /* Copy the trailing part of the previous iteration to the front
2475 	     of the buffer for the next iteration.  */
2476 	  gdb_assert (keep_len == pattern_len - 1);
2477 	  memcpy (search_buf, search_buf + chunk_size, keep_len);
2478 
2479 	  nr_to_read = min (search_space_len - keep_len, chunk_size);
2480 
2481 	  if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2482 			   search_buf + keep_len, read_addr,
2483 			   nr_to_read) != nr_to_read)
2484 	    {
2485 	      warning (_("Unable to access %s bytes of target "
2486 			 "memory at %s, halting search."),
2487 		       plongest (nr_to_read),
2488 		       hex_string (read_addr));
2489 	      do_cleanups (old_cleanups);
2490 	      return -1;
2491 	    }
2492 
2493 	  start_addr += chunk_size;
2494 	}
2495     }
2496 
2497   /* Not found.  */
2498 
2499   do_cleanups (old_cleanups);
2500   return 0;
2501 }
2502 
2503 /* Default implementation of memory-searching.  */
2504 
2505 static int
2506 default_search_memory (struct target_ops *self,
2507 		       CORE_ADDR start_addr, ULONGEST search_space_len,
2508 		       const gdb_byte *pattern, ULONGEST pattern_len,
2509 		       CORE_ADDR *found_addrp)
2510 {
2511   /* Start over from the top of the target stack.  */
2512   return simple_search_memory (current_target.beneath,
2513 			       start_addr, search_space_len,
2514 			       pattern, pattern_len, found_addrp);
2515 }
2516 
2517 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2518    sequence of bytes in PATTERN with length PATTERN_LEN.
2519 
2520    The result is 1 if found, 0 if not found, and -1 if there was an error
2521    requiring halting of the search (e.g. memory read error).
2522    If the pattern is found the address is recorded in FOUND_ADDRP.  */
2523 
2524 int
2525 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2526 		      const gdb_byte *pattern, ULONGEST pattern_len,
2527 		      CORE_ADDR *found_addrp)
2528 {
2529   return current_target.to_search_memory (&current_target, start_addr,
2530 					  search_space_len,
2531 					  pattern, pattern_len, found_addrp);
2532 }
2533 
2534 /* Look through the currently pushed targets.  If none of them will
2535    be able to restart the currently running process, issue an error
2536    message.  */
2537 
2538 void
2539 target_require_runnable (void)
2540 {
2541   struct target_ops *t;
2542 
2543   for (t = target_stack; t != NULL; t = t->beneath)
2544     {
2545       /* If this target knows how to create a new program, then
2546 	 assume we will still be able to after killing the current
2547 	 one.  Either killing and mourning will not pop T, or else
2548 	 find_default_run_target will find it again.  */
2549       if (t->to_create_inferior != NULL)
2550 	return;
2551 
2552       /* Do not worry about targets at certain strata that can not
2553 	 create inferiors.  Assume they will be pushed again if
2554 	 necessary, and continue to the process_stratum.  */
2555       if (t->to_stratum == thread_stratum
2556 	  || t->to_stratum == record_stratum
2557 	  || t->to_stratum == arch_stratum)
2558 	continue;
2559 
2560       error (_("The \"%s\" target does not support \"run\".  "
2561 	       "Try \"help target\" or \"continue\"."),
2562 	     t->to_shortname);
2563     }
2564 
2565   /* This function is only called if the target is running.  In that
2566      case there should have been a process_stratum target and it
2567      should either know how to create inferiors, or not...  */
2568   internal_error (__FILE__, __LINE__, _("No targets found"));
2569 }
2570 
2571 /* Whether GDB is allowed to fall back to the default run target for
2572    "run", "attach", etc. when no target is connected yet.  */
2573 static int auto_connect_native_target = 1;
2574 
2575 static void
2576 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2577 				 struct cmd_list_element *c, const char *value)
2578 {
2579   fprintf_filtered (file,
2580 		    _("Whether GDB may automatically connect to the "
2581 		      "native target is %s.\n"),
2582 		    value);
2583 }
2584 
2585 /* Look through the list of possible targets for a target that can
2586    execute a run or attach command without any other data.  This is
2587    used to locate the default process stratum.
2588 
2589    If DO_MESG is not NULL, the result is always valid (error() is
2590    called for errors); else, return NULL on error.  */
2591 
2592 static struct target_ops *
2593 find_default_run_target (char *do_mesg)
2594 {
2595   struct target_ops *runable = NULL;
2596 
2597   if (auto_connect_native_target)
2598     {
2599       struct target_ops *t;
2600       int count = 0;
2601       int i;
2602 
2603       for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2604 	{
2605 	  if (t->to_can_run != delegate_can_run && target_can_run (t))
2606 	    {
2607 	      runable = t;
2608 	      ++count;
2609 	    }
2610 	}
2611 
2612       if (count != 1)
2613 	runable = NULL;
2614     }
2615 
2616   if (runable == NULL)
2617     {
2618       if (do_mesg)
2619 	error (_("Don't know how to %s.  Try \"help target\"."), do_mesg);
2620       else
2621 	return NULL;
2622     }
2623 
2624   return runable;
2625 }
2626 
2627 /* See target.h.  */
2628 
2629 struct target_ops *
2630 find_attach_target (void)
2631 {
2632   struct target_ops *t;
2633 
2634   /* If a target on the current stack can attach, use it.  */
2635   for (t = current_target.beneath; t != NULL; t = t->beneath)
2636     {
2637       if (t->to_attach != NULL)
2638 	break;
2639     }
2640 
2641   /* Otherwise, use the default run target for attaching.  */
2642   if (t == NULL)
2643     t = find_default_run_target ("attach");
2644 
2645   return t;
2646 }
2647 
2648 /* See target.h.  */
2649 
2650 struct target_ops *
2651 find_run_target (void)
2652 {
2653   struct target_ops *t;
2654 
2655   /* If a target on the current stack can attach, use it.  */
2656   for (t = current_target.beneath; t != NULL; t = t->beneath)
2657     {
2658       if (t->to_create_inferior != NULL)
2659 	break;
2660     }
2661 
2662   /* Otherwise, use the default run target.  */
2663   if (t == NULL)
2664     t = find_default_run_target ("run");
2665 
2666   return t;
2667 }
2668 
2669 /* Implement the "info proc" command.  */
2670 
2671 int
2672 target_info_proc (const char *args, enum info_proc_what what)
2673 {
