xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/target.c (revision 99e23f81b2b10aef1a10b03588663e472627bb76)
1 /* Select target systems and architectures at runtime for GDB.
2 
3    Copyright (C) 1990-2017 Free Software Foundation, Inc.
4 
5    Contributed by Cygnus Support.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 
50 static void target_info (char *, int);
51 
52 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
53 
54 static void default_terminal_info (struct target_ops *, const char *, int);
55 
56 static int default_watchpoint_addr_within_range (struct target_ops *,
57 						 CORE_ADDR, CORE_ADDR, int);
58 
59 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
60 						CORE_ADDR, int);
61 
62 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
63 
64 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
65 					 long lwp, long tid);
66 
67 static int default_follow_fork (struct target_ops *self, int follow_child,
68 				int detach_fork);
69 
70 static void default_mourn_inferior (struct target_ops *self);
71 
72 static int default_search_memory (struct target_ops *ops,
73 				  CORE_ADDR start_addr,
74 				  ULONGEST search_space_len,
75 				  const gdb_byte *pattern,
76 				  ULONGEST pattern_len,
77 				  CORE_ADDR *found_addrp);
78 
79 static int default_verify_memory (struct target_ops *self,
80 				  const gdb_byte *data,
81 				  CORE_ADDR memaddr, ULONGEST size);
82 
83 static struct address_space *default_thread_address_space
84      (struct target_ops *self, ptid_t ptid);
85 
86 static void tcomplain (void) ATTRIBUTE_NORETURN;
87 
88 static int return_zero (struct target_ops *);
89 
90 static int return_zero_has_execution (struct target_ops *, ptid_t);
91 
92 static void target_command (char *, int);
93 
94 static struct target_ops *find_default_run_target (const char *);
95 
96 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
97 						    ptid_t ptid);
98 
99 static int dummy_find_memory_regions (struct target_ops *self,
100 				      find_memory_region_ftype ignore1,
101 				      void *ignore2);
102 
103 static char *dummy_make_corefile_notes (struct target_ops *self,
104 					bfd *ignore1, int *ignore2);
105 
106 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
107 
108 static enum exec_direction_kind default_execution_direction
109     (struct target_ops *self);
110 
111 static struct target_ops debug_target;
112 
113 #include "target-delegates.c"
114 
115 static void init_dummy_target (void);
116 
117 static void update_current_target (void);
118 
119 /* Vector of existing target structures. */
120 typedef struct target_ops *target_ops_p;
121 DEF_VEC_P (target_ops_p);
122 static VEC (target_ops_p) *target_structs;
123 
124 /* The initial current target, so that there is always a semi-valid
125    current target.  */
126 
127 static struct target_ops dummy_target;
128 
129 /* Top of target stack.  */
130 
131 static struct target_ops *target_stack;
132 
133 /* The target structure we are currently using to talk to a process
134    or file or whatever "inferior" we have.  */
135 
136 struct target_ops current_target;
137 
138 /* Command list for target.  */
139 
140 static struct cmd_list_element *targetlist = NULL;
141 
142 /* Nonzero if we should trust readonly sections from the
143    executable when reading memory.  */
144 
145 static int trust_readonly = 0;
146 
147 /* Nonzero if we should show true memory content including
148    memory breakpoint inserted by gdb.  */
149 
150 static int show_memory_breakpoints = 0;
151 
152 /* These globals control whether GDB attempts to perform these
153    operations; they are useful for targets that need to prevent
154    inadvertant disruption, such as in non-stop mode.  */
155 
156 int may_write_registers = 1;
157 
158 int may_write_memory = 1;
159 
160 int may_insert_breakpoints = 1;
161 
162 int may_insert_tracepoints = 1;
163 
164 int may_insert_fast_tracepoints = 1;
165 
166 int may_stop = 1;
167 
168 /* Non-zero if we want to see trace of target level stuff.  */
169 
170 static unsigned int targetdebug = 0;
171 
172 static void
173 set_targetdebug  (char *args, int from_tty, struct cmd_list_element *c)
174 {
175   update_current_target ();
176 }
177 
178 static void
179 show_targetdebug (struct ui_file *file, int from_tty,
180 		  struct cmd_list_element *c, const char *value)
181 {
182   fprintf_filtered (file, _("Target debugging is %s.\n"), value);
183 }
184 
185 static void setup_target_debug (void);
186 
187 /* The user just typed 'target' without the name of a target.  */
188 
189 static void
190 target_command (char *arg, int from_tty)
191 {
192   fputs_filtered ("Argument required (target name).  Try `help target'\n",
193 		  gdb_stdout);
194 }
195 
196 /* Default target_has_* methods for process_stratum targets.  */
197 
198 int
199 default_child_has_all_memory (struct target_ops *ops)
200 {
201   /* If no inferior selected, then we can't read memory here.  */
202   if (ptid_equal (inferior_ptid, null_ptid))
203     return 0;
204 
205   return 1;
206 }
207 
208 int
209 default_child_has_memory (struct target_ops *ops)
210 {
211   /* If no inferior selected, then we can't read memory here.  */
212   if (ptid_equal (inferior_ptid, null_ptid))
213     return 0;
214 
215   return 1;
216 }
217 
218 int
219 default_child_has_stack (struct target_ops *ops)
220 {
221   /* If no inferior selected, there's no stack.  */
222   if (ptid_equal (inferior_ptid, null_ptid))
223     return 0;
224 
225   return 1;
226 }
227 
228 int
229 default_child_has_registers (struct target_ops *ops)
230 {
231   /* Can't read registers from no inferior.  */
232   if (ptid_equal (inferior_ptid, null_ptid))
233     return 0;
234 
235   return 1;
236 }
237 
238 int
239 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
240 {
241   /* If there's no thread selected, then we can't make it run through
242      hoops.  */
243   if (ptid_equal (the_ptid, null_ptid))
244     return 0;
245 
246   return 1;
247 }
248 
249 
250 int
251 target_has_all_memory_1 (void)
252 {
253   struct target_ops *t;
254 
255   for (t = current_target.beneath; t != NULL; t = t->beneath)
256     if (t->to_has_all_memory (t))
257       return 1;
258 
259   return 0;
260 }
261 
262 int
263 target_has_memory_1 (void)
264 {
265   struct target_ops *t;
266 
267   for (t = current_target.beneath; t != NULL; t = t->beneath)
268     if (t->to_has_memory (t))
269       return 1;
270 
271   return 0;
272 }
273 
274 int
275 target_has_stack_1 (void)
276 {
277   struct target_ops *t;
278 
279   for (t = current_target.beneath; t != NULL; t = t->beneath)
280     if (t->to_has_stack (t))
281       return 1;
282 
283   return 0;
284 }
285 
286 int
287 target_has_registers_1 (void)
288 {
289   struct target_ops *t;
290 
291   for (t = current_target.beneath; t != NULL; t = t->beneath)
292     if (t->to_has_registers (t))
293       return 1;
294 
295   return 0;
296 }
297 
298 int
299 target_has_execution_1 (ptid_t the_ptid)
300 {
301   struct target_ops *t;
302 
303   for (t = current_target.beneath; t != NULL; t = t->beneath)
304     if (t->to_has_execution (t, the_ptid))
305       return 1;
306 
307   return 0;
308 }
309 
310 int
311 target_has_execution_current (void)
312 {
313   return target_has_execution_1 (inferior_ptid);
314 }
315 
316 /* Complete initialization of T.  This ensures that various fields in
317    T are set, if needed by the target implementation.  */
318 
319 void
320 complete_target_initialization (struct target_ops *t)
321 {
322   /* Provide default values for all "must have" methods.  */
323 
324   if (t->to_has_all_memory == NULL)
325     t->to_has_all_memory = return_zero;
326 
327   if (t->to_has_memory == NULL)
328     t->to_has_memory = return_zero;
329 
330   if (t->to_has_stack == NULL)
331     t->to_has_stack = return_zero;
332 
333   if (t->to_has_registers == NULL)
334     t->to_has_registers = return_zero;
335 
336   if (t->to_has_execution == NULL)
337     t->to_has_execution = return_zero_has_execution;
338 
339   /* These methods can be called on an unpushed target and so require
340      a default implementation if the target might plausibly be the
341      default run target.  */
342   gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
343 					&& t->to_supports_non_stop != NULL));
344 
345   install_delegators (t);
346 }
347 
348 /* This is used to implement the various target commands.  */
349 
350 static void
351 open_target (char *args, int from_tty, struct cmd_list_element *command)
352 {
353   struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
354 
355   if (targetdebug)
356     fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
357 			ops->to_shortname);
358 
359   ops->to_open (args, from_tty);
360 
361   if (targetdebug)
362     fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
363 			ops->to_shortname, args, from_tty);
364 }
365 
366 /* Add possible target architecture T to the list and add a new
367    command 'target T->to_shortname'.  Set COMPLETER as the command's
368    completer if not NULL.  */
369 
370 void
371 add_target_with_completer (struct target_ops *t,
372 			   completer_ftype *completer)
373 {
374   struct cmd_list_element *c;
375 
376   complete_target_initialization (t);
377 
378   VEC_safe_push (target_ops_p, target_structs, t);
379 
380   if (targetlist == NULL)
381     add_prefix_cmd ("target", class_run, target_command, _("\
382 Connect to a target machine or process.\n\
383 The first argument is the type or protocol of the target machine.\n\
384 Remaining arguments are interpreted by the target protocol.  For more\n\
385 information on the arguments for a particular protocol, type\n\
386 `help target ' followed by the protocol name."),
387 		    &targetlist, "target ", 0, &cmdlist);
388   c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
389   set_cmd_sfunc (c, open_target);
390   set_cmd_context (c, t);
391   if (completer != NULL)
392     set_cmd_completer (c, completer);
393 }
394 
395 /* Add a possible target architecture to the list.  */
396 
397 void
398 add_target (struct target_ops *t)
399 {
400   add_target_with_completer (t, NULL);
401 }
402 
403 /* See target.h.  */
404 
405 void
406 add_deprecated_target_alias (struct target_ops *t, const char *alias)
407 {
408   struct cmd_list_element *c;
409   char *alt;
410 
411   /* If we use add_alias_cmd, here, we do not get the deprecated warning,
412      see PR cli/15104.  */
413   c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
414   set_cmd_sfunc (c, open_target);
415   set_cmd_context (c, t);
416   alt = xstrprintf ("target %s", t->to_shortname);
417   deprecate_cmd (c, alt);
418 }
419 
420 /* Stub functions */
421 
422 void
423 target_kill (void)
424 {
425   current_target.to_kill (&current_target);
426 }
427 
428 void
429 target_load (const char *arg, int from_tty)
430 {
431   target_dcache_invalidate ();
432   (*current_target.to_load) (&current_target, arg, from_tty);
433 }
434 
435 /* Possible terminal states.  */
436 
437 enum terminal_state
438   {
439     /* The inferior's terminal settings are in effect.  */
440     terminal_is_inferior = 0,
441 
442     /* Some of our terminal settings are in effect, enough to get
443        proper output.  */
444     terminal_is_ours_for_output = 1,
445 
446     /* Our terminal settings are in effect, for output and input.  */
447     terminal_is_ours = 2
448   };
449 
450 static enum terminal_state terminal_state = terminal_is_ours;
451 
452 /* See target.h.  */
453 
454 void
455 target_terminal_init (void)
456 {
457   (*current_target.to_terminal_init) (&current_target);
458 
459   terminal_state = terminal_is_ours;
460 }
461 
462 /* See target.h.  */
463 
464 int
465 target_terminal_is_inferior (void)
466 {
467   return (terminal_state == terminal_is_inferior);
468 }
469 
470 /* See target.h.  */
471 
472 int
473 target_terminal_is_ours (void)
474 {
475   return (terminal_state == terminal_is_ours);
476 }
477 
478 /* See target.h.  */
479 
480 void
481 target_terminal_inferior (void)
482 {
483   struct ui *ui = current_ui;
484 
485   /* A background resume (``run&'') should leave GDB in control of the
486      terminal.  */
487   if (ui->prompt_state != PROMPT_BLOCKED)
488     return;
489 
490   /* Since we always run the inferior in the main console (unless "set
491      inferior-tty" is in effect), when some UI other than the main one
492      calls target_terminal_inferior/target_terminal_inferior, then we
493      leave the main UI's terminal settings as is.  */
494   if (ui != main_ui)
495     return;
496 
497   if (terminal_state == terminal_is_inferior)
498     return;
499 
500   /* If GDB is resuming the inferior in the foreground, install
501      inferior's terminal modes.  */
502   (*current_target.to_terminal_inferior) (&current_target);
503   terminal_state = terminal_is_inferior;
504 
505   /* If the user hit C-c before, pretend that it was hit right
506      here.  */
507   if (check_quit_flag ())
508     target_pass_ctrlc ();
509 }
510 
511 /* See target.h.  */
512 
513 void
514 target_terminal_ours (void)
515 {
516   struct ui *ui = current_ui;
517 
518   /* See target_terminal_inferior.  */
519   if (ui != main_ui)
520     return;
521 
522   if (terminal_state == terminal_is_ours)
523     return;
524 
525   (*current_target.to_terminal_ours) (&current_target);
526   terminal_state = terminal_is_ours;
527 }
528 
529 /* See target.h.  */
530 
531 void
532 target_terminal_ours_for_output (void)
533 {
534   struct ui *ui = current_ui;
535 
536   /* See target_terminal_inferior.  */
537   if (ui != main_ui)
538     return;
539 
540   if (terminal_state != terminal_is_inferior)
541     return;
542   (*current_target.to_terminal_ours_for_output) (&current_target);
543   terminal_state = terminal_is_ours_for_output;
544 }
545 
546 /* See target.h.  */
547 
548 int
549 target_supports_terminal_ours (void)
550 {
551   struct target_ops *t;
552 
553   for (t = current_target.beneath; t != NULL; t = t->beneath)
554     {
555       if (t->to_terminal_ours != delegate_terminal_ours
556 	  && t->to_terminal_ours != tdefault_terminal_ours)
557 	return 1;
558     }
559 
560   return 0;
561 }
562 
563 /* Restore the terminal to its previous state (helper for
564    make_cleanup_restore_target_terminal). */
565 
566 static void
567 cleanup_restore_target_terminal (void *arg)
568 {
569   enum terminal_state *previous_state = (enum terminal_state *) arg;
570 
571   switch (*previous_state)
572     {
573     case terminal_is_ours:
574       target_terminal_ours ();
575       break;
576     case terminal_is_ours_for_output:
577       target_terminal_ours_for_output ();
578       break;
579     case terminal_is_inferior:
580       target_terminal_inferior ();
581       break;
582     }
583 }
584 
585 /* See target.h. */
586 
587 struct cleanup *
588 make_cleanup_restore_target_terminal (void)
589 {
590   enum terminal_state *ts = XNEW (enum terminal_state);
591 
592   *ts = terminal_state;
593 
594   return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
595 }
596 
597 static void
598 tcomplain (void)
599 {
600   error (_("You can't do that when your target is `%s'"),
601 	 current_target.to_shortname);
602 }
603 
604 void
605 noprocess (void)
606 {
607   error (_("You can't do that without a process to debug."));
608 }
609 
610 static void
611 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
612 {
613   printf_unfiltered (_("No saved terminal information.\n"));
614 }
615 
616 /* A default implementation for the to_get_ada_task_ptid target method.
617 
618    This function builds the PTID by using both LWP and TID as part of
619    the PTID lwp and tid elements.  The pid used is the pid of the
620    inferior_ptid.  */
621 
622 static ptid_t
623 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
624 {
625   return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
626 }
627 
628 static enum exec_direction_kind
629 default_execution_direction (struct target_ops *self)
630 {
631   if (!target_can_execute_reverse)
632     return EXEC_FORWARD;
633   else if (!target_can_async_p ())
634     return EXEC_FORWARD;
635   else
636     gdb_assert_not_reached ("\
637 to_execution_direction must be implemented for reverse async");
638 }
639 
640 /* Go through the target stack from top to bottom, copying over zero
641    entries in current_target, then filling in still empty entries.  In
642    effect, we are doing class inheritance through the pushed target
643    vectors.
644 
645    NOTE: cagney/2003-10-17: The problem with this inheritance, as it
646    is currently implemented, is that it discards any knowledge of
647    which target an inherited method originally belonged to.
