1 /* Select target systems and architectures at runtime for GDB. 2 3 Copyright (C) 1990-2019 Free Software Foundation, Inc. 4 5 Contributed by Cygnus Support. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 #include "defs.h" 23 #include "target.h" 24 #include "target-dcache.h" 25 #include "gdbcmd.h" 26 #include "symtab.h" 27 #include "inferior.h" 28 #include "infrun.h" 29 #include "bfd.h" 30 #include "symfile.h" 31 #include "objfiles.h" 32 #include "dcache.h" 33 #include <signal.h> 34 #include "regcache.h" 35 #include "gdbcore.h" 36 #include "target-descriptions.h" 37 #include "gdbthread.h" 38 #include "solib.h" 39 #include "exec.h" 40 #include "inline-frame.h" 41 #include "tracepoint.h" 42 #include "gdb/fileio.h" 43 #include "common/agent.h" 44 #include "auxv.h" 45 #include "target-debug.h" 46 #include "top.h" 47 #include "event-top.h" 48 #include <algorithm> 49 #include "common/byte-vector.h" 50 #include "terminal.h" 51 #include <unordered_map> 52 53 static void generic_tls_error (void) ATTRIBUTE_NORETURN; 54 55 static void default_terminal_info (struct target_ops *, const char *, int); 56 57 static int default_watchpoint_addr_within_range (struct target_ops *, 58 CORE_ADDR, CORE_ADDR, int); 59 60 static int default_region_ok_for_hw_watchpoint (struct target_ops *, 61 CORE_ADDR, int); 62 63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *); 64 65 static ptid_t default_get_ada_task_ptid (struct target_ops *self, 66 long lwp, long tid); 67 68 static int default_follow_fork (struct target_ops *self, int follow_child, 69 int detach_fork); 70 71 static void default_mourn_inferior (struct target_ops *self); 72 73 static int default_search_memory (struct target_ops *ops, 74 CORE_ADDR start_addr, 75 ULONGEST search_space_len, 76 const gdb_byte *pattern, 77 ULONGEST pattern_len, 78 CORE_ADDR *found_addrp); 79 80 static int default_verify_memory (struct target_ops *self, 81 const gdb_byte *data, 82 CORE_ADDR memaddr, ULONGEST size); 83 84 static void tcomplain (void) ATTRIBUTE_NORETURN; 85 86 static struct target_ops *find_default_run_target (const char *); 87 88 static int dummy_find_memory_regions (struct target_ops *self, 89 find_memory_region_ftype ignore1, 90 void *ignore2); 91 92 static char *dummy_make_corefile_notes (struct target_ops *self, 93 bfd *ignore1, int *ignore2); 94 95 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid); 96 97 static enum exec_direction_kind default_execution_direction 98 (struct target_ops *self); 99 100 /* Mapping between target_info objects (which have address identity) 101 and corresponding open/factory function/callback. Each add_target 102 call adds one entry to this map, and registers a "target 103 TARGET_NAME" command that when invoked calls the factory registered 104 here. The target_info object is associated with the command via 105 the command's context. */ 106 static std::unordered_map<const target_info *, target_open_ftype *> 107 target_factories; 108 109 /* The initial current target, so that there is always a semi-valid 110 current target. */ 111 112 static struct target_ops *the_dummy_target; 113 static struct target_ops *the_debug_target; 114 115 /* The target stack. */ 116 117 static target_stack g_target_stack; 118 119 /* Top of target stack. */ 120 /* The target structure we are currently using to talk to a process 121 or file or whatever "inferior" we have. */ 122 123 target_ops * 124 current_top_target () 125 { 126 return g_target_stack.top (); 127 } 128 129 /* Command list for target. */ 130 131 static struct cmd_list_element *targetlist = NULL; 132 133 /* Nonzero if we should trust readonly sections from the 134 executable when reading memory. */ 135 136 static int trust_readonly = 0; 137 138 /* Nonzero if we should show true memory content including 139 memory breakpoint inserted by gdb. */ 140 141 static int show_memory_breakpoints = 0; 142 143 /* These globals control whether GDB attempts to perform these 144 operations; they are useful for targets that need to prevent 145 inadvertant disruption, such as in non-stop mode. */ 146 147 int may_write_registers = 1; 148 149 int may_write_memory = 1; 150 151 int may_insert_breakpoints = 1; 152 153 int may_insert_tracepoints = 1; 154 155 int may_insert_fast_tracepoints = 1; 156 157 int may_stop = 1; 158 159 /* Non-zero if we want to see trace of target level stuff. */ 160 161 static unsigned int targetdebug = 0; 162 163 static void 164 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c) 165 { 166 if (targetdebug) 167 push_target (the_debug_target); 168 else 169 unpush_target (the_debug_target); 170 } 171 172 static void 173 show_targetdebug (struct ui_file *file, int from_tty, 174 struct cmd_list_element *c, const char *value) 175 { 176 fprintf_filtered (file, _("Target debugging is %s.\n"), value); 177 } 178 179 /* The user just typed 'target' without the name of a target. */ 180 181 static void 182 target_command (const char *arg, int from_tty) 183 { 184 fputs_filtered ("Argument required (target name). Try `help target'\n", 185 gdb_stdout); 186 } 187 188 int 189 target_has_all_memory_1 (void) 190 { 191 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ()) 192 if (t->has_all_memory ()) 193 return 1; 194 195 return 0; 196 } 197 198 int 199 target_has_memory_1 (void) 200 { 201 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ()) 202 if (t->has_memory ()) 203 return 1; 204 205 return 0; 206 } 207 208 int 209 target_has_stack_1 (void) 210 { 211 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ()) 212 if (t->has_stack ()) 213 return 1; 214 215 return 0; 216 } 217 218 int 219 target_has_registers_1 (void) 220 { 221 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ()) 222 if (t->has_registers ()) 223 return 1; 224 225 return 0; 226 } 227 228 int 229 target_has_execution_1 (ptid_t the_ptid) 230 { 231 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ()) 232 if (t->has_execution (the_ptid)) 233 return 1; 234 235 return 0; 236 } 237 238 int 239 target_has_execution_current (void) 240 { 241 return target_has_execution_1 (inferior_ptid); 242 } 243 244 /* This is used to implement the various target commands. */ 245 246 static void 247 open_target (const char *args, int from_tty, struct cmd_list_element *command) 248 { 249 auto *ti = static_cast<target_info *> (get_cmd_context (command)); 250 target_open_ftype *func = target_factories[ti]; 251 252 if (targetdebug) 253 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n", 254 ti->shortname); 255 256 func (args, from_tty); 257 258 if (targetdebug) 259 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n", 260 ti->shortname, args, from_tty); 261 } 262 263 /* See target.h. */ 264 265 void 266 add_target (const target_info &t, target_open_ftype *func, 267 completer_ftype *completer) 268 { 269 struct cmd_list_element *c; 270 271 auto &func_slot = target_factories[&t]; 272 if (func_slot != nullptr) 273 internal_error (__FILE__, __LINE__, 274 _("target already added (\"%s\")."), t.shortname); 275 func_slot = func; 276 277 if (targetlist == NULL) 278 add_prefix_cmd ("target", class_run, target_command, _("\ 279 Connect to a target machine or process.\n\ 280 The first argument is the type or protocol of the target machine.\n\ 281 Remaining arguments are interpreted by the target protocol. For more\n\ 282 information on the arguments for a particular protocol, type\n\ 283 `help target ' followed by the protocol name."), 284 &targetlist, "target ", 0, &cmdlist); 285 c = add_cmd (t.shortname, no_class, t.doc, &targetlist); 286 set_cmd_context (c, (void *) &t); 287 set_cmd_sfunc (c, open_target); 288 if (completer != NULL) 289 set_cmd_completer (c, completer); 290 } 291 292 /* See target.h. */ 293 294 void 295 add_deprecated_target_alias (const target_info &tinfo, const char *alias) 296 { 297 struct cmd_list_element *c; 298 char *alt; 299 300 /* If we use add_alias_cmd, here, we do not get the deprecated warning, 301 see PR cli/15104. */ 302 c = add_cmd (alias, no_class, tinfo.doc, &targetlist); 303 set_cmd_sfunc (c, open_target); 304 set_cmd_context (c, (void *) &tinfo); 305 alt = xstrprintf ("target %s", tinfo.shortname); 306 deprecate_cmd (c, alt); 307 } 308 309 /* Stub functions */ 310 311 void 312 target_kill (void) 313 { 314 current_top_target ()->kill (); 315 } 316 317 void 318 target_load (const char *arg, int from_tty) 319 { 320 target_dcache_invalidate (); 321 current_top_target ()->load (arg, from_tty); 322 } 323 324 /* Define it. */ 325 326 target_terminal_state target_terminal::m_terminal_state 327 = target_terminal_state::is_ours; 328 329 /* See target/target.h. */ 330 331 void 332 target_terminal::init (void) 333 { 334 current_top_target ()->terminal_init (); 335 336 m_terminal_state = target_terminal_state::is_ours; 337 } 338 339 /* See target/target.h. */ 340 341 void 342 target_terminal::inferior (void) 343 { 344 struct ui *ui = current_ui; 345 346 /* A background resume (``run&'') should leave GDB in control of the 347 terminal. */ 348 if (ui->prompt_state != PROMPT_BLOCKED) 349 return; 350 351 /* Since we always run the inferior in the main console (unless "set 352 inferior-tty" is in effect), when some UI other than the main one 353 calls target_terminal::inferior, then we leave the main UI's 354 terminal settings as is. */ 355 if (ui != main_ui) 356 return; 357 358 /* If GDB is resuming the inferior in the foreground, install 359 inferior's terminal modes. */ 360 361 struct inferior *inf = current_inferior (); 362 363 if (inf->terminal_state != target_terminal_state::is_inferior) 364 { 365 current_top_target ()->terminal_inferior (); 366 inf->terminal_state = target_terminal_state::is_inferior; 367 } 368 369 m_terminal_state = target_terminal_state::is_inferior; 370 371 /* If the user hit C-c before, pretend that it was hit right 372 here. */ 373 if (check_quit_flag ()) 374 target_pass_ctrlc (); 375 } 376 377 /* See target/target.h. */ 378 379 void 380 target_terminal::restore_inferior (void) 381 { 382 struct ui *ui = current_ui; 383 384 /* See target_terminal::inferior(). */ 385 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui) 386 return; 387 388 /* Restore the terminal settings of inferiors that were in the 389 foreground but are now ours_for_output due to a temporary 390 target_target::ours_for_output() call. */ 391 392 { 393 scoped_restore_current_inferior restore_inferior; 394 395 for (::inferior *inf : all_inferiors ()) 396 { 397 if (inf->terminal_state == target_terminal_state::is_ours_for_output) 398 { 399 set_current_inferior (inf); 400 current_top_target ()->terminal_inferior (); 401 inf->terminal_state = target_terminal_state::is_inferior; 402 } 403 } 404 } 405 406 m_terminal_state = target_terminal_state::is_inferior; 407 408 /* If the user hit C-c before, pretend that it was hit right 409 here. */ 410 if (check_quit_flag ()) 411 target_pass_ctrlc (); 412 } 413 414 /* Switch terminal state to DESIRED_STATE, either is_ours, or 415 is_ours_for_output. */ 416 417 static void 418 target_terminal_is_ours_kind (target_terminal_state desired_state) 419 { 420 scoped_restore_current_inferior restore_inferior; 421 422 /* Must do this in two passes. First, have all inferiors save the 423 current terminal settings. Then, after all inferiors have add a 424 chance to safely save the terminal settings, restore GDB's 425 terminal settings. */ 426 427 for (inferior *inf : all_inferiors ()) 428 { 429 if (inf->terminal_state == target_terminal_state::is_inferior) 430 { 431 set_current_inferior (inf); 432 current_top_target ()->terminal_save_inferior (); 433 } 434 } 435 436 for (inferior *inf : all_inferiors ()) 437 { 438 /* Note we don't check is_inferior here like above because we 439 need to handle 'is_ours_for_output -> is_ours' too. Careful 440 to never transition from 'is_ours' to 'is_ours_for_output', 441 though. */ 442 if (inf->terminal_state != target_terminal_state::is_ours 443 && inf->terminal_state != desired_state) 444 { 445 set_current_inferior (inf); 446 if (desired_state == target_terminal_state::is_ours) 447 current_top_target ()->terminal_ours (); 448 else if (desired_state == target_terminal_state::is_ours_for_output) 449 current_top_target ()->terminal_ours_for_output (); 450 else 451 gdb_assert_not_reached ("unhandled desired state"); 452 inf->terminal_state = desired_state; 453 } 454 } 455 } 456 457 /* See target/target.h. */ 458 459 void 460 target_terminal::ours () 461 { 462 struct ui *ui = current_ui; 463 464 /* See target_terminal::inferior. */ 465 if (ui != main_ui) 466 return; 467 468 if (m_terminal_state == target_terminal_state::is_ours) 469 return; 470 471 target_terminal_is_ours_kind (target_terminal_state::is_ours); 472 m_terminal_state = target_terminal_state::is_ours; 473 } 474 475 /* See target/target.h. */ 476 477 void 478 target_terminal::ours_for_output () 479 { 480 struct ui *ui = current_ui; 481 482 /* See target_terminal::inferior. */ 483 if (ui != main_ui) 484 return; 485 486 if (!target_terminal::is_inferior ()) 487 return; 488 489 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output); 490 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output; 491 } 492 493 /* See target/target.h. */ 494 495 void 496 target_terminal::info (const char *arg, int from_tty) 497 { 498 current_top_target ()->terminal_info (arg, from_tty); 499 } 500 501 /* See target.h. */ 502 503 bool 504 target_supports_terminal_ours (void) 505 { 506 /* This can be called before there is any target, so we must check 507 for nullptr here. */ 508 target_ops *top = current_top_target (); 509 510 if (top == nullptr) 511 return false; 512 return top->supports_terminal_ours (); 513 } 514 515 static void 516 tcomplain (void) 517 { 518 error (_("You can't do that when your target is `%s'"), 519 current_top_target ()->shortname ()); 520 } 521 522 void 523 noprocess (void) 524 { 525 error (_("You can't do that without a process to debug.")); 526 } 527 528 static void 529 default_terminal_info (struct target_ops *self, const char *args, int from_tty) 530 { 531 printf_unfiltered (_("No saved terminal information.\n")); 532 } 533 534 /* A default implementation for the to_get_ada_task_ptid target method. 