2674   struct target_ops *t;
2675 
2676   /* If we're already connected to something that can get us OS
2677      related data, use it.  Otherwise, try using the native
2678      target.  */
2679   if (current_target.to_stratum >= process_stratum)
2680     t = current_target.beneath;
2681   else
2682     t = find_default_run_target (NULL);
2683 
2684   for (; t != NULL; t = t->beneath)
2685     {
2686       if (t->to_info_proc != NULL)
2687 	{
2688 	  t->to_info_proc (t, args, what);
2689 
2690 	  if (targetdebug)
2691 	    fprintf_unfiltered (gdb_stdlog,
2692 				"target_info_proc (\"%s\", %d)\n", args, what);
2693 
2694 	  return 1;
2695 	}
2696     }
2697 
2698   return 0;
2699 }
2700 
2701 static int
2702 find_default_supports_disable_randomization (struct target_ops *self)
2703 {
2704   struct target_ops *t;
2705 
2706   t = find_default_run_target (NULL);
2707   if (t && t->to_supports_disable_randomization)
2708     return (t->to_supports_disable_randomization) (t);
2709   return 0;
2710 }
2711 
2712 int
2713 target_supports_disable_randomization (void)
2714 {
2715   struct target_ops *t;
2716 
2717   for (t = &current_target; t != NULL; t = t->beneath)
2718     if (t->to_supports_disable_randomization)
2719       return t->to_supports_disable_randomization (t);
2720 
2721   return 0;
2722 }
2723 
2724 char *
2725 target_get_osdata (const char *type)
2726 {
2727   struct target_ops *t;
2728 
2729   /* If we're already connected to something that can get us OS
2730      related data, use it.  Otherwise, try using the native
2731      target.  */
2732   if (current_target.to_stratum >= process_stratum)
2733     t = current_target.beneath;
2734   else
2735     t = find_default_run_target ("get OS data");
2736 
2737   if (!t)
2738     return NULL;
2739 
2740   return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2741 }
2742 
2743 static struct address_space *
2744 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2745 {
2746   struct inferior *inf;
2747 
2748   /* Fall-back to the "main" address space of the inferior.  */
2749   inf = find_inferior_ptid (ptid);
2750 
2751   if (inf == NULL || inf->aspace == NULL)
2752     internal_error (__FILE__, __LINE__,
2753 		    _("Can't determine the current "
2754 		      "address space of thread %s\n"),
2755 		    target_pid_to_str (ptid));
2756 
2757   return inf->aspace;
2758 }
2759 
2760 /* Determine the current address space of thread PTID.  */
2761 
2762 struct address_space *
2763 target_thread_address_space (ptid_t ptid)
2764 {
2765   struct address_space *aspace;
2766 
2767   aspace = current_target.to_thread_address_space (&current_target, ptid);
2768   gdb_assert (aspace != NULL);
2769 
2770   return aspace;
2771 }
2772 
2773 
2774 /* Target file operations.  */
2775 
2776 static struct target_ops *
2777 default_fileio_target (void)
2778 {
2779   /* If we're already connected to something that can perform
2780      file I/O, use it. Otherwise, try using the native target.  */
2781   if (current_target.to_stratum >= process_stratum)
2782     return current_target.beneath;
2783   else
2784     return find_default_run_target ("file I/O");
2785 }
2786 
2787 /* File handle for target file operations.  */
2788 
2789 typedef struct
2790 {
2791   /* The target on which this file is open.  */
2792   struct target_ops *t;
2793 
2794   /* The file descriptor on the target.  */
2795   int fd;
2796 } fileio_fh_t;
2797 
2798 DEF_VEC_O (fileio_fh_t);
2799 
2800 /* Vector of currently open file handles.  The value returned by
2801    target_fileio_open and passed as the FD argument to other
2802    target_fileio_* functions is an index into this vector.  This
2803    vector's entries are never freed; instead, files are marked as
2804    closed, and the handle becomes available for reuse.  */
2805 static VEC (fileio_fh_t) *fileio_fhandles;
2806 
2807 /* Macro to check whether a fileio_fh_t represents a closed file.  */
2808 #define is_closed_fileio_fh(fd) ((fd) < 0)
2809 
2810 /* Index into fileio_fhandles of the lowest handle that might be
2811    closed.  This permits handle reuse without searching the whole
2812    list each time a new file is opened.  */
2813 static int lowest_closed_fd;
2814 
2815 /* Acquire a target fileio file descriptor.  */
2816 
2817 static int
2818 acquire_fileio_fd (struct target_ops *t, int fd)
2819 {
2820   fileio_fh_t *fh;
2821 
2822   gdb_assert (!is_closed_fileio_fh (fd));
2823 
2824   /* Search for closed handles to reuse.  */
2825   for (;
2826        VEC_iterate (fileio_fh_t, fileio_fhandles,
2827                     lowest_closed_fd, fh);
2828        lowest_closed_fd++)
2829     if (is_closed_fileio_fh (fh->fd))
2830       break;
2831 
2832   /* Push a new handle if no closed handles were found.  */
2833   if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2834     fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2835 
2836   /* Fill in the handle.  */
2837   fh->t = t;
2838   fh->fd = fd;
2839 
2840   /* Return its index, and start the next lookup at
2841      the next index.  */
2842   return lowest_closed_fd++;
2843 }
2844 
2845 /* Release a target fileio file descriptor.  */
2846 
2847 static void
2848 release_fileio_fd (int fd, fileio_fh_t *fh)
2849 {
2850   fh->fd = -1;
2851   lowest_closed_fd = min (lowest_closed_fd, fd);
2852 }
2853 
2854 /* Return a pointer to the fileio_fhandle_t corresponding to FD.  */
2855 
2856 #define fileio_fd_to_fh(fd) \
2857   VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2858 
2859 /* Helper for target_fileio_open and
2860    target_fileio_open_warn_if_slow.  */
2861 
2862 static int
2863 target_fileio_open_1 (struct inferior *inf, const char *filename,
2864 		      int flags, int mode, int warn_if_slow,
2865 		      int *target_errno)
2866 {
2867   struct target_ops *t;
2868 
2869   for (t = default_fileio_target (); t != NULL; t = t->beneath)
2870     {
2871       if (t->to_fileio_open != NULL)
2872 	{
2873 	  int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2874 				      warn_if_slow, target_errno);
2875 
2876 	  if (fd < 0)
2877 	    fd = -1;
2878 	  else
2879 	    fd = acquire_fileio_fd (t, fd);
2880 
2881 	  if (targetdebug)
2882 	    fprintf_unfiltered (gdb_stdlog,
2883 				"target_fileio_open (%d,%s,0x%x,0%o,%d)"
2884 				" = %d (%d)\n",
2885 				inf == NULL ? 0 : inf->num,
2886 				filename, flags, mode,
