xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/target.c (revision 7d62b00eb9ad855ffcd7da46b41e23feb5476fac)
1 /* Select target systems and architectures at runtime for GDB.
2 
3    Copyright (C) 1990-2019 Free Software Foundation, Inc.
4 
5    Contributed by Cygnus Support.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "common/agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "common/byte-vector.h"
50 #include "terminal.h"
51 #include <unordered_map>
52 
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54 
55 static void default_terminal_info (struct target_ops *, const char *, int);
56 
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 						 CORE_ADDR, CORE_ADDR, int);
59 
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 						CORE_ADDR, int);
62 
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64 
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 					 long lwp, long tid);
67 
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 				int detach_fork);
70 
71 static void default_mourn_inferior (struct target_ops *self);
72 
73 static int default_search_memory (struct target_ops *ops,
74 				  CORE_ADDR start_addr,
75 				  ULONGEST search_space_len,
76 				  const gdb_byte *pattern,
77 				  ULONGEST pattern_len,
78 				  CORE_ADDR *found_addrp);
79 
80 static int default_verify_memory (struct target_ops *self,
81 				  const gdb_byte *data,
82 				  CORE_ADDR memaddr, ULONGEST size);
83 
84 static void tcomplain (void) ATTRIBUTE_NORETURN;
85 
86 static struct target_ops *find_default_run_target (const char *);
87 
88 static int dummy_find_memory_regions (struct target_ops *self,
89 				      find_memory_region_ftype ignore1,
90 				      void *ignore2);
91 
92 static char *dummy_make_corefile_notes (struct target_ops *self,
93 					bfd *ignore1, int *ignore2);
94 
95 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
96 
97 static enum exec_direction_kind default_execution_direction
98     (struct target_ops *self);
99 
100 /* Mapping between target_info objects (which have address identity)
101    and corresponding open/factory function/callback.  Each add_target
102    call adds one entry to this map, and registers a "target
103    TARGET_NAME" command that when invoked calls the factory registered
104    here.  The target_info object is associated with the command via
105    the command's context.  */
106 static std::unordered_map<const target_info *, target_open_ftype *>
107   target_factories;
108 
109 /* The initial current target, so that there is always a semi-valid
110    current target.  */
111 
112 static struct target_ops *the_dummy_target;
113 static struct target_ops *the_debug_target;
114 
115 /* The target stack.  */
116 
117 static target_stack g_target_stack;
118 
119 /* Top of target stack.  */
120 /* The target structure we are currently using to talk to a process
121    or file or whatever "inferior" we have.  */
122 
123 target_ops *
124 current_top_target ()
125 {
126   return g_target_stack.top ();
127 }
128 
129 /* Command list for target.  */
130 
131 static struct cmd_list_element *targetlist = NULL;
132 
133 /* Nonzero if we should trust readonly sections from the
134    executable when reading memory.  */
135 
136 static int trust_readonly = 0;
137 
138 /* Nonzero if we should show true memory content including
139    memory breakpoint inserted by gdb.  */
140 
141 static int show_memory_breakpoints = 0;
142 
143 /* These globals control whether GDB attempts to perform these
144    operations; they are useful for targets that need to prevent
145    inadvertant disruption, such as in non-stop mode.  */
146 
147 int may_write_registers = 1;
148 
149 int may_write_memory = 1;
150 
151 int may_insert_breakpoints = 1;
152 
153 int may_insert_tracepoints = 1;
154 
155 int may_insert_fast_tracepoints = 1;
156 
157 int may_stop = 1;
158 
159 /* Non-zero if we want to see trace of target level stuff.  */
160 
161 static unsigned int targetdebug = 0;
162 
163 static void
164 set_targetdebug  (const char *args, int from_tty, struct cmd_list_element *c)
165 {
166   if (targetdebug)
167     push_target (the_debug_target);
168   else
169     unpush_target (the_debug_target);
170 }
171 
172 static void
173 show_targetdebug (struct ui_file *file, int from_tty,
174 		  struct cmd_list_element *c, const char *value)
175 {
176   fprintf_filtered (file, _("Target debugging is %s.\n"), value);
177 }
178 
179 /* The user just typed 'target' without the name of a target.  */
180 
181 static void
182 target_command (const char *arg, int from_tty)
183 {
184   fputs_filtered ("Argument required (target name).  Try `help target'\n",
185 		  gdb_stdout);
186 }
187 
188 int
189 target_has_all_memory_1 (void)
190 {
191   for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
192     if (t->has_all_memory ())
193       return 1;
194 
195   return 0;
196 }
197 
198 int
199 target_has_memory_1 (void)
200 {
201   for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
202     if (t->has_memory ())
203       return 1;
204 
205   return 0;
206 }
207 
208 int
209 target_has_stack_1 (void)
210 {
211   for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
212     if (t->has_stack ())
213       return 1;
214 
215   return 0;
216 }
217 
218 int
219 target_has_registers_1 (void)
220 {
221   for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
222     if (t->has_registers ())
223       return 1;
224 
225   return 0;
226 }
227 
228 int
229 target_has_execution_1 (ptid_t the_ptid)
230 {
231   for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
232     if (t->has_execution (the_ptid))
233       return 1;
234 
235   return 0;
236 }
237 
238 int
239 target_has_execution_current (void)
240 {
241   return target_has_execution_1 (inferior_ptid);
242 }
243 
244 /* This is used to implement the various target commands.  */
245 
246 static void
247 open_target (const char *args, int from_tty, struct cmd_list_element *command)
248 {
249   auto *ti = static_cast<target_info *> (get_cmd_context (command));
250   target_open_ftype *func = target_factories[ti];
251 
252   if (targetdebug)
253     fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
254 			ti->shortname);
255 
256   func (args, from_tty);
257 
258   if (targetdebug)
259     fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
260 			ti->shortname, args, from_tty);
261 }
262 
263 /* See target.h.  */
264 
265 void
266 add_target (const target_info &t, target_open_ftype *func,
267 	    completer_ftype *completer)
268 {
269   struct cmd_list_element *c;
270 
271   auto &func_slot = target_factories[&t];
272   if (func_slot != nullptr)
273     internal_error (__FILE__, __LINE__,
274 		    _("target already added (\"%s\")."), t.shortname);
275   func_slot = func;
276 
277   if (targetlist == NULL)
278     add_prefix_cmd ("target", class_run, target_command, _("\
279 Connect to a target machine or process.\n\
280 The first argument is the type or protocol of the target machine.\n\
281 Remaining arguments are interpreted by the target protocol.  For more\n\
282 information on the arguments for a particular protocol, type\n\
283 `help target ' followed by the protocol name."),
284 		    &targetlist, "target ", 0, &cmdlist);
285   c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
286   set_cmd_context (c, (void *) &t);
287   set_cmd_sfunc (c, open_target);
288   if (completer != NULL)
289     set_cmd_completer (c, completer);
290 }
291 
292 /* See target.h.  */
293 
294 void
295 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
296 {
297   struct cmd_list_element *c;
298   char *alt;
299 
300   /* If we use add_alias_cmd, here, we do not get the deprecated warning,
301      see PR cli/15104.  */
302   c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
303   set_cmd_sfunc (c, open_target);
304   set_cmd_context (c, (void *) &tinfo);
305   alt = xstrprintf ("target %s", tinfo.shortname);
306   deprecate_cmd (c, alt);
307 }
308 
309 /* Stub functions */
310 
311 void
312 target_kill (void)
313 {
314   current_top_target ()->kill ();
315 }
316 
317 void
318 target_load (const char *arg, int from_tty)
319 {
320   target_dcache_invalidate ();
321   current_top_target ()->load (arg, from_tty);
322 }
323 
324 /* Define it.  */
325 
326 target_terminal_state target_terminal::m_terminal_state
327   = target_terminal_state::is_ours;
328 
329 /* See target/target.h.  */
330 
331 void
332 target_terminal::init (void)
333 {
334   current_top_target ()->terminal_init ();
335 
336   m_terminal_state = target_terminal_state::is_ours;
337 }
338 
339 /* See target/target.h.  */
340 
341 void
342 target_terminal::inferior (void)
343 {
344   struct ui *ui = current_ui;
345 
346   /* A background resume (``run&'') should leave GDB in control of the
347      terminal.  */
348   if (ui->prompt_state != PROMPT_BLOCKED)
349     return;
350 
351   /* Since we always run the inferior in the main console (unless "set
352      inferior-tty" is in effect), when some UI other than the main one
353      calls target_terminal::inferior, then we leave the main UI's
354      terminal settings as is.  */
355   if (ui != main_ui)
356     return;
357 
358   /* If GDB is resuming the inferior in the foreground, install
359      inferior's terminal modes.  */
360 
361   struct inferior *inf = current_inferior ();
362 
363   if (inf->terminal_state != target_terminal_state::is_inferior)
364     {
365       current_top_target ()->terminal_inferior ();
366       inf->terminal_state = target_terminal_state::is_inferior;
367     }
368 
369   m_terminal_state = target_terminal_state::is_inferior;
370 
371   /* If the user hit C-c before, pretend that it was hit right
372      here.  */
373   if (check_quit_flag ())
374     target_pass_ctrlc ();
375 }
376 
377 /* See target/target.h.  */
378 
379 void
380 target_terminal::restore_inferior (void)
381 {
382   struct ui *ui = current_ui;
383 
384   /* See target_terminal::inferior().  */
385   if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
386     return;
387 
388   /* Restore the terminal settings of inferiors that were in the
389      foreground but are now ours_for_output due to a temporary
390      target_target::ours_for_output() call.  */
391 
392   {
393     scoped_restore_current_inferior restore_inferior;
394 
395     for (::inferior *inf : all_inferiors ())
396       {
397 	if (inf->terminal_state == target_terminal_state::is_ours_for_output)
398 	  {
399 	    set_current_inferior (inf);
400 	    current_top_target ()->terminal_inferior ();
401 	    inf->terminal_state = target_terminal_state::is_inferior;
402 	  }
403       }
404   }
405 
406   m_terminal_state = target_terminal_state::is_inferior;
407 
408   /* If the user hit C-c before, pretend that it was hit right
409      here.  */
410   if (check_quit_flag ())
411     target_pass_ctrlc ();
412 }
413 
414 /* Switch terminal state to DESIRED_STATE, either is_ours, or
415    is_ours_for_output.  */
416 
417 static void
418 target_terminal_is_ours_kind (target_terminal_state desired_state)
419 {
420   scoped_restore_current_inferior restore_inferior;
421 
422   /* Must do this in two passes.  First, have all inferiors save the
423      current terminal settings.  Then, after all inferiors have add a
424      chance to safely save the terminal settings, restore GDB's
425      terminal settings.  */
426 
427   for (inferior *inf : all_inferiors ())
428     {
429       if (inf->terminal_state == target_terminal_state::is_inferior)
430 	{
431 	  set_current_inferior (inf);
432 	  current_top_target ()->terminal_save_inferior ();
433 	}
434     }
435 
436   for (inferior *inf : all_inferiors ())
437     {
438       /* Note we don't check is_inferior here like above because we
439 	 need to handle 'is_ours_for_output -> is_ours' too.  Careful
440 	 to never transition from 'is_ours' to 'is_ours_for_output',
441 	 though.  */
442       if (inf->terminal_state != target_terminal_state::is_ours
443 	  && inf->terminal_state != desired_state)
444 	{
445 	  set_current_inferior (inf);
446 	  if (desired_state == target_terminal_state::is_ours)
447 	    current_top_target ()->terminal_ours ();
448 	  else if (desired_state == target_terminal_state::is_ours_for_output)
449 	    current_top_target ()->terminal_ours_for_output ();
450 	  else
451 	    gdb_assert_not_reached ("unhandled desired state");
452 	  inf->terminal_state = desired_state;
453 	}
454     }
455 }
456 
457 /* See target/target.h.  */
458 
459 void
460 target_terminal::ours ()
461 {
462   struct ui *ui = current_ui;
463 
464   /* See target_terminal::inferior.  */
465   if (ui != main_ui)
466     return;
467 
468   if (m_terminal_state == target_terminal_state::is_ours)
469     return;
470 
471   target_terminal_is_ours_kind (target_terminal_state::is_ours);
472   m_terminal_state = target_terminal_state::is_ours;
473 }
474 
475 /* See target/target.h.  */
476 
477 void
478 target_terminal::ours_for_output ()
479 {
480   struct ui *ui = current_ui;
481 
482   /* See target_terminal::inferior.  */
483   if (ui != main_ui)
484     return;
485 
486   if (!target_terminal::is_inferior ())
487     return;
488 
489   target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
490   target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
491 }
492 
493 /* See target/target.h.  */
494 
495 void
496 target_terminal::info (const char *arg, int from_tty)
497 {
498   current_top_target ()->terminal_info (arg, from_tty);
499 }
500 
501 /* See target.h.  */
502 
503 bool
504 target_supports_terminal_ours (void)
505 {
506   /* This can be called before there is any target, so we must check
507      for nullptr here.  */
508   target_ops *top = current_top_target ();
509 
510   if (top == nullptr)
511     return false;
512   return top->supports_terminal_ours ();
513 }
514 
515 static void
516 tcomplain (void)
517 {
518   error (_("You can't do that when your target is `%s'"),
519 	 current_top_target ()->shortname ());
520 }
521 
522 void
523 noprocess (void)
524 {
525   error (_("You can't do that without a process to debug."));
526 }
527 
528 static void
529 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
530 {
531   printf_unfiltered (_("No saved terminal information.\n"));
532 }
533 
534 /* A default implementation for the to_get_ada_task_ptid target method.