535 536 This function builds the PTID by using both LWP and TID as part of 537 the PTID lwp and tid elements. The pid used is the pid of the 538 inferior_ptid. */ 539 540 static ptid_t 541 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid) 542 { 543 return ptid_t (inferior_ptid.pid (), lwp, tid); 544 } 545 546 static enum exec_direction_kind 547 default_execution_direction (struct target_ops *self) 548 { 549 if (!target_can_execute_reverse) 550 return EXEC_FORWARD; 551 else if (!target_can_async_p ()) 552 return EXEC_FORWARD; 553 else 554 gdb_assert_not_reached ("\ 555 to_execution_direction must be implemented for reverse async"); 556 } 557 558 /* See target.h. */ 559 560 void 561 target_stack::push (target_ops *t) 562 { 563 /* If there's already a target at this stratum, remove it. */ 564 strata stratum = t->stratum (); 565 566 if (m_stack[stratum] != NULL) 567 { 568 target_ops *prev = m_stack[stratum]; 569 m_stack[stratum] = NULL; 570 target_close (prev); 571 } 572 573 /* Now add the new one. */ 574 m_stack[stratum] = t; 575 576 if (m_top < stratum) 577 m_top = stratum; 578 } 579 580 /* See target.h. */ 581 582 void 583 push_target (struct target_ops *t) 584 { 585 g_target_stack.push (t); 586 } 587 588 /* See target.h */ 589 590 void 591 push_target (target_ops_up &&t) 592 { 593 g_target_stack.push (t.get ()); 594 t.release (); 595 } 596 597 /* See target.h. */ 598 599 int 600 unpush_target (struct target_ops *t) 601 { 602 return g_target_stack.unpush (t); 603 } 604 605 /* See target.h. */ 606 607 bool 608 target_stack::unpush (target_ops *t) 609 { 610 gdb_assert (t != NULL); 611 612 strata stratum = t->stratum (); 613 614 if (stratum == dummy_stratum) 615 internal_error (__FILE__, __LINE__, 616 _("Attempt to unpush the dummy target")); 617 618 /* Look for the specified target. Note that a target can only occur 619 once in the target stack. */ 620 621 if (m_stack[stratum] != t) 622 { 623 /* If T wasn't pushed, quit. Only open targets should be 624 closed. */ 625 return false; 626 } 627 628 /* Unchain the target. */ 629 m_stack[stratum] = NULL; 630 631 if (m_top == stratum) 632 m_top = t->beneath ()->stratum (); 633 634 /* Finally close the target. Note we do this after unchaining, so 635 any target method calls from within the target_close 636 implementation don't end up in T anymore. */ 637 target_close (t); 638 639 return true; 640 } 641 642 /* Unpush TARGET and assert that it worked. */ 643 644 static void 645 unpush_target_and_assert (struct target_ops *target) 646 { 647 if (!unpush_target (target)) 648 { 649 fprintf_unfiltered (gdb_stderr, 650 "pop_all_targets couldn't find target %s\n", 651 target->shortname ()); 652 internal_error (__FILE__, __LINE__, 653 _("failed internal consistency check")); 654 } 655 } 656 657 void 658 pop_all_targets_above (enum strata above_stratum) 659 { 660 while ((int) (current_top_target ()->stratum ()) > (int) above_stratum) 661 unpush_target_and_assert (current_top_target ()); 662 } 663 664 /* See target.h. */ 665 666 void 667 pop_all_targets_at_and_above (enum strata stratum) 668 { 669 while ((int) (current_top_target ()->stratum ()) >= (int) stratum) 670 unpush_target_and_assert (current_top_target ()); 671 } 672 673 void 674 pop_all_targets (void) 675 { 676 pop_all_targets_above (dummy_stratum); 677 } 678 679 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */ 680 681 int 682 target_is_pushed (struct target_ops *t) 683 { 684 return g_target_stack.is_pushed (t); 685 } 686 687 /* Default implementation of to_get_thread_local_address. */ 688 689 static void 690 generic_tls_error (void) 691 { 692 throw_error (TLS_GENERIC_ERROR, 693 _("Cannot find thread-local variables on this target")); 694 } 695 696 /* Using the objfile specified in OBJFILE, find the address for the 697 current thread's thread-local storage with offset OFFSET. */ 698 CORE_ADDR 699 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset) 700 { 701 volatile CORE_ADDR addr = 0; 702 struct target_ops *target = current_top_target (); 703 704 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ())) 705 { 706 ptid_t ptid = inferior_ptid; 707 708 TRY 709 { 710 CORE_ADDR lm_addr; 711 712 /* Fetch the load module address for this objfile. */ 713 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (), 714 objfile); 715 716 addr = target->get_thread_local_address (ptid, lm_addr, offset); 717 } 718 /* If an error occurred, print TLS related messages here. Otherwise, 719 throw the error to some higher catcher. */ 720 CATCH (ex, RETURN_MASK_ALL) 721 { 722 int objfile_is_library = (objfile->flags & OBJF_SHARED); 723 724 switch (ex.error) 725 { 726 case TLS_NO_LIBRARY_SUPPORT_ERROR: 727 error (_("Cannot find thread-local variables " 728 "in this thread library.")); 729 break; 730 case TLS_LOAD_MODULE_NOT_FOUND_ERROR: 731 if (objfile_is_library) 732 error (_("Cannot find shared library `%s' in dynamic" 733 " linker's load module list"), objfile_name (objfile)); 734 else 735 error (_("Cannot find executable file `%s' in dynamic" 736 " linker's load module list"), objfile_name (objfile)); 737 break; 738 case TLS_NOT_ALLOCATED_YET_ERROR: 739 if (objfile_is_library) 740 error (_("The inferior has not yet allocated storage for" 741 " thread-local variables in\n" 742 "the shared library `%s'\n" 743 "for %s"), 744 objfile_name (objfile), target_pid_to_str (ptid)); 745 else 746 error (_("The inferior has not yet allocated storage for" 747 " thread-local variables in\n" 748 "the executable `%s'\n" 749 "for %s"), 750 objfile_name (objfile), target_pid_to_str (ptid)); 751 break; 752 case TLS_GENERIC_ERROR: 753 if (objfile_is_library) 754 error (_("Cannot find thread-local storage for %s, " 755 "shared library %s:\n%s"), 756 target_pid_to_str (ptid), 757 objfile_name (objfile), ex.message); 758 else 759 error (_("Cannot find thread-local storage for %s, " 760 "executable file %s:\n%s"), 761 target_pid_to_str (ptid), 762 objfile_name (objfile), ex.message); 763 break; 764 default: 765 throw_exception (ex); 766 break; 767 } 768 } 769 END_CATCH 770 } 771 /* It wouldn't be wrong here to try a gdbarch method, too; finding 772 TLS is an ABI-specific thing. But we don't do that yet. */ 773 else 774 error (_("Cannot find thread-local variables on this target")); 775 776 return addr; 777 } 778 779 const char * 780 target_xfer_status_to_string (enum target_xfer_status status) 781 { 782 #define CASE(X) case X: return #X 783 switch (status) 784 { 785 CASE(TARGET_XFER_E_IO); 786 CASE(TARGET_XFER_UNAVAILABLE); 787 default: 788 return "<unknown>"; 789 } 790 #undef CASE 791 }; 792 793 794 #undef MIN 795 #define MIN(A, B) (((A) <= (B)) ? (A) : (B)) 796 797 /* target_read_string -- read a null terminated string, up to LEN bytes, 798 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful. 799 Set *STRING to a pointer to malloc'd memory containing the data; the caller 800 is responsible for freeing it. Return the number of bytes successfully 801 read. */ 802 803 int 804 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string, 805 int len, int *errnop) 806 { 807 int tlen, offset, i; 808 gdb_byte buf[4]; 809 int errcode = 0; 810 char *buffer; 811 int buffer_allocated; 812 char *bufptr; 813 unsigned int nbytes_read = 0; 814 815 gdb_assert (string); 816 817 /* Small for testing. */ 818 buffer_allocated = 4; 819 buffer = (char *) xmalloc (buffer_allocated); 820 bufptr = buffer; 821 822 while (len > 0) 823 { 824 tlen = MIN (len, 4 - (memaddr & 3)); 825 offset = memaddr & 3; 826 827 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf); 828 if (errcode != 0) 829 { 830 /* The transfer request might have crossed the boundary to an 831 unallocated region of memory. Retry the transfer, requesting 832 a single byte. */ 833 tlen = 1; 834 offset = 0; 835 errcode = target_read_memory (memaddr, buf, 1); 836 if (errcode != 0) 837 goto done; 838 } 839 840 if (bufptr - buffer + tlen > buffer_allocated) 841 { 842 unsigned int bytes; 843 844 bytes = bufptr - buffer; 845 buffer_allocated *= 2; 846 buffer = (char *) xrealloc (buffer, buffer_allocated); 847 bufptr = buffer + bytes; 848 } 849 850 for (i = 0; i < tlen; i++) 851 { 852 *bufptr++ = buf[i + offset]; 853 if (buf[i + offset] == '\000') 854 { 855 nbytes_read += i + 1; 856 goto done; 857 } 858 } 859 860 memaddr += tlen; 861 len -= tlen; 862 nbytes_read += tlen; 863 } 864 done: 865 string->reset (buffer); 866 if (errnop != NULL) 867 *errnop = errcode; 868 return nbytes_read; 869 } 870 871 struct target_section_table * 872 target_get_section_table (struct target_ops *target) 873 { 874 return target->get_section_table (); 875 } 876 877 /* Find a section containing ADDR. */ 878 879 struct target_section * 880 target_section_by_addr (struct target_ops *target, CORE_ADDR addr) 881 { 882 struct target_section_table *table = target_get_section_table (target); 883 struct target_section *secp; 884 885 if (table == NULL) 886 return NULL; 887 888 for (secp = table->sections; secp < table->sections_end; secp++) 889 { 890 if (addr >= secp->addr && addr < secp->endaddr) 891 return secp; 892 } 893 return NULL; 894 } 895 896 897 /* Helper for the memory xfer routines. Checks the attributes of the 898 memory region of MEMADDR against the read or write being attempted. 899 If the access is permitted returns true, otherwise returns false. 900 REGION_P is an optional output parameter. If not-NULL, it is 901 filled with a pointer to the memory region of MEMADDR. REG_LEN 902 returns LEN trimmed to the end of the region. This is how much the 903 caller can continue requesting, if the access is permitted. A 904 single xfer request must not straddle memory region boundaries. */ 905 906 static int 907 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf, 908 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len, 909 struct mem_region **region_p) 910 { 911 struct mem_region *region; 912 913 region = lookup_mem_region (memaddr); 914 915 if (region_p != NULL) 916 *region_p = region; 917 918 switch (region->attrib.mode) 919 { 920 case MEM_RO: 921 if (writebuf != NULL) 922 return 0; 923 break; 924 925 case MEM_WO: 926 if (readbuf != NULL) 927 return 0; 928 break; 929 930 case MEM_FLASH: 931 /* We only support writing to flash during "load" for now. */ 932 if (writebuf != NULL) 933 error (_("Writing to flash memory forbidden in this context")); 934 break; 935 936 case MEM_NONE: 937 return 0; 938 } 939 940 /* region->hi == 0 means there's no upper bound. */ 941 if (memaddr + len < region->hi || region->hi == 0) 942 *reg_len = len; 943 else 944 *reg_len = region->hi - memaddr; 945 946 return 1; 947 } 948 949 /* Read memory from more than one valid target. A core file, for 950 instance, could have some of memory but delegate other bits to 951 the target below it. So, we must manually try all targets. */ 952 953 enum target_xfer_status 954 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf, 955 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len, 956 ULONGEST *xfered_len) 957 { 958 enum target_xfer_status res; 959 960 do 961 { 962 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL, 963 readbuf, writebuf, memaddr, len, 964 xfered_len); 965 if (res == TARGET_XFER_OK) 966 break; 967 968 /* Stop if the target reports that the memory is not available. */ 969 if (res == TARGET_XFER_UNAVAILABLE) 970 break; 971 972 /* We want to continue past core files to executables, but not 973 past a running target's memory. */ 974 if (ops->has_all_memory ()) 975 break; 976 977 ops = ops->beneath (); 978 } 979 while (ops != NULL); 980 981 /* The cache works at the raw memory level. Make sure the cache 982 gets updated with raw contents no matter what kind of memory 983 object was originally being written. Note we do write-through 984 first, so that if it fails, we don't write to the cache contents 985 that never made it to the target. */ 986 if (writebuf != NULL 987 && inferior_ptid != null_ptid 988 && target_dcache_init_p () 989 && (stack_cache_enabled_p () || code_cache_enabled_p ())) 990 { 991 DCACHE *dcache = target_dcache_get (); 992 993 /* Note that writing to an area of memory which wasn't present 994 in the cache doesn't cause it to be loaded in. */ 995 dcache_update (dcache, res, memaddr, writebuf, *xfered_len); 996 } 997 998 return res; 999 } 1000 1001 /* Perform a partial memory transfer. 1002 For docs see target.h, to_xfer_partial. */ 1003 1004 static enum target_xfer_status 1005 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object, 1006 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr, 1007 ULONGEST len, ULONGEST *xfered_len) 1008 { 1009 enum target_xfer_status res; 1010 ULONGEST reg_len; 1011 struct mem_region *region; 1012 struct inferior *inf; 1013 1014 /* For accesses to unmapped overlay sections, read directly from 1015 files. Must do this first, as MEMADDR may need adjustment. */ 1016 if (readbuf != NULL && overlay_debugging) 1017 { 1018 struct obj_section *section = find_pc_overlay (memaddr); 1019 1020 if (pc_in_unmapped_range (memaddr, section)) 1021 { 1022 struct target_section_table *table 1023 = target_get_section_table (ops); 1024 const char *section_name = section->the_bfd_section->name; 1025 1026 memaddr = overlay_mapped_address (memaddr, section); 1027 return section_table_xfer_memory_partial (readbuf, writebuf, 1028 memaddr, len, xfered_len, 1029 table->sections, 1030 table->sections_end, 1031 section_name); 1032 } 1033 } 1034 1035 /* Try the executable files, if "trust-readonly-sections" is set. */ 1036 if (readbuf != NULL && trust_readonly) 1037 { 1038 struct target_section *secp; 1039 struct target_section_table *table; 1040 1041 secp = target_section_by_addr (ops, memaddr); 1042 if (secp != NULL 1043 && (bfd_get_section_flags (secp->the_bfd_section->owner, 1044 secp->the_bfd_section) 1045 & SEC_READONLY)) 1046 { 1047 table = target_get_section_table (ops); 1048 return section_table_xfer_memory_partial (readbuf, writebuf, 1049 memaddr, len, xfered_len, 1050 table->sections, 1051 table->sections_end, 1052 NULL); 1053 } 1054 } 1055 1056 /* Try GDB's internal data cache. */ 1057 1058 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, ®_len, 1059 ®ion)) 1060 return TARGET_XFER_E_IO; 1061 1062 if (inferior_ptid != null_ptid) 1063 inf = current_inferior (); 1064 else 1065 inf = NULL; 1066 1067 if (inf != NULL 1068 && readbuf != NULL 1069 /* The dcache reads whole cache lines; that doesn't play well 1070 with reading from a trace buffer, because reading outside of 1071 the collected memory range fails. */ 1072 && get_traceframe_number () == -1 1073 && (region->attrib.cache 1074 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY) 1075 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY))) 1076 { 1077 DCACHE *dcache = target_dcache_get_or_init (); 1078 1079 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf, 1080 reg_len, xfered_len); 1081 } 1082 1083 /* If none of those methods found the memory we wanted, fall back 1084 to a target partial transfer. Normally a single call to 1085 to_xfer_partial is enough; if it doesn't recognize an object 1086 it will call the to_xfer_partial of the next target down. 1087 But for memory this won't do. Memory is the only target 1088 object which can be read from more than one valid target. 