648    Consequently, new new target methods should instead explicitly and
649    locally search the target stack for the target that can handle the
650    request.  */
651 
652 static void
653 update_current_target (void)
654 {
655   struct target_ops *t;
656 
657   /* First, reset current's contents.  */
658   memset (&current_target, 0, sizeof (current_target));
659 
660   /* Install the delegators.  */
661   install_delegators (&current_target);
662 
663   current_target.to_stratum = target_stack->to_stratum;
664 
665 #define INHERIT(FIELD, TARGET) \
666       if (!current_target.FIELD) \
667 	current_target.FIELD = (TARGET)->FIELD
668 
669   /* Do not add any new INHERITs here.  Instead, use the delegation
670      mechanism provided by make-target-delegates.  */
671   for (t = target_stack; t; t = t->beneath)
672     {
673       INHERIT (to_shortname, t);
674       INHERIT (to_longname, t);
675       INHERIT (to_attach_no_wait, t);
676       INHERIT (to_have_steppable_watchpoint, t);
677       INHERIT (to_have_continuable_watchpoint, t);
678       INHERIT (to_has_thread_control, t);
679     }
680 #undef INHERIT
681 
682   /* Finally, position the target-stack beneath the squashed
683      "current_target".  That way code looking for a non-inherited
684      target method can quickly and simply find it.  */
685   current_target.beneath = target_stack;
686 
687   if (targetdebug)
688     setup_target_debug ();
689 }
690 
691 /* Push a new target type into the stack of the existing target accessors,
692    possibly superseding some of the existing accessors.
693 
694    Rather than allow an empty stack, we always have the dummy target at
695    the bottom stratum, so we can call the function vectors without
696    checking them.  */
697 
698 void
699 push_target (struct target_ops *t)
700 {
701   struct target_ops **cur;
702 
703   /* Check magic number.  If wrong, it probably means someone changed
704      the struct definition, but not all the places that initialize one.  */
705   if (t->to_magic != OPS_MAGIC)
706     {
707       fprintf_unfiltered (gdb_stderr,
708 			  "Magic number of %s target struct wrong\n",
709 			  t->to_shortname);
710       internal_error (__FILE__, __LINE__,
711 		      _("failed internal consistency check"));
712     }
713 
714   /* Find the proper stratum to install this target in.  */
715   for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
716     {
717       if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
718 	break;
719     }
720 
721   /* If there's already targets at this stratum, remove them.  */
722   /* FIXME: cagney/2003-10-15: I think this should be popping all
723      targets to CUR, and not just those at this stratum level.  */
724   while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
725     {
726       /* There's already something at this stratum level.  Close it,
727          and un-hook it from the stack.  */
728       struct target_ops *tmp = (*cur);
729 
730       (*cur) = (*cur)->beneath;
731       tmp->beneath = NULL;
732       target_close (tmp);
733     }
734 
735   /* We have removed all targets in our stratum, now add the new one.  */
736   t->beneath = (*cur);
737   (*cur) = t;
738 
739   update_current_target ();
740 }
741 
742 /* Remove a target_ops vector from the stack, wherever it may be.
743    Return how many times it was removed (0 or 1).  */
744 
745 int
746 unpush_target (struct target_ops *t)
747 {
748   struct target_ops **cur;
749   struct target_ops *tmp;
750 
751   if (t->to_stratum == dummy_stratum)
752     internal_error (__FILE__, __LINE__,
753 		    _("Attempt to unpush the dummy target"));
754 
755   /* Look for the specified target.  Note that we assume that a target
756      can only occur once in the target stack.  */
757 
758   for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
759     {
760       if ((*cur) == t)
761 	break;
762     }
763 
764   /* If we don't find target_ops, quit.  Only open targets should be
765      closed.  */
766   if ((*cur) == NULL)
767     return 0;
768 
769   /* Unchain the target.  */
770   tmp = (*cur);
771   (*cur) = (*cur)->beneath;
772   tmp->beneath = NULL;
773 
774   update_current_target ();
775 
776   /* Finally close the target.  Note we do this after unchaining, so
777      any target method calls from within the target_close
778      implementation don't end up in T anymore.  */
779   target_close (t);
780 
781   return 1;
782 }
783 
784 /* Unpush TARGET and assert that it worked.  */
785 
786 static void
787 unpush_target_and_assert (struct target_ops *target)
788 {
789   if (!unpush_target (target))
790     {
791       fprintf_unfiltered (gdb_stderr,
792 			  "pop_all_targets couldn't find target %s\n",
793 			  target->to_shortname);
794       internal_error (__FILE__, __LINE__,
795 		      _("failed internal consistency check"));
796     }
797 }
798 
799 void
800 pop_all_targets_above (enum strata above_stratum)
801 {
802   while ((int) (current_target.to_stratum) > (int) above_stratum)
803     unpush_target_and_assert (target_stack);
804 }
805 
806 /* See target.h.  */
807 
808 void
809 pop_all_targets_at_and_above (enum strata stratum)
810 {
811   while ((int) (current_target.to_stratum) >= (int) stratum)
812     unpush_target_and_assert (target_stack);
813 }
814 
815 void
816 pop_all_targets (void)
817 {
818   pop_all_targets_above (dummy_stratum);
819 }
820 
821 /* Return 1 if T is now pushed in the target stack.  Return 0 otherwise.  */
822 
823 int
824 target_is_pushed (struct target_ops *t)
825 {
826   struct target_ops *cur;
827 
828   /* Check magic number.  If wrong, it probably means someone changed
829      the struct definition, but not all the places that initialize one.  */
830   if (t->to_magic != OPS_MAGIC)
831     {
832       fprintf_unfiltered (gdb_stderr,
833 			  "Magic number of %s target struct wrong\n",
834 			  t->to_shortname);
835       internal_error (__FILE__, __LINE__,
836 		      _("failed internal consistency check"));
837     }
838 
839   for (cur = target_stack; cur != NULL; cur = cur->beneath)
840     if (cur == t)
841       return 1;
842 
843   return 0;
844 }
845 
846 /* Default implementation of to_get_thread_local_address.  */
847 
848 static void
849 generic_tls_error (void)
850 {
851   throw_error (TLS_GENERIC_ERROR,
852 	       _("Cannot find thread-local variables on this target"));
853 }
854 
855 /* Using the objfile specified in OBJFILE, find the address for the
856    current thread's thread-local storage with offset OFFSET.  */
857 CORE_ADDR
858 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
859 {
860   volatile CORE_ADDR addr = 0;
861   struct target_ops *target = &current_target;
862 
863   if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
864     {
865       ptid_t ptid = inferior_ptid;
866 
867       TRY
868 	{
869 	  CORE_ADDR lm_addr;
870 
871 	  /* Fetch the load module address for this objfile.  */
872 	  lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
873 	                                                   objfile);
874 
875 	  addr = target->to_get_thread_local_address (target, ptid,
876 						      lm_addr, offset);
877 	}
878       /* If an error occurred, print TLS related messages here.  Otherwise,
879          throw the error to some higher catcher.  */
880       CATCH (ex, RETURN_MASK_ALL)
881 	{
882 	  int objfile_is_library = (objfile->flags & OBJF_SHARED);
883 
884 	  switch (ex.error)
885 	    {
886 	    case TLS_NO_LIBRARY_SUPPORT_ERROR:
887 	      error (_("Cannot find thread-local variables "
888 		       "in this thread library."));
889 	      break;
890 	    case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
891 	      if (objfile_is_library)
892 		error (_("Cannot find shared library `%s' in dynamic"
893 		         " linker's load module list"), objfile_name (objfile));
894 	      else
895 		error (_("Cannot find executable file `%s' in dynamic"
896 		         " linker's load module list"), objfile_name (objfile));
897 	      break;
898 	    case TLS_NOT_ALLOCATED_YET_ERROR:
899 	      if (objfile_is_library)
900 		error (_("The inferior has not yet allocated storage for"
901 		         " thread-local variables in\n"
902 		         "the shared library `%s'\n"
903 		         "for %s"),
904 		       objfile_name (objfile), target_pid_to_str (ptid));
905 	      else
906 		error (_("The inferior has not yet allocated storage for"
907 		         " thread-local variables in\n"
908 		         "the executable `%s'\n"
909 		         "for %s"),
910 		       objfile_name (objfile), target_pid_to_str (ptid));
911 	      break;
912 	    case TLS_GENERIC_ERROR:
913 	      if (objfile_is_library)
914 		error (_("Cannot find thread-local storage for %s, "
915 		         "shared library %s:\n%s"),
916 		       target_pid_to_str (ptid),
917 		       objfile_name (objfile), ex.message);
918 	      else
919 		error (_("Cannot find thread-local storage for %s, "
920 		         "executable file %s:\n%s"),
921 		       target_pid_to_str (ptid),
922 		       objfile_name (objfile), ex.message);
923 	      break;
924 	    default:
925 	      throw_exception (ex);
926 	      break;
927 	    }
928 	}
929       END_CATCH
930     }
931   /* It wouldn't be wrong here to try a gdbarch method, too; finding
932      TLS is an ABI-specific thing.  But we don't do that yet.  */
933   else
934     error (_("Cannot find thread-local variables on this target"));
935 
936   return addr;
937 }
938 
939 const char *
940 target_xfer_status_to_string (enum target_xfer_status status)
941 {
942 #define CASE(X) case X: return #X
943   switch (status)
944     {
945       CASE(TARGET_XFER_E_IO);
946       CASE(TARGET_XFER_UNAVAILABLE);
947     default:
948       return "<unknown>";
949     }
950 #undef CASE
951 };
952 
953 
954 #undef	MIN
955 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
956 
957 /* target_read_string -- read a null terminated string, up to LEN bytes,
958    from MEMADDR in target.  Set *ERRNOP to the errno code, or 0 if successful.
959    Set *STRING to a pointer to malloc'd memory containing the data; the caller
960    is responsible for freeing it.  Return the number of bytes successfully
961    read.  */
962 
963 int
964 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
965 {
966   int tlen, offset, i;
967   gdb_byte buf[4];
968   int errcode = 0;
969   char *buffer;
970   int buffer_allocated;
971   char *bufptr;
972   unsigned int nbytes_read = 0;
973 
974   gdb_assert (string);
975 
976   /* Small for testing.  */
977   buffer_allocated = 4;
978   buffer = (char *) xmalloc (buffer_allocated);
979   bufptr = buffer;
980 
981   while (len > 0)
982     {
983       tlen = MIN (len, 4 - (memaddr & 3));
984       offset = memaddr & 3;
985 
986       errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
987       if (errcode != 0)
988 	{
989 	  /* The transfer request might have crossed the boundary to an
990 	     unallocated region of memory.  Retry the transfer, requesting
991 	     a single byte.  */
992 	  tlen = 1;
993 	  offset = 0;
994 	  errcode = target_read_memory (memaddr, buf, 1);
995 	  if (errcode != 0)
996 	    goto done;
997 	}
998 
999       if (bufptr - buffer + tlen > buffer_allocated)
1000 	{
1001 	  unsigned int bytes;
1002 
1003 	  bytes = bufptr - buffer;
1004 	  buffer_allocated *= 2;
1005 	  buffer = (char *) xrealloc (buffer, buffer_allocated);
1006 	  bufptr = buffer + bytes;
1007 	}
1008 
1009       for (i = 0; i < tlen; i++)
1010 	{
1011 	  *bufptr++ = buf[i + offset];
1012 	  if (buf[i + offset] == '\000')
1013 	    {
1014 	      nbytes_read += i + 1;
1015 	      goto done;
1016 	    }
1017 	}
1018 
1019       memaddr += tlen;
1020       len -= tlen;
1021       nbytes_read += tlen;
1022     }
1023 done:
1024   *string = buffer;
1025   if (errnop != NULL)
1026     *errnop = errcode;
1027   return nbytes_read;
1028 }
1029 
1030 struct target_section_table *
1031 target_get_section_table (struct target_ops *target)
1032 {
1033   return (*target->to_get_section_table) (target);
1034 }
1035 
1036 /* Find a section containing ADDR.  */
1037 
1038 struct target_section *
1039 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1040 {
1041   struct target_section_table *table = target_get_section_table (target);
1042   struct target_section *secp;
1043 
1044   if (table == NULL)
1045     return NULL;
1046 
1047   for (secp = table->sections; secp < table->sections_end; secp++)
1048     {
1049       if (addr >= secp->addr && addr < secp->endaddr)
1050 	return secp;
1051     }
1052   return NULL;
1053 }
1054 
1055 
1056 /* Helper for the memory xfer routines.  Checks the attributes of the
1057    memory region of MEMADDR against the read or write being attempted.
1058    If the access is permitted returns true, otherwise returns false.
1059    REGION_P is an optional output parameter.  If not-NULL, it is
1060    filled with a pointer to the memory region of MEMADDR.  REG_LEN
1061    returns LEN trimmed to the end of the region.  This is how much the
1062    caller can continue requesting, if the access is permitted.  A
1063    single xfer request must not straddle memory region boundaries.  */
1064 
1065 static int
1066 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1067 			  ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1068 			  struct mem_region **region_p)
1069 {
1070   struct mem_region *region;
1071 
1072   region = lookup_mem_region (memaddr);
1073 
1074   if (region_p != NULL)
1075     *region_p = region;
1076 
1077   switch (region->attrib.mode)
1078     {
1079     case MEM_RO:
1080       if (writebuf != NULL)
1081 	return 0;
1082       break;
1083 
1084     case MEM_WO:
1085       if (readbuf != NULL)
1086 	return 0;
1087       break;
1088 
1089     case MEM_FLASH:
1090       /* We only support writing to flash during "load" for now.  */
1091       if (writebuf != NULL)
1092 	error (_("Writing to flash memory forbidden in this context"));
1093       break;
1094 
1095     case MEM_NONE:
1096       return 0;
1097     }
1098 
1099   /* region->hi == 0 means there's no upper bound.  */
1100   if (memaddr + len < region->hi || region->hi == 0)
1101     *reg_len = len;
1102   else
1103     *reg_len = region->hi - memaddr;
1104 
1105   return 1;
1106 }
1107 
1108 /* Read memory from more than one valid target.  A core file, for
1109    instance, could have some of memory but delegate other bits to
1110    the target below it.  So, we must manually try all targets.  */
1111 
1112 enum target_xfer_status
1113 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1114 			 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1115 			 ULONGEST *xfered_len)
1116 {
1117   enum target_xfer_status res;
1118 
1119   do
1120     {
1121       res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1122 				  readbuf, writebuf, memaddr, len,
1123 				  xfered_len);
1124       if (res == TARGET_XFER_OK)
1125 	break;
1126 
1127       /* Stop if the target reports that the memory is not available.  */
1128       if (res == TARGET_XFER_UNAVAILABLE)
1129 	break;
1130 
1131       /* We want to continue past core files to executables, but not
1132 	 past a running target's memory.  */
1133       if (ops->to_has_all_memory (ops))
1134 	break;
1135 
1136       ops = ops->beneath;
1137     }
1138   while (ops != NULL);
1139 
1140   /* The cache works at the raw memory level.  Make sure the cache
1141      gets updated with raw contents no matter what kind of memory
1142      object was originally being written.  Note we do write-through
1143      first, so that if it fails, we don't write to the cache contents
1144      that never made it to the target.  */
1145   if (writebuf != NULL
1146       && !ptid_equal (inferior_ptid, null_ptid)
1147       && target_dcache_init_p ()
1148       && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1149     {
1150       DCACHE *dcache = target_dcache_get ();
1151 
1152       /* Note that writing to an area of memory which wasn't present
1153 	 in the cache doesn't cause it to be loaded in.  */
1154       dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1155     }
1156 
1157   return res;
1158 }
1159 
1160 /* Perform a partial memory transfer.