535 
536    This function builds the PTID by using both LWP and TID as part of
537    the PTID lwp and tid elements.  The pid used is the pid of the
538    inferior_ptid.  */
539 
540 static ptid_t
541 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
542 {
543   return ptid_t (inferior_ptid.pid (), lwp, tid);
544 }
545 
546 static enum exec_direction_kind
547 default_execution_direction (struct target_ops *self)
548 {
549   if (!target_can_execute_reverse)
550     return EXEC_FORWARD;
551   else if (!target_can_async_p ())
552     return EXEC_FORWARD;
553   else
554     gdb_assert_not_reached ("\
555 to_execution_direction must be implemented for reverse async");
556 }
557 
558 /* See target.h.  */
559 
560 void
561 target_stack::push (target_ops *t)
562 {
563   /* If there's already a target at this stratum, remove it.  */
564   strata stratum = t->stratum ();
565 
566   if (m_stack[stratum] != NULL)
567     {
568       target_ops *prev = m_stack[stratum];
569       m_stack[stratum] = NULL;
570       target_close (prev);
571     }
572 
573   /* Now add the new one.  */
574   m_stack[stratum] = t;
575 
576   if (m_top < stratum)
577     m_top = stratum;
578 }
579 
580 /* See target.h.  */
581 
582 void
583 push_target (struct target_ops *t)
584 {
585   g_target_stack.push (t);
586 }
587 
588 /* See target.h  */
589 
590 void
591 push_target (target_ops_up &&t)
592 {
593   g_target_stack.push (t.get ());
594   t.release ();
595 }
596 
597 /* See target.h.  */
598 
599 int
600 unpush_target (struct target_ops *t)
601 {
602   return g_target_stack.unpush (t);
603 }
604 
605 /* See target.h.  */
606 
607 bool
608 target_stack::unpush (target_ops *t)
609 {
610   gdb_assert (t != NULL);
611 
612   strata stratum = t->stratum ();
613 
614   if (stratum == dummy_stratum)
615     internal_error (__FILE__, __LINE__,
616 		    _("Attempt to unpush the dummy target"));
617 
618   /* Look for the specified target.  Note that a target can only occur
619      once in the target stack.  */
620 
621   if (m_stack[stratum] != t)
622     {
623       /* If T wasn't pushed, quit.  Only open targets should be
624 	 closed.  */
625       return false;
626     }
627 
628   /* Unchain the target.  */
629   m_stack[stratum] = NULL;
630 
631   if (m_top == stratum)
632     m_top = t->beneath ()->stratum ();
633 
634   /* Finally close the target.  Note we do this after unchaining, so
635      any target method calls from within the target_close
636      implementation don't end up in T anymore.  */
637   target_close (t);
638 
639   return true;
640 }
641 
642 /* Unpush TARGET and assert that it worked.  */
643 
644 static void
645 unpush_target_and_assert (struct target_ops *target)
646 {
647   if (!unpush_target (target))
648     {
649       fprintf_unfiltered (gdb_stderr,
650 			  "pop_all_targets couldn't find target %s\n",
651 			  target->shortname ());
652       internal_error (__FILE__, __LINE__,
653 		      _("failed internal consistency check"));
654     }
655 }
656 
657 void
658 pop_all_targets_above (enum strata above_stratum)
659 {
660   while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
661     unpush_target_and_assert (current_top_target ());
662 }
663 
664 /* See target.h.  */
665 
666 void
667 pop_all_targets_at_and_above (enum strata stratum)
668 {
669   while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
670     unpush_target_and_assert (current_top_target ());
671 }
672 
673 void
674 pop_all_targets (void)
675 {
676   pop_all_targets_above (dummy_stratum);
677 }
678 
679 /* Return 1 if T is now pushed in the target stack.  Return 0 otherwise.  */
680 
681 int
682 target_is_pushed (struct target_ops *t)
683 {
684   return g_target_stack.is_pushed (t);
685 }
686 
687 /* Default implementation of to_get_thread_local_address.  */
688 
689 static void
690 generic_tls_error (void)
691 {
692   throw_error (TLS_GENERIC_ERROR,
693 	       _("Cannot find thread-local variables on this target"));
694 }
695 
696 /* Using the objfile specified in OBJFILE, find the address for the
697    current thread's thread-local storage with offset OFFSET.  */
698 CORE_ADDR
699 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
700 {
701   volatile CORE_ADDR addr = 0;
702   struct target_ops *target = current_top_target ();
703 
704   if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
705     {
706       ptid_t ptid = inferior_ptid;
707 
708       TRY
709 	{
710 	  CORE_ADDR lm_addr;
711 
712 	  /* Fetch the load module address for this objfile.  */
713 	  lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
714 	                                                   objfile);
715 
716 	  addr = target->get_thread_local_address (ptid, lm_addr, offset);
717 	}
718       /* If an error occurred, print TLS related messages here.  Otherwise,
719          throw the error to some higher catcher.  */
720       CATCH (ex, RETURN_MASK_ALL)
721 	{
722 	  int objfile_is_library = (objfile->flags & OBJF_SHARED);
723 
724 	  switch (ex.error)
725 	    {
726 	    case TLS_NO_LIBRARY_SUPPORT_ERROR:
727 	      error (_("Cannot find thread-local variables "
728 		       "in this thread library."));
729 	      break;
730 	    case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
731 	      if (objfile_is_library)
732 		error (_("Cannot find shared library `%s' in dynamic"
733 		         " linker's load module list"), objfile_name (objfile));
734 	      else
735 		error (_("Cannot find executable file `%s' in dynamic"
736 		         " linker's load module list"), objfile_name (objfile));
737 	      break;
738 	    case TLS_NOT_ALLOCATED_YET_ERROR:
739 	      if (objfile_is_library)
740 		error (_("The inferior has not yet allocated storage for"
741 		         " thread-local variables in\n"
742 		         "the shared library `%s'\n"
743 		         "for %s"),
744 		       objfile_name (objfile), target_pid_to_str (ptid));
745 	      else
746 		error (_("The inferior has not yet allocated storage for"
747 		         " thread-local variables in\n"
748 		         "the executable `%s'\n"
749 		         "for %s"),
750 		       objfile_name (objfile), target_pid_to_str (ptid));
751 	      break;
752 	    case TLS_GENERIC_ERROR:
753 	      if (objfile_is_library)
754 		error (_("Cannot find thread-local storage for %s, "
755 		         "shared library %s:\n%s"),
756 		       target_pid_to_str (ptid),
757 		       objfile_name (objfile), ex.message);
758 	      else
759 		error (_("Cannot find thread-local storage for %s, "
760 		         "executable file %s:\n%s"),
761 		       target_pid_to_str (ptid),
762 		       objfile_name (objfile), ex.message);
763 	      break;
764 	    default:
765 	      throw_exception (ex);
766 	      break;
767 	    }
768 	}
769       END_CATCH
770     }
771   /* It wouldn't be wrong here to try a gdbarch method, too; finding
772      TLS is an ABI-specific thing.  But we don't do that yet.  */
773   else
774     error (_("Cannot find thread-local variables on this target"));
775 
776   return addr;
777 }
778 
779 const char *
780 target_xfer_status_to_string (enum target_xfer_status status)
781 {
782 #define CASE(X) case X: return #X
783   switch (status)
784     {
785       CASE(TARGET_XFER_E_IO);
786       CASE(TARGET_XFER_UNAVAILABLE);
787     default:
788       return "<unknown>";
789     }
790 #undef CASE
791 };
792 
793 
794 #undef	MIN
795 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
796 
797 /* target_read_string -- read a null terminated string, up to LEN bytes,
798    from MEMADDR in target.  Set *ERRNOP to the errno code, or 0 if successful.
799    Set *STRING to a pointer to malloc'd memory containing the data; the caller
800    is responsible for freeing it.  Return the number of bytes successfully
801    read.  */
802 
803 int
804 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
805 		    int len, int *errnop)
806 {
807   int tlen, offset, i;
808   gdb_byte buf[4];
809   int errcode = 0;
810   char *buffer;
811   int buffer_allocated;
812   char *bufptr;
813   unsigned int nbytes_read = 0;
814 
815   gdb_assert (string);
816 
817   /* Small for testing.  */
818   buffer_allocated = 4;
819   buffer = (char *) xmalloc (buffer_allocated);
820   bufptr = buffer;
821 
822   while (len > 0)
823     {
824       tlen = MIN (len, 4 - (memaddr & 3));
825       offset = memaddr & 3;
826 
827       errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
828       if (errcode != 0)
829 	{
830 	  /* The transfer request might have crossed the boundary to an
831 	     unallocated region of memory.  Retry the transfer, requesting
832 	     a single byte.  */
833 	  tlen = 1;
834 	  offset = 0;
835 	  errcode = target_read_memory (memaddr, buf, 1);
836 	  if (errcode != 0)
837 	    goto done;
838 	}
839 
840       if (bufptr - buffer + tlen > buffer_allocated)
841 	{
842 	  unsigned int bytes;
843 
844 	  bytes = bufptr - buffer;
845 	  buffer_allocated *= 2;
846 	  buffer = (char *) xrealloc (buffer, buffer_allocated);
847 	  bufptr = buffer + bytes;
848 	}
849 
850       for (i = 0; i < tlen; i++)
851 	{
852 	  *bufptr++ = buf[i + offset];
853 	  if (buf[i + offset] == '\000')
854 	    {
855 	      nbytes_read += i + 1;
856 	      goto done;
857 	    }
858 	}
859 
860       memaddr += tlen;
861       len -= tlen;
862       nbytes_read += tlen;
863     }
864 done:
865   string->reset (buffer);
866   if (errnop != NULL)
867     *errnop = errcode;
868   return nbytes_read;
869 }
870 
871 struct target_section_table *
872 target_get_section_table (struct target_ops *target)
873 {
874   return target->get_section_table ();
875 }
876 
877 /* Find a section containing ADDR.  */
878 
879 struct target_section *
880 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
881 {
882   struct target_section_table *table = target_get_section_table (target);
883   struct target_section *secp;
884 
885   if (table == NULL)
886     return NULL;
887 
888   for (secp = table->sections; secp < table->sections_end; secp++)
889     {
890       if (addr >= secp->addr && addr < secp->endaddr)
891 	return secp;
892     }
893   return NULL;
894 }
895 
896 
897 /* Helper for the memory xfer routines.  Checks the attributes of the
898    memory region of MEMADDR against the read or write being attempted.