1089 A core file, for instance, could have some of memory but 1090 delegate other bits to the target below it. So, we must 1091 manually try all targets. */ 1092 1093 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len, 1094 xfered_len); 1095 1096 /* If we still haven't got anything, return the last error. We 1097 give up. */ 1098 return res; 1099 } 1100 1101 /* Perform a partial memory transfer. For docs see target.h, 1102 to_xfer_partial. */ 1103 1104 static enum target_xfer_status 1105 memory_xfer_partial (struct target_ops *ops, enum target_object object, 1106 gdb_byte *readbuf, const gdb_byte *writebuf, 1107 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len) 1108 { 1109 enum target_xfer_status res; 1110 1111 /* Zero length requests are ok and require no work. */ 1112 if (len == 0) 1113 return TARGET_XFER_EOF; 1114 1115 memaddr = address_significant (target_gdbarch (), memaddr); 1116 1117 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with 1118 breakpoint insns, thus hiding out from higher layers whether 1119 there are software breakpoints inserted in the code stream. */ 1120 if (readbuf != NULL) 1121 { 1122 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len, 1123 xfered_len); 1124 1125 if (res == TARGET_XFER_OK && !show_memory_breakpoints) 1126 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len); 1127 } 1128 else 1129 { 1130 /* A large write request is likely to be partially satisfied 1131 by memory_xfer_partial_1. We will continually malloc 1132 and free a copy of the entire write request for breakpoint 1133 shadow handling even though we only end up writing a small 1134 subset of it. Cap writes to a limit specified by the target 1135 to mitigate this. */ 1136 len = std::min (ops->get_memory_xfer_limit (), len); 1137 1138 gdb::byte_vector buf (writebuf, writebuf + len); 1139 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len); 1140 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len, 1141 xfered_len); 1142 } 1143 1144 return res; 1145 } 1146 1147 scoped_restore_tmpl<int> 1148 make_scoped_restore_show_memory_breakpoints (int show) 1149 { 1150 return make_scoped_restore (&show_memory_breakpoints, show); 1151 } 1152 1153 /* For docs see target.h, to_xfer_partial. */ 1154 1155 enum target_xfer_status 1156 target_xfer_partial (struct target_ops *ops, 1157 enum target_object object, const char *annex, 1158 gdb_byte *readbuf, const gdb_byte *writebuf, 1159 ULONGEST offset, ULONGEST len, 1160 ULONGEST *xfered_len) 1161 { 1162 enum target_xfer_status retval; 1163 1164 /* Transfer is done when LEN is zero. */ 1165 if (len == 0) 1166 return TARGET_XFER_EOF; 1167 1168 if (writebuf && !may_write_memory) 1169 error (_("Writing to memory is not allowed (addr %s, len %s)"), 1170 core_addr_to_string_nz (offset), plongest (len)); 1171 1172 *xfered_len = 0; 1173 1174 /* If this is a memory transfer, let the memory-specific code 1175 have a look at it instead. Memory transfers are more 1176 complicated. */ 1177 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY 1178 || object == TARGET_OBJECT_CODE_MEMORY) 1179 retval = memory_xfer_partial (ops, object, readbuf, 1180 writebuf, offset, len, xfered_len); 1181 else if (object == TARGET_OBJECT_RAW_MEMORY) 1182 { 1183 /* Skip/avoid accessing the target if the memory region 1184 attributes block the access. Check this here instead of in 1185 raw_memory_xfer_partial as otherwise we'd end up checking 1186 this twice in the case of the memory_xfer_partial path is 1187 taken; once before checking the dcache, and another in the 1188 tail call to raw_memory_xfer_partial. */ 1189 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len, 1190 NULL)) 1191 return TARGET_XFER_E_IO; 1192 1193 /* Request the normal memory object from other layers. */ 1194 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len, 1195 xfered_len); 1196 } 1197 else 1198 retval = ops->xfer_partial (object, annex, readbuf, 1199 writebuf, offset, len, xfered_len); 1200 1201 if (targetdebug) 1202 { 1203 const unsigned char *myaddr = NULL; 1204 1205 fprintf_unfiltered (gdb_stdlog, 1206 "%s:target_xfer_partial " 1207 "(%d, %s, %s, %s, %s, %s) = %d, %s", 1208 ops->shortname (), 1209 (int) object, 1210 (annex ? annex : "(null)"), 1211 host_address_to_string (readbuf), 1212 host_address_to_string (writebuf), 1213 core_addr_to_string_nz (offset), 1214 pulongest (len), retval, 1215 pulongest (*xfered_len)); 1216 1217 if (readbuf) 1218 myaddr = readbuf; 1219 if (writebuf) 1220 myaddr = writebuf; 1221 if (retval == TARGET_XFER_OK && myaddr != NULL) 1222 { 1223 int i; 1224 1225 fputs_unfiltered (", bytes =", gdb_stdlog); 1226 for (i = 0; i < *xfered_len; i++) 1227 { 1228 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0) 1229 { 1230 if (targetdebug < 2 && i > 0) 1231 { 1232 fprintf_unfiltered (gdb_stdlog, " ..."); 1233 break; 1234 } 1235 fprintf_unfiltered (gdb_stdlog, "\n"); 1236 } 1237 1238 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff); 1239 } 1240 } 1241 1242 fputc_unfiltered ('\n', gdb_stdlog); 1243 } 1244 1245 /* Check implementations of to_xfer_partial update *XFERED_LEN 1246 properly. Do assertion after printing debug messages, so that we 1247 can find more clues on assertion failure from debugging messages. */ 1248 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE) 1249 gdb_assert (*xfered_len > 0); 1250 1251 return retval; 1252 } 1253 1254 /* Read LEN bytes of target memory at address MEMADDR, placing the 1255 results in GDB's memory at MYADDR. Returns either 0 for success or 1256 -1 if any error occurs. 1257 1258 If an error occurs, no guarantee is made about the contents of the data at 1259 MYADDR. In particular, the caller should not depend upon partial reads 1260 filling the buffer with good data. There is no way for the caller to know 1261 how much good data might have been transfered anyway. Callers that can 1262 deal with partial reads should call target_read (which will retry until 1263 it makes no progress, and then return how much was transferred). */ 1264 1265 int 1266 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) 1267 { 1268 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL, 1269 myaddr, memaddr, len) == len) 1270 return 0; 1271 else 1272 return -1; 1273 } 1274 1275 /* See target/target.h. */ 1276 1277 int 1278 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result) 1279 { 1280 gdb_byte buf[4]; 1281 int r; 1282 1283 r = target_read_memory (memaddr, buf, sizeof buf); 1284 if (r != 0) 1285 return r; 1286 *result = extract_unsigned_integer (buf, sizeof buf, 1287 gdbarch_byte_order (target_gdbarch ())); 1288 return 0; 1289 } 1290 1291 /* Like target_read_memory, but specify explicitly that this is a read 1292 from the target's raw memory. That is, this read bypasses the 1293 dcache, breakpoint shadowing, etc. */ 1294 1295 int 1296 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) 1297 { 1298 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL, 1299 myaddr, memaddr, len) == len) 1300 return 0; 1301 else 1302 return -1; 1303 } 1304 1305 /* Like target_read_memory, but specify explicitly that this is a read from 1306 the target's stack. This may trigger different cache behavior. */ 1307 1308 int 1309 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) 1310 { 1311 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL, 1312 myaddr, memaddr, len) == len) 1313 return 0; 1314 else 1315 return -1; 1316 } 1317 1318 /* Like target_read_memory, but specify explicitly that this is a read from 1319 the target's code. This may trigger different cache behavior. */ 1320 1321 int 1322 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) 1323 { 1324 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL, 1325 myaddr, memaddr, len) == len) 1326 return 0; 1327 else 1328 return -1; 1329 } 1330 1331 /* Write LEN bytes from MYADDR to target memory at address MEMADDR. 1332 Returns either 0 for success or -1 if any error occurs. If an 1333 error occurs, no guarantee is made about how much data got written. 1334 Callers that can deal with partial writes should call 1335 target_write. */ 1336 1337 int 1338 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len) 1339 { 1340 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL, 1341 myaddr, memaddr, len) == len) 1342 return 0; 1343 else 1344 return -1; 1345 } 1346 1347 /* Write LEN bytes from MYADDR to target raw memory at address 1348 MEMADDR. Returns either 0 for success or -1 if any error occurs. 1349 If an error occurs, no guarantee is made about how much data got 1350 written. Callers that can deal with partial writes should call 1351 target_write. */ 1352 1353 int 1354 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len) 1355 { 1356 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL, 1357 myaddr, memaddr, len) == len) 1358 return 0; 1359 else 1360 return -1; 1361 } 1362 1363 /* Fetch the target's memory map. */ 1364 1365 std::vector<mem_region> 1366 target_memory_map (void) 1367 { 1368 std::vector<mem_region> result = current_top_target ()->memory_map (); 1369 if (result.empty ()) 1370 return result; 1371 1372 std::sort (result.begin (), result.end ()); 1373 1374 /* Check that regions do not overlap. Simultaneously assign 1375 a numbering for the "mem" commands to use to refer to 1376 each region. */ 1377 mem_region *last_one = NULL; 1378 for (size_t ix = 0; ix < result.size (); ix++) 1379 { 1380 mem_region *this_one = &result[ix]; 1381 this_one->number = ix; 1382 1383 if (last_one != NULL && last_one->hi > this_one->lo) 1384 { 1385 warning (_("Overlapping regions in memory map: ignoring")); 1386 return std::vector<mem_region> (); 1387 } 1388 1389 last_one = this_one; 1390 } 1391 1392 return result; 1393 } 1394 1395 void 1396 target_flash_erase (ULONGEST address, LONGEST length) 1397 { 1398 current_top_target ()->flash_erase (address, length); 1399 } 1400 1401 void 1402 target_flash_done (void) 1403 { 1404 current_top_target ()->flash_done (); 1405 } 1406 1407 static void 1408 show_trust_readonly (struct ui_file *file, int from_tty, 1409 struct cmd_list_element *c, const char *value) 1410 { 1411 fprintf_filtered (file, 1412 _("Mode for reading from readonly sections is %s.\n"), 1413 value); 1414 } 1415 1416 /* Target vector read/write partial wrapper functions. */ 1417 1418 static enum target_xfer_status 1419 target_read_partial (struct target_ops *ops, 1420 enum target_object object, 1421 const char *annex, gdb_byte *buf, 1422 ULONGEST offset, ULONGEST len, 1423 ULONGEST *xfered_len) 1424 { 1425 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len, 1426 xfered_len); 1427 } 1428 1429 static enum target_xfer_status 1430 target_write_partial (struct target_ops *ops, 1431 enum target_object object, 1432 const char *annex, const gdb_byte *buf, 1433 ULONGEST offset, LONGEST len, ULONGEST *xfered_len) 1434 { 1435 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len, 1436 xfered_len); 1437 } 1438 1439 /* Wrappers to perform the full transfer. */ 1440 1441 /* For docs on target_read see target.h. */ 1442 1443 LONGEST 1444 target_read (struct target_ops *ops, 1445 enum target_object object, 1446 const char *annex, gdb_byte *buf, 1447 ULONGEST offset, LONGEST len) 1448 { 1449 LONGEST xfered_total = 0; 1450 int unit_size = 1; 1451 1452 /* If we are reading from a memory object, find the length of an addressable 1453 unit for that architecture. */ 1454 if (object == TARGET_OBJECT_MEMORY 1455 || object == TARGET_OBJECT_STACK_MEMORY 1456 || object == TARGET_OBJECT_CODE_MEMORY 1457 || object == TARGET_OBJECT_RAW_MEMORY) 1458 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ()); 1459 1460 while (xfered_total < len) 1461 { 1462 ULONGEST xfered_partial; 1463 enum target_xfer_status status; 1464 1465 status = target_read_partial (ops, object, annex, 1466 buf + xfered_total * unit_size, 1467 offset + xfered_total, len - xfered_total, 1468 &xfered_partial); 1469 1470 /* Call an observer, notifying them of the xfer progress? */ 1471 if (status == TARGET_XFER_EOF) 1472 return xfered_total; 1473 else if (status == TARGET_XFER_OK) 1474 { 1475 xfered_total += xfered_partial; 1476 QUIT; 1477 } 1478 else 1479 return TARGET_XFER_E_IO; 1480 1481 } 1482 return len; 1483 } 1484 1485 /* Assuming that the entire [begin, end) range of memory cannot be 1486 read, try to read whatever subrange is possible to read. 1487 1488 The function returns, in RESULT, either zero or one memory block. 1489 If there's a readable subrange at the beginning, it is completely 1490 read and returned. Any further readable subrange will not be read. 1491 Otherwise, if there's a readable subrange at the end, it will be 1492 completely read and returned. Any readable subranges before it 1493 (obviously, not starting at the beginning), will be ignored. In 1494 other cases -- either no readable subrange, or readable subrange(s) 1495 that is neither at the beginning, or end, nothing is returned. 1496 1497 The purpose of this function is to handle a read across a boundary 1498 of accessible memory in a case when memory map is not available. 