1161    For docs see target.h, to_xfer_partial.  */
1162 
1163 static enum target_xfer_status
1164 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1165 		       gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1166 		       ULONGEST len, ULONGEST *xfered_len)
1167 {
1168   enum target_xfer_status res;
1169   ULONGEST reg_len;
1170   struct mem_region *region;
1171   struct inferior *inf;
1172 
1173   /* For accesses to unmapped overlay sections, read directly from
1174      files.  Must do this first, as MEMADDR may need adjustment.  */
1175   if (readbuf != NULL && overlay_debugging)
1176     {
1177       struct obj_section *section = find_pc_overlay (memaddr);
1178 
1179       if (pc_in_unmapped_range (memaddr, section))
1180 	{
1181 	  struct target_section_table *table
1182 	    = target_get_section_table (ops);
1183 	  const char *section_name = section->the_bfd_section->name;
1184 
1185 	  memaddr = overlay_mapped_address (memaddr, section);
1186 	  return section_table_xfer_memory_partial (readbuf, writebuf,
1187 						    memaddr, len, xfered_len,
1188 						    table->sections,
1189 						    table->sections_end,
1190 						    section_name);
1191 	}
1192     }
1193 
1194   /* Try the executable files, if "trust-readonly-sections" is set.  */
1195   if (readbuf != NULL && trust_readonly)
1196     {
1197       struct target_section *secp;
1198       struct target_section_table *table;
1199 
1200       secp = target_section_by_addr (ops, memaddr);
1201       if (secp != NULL
1202 	  && (bfd_get_section_flags (secp->the_bfd_section->owner,
1203 				     secp->the_bfd_section)
1204 	      & SEC_READONLY))
1205 	{
1206 	  table = target_get_section_table (ops);
1207 	  return section_table_xfer_memory_partial (readbuf, writebuf,
1208 						    memaddr, len, xfered_len,
1209 						    table->sections,
1210 						    table->sections_end,
1211 						    NULL);
1212 	}
1213     }
1214 
1215   /* Try GDB's internal data cache.  */
1216 
1217   if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1218 				 &region))
1219     return TARGET_XFER_E_IO;
1220 
1221   if (!ptid_equal (inferior_ptid, null_ptid))
1222     inf = find_inferior_ptid (inferior_ptid);
1223   else
1224     inf = NULL;
1225 
1226   if (inf != NULL
1227       && readbuf != NULL
1228       /* The dcache reads whole cache lines; that doesn't play well
1229 	 with reading from a trace buffer, because reading outside of
1230 	 the collected memory range fails.  */
1231       && get_traceframe_number () == -1
1232       && (region->attrib.cache
1233 	  || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1234 	  || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1235     {
1236       DCACHE *dcache = target_dcache_get_or_init ();
1237 
1238       return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1239 					 reg_len, xfered_len);
1240     }
1241 
1242   /* If none of those methods found the memory we wanted, fall back
1243      to a target partial transfer.  Normally a single call to
1244      to_xfer_partial is enough; if it doesn't recognize an object
1245      it will call the to_xfer_partial of the next target down.
1246      But for memory this won't do.  Memory is the only target
1247      object which can be read from more than one valid target.
1248      A core file, for instance, could have some of memory but
1249      delegate other bits to the target below it.  So, we must
1250      manually try all targets.  */
1251 
1252   res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1253 				 xfered_len);
1254 
1255   /* If we still haven't got anything, return the last error.  We
1256      give up.  */
1257   return res;
1258 }
1259 
1260 /* Perform a partial memory transfer.  For docs see target.h,
1261    to_xfer_partial.  */
1262 
1263 static enum target_xfer_status
1264 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1265 		     gdb_byte *readbuf, const gdb_byte *writebuf,
1266 		     ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1267 {
1268   enum target_xfer_status res;
1269 
1270   /* Zero length requests are ok and require no work.  */
1271   if (len == 0)
1272     return TARGET_XFER_EOF;
1273 
1274   /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1275      breakpoint insns, thus hiding out from higher layers whether
1276      there are software breakpoints inserted in the code stream.  */
1277   if (readbuf != NULL)
1278     {
1279       res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1280 				   xfered_len);
1281 
1282       if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1283 	breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1284     }
1285   else
1286     {
1287       gdb_byte *buf;
1288       struct cleanup *old_chain;
1289 
1290       /* A large write request is likely to be partially satisfied
1291 	 by memory_xfer_partial_1.  We will continually malloc
1292 	 and free a copy of the entire write request for breakpoint
1293 	 shadow handling even though we only end up writing a small
1294 	 subset of it.  Cap writes to a limit specified by the target
1295 	 to mitigate this.  */
1296       len = std::min (ops->to_get_memory_xfer_limit (ops), len);
1297 
1298       buf = (gdb_byte *) xmalloc (len);
1299       old_chain = make_cleanup (xfree, buf);
1300       memcpy (buf, writebuf, len);
1301 
1302       breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1303       res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1304 				   xfered_len);
1305 
1306       do_cleanups (old_chain);
1307     }
1308 
1309   return res;
1310 }
1311 
1312 static void
1313 restore_show_memory_breakpoints (void *arg)
1314 {
1315   show_memory_breakpoints = (uintptr_t) arg;
1316 }
1317 
1318 struct cleanup *
1319 make_show_memory_breakpoints_cleanup (int show)
1320 {
1321   int current = show_memory_breakpoints;
1322 
1323   show_memory_breakpoints = show;
1324   return make_cleanup (restore_show_memory_breakpoints,
1325 		       (void *) (uintptr_t) current);
1326 }
1327 
1328 /* For docs see target.h, to_xfer_partial.  */
1329 
1330 enum target_xfer_status
1331 target_xfer_partial (struct target_ops *ops,
1332 		     enum target_object object, const char *annex,
1333 		     gdb_byte *readbuf, const gdb_byte *writebuf,
1334 		     ULONGEST offset, ULONGEST len,
1335 		     ULONGEST *xfered_len)
1336 {
1337   enum target_xfer_status retval;
1338 
1339   gdb_assert (ops->to_xfer_partial != NULL);
1340 
1341   /* Transfer is done when LEN is zero.  */
1342   if (len == 0)
1343     return TARGET_XFER_EOF;
1344 
1345   if (writebuf && !may_write_memory)
1346     error (_("Writing to memory is not allowed (addr %s, len %s)"),
1347 	   core_addr_to_string_nz (offset), plongest (len));
1348 
1349   *xfered_len = 0;
1350 
1351   /* If this is a memory transfer, let the memory-specific code
1352      have a look at it instead.  Memory transfers are more
1353      complicated.  */
1354   if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1355       || object == TARGET_OBJECT_CODE_MEMORY)
1356     retval = memory_xfer_partial (ops, object, readbuf,
1357 				  writebuf, offset, len, xfered_len);
1358   else if (object == TARGET_OBJECT_RAW_MEMORY)
1359     {
1360       /* Skip/avoid accessing the target if the memory region
1361 	 attributes block the access.  Check this here instead of in
1362 	 raw_memory_xfer_partial as otherwise we'd end up checking
1363 	 this twice in the case of the memory_xfer_partial path is
1364 	 taken; once before checking the dcache, and another in the
1365 	 tail call to raw_memory_xfer_partial.  */
1366       if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1367 				     NULL))
1368 	return TARGET_XFER_E_IO;
1369 
1370       /* Request the normal memory object from other layers.  */
1371       retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1372 					xfered_len);
1373     }
1374   else
1375     retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1376 				   writebuf, offset, len, xfered_len);
1377 
1378   if (targetdebug)
1379     {
1380       const unsigned char *myaddr = NULL;
1381 
1382       fprintf_unfiltered (gdb_stdlog,
1383 			  "%s:target_xfer_partial "
1384 			  "(%d, %s, %s, %s, %s, %s) = %d, %s",
1385 			  ops->to_shortname,
1386 			  (int) object,
1387 			  (annex ? annex : "(null)"),
1388 			  host_address_to_string (readbuf),
1389 			  host_address_to_string (writebuf),
1390 			  core_addr_to_string_nz (offset),
1391 			  pulongest (len), retval,
1392 			  pulongest (*xfered_len));
1393 
1394       if (readbuf)
1395 	myaddr = readbuf;
1396       if (writebuf)
1397 	myaddr = writebuf;
1398       if (retval == TARGET_XFER_OK && myaddr != NULL)
1399 	{
1400 	  int i;
1401 
1402 	  fputs_unfiltered (", bytes =", gdb_stdlog);
1403 	  for (i = 0; i < *xfered_len; i++)
1404 	    {
1405 	      if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1406 		{
1407 		  if (targetdebug < 2 && i > 0)
1408 		    {
1409 		      fprintf_unfiltered (gdb_stdlog, " ...");
1410 		      break;
1411 		    }
1412 		  fprintf_unfiltered (gdb_stdlog, "\n");
1413 		}
1414 
1415 	      fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1416 	    }
1417 	}
1418 
1419       fputc_unfiltered ('\n', gdb_stdlog);
1420     }
1421 
1422   /* Check implementations of to_xfer_partial update *XFERED_LEN
1423      properly.  Do assertion after printing debug messages, so that we
1424      can find more clues on assertion failure from debugging messages.  */
1425   if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1426     gdb_assert (*xfered_len > 0);
1427 
1428   return retval;
1429 }
1430 
1431 /* Read LEN bytes of target memory at address MEMADDR, placing the
1432    results in GDB's memory at MYADDR.  Returns either 0 for success or
1433    -1 if any error occurs.
1434 
1435    If an error occurs, no guarantee is made about the contents of the data at
1436    MYADDR.  In particular, the caller should not depend upon partial reads
1437    filling the buffer with good data.  There is no way for the caller to know
1438    how much good data might have been transfered anyway.  Callers that can
1439    deal with partial reads should call target_read (which will retry until
1440    it makes no progress, and then return how much was transferred).  */
1441 
1442 int
1443 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1444 {
1445   /* Dispatch to the topmost target, not the flattened current_target.
1446      Memory accesses check target->to_has_(all_)memory, and the
1447      flattened target doesn't inherit those.  */
1448   if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1449 		   myaddr, memaddr, len) == len)
1450     return 0;
1451   else
1452     return -1;
1453 }
1454 
1455 /* See target/target.h.  */
1456 
1457 int
1458 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1459 {
1460   gdb_byte buf[4];
1461   int r;
1462 
1463   r = target_read_memory (memaddr, buf, sizeof buf);
1464   if (r != 0)
1465     return r;
1466   *result = extract_unsigned_integer (buf, sizeof buf,
1467 				      gdbarch_byte_order (target_gdbarch ()));
1468   return 0;
1469 }
1470 
1471 /* Like target_read_memory, but specify explicitly that this is a read
1472    from the target's raw memory.  That is, this read bypasses the
1473    dcache, breakpoint shadowing, etc.  */
1474 
1475 int
1476 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1477 {
1478   /* See comment in target_read_memory about why the request starts at
1479      current_target.beneath.  */
1480   if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1481 		   myaddr, memaddr, len) == len)
1482     return 0;
1483   else
1484     return -1;
1485 }
1486 
1487 /* Like target_read_memory, but specify explicitly that this is a read from
1488    the target's stack.  This may trigger different cache behavior.  */
1489 
1490 int
1491 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1492 {
1493   /* See comment in target_read_memory about why the request starts at
1494      current_target.beneath.  */
1495   if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1496 		   myaddr, memaddr, len) == len)
1497     return 0;
1498   else
1499     return -1;
1500 }
1501 
1502 /* Like target_read_memory, but specify explicitly that this is a read from
1503    the target's code.  This may trigger different cache behavior.  */
1504 
1505 int
1506 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1507 {
1508   /* See comment in target_read_memory about why the request starts at
1509      current_target.beneath.  */
1510   if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1511 		   myaddr, memaddr, len) == len)
1512     return 0;
1513   else
1514     return -1;
1515 }
1516 
1517 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1518    Returns either 0 for success or -1 if any error occurs.  If an
1519    error occurs, no guarantee is made about how much data got written.
1520    Callers that can deal with partial writes should call
1521    target_write.  */
1522 
1523 int
1524 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1525 {
1526   /* See comment in target_read_memory about why the request starts at
1527      current_target.beneath.  */
1528   if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1529 		    myaddr, memaddr, len) == len)
1530     return 0;
1531   else
1532     return -1;
1533 }
1534 
1535 /* Write LEN bytes from MYADDR to target raw memory at address
1536    MEMADDR.  Returns either 0 for success or -1 if any error occurs.
1537    If an error occurs, no guarantee is made about how much data got
1538    written.  Callers that can deal with partial writes should call
1539    target_write.  */
1540 
1541 int
1542 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1543 {
1544   /* See comment in target_read_memory about why the request starts at
1545      current_target.beneath.  */
1546   if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1547 		    myaddr, memaddr, len) == len)
1548     return 0;
1549   else
1550     return -1;
1551 }
1552 
1553 /* Fetch the target's memory map.  */
1554 
1555 VEC(mem_region_s) *
1556 target_memory_map (void)
1557 {
1558   VEC(mem_region_s) *result;
1559   struct mem_region *last_one, *this_one;
1560   int ix;
1561   result = current_target.to_memory_map (&current_target);
1562   if (result == NULL)
1563     return NULL;
1564 
1565   qsort (VEC_address (mem_region_s, result),
1566 	 VEC_length (mem_region_s, result),
1567 	 sizeof (struct mem_region), mem_region_cmp);
1568 
1569   /* Check that regions do not overlap.  Simultaneously assign
1570      a numbering for the "mem" commands to use to refer to
1571      each region.  */
1572   last_one = NULL;
1573   for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1574     {
1575       this_one->number = ix;
1576 
1577       if (last_one && last_one->hi > this_one->lo)
1578 	{
1579 	  warning (_("Overlapping regions in memory map: ignoring"));
1580 	  VEC_free (mem_region_s, result);
1581 	  return NULL;
1582 	}
1583       last_one = this_one;
1584     }
1585 
1586   return result;
1587 }
1588 
1589 void
1590 target_flash_erase (ULONGEST address, LONGEST length)
1591 {
1592   current_target.to_flash_erase (&current_target, address, length);
1593 }
1594 
1595 void
1596 target_flash_done (void)
1597 {
1598   current_target.to_flash_done (&current_target);
1599 }
1600 
1601 static void
1602 show_trust_readonly (struct ui_file *file, int from_tty,
1603 		     struct cmd_list_element *c, const char *value)
1604 {
1605   fprintf_filtered (file,
1606 		    _("Mode for reading from readonly sections is %s.\n"),
1607 		    value);
1608 }
1609 
1610 /* Target vector read/write partial wrapper functions.  */
1611 
1612 static enum target_xfer_status
1613 target_read_partial (struct target_ops *ops,
1614 		     enum target_object object,
1615 		     const char *annex, gdb_byte *buf,
1616 		     ULONGEST offset, ULONGEST len,
1617 		     ULONGEST *xfered_len)
1618 {
1619   return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1620 			      xfered_len);
1621 }
1622 
1623 static enum target_xfer_status
1624 target_write_partial (struct target_ops *ops,
1625 		      enum target_object object,
1626 		      const char *annex, const gdb_byte *buf,
1627 		      ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1628 {
1629   return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1630 			      xfered_len);
1631 }
1632 
1633 /* Wrappers to perform the full transfer.  */
1634 
1635 /* For docs on target_read see target.h.  */
1636 
1637 LONGEST
1638 target_read (struct target_ops *ops,
1639 	     enum target_object object,
1640 	     const char *annex, gdb_byte *buf,
1641 	     ULONGEST offset, LONGEST len)
1642 {
1643   LONGEST xfered_total = 0;
1644   int unit_size = 1;
1645 
1646   /* If we are reading from a memory object, find the length of an addressable
1647      unit for that architecture.  */
1648   if (object == TARGET_OBJECT_MEMORY
1649       || object == TARGET_OBJECT_STACK_MEMORY
1650       || object == TARGET_OBJECT_CODE_MEMORY
1651       || object == TARGET_OBJECT_RAW_MEMORY)
1652     unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1653 
1654   while (xfered_total < len)
1655     {
1656       ULONGEST xfered_partial;
1657       enum target_xfer_status status;
1658 
1659       status = target_read_partial (ops, object, annex,
1660 				    buf + xfered_total * unit_size,
1661 				    offset + xfered_total, len - xfered_total,
1662 				    &xfered_partial);
1663 
1664       /* Call an observer, notifying them of the xfer progress?  */
1665       if (status == TARGET_XFER_EOF)
1666 	return xfered_total;
1667       else if (status == TARGET_XFER_OK)
1668 	{
1669 	  xfered_total += xfered_partial;
1670 	  QUIT;
1671 	}
1672       else
1673 	return TARGET_XFER_E_IO;
1674 
1675     }
1676   return len;
1677 }
1678 
1679 /* Assuming that the entire [begin, end) range of memory cannot be
1680    read, try to read whatever subrange is possible to read.