899    If the access is permitted returns true, otherwise returns false.
900    REGION_P is an optional output parameter.  If not-NULL, it is
901    filled with a pointer to the memory region of MEMADDR.  REG_LEN
902    returns LEN trimmed to the end of the region.  This is how much the
903    caller can continue requesting, if the access is permitted.  A
904    single xfer request must not straddle memory region boundaries.  */
905 
906 static int
907 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
908 			  ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
909 			  struct mem_region **region_p)
910 {
911   struct mem_region *region;
912 
913   region = lookup_mem_region (memaddr);
914 
915   if (region_p != NULL)
916     *region_p = region;
917 
918   switch (region->attrib.mode)
919     {
920     case MEM_RO:
921       if (writebuf != NULL)
922 	return 0;
923       break;
924 
925     case MEM_WO:
926       if (readbuf != NULL)
927 	return 0;
928       break;
929 
930     case MEM_FLASH:
931       /* We only support writing to flash during "load" for now.  */
932       if (writebuf != NULL)
933 	error (_("Writing to flash memory forbidden in this context"));
934       break;
935 
936     case MEM_NONE:
937       return 0;
938     }
939 
940   /* region->hi == 0 means there's no upper bound.  */
941   if (memaddr + len < region->hi || region->hi == 0)
942     *reg_len = len;
943   else
944     *reg_len = region->hi - memaddr;
945 
946   return 1;
947 }
948 
949 /* Read memory from more than one valid target.  A core file, for
950    instance, could have some of memory but delegate other bits to
951    the target below it.  So, we must manually try all targets.  */
952 
953 enum target_xfer_status
954 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
955 			 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
956 			 ULONGEST *xfered_len)
957 {
958   enum target_xfer_status res;
959 
960   do
961     {
962       res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
963 			       readbuf, writebuf, memaddr, len,
964 			       xfered_len);
965       if (res == TARGET_XFER_OK)
966 	break;
967 
968       /* Stop if the target reports that the memory is not available.  */
969       if (res == TARGET_XFER_UNAVAILABLE)
970 	break;
971 
972       /* We want to continue past core files to executables, but not
973 	 past a running target's memory.  */
974       if (ops->has_all_memory ())
975 	break;
976 
977       ops = ops->beneath ();
978     }
979   while (ops != NULL);
980 
981   /* The cache works at the raw memory level.  Make sure the cache
982      gets updated with raw contents no matter what kind of memory
983      object was originally being written.  Note we do write-through
984      first, so that if it fails, we don't write to the cache contents
985      that never made it to the target.  */
986   if (writebuf != NULL
987       && inferior_ptid != null_ptid
988       && target_dcache_init_p ()
989       && (stack_cache_enabled_p () || code_cache_enabled_p ()))
990     {
991       DCACHE *dcache = target_dcache_get ();
992 
993       /* Note that writing to an area of memory which wasn't present
994 	 in the cache doesn't cause it to be loaded in.  */
995       dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
996     }
997 
998   return res;
999 }
1000 
1001 /* Perform a partial memory transfer.
1002    For docs see target.h, to_xfer_partial.  */
1003 
1004 static enum target_xfer_status
1005 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1006 		       gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1007 		       ULONGEST len, ULONGEST *xfered_len)
1008 {
1009   enum target_xfer_status res;
1010   ULONGEST reg_len;
1011   struct mem_region *region;
1012   struct inferior *inf;
1013 
1014   /* For accesses to unmapped overlay sections, read directly from
1015      files.  Must do this first, as MEMADDR may need adjustment.  */
1016   if (readbuf != NULL && overlay_debugging)
1017     {
1018       struct obj_section *section = find_pc_overlay (memaddr);
1019 
1020       if (pc_in_unmapped_range (memaddr, section))
1021 	{
1022 	  struct target_section_table *table
1023 	    = target_get_section_table (ops);
1024 	  const char *section_name = section->the_bfd_section->name;
1025 
1026 	  memaddr = overlay_mapped_address (memaddr, section);
1027 	  return section_table_xfer_memory_partial (readbuf, writebuf,
1028 						    memaddr, len, xfered_len,
1029 						    table->sections,
1030 						    table->sections_end,
1031 						    section_name);
1032 	}
1033     }
1034 
1035   /* Try the executable files, if "trust-readonly-sections" is set.  */
1036   if (readbuf != NULL && trust_readonly)
1037     {
1038       struct target_section *secp;
1039       struct target_section_table *table;
1040 
1041       secp = target_section_by_addr (ops, memaddr);
1042       if (secp != NULL
1043 	  && (bfd_get_section_flags (secp->the_bfd_section->owner,
1044 				     secp->the_bfd_section)
1045 	      & SEC_READONLY))
1046 	{
1047 	  table = target_get_section_table (ops);
1048 	  return section_table_xfer_memory_partial (readbuf, writebuf,
1049 						    memaddr, len, xfered_len,
1050 						    table->sections,
1051 						    table->sections_end,
1052 						    NULL);
1053 	}
1054     }
1055 
1056   /* Try GDB's internal data cache.  */
1057 
1058   if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1059 				 &region))
1060     return TARGET_XFER_E_IO;
1061 
1062   if (inferior_ptid != null_ptid)
1063     inf = current_inferior ();
1064   else
1065     inf = NULL;
1066 
1067   if (inf != NULL
1068       && readbuf != NULL
1069       /* The dcache reads whole cache lines; that doesn't play well
1070 	 with reading from a trace buffer, because reading outside of
1071 	 the collected memory range fails.  */
1072       && get_traceframe_number () == -1
1073       && (region->attrib.cache
1074 	  || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1075 	  || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1076     {
1077       DCACHE *dcache = target_dcache_get_or_init ();
1078 
1079       return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1080 					 reg_len, xfered_len);
1081     }
1082 
1083   /* If none of those methods found the memory we wanted, fall back
1084      to a target partial transfer.  Normally a single call to
1085      to_xfer_partial is enough; if it doesn't recognize an object
1086      it will call the to_xfer_partial of the next target down.
1087      But for memory this won't do.  Memory is the only target
1088      object which can be read from more than one valid target.
1089      A core file, for instance, could have some of memory but
1090      delegate other bits to the target below it.  So, we must
1091      manually try all targets.  */
1092 
1093   res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1094 				 xfered_len);
1095 
1096   /* If we still haven't got anything, return the last error.  We
1097      give up.  */
1098   return res;
1099 }
1100 
1101 /* Perform a partial memory transfer.  For docs see target.h,
1102    to_xfer_partial.  */
1103 
1104 static enum target_xfer_status
1105 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1106 		     gdb_byte *readbuf, const gdb_byte *writebuf,
1107 		     ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1108 {
1109   enum target_xfer_status res;
1110 
1111   /* Zero length requests are ok and require no work.  */
1112   if (len == 0)
1113     return TARGET_XFER_EOF;
1114 
1115   memaddr = address_significant (target_gdbarch (), memaddr);
1116 
1117   /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1118      breakpoint insns, thus hiding out from higher layers whether
1119      there are software breakpoints inserted in the code stream.  */
1120   if (readbuf != NULL)
1121     {
1122       res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1123 				   xfered_len);
1124 
1125       if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1126 	breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1127     }
1128   else
1129     {
1130       /* A large write request is likely to be partially satisfied
1131 	 by memory_xfer_partial_1.  We will continually malloc
1132 	 and free a copy of the entire write request for breakpoint
1133 	 shadow handling even though we only end up writing a small
1134 	 subset of it.  Cap writes to a limit specified by the target
1135 	 to mitigate this.  */
1136       len = std::min (ops->get_memory_xfer_limit (), len);
1137 
1138       gdb::byte_vector buf (writebuf, writebuf + len);
1139       breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1140       res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1141 				   xfered_len);
1142     }
1143 
1144   return res;
1145 }
1146 
1147 scoped_restore_tmpl<int>
1148 make_scoped_restore_show_memory_breakpoints (int show)
1149 {
1150   return make_scoped_restore (&show_memory_breakpoints, show);
1151 }
1152 
1153 /* For docs see target.h, to_xfer_partial.  */
1154 
1155 enum target_xfer_status
1156 target_xfer_partial (struct target_ops *ops,
1157 		     enum target_object object, const char *annex,
1158 		     gdb_byte *readbuf, const gdb_byte *writebuf,
1159 		     ULONGEST offset, ULONGEST len,
1160 		     ULONGEST *xfered_len)
1161 {
1162   enum target_xfer_status retval;
1163 
1164   /* Transfer is done when LEN is zero.  */
1165   if (len == 0)
1166     return TARGET_XFER_EOF;
1167 
1168   if (writebuf && !may_write_memory)
1169     error (_("Writing to memory is not allowed (addr %s, len %s)"),
1170 	   core_addr_to_string_nz (offset), plongest (len));
1171 
1172   *xfered_len = 0;
1173 
1174   /* If this is a memory transfer, let the memory-specific code
1175      have a look at it instead.  Memory transfers are more
1176      complicated.  */
1177   if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1178       || object == TARGET_OBJECT_CODE_MEMORY)
1179     retval = memory_xfer_partial (ops, object, readbuf,
1180 				  writebuf, offset, len, xfered_len);
1181   else if (object == TARGET_OBJECT_RAW_MEMORY)
1182     {
1183       /* Skip/avoid accessing the target if the memory region
1184 	 attributes block the access.  Check this here instead of in
1185 	 raw_memory_xfer_partial as otherwise we'd end up checking
1186 	 this twice in the case of the memory_xfer_partial path is
1187 	 taken; once before checking the dcache, and another in the
1188 	 tail call to raw_memory_xfer_partial.  */
1189       if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1190 				     NULL))
1191 	return TARGET_XFER_E_IO;
1192 
1193       /* Request the normal memory object from other layers.  */
1194       retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1195 					xfered_len);
1196     }
1197   else
1198     retval = ops->xfer_partial (object, annex, readbuf,
1199 				writebuf, offset, len, xfered_len);
1200 
1201   if (targetdebug)
1202     {
1203       const unsigned char *myaddr = NULL;
1204 
1205       fprintf_unfiltered (gdb_stdlog,
1206 			  "%s:target_xfer_partial "
1207 			  "(%d, %s, %s, %s, %s, %s) = %d, %s",
1208 			  ops->shortname (),
1209 			  (int) object,
1210 			  (annex ? annex : "(null)"),
1211 			  host_address_to_string (readbuf),
1212 			  host_address_to_string (writebuf),
1213 			  core_addr_to_string_nz (offset),
1214 			  pulongest (len), retval,
1215 			  pulongest (*xfered_len));
1216 
1217       if (readbuf)
1218 	myaddr = readbuf;
1219       if (writebuf)
1220 	myaddr = writebuf;
1221       if (retval == TARGET_XFER_OK && myaddr != NULL)
1222 	{
1223 	  int i;
1224 
1225 	  fputs_unfiltered (", bytes =", gdb_stdlog);
1226 	  for (i = 0; i < *xfered_len; i++)
1227 	    {
1228 	      if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1229 		{
1230 		  if (targetdebug < 2 && i > 0)
1231 		    {
1232 		      fprintf_unfiltered (gdb_stdlog, " ...");
1233 		      break;
1234 		    }
1235 		  fprintf_unfiltered (gdb_stdlog, "\n");
1236 		}
1237 
1238 	      fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1239 	    }
1240 	}
1241 
1242       fputc_unfiltered ('\n', gdb_stdlog);
1243     }
1244 
1245   /* Check implementations of to_xfer_partial update *XFERED_LEN
1246      properly.  Do assertion after printing debug messages, so that we
1247      can find more clues on assertion failure from debugging messages.  */
1248   if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1249     gdb_assert (*xfered_len > 0);
1250 
1251   return retval;
1252 }
1253 
1254 /* Read LEN bytes of target memory at address MEMADDR, placing the
1255    results in GDB's memory at MYADDR.  Returns either 0 for success or
1256    -1 if any error occurs.