1499 The above restrictions are fine for this case, but will give 1500 incorrect results if the memory is 'patchy'. However, supporting 1501 'patchy' memory would require trying to read every single byte, 1502 and it seems unacceptable solution. Explicit memory map is 1503 recommended for this case -- and target_read_memory_robust will 1504 take care of reading multiple ranges then. */ 1505 1506 static void 1507 read_whatever_is_readable (struct target_ops *ops, 1508 const ULONGEST begin, const ULONGEST end, 1509 int unit_size, 1510 std::vector<memory_read_result> *result) 1511 { 1512 ULONGEST current_begin = begin; 1513 ULONGEST current_end = end; 1514 int forward; 1515 ULONGEST xfered_len; 1516 1517 /* If we previously failed to read 1 byte, nothing can be done here. */ 1518 if (end - begin <= 1) 1519 return; 1520 1521 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin)); 1522 1523 /* Check that either first or the last byte is readable, and give up 1524 if not. This heuristic is meant to permit reading accessible memory 1525 at the boundary of accessible region. */ 1526 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL, 1527 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK) 1528 { 1529 forward = 1; 1530 ++current_begin; 1531 } 1532 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL, 1533 buf.get () + (end - begin) - 1, end - 1, 1, 1534 &xfered_len) == TARGET_XFER_OK) 1535 { 1536 forward = 0; 1537 --current_end; 1538 } 1539 else 1540 return; 1541 1542 /* Loop invariant is that the [current_begin, current_end) was previously 1543 found to be not readable as a whole. 1544 1545 Note loop condition -- if the range has 1 byte, we can't divide the range 1546 so there's no point trying further. */ 1547 while (current_end - current_begin > 1) 1548 { 1549 ULONGEST first_half_begin, first_half_end; 1550 ULONGEST second_half_begin, second_half_end; 1551 LONGEST xfer; 1552 ULONGEST middle = current_begin + (current_end - current_begin) / 2; 1553 1554 if (forward) 1555 { 1556 first_half_begin = current_begin; 1557 first_half_end = middle; 1558 second_half_begin = middle; 1559 second_half_end = current_end; 1560 } 1561 else 1562 { 1563 first_half_begin = middle; 1564 first_half_end = current_end; 1565 second_half_begin = current_begin; 1566 second_half_end = middle; 1567 } 1568 1569 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL, 1570 buf.get () + (first_half_begin - begin) * unit_size, 1571 first_half_begin, 1572 first_half_end - first_half_begin); 1573 1574 if (xfer == first_half_end - first_half_begin) 1575 { 1576 /* This half reads up fine. So, the error must be in the 1577 other half. */ 1578 current_begin = second_half_begin; 1579 current_end = second_half_end; 1580 } 1581 else 1582 { 1583 /* This half is not readable. Because we've tried one byte, we 1584 know some part of this half if actually readable. Go to the next 1585 iteration to divide again and try to read. 1586 1587 We don't handle the other half, because this function only tries 1588 to read a single readable subrange. */ 1589 current_begin = first_half_begin; 1590 current_end = first_half_end; 1591 } 1592 } 1593 1594 if (forward) 1595 { 1596 /* The [begin, current_begin) range has been read. */ 1597 result->emplace_back (begin, current_end, std::move (buf)); 1598 } 1599 else 1600 { 1601 /* The [current_end, end) range has been read. */ 1602 LONGEST region_len = end - current_end; 1603 1604 gdb::unique_xmalloc_ptr<gdb_byte> data 1605 ((gdb_byte *) xmalloc (region_len * unit_size)); 1606 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size, 1607 region_len * unit_size); 1608 result->emplace_back (current_end, end, std::move (data)); 1609 } 1610 } 1611 1612 std::vector<memory_read_result> 1613 read_memory_robust (struct target_ops *ops, 1614 const ULONGEST offset, const LONGEST len) 1615 { 1616 std::vector<memory_read_result> result; 1617 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ()); 1618 1619 LONGEST xfered_total = 0; 1620 while (xfered_total < len) 1621 { 1622 struct mem_region *region = lookup_mem_region (offset + xfered_total); 1623 LONGEST region_len; 1624 1625 /* If there is no explicit region, a fake one should be created. */ 1626 gdb_assert (region); 1627 1628 if (region->hi == 0) 1629 region_len = len - xfered_total; 1630 else 1631 region_len = region->hi - offset; 1632 1633 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO) 1634 { 1635 /* Cannot read this region. Note that we can end up here only 1636 if the region is explicitly marked inaccessible, or 1637 'inaccessible-by-default' is in effect. */ 1638 xfered_total += region_len; 1639 } 1640 else 1641 { 1642 LONGEST to_read = std::min (len - xfered_total, region_len); 1643 gdb::unique_xmalloc_ptr<gdb_byte> buffer 1644 ((gdb_byte *) xmalloc (to_read * unit_size)); 1645 1646 LONGEST xfered_partial = 1647 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (), 1648 offset + xfered_total, to_read); 1649 /* Call an observer, notifying them of the xfer progress? */ 1650 if (xfered_partial <= 0) 1651 { 1652 /* Got an error reading full chunk. See if maybe we can read 1653 some subrange. */ 1654 read_whatever_is_readable (ops, offset + xfered_total, 1655 offset + xfered_total + to_read, 1656 unit_size, &result); 1657 xfered_total += to_read; 1658 } 1659 else 1660 { 1661 result.emplace_back (offset + xfered_total, 1662 offset + xfered_total + xfered_partial, 1663 std::move (buffer)); 1664 xfered_total += xfered_partial; 1665 } 1666 QUIT; 1667 } 1668 } 1669 1670 return result; 1671 } 1672 1673 1674 /* An alternative to target_write with progress callbacks. */ 1675 1676 LONGEST 1677 target_write_with_progress (struct target_ops *ops, 1678 enum target_object object, 1679 const char *annex, const gdb_byte *buf, 1680 ULONGEST offset, LONGEST len, 1681 void (*progress) (ULONGEST, void *), void *baton) 1682 { 1683 LONGEST xfered_total = 0; 1684 int unit_size = 1; 1685 1686 /* If we are writing to a memory object, find the length of an addressable 1687 unit for that architecture. */ 1688 if (object == TARGET_OBJECT_MEMORY 1689 || object == TARGET_OBJECT_STACK_MEMORY 1690 || object == TARGET_OBJECT_CODE_MEMORY 1691 || object == TARGET_OBJECT_RAW_MEMORY) 1692 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ()); 1693 1694 /* Give the progress callback a chance to set up. */ 1695 if (progress) 1696 (*progress) (0, baton); 1697 1698 while (xfered_total < len) 1699 { 1700 ULONGEST xfered_partial; 1701 enum target_xfer_status status; 1702 1703 status = target_write_partial (ops, object, annex, 1704 buf + xfered_total * unit_size, 1705 offset + xfered_total, len - xfered_total, 1706 &xfered_partial); 1707 1708 if (status != TARGET_XFER_OK) 1709 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO; 1710 1711 if (progress) 1712 (*progress) (xfered_partial, baton); 1713 1714 xfered_total += xfered_partial; 1715 QUIT; 1716 } 1717 return len; 1718 } 1719 1720 /* For docs on target_write see target.h. */ 1721 1722 LONGEST 1723 target_write (struct target_ops *ops, 1724 enum target_object object, 1725 const char *annex, const gdb_byte *buf, 1726 ULONGEST offset, LONGEST len) 1727 { 1728 return target_write_with_progress (ops, object, annex, buf, offset, len, 1729 NULL, NULL); 1730 } 1731 1732 /* Help for target_read_alloc and target_read_stralloc. See their comments 1733 for details. */ 1734 1735 template <typename T> 1736 gdb::optional<gdb::def_vector<T>> 1737 target_read_alloc_1 (struct target_ops *ops, enum target_object object, 1738 const char *annex) 1739 { 1740 gdb::def_vector<T> buf; 1741 size_t buf_pos = 0; 1742 const int chunk = 4096; 1743 1744 /* This function does not have a length parameter; it reads the 1745 entire OBJECT). Also, it doesn't support objects fetched partly 1746 from one target and partly from another (in a different stratum, 1747 e.g. a core file and an executable). Both reasons make it 1748 unsuitable for reading memory. */ 1749 gdb_assert (object != TARGET_OBJECT_MEMORY); 1750 1751 /* Start by reading up to 4K at a time. The target will throttle 1752 this number down if necessary. */ 1753 while (1) 1754 { 1755 ULONGEST xfered_len; 1756 enum target_xfer_status status; 1757 1758 buf.resize (buf_pos + chunk); 1759 1760 status = target_read_partial (ops, object, annex, 1761 (gdb_byte *) &buf[buf_pos], 1762 buf_pos, chunk, 1763 &xfered_len); 1764 1765 if (status == TARGET_XFER_EOF) 1766 { 1767 /* Read all there was. */ 1768 buf.resize (buf_pos); 1769 return buf; 1770 } 1771 else if (status != TARGET_XFER_OK) 1772 { 1773 /* An error occurred. */ 1774 return {}; 1775 } 1776 1777 buf_pos += xfered_len; 1778 1779 QUIT; 1780 } 1781 } 1782 1783 /* See target.h */ 1784 1785 gdb::optional<gdb::byte_vector> 1786 target_read_alloc (struct target_ops *ops, enum target_object object, 1787 const char *annex) 1788 { 1789 return target_read_alloc_1<gdb_byte> (ops, object, annex); 1790 } 1791 1792 /* See target.h. */ 1793 1794 gdb::optional<gdb::char_vector> 1795 target_read_stralloc (struct target_ops *ops, enum target_object object, 1796 const char *annex) 1797 { 1798 gdb::optional<gdb::char_vector> buf 1799 = target_read_alloc_1<char> (ops, object, annex); 1800 1801 if (!buf) 1802 return {}; 1803 1804 if (buf->empty () || buf->back () != '\0') 1805 buf->push_back ('\0'); 1806 1807 /* Check for embedded NUL bytes; but allow trailing NULs. */ 1808 for (auto it = std::find (buf->begin (), buf->end (), '\0'); 1809 it != buf->end (); it++) 1810 if (*it != '\0') 1811 { 1812 warning (_("target object %d, annex %s, " 1813 "contained unexpected null characters"), 1814 (int) object, annex ? annex : "(none)"); 1815 break; 1816 } 1817 1818 return buf; 1819 } 1820 1821 /* Memory transfer methods. */ 1822 1823 void 1824 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf, 1825 LONGEST len) 1826 { 1827 /* This method is used to read from an alternate, non-current 1828 target. This read must bypass the overlay support (as symbols 1829 don't match this target), and GDB's internal cache (wrong cache 1830 for this target). */ 1831 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len) 1832 != len) 1833 memory_error (TARGET_XFER_E_IO, addr); 1834 } 1835 1836 ULONGEST 1837 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr, 1838 int len, enum bfd_endian byte_order) 1839 { 1840 gdb_byte buf[sizeof (ULONGEST)]; 1841 1842 gdb_assert (len <= sizeof (buf)); 1843 get_target_memory (ops, addr, buf, len); 1844 return extract_unsigned_integer (buf, len, byte_order); 1845 } 1846 1847 /* See target.h. */ 1848 1849 int 1850 target_insert_breakpoint (struct gdbarch *gdbarch, 1851 struct bp_target_info *bp_tgt) 1852 { 1853 if (!may_insert_breakpoints) 1854 { 1855 warning (_("May not insert breakpoints")); 1856 return 1; 1857 } 1858 1859 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt); 1860 } 1861 1862 /* See target.h. */ 1863 1864 int 1865 target_remove_breakpoint (struct gdbarch *gdbarch, 1866 struct bp_target_info *bp_tgt, 1867 enum remove_bp_reason reason) 1868 { 1869 /* This is kind of a weird case to handle, but the permission might 1870 have been changed after breakpoints were inserted - in which case 1871 we should just take the user literally and assume that any 1872 breakpoints should be left in place. */ 1873 if (!may_insert_breakpoints) 1874 { 1875 warning (_("May not remove breakpoints")); 1876 return 1; 1877 } 1878 1879 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason); 1880 } 1881 1882 static void 1883 info_target_command (const char *args, int from_tty) 1884 { 1885 int has_all_mem = 0; 1886 1887 if (symfile_objfile != NULL) 1888 printf_unfiltered (_("Symbols from \"%s\".\n"), 1889 objfile_name (symfile_objfile)); 1890 1891 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ()) 1892 { 1893 if (!t->has_memory ()) 1894 continue; 1895 1896 if ((int) (t->stratum ()) <= (int) dummy_stratum) 1897 continue; 1898 if (has_all_mem) 1899 printf_unfiltered (_("\tWhile running this, " 1900 "GDB does not access memory from...\n")); 1901 printf_unfiltered ("%s:\n", t->longname ()); 1902 t->files_info (); 1903 has_all_mem = t->has_all_memory (); 1904 } 1905 } 1906 1907 /* This function is called before any new inferior is created, e.g. 1908 by running a program, attaching, or connecting to a target. 1909 It cleans up any state from previous invocations which might 1910 change between runs. This is a subset of what target_preopen 1911 resets (things which might change between targets). */ 1912 1913 void 1914 target_pre_inferior (int from_tty) 1915 { 1916 /* Clear out solib state. Otherwise the solib state of the previous 1917 inferior might have survived and is entirely wrong for the new 1918 target. This has been observed on GNU/Linux using glibc 2.3. How 1919 to reproduce: 1920 1921 bash$ ./foo& 1922 [1] 4711 1923 bash$ ./foo& 1924 [1] 4712 1925 bash$ gdb ./foo 1926 [...] 