2887 				warn_if_slow, fd,
2888 				fd != -1 ? 0 : *target_errno);
2889 	  return fd;
2890 	}
2891     }
2892 
2893   *target_errno = FILEIO_ENOSYS;
2894   return -1;
2895 }
2896 
2897 /* See target.h.  */
2898 
2899 int
2900 target_fileio_open (struct inferior *inf, const char *filename,
2901 		    int flags, int mode, int *target_errno)
2902 {
2903   return target_fileio_open_1 (inf, filename, flags, mode, 0,
2904 			       target_errno);
2905 }
2906 
2907 /* See target.h.  */
2908 
2909 int
2910 target_fileio_open_warn_if_slow (struct inferior *inf,
2911 				 const char *filename,
2912 				 int flags, int mode, int *target_errno)
2913 {
2914   return target_fileio_open_1 (inf, filename, flags, mode, 1,
2915 			       target_errno);
2916 }
2917 
2918 /* See target.h.  */
2919 
2920 int
2921 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2922 		      ULONGEST offset, int *target_errno)
2923 {
2924   fileio_fh_t *fh = fileio_fd_to_fh (fd);
2925   int ret = -1;
2926 
2927   if (is_closed_fileio_fh (fh->fd))
2928     *target_errno = EBADF;
2929   else
2930     ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2931 				   len, offset, target_errno);
2932 
2933   if (targetdebug)
2934     fprintf_unfiltered (gdb_stdlog,
2935 			"target_fileio_pwrite (%d,...,%d,%s) "
2936 			"= %d (%d)\n",
2937 			fd, len, pulongest (offset),
2938 			ret, ret != -1 ? 0 : *target_errno);
2939   return ret;
2940 }
2941 
2942 /* See target.h.  */
2943 
2944 int
2945 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2946 		     ULONGEST offset, int *target_errno)
2947 {
2948   fileio_fh_t *fh = fileio_fd_to_fh (fd);
2949   int ret = -1;
2950 
2951   if (is_closed_fileio_fh (fh->fd))
2952     *target_errno = EBADF;
2953   else
2954     ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2955 				  len, offset, target_errno);
2956 
2957   if (targetdebug)
2958     fprintf_unfiltered (gdb_stdlog,
2959 			"target_fileio_pread (%d,...,%d,%s) "
2960 			"= %d (%d)\n",
2961 			fd, len, pulongest (offset),
2962 			ret, ret != -1 ? 0 : *target_errno);
2963   return ret;
2964 }
2965 
2966 /* See target.h.  */
2967 
2968 int
2969 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2970 {
2971   fileio_fh_t *fh = fileio_fd_to_fh (fd);
2972   int ret = -1;
2973 
2974   if (is_closed_fileio_fh (fh->fd))
2975     *target_errno = EBADF;
2976   else
2977     ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2978 
2979   if (targetdebug)
2980     fprintf_unfiltered (gdb_stdlog,
2981 			"target_fileio_fstat (%d) = %d (%d)\n",
2982 			fd, ret, ret != -1 ? 0 : *target_errno);
2983   return ret;
2984 }
2985 
2986 /* See target.h.  */
2987 
2988 int
2989 target_fileio_close (int fd, int *target_errno)
2990 {
2991   fileio_fh_t *fh = fileio_fd_to_fh (fd);
2992   int ret = -1;
2993 
2994   if (is_closed_fileio_fh (fh->fd))
2995     *target_errno = EBADF;
2996   else
2997     {
2998       ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2999       release_fileio_fd (fd, fh);
3000     }
3001 
3002   if (targetdebug)
3003     fprintf_unfiltered (gdb_stdlog,
3004 			"target_fileio_close (%d) = %d (%d)\n",
3005 			fd, ret, ret != -1 ? 0 : *target_errno);
3006   return ret;
3007 }
3008 
3009 /* See target.h.  */
3010 
3011 int
3012 target_fileio_unlink (struct inferior *inf, const char *filename,
3013 		      int *target_errno)
3014 {
3015   struct target_ops *t;
3016 
3017   for (t = default_fileio_target (); t != NULL; t = t->beneath)
3018     {
3019       if (t->to_fileio_unlink != NULL)
3020 	{
3021 	  int ret = t->to_fileio_unlink (t, inf, filename,
3022 					 target_errno);
3023 
3024 	  if (targetdebug)
3025 	    fprintf_unfiltered (gdb_stdlog,
3026 				"target_fileio_unlink (%d,%s)"
3027 				" = %d (%d)\n",
3028 				inf == NULL ? 0 : inf->num, filename,
3029 				ret, ret != -1 ? 0 : *target_errno);
3030 	  return ret;
3031 	}
3032     }
3033 
3034   *target_errno = FILEIO_ENOSYS;
3035   return -1;
3036 }
3037 
3038 /* See target.h.  */
3039 
3040 char *
3041 target_fileio_readlink (struct inferior *inf, const char *filename,
3042 			int *target_errno)
3043 {
3044   struct target_ops *t;
3045 
3046   for (t = default_fileio_target (); t != NULL; t = t->beneath)
3047     {
3048       if (t->to_fileio_readlink != NULL)
3049 	{
3050 	  char *ret = t->to_fileio_readlink (t, inf, filename,
3051 					     target_errno);
3052 
3053 	  if (targetdebug)
3054 	    fprintf_unfiltered (gdb_stdlog,
3055 				"target_fileio_readlink (%d,%s)"
3056 				" = %s (%d)\n",
3057 				inf == NULL ? 0 : inf->num,
3058 				filename, ret? ret : "(nil)",
3059 				ret? 0 : *target_errno);
3060 	  return ret;
3061 	}
3062     }
3063 
3064   *target_errno = FILEIO_ENOSYS;
3065   return NULL;
3066 }
3067 
3068 static void
3069 target_fileio_close_cleanup (void *opaque)
3070 {
3071   int fd = *(int *) opaque;
3072   int target_errno;
3073 
3074   target_fileio_close (fd, &target_errno);
3075 }
3076 
3077 /* Read target file FILENAME, in the filesystem as seen by INF.  If
3078    INF is NULL, use the filesystem seen by the debugger (GDB or, for
3079    remote targets, the remote stub).  Store the result in *BUF_P and
3080    return the size of the transferred data.  PADDING additional bytes
3081    are available in *BUF_P.  This is a helper function for
3082    target_fileio_read_alloc; see the declaration of that function for
3083    more information.  */
3084 
3085 static LONGEST
3086 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3087 			    gdb_byte **buf_p, int padding)
3088 {
3089   struct cleanup *close_cleanup;
3090   size_t buf_alloc, buf_pos;
3091   gdb_byte *buf;
3092   LONGEST n;
3093   int fd;
3094   int target_errno;
3095 
3096   fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3097 			   &target_errno);
3098   if (fd == -1)
3099     return -1;
3100 
3101   close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3102 
3103   /* Start by reading up to 4K at a time.  The target will throttle
3104      this number down if necessary.  */
3105   buf_alloc = 4096;
3106   buf = (gdb_byte *) xmalloc (buf_alloc);
3107   buf_pos = 0;
3108   while (1)
3109     {
3110       n = target_fileio_pread (fd, &buf[buf_pos],
3111 			       buf_alloc - buf_pos - padding, buf_pos,
3112 			       &target_errno);
3113       if (n < 0)
3114 	{
3115 	  /* An error occurred.  */