1257 
1258    If an error occurs, no guarantee is made about the contents of the data at
1259    MYADDR.  In particular, the caller should not depend upon partial reads
1260    filling the buffer with good data.  There is no way for the caller to know
1261    how much good data might have been transfered anyway.  Callers that can
1262    deal with partial reads should call target_read (which will retry until
1263    it makes no progress, and then return how much was transferred).  */
1264 
1265 int
1266 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1267 {
1268   if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1269 		   myaddr, memaddr, len) == len)
1270     return 0;
1271   else
1272     return -1;
1273 }
1274 
1275 /* See target/target.h.  */
1276 
1277 int
1278 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1279 {
1280   gdb_byte buf[4];
1281   int r;
1282 
1283   r = target_read_memory (memaddr, buf, sizeof buf);
1284   if (r != 0)
1285     return r;
1286   *result = extract_unsigned_integer (buf, sizeof buf,
1287 				      gdbarch_byte_order (target_gdbarch ()));
1288   return 0;
1289 }
1290 
1291 /* Like target_read_memory, but specify explicitly that this is a read
1292    from the target's raw memory.  That is, this read bypasses the
1293    dcache, breakpoint shadowing, etc.  */
1294 
1295 int
1296 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1297 {
1298   if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1299 		   myaddr, memaddr, len) == len)
1300     return 0;
1301   else
1302     return -1;
1303 }
1304 
1305 /* Like target_read_memory, but specify explicitly that this is a read from
1306    the target's stack.  This may trigger different cache behavior.  */
1307 
1308 int
1309 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1310 {
1311   if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1312 		   myaddr, memaddr, len) == len)
1313     return 0;
1314   else
1315     return -1;
1316 }
1317 
1318 /* Like target_read_memory, but specify explicitly that this is a read from
1319    the target's code.  This may trigger different cache behavior.  */
1320 
1321 int
1322 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1323 {
1324   if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1325 		   myaddr, memaddr, len) == len)
1326     return 0;
1327   else
1328     return -1;
1329 }
1330 
1331 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1332    Returns either 0 for success or -1 if any error occurs.  If an
1333    error occurs, no guarantee is made about how much data got written.
1334    Callers that can deal with partial writes should call
1335    target_write.  */
1336 
1337 int
1338 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1339 {
1340   if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1341 		    myaddr, memaddr, len) == len)
1342     return 0;
1343   else
1344     return -1;
1345 }
1346 
1347 /* Write LEN bytes from MYADDR to target raw memory at address
1348    MEMADDR.  Returns either 0 for success or -1 if any error occurs.
1349    If an error occurs, no guarantee is made about how much data got
1350    written.  Callers that can deal with partial writes should call
1351    target_write.  */
1352 
1353 int
1354 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1355 {
1356   if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1357 		    myaddr, memaddr, len) == len)
1358     return 0;
1359   else
1360     return -1;
1361 }
1362 
1363 /* Fetch the target's memory map.  */
1364 
1365 std::vector<mem_region>
1366 target_memory_map (void)
1367 {
1368   std::vector<mem_region> result = current_top_target ()->memory_map ();
1369   if (result.empty ())
1370     return result;
1371 
1372   std::sort (result.begin (), result.end ());
1373 
1374   /* Check that regions do not overlap.  Simultaneously assign
1375      a numbering for the "mem" commands to use to refer to
1376      each region.  */
1377   mem_region *last_one = NULL;
1378   for (size_t ix = 0; ix < result.size (); ix++)
1379     {
1380       mem_region *this_one = &result[ix];
1381       this_one->number = ix;
1382 
1383       if (last_one != NULL && last_one->hi > this_one->lo)
1384 	{
1385 	  warning (_("Overlapping regions in memory map: ignoring"));
1386 	  return std::vector<mem_region> ();
1387 	}
1388 
1389       last_one = this_one;
1390     }
1391 
1392   return result;
1393 }
1394 
1395 void
1396 target_flash_erase (ULONGEST address, LONGEST length)
1397 {
1398   current_top_target ()->flash_erase (address, length);
1399 }
1400 
1401 void
1402 target_flash_done (void)
1403 {
1404   current_top_target ()->flash_done ();
1405 }
1406 
1407 static void
1408 show_trust_readonly (struct ui_file *file, int from_tty,
1409 		     struct cmd_list_element *c, const char *value)
1410 {
1411   fprintf_filtered (file,
1412 		    _("Mode for reading from readonly sections is %s.\n"),
1413 		    value);
1414 }
1415 
1416 /* Target vector read/write partial wrapper functions.  */
1417 
1418 static enum target_xfer_status
1419 target_read_partial (struct target_ops *ops,
1420 		     enum target_object object,
1421 		     const char *annex, gdb_byte *buf,
1422 		     ULONGEST offset, ULONGEST len,
1423 		     ULONGEST *xfered_len)
1424 {
1425   return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1426 			      xfered_len);
1427 }
1428 
1429 static enum target_xfer_status
1430 target_write_partial (struct target_ops *ops,
1431 		      enum target_object object,
1432 		      const char *annex, const gdb_byte *buf,
1433 		      ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1434 {
1435   return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1436 			      xfered_len);
1437 }
1438 
1439 /* Wrappers to perform the full transfer.  */
1440 
1441 /* For docs on target_read see target.h.  */
1442 
1443 LONGEST
1444 target_read (struct target_ops *ops,
1445 	     enum target_object object,
1446 	     const char *annex, gdb_byte *buf,
1447 	     ULONGEST offset, LONGEST len)
1448 {
1449   LONGEST xfered_total = 0;
1450   int unit_size = 1;
1451 
1452   /* If we are reading from a memory object, find the length of an addressable
1453      unit for that architecture.  */
1454   if (object == TARGET_OBJECT_MEMORY
1455       || object == TARGET_OBJECT_STACK_MEMORY
1456       || object == TARGET_OBJECT_CODE_MEMORY
1457       || object == TARGET_OBJECT_RAW_MEMORY)
1458     unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1459 
1460   while (xfered_total < len)
1461     {
1462       ULONGEST xfered_partial;
1463       enum target_xfer_status status;
1464 
1465       status = target_read_partial (ops, object, annex,
1466 				    buf + xfered_total * unit_size,
1467 				    offset + xfered_total, len - xfered_total,
1468 				    &xfered_partial);
1469 
1470       /* Call an observer, notifying them of the xfer progress?  */
1471       if (status == TARGET_XFER_EOF)
1472 	return xfered_total;
1473       else if (status == TARGET_XFER_OK)
1474 	{
1475 	  xfered_total += xfered_partial;
1476 	  QUIT;
1477 	}
1478       else
1479 	return TARGET_XFER_E_IO;
1480 
1481     }
1482   return len;
1483 }
1484 
1485 /* Assuming that the entire [begin, end) range of memory cannot be
1486    read, try to read whatever subrange is possible to read.
1487 
1488    The function returns, in RESULT, either zero or one memory block.
1489    If there's a readable subrange at the beginning, it is completely
1490    read and returned.  Any further readable subrange will not be read.
1491    Otherwise, if there's a readable subrange at the end, it will be
1492    completely read and returned.  Any readable subranges before it
1493    (obviously, not starting at the beginning), will be ignored.  In
1494    other cases -- either no readable subrange, or readable subrange(s)
1495    that is neither at the beginning, or end, nothing is returned.
1496 
1497    The purpose of this function is to handle a read across a boundary
1498    of accessible memory in a case when memory map is not available.
1499    The above restrictions are fine for this case, but will give
1500    incorrect results if the memory is 'patchy'.  However, supporting
1501    'patchy' memory would require trying to read every single byte,
1502    and it seems unacceptable solution.  Explicit memory map is
1503    recommended for this case -- and target_read_memory_robust will
1504    take care of reading multiple ranges then.  */
1505 
1506 static void
1507 read_whatever_is_readable (struct target_ops *ops,
1508 			   const ULONGEST begin, const ULONGEST end,
1509 			   int unit_size,
1510 			   std::vector<memory_read_result> *result)
1511 {
1512   ULONGEST current_begin = begin;
1513   ULONGEST current_end = end;
1514   int forward;
1515   ULONGEST xfered_len;
1516 
1517   /* If we previously failed to read 1 byte, nothing can be done here.  */
1518   if (end - begin <= 1)
1519     return;
1520 
1521   gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1522 
1523   /* Check that either first or the last byte is readable, and give up
1524      if not.  This heuristic is meant to permit reading accessible memory
1525      at the boundary of accessible region.  */
1526   if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1527 			   buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1528     {
1529       forward = 1;
1530       ++current_begin;
1531     }
1532   else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1533 				buf.get () + (end - begin) - 1, end - 1, 1,
1534 				&xfered_len) == TARGET_XFER_OK)
1535     {
1536       forward = 0;
1537       --current_end;
1538     }
1539   else
1540     return;
1541 
1542   /* Loop invariant is that the [current_begin, current_end) was previously
1543      found to be not readable as a whole.
1544 
1545      Note loop condition -- if the range has 1 byte, we can't divide the range
1546      so there's no point trying further.  */
1547   while (current_end - current_begin > 1)
1548     {
1549       ULONGEST first_half_begin, first_half_end;
1550       ULONGEST second_half_begin, second_half_end;
1551       LONGEST xfer;
1552       ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1553 
1554       if (forward)
1555 	{
1556 	  first_half_begin = current_begin;
1557 	  first_half_end = middle;
1558 	  second_half_begin = middle;
1559 	  second_half_end = current_end;
1560 	}
1561       else
1562 	{
1563 	  first_half_begin = middle;
1564 	  first_half_end = current_end;
1565 	  second_half_begin = current_begin;
1566 	  second_half_end = middle;
1567 	}
1568 
1569       xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1570 			  buf.get () + (first_half_begin - begin) * unit_size,
1571 			  first_half_begin,
1572 			  first_half_end - first_half_begin);
1573 
1574       if (xfer == first_half_end - first_half_begin)
1575 	{
1576 	  /* This half reads up fine.  So, the error must be in the
1577 	     other half.  */
1578 	  current_begin = second_half_begin;
1579 	  current_end = second_half_end;
1580 	}
1581       else
1582 	{
1583 	  /* This half is not readable.  Because we've tried one byte, we
1584 	     know some part of this half if actually readable.  Go to the next
1585 	     iteration to divide again and try to read.