1927 (gdb) attach 4711 1928 (gdb) detach 1929 (gdb) attach 4712 1930 Cannot access memory at address 0xdeadbeef 1931 */ 1932 1933 /* In some OSs, the shared library list is the same/global/shared 1934 across inferiors. If code is shared between processes, so are 1935 memory regions and features. */ 1936 if (!gdbarch_has_global_solist (target_gdbarch ())) 1937 { 1938 no_shared_libraries (NULL, from_tty); 1939 1940 invalidate_target_mem_regions (); 1941 1942 target_clear_description (); 1943 } 1944 1945 /* attach_flag may be set if the previous process associated with 1946 the inferior was attached to. */ 1947 current_inferior ()->attach_flag = 0; 1948 1949 current_inferior ()->highest_thread_num = 0; 1950 1951 agent_capability_invalidate (); 1952 } 1953 1954 /* Callback for iterate_over_inferiors. Gets rid of the given 1955 inferior. */ 1956 1957 static int 1958 dispose_inferior (struct inferior *inf, void *args) 1959 { 1960 /* Not all killed inferiors can, or will ever be, removed from the 1961 inferior list. Killed inferiors clearly don't need to be killed 1962 again, so, we're done. */ 1963 if (inf->pid == 0) 1964 return 0; 1965 1966 thread_info *thread = any_thread_of_inferior (inf); 1967 if (thread != NULL) 1968 { 1969 switch_to_thread (thread); 1970 1971 /* Core inferiors actually should be detached, not killed. */ 1972 if (target_has_execution) 1973 target_kill (); 1974 else 1975 target_detach (inf, 0); 1976 } 1977 1978 return 0; 1979 } 1980 1981 /* This is to be called by the open routine before it does 1982 anything. */ 1983 1984 void 1985 target_preopen (int from_tty) 1986 { 1987 dont_repeat (); 1988 1989 if (have_inferiors ()) 1990 { 1991 if (!from_tty 1992 || !have_live_inferiors () 1993 || query (_("A program is being debugged already. Kill it? "))) 1994 iterate_over_inferiors (dispose_inferior, NULL); 1995 else 1996 error (_("Program not killed.")); 1997 } 1998 1999 /* Calling target_kill may remove the target from the stack. But if 2000 it doesn't (which seems like a win for UDI), remove it now. */ 2001 /* Leave the exec target, though. The user may be switching from a 2002 live process to a core of the same program. */ 2003 pop_all_targets_above (file_stratum); 2004 2005 target_pre_inferior (from_tty); 2006 } 2007 2008 /* See target.h. */ 2009 2010 void 2011 target_detach (inferior *inf, int from_tty) 2012 { 2013 /* As long as some to_detach implementations rely on the current_inferior 2014 (either directly, or indirectly, like through target_gdbarch or by 2015 reading memory), INF needs to be the current inferior. When that 2016 requirement will become no longer true, then we can remove this 2017 assertion. */ 2018 gdb_assert (inf == current_inferior ()); 2019 2020 if (gdbarch_has_global_breakpoints (target_gdbarch ())) 2021 /* Don't remove global breakpoints here. They're removed on 2022 disconnection from the target. */ 2023 ; 2024 else 2025 /* If we're in breakpoints-always-inserted mode, have to remove 2026 breakpoints before detaching. */ 2027 remove_breakpoints_inf (current_inferior ()); 2028 2029 prepare_for_detach (); 2030 2031 current_top_target ()->detach (inf, from_tty); 2032 } 2033 2034 void 2035 target_disconnect (const char *args, int from_tty) 2036 { 2037 /* If we're in breakpoints-always-inserted mode or if breakpoints 2038 are global across processes, we have to remove them before 2039 disconnecting. */ 2040 remove_breakpoints (); 2041 2042 current_top_target ()->disconnect (args, from_tty); 2043 } 2044 2045 /* See target/target.h. */ 2046 2047 ptid_t 2048 target_wait (ptid_t ptid, struct target_waitstatus *status, int options) 2049 { 2050 return current_top_target ()->wait (ptid, status, options); 2051 } 2052 2053 /* See target.h. */ 2054 2055 ptid_t 2056 default_target_wait (struct target_ops *ops, 2057 ptid_t ptid, struct target_waitstatus *status, 2058 int options) 2059 { 2060 status->kind = TARGET_WAITKIND_IGNORE; 2061 return minus_one_ptid; 2062 } 2063 2064 const char * 2065 target_pid_to_str (ptid_t ptid) 2066 { 2067 return current_top_target ()->pid_to_str (ptid); 2068 } 2069 2070 const char * 2071 target_thread_name (struct thread_info *info) 2072 { 2073 return current_top_target ()->thread_name (info); 2074 } 2075 2076 struct thread_info * 2077 target_thread_handle_to_thread_info (const gdb_byte *thread_handle, 2078 int handle_len, 2079 struct inferior *inf) 2080 { 2081 return current_top_target ()->thread_handle_to_thread_info (thread_handle, 2082 handle_len, inf); 2083 } 2084 2085 void 2086 target_resume (ptid_t ptid, int step, enum gdb_signal signal) 2087 { 2088 target_dcache_invalidate (); 2089 2090 current_top_target ()->resume (ptid, step, signal); 2091 2092 registers_changed_ptid (ptid); 2093 /* We only set the internal executing state here. The user/frontend 2094 running state is set at a higher level. This also clears the 2095 thread's stop_pc as side effect. */ 2096 set_executing (ptid, 1); 2097 clear_inline_frame_state (ptid); 2098 } 2099 2100 /* If true, target_commit_resume is a nop. */ 2101 static int defer_target_commit_resume; 2102 2103 /* See target.h. */ 2104 2105 void 2106 target_commit_resume (void) 2107 { 2108 if (defer_target_commit_resume) 2109 return; 2110 2111 current_top_target ()->commit_resume (); 2112 } 2113 2114 /* See target.h. */ 2115 2116 scoped_restore_tmpl<int> 2117 make_scoped_defer_target_commit_resume () 2118 { 2119 return make_scoped_restore (&defer_target_commit_resume, 1); 2120 } 2121 2122 void 2123 target_pass_signals (gdb::array_view<const unsigned char> pass_signals) 2124 { 2125 current_top_target ()->pass_signals (pass_signals); 2126 } 2127 2128 void 2129 target_program_signals (gdb::array_view<const unsigned char> program_signals) 2130 { 2131 current_top_target ()->program_signals (program_signals); 2132 } 2133 2134 static int 2135 default_follow_fork (struct target_ops *self, int follow_child, 2136 int detach_fork) 2137 { 2138 /* Some target returned a fork event, but did not know how to follow it. */ 2139 internal_error (__FILE__, __LINE__, 2140 _("could not find a target to follow fork")); 2141 } 2142 2143 /* Look through the list of possible targets for a target that can 2144 follow forks. */ 2145 2146 int 2147 target_follow_fork (int follow_child, int detach_fork) 2148 { 2149 return current_top_target ()->follow_fork (follow_child, detach_fork); 2150 } 2151 2152 /* Target wrapper for follow exec hook. */ 2153 2154 void 2155 target_follow_exec (struct inferior *inf, char *execd_pathname) 2156 { 2157 current_top_target ()->follow_exec (inf, execd_pathname); 2158 } 2159 2160 static void 2161 default_mourn_inferior (struct target_ops *self) 2162 { 2163 internal_error (__FILE__, __LINE__, 2164 _("could not find a target to follow mourn inferior")); 2165 } 2166 2167 void 2168 target_mourn_inferior (ptid_t ptid) 2169 { 2170 gdb_assert (ptid == inferior_ptid); 2171 current_top_target ()->mourn_inferior (); 2172 2173 /* We no longer need to keep handles on any of the object files. 2174 Make sure to release them to avoid unnecessarily locking any 2175 of them while we're not actually debugging. */ 2176 bfd_cache_close_all (); 2177 } 2178 2179 /* Look for a target which can describe architectural features, starting 2180 from TARGET. If we find one, return its description. */ 2181 2182 const struct target_desc * 2183 target_read_description (struct target_ops *target) 2184 { 2185 return target->read_description (); 2186 } 2187 2188 /* This implements a basic search of memory, reading target memory and 2189 performing the search here (as opposed to performing the search in on the 2190 target side with, for example, gdbserver). */ 2191 2192 int 2193 simple_search_memory (struct target_ops *ops, 2194 CORE_ADDR start_addr, ULONGEST search_space_len, 2195 const gdb_byte *pattern, ULONGEST pattern_len, 2196 CORE_ADDR *found_addrp) 2197 { 2198 /* NOTE: also defined in find.c testcase. */ 2199 #define SEARCH_CHUNK_SIZE 16000 2200 const unsigned chunk_size = SEARCH_CHUNK_SIZE; 2201 /* Buffer to hold memory contents for searching. */ 2202 unsigned search_buf_size; 2203 2204 search_buf_size = chunk_size + pattern_len - 1; 2205 2206 /* No point in trying to allocate a buffer larger than the search space. */ 2207 if (search_space_len < search_buf_size) 2208 search_buf_size = search_space_len; 2209 2210 gdb::byte_vector search_buf (search_buf_size); 2211 2212 /* Prime the search buffer. */ 2213 2214 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, 2215 search_buf.data (), start_addr, search_buf_size) 2216 != search_buf_size) 2217 { 2218 warning (_("Unable to access %s bytes of target " 2219 "memory at %s, halting search."), 2220 pulongest (search_buf_size), hex_string (start_addr)); 2221 return -1; 2222 } 2223 2224 /* Perform the search. 2225 2226 The loop is kept simple by allocating [N + pattern-length - 1] bytes. 2227 When we've scanned N bytes we copy the trailing bytes to the start and 2228 read in another N bytes. */ 2229 2230 while (search_space_len >= pattern_len) 2231 { 2232 gdb_byte *found_ptr; 2233 unsigned nr_search_bytes 2234 = std::min (search_space_len, (ULONGEST) search_buf_size); 2235 2236 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes, 2237 pattern, pattern_len); 2238 2239 if (found_ptr != NULL) 2240 { 2241 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ()); 2242 2243 *found_addrp = found_addr; 2244 return 1; 2245 } 2246 2247 /* Not found in this chunk, skip to next chunk. */ 2248 2249 /* Don't let search_space_len wrap here, it's unsigned. */ 2250 if (search_space_len >= chunk_size) 2251 search_space_len -= chunk_size; 2252 else 2253 search_space_len = 0; 2254 2255 if (search_space_len >= pattern_len) 2256 { 2257 unsigned keep_len = search_buf_size - chunk_size; 2258 CORE_ADDR read_addr = start_addr + chunk_size + keep_len; 2259 int nr_to_read; 2260 2261 /* Copy the trailing part of the previous iteration to the front 2262 of the buffer for the next iteration. */ 2263 gdb_assert (keep_len == pattern_len - 1); 2264 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len); 2265 2266 nr_to_read = std::min (search_space_len - keep_len, 2267 (ULONGEST) chunk_size); 2268 2269 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, 2270 &search_buf[keep_len], read_addr, 2271 nr_to_read) != nr_to_read) 2272 { 2273 warning (_("Unable to access %s bytes of target " 2274 "memory at %s, halting search."), 2275 plongest (nr_to_read), 2276 hex_string (read_addr)); 2277 return -1; 2278 } 2279 2280 start_addr += chunk_size; 2281 } 2282 } 2283 2284 /* Not found. */ 2285 2286 return 0; 2287 } 2288 2289 /* Default implementation of memory-searching. */ 2290 2291 static int 2292 default_search_memory (struct target_ops *self, 2293 CORE_ADDR start_addr, ULONGEST search_space_len, 2294 const gdb_byte *pattern, ULONGEST pattern_len, 2295 CORE_ADDR *found_addrp) 2296 { 2297 /* Start over from the top of the target stack. */ 2298 return simple_search_memory (current_top_target (), 2299 start_addr, search_space_len, 2300 pattern, pattern_len, found_addrp); 2301 } 2302 2303 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the 2304 sequence of bytes in PATTERN with length PATTERN_LEN. 2305 2306 The result is 1 if found, 0 if not found, and -1 if there was an error 2307 requiring halting of the search (e.g. memory read error). 2308 If the pattern is found the address is recorded in FOUND_ADDRP. */ 2309 2310 int 2311 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len, 2312 const gdb_byte *pattern, ULONGEST pattern_len, 2313 CORE_ADDR *found_addrp) 2314 { 2315 return current_top_target ()->search_memory (start_addr, search_space_len, 2316 pattern, pattern_len, found_addrp); 2317 } 2318 2319 /* Look through the currently pushed targets. If none of them will 2320 be able to restart the currently running process, issue an error 2321 message. */ 2322 2323 void 2324 target_require_runnable (void) 2325 { 2326 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ()) 2327 { 2328 /* If this target knows how to create a new program, then 2329 assume we will still be able to after killing the current 2330 one. Either killing and mourning will not pop T, or else 2331 find_default_run_target will find it again. */ 2332 if (t->can_create_inferior ()) 2333 return; 2334 2335 /* Do not worry about targets at certain strata that can not 2336 create inferiors. Assume they will be pushed again if 2337 necessary, and continue to the process_stratum. */ 2338 if (t->stratum () > process_stratum) 2339 continue; 2340 2341 error (_("The \"%s\" target does not support \"run\". " 2342 "Try \"help target\" or \"continue\"."), 2343 t->shortname ()); 2344 } 2345 2346 /* This function is only called if the target is running. In that 2347 case there should have been a process_stratum target and it 2348 should either know how to create inferiors, or not... */ 2349 internal_error (__FILE__, __LINE__, _("No targets found")); 2350 } 2351 2352 /* Whether GDB is allowed to fall back to the default run target for 2353 "run", "attach", etc. when no target is connected yet. */ 2354 static int auto_connect_native_target = 1; 2355 2356 static void 2357 show_auto_connect_native_target (struct ui_file *file, int from_tty, 2358 struct cmd_list_element *c, const char *value) 2359 { 2360 fprintf_filtered (file, 2361 _("Whether GDB may automatically connect to the " 2362 "native target is %s.\n"), 2363 value); 2364 } 2365 2366 /* A pointer to the target that can respond to "run" or "attach". 2367 Native targets are always singletons and instantiated early at GDB 2368 startup. */ 2369 static target_ops *the_native_target; 2370 2371 /* See target.h. */ 2372 2373 void 2374 set_native_target (target_ops *target) 2375 { 2376 if (the_native_target != NULL) 2377 internal_error (__FILE__, __LINE__, 2378 _("native target already set (\"%s\")."), 2379 the_native_target->longname ()); 2380 2381 the_native_target = target; 2382 } 2383 2384 /* See target.h. */ 2385 2386 target_ops * 2387 get_native_target () 2388 { 2389 return the_native_target; 2390 } 2391 2392 /* Look through the list of possible targets for a target that can 2393 execute a run or attach command without any other data. This is 2394 used to locate the default process stratum. 