1681 
1682    The function returns, in RESULT, either zero or one memory block.
1683    If there's a readable subrange at the beginning, it is completely
1684    read and returned.  Any further readable subrange will not be read.
1685    Otherwise, if there's a readable subrange at the end, it will be
1686    completely read and returned.  Any readable subranges before it
1687    (obviously, not starting at the beginning), will be ignored.  In
1688    other cases -- either no readable subrange, or readable subrange(s)
1689    that is neither at the beginning, or end, nothing is returned.
1690 
1691    The purpose of this function is to handle a read across a boundary
1692    of accessible memory in a case when memory map is not available.
1693    The above restrictions are fine for this case, but will give
1694    incorrect results if the memory is 'patchy'.  However, supporting
1695    'patchy' memory would require trying to read every single byte,
1696    and it seems unacceptable solution.  Explicit memory map is
1697    recommended for this case -- and target_read_memory_robust will
1698    take care of reading multiple ranges then.  */
1699 
1700 static void
1701 read_whatever_is_readable (struct target_ops *ops,
1702 			   const ULONGEST begin, const ULONGEST end,
1703 			   int unit_size,
1704 			   VEC(memory_read_result_s) **result)
1705 {
1706   gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1707   ULONGEST current_begin = begin;
1708   ULONGEST current_end = end;
1709   int forward;
1710   memory_read_result_s r;
1711   ULONGEST xfered_len;
1712 
1713   /* If we previously failed to read 1 byte, nothing can be done here.  */
1714   if (end - begin <= 1)
1715     {
1716       xfree (buf);
1717       return;
1718     }
1719 
1720   /* Check that either first or the last byte is readable, and give up
1721      if not.  This heuristic is meant to permit reading accessible memory
1722      at the boundary of accessible region.  */
1723   if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1724 			   buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1725     {
1726       forward = 1;
1727       ++current_begin;
1728     }
1729   else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1730 				buf + (end - begin) - 1, end - 1, 1,
1731 				&xfered_len) == TARGET_XFER_OK)
1732     {
1733       forward = 0;
1734       --current_end;
1735     }
1736   else
1737     {
1738       xfree (buf);
1739       return;
1740     }
1741 
1742   /* Loop invariant is that the [current_begin, current_end) was previously
1743      found to be not readable as a whole.
1744 
1745      Note loop condition -- if the range has 1 byte, we can't divide the range
1746      so there's no point trying further.  */
1747   while (current_end - current_begin > 1)
1748     {
1749       ULONGEST first_half_begin, first_half_end;
1750       ULONGEST second_half_begin, second_half_end;
1751       LONGEST xfer;
1752       ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1753 
1754       if (forward)
1755 	{
1756 	  first_half_begin = current_begin;
1757 	  first_half_end = middle;
1758 	  second_half_begin = middle;
1759 	  second_half_end = current_end;
1760 	}
1761       else
1762 	{
1763 	  first_half_begin = middle;
1764 	  first_half_end = current_end;
1765 	  second_half_begin = current_begin;
1766 	  second_half_end = middle;
1767 	}
1768 
1769       xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1770 			  buf + (first_half_begin - begin) * unit_size,
1771 			  first_half_begin,
1772 			  first_half_end - first_half_begin);
1773 
1774       if (xfer == first_half_end - first_half_begin)
1775 	{
1776 	  /* This half reads up fine.  So, the error must be in the
1777 	     other half.  */
1778 	  current_begin = second_half_begin;
1779 	  current_end = second_half_end;
1780 	}
1781       else
1782 	{
1783 	  /* This half is not readable.  Because we've tried one byte, we
1784 	     know some part of this half if actually readable.  Go to the next
1785 	     iteration to divide again and try to read.
1786 
1787 	     We don't handle the other half, because this function only tries
1788 	     to read a single readable subrange.  */
1789 	  current_begin = first_half_begin;
1790 	  current_end = first_half_end;
1791 	}
1792     }
1793 
1794   if (forward)
1795     {
1796       /* The [begin, current_begin) range has been read.  */
1797       r.begin = begin;
1798       r.end = current_begin;
1799       r.data = buf;
1800     }
1801   else
1802     {
1803       /* The [current_end, end) range has been read.  */
1804       LONGEST region_len = end - current_end;
1805 
1806       r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1807       memcpy (r.data, buf + (current_end - begin) * unit_size,
1808 	      region_len * unit_size);
1809       r.begin = current_end;
1810       r.end = end;
1811       xfree (buf);
1812     }
1813   VEC_safe_push(memory_read_result_s, (*result), &r);
1814 }
1815 
1816 void
1817 free_memory_read_result_vector (void *x)
1818 {
1819   VEC(memory_read_result_s) **v = (VEC(memory_read_result_s) **) x;
1820   memory_read_result_s *current;
1821   int ix;
1822 
1823   for (ix = 0; VEC_iterate (memory_read_result_s, *v, ix, current); ++ix)
1824     {
1825       xfree (current->data);
1826     }
1827   VEC_free (memory_read_result_s, *v);
1828 }
1829 
1830 VEC(memory_read_result_s) *
1831 read_memory_robust (struct target_ops *ops,
1832 		    const ULONGEST offset, const LONGEST len)
1833 {
1834   VEC(memory_read_result_s) *result = 0;
1835   int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1836   struct cleanup *cleanup = make_cleanup (free_memory_read_result_vector,
1837 					  &result);
1838 
1839   LONGEST xfered_total = 0;
1840   while (xfered_total < len)
1841     {
1842       struct mem_region *region = lookup_mem_region (offset + xfered_total);
1843       LONGEST region_len;
1844 
1845       /* If there is no explicit region, a fake one should be created.  */
1846       gdb_assert (region);
1847 
1848       if (region->hi == 0)
1849 	region_len = len - xfered_total;
1850       else
1851 	region_len = region->hi - offset;
1852 
1853       if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1854 	{
1855 	  /* Cannot read this region.  Note that we can end up here only
1856 	     if the region is explicitly marked inaccessible, or
1857 	     'inaccessible-by-default' is in effect.  */
1858 	  xfered_total += region_len;
1859 	}
1860       else
1861 	{
1862 	  LONGEST to_read = std::min (len - xfered_total, region_len);
1863 	  gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1864 	  struct cleanup *inner_cleanup = make_cleanup (xfree, buffer);
1865 
1866 	  LONGEST xfered_partial =
1867 	      target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1868 			   (gdb_byte *) buffer,
1869 			   offset + xfered_total, to_read);
1870 	  /* Call an observer, notifying them of the xfer progress?  */
1871 	  if (xfered_partial <= 0)
1872 	    {
1873 	      /* Got an error reading full chunk.  See if maybe we can read
1874 		 some subrange.  */
1875 	      do_cleanups (inner_cleanup);
1876 	      read_whatever_is_readable (ops, offset + xfered_total,
1877 					 offset + xfered_total + to_read,
1878 					 unit_size, &result);
1879 	      xfered_total += to_read;
1880 	    }
1881 	  else
1882 	    {
1883 	      struct memory_read_result r;
1884 
1885 	      discard_cleanups (inner_cleanup);
1886 	      r.data = buffer;
1887 	      r.begin = offset + xfered_total;
1888 	      r.end = r.begin + xfered_partial;
1889 	      VEC_safe_push (memory_read_result_s, result, &r);
1890 	      xfered_total += xfered_partial;
1891 	    }
1892 	  QUIT;
1893 	}
1894     }
1895 
1896   discard_cleanups (cleanup);
1897   return result;
1898 }
1899 
1900 
1901 /* An alternative to target_write with progress callbacks.  */
1902 
1903 LONGEST
1904 target_write_with_progress (struct target_ops *ops,
1905 			    enum target_object object,
1906 			    const char *annex, const gdb_byte *buf,
1907 			    ULONGEST offset, LONGEST len,
1908 			    void (*progress) (ULONGEST, void *), void *baton)
1909 {
1910   LONGEST xfered_total = 0;
1911   int unit_size = 1;
1912 
1913   /* If we are writing to a memory object, find the length of an addressable
1914      unit for that architecture.  */
1915   if (object == TARGET_OBJECT_MEMORY
1916       || object == TARGET_OBJECT_STACK_MEMORY
1917       || object == TARGET_OBJECT_CODE_MEMORY
1918       || object == TARGET_OBJECT_RAW_MEMORY)
1919     unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1920 
1921   /* Give the progress callback a chance to set up.  */
1922   if (progress)
1923     (*progress) (0, baton);
1924 
1925   while (xfered_total < len)
1926     {
1927       ULONGEST xfered_partial;
1928       enum target_xfer_status status;
1929 
1930       status = target_write_partial (ops, object, annex,
1931 				     buf + xfered_total * unit_size,
1932 				     offset + xfered_total, len - xfered_total,
1933 				     &xfered_partial);
1934 
1935       if (status != TARGET_XFER_OK)
1936 	return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1937 
1938       if (progress)
1939 	(*progress) (xfered_partial, baton);
1940 
1941       xfered_total += xfered_partial;
1942       QUIT;
1943     }
1944   return len;
1945 }
1946 
1947 /* For docs on target_write see target.h.  */
1948 
1949 LONGEST
1950 target_write (struct target_ops *ops,
1951 	      enum target_object object,
1952 	      const char *annex, const gdb_byte *buf,
1953 	      ULONGEST offset, LONGEST len)
1954 {
1955   return target_write_with_progress (ops, object, annex, buf, offset, len,
1956 				     NULL, NULL);
1957 }
1958 
1959 /* Read OBJECT/ANNEX using OPS.  Store the result in *BUF_P and return
1960    the size of the transferred data.  PADDING additional bytes are
1961    available in *BUF_P.  This is a helper function for
1962    target_read_alloc; see the declaration of that function for more
1963    information.  */
1964 
1965 static LONGEST
1966 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1967 		     const char *annex, gdb_byte **buf_p, int padding)
1968 {
1969   size_t buf_alloc, buf_pos;
1970   gdb_byte *buf;
1971 
1972   /* This function does not have a length parameter; it reads the
1973      entire OBJECT).  Also, it doesn't support objects fetched partly
1974      from one target and partly from another (in a different stratum,
1975      e.g. a core file and an executable).  Both reasons make it
1976      unsuitable for reading memory.  */
1977   gdb_assert (object != TARGET_OBJECT_MEMORY);
1978 
1979   /* Start by reading up to 4K at a time.  The target will throttle
1980      this number down if necessary.  */
1981   buf_alloc = 4096;
1982   buf = (gdb_byte *) xmalloc (buf_alloc);
1983   buf_pos = 0;
1984   while (1)
1985     {
1986       ULONGEST xfered_len;
1987       enum target_xfer_status status;
1988 
1989       status = target_read_partial (ops, object, annex, &buf[buf_pos],
1990 				    buf_pos, buf_alloc - buf_pos - padding,
1991 				    &xfered_len);
1992 
1993       if (status == TARGET_XFER_EOF)
1994 	{
1995 	  /* Read all there was.  */
1996 	  if (buf_pos == 0)
1997 	    xfree (buf);
1998 	  else
1999 	    *buf_p = buf;
2000 	  return buf_pos;
2001 	}
2002       else if (status != TARGET_XFER_OK)
2003 	{
2004 	  /* An error occurred.  */
2005 	  xfree (buf);
2006 	  return TARGET_XFER_E_IO;
2007 	}
2008 
2009       buf_pos += xfered_len;
2010 
2011       /* If the buffer is filling up, expand it.  */
2012       if (buf_alloc < buf_pos * 2)
2013 	{
2014 	  buf_alloc *= 2;
2015 	  buf = (gdb_byte *) xrealloc (buf, buf_alloc);
2016 	}
2017 
2018       QUIT;
2019     }
2020 }
2021 
2022 /* Read OBJECT/ANNEX using OPS.  Store the result in *BUF_P and return
2023    the size of the transferred data.  See the declaration in "target.h"
2024    function for more information about the return value.  */
2025 
2026 LONGEST
2027 target_read_alloc (struct target_ops *ops, enum target_object object,
2028 		   const char *annex, gdb_byte **buf_p)
2029 {
2030   return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2031 }
2032 
2033 /* Read OBJECT/ANNEX using OPS.  The result is NUL-terminated and
2034    returned as a string, allocated using xmalloc.  If an error occurs
2035    or the transfer is unsupported, NULL is returned.  Empty objects
2036    are returned as allocated but empty strings.  A warning is issued
2037    if the result contains any embedded NUL bytes.  */
2038 
2039 char *
2040 target_read_stralloc (struct target_ops *ops, enum target_object object,
2041 		      const char *annex)
2042 {
2043   gdb_byte *buffer;
2044   char *bufstr;
2045   LONGEST i, transferred;
2046 
2047   transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2048   bufstr = (char *) buffer;
2049 
2050   if (transferred < 0)
2051     return NULL;
2052 
2053   if (transferred == 0)
2054     return xstrdup ("");
2055 
2056   bufstr[transferred] = 0;
2057 
2058   /* Check for embedded NUL bytes; but allow trailing NULs.  */
2059   for (i = strlen (bufstr); i < transferred; i++)
2060     if (bufstr[i] != 0)
2061       {
2062 	warning (_("target object %d, annex %s, "
2063 		   "contained unexpected null characters"),
2064 		 (int) object, annex ? annex : "(none)");
2065 	break;
2066       }
2067 
2068   return bufstr;
2069 }
2070 
2071 /* Memory transfer methods.  */
2072 
2073 void
2074 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2075 		   LONGEST len)
2076 {
2077   /* This method is used to read from an alternate, non-current
2078      target.  This read must bypass the overlay support (as symbols
2079      don't match this target), and GDB's internal cache (wrong cache
2080      for this target).  */
2081   if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2082       != len)
2083     memory_error (TARGET_XFER_E_IO, addr);
2084 }
2085 
2086 ULONGEST
2087 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2088 			    int len, enum bfd_endian byte_order)
2089 {
2090   gdb_byte buf[sizeof (ULONGEST)];
2091 
2092   gdb_assert (len <= sizeof (buf));
2093   get_target_memory (ops, addr, buf, len);
2094   return extract_unsigned_integer (buf, len, byte_order);
2095 }
2096 
2097 /* See target.h.  */
2098 
2099 int
2100 target_insert_breakpoint (struct gdbarch *gdbarch,
2101 			  struct bp_target_info *bp_tgt)
2102 {
2103   if (!may_insert_breakpoints)
2104     {
2105       warning (_("May not insert breakpoints"));
2106       return 1;
2107     }
2108 
2109   return current_target.to_insert_breakpoint (&current_target,
2110 					      gdbarch, bp_tgt);
2111 }
2112 
2113 /* See target.h.  */
2114 
2115 int
2116 target_remove_breakpoint (struct gdbarch *gdbarch,
2117 			  struct bp_target_info *bp_tgt,
2118 			  enum remove_bp_reason reason)
2119 {
2120   /* This is kind of a weird case to handle, but the permission might
2121      have been changed after breakpoints were inserted - in which case
2122      we should just take the user literally and assume that any
2123      breakpoints should be left in place.  */
2124   if (!may_insert_breakpoints)
2125     {
2126       warning (_("May not remove breakpoints"));
2127       return 1;
2128     }
2129 
2130   return current_target.to_remove_breakpoint (&current_target,
2131 					      gdbarch, bp_tgt, reason);
2132 }
2133 
2134 static void
2135 target_info (char *args, int from_tty)
2136 {
2137   struct target_ops *t;
2138   int has_all_mem = 0;
2139 
2140   if (symfile_objfile != NULL)
2141     printf_unfiltered (_("Symbols from \"%s\".\n"),
2142 		       objfile_name (symfile_objfile));
2143 
2144   for (t = target_stack; t != NULL; t = t->beneath)
2145     {
2146       if (!(*t->to_has_memory) (t))
2147 	continue;
2148 
2149       if ((int) (t->to_stratum) <= (int) dummy_stratum)
2150 	continue;
2151       if (has_all_mem)
2152 	printf_unfiltered (_("\tWhile running this, "
2153 			     "GDB does not access memory from...\n"));
2154       printf_unfiltered ("%s:\n", t->to_longname);
2155       (t->to_files_info) (t);
2156       has_all_mem = (*t->to_has_all_memory) (t);
2157     }
2158 }
2159 
2160 /* This function is called before any new inferior is created, e.g.