1586 
1587 	     We don't handle the other half, because this function only tries
1588 	     to read a single readable subrange.  */
1589 	  current_begin = first_half_begin;
1590 	  current_end = first_half_end;
1591 	}
1592     }
1593 
1594   if (forward)
1595     {
1596       /* The [begin, current_begin) range has been read.  */
1597       result->emplace_back (begin, current_end, std::move (buf));
1598     }
1599   else
1600     {
1601       /* The [current_end, end) range has been read.  */
1602       LONGEST region_len = end - current_end;
1603 
1604       gdb::unique_xmalloc_ptr<gdb_byte> data
1605 	((gdb_byte *) xmalloc (region_len * unit_size));
1606       memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1607 	      region_len * unit_size);
1608       result->emplace_back (current_end, end, std::move (data));
1609     }
1610 }
1611 
1612 std::vector<memory_read_result>
1613 read_memory_robust (struct target_ops *ops,
1614 		    const ULONGEST offset, const LONGEST len)
1615 {
1616   std::vector<memory_read_result> result;
1617   int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1618 
1619   LONGEST xfered_total = 0;
1620   while (xfered_total < len)
1621     {
1622       struct mem_region *region = lookup_mem_region (offset + xfered_total);
1623       LONGEST region_len;
1624 
1625       /* If there is no explicit region, a fake one should be created.  */
1626       gdb_assert (region);
1627 
1628       if (region->hi == 0)
1629 	region_len = len - xfered_total;
1630       else
1631 	region_len = region->hi - offset;
1632 
1633       if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1634 	{
1635 	  /* Cannot read this region.  Note that we can end up here only
1636 	     if the region is explicitly marked inaccessible, or
1637 	     'inaccessible-by-default' is in effect.  */
1638 	  xfered_total += region_len;
1639 	}
1640       else
1641 	{
1642 	  LONGEST to_read = std::min (len - xfered_total, region_len);
1643 	  gdb::unique_xmalloc_ptr<gdb_byte> buffer
1644 	    ((gdb_byte *) xmalloc (to_read * unit_size));
1645 
1646 	  LONGEST xfered_partial =
1647 	      target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1648 			   offset + xfered_total, to_read);
1649 	  /* Call an observer, notifying them of the xfer progress?  */
1650 	  if (xfered_partial <= 0)
1651 	    {
1652 	      /* Got an error reading full chunk.  See if maybe we can read
1653 		 some subrange.  */
1654 	      read_whatever_is_readable (ops, offset + xfered_total,
1655 					 offset + xfered_total + to_read,
1656 					 unit_size, &result);
1657 	      xfered_total += to_read;
1658 	    }
1659 	  else
1660 	    {
1661 	      result.emplace_back (offset + xfered_total,
1662 				   offset + xfered_total + xfered_partial,
1663 				   std::move (buffer));
1664 	      xfered_total += xfered_partial;
1665 	    }
1666 	  QUIT;
1667 	}
1668     }
1669 
1670   return result;
1671 }
1672 
1673 
1674 /* An alternative to target_write with progress callbacks.  */
1675 
1676 LONGEST
1677 target_write_with_progress (struct target_ops *ops,
1678 			    enum target_object object,
1679 			    const char *annex, const gdb_byte *buf,
1680 			    ULONGEST offset, LONGEST len,
1681 			    void (*progress) (ULONGEST, void *), void *baton)
1682 {
1683   LONGEST xfered_total = 0;
1684   int unit_size = 1;
1685 
1686   /* If we are writing to a memory object, find the length of an addressable
1687      unit for that architecture.  */
1688   if (object == TARGET_OBJECT_MEMORY
1689       || object == TARGET_OBJECT_STACK_MEMORY
1690       || object == TARGET_OBJECT_CODE_MEMORY
1691       || object == TARGET_OBJECT_RAW_MEMORY)
1692     unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1693 
1694   /* Give the progress callback a chance to set up.  */
1695   if (progress)
1696     (*progress) (0, baton);
1697 
1698   while (xfered_total < len)
1699     {
1700       ULONGEST xfered_partial;
1701       enum target_xfer_status status;
1702 
1703       status = target_write_partial (ops, object, annex,
1704 				     buf + xfered_total * unit_size,
1705 				     offset + xfered_total, len - xfered_total,
1706 				     &xfered_partial);
1707 
1708       if (status != TARGET_XFER_OK)
1709 	return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1710 
1711       if (progress)
1712 	(*progress) (xfered_partial, baton);
1713 
1714       xfered_total += xfered_partial;
1715       QUIT;
1716     }
1717   return len;
1718 }
1719 
1720 /* For docs on target_write see target.h.  */
1721 
1722 LONGEST
1723 target_write (struct target_ops *ops,
1724 	      enum target_object object,
1725 	      const char *annex, const gdb_byte *buf,
1726 	      ULONGEST offset, LONGEST len)
1727 {
1728   return target_write_with_progress (ops, object, annex, buf, offset, len,
1729 				     NULL, NULL);
1730 }
1731 
1732 /* Help for target_read_alloc and target_read_stralloc.  See their comments
1733    for details.  */
1734 
1735 template <typename T>
1736 gdb::optional<gdb::def_vector<T>>
1737 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1738 		     const char *annex)
1739 {
1740   gdb::def_vector<T> buf;
1741   size_t buf_pos = 0;
1742   const int chunk = 4096;
1743 
1744   /* This function does not have a length parameter; it reads the
1745      entire OBJECT).  Also, it doesn't support objects fetched partly
1746      from one target and partly from another (in a different stratum,
1747      e.g. a core file and an executable).  Both reasons make it
1748      unsuitable for reading memory.  */
1749   gdb_assert (object != TARGET_OBJECT_MEMORY);
1750 
1751   /* Start by reading up to 4K at a time.  The target will throttle
1752      this number down if necessary.  */
1753   while (1)
1754     {
1755       ULONGEST xfered_len;
1756       enum target_xfer_status status;
1757 
1758       buf.resize (buf_pos + chunk);
1759 
1760       status = target_read_partial (ops, object, annex,
1761 				    (gdb_byte *) &buf[buf_pos],
1762 				    buf_pos, chunk,
1763 				    &xfered_len);
1764 
1765       if (status == TARGET_XFER_EOF)
1766 	{
1767 	  /* Read all there was.  */
1768 	  buf.resize (buf_pos);
1769 	  return buf;
1770 	}
1771       else if (status != TARGET_XFER_OK)
1772 	{
1773 	  /* An error occurred.  */
1774 	  return {};
1775 	}
1776 
1777       buf_pos += xfered_len;
1778 
1779       QUIT;
1780     }
1781 }
1782 
1783 /* See target.h  */
1784 
1785 gdb::optional<gdb::byte_vector>
1786 target_read_alloc (struct target_ops *ops, enum target_object object,
1787 		   const char *annex)
1788 {
1789   return target_read_alloc_1<gdb_byte> (ops, object, annex);
1790 }
1791 
1792 /* See target.h.  */
1793 
1794 gdb::optional<gdb::char_vector>
1795 target_read_stralloc (struct target_ops *ops, enum target_object object,
1796 		      const char *annex)
1797 {
1798   gdb::optional<gdb::char_vector> buf
1799     = target_read_alloc_1<char> (ops, object, annex);
1800 
1801   if (!buf)
1802     return {};
1803 
1804   if (buf->empty () || buf->back () != '\0')
1805     buf->push_back ('\0');
1806 
1807   /* Check for embedded NUL bytes; but allow trailing NULs.  */
1808   for (auto it = std::find (buf->begin (), buf->end (), '\0');
1809        it != buf->end (); it++)
1810     if (*it != '\0')
1811       {
1812 	warning (_("target object %d, annex %s, "
1813 		   "contained unexpected null characters"),
1814 		 (int) object, annex ? annex : "(none)");
1815 	break;
1816       }
1817 
1818   return buf;
1819 }
1820 
1821 /* Memory transfer methods.  */
1822 
1823 void
1824 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1825 		   LONGEST len)
1826 {
1827   /* This method is used to read from an alternate, non-current
1828      target.  This read must bypass the overlay support (as symbols
1829      don't match this target), and GDB's internal cache (wrong cache
1830      for this target).  */
1831   if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1832       != len)
1833     memory_error (TARGET_XFER_E_IO, addr);
1834 }
1835 
1836 ULONGEST
1837 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1838 			    int len, enum bfd_endian byte_order)
1839 {
1840   gdb_byte buf[sizeof (ULONGEST)];
1841 
1842   gdb_assert (len <= sizeof (buf));
1843   get_target_memory (ops, addr, buf, len);
1844   return extract_unsigned_integer (buf, len, byte_order);
1845 }
1846 
1847 /* See target.h.  */
1848 
1849 int
1850 target_insert_breakpoint (struct gdbarch *gdbarch,
1851 			  struct bp_target_info *bp_tgt)
1852 {
1853   if (!may_insert_breakpoints)
1854     {
1855       warning (_("May not insert breakpoints"));
1856       return 1;
1857     }
1858 
1859   return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1860 }
1861 
1862 /* See target.h.  */
1863 
1864 int
1865 target_remove_breakpoint (struct gdbarch *gdbarch,
1866 			  struct bp_target_info *bp_tgt,
1867 			  enum remove_bp_reason reason)
1868 {
1869   /* This is kind of a weird case to handle, but the permission might
1870      have been changed after breakpoints were inserted - in which case
1871      we should just take the user literally and assume that any
1872      breakpoints should be left in place.  */
1873   if (!may_insert_breakpoints)
1874     {
1875       warning (_("May not remove breakpoints"));
1876       return 1;
1877     }
1878 
1879   return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1880 }
1881 
1882 static void
1883 info_target_command (const char *args, int from_tty)
1884 {
1885   int has_all_mem = 0;
1886 
1887   if (symfile_objfile != NULL)
1888     printf_unfiltered (_("Symbols from \"%s\".\n"),
1889 		       objfile_name (symfile_objfile));
1890 
1891   for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1892     {
1893       if (!t->has_memory ())
1894 	continue;
1895 
1896       if ((int) (t->stratum ()) <= (int) dummy_stratum)
1897 	continue;
1898       if (has_all_mem)
1899 	printf_unfiltered (_("\tWhile running this, "
1900 			     "GDB does not access memory from...\n"));
1901       printf_unfiltered ("%s:\n", t->longname ());
1902       t->files_info ();
1903       has_all_mem = t->has_all_memory ();
1904     }
1905 }
1906 
1907 /* This function is called before any new inferior is created, e.g.
1908    by running a program, attaching, or connecting to a target.
1909    It cleans up any state from previous invocations which might
1910    change between runs.  This is a subset of what target_preopen
1911    resets (things which might change between targets).  */
1912 
1913 void
1914 target_pre_inferior (int from_tty)
1915 {
1916   /* Clear out solib state.  Otherwise the solib state of the previous
1917      inferior might have survived and is entirely wrong for the new
1918      target.  This has been observed on GNU/Linux using glibc 2.3.  How
1919      to reproduce:
1920 
1921      bash$ ./foo&
1922      [1] 4711
1923      bash$ ./foo&
1924      [1] 4712
1925      bash$ gdb ./foo
1926      [...]