3116 	  do_cleanups (close_cleanup);
3117 	  xfree (buf);
3118 	  return -1;
3119 	}
3120       else if (n == 0)
3121 	{
3122 	  /* Read all there was.  */
3123 	  do_cleanups (close_cleanup);
3124 	  if (buf_pos == 0)
3125 	    xfree (buf);
3126 	  else
3127 	    *buf_p = buf;
3128 	  return buf_pos;
3129 	}
3130 
3131       buf_pos += n;
3132 
3133       /* If the buffer is filling up, expand it.  */
3134       if (buf_alloc < buf_pos * 2)
3135 	{
3136 	  buf_alloc *= 2;
3137 	  buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3138 	}
3139 
3140       QUIT;
3141     }
3142 }
3143 
3144 /* See target.h.  */
3145 
3146 LONGEST
3147 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3148 			  gdb_byte **buf_p)
3149 {
3150   return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3151 }
3152 
3153 /* See target.h.  */
3154 
3155 char *
3156 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3157 {
3158   gdb_byte *buffer;
3159   char *bufstr;
3160   LONGEST i, transferred;
3161 
3162   transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3163   bufstr = (char *) buffer;
3164 
3165   if (transferred < 0)
3166     return NULL;
3167 
3168   if (transferred == 0)
3169     return xstrdup ("");
3170 
3171   bufstr[transferred] = 0;
3172 
3173   /* Check for embedded NUL bytes; but allow trailing NULs.  */
3174   for (i = strlen (bufstr); i < transferred; i++)
3175     if (bufstr[i] != 0)
3176       {
3177 	warning (_("target file %s "
3178 		   "contained unexpected null characters"),
3179 		 filename);
3180 	break;
3181       }
3182 
3183   return bufstr;
3184 }
3185 
3186 
3187 static int
3188 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3189 				     CORE_ADDR addr, int len)
3190 {
3191   return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3192 }
3193 
3194 static int
3195 default_watchpoint_addr_within_range (struct target_ops *target,
3196 				      CORE_ADDR addr,
3197 				      CORE_ADDR start, int length)
3198 {
3199   return addr >= start && addr < start + length;
3200 }
3201 
3202 static struct gdbarch *
3203 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3204 {
3205   return target_gdbarch ();
3206 }
3207 
3208 static int
3209 return_zero (struct target_ops *ignore)
3210 {
3211   return 0;
3212 }
3213 
3214 static int
3215 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3216 {
3217   return 0;
3218 }
3219 
3220 /*
3221  * Find the next target down the stack from the specified target.
3222  */
3223 
3224 struct target_ops *
3225 find_target_beneath (struct target_ops *t)
3226 {
3227   return t->beneath;
3228 }
3229 
3230 /* See target.h.  */
3231 
3232 struct target_ops *
3233 find_target_at (enum strata stratum)
3234 {
3235   struct target_ops *t;
3236 
3237   for (t = current_target.beneath; t != NULL; t = t->beneath)
3238     if (t->to_stratum == stratum)
3239       return t;
3240 
3241   return NULL;
3242 }
3243 
3244 
3245 
3246 /* See target.h  */
3247 
3248 void
3249 target_announce_detach (int from_tty)
3250 {
3251   pid_t pid;
3252   char *exec_file;
3253 
3254   if (!from_tty)
3255     return;
3256 
3257   exec_file = get_exec_file (0);
3258   if (exec_file == NULL)
3259     exec_file = "";
3260 
3261   pid = ptid_get_pid (inferior_ptid);
3262   printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3263 		     target_pid_to_str (pid_to_ptid (pid)));
3264   gdb_flush (gdb_stdout);
3265 }
3266 
3267 /* The inferior process has died.  Long live the inferior!  */
3268 
3269 void
3270 generic_mourn_inferior (void)
3271 {
3272   ptid_t ptid;
3273 
3274   ptid = inferior_ptid;
3275   inferior_ptid = null_ptid;
3276 
3277   /* Mark breakpoints uninserted in case something tries to delete a
3278      breakpoint while we delete the inferior's threads (which would
3279      fail, since the inferior is long gone).  */
3280   mark_breakpoints_out ();
3281 
3282   if (!ptid_equal (ptid, null_ptid))
3283     {
3284       int pid = ptid_get_pid (ptid);
3285       exit_inferior (pid);
3286     }
3287 
3288   /* Note this wipes step-resume breakpoints, so needs to be done
3289      after exit_inferior, which ends up referencing the step-resume
3290      breakpoints through clear_thread_inferior_resources.  */
3291   breakpoint_init_inferior (inf_exited);
3292 
3293   registers_changed ();
3294 
3295   reopen_exec_file ();
3296   reinit_frame_cache ();
3297 
3298   if (deprecated_detach_hook)
3299     deprecated_detach_hook ();
3300 }
3301 
3302 /* Convert a normal process ID to a string.  Returns the string in a
3303    static buffer.  */
3304 
3305 char *
3306 normal_pid_to_str (ptid_t ptid)
3307 {
3308   static char buf[32];
3309 
3310   xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3311   return buf;
3312 }
3313 
3314 static char *
3315 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3316 {
3317   return normal_pid_to_str (ptid);
3318 }
3319 
3320 /* Error-catcher for target_find_memory_regions.  */
3321 static int
3322 dummy_find_memory_regions (struct target_ops *self,
3323 			   find_memory_region_ftype ignore1, void *ignore2)
3324 {
3325   error (_("Command not implemented for this target."));
3326   return 0;
3327 }
3328 
3329 /* Error-catcher for target_make_corefile_notes.  */
3330 static char *
3331 dummy_make_corefile_notes (struct target_ops *self,
3332 			   bfd *ignore1, int *ignore2)
3333 {
3334   error (_("Command not implemented for this target."));
3335   return NULL;
3336 }
3337 
3338 /* Set up the handful of non-empty slots needed by the dummy target
3339    vector.  */
3340 
3341 static void
3342 init_dummy_target (void)
3343 {
3344   dummy_target.to_shortname = "None";
3345   dummy_target.to_longname = "None";
3346   dummy_target.to_doc = "";
3347   dummy_target.to_supports_disable_randomization
3348     = find_default_supports_disable_randomization;
3349   dummy_target.to_stratum = dummy_stratum;
3350   dummy_target.to_has_all_memory = return_zero;
3351   dummy_target.to_has_memory = return_zero;
3352   dummy_target.to_has_stack = return_zero;
3353   dummy_target.to_has_registers = return_zero;
3354   dummy_target.to_has_execution = return_zero_has_execution;
3355   dummy_target.to_magic = OPS_MAGIC;
3356 
3357   install_dummy_methods (&dummy_target);
3358 }
3359 
3360 
3361 void
3362 target_close (struct target_ops *targ)
3363 {
3364   gdb_assert (!target_is_pushed (targ));