2395 2396 If DO_MESG is not NULL, the result is always valid (error() is 2397 called for errors); else, return NULL on error. */ 2398 2399 static struct target_ops * 2400 find_default_run_target (const char *do_mesg) 2401 { 2402 if (auto_connect_native_target && the_native_target != NULL) 2403 return the_native_target; 2404 2405 if (do_mesg != NULL) 2406 error (_("Don't know how to %s. Try \"help target\"."), do_mesg); 2407 return NULL; 2408 } 2409 2410 /* See target.h. */ 2411 2412 struct target_ops * 2413 find_attach_target (void) 2414 { 2415 /* If a target on the current stack can attach, use it. */ 2416 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ()) 2417 { 2418 if (t->can_attach ()) 2419 return t; 2420 } 2421 2422 /* Otherwise, use the default run target for attaching. */ 2423 return find_default_run_target ("attach"); 2424 } 2425 2426 /* See target.h. */ 2427 2428 struct target_ops * 2429 find_run_target (void) 2430 { 2431 /* If a target on the current stack can run, use it. */ 2432 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ()) 2433 { 2434 if (t->can_create_inferior ()) 2435 return t; 2436 } 2437 2438 /* Otherwise, use the default run target. */ 2439 return find_default_run_target ("run"); 2440 } 2441 2442 bool 2443 target_ops::info_proc (const char *args, enum info_proc_what what) 2444 { 2445 return false; 2446 } 2447 2448 /* Implement the "info proc" command. */ 2449 2450 int 2451 target_info_proc (const char *args, enum info_proc_what what) 2452 { 2453 struct target_ops *t; 2454 2455 /* If we're already connected to something that can get us OS 2456 related data, use it. Otherwise, try using the native 2457 target. */ 2458 t = find_target_at (process_stratum); 2459 if (t == NULL) 2460 t = find_default_run_target (NULL); 2461 2462 for (; t != NULL; t = t->beneath ()) 2463 { 2464 if (t->info_proc (args, what)) 2465 { 2466 if (targetdebug) 2467 fprintf_unfiltered (gdb_stdlog, 2468 "target_info_proc (\"%s\", %d)\n", args, what); 2469 2470 return 1; 2471 } 2472 } 2473 2474 return 0; 2475 } 2476 2477 static int 2478 find_default_supports_disable_randomization (struct target_ops *self) 2479 { 2480 struct target_ops *t; 2481 2482 t = find_default_run_target (NULL); 2483 if (t != NULL) 2484 return t->supports_disable_randomization (); 2485 return 0; 2486 } 2487 2488 int 2489 target_supports_disable_randomization (void) 2490 { 2491 return current_top_target ()->supports_disable_randomization (); 2492 } 2493 2494 /* See target/target.h. */ 2495 2496 int 2497 target_supports_multi_process (void) 2498 { 2499 return current_top_target ()->supports_multi_process (); 2500 } 2501 2502 /* See target.h. */ 2503 2504 gdb::optional<gdb::char_vector> 2505 target_get_osdata (const char *type) 2506 { 2507 struct target_ops *t; 2508 2509 /* If we're already connected to something that can get us OS 2510 related data, use it. Otherwise, try using the native 2511 target. */ 2512 t = find_target_at (process_stratum); 2513 if (t == NULL) 2514 t = find_default_run_target ("get OS data"); 2515 2516 if (!t) 2517 return {}; 2518 2519 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type); 2520 } 2521 2522 2523 /* Determine the current address space of thread PTID. */ 2524 2525 struct address_space * 2526 target_thread_address_space (ptid_t ptid) 2527 { 2528 struct address_space *aspace; 2529 2530 aspace = current_top_target ()->thread_address_space (ptid); 2531 gdb_assert (aspace != NULL); 2532 2533 return aspace; 2534 } 2535 2536 /* See target.h. */ 2537 2538 target_ops * 2539 target_ops::beneath () const 2540 { 2541 return g_target_stack.find_beneath (this); 2542 } 2543 2544 void 2545 target_ops::close () 2546 { 2547 } 2548 2549 bool 2550 target_ops::can_attach () 2551 { 2552 return 0; 2553 } 2554 2555 void 2556 target_ops::attach (const char *, int) 2557 { 2558 gdb_assert_not_reached ("target_ops::attach called"); 2559 } 2560 2561 bool 2562 target_ops::can_create_inferior () 2563 { 2564 return 0; 2565 } 2566 2567 void 2568 target_ops::create_inferior (const char *, const std::string &, 2569 char **, int) 2570 { 2571 gdb_assert_not_reached ("target_ops::create_inferior called"); 2572 } 2573 2574 bool 2575 target_ops::can_run () 2576 { 2577 return false; 2578 } 2579 2580 int 2581 target_can_run () 2582 { 2583 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ()) 2584 { 2585 if (t->can_run ()) 2586 return 1; 2587 } 2588 2589 return 0; 2590 } 2591 2592 /* Target file operations. */ 2593 2594 static struct target_ops * 2595 default_fileio_target (void) 2596 { 2597 struct target_ops *t; 2598 2599 /* If we're already connected to something that can perform 2600 file I/O, use it. Otherwise, try using the native target. */ 2601 t = find_target_at (process_stratum); 2602 if (t != NULL) 2603 return t; 2604 return find_default_run_target ("file I/O"); 2605 } 2606 2607 /* File handle for target file operations. */ 2608 2609 struct fileio_fh_t 2610 { 2611 /* The target on which this file is open. NULL if the target is 2612 meanwhile closed while the handle is open. */ 2613 target_ops *target; 2614 2615 /* The file descriptor on the target. */ 2616 int target_fd; 2617 2618 /* Check whether this fileio_fh_t represents a closed file. */ 2619 bool is_closed () 2620 { 2621 return target_fd < 0; 2622 } 2623 }; 2624 2625 /* Vector of currently open file handles. The value returned by 2626 target_fileio_open and passed as the FD argument to other 2627 target_fileio_* functions is an index into this vector. This 2628 vector's entries are never freed; instead, files are marked as 2629 closed, and the handle becomes available for reuse. */ 2630 static std::vector<fileio_fh_t> fileio_fhandles; 2631 2632 /* Index into fileio_fhandles of the lowest handle that might be 2633 closed. This permits handle reuse without searching the whole 2634 list each time a new file is opened. */ 2635 static int lowest_closed_fd; 2636 2637 /* Invalidate the target associated with open handles that were open 2638 on target TARG, since we're about to close (and maybe destroy) the 2639 target. The handles remain open from the client's perspective, but 2640 trying to do anything with them other than closing them will fail 2641 with EIO. */ 2642 2643 static void 2644 fileio_handles_invalidate_target (target_ops *targ) 2645 { 2646 for (fileio_fh_t &fh : fileio_fhandles) 2647 if (fh.target == targ) 2648 fh.target = NULL; 2649 } 2650 2651 /* Acquire a target fileio file descriptor. */ 2652 2653 static int 2654 acquire_fileio_fd (target_ops *target, int target_fd) 2655 { 2656 /* Search for closed handles to reuse. */ 2657 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++) 2658 { 2659 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd]; 2660 2661 if (fh.is_closed ()) 2662 break; 2663 } 2664 2665 /* Push a new handle if no closed handles were found. */ 2666 if (lowest_closed_fd == fileio_fhandles.size ()) 2667 fileio_fhandles.push_back (fileio_fh_t {target, target_fd}); 2668 else 2669 fileio_fhandles[lowest_closed_fd] = {target, target_fd}; 2670 2671 /* Should no longer be marked closed. */ 2672 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ()); 2673 2674 /* Return its index, and start the next lookup at 2675 the next index. */ 2676 return lowest_closed_fd++; 2677 } 2678 2679 /* Release a target fileio file descriptor. */ 2680 2681 static void 2682 release_fileio_fd (int fd, fileio_fh_t *fh) 2683 { 2684 fh->target_fd = -1; 2685 lowest_closed_fd = std::min (lowest_closed_fd, fd); 2686 } 2687 2688 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */ 2689 2690 static fileio_fh_t * 2691 fileio_fd_to_fh (int fd) 2692 { 2693 return &fileio_fhandles[fd]; 2694 } 2695 2696 2697 /* Default implementations of file i/o methods. We don't want these 2698 to delegate automatically, because we need to know which target 2699 supported the method, in order to call it directly from within 2700 pread/pwrite, etc. */ 2701 2702 int 2703 target_ops::fileio_open (struct inferior *inf, const char *filename, 2704 int flags, int mode, int warn_if_slow, 2705 int *target_errno) 2706 { 2707 *target_errno = FILEIO_ENOSYS; 2708 return -1; 2709 } 2710 2711 int 2712 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len, 2713 ULONGEST offset, int *target_errno) 2714 { 2715 *target_errno = FILEIO_ENOSYS; 2716 return -1; 2717 } 2718 2719 int 2720 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len, 2721 ULONGEST offset, int *target_errno) 2722 { 2723 *target_errno = FILEIO_ENOSYS; 2724 return -1; 2725 } 2726 2727 int 2728 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno) 2729 { 2730 *target_errno = FILEIO_ENOSYS; 2731 return -1; 2732 } 2733 2734 int 2735 target_ops::fileio_close (int fd, int *target_errno) 2736 { 2737 *target_errno = FILEIO_ENOSYS; 2738 return -1; 2739 } 2740 2741 int 2742 target_ops::fileio_unlink (struct inferior *inf, const char *filename, 2743 int *target_errno) 2744 { 2745 *target_errno = FILEIO_ENOSYS; 2746 return -1; 2747 } 2748 2749 gdb::optional<std::string> 2750 target_ops::fileio_readlink (struct inferior *inf, const char *filename, 2751 int *target_errno) 2752 { 2753 *target_errno = FILEIO_ENOSYS; 2754 return {}; 2755 } 2756 2757 /* Helper for target_fileio_open and 2758 target_fileio_open_warn_if_slow. */ 2759 2760 static int 2761 target_fileio_open_1 (struct inferior *inf, const char *filename, 2762 int flags, int mode, int warn_if_slow, 2763 int *target_errno) 2764 { 2765 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ()) 2766 { 2767 int fd = t->fileio_open (inf, filename, flags, mode, 2768 warn_if_slow, target_errno); 2769 2770 if (fd == -1 && *target_errno == FILEIO_ENOSYS) 2771 continue; 2772 2773 if (fd < 0) 2774 fd = -1; 2775 else 2776 fd = acquire_fileio_fd (t, fd); 2777 2778 if (targetdebug) 2779 fprintf_unfiltered (gdb_stdlog, 2780 "target_fileio_open (%d,%s,0x%x,0%o,%d)" 2781 " = %d (%d)\n", 2782 inf == NULL ? 0 : inf->num, 2783 filename, flags, mode, 2784 warn_if_slow, fd, 2785 fd != -1 ? 0 : *target_errno); 2786 return fd; 2787 } 2788 2789 *target_errno = FILEIO_ENOSYS; 2790 return -1; 2791 } 2792 2793 /* See target.h. */ 2794 2795 int 2796 target_fileio_open (struct inferior *inf, const char *filename, 2797 int flags, int mode, int *target_errno) 2798 { 2799 return target_fileio_open_1 (inf, filename, flags, mode, 0, 2800 target_errno); 2801 } 2802 2803 /* See target.h. */ 2804 2805 int 2806 target_fileio_open_warn_if_slow (struct inferior *inf, 2807 const char *filename, 2808 int flags, int mode, int *target_errno) 2809 { 2810 return target_fileio_open_1 (inf, filename, flags, mode, 1, 2811 target_errno); 2812 } 2813 2814 /* See target.h. */ 2815 2816 int 2817 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len, 2818 ULONGEST offset, int *target_errno) 2819 { 2820 fileio_fh_t *fh = fileio_fd_to_fh (fd); 2821 int ret = -1; 2822 2823 if (fh->is_closed ()) 2824 *target_errno = EBADF; 2825 else if (fh->target == NULL) 2826 *target_errno = EIO; 2827 else 2828 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf, 2829 len, offset, target_errno); 2830 2831 if (targetdebug) 2832 fprintf_unfiltered (gdb_stdlog, 2833 "target_fileio_pwrite (%d,...,%d,%s) " 2834 "= %d (%d)\n", 2835 fd, len, pulongest (offset), 2836 ret, ret != -1 ? 0 : *target_errno); 2837 return ret; 2838 } 2839 2840 /* See target.h. */ 2841 2842 int 2843 target_fileio_pread (int fd, gdb_byte *read_buf, int len, 2844 ULONGEST offset, int *target_errno) 2845 { 2846 fileio_fh_t *fh = fileio_fd_to_fh (fd); 2847 int ret = -1; 2848 2849 if (fh->is_closed ()) 2850 *target_errno = EBADF; 2851 else if (fh->target == NULL) 2852 *target_errno = EIO; 2853 else 2854 ret = fh->target->fileio_pread (fh->target_fd, read_buf, 2855 len, offset, target_errno); 2856 2857 if (targetdebug) 2858 fprintf_unfiltered (gdb_stdlog, 2859 "target_fileio_pread (%d,...,%d,%s) " 2860 "= %d (%d)\n", 2861 fd, len, pulongest (offset), 2862 ret, ret != -1 ? 0 : *target_errno); 2863 return ret; 2864 } 2865 2866 /* See target.h. */ 2867 2868 int 2869 target_fileio_fstat (int fd, struct stat *sb, int *target_errno) 2870 { 2871 fileio_fh_t *fh = fileio_fd_to_fh (fd); 2872 int ret = -1; 2873 2874 if (fh->is_closed ()) 2875 *target_errno = EBADF; 2876 else if (fh->target == NULL) 2877 *target_errno = EIO; 2878 else 2879 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno); 2880 2881 if (targetdebug) 2882 fprintf_unfiltered (gdb_stdlog, 2883 "target_fileio_fstat (%d) = %d (%d)\n", 2884 fd, ret, ret != -1 ? 0 : *target_errno); 2885 return ret; 2886 } 2887 2888 /* See target.h. */ 2889 2890 int 2891 target_fileio_close (int fd, int *target_errno) 2892 { 2893 fileio_fh_t *fh = fileio_fd_to_fh (fd); 2894 int ret = -1; 2895 2896 if (fh->is_closed ()) 2897 *target_errno = EBADF; 2898 else 2899 { 2900 if (fh->target != NULL) 2901 ret = fh->target->fileio_close (fh->target_fd, 2902 target_errno); 2903 else 2904 ret = 0; 2905 release_fileio_fd (fd, fh); 2906 } 2907 2908 if (targetdebug) 2909 fprintf_unfiltered (gdb_stdlog, 2910 "target_fileio_close (%d) = %d (%d)\n", 2911 fd, ret, ret != -1 ? 0 : *target_errno); 2912 return ret; 2913 } 2914 2915 /* See target.h. */ 2916 2917 int 2918 target_fileio_unlink (struct inferior *inf, const char *filename, 2919 int *target_errno) 2920 { 2921 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ()) 2922 { 2923 int ret = t->fileio_unlink (inf, filename, target_errno); 2924 2925 if (ret == -1 && *target_errno == FILEIO_ENOSYS) 2926 continue; 2927 2928 if (targetdebug) 2929 fprintf_unfiltered (gdb_stdlog, 2930 "target_fileio_unlink (%d,%s)" 2931 " = %d (%d)\n", 2932 inf == NULL ? 0 : inf->num, filename, 2933 ret, ret != -1 ? 0 : *target_errno); 2934 return ret; 2935 } 2936 2937 *target_errno = FILEIO_ENOSYS; 2938 return -1; 2939 } 2940 2941 /* See target.h. */ 2942 2943 gdb::optional<std::string> 2944 target_fileio_readlink (struct inferior *inf, const char *filename, 2945 int *target_errno) 2946 { 2947 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ()) 2948 { 2949 gdb::optional<std::string> ret 2950 = t->fileio_readlink (inf, filename, target_errno); 2951 2952 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS) 2953 continue; 2954 2955 if (targetdebug) 2956 fprintf_unfiltered (gdb_stdlog, 2957 "target_fileio_readlink (%d,%s)" 2958 " = %s (%d)\n", 2959 inf == NULL ? 0 : inf->num, 2960 filename, ret ? ret->c_str () : "(nil)", 2961 ret ? 