2161    by running a program, attaching, or connecting to a target.
2162    It cleans up any state from previous invocations which might
2163    change between runs.  This is a subset of what target_preopen
2164    resets (things which might change between targets).  */
2165 
2166 void
2167 target_pre_inferior (int from_tty)
2168 {
2169   /* Clear out solib state.  Otherwise the solib state of the previous
2170      inferior might have survived and is entirely wrong for the new
2171      target.  This has been observed on GNU/Linux using glibc 2.3.  How
2172      to reproduce:
2173 
2174      bash$ ./foo&
2175      [1] 4711
2176      bash$ ./foo&
2177      [1] 4712
2178      bash$ gdb ./foo
2179      [...]
2180      (gdb) attach 4711
2181      (gdb) detach
2182      (gdb) attach 4712
2183      Cannot access memory at address 0xdeadbeef
2184   */
2185 
2186   /* In some OSs, the shared library list is the same/global/shared
2187      across inferiors.  If code is shared between processes, so are
2188      memory regions and features.  */
2189   if (!gdbarch_has_global_solist (target_gdbarch ()))
2190     {
2191       no_shared_libraries (NULL, from_tty);
2192 
2193       invalidate_target_mem_regions ();
2194 
2195       target_clear_description ();
2196     }
2197 
2198   /* attach_flag may be set if the previous process associated with
2199      the inferior was attached to.  */
2200   current_inferior ()->attach_flag = 0;
2201 
2202   current_inferior ()->highest_thread_num = 0;
2203 
2204   agent_capability_invalidate ();
2205 }
2206 
2207 /* Callback for iterate_over_inferiors.  Gets rid of the given
2208    inferior.  */
2209 
2210 static int
2211 dispose_inferior (struct inferior *inf, void *args)
2212 {
2213   struct thread_info *thread;
2214 
2215   thread = any_thread_of_process (inf->pid);
2216   if (thread)
2217     {
2218       switch_to_thread (thread->ptid);
2219 
2220       /* Core inferiors actually should be detached, not killed.  */
2221       if (target_has_execution)
2222 	target_kill ();
2223       else
2224 	target_detach (NULL, 0);
2225     }
2226 
2227   return 0;
2228 }
2229 
2230 /* This is to be called by the open routine before it does
2231    anything.  */
2232 
2233 void
2234 target_preopen (int from_tty)
2235 {
2236   dont_repeat ();
2237 
2238   if (have_inferiors ())
2239     {
2240       if (!from_tty
2241 	  || !have_live_inferiors ()
2242 	  || query (_("A program is being debugged already.  Kill it? ")))
2243 	iterate_over_inferiors (dispose_inferior, NULL);
2244       else
2245 	error (_("Program not killed."));
2246     }
2247 
2248   /* Calling target_kill may remove the target from the stack.  But if
2249      it doesn't (which seems like a win for UDI), remove it now.  */
2250   /* Leave the exec target, though.  The user may be switching from a
2251      live process to a core of the same program.  */
2252   pop_all_targets_above (file_stratum);
2253 
2254   target_pre_inferior (from_tty);
2255 }
2256 
2257 /* Detach a target after doing deferred register stores.  */
2258 
2259 void
2260 target_detach (const char *args, int from_tty)
2261 {
2262   if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2263     /* Don't remove global breakpoints here.  They're removed on
2264        disconnection from the target.  */
2265     ;
2266   else
2267     /* If we're in breakpoints-always-inserted mode, have to remove
2268        them before detaching.  */
2269     remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2270 
2271   prepare_for_detach ();
2272 
2273   current_target.to_detach (&current_target, args, from_tty);
2274 }
2275 
2276 void
2277 target_disconnect (const char *args, int from_tty)
2278 {
2279   /* If we're in breakpoints-always-inserted mode or if breakpoints
2280      are global across processes, we have to remove them before
2281      disconnecting.  */
2282   remove_breakpoints ();
2283 
2284   current_target.to_disconnect (&current_target, args, from_tty);
2285 }
2286 
2287 /* See target/target.h.  */
2288 
2289 ptid_t
2290 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2291 {
2292   return (current_target.to_wait) (&current_target, ptid, status, options);
2293 }
2294 
2295 /* See target.h.  */
2296 
2297 ptid_t
2298 default_target_wait (struct target_ops *ops,
2299 		     ptid_t ptid, struct target_waitstatus *status,
2300 		     int options)
2301 {
2302   status->kind = TARGET_WAITKIND_IGNORE;
2303   return minus_one_ptid;
2304 }
2305 
2306 const char *
2307 target_pid_to_str (ptid_t ptid)
2308 {
2309   return (*current_target.to_pid_to_str) (&current_target, ptid);
2310 }
2311 
2312 const char *
2313 target_thread_name (struct thread_info *info)
2314 {
2315   return current_target.to_thread_name (&current_target, info);
2316 }
2317 
2318 void
2319 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2320 {
2321   target_dcache_invalidate ();
2322 
2323   current_target.to_resume (&current_target, ptid, step, signal);
2324 
2325   registers_changed_ptid (ptid);
2326   /* We only set the internal executing state here.  The user/frontend
2327      running state is set at a higher level.  */
2328   set_executing (ptid, 1);
2329   clear_inline_frame_state (ptid);
2330 }
2331 
2332 /* If true, target_commit_resume is a nop.  */
2333 static int defer_target_commit_resume;
2334 
2335 /* See target.h.  */
2336 
2337 void
2338 target_commit_resume (void)
2339 {
2340   struct target_ops *t;
2341 
2342   if (defer_target_commit_resume)
2343     return;
2344 
2345   current_target.to_commit_resume (&current_target);
2346 }
2347 
2348 /* See target.h.  */
2349 
2350 struct cleanup *
2351 make_cleanup_defer_target_commit_resume (void)
2352 {
2353   struct cleanup *old_chain;
2354 
2355   old_chain = make_cleanup_restore_integer (&defer_target_commit_resume);
2356   defer_target_commit_resume = 1;
2357   return old_chain;
2358 }
2359 
2360 void
2361 target_pass_signals (int numsigs, unsigned char *pass_signals)
2362 {
2363   (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2364 }
2365 
2366 void
2367 target_program_signals (int numsigs, unsigned char *program_signals)
2368 {
2369   (*current_target.to_program_signals) (&current_target,
2370 					numsigs, program_signals);
2371 }
2372 
2373 static int
2374 default_follow_fork (struct target_ops *self, int follow_child,
2375 		     int detach_fork)
2376 {
2377   /* Some target returned a fork event, but did not know how to follow it.  */
2378   internal_error (__FILE__, __LINE__,
2379 		  _("could not find a target to follow fork"));
2380 }
2381 
2382 /* Look through the list of possible targets for a target that can
2383    follow forks.  */
2384 
2385 int
2386 target_follow_fork (int follow_child, int detach_fork)
2387 {
2388   return current_target.to_follow_fork (&current_target,
2389 					follow_child, detach_fork);
2390 }
2391 
2392 /* Target wrapper for follow exec hook.  */
2393 
2394 void
2395 target_follow_exec (struct inferior *inf, char *execd_pathname)
2396 {
2397   current_target.to_follow_exec (&current_target, inf, execd_pathname);
2398 }
2399 
2400 static void
2401 default_mourn_inferior (struct target_ops *self)
2402 {
2403   internal_error (__FILE__, __LINE__,
2404 		  _("could not find a target to follow mourn inferior"));
2405 }
2406 
2407 void
2408 target_mourn_inferior (ptid_t ptid)
2409 {
2410   gdb_assert (ptid_equal (ptid, inferior_ptid));
2411   current_target.to_mourn_inferior (&current_target);
2412 
2413   /* We no longer need to keep handles on any of the object files.
2414      Make sure to release them to avoid unnecessarily locking any
2415      of them while we're not actually debugging.  */
2416   bfd_cache_close_all ();
2417 }
2418 
2419 /* Look for a target which can describe architectural features, starting
2420    from TARGET.  If we find one, return its description.  */
2421 
2422 const struct target_desc *
2423 target_read_description (struct target_ops *target)
2424 {
2425   return target->to_read_description (target);
2426 }
2427 
2428 /* This implements a basic search of memory, reading target memory and
2429    performing the search here (as opposed to performing the search in on the
2430    target side with, for example, gdbserver).  */
2431 
2432 int
2433 simple_search_memory (struct target_ops *ops,
2434 		      CORE_ADDR start_addr, ULONGEST search_space_len,
2435 		      const gdb_byte *pattern, ULONGEST pattern_len,
2436 		      CORE_ADDR *found_addrp)
2437 {
2438   /* NOTE: also defined in find.c testcase.  */
2439 #define SEARCH_CHUNK_SIZE 16000
2440   const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2441   /* Buffer to hold memory contents for searching.  */
2442   gdb_byte *search_buf;
2443   unsigned search_buf_size;
2444   struct cleanup *old_cleanups;
2445 
2446   search_buf_size = chunk_size + pattern_len - 1;
2447 
2448   /* No point in trying to allocate a buffer larger than the search space.  */
2449   if (search_space_len < search_buf_size)
2450     search_buf_size = search_space_len;
2451 
2452   search_buf = (gdb_byte *) malloc (search_buf_size);
2453   if (search_buf == NULL)
2454     error (_("Unable to allocate memory to perform the search."));
2455   old_cleanups = make_cleanup (free_current_contents, &search_buf);
2456 
2457   /* Prime the search buffer.  */
2458 
2459   if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2460 		   search_buf, start_addr, search_buf_size) != search_buf_size)
2461     {
2462       warning (_("Unable to access %s bytes of target "
2463 		 "memory at %s, halting search."),
2464 	       pulongest (search_buf_size), hex_string (start_addr));
2465       do_cleanups (old_cleanups);
2466       return -1;
2467     }
2468 
2469   /* Perform the search.
2470 
2471      The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2472      When we've scanned N bytes we copy the trailing bytes to the start and
2473      read in another N bytes.  */
2474 
2475   while (search_space_len >= pattern_len)
2476     {
2477       gdb_byte *found_ptr;
2478       unsigned nr_search_bytes
2479 	= std::min (search_space_len, (ULONGEST) search_buf_size);
2480 
2481       found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2482 				       pattern, pattern_len);
2483 
2484       if (found_ptr != NULL)
2485 	{
2486 	  CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2487 
2488 	  *found_addrp = found_addr;
2489 	  do_cleanups (old_cleanups);
2490 	  return 1;
2491 	}
2492 
2493       /* Not found in this chunk, skip to next chunk.  */
2494 
2495       /* Don't let search_space_len wrap here, it's unsigned.  */
2496       if (search_space_len >= chunk_size)
2497 	search_space_len -= chunk_size;
2498       else
2499 	search_space_len = 0;
2500 
2501       if (search_space_len >= pattern_len)
2502 	{
2503 	  unsigned keep_len = search_buf_size - chunk_size;
2504 	  CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2505 	  int nr_to_read;
2506 
2507 	  /* Copy the trailing part of the previous iteration to the front
2508 	     of the buffer for the next iteration.  */
2509 	  gdb_assert (keep_len == pattern_len - 1);
2510 	  memcpy (search_buf, search_buf + chunk_size, keep_len);
2511 
2512 	  nr_to_read = std::min (search_space_len - keep_len,
2513 				 (ULONGEST) chunk_size);
2514 
2515 	  if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2516 			   search_buf + keep_len, read_addr,
2517 			   nr_to_read) != nr_to_read)
2518 	    {
2519 	      warning (_("Unable to access %s bytes of target "
2520 			 "memory at %s, halting search."),
2521 		       plongest (nr_to_read),
2522 		       hex_string (read_addr));
2523 	      do_cleanups (old_cleanups);
2524 	      return -1;
2525 	    }
2526 
2527 	  start_addr += chunk_size;
2528 	}
2529     }
2530 
2531   /* Not found.  */
2532 
2533   do_cleanups (old_cleanups);
2534   return 0;
2535 }
2536 
2537 /* Default implementation of memory-searching.  */
2538 
2539 static int
2540 default_search_memory (struct target_ops *self,
2541 		       CORE_ADDR start_addr, ULONGEST search_space_len,
2542 		       const gdb_byte *pattern, ULONGEST pattern_len,
2543 		       CORE_ADDR *found_addrp)
2544 {
2545   /* Start over from the top of the target stack.  */
2546   return simple_search_memory (current_target.beneath,
2547 			       start_addr, search_space_len,
2548 			       pattern, pattern_len, found_addrp);
2549 }
2550 
2551 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2552    sequence of bytes in PATTERN with length PATTERN_LEN.
2553 
2554    The result is 1 if found, 0 if not found, and -1 if there was an error
2555    requiring halting of the search (e.g. memory read error).
2556    If the pattern is found the address is recorded in FOUND_ADDRP.  */
2557 
2558 int
2559 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2560 		      const gdb_byte *pattern, ULONGEST pattern_len,
2561 		      CORE_ADDR *found_addrp)
2562 {
2563   return current_target.to_search_memory (&current_target, start_addr,
2564 					  search_space_len,
2565 					  pattern, pattern_len, found_addrp);
2566 }
2567 
2568 /* Look through the currently pushed targets.  If none of them will
2569    be able to restart the currently running process, issue an error
2570    message.  */
2571 
2572 void
2573 target_require_runnable (void)
2574 {
2575   struct target_ops *t;
2576 
2577   for (t = target_stack; t != NULL; t = t->beneath)
2578     {
2579       /* If this target knows how to create a new program, then
2580 	 assume we will still be able to after killing the current
2581 	 one.  Either killing and mourning will not pop T, or else
2582 	 find_default_run_target will find it again.  */
2583       if (t->to_create_inferior != NULL)
2584 	return;
2585 
2586       /* Do not worry about targets at certain strata that can not
2587 	 create inferiors.  Assume they will be pushed again if
2588 	 necessary, and continue to the process_stratum.  */
2589       if (t->to_stratum == thread_stratum
2590 	  || t->to_stratum == record_stratum
2591 	  || t->to_stratum == arch_stratum)
2592 	continue;
2593 
2594       error (_("The \"%s\" target does not support \"run\".  "
2595 	       "Try \"help target\" or \"continue\"."),
2596 	     t->to_shortname);
2597     }
2598 
2599   /* This function is only called if the target is running.  In that
2600      case there should have been a process_stratum target and it
2601      should either know how to create inferiors, or not...  */
2602   internal_error (__FILE__, __LINE__, _("No targets found"));
2603 }
2604 
2605 /* Whether GDB is allowed to fall back to the default run target for
2606    "run", "attach", etc. when no target is connected yet.  */
2607 static int auto_connect_native_target = 1;
2608 
2609 static void
2610 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2611 				 struct cmd_list_element *c, const char *value)
2612 {
2613   fprintf_filtered (file,
2614 		    _("Whether GDB may automatically connect to the "
2615 		      "native target is %s.\n"),
2616 		    value);
2617 }
2618 
2619 /* Look through the list of possible targets for a target that can
2620    execute a run or attach command without any other data.  This is
2621    used to locate the default process stratum.