1927      (gdb) attach 4711
1928      (gdb) detach
1929      (gdb) attach 4712
1930      Cannot access memory at address 0xdeadbeef
1931   */
1932 
1933   /* In some OSs, the shared library list is the same/global/shared
1934      across inferiors.  If code is shared between processes, so are
1935      memory regions and features.  */
1936   if (!gdbarch_has_global_solist (target_gdbarch ()))
1937     {
1938       no_shared_libraries (NULL, from_tty);
1939 
1940       invalidate_target_mem_regions ();
1941 
1942       target_clear_description ();
1943     }
1944 
1945   /* attach_flag may be set if the previous process associated with
1946      the inferior was attached to.  */
1947   current_inferior ()->attach_flag = 0;
1948 
1949   current_inferior ()->highest_thread_num = 0;
1950 
1951   agent_capability_invalidate ();
1952 }
1953 
1954 /* Callback for iterate_over_inferiors.  Gets rid of the given
1955    inferior.  */
1956 
1957 static int
1958 dispose_inferior (struct inferior *inf, void *args)
1959 {
1960   /* Not all killed inferiors can, or will ever be, removed from the
1961      inferior list.  Killed inferiors clearly don't need to be killed
1962      again, so, we're done.  */
1963   if (inf->pid == 0)
1964     return 0;
1965 
1966   thread_info *thread = any_thread_of_inferior (inf);
1967   if (thread != NULL)
1968     {
1969       switch_to_thread (thread);
1970 
1971       /* Core inferiors actually should be detached, not killed.  */
1972       if (target_has_execution)
1973 	target_kill ();
1974       else
1975 	target_detach (inf, 0);
1976     }
1977 
1978   return 0;
1979 }
1980 
1981 /* This is to be called by the open routine before it does
1982    anything.  */
1983 
1984 void
1985 target_preopen (int from_tty)
1986 {
1987   dont_repeat ();
1988 
1989   if (have_inferiors ())
1990     {
1991       if (!from_tty
1992 	  || !have_live_inferiors ()
1993 	  || query (_("A program is being debugged already.  Kill it? ")))
1994 	iterate_over_inferiors (dispose_inferior, NULL);
1995       else
1996 	error (_("Program not killed."));
1997     }
1998 
1999   /* Calling target_kill may remove the target from the stack.  But if
2000      it doesn't (which seems like a win for UDI), remove it now.  */
2001   /* Leave the exec target, though.  The user may be switching from a
2002      live process to a core of the same program.  */
2003   pop_all_targets_above (file_stratum);
2004 
2005   target_pre_inferior (from_tty);
2006 }
2007 
2008 /* See target.h.  */
2009 
2010 void
2011 target_detach (inferior *inf, int from_tty)
2012 {
2013   /* As long as some to_detach implementations rely on the current_inferior
2014      (either directly, or indirectly, like through target_gdbarch or by
2015      reading memory), INF needs to be the current inferior.  When that
2016      requirement will become no longer true, then we can remove this
2017      assertion.  */
2018   gdb_assert (inf == current_inferior ());
2019 
2020   if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2021     /* Don't remove global breakpoints here.  They're removed on
2022        disconnection from the target.  */
2023     ;
2024   else
2025     /* If we're in breakpoints-always-inserted mode, have to remove
2026        breakpoints before detaching.  */
2027     remove_breakpoints_inf (current_inferior ());
2028 
2029   prepare_for_detach ();
2030 
2031   current_top_target ()->detach (inf, from_tty);
2032 }
2033 
2034 void
2035 target_disconnect (const char *args, int from_tty)
2036 {
2037   /* If we're in breakpoints-always-inserted mode or if breakpoints
2038      are global across processes, we have to remove them before
2039      disconnecting.  */
2040   remove_breakpoints ();
2041 
2042   current_top_target ()->disconnect (args, from_tty);
2043 }
2044 
2045 /* See target/target.h.  */
2046 
2047 ptid_t
2048 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2049 {
2050   return current_top_target ()->wait (ptid, status, options);
2051 }
2052 
2053 /* See target.h.  */
2054 
2055 ptid_t
2056 default_target_wait (struct target_ops *ops,
2057 		     ptid_t ptid, struct target_waitstatus *status,
2058 		     int options)
2059 {
2060   status->kind = TARGET_WAITKIND_IGNORE;
2061   return minus_one_ptid;
2062 }
2063 
2064 const char *
2065 target_pid_to_str (ptid_t ptid)
2066 {
2067   return current_top_target ()->pid_to_str (ptid);
2068 }
2069 
2070 const char *
2071 target_thread_name (struct thread_info *info)
2072 {
2073   return current_top_target ()->thread_name (info);
2074 }
2075 
2076 struct thread_info *
2077 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2078 				     int handle_len,
2079 				     struct inferior *inf)
2080 {
2081   return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2082 						     handle_len, inf);
2083 }
2084 
2085 void
2086 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2087 {
2088   target_dcache_invalidate ();
2089 
2090   current_top_target ()->resume (ptid, step, signal);
2091 
2092   registers_changed_ptid (ptid);
2093   /* We only set the internal executing state here.  The user/frontend
2094      running state is set at a higher level.  This also clears the
2095      thread's stop_pc as side effect.  */
2096   set_executing (ptid, 1);
2097   clear_inline_frame_state (ptid);
2098 }
2099 
2100 /* If true, target_commit_resume is a nop.  */
2101 static int defer_target_commit_resume;
2102 
2103 /* See target.h.  */
2104 
2105 void
2106 target_commit_resume (void)
2107 {
2108   if (defer_target_commit_resume)
2109     return;
2110 
2111   current_top_target ()->commit_resume ();
2112 }
2113 
2114 /* See target.h.  */
2115 
2116 scoped_restore_tmpl<int>
2117 make_scoped_defer_target_commit_resume ()
2118 {
2119   return make_scoped_restore (&defer_target_commit_resume, 1);
2120 }
2121 
2122 void
2123 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2124 {
2125   current_top_target ()->pass_signals (pass_signals);
2126 }
2127 
2128 void
2129 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2130 {
2131   current_top_target ()->program_signals (program_signals);
2132 }
2133 
2134 static int
2135 default_follow_fork (struct target_ops *self, int follow_child,
2136 		     int detach_fork)
2137 {
2138   /* Some target returned a fork event, but did not know how to follow it.  */
2139   internal_error (__FILE__, __LINE__,
2140 		  _("could not find a target to follow fork"));
2141 }
2142 
2143 /* Look through the list of possible targets for a target that can
2144    follow forks.  */
2145 
2146 int
2147 target_follow_fork (int follow_child, int detach_fork)
2148 {
2149   return current_top_target ()->follow_fork (follow_child, detach_fork);
2150 }
2151 
2152 /* Target wrapper for follow exec hook.  */
2153 
2154 void
2155 target_follow_exec (struct inferior *inf, char *execd_pathname)
2156 {
2157   current_top_target ()->follow_exec (inf, execd_pathname);
2158 }
2159 
2160 static void
2161 default_mourn_inferior (struct target_ops *self)
2162 {
2163   internal_error (__FILE__, __LINE__,
2164 		  _("could not find a target to follow mourn inferior"));
2165 }
2166 
2167 void
2168 target_mourn_inferior (ptid_t ptid)
2169 {
2170   gdb_assert (ptid == inferior_ptid);
2171   current_top_target ()->mourn_inferior ();
2172 
2173   /* We no longer need to keep handles on any of the object files.
2174      Make sure to release them to avoid unnecessarily locking any
2175      of them while we're not actually debugging.  */
2176   bfd_cache_close_all ();
2177 }
2178 
2179 /* Look for a target which can describe architectural features, starting
2180    from TARGET.  If we find one, return its description.  */
2181 
2182 const struct target_desc *
2183 target_read_description (struct target_ops *target)
2184 {
2185   return target->read_description ();
2186 }
2187 
2188 /* This implements a basic search of memory, reading target memory and
2189    performing the search here (as opposed to performing the search in on the
2190    target side with, for example, gdbserver).  */
2191 
2192 int
2193 simple_search_memory (struct target_ops *ops,
2194 		      CORE_ADDR start_addr, ULONGEST search_space_len,
2195 		      const gdb_byte *pattern, ULONGEST pattern_len,
2196 		      CORE_ADDR *found_addrp)
2197 {
2198   /* NOTE: also defined in find.c testcase.  */
2199 #define SEARCH_CHUNK_SIZE 16000
2200   const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2201   /* Buffer to hold memory contents for searching.  */
2202   unsigned search_buf_size;
2203 
2204   search_buf_size = chunk_size + pattern_len - 1;
2205 
2206   /* No point in trying to allocate a buffer larger than the search space.  */
2207   if (search_space_len < search_buf_size)
2208     search_buf_size = search_space_len;
2209 
2210   gdb::byte_vector search_buf (search_buf_size);
2211 
2212   /* Prime the search buffer.  */
2213 
2214   if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2215 		   search_buf.data (), start_addr, search_buf_size)
2216       != search_buf_size)
2217     {
2218       warning (_("Unable to access %s bytes of target "
2219 		 "memory at %s, halting search."),
2220 	       pulongest (search_buf_size), hex_string (start_addr));
2221       return -1;
2222     }
2223 
2224   /* Perform the search.
2225 
2226      The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2227      When we've scanned N bytes we copy the trailing bytes to the start and
2228      read in another N bytes.  */
2229 
2230   while (search_space_len >= pattern_len)
2231     {
2232       gdb_byte *found_ptr;
2233       unsigned nr_search_bytes
2234 	= std::min (search_space_len, (ULONGEST) search_buf_size);
2235 
2236       found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2237 				       pattern, pattern_len);
2238 
2239       if (found_ptr != NULL)
2240 	{
2241 	  CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2242 
2243 	  *found_addrp = found_addr;
2244 	  return 1;
2245 	}
2246 
2247       /* Not found in this chunk, skip to next chunk.  */
2248 
2249       /* Don't let search_space_len wrap here, it's unsigned.  */
2250       if (search_space_len >= chunk_size)
2251 	search_space_len -= chunk_size;
2252       else
2253 	search_space_len = 0;
2254 
2255       if (search_space_len >= pattern_len)
2256 	{
2257 	  unsigned keep_len = search_buf_size - chunk_size;
2258 	  CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2259 	  int nr_to_read;
2260 
2261 	  /* Copy the trailing part of the previous iteration to the front
2262 	     of the buffer for the next iteration.  */
2263 	  gdb_assert (keep_len == pattern_len - 1);
2264 	  memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2265 
2266 	  nr_to_read = std::min (search_space_len - keep_len,
2267 				 (ULONGEST) chunk_size);
2268 
2269 	  if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2270 			   &search_buf[keep_len], read_addr,
2271 			   nr_to_read) != nr_to_read)
2272 	    {
2273 	      warning (_("Unable to access %s bytes of target "
2274 			 "memory at %s, halting search."),
2275 		       plongest (nr_to_read),
2276 		       hex_string (read_addr));
2277 	      return -1;
2278 	    }
2279 
2280 	  start_addr += chunk_size;
2281 	}
2282     }
2283 
2284   /* Not found.  */
2285 
2286   return 0;
2287 }
2288 
2289 /* Default implementation of memory-searching.  */
2290 
2291 static int
2292 default_search_memory (struct target_ops *self,
2293 		       CORE_ADDR start_addr, ULONGEST search_space_len,
2294 		       const gdb_byte *pattern, ULONGEST pattern_len,
2295 		       CORE_ADDR *found_addrp)
2296 {
2297   /* Start over from the top of the target stack.  */
2298   return simple_search_memory (current_top_target (),
2299 			       start_addr, search_space_len,
2300 			       pattern, pattern_len, found_addrp);
2301 }
2302 
2303 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2304    sequence of bytes in PATTERN with length PATTERN_LEN.
2305 
2306    The result is 1 if found, 0 if not found, and -1 if there was an error
2307    requiring halting of the search (e.g. memory read error).