0 : *target_errno); 2962 return ret; 2963 } 2964 2965 *target_errno = FILEIO_ENOSYS; 2966 return {}; 2967 } 2968 2969 /* Like scoped_fd, but specific to target fileio. */ 2970 2971 class scoped_target_fd 2972 { 2973 public: 2974 explicit scoped_target_fd (int fd) noexcept 2975 : m_fd (fd) 2976 { 2977 } 2978 2979 ~scoped_target_fd () 2980 { 2981 if (m_fd >= 0) 2982 { 2983 int target_errno; 2984 2985 target_fileio_close (m_fd, &target_errno); 2986 } 2987 } 2988 2989 DISABLE_COPY_AND_ASSIGN (scoped_target_fd); 2990 2991 int get () const noexcept 2992 { 2993 return m_fd; 2994 } 2995 2996 private: 2997 int m_fd; 2998 }; 2999 3000 /* Read target file FILENAME, in the filesystem as seen by INF. If 3001 INF is NULL, use the filesystem seen by the debugger (GDB or, for 3002 remote targets, the remote stub). Store the result in *BUF_P and 3003 return the size of the transferred data. PADDING additional bytes 3004 are available in *BUF_P. This is a helper function for 3005 target_fileio_read_alloc; see the declaration of that function for 3006 more information. */ 3007 3008 static LONGEST 3009 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename, 3010 gdb_byte **buf_p, int padding) 3011 { 3012 size_t buf_alloc, buf_pos; 3013 gdb_byte *buf; 3014 LONGEST n; 3015 int target_errno; 3016 3017 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY, 3018 0700, &target_errno)); 3019 if (fd.get () == -1) 3020 return -1; 3021 3022 /* Start by reading up to 4K at a time. The target will throttle 3023 this number down if necessary. */ 3024 buf_alloc = 4096; 3025 buf = (gdb_byte *) xmalloc (buf_alloc); 3026 buf_pos = 0; 3027 while (1) 3028 { 3029 n = target_fileio_pread (fd.get (), &buf[buf_pos], 3030 buf_alloc - buf_pos - padding, buf_pos, 3031 &target_errno); 3032 if (n < 0) 3033 { 3034 /* An error occurred. */ 3035 xfree (buf); 3036 return -1; 3037 } 3038 else if (n == 0) 3039 { 3040 /* Read all there was. */ 3041 if (buf_pos == 0) 3042 xfree (buf); 3043 else 3044 *buf_p = buf; 3045 return buf_pos; 3046 } 3047 3048 buf_pos += n; 3049 3050 /* If the buffer is filling up, expand it. */ 3051 if (buf_alloc < buf_pos * 2) 3052 { 3053 buf_alloc *= 2; 3054 buf = (gdb_byte *) xrealloc (buf, buf_alloc); 3055 } 3056 3057 QUIT; 3058 } 3059 } 3060 3061 /* See target.h. */ 3062 3063 LONGEST 3064 target_fileio_read_alloc (struct inferior *inf, const char *filename, 3065 gdb_byte **buf_p) 3066 { 3067 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0); 3068 } 3069 3070 /* See target.h. */ 3071 3072 gdb::unique_xmalloc_ptr<char> 3073 target_fileio_read_stralloc (struct inferior *inf, const char *filename) 3074 { 3075 gdb_byte *buffer; 3076 char *bufstr; 3077 LONGEST i, transferred; 3078 3079 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1); 3080 bufstr = (char *) buffer; 3081 3082 if (transferred < 0) 3083 return gdb::unique_xmalloc_ptr<char> (nullptr); 3084 3085 if (transferred == 0) 3086 return gdb::unique_xmalloc_ptr<char> (xstrdup ("")); 3087 3088 bufstr[transferred] = 0; 3089 3090 /* Check for embedded NUL bytes; but allow trailing NULs. */ 3091 for (i = strlen (bufstr); i < transferred; i++) 3092 if (bufstr[i] != 0) 3093 { 3094 warning (_("target file %s " 3095 "contained unexpected null characters"), 3096 filename); 3097 break; 3098 } 3099 3100 return gdb::unique_xmalloc_ptr<char> (bufstr); 3101 } 3102 3103 3104 static int 3105 default_region_ok_for_hw_watchpoint (struct target_ops *self, 3106 CORE_ADDR addr, int len) 3107 { 3108 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT); 3109 } 3110 3111 static int 3112 default_watchpoint_addr_within_range (struct target_ops *target, 3113 CORE_ADDR addr, 3114 CORE_ADDR start, int length) 3115 { 3116 return addr >= start && addr < start + length; 3117 } 3118 3119 /* See target.h. */ 3120 3121 target_ops * 3122 target_stack::find_beneath (const target_ops *t) const 3123 { 3124 /* Look for a non-empty slot at stratum levels beneath T's. */ 3125 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum) 3126 if (m_stack[stratum] != NULL) 3127 return m_stack[stratum]; 3128 3129 return NULL; 3130 } 3131 3132 /* See target.h. */ 3133 3134 struct target_ops * 3135 find_target_at (enum strata stratum) 3136 { 3137 return g_target_stack.at (stratum); 3138 } 3139 3140 3141 3142 /* See target.h */ 3143 3144 void 3145 target_announce_detach (int from_tty) 3146 { 3147 pid_t pid; 3148 const char *exec_file; 3149 3150 if (!from_tty) 3151 return; 3152 3153 exec_file = get_exec_file (0); 3154 if (exec_file == NULL) 3155 exec_file = ""; 3156 3157 pid = inferior_ptid.pid (); 3158 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file, 3159 target_pid_to_str (ptid_t (pid))); 3160 gdb_flush (gdb_stdout); 3161 } 3162 3163 /* The inferior process has died. Long live the inferior! */ 3164 3165 void 3166 generic_mourn_inferior (void) 3167 { 3168 inferior *inf = current_inferior (); 3169 3170 inferior_ptid = null_ptid; 3171 3172 /* Mark breakpoints uninserted in case something tries to delete a 3173 breakpoint while we delete the inferior's threads (which would 3174 fail, since the inferior is long gone). */ 3175 mark_breakpoints_out (); 3176 3177 if (inf->pid != 0) 3178 exit_inferior (inf); 3179 3180 /* Note this wipes step-resume breakpoints, so needs to be done 3181 after exit_inferior, which ends up referencing the step-resume 3182 breakpoints through clear_thread_inferior_resources. */ 3183 breakpoint_init_inferior (inf_exited); 3184 3185 registers_changed (); 3186 3187 reopen_exec_file (); 3188 reinit_frame_cache (); 3189 3190 if (deprecated_detach_hook) 3191 deprecated_detach_hook (); 3192 } 3193 3194 /* Convert a normal process ID to a string. Returns the string in a 3195 static buffer. */ 3196 3197 const char * 3198 normal_pid_to_str (ptid_t ptid) 3199 { 3200 static char buf[32]; 3201 3202 xsnprintf (buf, sizeof buf, "process %d", ptid.pid ()); 3203 return buf; 3204 } 3205 3206 static const char * 3207 default_pid_to_str (struct target_ops *ops, ptid_t ptid) 3208 { 3209 return normal_pid_to_str (ptid); 3210 } 3211 3212 /* Error-catcher for target_find_memory_regions. */ 3213 static int 3214 dummy_find_memory_regions (struct target_ops *self, 3215 find_memory_region_ftype ignore1, void *ignore2) 3216 { 3217 error (_("Command not implemented for this target.")); 3218 return 0; 3219 } 3220 3221 /* Error-catcher for target_make_corefile_notes. */ 3222 static char * 3223 dummy_make_corefile_notes (struct target_ops *self, 3224 bfd *ignore1, int *ignore2) 3225 { 3226 error (_("Command not implemented for this target.")); 3227 return NULL; 3228 } 3229 3230 #include "target-delegates.c" 3231 3232 3233 static const target_info dummy_target_info = { 3234 "None", 3235 N_("None"), 3236 "" 3237 }; 3238 3239 strata 3240 dummy_target::stratum () const 3241 { 3242 return dummy_stratum; 3243 } 3244 3245 strata 3246 debug_target::stratum () const 3247 { 3248 return debug_stratum; 3249 } 3250 3251 const target_info & 3252 dummy_target::info () const 3253 { 3254 return dummy_target_info; 3255 } 3256 3257 const target_info & 3258 debug_target::info () const 3259 { 3260 return beneath ()->info (); 3261 } 3262 3263 3264 3265 void 3266 target_close (struct target_ops *targ) 3267 { 3268 gdb_assert (!target_is_pushed (targ)); 3269 3270 fileio_handles_invalidate_target (targ); 3271 3272 targ->close (); 3273 3274 if (targetdebug) 3275 fprintf_unfiltered (gdb_stdlog, "target_close ()\n"); 3276 } 3277 3278 int 3279 target_thread_alive (ptid_t ptid) 3280 { 3281 return current_top_target ()->thread_alive (ptid); 3282 } 3283 3284 void 3285 target_update_thread_list (void) 3286 { 3287 current_top_target ()->update_thread_list (); 3288 } 3289 3290 void 3291 target_stop (ptid_t ptid) 3292 { 3293 if (!may_stop) 3294 { 3295 warning (_("May not interrupt or stop the target, ignoring attempt")); 3296 return; 3297 } 3298 3299 current_top_target ()->stop (ptid); 3300 } 3301 3302 void 3303 target_interrupt () 3304 { 3305 if (!may_stop) 3306 { 3307 warning (_("May not interrupt or stop the target, ignoring attempt")); 3308 return; 3309 } 3310 3311 current_top_target ()->interrupt (); 3312 } 3313 3314 /* See target.h. */ 3315 3316 void 3317 target_pass_ctrlc (void) 3318 { 3319 current_top_target ()->pass_ctrlc (); 3320 } 3321 3322 /* See target.h. */ 3323 3324 void 3325 default_target_pass_ctrlc (struct target_ops *ops) 3326 { 3327 target_interrupt (); 3328 } 3329 3330 /* See target/target.h. */ 3331 3332 void 3333 target_stop_and_wait (ptid_t ptid) 3334 { 3335 struct target_waitstatus status; 3336 int was_non_stop = non_stop; 3337 3338 non_stop = 1; 3339 target_stop (ptid); 3340 3341 memset (&status, 0, sizeof (status)); 3342 target_wait (ptid, &status, 0); 3343 3344 non_stop = was_non_stop; 3345 } 3346 3347 /* See target/target.h. */ 3348 3349 void 3350 target_continue_no_signal (ptid_t ptid) 3351 { 3352 target_resume (ptid, 0, GDB_SIGNAL_0); 3353 } 3354 3355 /* See target/target.h. */ 3356 3357 void 3358 target_continue (ptid_t ptid, enum gdb_signal signal) 3359 { 3360 target_resume (ptid, 0, signal); 3361 } 3362 3363 /* Concatenate ELEM to LIST, a comma-separated list. */ 3364 3365 static void 3366 str_comma_list_concat_elem (std::string *list, const char *elem) 3367 { 3368 if (!list->empty ()) 3369 list->append (", "); 3370 3371 list->append (elem); 3372 } 3373 3374 /* Helper for target_options_to_string. If OPT is present in 3375 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET. 3376 OPT is removed from TARGET_OPTIONS. */ 3377 3378 static void 3379 do_option (int *target_options, std::string *ret, 3380 int opt, const char *opt_str) 3381 { 3382 if ((*target_options & opt) != 0) 3383 { 3384 str_comma_list_concat_elem (ret, opt_str); 3385 *target_options &= ~opt; 3386 } 3387 } 3388 3389 /* See target.h. */ 3390 3391 std::string 3392 target_options_to_string (int target_options) 3393 { 3394 std::string ret; 3395 3396 #define DO_TARG_OPTION(OPT) \ 3397 do_option (&target_options, &ret, OPT, #OPT) 3398 3399 DO_TARG_OPTION (TARGET_WNOHANG); 3400 3401 if (target_options != 0) 3402 str_comma_list_concat_elem (&ret, "unknown???"); 3403 3404 return ret; 3405 } 3406 3407 void 3408 target_fetch_registers (struct regcache *regcache, int regno) 3409 { 3410 current_top_target ()->fetch_registers (regcache, regno); 3411 if (targetdebug) 3412 regcache->debug_print_register ("target_fetch_registers", regno); 3413 } 3414 3415 void 3416 target_store_registers (struct regcache *regcache, int regno) 3417 { 3418 if (!may_write_registers) 3419 error (_("Writing to registers is not allowed (regno %d)"), regno); 3420 3421 current_top_target ()->store_registers (regcache, regno); 3422 if (targetdebug) 3423 { 3424 regcache->debug_print_register ("target_store_registers", regno); 3425 } 3426 } 3427 3428 int 3429 target_core_of_thread (ptid_t ptid) 3430 { 3431 return current_top_target ()->core_of_thread (ptid); 3432 } 3433 3434 int 3435 simple_verify_memory (struct target_ops *ops, 3436 const gdb_byte *data, CORE_ADDR lma, ULONGEST size) 3437 { 3438 LONGEST total_xfered = 0; 3439 3440 while (total_xfered < size) 3441 { 3442 ULONGEST xfered_len; 3443 enum target_xfer_status status; 3444 gdb_byte buf[1024]; 3445 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered); 3446 3447 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL, 3448 buf, NULL, lma + total_xfered, howmuch, 3449 &xfered_len); 3450 if (status == TARGET_XFER_OK 3451 && memcmp (data + total_xfered, buf, xfered_len) == 0) 3452 { 3453 total_xfered += xfered_len; 3454 QUIT; 3455 } 3456 else 3457 return 0; 3458 } 3459 return 1; 3460 } 3461 3462 /* Default implementation of memory verification. */ 3463 3464 static int 3465 default_verify_memory (struct target_ops *self, 3466 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size) 3467 { 3468 /* Start over from the top of the target stack. */ 3469 return simple_verify_memory (current_top_target (), 3470 data, memaddr, size); 3471 } 3472 3473 int 3474 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size) 3475 { 3476 return current_top_target ()->verify_memory (data, memaddr, size); 3477 } 3478 3479 /* The documentation for this function is in its prototype declaration in 3480 target.h. */ 3481 3482 int 3483 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, 3484 enum target_hw_bp_type rw) 3485 { 3486 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw); 3487 } 3488 3489 /* The documentation for this function is in its prototype declaration in 3490 target.h. */ 3491 3492 int 3493 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, 3494 enum target_hw_bp_type rw) 3495 { 3496 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw); 3497 } 3498 3499 /* The documentation for this function is in its prototype declaration 3500 in target.h. */ 3501 3502 int 3503 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask) 3504 { 3505 return current_top_target ()->masked_watch_num_registers (addr, mask); 3506 } 3507 3508 /* The documentation for this function is in its prototype declaration 3509 in target.h. */ 3510 3511 int 3512 target_ranged_break_num_registers (void) 3513 { 3514 return current_top_target ()->ranged_break_num_registers (); 3515 } 3516 3517 /* See target.h. */ 3518 3519 struct btrace_target_info * 3520 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf) 3521 { 3522 return current_top_target ()->enable_btrace (ptid, conf); 3523 } 3524 3525 /* See target.h. */ 3526 3527 void 3528 target_disable_btrace (struct btrace_target_info *btinfo) 3529 { 3530 current_top_target ()->disable_btrace (btinfo); 3531 } 3532 3533 /* See target.h. */ 3534 3535 void 3536 target_teardown_btrace (struct btrace_target_info *btinfo) 3537 { 3538 current_top_target ()->teardown_btrace (btinfo); 3539 } 3540 3541 /* See target.h. */ 3542 3543 enum btrace_error 3544 target_read_btrace (struct btrace_data *btrace, 3545 struct btrace_target_info *btinfo, 3546 enum btrace_read_type type) 3547 { 3548 return current_top_target ()->read_btrace (btrace, btinfo, type); 3549 } 3550 3551 /* See target.h. */ 3552 3553 const struct btrace_config * 3554 target_btrace_conf (const struct btrace_target_info *btinfo) 3555 { 3556 return current_top_target ()->btrace_conf (btinfo); 3557 } 3558 3559 /* See target.h. */ 3560 3561 void 3562 target_stop_recording (void) 3563 { 3564 current_top_target ()->stop_recording (); 3565 } 3566 3567 /* See target.h. */ 3568 3569 void 3570 target_save_record (const char *filename) 3571 { 3572 current_top_target ()->save_record (filename); 3573 } 3574 3575 /* See target.h. */ 3576 3577 int 3578 target_supports_delete_record () 3579 { 3580 return current_top_target ()->supports_delete_record (); 3581 } 3582 3583 /* See target.h. */ 3584 3585 void 3586 target_delete_record (void) 3587 { 3588 current_top_target ()->delete_record (); 3589 } 3590 3591 /* See target.h. */ 3592 3593 enum record_method 3594 target_record_method (ptid_t ptid) 3595 { 3596 return current_top_target ()->record_method (ptid); 3597 } 3598 3599 /* See target.h. */ 3600 3601 int 3602 target_record_is_replaying (ptid_t ptid) 3603 { 3604 return current_top_target ()->record_is_replaying (ptid); 3605 } 3606 3607 /* See target.h. */ 3608 3609 int 3610 target_record_will_replay (ptid_t ptid, int dir) 3611 { 3612 return current_top_target ()->record_will_replay (ptid, dir); 3613 } 3614 3615 /* See target.h. */ 3616 3617 void 3618 target_record_stop_replaying (void) 3619 { 3620 current_top_target ()->record_stop_replaying (); 3621 } 3622 3623 /* See target.h. */ 3624 3625 void 3626 target_goto_record_begin (void) 3627 { 3628 current_top_target ()->goto_record_begin (); 3629 } 3630 3631 /* See target.h. */ 3632 3633 void 3634 target_goto_record_end (void) 3635 { 3636 current_top_target ()->goto_record_end (); 3637 } 3638 3639 /* See target.h. */ 3640 3641 void 3642 target_goto_record (ULONGEST insn) 3643 { 3644 current_top_target ()->goto_record (insn); 3645 } 3646 3647 /* See target.h. */ 3648 3649 void 3650 target_insn_history (int size, gdb_disassembly_flags flags) 3651 { 3652 current_top_target ()->insn_history (size, flags); 3653 } 3654 3655 /* See target.h. */ 3656 3657 void 3658 target_insn_history_from (ULONGEST from, int size, 3659 gdb_disassembly_flags flags) 3660 { 3661 current_top_target ()->insn_history_from (from, size, flags); 3662 } 3663 3664 /* See target.h. */ 3665 3666 void 3667 target_insn_history_range (ULONGEST begin, ULONGEST end, 3668 gdb_disassembly_flags flags) 3669 { 3670 current_top_target ()->insn_history_range (begin, end, flags); 3671 } 3672 3673 /* See target.h. */ 3674 3675 void 3676 target_call_history (int size, record_print_flags flags) 3677 { 3678 current_top_target ()->call_history (size, flags); 3679 } 3680 3681 /* See target.h. */ 3682 3683 void 3684 target_call_history_from (ULONGEST begin, int size, record_print_flags flags) 3685 { 3686 current_top_target ()->call_history_from (begin, size, flags); 3687 } 3688 3689 /* See target.h. */ 3690 3691 void 3692 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags) 3693 { 3694 current_top_target ()->call_history_range (begin, end, flags); 3695 } 3696 3697 /* See target.h. */ 3698 3699 const struct frame_unwind * 3700 target_get_unwinder (void) 3701 { 3702 return current_top_target ()->get_unwinder (); 3703 } 3704 3705 /* See target.h. */ 3706 3707 const struct frame_unwind * 3708 target_get_tailcall_unwinder (void) 3709 { 3710 return current_top_target ()->get_tailcall_unwinder (); 3711 } 3712 3713 /* See target.h. */ 3714 3715 void 3716 target_prepare_to_generate_core (void) 3717 { 3718 current_top_target ()->prepare_to_generate_core (); 3719 } 3720 3721 /* See target.h. */ 3722 3723 void 3724 target_done_generating_core (void) 3725 { 3726 current_top_target ()->done_generating_core (); 3727 } 3728 3729 3730 3731 static char targ_desc[] = 3732 "Names of targets and files being debugged.