2622 
2623    If DO_MESG is not NULL, the result is always valid (error() is
2624    called for errors); else, return NULL on error.  */
2625 
2626 static struct target_ops *
2627 find_default_run_target (const char *do_mesg)
2628 {
2629   struct target_ops *runable = NULL;
2630 
2631   if (auto_connect_native_target)
2632     {
2633       struct target_ops *t;
2634       int count = 0;
2635       int i;
2636 
2637       for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2638 	{
2639 	  if (t->to_can_run != delegate_can_run && target_can_run (t))
2640 	    {
2641 	      runable = t;
2642 	      ++count;
2643 	    }
2644 	}
2645 
2646       if (count != 1)
2647 	runable = NULL;
2648     }
2649 
2650   if (runable == NULL)
2651     {
2652       if (do_mesg)
2653 	error (_("Don't know how to %s.  Try \"help target\"."), do_mesg);
2654       else
2655 	return NULL;
2656     }
2657 
2658   return runable;
2659 }
2660 
2661 /* See target.h.  */
2662 
2663 struct target_ops *
2664 find_attach_target (void)
2665 {
2666   struct target_ops *t;
2667 
2668   /* If a target on the current stack can attach, use it.  */
2669   for (t = current_target.beneath; t != NULL; t = t->beneath)
2670     {
2671       if (t->to_attach != NULL)
2672 	break;
2673     }
2674 
2675   /* Otherwise, use the default run target for attaching.  */
2676   if (t == NULL)
2677     t = find_default_run_target ("attach");
2678 
2679   return t;
2680 }
2681 
2682 /* See target.h.  */
2683 
2684 struct target_ops *
2685 find_run_target (void)
2686 {
2687   struct target_ops *t;
2688 
2689   /* If a target on the current stack can attach, use it.  */
2690   for (t = current_target.beneath; t != NULL; t = t->beneath)
2691     {
2692       if (t->to_create_inferior != NULL)
2693 	break;
2694     }
2695 
2696   /* Otherwise, use the default run target.  */
2697   if (t == NULL)
2698     t = find_default_run_target ("run");
2699 
2700   return t;
2701 }
2702 
2703 /* Implement the "info proc" command.  */
2704 
2705 int
2706 target_info_proc (const char *args, enum info_proc_what what)
2707 {
2708   struct target_ops *t;
2709 
2710   /* If we're already connected to something that can get us OS
2711      related data, use it.  Otherwise, try using the native
2712      target.  */
2713   if (current_target.to_stratum >= process_stratum)
2714     t = current_target.beneath;
2715   else
2716     t = find_default_run_target (NULL);
2717 
2718   for (; t != NULL; t = t->beneath)
2719     {
2720       if (t->to_info_proc != NULL)
2721 	{
2722 	  t->to_info_proc (t, args, what);
2723 
2724 	  if (targetdebug)
2725 	    fprintf_unfiltered (gdb_stdlog,
2726 				"target_info_proc (\"%s\", %d)\n", args, what);
2727 
2728 	  return 1;
2729 	}
2730     }
2731 
2732   return 0;
2733 }
2734 
2735 static int
2736 find_default_supports_disable_randomization (struct target_ops *self)
2737 {
2738   struct target_ops *t;
2739 
2740   t = find_default_run_target (NULL);
2741   if (t && t->to_supports_disable_randomization)
2742     return (t->to_supports_disable_randomization) (t);
2743   return 0;
2744 }
2745 
2746 int
2747 target_supports_disable_randomization (void)
2748 {
2749   struct target_ops *t;
2750 
2751   for (t = &current_target; t != NULL; t = t->beneath)
2752     if (t->to_supports_disable_randomization)
2753       return t->to_supports_disable_randomization (t);
2754 
2755   return 0;
2756 }
2757 
2758 /* See target/target.h.  */
2759 
2760 int
2761 target_supports_multi_process (void)
2762 {
2763   return (*current_target.to_supports_multi_process) (&current_target);
2764 }
2765 
2766 char *
2767 target_get_osdata (const char *type)
2768 {
2769   struct target_ops *t;
2770 
2771   /* If we're already connected to something that can get us OS
2772      related data, use it.  Otherwise, try using the native
2773      target.  */
2774   if (current_target.to_stratum >= process_stratum)
2775     t = current_target.beneath;
2776   else
2777     t = find_default_run_target ("get OS data");
2778 
2779   if (!t)
2780     return NULL;
2781 
2782   return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2783 }
2784 
2785 static struct address_space *
2786 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2787 {
2788   struct inferior *inf;
2789 
2790   /* Fall-back to the "main" address space of the inferior.  */
2791   inf = find_inferior_ptid (ptid);
2792 
2793   if (inf == NULL || inf->aspace == NULL)
2794     internal_error (__FILE__, __LINE__,
2795 		    _("Can't determine the current "
2796 		      "address space of thread %s\n"),
2797 		    target_pid_to_str (ptid));
2798 
2799   return inf->aspace;
2800 }
2801 
2802 /* Determine the current address space of thread PTID.  */
2803 
2804 struct address_space *
2805 target_thread_address_space (ptid_t ptid)
2806 {
2807   struct address_space *aspace;
2808 
2809   aspace = current_target.to_thread_address_space (&current_target, ptid);
2810   gdb_assert (aspace != NULL);
2811 
2812   return aspace;
2813 }
2814 
2815 
2816 /* Target file operations.  */
2817 
2818 static struct target_ops *
2819 default_fileio_target (void)
2820 {
2821   /* If we're already connected to something that can perform
2822      file I/O, use it. Otherwise, try using the native target.  */
2823   if (current_target.to_stratum >= process_stratum)
2824     return current_target.beneath;
2825   else
2826     return find_default_run_target ("file I/O");
2827 }
2828 
2829 /* File handle for target file operations.  */
2830 
2831 typedef struct
2832 {
2833   /* The target on which this file is open.  */
2834   struct target_ops *t;
2835 
2836   /* The file descriptor on the target.  */
2837   int fd;
2838 } fileio_fh_t;
2839 
2840 DEF_VEC_O (fileio_fh_t);
2841 
2842 /* Vector of currently open file handles.  The value returned by
2843    target_fileio_open and passed as the FD argument to other
2844    target_fileio_* functions is an index into this vector.  This
2845    vector's entries are never freed; instead, files are marked as
2846    closed, and the handle becomes available for reuse.  */
2847 static VEC (fileio_fh_t) *fileio_fhandles;
2848 
2849 /* Macro to check whether a fileio_fh_t represents a closed file.  */
2850 #define is_closed_fileio_fh(fd) ((fd) < 0)
2851 
2852 /* Index into fileio_fhandles of the lowest handle that might be
2853    closed.  This permits handle reuse without searching the whole
2854    list each time a new file is opened.  */
2855 static int lowest_closed_fd;
2856 
2857 /* Acquire a target fileio file descriptor.  */
2858 
2859 static int
2860 acquire_fileio_fd (struct target_ops *t, int fd)
2861 {
2862   fileio_fh_t *fh;
2863 
2864   gdb_assert (!is_closed_fileio_fh (fd));
2865 
2866   /* Search for closed handles to reuse.  */
2867   for (;
2868        VEC_iterate (fileio_fh_t, fileio_fhandles,
2869                     lowest_closed_fd, fh);
2870        lowest_closed_fd++)
2871     if (is_closed_fileio_fh (fh->fd))
2872       break;
2873 
2874   /* Push a new handle if no closed handles were found.  */
2875   if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2876     fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2877 
2878   /* Fill in the handle.  */
2879   fh->t = t;
2880   fh->fd = fd;
2881 
2882   /* Return its index, and start the next lookup at
2883      the next index.  */
2884   return lowest_closed_fd++;
2885 }
2886 
2887 /* Release a target fileio file descriptor.  */
2888 
2889 static void
2890 release_fileio_fd (int fd, fileio_fh_t *fh)
2891 {
2892   fh->fd = -1;
2893   lowest_closed_fd = std::min (lowest_closed_fd, fd);
2894 }
2895 
2896 /* Return a pointer to the fileio_fhandle_t corresponding to FD.  */
2897 
2898 #define fileio_fd_to_fh(fd) \
2899   VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2900 
2901 /* Helper for target_fileio_open and
2902    target_fileio_open_warn_if_slow.  */
2903 
2904 static int
2905 target_fileio_open_1 (struct inferior *inf, const char *filename,
2906 		      int flags, int mode, int warn_if_slow,
2907 		      int *target_errno)
2908 {
2909   struct target_ops *t;
2910 
2911   for (t = default_fileio_target (); t != NULL; t = t->beneath)
2912     {
2913       if (t->to_fileio_open != NULL)
2914 	{
2915 	  int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2916 				      warn_if_slow, target_errno);
2917 
2918 	  if (fd < 0)
2919 	    fd = -1;
2920 	  else
2921 	    fd = acquire_fileio_fd (t, fd);
2922 
2923 	  if (targetdebug)
2924 	    fprintf_unfiltered (gdb_stdlog,
2925 				"target_fileio_open (%d,%s,0x%x,0%o,%d)"
2926 				" = %d (%d)\n",
2927 				inf == NULL ? 0 : inf->num,
2928 				filename, flags, mode,
2929 				warn_if_slow, fd,
2930 				fd != -1 ? 0 : *target_errno);
2931 	  return fd;
2932 	}
2933     }
2934 
2935   *target_errno = FILEIO_ENOSYS;
2936   return -1;
2937 }
2938 
2939 /* See target.h.  */
2940 
2941 int
2942 target_fileio_open (struct inferior *inf, const char *filename,
2943 		    int flags, int mode, int *target_errno)
2944 {
2945   return target_fileio_open_1 (inf, filename, flags, mode, 0,
2946 			       target_errno);
2947 }
2948 
2949 /* See target.h.  */
2950 
2951 int
2952 target_fileio_open_warn_if_slow (struct inferior *inf,
2953 				 const char *filename,
2954 				 int flags, int mode, int *target_errno)
2955 {
2956   return target_fileio_open_1 (inf, filename, flags, mode, 1,
2957 			       target_errno);
2958 }
2959 
2960 /* See target.h.  */
2961 
2962 int
2963 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2964 		      ULONGEST offset, int *target_errno)
2965 {
2966   fileio_fh_t *fh = fileio_fd_to_fh (fd);
2967   int ret = -1;
2968 
2969   if (is_closed_fileio_fh (fh->fd))
2970     *target_errno = EBADF;
2971   else
2972     ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2973 				   len, offset, target_errno);
2974 
2975   if (targetdebug)
2976     fprintf_unfiltered (gdb_stdlog,
2977 			"target_fileio_pwrite (%d,...,%d,%s) "
2978 			"= %d (%d)\n",
2979 			fd, len, pulongest (offset),
2980 			ret, ret != -1 ? 0 : *target_errno);
2981   return ret;
2982 }
2983 
2984 /* See target.h.  */
2985 
2986 int
2987 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2988 		     ULONGEST offset, int *target_errno)
2989 {
2990   fileio_fh_t *fh = fileio_fd_to_fh (fd);
2991   int ret = -1;
2992 
2993   if (is_closed_fileio_fh (fh->fd))
2994     *target_errno = EBADF;
2995   else
2996     ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2997 				  len, offset, target_errno);
2998 
2999   if (targetdebug)
3000     fprintf_unfiltered (gdb_stdlog,
3001 			"target_fileio_pread (%d,...,%d,%s) "
3002 			"= %d (%d)\n",
3003 			fd, len, pulongest (offset),
3004 			ret, ret != -1 ? 0 : *target_errno);
3005   return ret;
3006 }
3007 
3008 /* See target.h.  */
3009 
3010 int
3011 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
3012 {
3013   fileio_fh_t *fh = fileio_fd_to_fh (fd);
3014   int ret = -1;
3015 
3016   if (is_closed_fileio_fh (fh->fd))
3017     *target_errno = EBADF;
3018   else
3019     ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
3020 
3021   if (targetdebug)
3022     fprintf_unfiltered (gdb_stdlog,
3023 			"target_fileio_fstat (%d) = %d (%d)\n",
3024 			fd, ret, ret != -1 ? 0 : *target_errno);
3025   return ret;
3026 }
3027 
3028 /* See target.h.  */
3029 
3030 int
3031 target_fileio_close (int fd, int *target_errno)
3032 {
3033   fileio_fh_t *fh = fileio_fd_to_fh (fd);
3034   int ret = -1;
3035 
3036   if (is_closed_fileio_fh (fh->fd))
3037     *target_errno = EBADF;
3038   else
3039     {
3040       ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
3041       release_fileio_fd (fd, fh);
3042     }
3043 
3044   if (targetdebug)
3045     fprintf_unfiltered (gdb_stdlog,
3046 			"target_fileio_close (%d) = %d (%d)\n",
3047 			fd, ret, ret != -1 ? 0 : *target_errno);
3048   return ret;
3049 }
3050 
3051 /* See target.h.  */
3052 
3053 int
3054 target_fileio_unlink (struct inferior *inf, const char *filename,
3055 		      int *target_errno)
3056 {
3057   struct target_ops *t;
3058 
3059   for (t = default_fileio_target (); t != NULL; t = t->beneath)
3060     {
3061       if (t->to_fileio_unlink != NULL)
3062 	{
3063 	  int ret = t->to_fileio_unlink (t, inf, filename,
3064 					 target_errno);
3065 
3066 	  if (targetdebug)
3067 	    fprintf_unfiltered (gdb_stdlog,
3068 				"target_fileio_unlink (%d,%s)"
3069 				" = %d (%d)\n",
3070 				inf == NULL ? 0 : inf->num, filename,
3071 				ret, ret != -1 ? 0 : *target_errno);
3072 	  return ret;
3073 	}
3074     }
3075 
3076   *target_errno = FILEIO_ENOSYS;
3077   return -1;
3078 }
3079 
3080 /* See target.h.  */
3081 
3082 char *
3083 target_fileio_readlink (struct inferior *inf, const char *filename,
3084 			int *target_errno)
3085 {
3086   struct target_ops *t;
3087 
3088   for (t = default_fileio_target (); t != NULL; t = t->beneath)
3089     {
3090       if (t->to_fileio_readlink != NULL)
3091 	{
3092 	  char *ret = t->to_fileio_readlink (t, inf, filename,
3093 					     target_errno);
3094 
3095 	  if (targetdebug)
3096 	    fprintf_unfiltered (gdb_stdlog,
3097 				"target_fileio_readlink (%d,%s)"
3098 				" = %s (%d)\n",
3099 				inf == NULL ? 0 : inf->num,
3100 				filename, ret? ret : "(nil)",
3101 				ret? 0 : *target_errno);
3102 	  return ret;
3103 	}
3104     }
3105 
3106   *target_errno = FILEIO_ENOSYS;
3107   return NULL;
3108 }
3109 
3110 static void
3111 target_fileio_close_cleanup (void *opaque)
3112 {
3113   int fd = *(int *) opaque;
3114   int target_errno;
3115 
3116   target_fileio_close (fd, &target_errno);
3117 }
3118 
3119 /* Read target file FILENAME, in the filesystem as seen by INF.  If
3120    INF is NULL, use the filesystem seen by the debugger (GDB or, for
3121    remote targets, the remote stub).  Store the result in *BUF_P and
3122    return the size of the transferred data.  PADDING additional bytes
3123    are available in *BUF_P.  This is a helper function for
3124    target_fileio_read_alloc; see the declaration of that function for
3125    more information.  */
3126 
3127 static LONGEST
3128 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3129 			    gdb_byte **buf_p, int padding)
3130 {
3131   struct cleanup *close_cleanup;
3132   size_t buf_alloc, buf_pos;
3133   gdb_byte *buf;
3134   LONGEST n;
3135   int fd;
3136   int target_errno;
3137 
3138   fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3139 			   &target_errno);
3140   if (fd == -1)
3141     return -1;
3142 
3143   close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3144 
3145   /* Start by reading up to 4K at a time.  The target will throttle
3146      this number down if necessary.  */
3147   buf_alloc = 4096;
3148   buf = (gdb_byte *) xmalloc (buf_alloc);
3149   buf_pos = 0;
3150   while (1)
3151     {
3152       n = target_fileio_pread (fd, &buf[buf_pos],
3153 			       buf_alloc - buf_pos - padding, buf_pos,
3154 			       &target_errno);
3155       if (n < 0)
3156 	{
3157 	  /* An error occurred.  */
3158 	  do_cleanups (close_cleanup);
3159 	  xfree (buf);
3160 	  return -1;
3161 	}
3162       else if (n == 0)
3163 	{
3164 	  /* Read all there was.  */
3165 	  do_cleanups (close_cleanup);
3166 	  if (buf_pos == 0)
3167 	    xfree (buf);
3168 	  else
3169 	    *buf_p = buf;
3170 	  return buf_pos;
3171 	}
3172 
3173       buf_pos += n;
3174 
3175       /* If the buffer is filling up, expand it.  */
3176       if (buf_alloc < buf_pos * 2)
3177 	{
3178 	  buf_alloc *= 2;
3179 	  buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3180 	}
3181 
3182       QUIT;
3183     }
3184 }
3185 
3186 /* See target.h.  */
3187 
3188 LONGEST
3189 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3190 			  gdb_byte **buf_p)
3191 {
3192   return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3193 }
3194 
3195 /* See target.h.  */
3196 
3197 char *
3198 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3199 {
3200   gdb_byte *buffer;
3201   char *bufstr;
3202   LONGEST i, transferred;
3203 
3204   transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3205   bufstr = (char *) buffer;
3206 
3207   if (transferred < 0)
3208     return NULL;
3209 
3210   if (transferred == 0)
3211     return xstrdup ("");
3212 
3213   bufstr[transferred] = 0;
3214 
3215   /* Check for embedded NUL bytes; but allow trailing NULs.  */
3216   for (i = strlen (bufstr); i < transferred; i++)
3217     if (bufstr[i] != 0)
3218       {
3219 	warning (_("target file %s "
3220 		   "contained unexpected null characters"),
3221 		 filename);
3222 	break;
3223       }
3224 
3225   return bufstr;
3226 }
3227 
3228 
3229 static int
3230 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3231 				     CORE_ADDR addr, int len)
3232 {
3233   return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3234 }
3235 
3236 static int
3237 default_watchpoint_addr_within_range (struct target_ops *target,
3238 				      CORE_ADDR addr,
3239 				      CORE_ADDR start, int length)
3240 {
3241   return addr >= start && addr < start + length;
3242 }
3243 
3244 static struct gdbarch *
3245 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3246 {
3247   return target_gdbarch ();
3248 }
3249 
3250 static int
3251 return_zero (struct target_ops *ignore)
3252 {
3253   return 0;
3254 }
3255 
3256 static int
3257 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3258 {
3259   return 0;
3260 }
3261 
3262 /*
3263  * Find the next target down the stack from the specified target.