2308    If the pattern is found the address is recorded in FOUND_ADDRP.  */
2309 
2310 int
2311 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2312 		      const gdb_byte *pattern, ULONGEST pattern_len,
2313 		      CORE_ADDR *found_addrp)
2314 {
2315   return current_top_target ()->search_memory (start_addr, search_space_len,
2316 				      pattern, pattern_len, found_addrp);
2317 }
2318 
2319 /* Look through the currently pushed targets.  If none of them will
2320    be able to restart the currently running process, issue an error
2321    message.  */
2322 
2323 void
2324 target_require_runnable (void)
2325 {
2326   for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2327     {
2328       /* If this target knows how to create a new program, then
2329 	 assume we will still be able to after killing the current
2330 	 one.  Either killing and mourning will not pop T, or else
2331 	 find_default_run_target will find it again.  */
2332       if (t->can_create_inferior ())
2333 	return;
2334 
2335       /* Do not worry about targets at certain strata that can not
2336 	 create inferiors.  Assume they will be pushed again if
2337 	 necessary, and continue to the process_stratum.  */
2338       if (t->stratum () > process_stratum)
2339 	continue;
2340 
2341       error (_("The \"%s\" target does not support \"run\".  "
2342 	       "Try \"help target\" or \"continue\"."),
2343 	     t->shortname ());
2344     }
2345 
2346   /* This function is only called if the target is running.  In that
2347      case there should have been a process_stratum target and it
2348      should either know how to create inferiors, or not...  */
2349   internal_error (__FILE__, __LINE__, _("No targets found"));
2350 }
2351 
2352 /* Whether GDB is allowed to fall back to the default run target for
2353    "run", "attach", etc. when no target is connected yet.  */
2354 static int auto_connect_native_target = 1;
2355 
2356 static void
2357 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2358 				 struct cmd_list_element *c, const char *value)
2359 {
2360   fprintf_filtered (file,
2361 		    _("Whether GDB may automatically connect to the "
2362 		      "native target is %s.\n"),
2363 		    value);
2364 }
2365 
2366 /* A pointer to the target that can respond to "run" or "attach".
2367    Native targets are always singletons and instantiated early at GDB
2368    startup.  */
2369 static target_ops *the_native_target;
2370 
2371 /* See target.h.  */
2372 
2373 void
2374 set_native_target (target_ops *target)
2375 {
2376   if (the_native_target != NULL)
2377     internal_error (__FILE__, __LINE__,
2378 		    _("native target already set (\"%s\")."),
2379 		    the_native_target->longname ());
2380 
2381   the_native_target = target;
2382 }
2383 
2384 /* See target.h.  */
2385 
2386 target_ops *
2387 get_native_target ()
2388 {
2389   return the_native_target;
2390 }
2391 
2392 /* Look through the list of possible targets for a target that can
2393    execute a run or attach command without any other data.  This is
2394    used to locate the default process stratum.
2395 
2396    If DO_MESG is not NULL, the result is always valid (error() is
2397    called for errors); else, return NULL on error.  */
2398 
2399 static struct target_ops *
2400 find_default_run_target (const char *do_mesg)
2401 {
2402   if (auto_connect_native_target && the_native_target != NULL)
2403     return the_native_target;
2404 
2405   if (do_mesg != NULL)
2406     error (_("Don't know how to %s.  Try \"help target\"."), do_mesg);
2407   return NULL;
2408 }
2409 
2410 /* See target.h.  */
2411 
2412 struct target_ops *
2413 find_attach_target (void)
2414 {
2415   /* If a target on the current stack can attach, use it.  */
2416   for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2417     {
2418       if (t->can_attach ())
2419 	return t;
2420     }
2421 
2422   /* Otherwise, use the default run target for attaching.  */
2423   return find_default_run_target ("attach");
2424 }
2425 
2426 /* See target.h.  */
2427 
2428 struct target_ops *
2429 find_run_target (void)
2430 {
2431   /* If a target on the current stack can run, use it.  */
2432   for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2433     {
2434       if (t->can_create_inferior ())
2435 	return t;
2436     }
2437 
2438   /* Otherwise, use the default run target.  */
2439   return find_default_run_target ("run");
2440 }
2441 
2442 bool
2443 target_ops::info_proc (const char *args, enum info_proc_what what)
2444 {
2445   return false;
2446 }
2447 
2448 /* Implement the "info proc" command.  */
2449 
2450 int
2451 target_info_proc (const char *args, enum info_proc_what what)
2452 {
2453   struct target_ops *t;
2454 
2455   /* If we're already connected to something that can get us OS
2456      related data, use it.  Otherwise, try using the native
2457      target.  */
2458   t = find_target_at (process_stratum);
2459   if (t == NULL)
2460     t = find_default_run_target (NULL);
2461 
2462   for (; t != NULL; t = t->beneath ())
2463     {
2464       if (t->info_proc (args, what))
2465 	{
2466 	  if (targetdebug)
2467 	    fprintf_unfiltered (gdb_stdlog,
2468 				"target_info_proc (\"%s\", %d)\n", args, what);
2469 
2470 	  return 1;
2471 	}
2472     }
2473 
2474   return 0;
2475 }
2476 
2477 static int
2478 find_default_supports_disable_randomization (struct target_ops *self)
2479 {
2480   struct target_ops *t;
2481 
2482   t = find_default_run_target (NULL);
2483   if (t != NULL)
2484     return t->supports_disable_randomization ();
2485   return 0;
2486 }
2487 
2488 int
2489 target_supports_disable_randomization (void)
2490 {
2491   return current_top_target ()->supports_disable_randomization ();
2492 }
2493 
2494 /* See target/target.h.  */
2495 
2496 int
2497 target_supports_multi_process (void)
2498 {
2499   return current_top_target ()->supports_multi_process ();
2500 }
2501 
2502 /* See target.h.  */
2503 
2504 gdb::optional<gdb::char_vector>
2505 target_get_osdata (const char *type)
2506 {
2507   struct target_ops *t;
2508 
2509   /* If we're already connected to something that can get us OS
2510      related data, use it.  Otherwise, try using the native
2511      target.  */
2512   t = find_target_at (process_stratum);
2513   if (t == NULL)
2514     t = find_default_run_target ("get OS data");
2515 
2516   if (!t)
2517     return {};
2518 
2519   return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2520 }
2521 
2522 
2523 /* Determine the current address space of thread PTID.  */
2524 
2525 struct address_space *
2526 target_thread_address_space (ptid_t ptid)
2527 {
2528   struct address_space *aspace;
2529 
2530   aspace = current_top_target ()->thread_address_space (ptid);
2531   gdb_assert (aspace != NULL);
2532 
2533   return aspace;
2534 }
2535 
2536 /* See target.h.  */
2537 
2538 target_ops *
2539 target_ops::beneath () const
2540 {
2541   return g_target_stack.find_beneath (this);
2542 }
2543 
2544 void
2545 target_ops::close ()
2546 {
2547 }
2548 
2549 bool
2550 target_ops::can_attach ()
2551 {
2552   return 0;
2553 }
2554 
2555 void
2556 target_ops::attach (const char *, int)
2557 {
2558   gdb_assert_not_reached ("target_ops::attach called");
2559 }
2560 
2561 bool
2562 target_ops::can_create_inferior ()
2563 {
2564   return 0;
2565 }
2566 
2567 void
2568 target_ops::create_inferior (const char *, const std::string &,
2569 			     char **, int)
2570 {
2571   gdb_assert_not_reached ("target_ops::create_inferior called");
2572 }
2573 
2574 bool
2575 target_ops::can_run ()
2576 {
2577   return false;
2578 }
2579 
2580 int
2581 target_can_run ()
2582 {
2583   for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2584     {
2585       if (t->can_run ())
2586 	return 1;
2587     }
2588 
2589   return 0;
2590 }
2591 
2592 /* Target file operations.  */
2593 
2594 static struct target_ops *
2595 default_fileio_target (void)
2596 {
2597   struct target_ops *t;
2598 
2599   /* If we're already connected to something that can perform
2600      file I/O, use it. Otherwise, try using the native target.  */
2601   t = find_target_at (process_stratum);
2602   if (t != NULL)
2603     return t;
2604   return find_default_run_target ("file I/O");
2605 }
2606 
2607 /* File handle for target file operations.  */
2608 
2609 struct fileio_fh_t
2610 {
2611   /* The target on which this file is open.  NULL if the target is
2612      meanwhile closed while the handle is open.  */
2613   target_ops *target;
2614 
2615   /* The file descriptor on the target.  */
2616   int target_fd;
2617 
2618   /* Check whether this fileio_fh_t represents a closed file.  */
2619   bool is_closed ()
2620   {
2621     return target_fd < 0;
2622   }
2623 };
2624 
2625 /* Vector of currently open file handles.  The value returned by
2626    target_fileio_open and passed as the FD argument to other
2627    target_fileio_* functions is an index into this vector.  This
2628    vector's entries are never freed; instead, files are marked as
2629    closed, and the handle becomes available for reuse.  */
2630 static std::vector<fileio_fh_t> fileio_fhandles;
2631 
2632 /* Index into fileio_fhandles of the lowest handle that might be
2633    closed.  This permits handle reuse without searching the whole
2634    list each time a new file is opened.  */
2635 static int lowest_closed_fd;
2636 
2637 /* Invalidate the target associated with open handles that were open
2638    on target TARG, since we're about to close (and maybe destroy) the
2639    target.  The handles remain open from the client's perspective, but
2640    trying to do anything with them other than closing them will fail
2641    with EIO.  */
2642 
2643 static void
2644 fileio_handles_invalidate_target (target_ops *targ)
2645 {
2646   for (fileio_fh_t &fh : fileio_fhandles)
2647     if (fh.target == targ)
2648       fh.target = NULL;
2649 }
2650 
2651 /* Acquire a target fileio file descriptor.  */
2652 
2653 static int
2654 acquire_fileio_fd (target_ops *target, int target_fd)
2655 {
2656   /* Search for closed handles to reuse.  */
2657   for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2658     {
2659       fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2660 
2661       if (fh.is_closed ())
2662 	break;
2663     }
2664 
2665   /* Push a new handle if no closed handles were found.  */
2666   if (lowest_closed_fd == fileio_fhandles.size ())
2667     fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2668   else
2669     fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2670 
2671   /* Should no longer be marked closed.  */
2672   gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2673 
2674   /* Return its index, and start the next lookup at
2675      the next index.  */
2676   return lowest_closed_fd++;
2677 }
2678 
2679 /* Release a target fileio file descriptor.  */
2680 
2681 static void
2682 release_fileio_fd (int fd, fileio_fh_t *fh)
2683 {
2684   fh->target_fd = -1;
2685   lowest_closed_fd = std::min (lowest_closed_fd, fd);
2686 }
2687 
2688 /* Return a pointer to the fileio_fhandle_t corresponding to FD.  */
2689 
2690 static fileio_fh_t *
2691 fileio_fd_to_fh (int fd)
2692 {
2693   return &fileio_fhandles[fd];
2694 }
2695 
2696 
2697 /* Default implementations of file i/o methods.  We don't want these
2698    to delegate automatically, because we need to know which target
2699    supported the method, in order to call it directly from within
2700    pread/pwrite, etc.  */
2701 
2702 int
2703 target_ops::fileio_open (struct inferior *inf, const char *filename,
2704 			 int flags, int mode, int warn_if_slow,
2705 			 int *target_errno)
2706 {