3365 
3366   if (targ->to_xclose != NULL)
3367     targ->to_xclose (targ);
3368   else if (targ->to_close != NULL)
3369     targ->to_close (targ);
3370 
3371   if (targetdebug)
3372     fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3373 }
3374 
3375 int
3376 target_thread_alive (ptid_t ptid)
3377 {
3378   return current_target.to_thread_alive (&current_target, ptid);
3379 }
3380 
3381 void
3382 target_update_thread_list (void)
3383 {
3384   current_target.to_update_thread_list (&current_target);
3385 }
3386 
3387 void
3388 target_stop (ptid_t ptid)
3389 {
3390   if (!may_stop)
3391     {
3392       warning (_("May not interrupt or stop the target, ignoring attempt"));
3393       return;
3394     }
3395 
3396   (*current_target.to_stop) (&current_target, ptid);
3397 }
3398 
3399 void
3400 target_interrupt (ptid_t ptid)
3401 {
3402   if (!may_stop)
3403     {
3404       warning (_("May not interrupt or stop the target, ignoring attempt"));
3405       return;
3406     }
3407 
3408   (*current_target.to_interrupt) (&current_target, ptid);
3409 }
3410 
3411 /* See target.h.  */
3412 
3413 void
3414 target_pass_ctrlc (void)
3415 {
3416   (*current_target.to_pass_ctrlc) (&current_target);
3417 }
3418 
3419 /* See target.h.  */
3420 
3421 void
3422 default_target_pass_ctrlc (struct target_ops *ops)
3423 {
3424   target_interrupt (inferior_ptid);
3425 }
3426 
3427 /* See target/target.h.  */
3428 
3429 void
3430 target_stop_and_wait (ptid_t ptid)
3431 {
3432   struct target_waitstatus status;
3433   int was_non_stop = non_stop;
3434 
3435   non_stop = 1;
3436   target_stop (ptid);
3437 
3438   memset (&status, 0, sizeof (status));
3439   target_wait (ptid, &status, 0);
3440 
3441   non_stop = was_non_stop;
3442 }
3443 
3444 /* See target/target.h.  */
3445 
3446 void
3447 target_continue_no_signal (ptid_t ptid)
3448 {
3449   target_resume (ptid, 0, GDB_SIGNAL_0);
3450 }
3451 
3452 /* Concatenate ELEM to LIST, a comma separate list, and return the
3453    result.  The LIST incoming argument is released.  */
3454 
3455 static char *
3456 str_comma_list_concat_elem (char *list, const char *elem)
3457 {
3458   if (list == NULL)
3459     return xstrdup (elem);
3460   else
3461     return reconcat (list, list, ", ", elem, (char *) NULL);
3462 }
3463 
3464 /* Helper for target_options_to_string.  If OPT is present in
3465    TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3466    Returns the new resulting string.  OPT is removed from
3467    TARGET_OPTIONS.  */
3468 
3469 static char *
3470 do_option (int *target_options, char *ret,
3471 	   int opt, char *opt_str)
3472 {
3473   if ((*target_options & opt) != 0)
3474     {
3475       ret = str_comma_list_concat_elem (ret, opt_str);
3476       *target_options &= ~opt;
3477     }
3478 
3479   return ret;
3480 }
3481 
3482 char *
3483 target_options_to_string (int target_options)
3484 {
3485   char *ret = NULL;
3486 
3487 #define DO_TARG_OPTION(OPT) \
3488   ret = do_option (&target_options, ret, OPT, #OPT)
3489 
3490   DO_TARG_OPTION (TARGET_WNOHANG);
3491 
3492   if (target_options != 0)
3493     ret = str_comma_list_concat_elem (ret, "unknown???");
3494 
3495   if (ret == NULL)
3496     ret = xstrdup ("");
3497   return ret;
3498 }
3499 
3500 static void
3501 debug_print_register (const char * func,
3502 		      struct regcache *regcache, int regno)
3503 {
3504   struct gdbarch *gdbarch = get_regcache_arch (regcache);
3505 
3506   fprintf_unfiltered (gdb_stdlog, "%s ", func);
3507   if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3508       && gdbarch_register_name (gdbarch, regno) != NULL
3509       && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3510     fprintf_unfiltered (gdb_stdlog, "(%s)",
3511 			gdbarch_register_name (gdbarch, regno));
3512   else
3513     fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3514   if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3515     {
3516       enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3517       int i, size = register_size (gdbarch, regno);
3518       gdb_byte buf[MAX_REGISTER_SIZE];
3519 
3520       regcache_raw_collect (regcache, regno, buf);
3521       fprintf_unfiltered (gdb_stdlog, " = ");
3522       for (i = 0; i < size; i++)
3523 	{
3524 	  fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3525 	}
3526       if (size <= sizeof (LONGEST))
3527 	{
3528 	  ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3529 
3530 	  fprintf_unfiltered (gdb_stdlog, " %s %s",
3531 			      core_addr_to_string_nz (val), plongest (val));
3532 	}
3533     }
3534   fprintf_unfiltered (gdb_stdlog, "\n");
3535 }
3536 
3537 void
3538 target_fetch_registers (struct regcache *regcache, int regno)
3539 {
3540   current_target.to_fetch_registers (&current_target, regcache, regno);
3541   if (targetdebug)
3542     debug_print_register ("target_fetch_registers", regcache, regno);
3543 }
3544 
3545 void
3546 target_store_registers (struct regcache *regcache, int regno)
3547 {
3548   if (!may_write_registers)
3549     error (_("Writing to registers is not allowed (regno %d)"), regno);
3550 
3551   current_target.to_store_registers (&current_target, regcache, regno);
3552   if (targetdebug)
3553     {
3554       debug_print_register ("target_store_registers", regcache, regno);
3555     }
3556 }
3557 
3558 int
3559 target_core_of_thread (ptid_t ptid)
3560 {
3561   return current_target.to_core_of_thread (&current_target, ptid);
3562 }
3563 
3564 int
3565 simple_verify_memory (struct target_ops *ops,
3566 		      const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3567 {
3568   LONGEST total_xfered = 0;
3569 
3570   while (total_xfered < size)
3571     {
3572       ULONGEST xfered_len;
3573       enum target_xfer_status status;
3574       gdb_byte buf[1024];
3575       ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3576 
3577       status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3578 				    buf, NULL, lma + total_xfered, howmuch,
3579 				    &xfered_len);
3580       if (status == TARGET_XFER_OK
3581 	  && memcmp (data + total_xfered, buf, xfered_len) == 0)
3582 	{
3583 	  total_xfered += xfered_len;
3584 	  QUIT;
3585 	}
3586       else
3587 	return 0;
3588     }
3589   return 1;
3590 }
3591 
3592 /* Default implementation of memory verification.  */
3593 
3594 static int