3264  */
3265 
3266 struct target_ops *
3267 find_target_beneath (struct target_ops *t)
3268 {
3269   return t->beneath;
3270 }
3271 
3272 /* See target.h.  */
3273 
3274 struct target_ops *
3275 find_target_at (enum strata stratum)
3276 {
3277   struct target_ops *t;
3278 
3279   for (t = current_target.beneath; t != NULL; t = t->beneath)
3280     if (t->to_stratum == stratum)
3281       return t;
3282 
3283   return NULL;
3284 }
3285 
3286 
3287 
3288 /* See target.h  */
3289 
3290 void
3291 target_announce_detach (int from_tty)
3292 {
3293   pid_t pid;
3294   const char *exec_file;
3295 
3296   if (!from_tty)
3297     return;
3298 
3299   exec_file = get_exec_file (0);
3300   if (exec_file == NULL)
3301     exec_file = "";
3302 
3303   pid = ptid_get_pid (inferior_ptid);
3304   printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3305 		     target_pid_to_str (pid_to_ptid (pid)));
3306   gdb_flush (gdb_stdout);
3307 }
3308 
3309 /* The inferior process has died.  Long live the inferior!  */
3310 
3311 void
3312 generic_mourn_inferior (void)
3313 {
3314   ptid_t ptid;
3315 
3316   ptid = inferior_ptid;
3317   inferior_ptid = null_ptid;
3318 
3319   /* Mark breakpoints uninserted in case something tries to delete a
3320      breakpoint while we delete the inferior's threads (which would
3321      fail, since the inferior is long gone).  */
3322   mark_breakpoints_out ();
3323 
3324   if (!ptid_equal (ptid, null_ptid))
3325     {
3326       int pid = ptid_get_pid (ptid);
3327       exit_inferior (pid);
3328     }
3329 
3330   /* Note this wipes step-resume breakpoints, so needs to be done
3331      after exit_inferior, which ends up referencing the step-resume
3332      breakpoints through clear_thread_inferior_resources.  */
3333   breakpoint_init_inferior (inf_exited);
3334 
3335   registers_changed ();
3336 
3337   reopen_exec_file ();
3338   reinit_frame_cache ();
3339 
3340   if (deprecated_detach_hook)
3341     deprecated_detach_hook ();
3342 }
3343 
3344 /* Convert a normal process ID to a string.  Returns the string in a
3345    static buffer.  */
3346 
3347 const char *
3348 normal_pid_to_str (ptid_t ptid)
3349 {
3350   static char buf[32];
3351 
3352   xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3353   return buf;
3354 }
3355 
3356 static const char *
3357 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3358 {
3359   return normal_pid_to_str (ptid);
3360 }
3361 
3362 /* Error-catcher for target_find_memory_regions.  */
3363 static int
3364 dummy_find_memory_regions (struct target_ops *self,
3365 			   find_memory_region_ftype ignore1, void *ignore2)
3366 {
3367   error (_("Command not implemented for this target."));
3368   return 0;
3369 }
3370 
3371 /* Error-catcher for target_make_corefile_notes.  */
3372 static char *
3373 dummy_make_corefile_notes (struct target_ops *self,
3374 			   bfd *ignore1, int *ignore2)
3375 {
3376   error (_("Command not implemented for this target."));
3377   return NULL;
3378 }
3379 
3380 /* Set up the handful of non-empty slots needed by the dummy target
3381    vector.  */
3382 
3383 static void
3384 init_dummy_target (void)
3385 {
3386   dummy_target.to_shortname = "None";
3387   dummy_target.to_longname = "None";
3388   dummy_target.to_doc = "";
3389   dummy_target.to_supports_disable_randomization
3390     = find_default_supports_disable_randomization;
3391   dummy_target.to_stratum = dummy_stratum;
3392   dummy_target.to_has_all_memory = return_zero;
3393   dummy_target.to_has_memory = return_zero;
3394   dummy_target.to_has_stack = return_zero;
3395   dummy_target.to_has_registers = return_zero;
3396   dummy_target.to_has_execution = return_zero_has_execution;
3397   dummy_target.to_magic = OPS_MAGIC;
3398 
3399   install_dummy_methods (&dummy_target);
3400 }
3401 
3402 
3403 void
3404 target_close (struct target_ops *targ)
3405 {
3406   gdb_assert (!target_is_pushed (targ));
3407 
3408   if (targ->to_xclose != NULL)
3409     targ->to_xclose (targ);
3410   else if (targ->to_close != NULL)
3411     targ->to_close (targ);
3412 
3413   if (targetdebug)
3414     fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3415 }
3416 
3417 int
3418 target_thread_alive (ptid_t ptid)
3419 {
3420   return current_target.to_thread_alive (&current_target, ptid);
3421 }
3422 
3423 void
3424 target_update_thread_list (void)
3425 {
3426   current_target.to_update_thread_list (&current_target);
3427 }
3428 
3429 void
3430 target_stop (ptid_t ptid)
3431 {
3432   if (!may_stop)
3433     {
3434       warning (_("May not interrupt or stop the target, ignoring attempt"));
3435       return;
3436     }
3437 
3438   (*current_target.to_stop) (&current_target, ptid);
3439 }
3440 
3441 void
3442 target_interrupt (ptid_t ptid)
3443 {
3444   if (!may_stop)
3445     {
3446       warning (_("May not interrupt or stop the target, ignoring attempt"));
3447       return;
3448     }
3449 
3450   (*current_target.to_interrupt) (&current_target, ptid);
3451 }
3452 
3453 /* See target.h.  */
3454 
3455 void
3456 target_pass_ctrlc (void)
3457 {
3458   (*current_target.to_pass_ctrlc) (&current_target);
3459 }
3460 
3461 /* See target.h.  */
3462 
3463 void
3464 default_target_pass_ctrlc (struct target_ops *ops)
3465 {
3466   target_interrupt (inferior_ptid);
3467 }
3468 
3469 /* See target/target.h.  */
3470 
3471 void
3472 target_stop_and_wait (ptid_t ptid)
3473 {
3474   struct target_waitstatus status;
3475   int was_non_stop = non_stop;
3476 
3477   non_stop = 1;
3478   target_stop (ptid);
3479 
3480   memset (&status, 0, sizeof (status));
3481   target_wait (ptid, &status, 0);
3482 
3483   non_stop = was_non_stop;
3484 }
3485 
3486 /* See target/target.h.  */
3487 
3488 void
3489 target_continue_no_signal (ptid_t ptid)
3490 {
3491   target_resume (ptid, 0, GDB_SIGNAL_0);
3492 }
3493 
3494 /* See target/target.h.  */
3495 
3496 void
3497 target_continue (ptid_t ptid, enum gdb_signal signal)
3498 {
3499   target_resume (ptid, 0, signal);
3500 }
3501 
3502 /* Concatenate ELEM to LIST, a comma separate list, and return the
3503    result.  The LIST incoming argument is released.  */
3504 
3505 static char *
3506 str_comma_list_concat_elem (char *list, const char *elem)
3507 {
3508   if (list == NULL)
3509     return xstrdup (elem);
3510   else
3511     return reconcat (list, list, ", ", elem, (char *) NULL);
3512 }
3513 
3514 /* Helper for target_options_to_string.  If OPT is present in
3515    TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3516    Returns the new resulting string.  OPT is removed from
3517    TARGET_OPTIONS.  */
3518 
3519 static char *
3520 do_option (int *target_options, char *ret,
3521 	   int opt, const char *opt_str)
3522 {
3523   if ((*target_options & opt) != 0)
3524     {
3525       ret = str_comma_list_concat_elem (ret, opt_str);
3526       *target_options &= ~opt;
3527     }
3528 
3529   return ret;
3530 }
3531 
3532 char *
3533 target_options_to_string (int target_options)
3534 {
3535   char *ret = NULL;
3536 
3537 #define DO_TARG_OPTION(OPT) \
3538   ret = do_option (&target_options, ret, OPT, #OPT)
3539 
3540   DO_TARG_OPTION (TARGET_WNOHANG);
3541 
3542   if (target_options != 0)
3543     ret = str_comma_list_concat_elem (ret, "unknown???");
3544 
3545   if (ret == NULL)
3546     ret = xstrdup ("");
3547   return ret;
3548 }
3549 
3550 void
3551 target_fetch_registers (struct regcache *regcache, int regno)
3552 {
3553   current_target.to_fetch_registers (&current_target, regcache, regno);
3554   if (targetdebug)
3555     regcache_debug_print_register ("target_fetch_registers", regcache, regno);
3556 }
3557 
3558 void
3559 target_store_registers (struct regcache *regcache, int regno)
3560 {
3561   if (!may_write_registers)
3562     error (_("Writing to registers is not allowed (regno %d)"), regno);
3563 
3564   current_target.to_store_registers (&current_target, regcache, regno);
3565   if (targetdebug)
3566     {
3567       regcache_debug_print_register ("target_store_registers", regcache,
3568 				     regno);
3569     }
3570 }
3571 
3572 int
3573 target_core_of_thread (ptid_t ptid)
3574 {
3575   return current_target.to_core_of_thread (&current_target, ptid);
3576 }
3577 
3578 int
3579 simple_verify_memory (struct target_ops *ops,
3580 		      const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3581 {
3582   LONGEST total_xfered = 0;
3583 
3584   while (total_xfered < size)
3585     {
3586       ULONGEST xfered_len;
3587       enum target_xfer_status status;
3588       gdb_byte buf[1024];
3589       ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3590 
3591       status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3592 				    buf, NULL, lma + total_xfered, howmuch,
3593 				    &xfered_len);
3594       if (status == TARGET_XFER_OK
3595 	  && memcmp (data + total_xfered, buf, xfered_len) == 0)
3596 	{
3597 	  total_xfered += xfered_len;
3598 	  QUIT;
3599 	}
3600       else
3601 	return 0;
3602     }
3603   return 1;
3604 }
3605 
3606 /* Default implementation of memory verification.  */
3607 
3608 static int
3609 default_verify_memory (struct target_ops *self,
3610 		       const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3611 {
3612   /* Start over from the top of the target stack.  */
3613   return simple_verify_memory (current_target.beneath,
3614 			       data, memaddr, size);
3615 }
3616 
3617 int
3618 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3619 {
3620   return current_target.to_verify_memory (&current_target,
3621 					  data, memaddr, size);
3622 }
3623 
3624 /* The documentation for this function is in its prototype declaration in
3625    target.h.  */
3626 
3627 int
3628 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3629 			       enum target_hw_bp_type rw)
3630 {
3631   return current_target.to_insert_mask_watchpoint (&current_target,
3632 						   addr, mask, rw);
3633 }
3634 
3635 /* The documentation for this function is in its prototype declaration in
3636    target.h.  */
3637 
3638 int
3639 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3640 			       enum target_hw_bp_type rw)
3641 {
3642   return current_target.to_remove_mask_watchpoint (&current_target,
3643 						   addr, mask, rw);
3644 }
3645 
3646 /* The documentation for this function is in its prototype declaration
3647    in target.h.  */
3648 
3649 int
3650 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3651 {
3652   return current_target.to_masked_watch_num_registers (&current_target,
3653 						       addr, mask);
3654 }
3655 
3656 /* The documentation for this function is in its prototype declaration
3657    in target.h.  */
3658 
3659 int
3660 target_ranged_break_num_registers (void)
3661 {
3662   return current_target.to_ranged_break_num_registers (&current_target);
3663 }
3664 
3665 /* See target.h.  */
3666 
3667 int
3668 target_supports_btrace (enum btrace_format format)
3669 {
3670   return current_target.to_supports_btrace (&current_target, format);
3671 }
3672 
3673 /* See target.h.  */
3674 
3675 struct btrace_target_info *
3676 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3677 {
3678   return current_target.to_enable_btrace (&current_target, ptid, conf);
3679 }
3680 
3681 /* See target.h.  */
3682 
3683 void
3684 target_disable_btrace (struct btrace_target_info *btinfo)
3685 {
3686   current_target.to_disable_btrace (&current_target, btinfo);
3687 }
3688 
3689 /* See target.h.  */
3690 
3691 void
3692 target_teardown_btrace (struct btrace_target_info *btinfo)
3693 {
3694   current_target.to_teardown_btrace (&current_target, btinfo);
3695 }
3696 
3697 /* See target.h.  */
3698 
3699 enum btrace_error
3700 target_read_btrace (struct btrace_data *btrace,
3701 		    struct btrace_target_info *btinfo,
3702 		    enum btrace_read_type type)
3703 {
3704   return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3705 }
3706 
3707 /* See target.h.  */
3708 
3709 const struct btrace_config *
3710 target_btrace_conf (const struct btrace_target_info *btinfo)
3711 {
3712   return current_target.to_btrace_conf (&current_target, btinfo);
3713 }
3714 
3715 /* See target.h.  */
3716 
3717 void
3718 target_stop_recording (void)
3719 {
3720   current_target.to_stop_recording (&current_target);
3721 }
3722 
3723 /* See target.h.  */
3724 
3725 void
3726 target_save_record (const char *filename)
3727 {
3728   current_target.to_save_record (&current_target, filename);
3729 }
3730 
3731 /* See target.h.  */
3732 
3733 int
3734 target_supports_delete_record (void)
3735 {
3736   struct target_ops *t;
3737 
3738   for (t = current_target.beneath; t != NULL; t = t->beneath)
3739     if (t->to_delete_record != delegate_delete_record
3740 	&& t->to_delete_record != tdefault_delete_record)
3741       return 1;
3742 
3743   return 0;
3744 }
3745 
3746 /* See target.h.  */
3747 
3748 void
3749 target_delete_record (void)
3750 {
3751   current_target.to_delete_record (&current_target);
3752 }
3753 
3754 /* See target.h.  */
3755 
3756 enum record_method
3757 target_record_method (ptid_t ptid)
3758 {
3759   return current_target.to_record_method (&current_target, ptid);
3760 }
3761 
3762 /* See target.h.  */
3763 
3764 int
3765 target_record_is_replaying (ptid_t ptid)
3766 {
3767   return current_target.to_record_is_replaying (&current_target, ptid);
3768 }
3769 
3770 /* See target.h.  */
3771 
3772 int
3773 target_record_will_replay (ptid_t ptid, int dir)
3774 {
3775   return current_target.to_record_will_replay (&current_target, ptid, dir);
3776 }
3777 
3778 /* See target.h.  */
3779 
3780 void
3781 target_record_stop_replaying (void)
3782 {
3783   current_target.to_record_stop_replaying (&current_target);
3784 }
3785 
3786 /* See target.h.  */
3787 
3788 void
3789 target_goto_record_begin (void)
3790 {
3791   current_target.to_goto_record_begin (&current_target);
3792 }
3793 
3794 /* See target.h.  */
3795 
3796 void
3797 target_goto_record_end (void)
3798 {
3799   current_target.to_goto_record_end (&current_target);
3800 }
3801 
3802 /* See target.h.  */
3803 
3804 void
3805 target_goto_record (ULONGEST insn)
3806 {
3807   current_target.to_goto_record (&current_target, insn);
3808 }
3809 
3810 /* See target.h.  */
3811 
3812 void
3813 target_insn_history (int size, int flags)
3814 {
3815   current_target.to_insn_history (&current_target, size, flags);
3816 }
3817 
3818 /* See target.h.  */
3819 
3820 void
3821 target_insn_history_from (ULONGEST from, int size, int flags)
3822 {
3823   current_target.to_insn_history_from (&current_target, from, size, flags);
3824 }
3825 
3826 /* See target.h.  */
3827 
3828 void
3829 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3830 {
3831   current_target.to_insn_history_range (&current_target, begin, end, flags);
3832 }
3833 
3834 /* See target.h.  */
3835 
3836 void
3837 target_call_history (int size, int flags)
3838 {
3839   current_target.to_call_history (&current_target, size, flags);
3840 }
3841 
3842 /* See target.h.  */
3843 
3844 void
3845 target_call_history_from (ULONGEST begin, int size, int flags)
3846 {