\nShows the entire \ 3733 stack of targets currently in use (including the exec-file,\n\ 3734 core-file, and process, if any), as well as the symbol file name."; 3735 3736 static void 3737 default_rcmd (struct target_ops *self, const char *command, 3738 struct ui_file *output) 3739 { 3740 error (_("\"monitor\" command not supported by this target.")); 3741 } 3742 3743 static void 3744 do_monitor_command (const char *cmd, int from_tty) 3745 { 3746 target_rcmd (cmd, gdb_stdtarg); 3747 } 3748 3749 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are 3750 ignored. */ 3751 3752 void 3753 flash_erase_command (const char *cmd, int from_tty) 3754 { 3755 /* Used to communicate termination of flash operations to the target. */ 3756 bool found_flash_region = false; 3757 struct gdbarch *gdbarch = target_gdbarch (); 3758 3759 std::vector<mem_region> mem_regions = target_memory_map (); 3760 3761 /* Iterate over all memory regions. */ 3762 for (const mem_region &m : mem_regions) 3763 { 3764 /* Is this a flash memory region? */ 3765 if (m.attrib.mode == MEM_FLASH) 3766 { 3767 found_flash_region = true; 3768 target_flash_erase (m.lo, m.hi - m.lo); 3769 3770 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions"); 3771 3772 current_uiout->message (_("Erasing flash memory region at address ")); 3773 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo)); 3774 current_uiout->message (", size = "); 3775 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo)); 3776 current_uiout->message ("\n"); 3777 } 3778 } 3779 3780 /* Did we do any flash operations? If so, we need to finalize them. */ 3781 if (found_flash_region) 3782 target_flash_done (); 3783 else 3784 current_uiout->message (_("No flash memory regions found.\n")); 3785 } 3786 3787 /* Print the name of each layers of our target stack. */ 3788 3789 static void 3790 maintenance_print_target_stack (const char *cmd, int from_tty) 3791 { 3792 printf_filtered (_("The current target stack is:\n")); 3793 3794 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ()) 3795 { 3796 if (t->stratum () == debug_stratum) 3797 continue; 3798 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ()); 3799 } 3800 } 3801 3802 /* See target.h. */ 3803 3804 void 3805 target_async (int enable) 3806 { 3807 infrun_async (enable); 3808 current_top_target ()->async (enable); 3809 } 3810 3811 /* See target.h. */ 3812 3813 void 3814 target_thread_events (int enable) 3815 { 3816 current_top_target ()->thread_events (enable); 3817 } 3818 3819 /* Controls if targets can report that they can/are async. This is 3820 just for maintainers to use when debugging gdb. */ 3821 int target_async_permitted = 1; 3822 3823 /* The set command writes to this variable. If the inferior is 3824 executing, target_async_permitted is *not* updated. */ 3825 static int target_async_permitted_1 = 1; 3826 3827 static void 3828 maint_set_target_async_command (const char *args, int from_tty, 3829 struct cmd_list_element *c) 3830 { 3831 if (have_live_inferiors ()) 3832 { 3833 target_async_permitted_1 = target_async_permitted; 3834 error (_("Cannot change this setting while the inferior is running.")); 3835 } 3836 3837 target_async_permitted = target_async_permitted_1; 3838 } 3839 3840 static void 3841 maint_show_target_async_command (struct ui_file *file, int from_tty, 3842 struct cmd_list_element *c, 3843 const char *value) 3844 { 3845 fprintf_filtered (file, 3846 _("Controlling the inferior in " 3847 "asynchronous mode is %s.\n"), value); 3848 } 3849 3850 /* Return true if the target operates in non-stop mode even with "set 3851 non-stop off". */ 3852 3853 static int 3854 target_always_non_stop_p (void) 3855 { 3856 return current_top_target ()->always_non_stop_p (); 3857 } 3858 3859 /* See target.h. */ 3860 3861 int 3862 target_is_non_stop_p (void) 3863 { 3864 return (non_stop 3865 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE 3866 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO 3867 && target_always_non_stop_p ())); 3868 } 3869 3870 /* Controls if targets can report that they always run in non-stop 3871 mode. This is just for maintainers to use when debugging gdb. */ 3872 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO; 3873 3874 /* The set command writes to this variable. If the inferior is 3875 executing, target_non_stop_enabled is *not* updated. */ 3876 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO; 3877 3878 /* Implementation of "maint set target-non-stop". */ 3879 3880 static void 3881 maint_set_target_non_stop_command (const char *args, int from_tty, 3882 struct cmd_list_element *c) 3883 { 3884 if (have_live_inferiors ()) 3885 { 3886 target_non_stop_enabled_1 = target_non_stop_enabled; 3887 error (_("Cannot change this setting while the inferior is running.")); 3888 } 3889 3890 target_non_stop_enabled = target_non_stop_enabled_1; 3891 } 3892 3893 /* Implementation of "maint show target-non-stop". */ 3894 3895 static void 3896 maint_show_target_non_stop_command (struct ui_file *file, int from_tty, 3897 struct cmd_list_element *c, 3898 const char *value) 3899 { 3900 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO) 3901 fprintf_filtered (file, 3902 _("Whether the target is always in non-stop mode " 3903 "is %s (currently %s).\n"), value, 3904 target_always_non_stop_p () ? "on" : "off"); 3905 else 3906 fprintf_filtered (file, 3907 _("Whether the target is always in non-stop mode " 3908 "is %s.\n"), value); 3909 } 3910 3911 /* Temporary copies of permission settings. */ 3912 3913 static int may_write_registers_1 = 1; 3914 static int may_write_memory_1 = 1; 3915 static int may_insert_breakpoints_1 = 1; 3916 static int may_insert_tracepoints_1 = 1; 3917 static int may_insert_fast_tracepoints_1 = 1; 3918 static int may_stop_1 = 1; 3919 3920 /* Make the user-set values match the real values again. */ 3921 3922 void 3923 update_target_permissions (void) 3924 { 3925 may_write_registers_1 = may_write_registers; 3926 may_write_memory_1 = may_write_memory; 3927 may_insert_breakpoints_1 = may_insert_breakpoints; 3928 may_insert_tracepoints_1 = may_insert_tracepoints; 3929 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints; 3930 may_stop_1 = may_stop; 3931 } 3932 3933 /* The one function handles (most of) the permission flags in the same 3934 way. */ 3935 3936 static void 3937 set_target_permissions (const char *args, int from_tty, 3938 struct cmd_list_element *c) 3939 { 3940 if (target_has_execution) 3941 { 3942 update_target_permissions (); 3943 error (_("Cannot change this setting while the inferior is running.")); 3944 } 3945 3946 /* Make the real values match the user-changed values. */ 3947 may_write_registers = may_write_registers_1; 3948 may_insert_breakpoints = may_insert_breakpoints_1; 3949 may_insert_tracepoints = may_insert_tracepoints_1; 3950 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1; 3951 may_stop = may_stop_1; 3952 update_observer_mode (); 3953 } 3954 3955 /* Set memory write permission independently of observer mode. */ 3956 3957 static void 3958 set_write_memory_permission (const char *args, int from_tty, 3959 struct cmd_list_element *c) 3960 { 3961 /* Make the real values match the user-changed values. */ 3962 may_write_memory = may_write_memory_1; 3963 update_observer_mode (); 3964 } 3965 3966 void 3967 initialize_targets (void) 3968 { 3969 the_dummy_target = new dummy_target (); 3970 push_target (the_dummy_target); 3971 3972 the_debug_target = new debug_target (); 3973 3974 add_info ("target", info_target_command, targ_desc); 3975 add_info ("files", info_target_command, targ_desc); 3976 3977 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\ 3978 Set target debugging."), _("\ 3979 Show target debugging."), _("\ 3980 When non-zero, target debugging is enabled. Higher numbers are more\n\ 3981 verbose."), 3982 set_targetdebug, 3983 show_targetdebug, 3984 &setdebuglist, &showdebuglist); 3985 3986 add_setshow_boolean_cmd ("trust-readonly-sections", class_support, 3987 &trust_readonly, _("\ 3988 Set mode for reading from readonly sections."), _("\ 3989 Show mode for reading from readonly sections."), _("\ 3990 When this mode is on, memory reads from readonly sections (such as .text)\n\ 3991 will be read from the object file instead of from the target. This will\n\ 3992 result in significant performance improvement for remote targets."), 3993 NULL, 3994 show_trust_readonly, 3995 &setlist, &showlist); 3996 3997 add_com ("monitor", class_obscure, do_monitor_command, 3998 _("Send a command to the remote monitor (remote targets only).")); 3999 4000 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack, 4001 _("Print the name of each layer of the internal target stack."), 4002 &maintenanceprintlist); 4003 4004 add_setshow_boolean_cmd ("target-async", no_class, 4005 &target_async_permitted_1, _("\ 4006 Set whether gdb controls the inferior in asynchronous mode."), _("\ 4007 Show whether gdb controls the inferior in asynchronous mode."), _("\ 4008 Tells gdb whether to control the inferior in asynchronous mode."), 4009 maint_set_target_async_command, 4010 maint_show_target_async_command, 4011 &maintenance_set_cmdlist, 4012 &maintenance_show_cmdlist); 4013 4014 add_setshow_auto_boolean_cmd ("target-non-stop", no_class, 4015 &target_non_stop_enabled_1, _("\ 4016 Set whether gdb always controls the inferior in non-stop mode."), _("\ 4017 Show whether gdb always controls the inferior in non-stop mode."), _("\ 4018 Tells gdb whether to control the inferior in non-stop mode."), 4019 maint_set_target_non_stop_command, 4020 maint_show_target_non_stop_command, 4021 &maintenance_set_cmdlist, 4022 &maintenance_show_cmdlist); 4023 4024 add_setshow_boolean_cmd ("may-write-registers", class_support, 4025 &may_write_registers_1, _("\ 4026 Set permission to write into registers."), _("\ 4027 Show permission to write into registers."), _("\ 4028 When this permission is on, GDB may write into the target's registers.\n\ 4029 Otherwise, any sort of write attempt will result in an error."), 4030 set_target_permissions, NULL, 4031 &setlist, &showlist); 4032 4033 add_setshow_boolean_cmd ("may-write-memory", class_support, 4034 &may_write_memory_1, _("\ 4035 Set permission to write into target memory."), _("\ 4036 Show permission to write into target memory."), _("\ 4037 When this permission is on, GDB may write into the target's memory.\n\ 4038 Otherwise, any sort of write attempt will result in an error."), 4039 set_write_memory_permission, NULL, 4040 &setlist, &showlist); 4041 4042 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support, 4043 &may_insert_breakpoints_1, _("\ 4044 Set permission to insert breakpoints in the target."), _("\ 4045 Show permission to insert breakpoints in the target."), _("\ 4046 When this permission is on, GDB may insert breakpoints in the program.\n\ 4047 Otherwise, any sort of insertion attempt will result in an error."), 4048 set_target_permissions, NULL, 4049 &setlist, &showlist); 4050 4051 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support, 4052 &may_insert_tracepoints_1, _("\ 4053 Set permission to insert tracepoints in the target."), _("\ 4054 Show permission to insert tracepoints in the target."), _("\ 4055 When this permission is on, GDB may insert tracepoints in the program.\n\ 4056 Otherwise, any sort of insertion attempt will result in an error."), 4057 set_target_permissions, NULL, 4058 &setlist, &showlist); 4059 4060 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support, 4061 &may_insert_fast_tracepoints_1, _("\ 4062 Set permission to insert fast tracepoints in the target."), _("\ 4063 Show permission to insert fast tracepoints in the target."), _("\ 4064 When this permission is on, GDB may insert fast tracepoints.\n\ 4065 Otherwise, any sort of insertion attempt will result in an error."), 4066 set_target_permissions, NULL, 4067 &setlist, &showlist); 4068 4069 add_setshow_boolean_cmd ("may-interrupt", class_support, 4070 &may_stop_1, _("\ 4071 Set permission to interrupt or signal the target."), _("\ 4072 Show permission to interrupt or signal the target."), _("\ 4073 When this permission is on, GDB may interrupt/stop the target's execution.\n\ 4074 Otherwise, any attempt to interrupt or stop will be ignored."), 4075 set_target_permissions, NULL, 4076 &setlist, &showlist); 4077 4078 add_com ("flash-erase", no_class, flash_erase_command, 4079 _("Erase all flash memory regions.")); 4080 4081 add_setshow_boolean_cmd ("auto-connect-native-target", class_support, 4082 &auto_connect_native_target, _("\ 4083 Set whether GDB may automatically connect to the native target."), _("\ 4084 Show whether GDB may automatically connect to the native target."), _("\ 4085 When on, and GDB is not connected to a target yet, GDB\n\ 4086 attempts \"run\" and other commands with the native target."), 4087 NULL, show_auto_connect_native_target, 4088 &setlist, &showlist); 4089 } 4090