3595 default_verify_memory (struct target_ops *self,
3596 		       const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3597 {
3598   /* Start over from the top of the target stack.  */
3599   return simple_verify_memory (current_target.beneath,
3600 			       data, memaddr, size);
3601 }
3602 
3603 int
3604 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3605 {
3606   return current_target.to_verify_memory (&current_target,
3607 					  data, memaddr, size);
3608 }
3609 
3610 /* The documentation for this function is in its prototype declaration in
3611    target.h.  */
3612 
3613 int
3614 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3615 			       enum target_hw_bp_type rw)
3616 {
3617   return current_target.to_insert_mask_watchpoint (&current_target,
3618 						   addr, mask, rw);
3619 }
3620 
3621 /* The documentation for this function is in its prototype declaration in
3622    target.h.  */
3623 
3624 int
3625 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3626 			       enum target_hw_bp_type rw)
3627 {
3628   return current_target.to_remove_mask_watchpoint (&current_target,
3629 						   addr, mask, rw);
3630 }
3631 
3632 /* The documentation for this function is in its prototype declaration
3633    in target.h.  */
3634 
3635 int
3636 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3637 {
3638   return current_target.to_masked_watch_num_registers (&current_target,
3639 						       addr, mask);
3640 }
3641 
3642 /* The documentation for this function is in its prototype declaration
3643    in target.h.  */
3644 
3645 int
3646 target_ranged_break_num_registers (void)
3647 {
3648   return current_target.to_ranged_break_num_registers (&current_target);
3649 }
3650 
3651 /* See target.h.  */
3652 
3653 int
3654 target_supports_btrace (enum btrace_format format)
3655 {
3656   return current_target.to_supports_btrace (&current_target, format);
3657 }
3658 
3659 /* See target.h.  */
3660 
3661 struct btrace_target_info *
3662 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3663 {
3664   return current_target.to_enable_btrace (&current_target, ptid, conf);
3665 }
3666 
3667 /* See target.h.  */
3668 
3669 void
3670 target_disable_btrace (struct btrace_target_info *btinfo)
3671 {
3672   current_target.to_disable_btrace (&current_target, btinfo);
3673 }
3674 
3675 /* See target.h.  */
3676 
3677 void
3678 target_teardown_btrace (struct btrace_target_info *btinfo)
3679 {
3680   current_target.to_teardown_btrace (&current_target, btinfo);
3681 }
3682 
3683 /* See target.h.  */
3684 
3685 enum btrace_error
3686 target_read_btrace (struct btrace_data *btrace,
3687 		    struct btrace_target_info *btinfo,
3688 		    enum btrace_read_type type)
3689 {
3690   return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3691 }
3692 
3693 /* See target.h.  */
3694 
3695 const struct btrace_config *
3696 target_btrace_conf (const struct btrace_target_info *btinfo)
3697 {
3698   return current_target.to_btrace_conf (&current_target, btinfo);
3699 }
3700 
3701 /* See target.h.  */
3702 
3703 void
3704 target_stop_recording (void)
3705 {
3706   current_target.to_stop_recording (&current_target);
3707 }
3708 
3709 /* See target.h.  */
3710 
3711 void
3712 target_save_record (const char *filename)
3713 {
3714   current_target.to_save_record (&current_target, filename);
3715 }
3716 
3717 /* See target.h.  */
3718 
3719 int
3720 target_supports_delete_record (void)
3721 {
3722   struct target_ops *t;
3723 
3724   for (t = current_target.beneath; t != NULL; t = t->beneath)
3725     if (t->to_delete_record != delegate_delete_record
3726 	&& t->to_delete_record != tdefault_delete_record)
3727       return 1;
3728 
3729   return 0;
3730 }
3731 
3732 /* See target.h.  */
3733 
3734 void
3735 target_delete_record (void)
3736 {
3737   current_target.to_delete_record (&current_target);
3738 }
3739 
3740 /* See target.h.  */
3741 
3742 int
3743 target_record_is_replaying (ptid_t ptid)
3744 {
3745   return current_target.to_record_is_replaying (&current_target, ptid);
3746 }
3747 
3748 /* See target.h.  */
3749 
3750 int
3751 target_record_will_replay (ptid_t ptid, int dir)
3752 {
3753   return current_target.to_record_will_replay (&current_target, ptid, dir);
3754 }
3755 
3756 /* See target.h.  */
3757 
3758 void
3759 target_record_stop_replaying (void)
3760 {
3761   current_target.to_record_stop_replaying (&current_target);
3762 }
3763 
3764 /* See target.h.  */
3765 
3766 void
3767 target_goto_record_begin (void)
3768 {
3769   current_target.to_goto_record_begin (&current_target);
3770 }
3771 
3772 /* See target.h.  */
3773 
3774 void
3775 target_goto_record_end (void)
3776 {
3777   current_target.to_goto_record_end (&current_target);
3778 }
3779 
3780 /* See target.h.  */
3781 
3782 void
3783 target_goto_record (ULONGEST insn)
3784 {
3785   current_target.to_goto_record (&current_target, insn);
3786 }
3787 
3788 /* See target.h.  */
3789 
3790 void
3791 target_insn_history (int size, int flags)
3792 {
3793   current_target.to_insn_history (&current_target, size, flags);
3794 }
3795 
3796 /* See target.h.  */
3797 
3798 void
3799 target_insn_history_from (ULONGEST from, int size, int flags)
3800 {
3801   current_target.to_insn_history_from (&current_target, from, size, flags);
3802 }
3803 
3804 /* See target.h.  */
3805 
3806 void
3807 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3808 {
3809   current_target.to_insn_history_range (&current_target, begin, end, flags);
3810 }
3811 
3812 /* See target.h.  */
3813 
3814 void
3815 target_call_history (int size, int flags)
3816 {
3817   current_target.to_call_history (&current_target, size, flags);
3818 }
3819 
3820 /* See target.h.  */
3821 
3822 void
3823 target_call_history_from (ULONGEST begin, int size, int flags)
3824 {
3825   current_target.to_call_history_from (&current_target, begin, size, flags);
3826 }
3827 
3828 /* See target.h.  */
3829 
3830 void
3831 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3832 {
3833   current_target.to_call_history_range (&current_target, begin, end, flags);
3834 }
3835 
3836 /* See target.h.  */
3837 
3838 const struct frame_unwind *
3839 target_get_unwinder (void)
3840 {
3841   return current_target.to_get_unwinder (&current_target);
3842 }
3843 
3844 /* See target.h.  */
3845 
3846 const struct frame_unwind *
3847 target_get_tailcall_unwinder (void)