3847   current_target.to_call_history_from (&current_target, begin, size, flags);
3848 }
3849 
3850 /* See target.h.  */
3851 
3852 void
3853 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3854 {
3855   current_target.to_call_history_range (&current_target, begin, end, flags);
3856 }
3857 
3858 /* See target.h.  */
3859 
3860 const struct frame_unwind *
3861 target_get_unwinder (void)
3862 {
3863   return current_target.to_get_unwinder (&current_target);
3864 }
3865 
3866 /* See target.h.  */
3867 
3868 const struct frame_unwind *
3869 target_get_tailcall_unwinder (void)
3870 {
3871   return current_target.to_get_tailcall_unwinder (&current_target);
3872 }
3873 
3874 /* See target.h.  */
3875 
3876 void
3877 target_prepare_to_generate_core (void)
3878 {
3879   current_target.to_prepare_to_generate_core (&current_target);
3880 }
3881 
3882 /* See target.h.  */
3883 
3884 void
3885 target_done_generating_core (void)
3886 {
3887   current_target.to_done_generating_core (&current_target);
3888 }
3889 
3890 static void
3891 setup_target_debug (void)
3892 {
3893   memcpy (&debug_target, &current_target, sizeof debug_target);
3894 
3895   init_debug_target (&current_target);
3896 }
3897 
3898 
3899 static char targ_desc[] =
3900 "Names of targets and files being debugged.\nShows the entire \
3901 stack of targets currently in use (including the exec-file,\n\
3902 core-file, and process, if any), as well as the symbol file name.";
3903 
3904 static void
3905 default_rcmd (struct target_ops *self, const char *command,
3906 	      struct ui_file *output)
3907 {
3908   error (_("\"monitor\" command not supported by this target."));
3909 }
3910 
3911 static void
3912 do_monitor_command (char *cmd,
3913 		 int from_tty)
3914 {
3915   target_rcmd (cmd, gdb_stdtarg);
3916 }
3917 
3918 /* Erases all the memory regions marked as flash.  CMD and FROM_TTY are
3919    ignored.  */
3920 
3921 void
3922 flash_erase_command (char *cmd, int from_tty)
3923 {
3924   /* Used to communicate termination of flash operations to the target.  */
3925   bool found_flash_region = false;
3926   struct mem_region *m;
3927   struct gdbarch *gdbarch = target_gdbarch ();
3928 
3929   VEC(mem_region_s) *mem_regions = target_memory_map ();
3930 
3931   /* Iterate over all memory regions.  */
3932   for (int i = 0; VEC_iterate (mem_region_s, mem_regions, i, m); i++)
3933     {
3934       /* Fetch the memory attribute.  */
3935       struct mem_attrib *attrib = &m->attrib;
3936 
3937       /* Is this a flash memory region?  */
3938       if (attrib->mode == MEM_FLASH)
3939         {
3940           found_flash_region = true;
3941           target_flash_erase (m->lo, m->hi - m->lo);
3942 
3943 	  struct cleanup *cleanup_tuple
3944 	      = make_cleanup_ui_out_tuple_begin_end (current_uiout,
3945 						     "erased-regions");
3946 
3947           current_uiout->message (_("Erasing flash memory region at address "));
3948           current_uiout->field_fmt ("address", "%s", paddress (gdbarch,
3949 								 m->lo));
3950           current_uiout->message (", size = ");
3951           current_uiout->field_fmt ("size", "%s", hex_string (m->hi - m->lo));
3952           current_uiout->message ("\n");
3953           do_cleanups (cleanup_tuple);
3954         }
3955     }
3956 
3957   /* Did we do any flash operations?  If so, we need to finalize them.  */
3958   if (found_flash_region)
3959     target_flash_done ();
3960   else
3961     current_uiout->message (_("No flash memory regions found.\n"));
3962 }
3963 
3964 /* Print the name of each layers of our target stack.  */
3965 
3966 static void
3967 maintenance_print_target_stack (char *cmd, int from_tty)
3968 {
3969   struct target_ops *t;
3970 
3971   printf_filtered (_("The current target stack is:\n"));
3972 
3973   for (t = target_stack; t != NULL; t = t->beneath)
3974     {
3975       printf_filtered ("  - %s (%s)\n", t->to_shortname, t->to_longname);
3976     }
3977 }
3978 
3979 /* See target.h.  */
3980 
3981 void
3982 target_async (int enable)
3983 {
3984   infrun_async (enable);
3985   current_target.to_async (&current_target, enable);
3986 }
3987 
3988 /* See target.h.  */
3989 
3990 void
3991 target_thread_events (int enable)
3992 {
3993   current_target.to_thread_events (&current_target, enable);
3994 }
3995 
3996 /* Controls if targets can report that they can/are async.  This is
3997    just for maintainers to use when debugging gdb.  */
3998 int target_async_permitted = 1;
3999 
4000 /* The set command writes to this variable.  If the inferior is
4001    executing, target_async_permitted is *not* updated.  */
4002 static int target_async_permitted_1 = 1;
4003 
4004 static void
4005 maint_set_target_async_command (char *args, int from_tty,
4006 				struct cmd_list_element *c)
4007 {
4008   if (have_live_inferiors ())
4009     {
4010       target_async_permitted_1 = target_async_permitted;
4011       error (_("Cannot change this setting while the inferior is running."));
4012     }
4013 
4014   target_async_permitted = target_async_permitted_1;
4015 }
4016 
4017 static void
4018 maint_show_target_async_command (struct ui_file *file, int from_tty,
4019 				 struct cmd_list_element *c,
4020 				 const char *value)
4021 {
4022   fprintf_filtered (file,
4023 		    _("Controlling the inferior in "
4024 		      "asynchronous mode is %s.\n"), value);
4025 }
4026 
4027 /* Return true if the target operates in non-stop mode even with "set
4028    non-stop off".  */
4029 
4030 static int
4031 target_always_non_stop_p (void)
4032 {
4033   return current_target.to_always_non_stop_p (&current_target);
4034 }
4035 
4036 /* See target.h.  */
4037 
4038 int
4039 target_is_non_stop_p (void)
4040 {
4041   return (non_stop
4042 	  || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
4043 	  || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
4044 	      && target_always_non_stop_p ()));
4045 }
4046 
4047 /* Controls if targets can report that they always run in non-stop
4048    mode.  This is just for maintainers to use when debugging gdb.  */
4049 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
4050 
4051 /* The set command writes to this variable.  If the inferior is
4052    executing, target_non_stop_enabled is *not* updated.  */
4053 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
4054 
4055 /* Implementation of "maint set target-non-stop".  */
4056 
4057 static void
4058 maint_set_target_non_stop_command (char *args, int from_tty,
4059 				   struct cmd_list_element *c)
4060 {
4061   if (have_live_inferiors ())
4062     {
4063       target_non_stop_enabled_1 = target_non_stop_enabled;
4064       error (_("Cannot change this setting while the inferior is running."));
4065     }
4066 
4067   target_non_stop_enabled = target_non_stop_enabled_1;
4068 }
4069 
4070 /* Implementation of "maint show target-non-stop".  */
4071 
4072 static void
4073 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
4074 				    struct cmd_list_element *c,
4075 				    const char *value)
4076 {
4077   if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4078     fprintf_filtered (file,
4079 		      _("Whether the target is always in non-stop mode "
4080 			"is %s (currently %s).\n"), value,
4081 		      target_always_non_stop_p () ? "on" : "off");
4082   else
4083     fprintf_filtered (file,
4084 		      _("Whether the target is always in non-stop mode "
4085 			"is %s.\n"), value);
4086 }
4087 
4088 /* Temporary copies of permission settings.  */
4089 
4090 static int may_write_registers_1 = 1;
4091 static int may_write_memory_1 = 1;
4092 static int may_insert_breakpoints_1 = 1;
4093 static int may_insert_tracepoints_1 = 1;
4094 static int may_insert_fast_tracepoints_1 = 1;
4095 static int may_stop_1 = 1;
4096 
4097 /* Make the user-set values match the real values again.  */
4098 
4099 void
4100 update_target_permissions (void)
4101 {
4102   may_write_registers_1 = may_write_registers;
4103   may_write_memory_1 = may_write_memory;
4104   may_insert_breakpoints_1 = may_insert_breakpoints;
4105   may_insert_tracepoints_1 = may_insert_tracepoints;
4106   may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4107   may_stop_1 = may_stop;
4108 }
4109 
4110 /* The one function handles (most of) the permission flags in the same
4111    way.  */
4112 
4113 static void
4114 set_target_permissions (char *args, int from_tty,
4115 			struct cmd_list_element *c)
4116 {
4117   if (target_has_execution)
4118     {
4119       update_target_permissions ();
4120       error (_("Cannot change this setting while the inferior is running."));
4121     }
4122 
4123   /* Make the real values match the user-changed values.  */
4124   may_write_registers = may_write_registers_1;
4125   may_insert_breakpoints = may_insert_breakpoints_1;
4126   may_insert_tracepoints = may_insert_tracepoints_1;
4127   may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4128   may_stop = may_stop_1;
4129   update_observer_mode ();
4130 }
4131 
4132 /* Set memory write permission independently of observer mode.  */
4133 
4134 static void
4135 set_write_memory_permission (char *args, int from_tty,
4136 			struct cmd_list_element *c)
4137 {
4138   /* Make the real values match the user-changed values.  */
4139   may_write_memory = may_write_memory_1;
4140   update_observer_mode ();
4141 }
4142 
4143 
4144 void
4145 initialize_targets (void)
4146 {
4147   init_dummy_target ();
4148   push_target (&dummy_target);
4149 
4150   add_info ("target", target_info, targ_desc);
4151   add_info ("files", target_info, targ_desc);
4152 
4153   add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4154 Set target debugging."), _("\
4155 Show target debugging."), _("\
4156 When non-zero, target debugging is enabled.  Higher numbers are more\n\
4157 verbose."),
4158 			     set_targetdebug,
4159 			     show_targetdebug,
4160 			     &setdebuglist, &showdebuglist);
4161 
4162   add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4163 			   &trust_readonly, _("\
4164 Set mode for reading from readonly sections."), _("\
4165 Show mode for reading from readonly sections."), _("\
4166 When this mode is on, memory reads from readonly sections (such as .text)\n\
4167 will be read from the object file instead of from the target.  This will\n\
4168 result in significant performance improvement for remote targets."),
4169 			   NULL,
4170 			   show_trust_readonly,
4171 			   &setlist, &showlist);
4172 
4173   add_com ("monitor", class_obscure, do_monitor_command,
4174 	   _("Send a command to the remote monitor (remote targets only)."));
4175 
4176   add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4177            _("Print the name of each layer of the internal target stack."),
4178            &maintenanceprintlist);
4179 
4180   add_setshow_boolean_cmd ("target-async", no_class,
4181 			   &target_async_permitted_1, _("\
4182 Set whether gdb controls the inferior in asynchronous mode."), _("\
4183 Show whether gdb controls the inferior in asynchronous mode."), _("\
4184 Tells gdb whether to control the inferior in asynchronous mode."),
4185 			   maint_set_target_async_command,
4186 			   maint_show_target_async_command,
4187 			   &maintenance_set_cmdlist,
4188 			   &maintenance_show_cmdlist);
4189 
4190   add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4191 				&target_non_stop_enabled_1, _("\
4192 Set whether gdb always controls the inferior in non-stop mode."), _("\
4193 Show whether gdb always controls the inferior in non-stop mode."), _("\
4194 Tells gdb whether to control the inferior in non-stop mode."),
4195 			   maint_set_target_non_stop_command,
4196 			   maint_show_target_non_stop_command,
4197 			   &maintenance_set_cmdlist,
4198 			   &maintenance_show_cmdlist);
4199 
4200   add_setshow_boolean_cmd ("may-write-registers", class_support,
4201 			   &may_write_registers_1, _("\
4202 Set permission to write into registers."), _("\
4203 Show permission to write into registers."), _("\
4204 When this permission is on, GDB may write into the target's registers.\n\
4205 Otherwise, any sort of write attempt will result in an error."),
4206 			   set_target_permissions, NULL,
4207 			   &setlist, &showlist);
4208 
4209   add_setshow_boolean_cmd ("may-write-memory", class_support,
4210 			   &may_write_memory_1, _("\
4211 Set permission to write into target memory."), _("\
4212 Show permission to write into target memory."), _("\
4213 When this permission is on, GDB may write into the target's memory.\n\
4214 Otherwise, any sort of write attempt will result in an error."),
4215 			   set_write_memory_permission, NULL,
4216 			   &setlist, &showlist);
4217 
4218   add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4219 			   &may_insert_breakpoints_1, _("\
4220 Set permission to insert breakpoints in the target."), _("\
4221 Show permission to insert breakpoints in the target."), _("\
4222 When this permission is on, GDB may insert breakpoints in the program.\n\
4223 Otherwise, any sort of insertion attempt will result in an error."),
4224 			   set_target_permissions, NULL,
4225 			   &setlist, &showlist);
4226 
4227   add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4228 			   &may_insert_tracepoints_1, _("\
4229 Set permission to insert tracepoints in the target."), _("\
4230 Show permission to insert tracepoints in the target."), _("\
4231 When this permission is on, GDB may insert tracepoints in the program.\n\
4232 Otherwise, any sort of insertion attempt will result in an error."),
4233 			   set_target_permissions, NULL,
4234 			   &setlist, &showlist);
4235 
4236   add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4237 			   &may_insert_fast_tracepoints_1, _("\
4238 Set permission to insert fast tracepoints in the target."), _("\
4239 Show permission to insert fast tracepoints in the target."), _("\
4240 When this permission is on, GDB may insert fast tracepoints.\n\
4241 Otherwise, any sort of insertion attempt will result in an error."),
4242 			   set_target_permissions, NULL,
4243 			   &setlist, &showlist);
4244 
4245   add_setshow_boolean_cmd ("may-interrupt", class_support,
4246 			   &may_stop_1, _("\
4247 Set permission to interrupt or signal the target."), _("\
4248 Show permission to interrupt or signal the target."), _("\
4249 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4250 Otherwise, any attempt to interrupt or stop will be ignored."),
4251 			   set_target_permissions, NULL,
4252 			   &setlist, &showlist);
4253 
4254   add_com ("flash-erase", no_class, flash_erase_command,
4255            _("Erase all flash memory regions."));
4256 
4257   add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4258 			   &auto_connect_native_target, _("\
4259 Set whether GDB may automatically connect to the native target."), _("\
4260 Show whether GDB may automatically connect to the native target."), _("\
4261 When on, and GDB is not connected to a target yet, GDB\n\
4262 attempts \"run\" and other commands with the native target."),
4263 			   NULL, show_auto_connect_native_target,
4264 			   &setlist, &showlist);
4265 }
4266