3848 {
3849   return current_target.to_get_tailcall_unwinder (&current_target);
3850 }
3851 
3852 /* See target.h.  */
3853 
3854 void
3855 target_prepare_to_generate_core (void)
3856 {
3857   current_target.to_prepare_to_generate_core (&current_target);
3858 }
3859 
3860 /* See target.h.  */
3861 
3862 void
3863 target_done_generating_core (void)
3864 {
3865   current_target.to_done_generating_core (&current_target);
3866 }
3867 
3868 static void
3869 setup_target_debug (void)
3870 {
3871   memcpy (&debug_target, &current_target, sizeof debug_target);
3872 
3873   init_debug_target (&current_target);
3874 }
3875 
3876 
3877 static char targ_desc[] =
3878 "Names of targets and files being debugged.\nShows the entire \
3879 stack of targets currently in use (including the exec-file,\n\
3880 core-file, and process, if any), as well as the symbol file name.";
3881 
3882 static void
3883 default_rcmd (struct target_ops *self, const char *command,
3884 	      struct ui_file *output)
3885 {
3886   error (_("\"monitor\" command not supported by this target."));
3887 }
3888 
3889 static void
3890 do_monitor_command (char *cmd,
3891 		 int from_tty)
3892 {
3893   target_rcmd (cmd, gdb_stdtarg);
3894 }
3895 
3896 /* Print the name of each layers of our target stack.  */
3897 
3898 static void
3899 maintenance_print_target_stack (char *cmd, int from_tty)
3900 {
3901   struct target_ops *t;
3902 
3903   printf_filtered (_("The current target stack is:\n"));
3904 
3905   for (t = target_stack; t != NULL; t = t->beneath)
3906     {
3907       printf_filtered ("  - %s (%s)\n", t->to_shortname, t->to_longname);
3908     }
3909 }
3910 
3911 /* See target.h.  */
3912 
3913 void
3914 target_async (int enable)
3915 {
3916   infrun_async (enable);
3917   current_target.to_async (&current_target, enable);
3918 }
3919 
3920 /* See target.h.  */
3921 
3922 void
3923 target_thread_events (int enable)
3924 {
3925   current_target.to_thread_events (&current_target, enable);
3926 }
3927 
3928 /* Controls if targets can report that they can/are async.  This is
3929    just for maintainers to use when debugging gdb.  */
3930 int target_async_permitted = 1;
3931 
3932 /* The set command writes to this variable.  If the inferior is
3933    executing, target_async_permitted is *not* updated.  */
3934 static int target_async_permitted_1 = 1;
3935 
3936 static void
3937 maint_set_target_async_command (char *args, int from_tty,
3938 				struct cmd_list_element *c)
3939 {
3940   if (have_live_inferiors ())
3941     {
3942       target_async_permitted_1 = target_async_permitted;
3943       error (_("Cannot change this setting while the inferior is running."));
3944     }
3945 
3946   target_async_permitted = target_async_permitted_1;
3947 }
3948 
3949 static void
3950 maint_show_target_async_command (struct ui_file *file, int from_tty,
3951 				 struct cmd_list_element *c,
3952 				 const char *value)
3953 {
3954   fprintf_filtered (file,
3955 		    _("Controlling the inferior in "
3956 		      "asynchronous mode is %s.\n"), value);
3957 }
3958 
3959 /* Return true if the target operates in non-stop mode even with "set
3960    non-stop off".  */
3961 
3962 static int
3963 target_always_non_stop_p (void)
3964 {
3965   return current_target.to_always_non_stop_p (&current_target);
3966 }
3967 
3968 /* See target.h.  */
3969 
3970 int
3971 target_is_non_stop_p (void)
3972 {
3973   return (non_stop
3974 	  || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3975 	  || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3976 	      && target_always_non_stop_p ()));
3977 }
3978 
3979 /* Controls if targets can report that they always run in non-stop
3980    mode.  This is just for maintainers to use when debugging gdb.  */
3981 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3982 
3983 /* The set command writes to this variable.  If the inferior is
3984    executing, target_non_stop_enabled is *not* updated.  */
3985 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3986 
3987 /* Implementation of "maint set target-non-stop".  */
3988 
3989 static void
3990 maint_set_target_non_stop_command (char *args, int from_tty,
3991 				   struct cmd_list_element *c)
3992 {
3993   if (have_live_inferiors ())
3994     {
3995       target_non_stop_enabled_1 = target_non_stop_enabled;
3996       error (_("Cannot change this setting while the inferior is running."));
3997     }
3998 
3999   target_non_stop_enabled = target_non_stop_enabled_1;
4000 }
4001 
4002 /* Implementation of "maint show target-non-stop".  */
4003 
4004 static void
4005 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
4006 				    struct cmd_list_element *c,
4007 				    const char *value)
4008 {
4009   if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4010     fprintf_filtered (file,
4011 		      _("Whether the target is always in non-stop mode "
4012 			"is %s (currently %s).\n"), value,
4013 		      target_always_non_stop_p () ? "on" : "off");
4014   else
4015     fprintf_filtered (file,
4016 		      _("Whether the target is always in non-stop mode "
4017 			"is %s.\n"), value);
4018 }
4019 
4020 /* Temporary copies of permission settings.  */
4021 
4022 static int may_write_registers_1 = 1;
4023 static int may_write_memory_1 = 1;
4024 static int may_insert_breakpoints_1 = 1;
4025 static int may_insert_tracepoints_1 = 1;
4026 static int may_insert_fast_tracepoints_1 = 1;
4027 static int may_stop_1 = 1;
4028 
4029 /* Make the user-set values match the real values again.  */
4030 
4031 void
4032 update_target_permissions (void)
4033 {
4034   may_write_registers_1 = may_write_registers;
4035   may_write_memory_1 = may_write_memory;
4036   may_insert_breakpoints_1 = may_insert_breakpoints;
4037   may_insert_tracepoints_1 = may_insert_tracepoints;
4038   may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4039   may_stop_1 = may_stop;
4040 }
4041 
4042 /* The one function handles (most of) the permission flags in the same
4043    way.  */
4044 
4045 static void
4046 set_target_permissions (char *args, int from_tty,
4047 			struct cmd_list_element *c)
4048 {
4049   if (target_has_execution)
4050     {
4051       update_target_permissions ();
4052       error (_("Cannot change this setting while the inferior is running."));
4053     }
4054 
4055   /* Make the real values match the user-changed values.  */
4056   may_write_registers = may_write_registers_1;
4057   may_insert_breakpoints = may_insert_breakpoints_1;
4058   may_insert_tracepoints = may_insert_tracepoints_1;
4059   may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4060   may_stop = may_stop_1;
4061   update_observer_mode ();
4062 }
4063 
4064 /* Set memory write permission independently of observer mode.  */
4065 
4066 static void
4067 set_write_memory_permission (char *args, int from_tty,
4068 			struct cmd_list_element *c)
4069 {
4070   /* Make the real values match the user-changed values.  */
4071   may_write_memory = may_write_memory_1;
4072   update_observer_mode ();
4073 }
4074 
4075 
4076 void
4077 initialize_targets (void)
4078 {
4079   init_dummy_target ();
4080   push_target (&dummy_target);
4081 
4082   add_info ("target", target_info, targ_desc);
4083   add_info ("files", target_info, targ_desc);
4084 
4085   add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4086 Set target debugging."), _("\
4087 Show target debugging."), _("\
4088 When non-zero, target debugging is enabled.  Higher numbers are more\n\
4089 verbose."),
4090 			     set_targetdebug,
4091 			     show_targetdebug,
4092 			     &setdebuglist, &showdebuglist);
4093 
4094   add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4095 			   &trust_readonly, _("\
4096 Set mode for reading from readonly sections."), _("\
4097 Show mode for reading from readonly sections."), _("\
4098 When this mode is on, memory reads from readonly sections (such as .text)\n\
4099 will be read from the object file instead of from the target.  This will\n\
4100 result in significant performance improvement for remote targets."),
4101 			   NULL,
4102 			   show_trust_readonly,
4103 			   &setlist, &showlist);
4104 
4105   add_com ("monitor", class_obscure, do_monitor_command,
4106 	   _("Send a command to the remote monitor (remote targets only)."));
4107 
4108   add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4109            _("Print the name of each layer of the internal target stack."),
4110            &maintenanceprintlist);
4111 
4112   add_setshow_boolean_cmd ("target-async", no_class,
4113 			   &target_async_permitted_1, _("\
4114 Set whether gdb controls the inferior in asynchronous mode."), _("\
4115 Show whether gdb controls the inferior in asynchronous mode."), _("\
4116 Tells gdb whether to control the inferior in asynchronous mode."),
4117 			   maint_set_target_async_command,
4118 			   maint_show_target_async_command,
4119 			   &maintenance_set_cmdlist,
4120 			   &maintenance_show_cmdlist);
4121 
4122   add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4123 				&target_non_stop_enabled_1, _("\
4124 Set whether gdb always controls the inferior in non-stop mode."), _("\
4125 Show whether gdb always controls the inferior in non-stop mode."), _("\
4126 Tells gdb whether to control the inferior in non-stop mode."),
4127 			   maint_set_target_non_stop_command,
4128 			   maint_show_target_non_stop_command,
4129 			   &maintenance_set_cmdlist,
4130 			   &maintenance_show_cmdlist);
4131 
4132   add_setshow_boolean_cmd ("may-write-registers", class_support,
4133 			   &may_write_registers_1, _("\
4134 Set permission to write into registers."), _("\
4135 Show permission to write into registers."), _("\
4136 When this permission is on, GDB may write into the target's registers.\n\
4137 Otherwise, any sort of write attempt will result in an error."),
4138 			   set_target_permissions, NULL,
4139 			   &setlist, &showlist);
4140 
4141   add_setshow_boolean_cmd ("may-write-memory", class_support,
4142 			   &may_write_memory_1, _("\
4143 Set permission to write into target memory."), _("\
4144 Show permission to write into target memory."), _("\
4145 When this permission is on, GDB may write into the target's memory.\n\
4146 Otherwise, any sort of write attempt will result in an error."),
4147 			   set_write_memory_permission, NULL,
4148 			   &setlist, &showlist);
4149 
4150   add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4151 			   &may_insert_breakpoints_1, _("\
4152 Set permission to insert breakpoints in the target."), _("\
4153 Show permission to insert breakpoints in the target."), _("\
4154 When this permission is on, GDB may insert breakpoints in the program.\n\
4155 Otherwise, any sort of insertion attempt will result in an error."),
4156 			   set_target_permissions, NULL,
4157 			   &setlist, &showlist);
4158 
4159   add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4160 			   &may_insert_tracepoints_1, _("\
4161 Set permission to insert tracepoints in the target."), _("\
4162 Show permission to insert tracepoints in the target."), _("\
4163 When this permission is on, GDB may insert tracepoints in the program.\n\
4164 Otherwise, any sort of insertion attempt will result in an error."),
4165 			   set_target_permissions, NULL,
4166 			   &setlist, &showlist);
4167 
4168   add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4169 			   &may_insert_fast_tracepoints_1, _("\
4170 Set permission to insert fast tracepoints in the target."), _("\
4171 Show permission to insert fast tracepoints in the target."), _("\
4172 When this permission is on, GDB may insert fast tracepoints.\n\
4173 Otherwise, any sort of insertion attempt will result in an error."),
4174 			   set_target_permissions, NULL,
4175 			   &setlist, &showlist);
4176 
4177   add_setshow_boolean_cmd ("may-interrupt", class_support,
4178 			   &may_stop_1, _("\
4179 Set permission to interrupt or signal the target."), _("\
4180 Show permission to interrupt or signal the target."), _("\
4181 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4182 Otherwise, any attempt to interrupt or stop will be ignored."),
4183 			   set_target_permissions, NULL,
4184 			   &setlist, &showlist);
4185 
4186   add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4187 			   &auto_connect_native_target, _("\
4188 Set whether GDB may automatically connect to the native target."), _("\
4189 Show whether GDB may automatically connect to the native target."), _("\
4190 When on, and GDB is not connected to a target yet, GDB\n\
4191 attempts \"run\" and other commands with the native target."),
4192 			   NULL, show_auto_connect_native_target,
4193 			   &setlist, &showlist);
4194 }
4195