2707   *target_errno = FILEIO_ENOSYS;
2708   return -1;
2709 }
2710 
2711 int
2712 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2713 			   ULONGEST offset, int *target_errno)
2714 {
2715   *target_errno = FILEIO_ENOSYS;
2716   return -1;
2717 }
2718 
2719 int
2720 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2721 			  ULONGEST offset, int *target_errno)
2722 {
2723   *target_errno = FILEIO_ENOSYS;
2724   return -1;
2725 }
2726 
2727 int
2728 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2729 {
2730   *target_errno = FILEIO_ENOSYS;
2731   return -1;
2732 }
2733 
2734 int
2735 target_ops::fileio_close (int fd, int *target_errno)
2736 {
2737   *target_errno = FILEIO_ENOSYS;
2738   return -1;
2739 }
2740 
2741 int
2742 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2743 			   int *target_errno)
2744 {
2745   *target_errno = FILEIO_ENOSYS;
2746   return -1;
2747 }
2748 
2749 gdb::optional<std::string>
2750 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2751 			     int *target_errno)
2752 {
2753   *target_errno = FILEIO_ENOSYS;
2754   return {};
2755 }
2756 
2757 /* Helper for target_fileio_open and
2758    target_fileio_open_warn_if_slow.  */
2759 
2760 static int
2761 target_fileio_open_1 (struct inferior *inf, const char *filename,
2762 		      int flags, int mode, int warn_if_slow,
2763 		      int *target_errno)
2764 {
2765   for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2766     {
2767       int fd = t->fileio_open (inf, filename, flags, mode,
2768 			       warn_if_slow, target_errno);
2769 
2770       if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2771 	continue;
2772 
2773       if (fd < 0)
2774 	fd = -1;
2775       else
2776 	fd = acquire_fileio_fd (t, fd);
2777 
2778       if (targetdebug)
2779 	fprintf_unfiltered (gdb_stdlog,
2780 				"target_fileio_open (%d,%s,0x%x,0%o,%d)"
2781 				" = %d (%d)\n",
2782 				inf == NULL ? 0 : inf->num,
2783 				filename, flags, mode,
2784 				warn_if_slow, fd,
2785 				fd != -1 ? 0 : *target_errno);
2786       return fd;
2787     }
2788 
2789   *target_errno = FILEIO_ENOSYS;
2790   return -1;
2791 }
2792 
2793 /* See target.h.  */
2794 
2795 int
2796 target_fileio_open (struct inferior *inf, const char *filename,
2797 		    int flags, int mode, int *target_errno)
2798 {
2799   return target_fileio_open_1 (inf, filename, flags, mode, 0,
2800 			       target_errno);
2801 }
2802 
2803 /* See target.h.  */
2804 
2805 int
2806 target_fileio_open_warn_if_slow (struct inferior *inf,
2807 				 const char *filename,
2808 				 int flags, int mode, int *target_errno)
2809 {
2810   return target_fileio_open_1 (inf, filename, flags, mode, 1,
2811 			       target_errno);
2812 }
2813 
2814 /* See target.h.  */
2815 
2816 int
2817 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2818 		      ULONGEST offset, int *target_errno)
2819 {
2820   fileio_fh_t *fh = fileio_fd_to_fh (fd);
2821   int ret = -1;
2822 
2823   if (fh->is_closed ())
2824     *target_errno = EBADF;
2825   else if (fh->target == NULL)
2826     *target_errno = EIO;
2827   else
2828     ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2829 				     len, offset, target_errno);
2830 
2831   if (targetdebug)
2832     fprintf_unfiltered (gdb_stdlog,
2833 			"target_fileio_pwrite (%d,...,%d,%s) "
2834 			"= %d (%d)\n",
2835 			fd, len, pulongest (offset),
2836 			ret, ret != -1 ? 0 : *target_errno);
2837   return ret;
2838 }
2839 
2840 /* See target.h.  */
2841 
2842 int
2843 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2844 		     ULONGEST offset, int *target_errno)
2845 {
2846   fileio_fh_t *fh = fileio_fd_to_fh (fd);
2847   int ret = -1;
2848 
2849   if (fh->is_closed ())
2850     *target_errno = EBADF;
2851   else if (fh->target == NULL)
2852     *target_errno = EIO;
2853   else
2854     ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2855 				    len, offset, target_errno);
2856 
2857   if (targetdebug)
2858     fprintf_unfiltered (gdb_stdlog,
2859 			"target_fileio_pread (%d,...,%d,%s) "
2860 			"= %d (%d)\n",
2861 			fd, len, pulongest (offset),
2862 			ret, ret != -1 ? 0 : *target_errno);
2863   return ret;
2864 }
2865 
2866 /* See target.h.  */
2867 
2868 int
2869 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2870 {
2871   fileio_fh_t *fh = fileio_fd_to_fh (fd);
2872   int ret = -1;
2873 
2874   if (fh->is_closed ())
2875     *target_errno = EBADF;
2876   else if (fh->target == NULL)
2877     *target_errno = EIO;
2878   else
2879     ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2880 
2881   if (targetdebug)
2882     fprintf_unfiltered (gdb_stdlog,
2883 			"target_fileio_fstat (%d) = %d (%d)\n",
2884 			fd, ret, ret != -1 ? 0 : *target_errno);
2885   return ret;
2886 }
2887 
2888 /* See target.h.  */
2889 
2890 int
2891 target_fileio_close (int fd, int *target_errno)
2892 {
2893   fileio_fh_t *fh = fileio_fd_to_fh (fd);
2894   int ret = -1;
2895 
2896   if (fh->is_closed ())
2897     *target_errno = EBADF;
2898   else
2899     {
2900       if (fh->target != NULL)
2901 	ret = fh->target->fileio_close (fh->target_fd,
2902 					target_errno);
2903       else
2904 	ret = 0;
2905       release_fileio_fd (fd, fh);
2906     }
2907 
2908   if (targetdebug)
2909     fprintf_unfiltered (gdb_stdlog,
2910 			"target_fileio_close (%d) = %d (%d)\n",
2911 			fd, ret, ret != -1 ? 0 : *target_errno);
2912   return ret;
2913 }
2914 
2915 /* See target.h.  */
2916 
2917 int
2918 target_fileio_unlink (struct inferior *inf, const char *filename,
2919 		      int *target_errno)
2920 {
2921   for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2922     {
2923       int ret = t->fileio_unlink (inf, filename, target_errno);
2924 
2925       if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2926 	continue;
2927 
2928       if (targetdebug)
2929 	fprintf_unfiltered (gdb_stdlog,
2930 			    "target_fileio_unlink (%d,%s)"
2931 			    " = %d (%d)\n",
2932 			    inf == NULL ? 0 : inf->num, filename,
2933 			    ret, ret != -1 ? 0 : *target_errno);
2934       return ret;
2935     }
2936 
2937   *target_errno = FILEIO_ENOSYS;
2938   return -1;
2939 }
2940 
2941 /* See target.h.  */
2942 
2943 gdb::optional<std::string>
2944 target_fileio_readlink (struct inferior *inf, const char *filename,
2945 			int *target_errno)
2946 {
2947   for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2948     {
2949       gdb::optional<std::string> ret
2950 	= t->fileio_readlink (inf, filename, target_errno);
2951 
2952       if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
2953 	continue;
2954 
2955       if (targetdebug)
2956 	fprintf_unfiltered (gdb_stdlog,
2957 			    "target_fileio_readlink (%d,%s)"
2958 			    " = %s (%d)\n",
2959 			    inf == NULL ? 0 : inf->num,
2960 			    filename, ret ? ret->c_str () : "(nil)",
2961 			    ret ? 0 : *target_errno);
2962       return ret;
2963     }
2964 
2965   *target_errno = FILEIO_ENOSYS;
2966   return {};
2967 }
2968 
2969 /* Like scoped_fd, but specific to target fileio.  */
2970 
2971 class scoped_target_fd
2972 {
2973 public:
2974   explicit scoped_target_fd (int fd) noexcept
2975     : m_fd (fd)
2976   {
2977   }
2978 
2979   ~scoped_target_fd ()
2980   {
2981     if (m_fd >= 0)
2982       {
2983 	int target_errno;
2984 
2985 	target_fileio_close (m_fd, &target_errno);
2986       }
2987   }
2988 
2989   DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
2990 
2991   int get () const noexcept
2992   {
2993     return m_fd;
2994   }
2995 
2996 private:
2997   int m_fd;
2998 };
2999 
3000 /* Read target file FILENAME, in the filesystem as seen by INF.  If
3001    INF is NULL, use the filesystem seen by the debugger (GDB or, for
3002    remote targets, the remote stub).  Store the result in *BUF_P and
3003    return the size of the transferred data.  PADDING additional bytes
3004    are available in *BUF_P.  This is a helper function for
3005    target_fileio_read_alloc; see the declaration of that function for
3006    more information.  */
3007 
3008 static LONGEST
3009 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3010 			    gdb_byte **buf_p, int padding)
3011 {
3012   size_t buf_alloc, buf_pos;
3013   gdb_byte *buf;
3014   LONGEST n;
3015   int target_errno;
3016 
3017   scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3018 					   0700, &target_errno));
3019   if (fd.get () == -1)
3020     return -1;
3021 
3022   /* Start by reading up to 4K at a time.  The target will throttle
3023      this number down if necessary.  */
3024   buf_alloc = 4096;
3025   buf = (gdb_byte *) xmalloc (buf_alloc);
3026   buf_pos = 0;
3027   while (1)
3028     {
3029       n = target_fileio_pread (fd.get (), &buf[buf_pos],
3030 			       buf_alloc - buf_pos - padding, buf_pos,
3031 			       &target_errno);
3032       if (n < 0)
3033 	{
3034 	  /* An error occurred.  */
3035 	  xfree (buf);
3036 	  return -1;
3037 	}
3038       else if (n == 0)
3039 	{
3040 	  /* Read all there was.  */
3041 	  if (buf_pos == 0)
3042 	    xfree (buf);
3043 	  else
3044 	    *buf_p = buf;
3045 	  return buf_pos;
3046 	}
3047 
3048       buf_pos += n;
3049 
3050       /* If the buffer is filling up, expand it.  */
3051       if (buf_alloc < buf_pos * 2)
3052 	{
3053 	  buf_alloc *= 2;
3054 	  buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3055 	}
3056 
3057       QUIT;
3058     }
3059 }
3060 
3061 /* See target.h.  */
3062 
3063 LONGEST
3064 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3065 			  gdb_byte **buf_p)
3066 {
3067   return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3068 }
3069 
3070 /* See target.h.  */
3071 
3072 gdb::unique_xmalloc_ptr<char>
3073 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3074 {
3075   gdb_byte *buffer;
3076   char *bufstr;
3077   LONGEST i, transferred;
3078 
3079   transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3080   bufstr = (char *) buffer;
3081 
3082   if (transferred < 0)
3083     return gdb::unique_xmalloc_ptr<char> (nullptr);
3084 
3085   if (transferred == 0)
3086     return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3087 
3088   bufstr[transferred] = 0;
3089 
3090   /* Check for embedded NUL bytes; but allow trailing NULs.  */
3091   for (i = strlen (bufstr); i < transferred; i++)
3092     if (bufstr[i] != 0)
3093       {
3094 	warning (_("target file %s "
3095 		   "contained unexpected null characters"),
3096 		 filename);
3097 	break;
3098       }
3099 
3100   return gdb::unique_xmalloc_ptr<char> (bufstr);
3101 }
3102 
3103 
3104 static int
3105 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3106 				     CORE_ADDR addr, int len)
3107 {
3108   return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3109 }
3110 
3111 static int
3112 default_watchpoint_addr_within_range (struct target_ops *target,
3113 				      CORE_ADDR addr,
3114 				      CORE_ADDR start, int length)
3115 {
3116   return addr >= start && addr < start + length;
3117 }
3118 
3119 /* See target.h.  */
3120 
3121 target_ops *
3122 target_stack::find_beneath (const target_ops *t) const
3123 {
3124   /* Look for a non-empty slot at stratum levels beneath T's.  */
3125   for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
3126     if (m_stack[stratum] != NULL)
3127       return m_stack[stratum];
3128 
3129   return NULL;
3130 }
3131 
3132 /* See target.h.  */
3133 
3134 struct target_ops *
3135 find_target_at (enum strata stratum)
3136 {
3137   return g_target_stack.at (stratum);
3138 }
3139 
3140 
3141 
3142 /* See target.h  */
3143 
3144 void
3145 target_announce_detach (int from_tty)
3146 {
3147   pid_t pid;
3148   const char *exec_file;
3149 
3150   if (!from_tty)
3151     return;
3152 
3153   exec_file = get_exec_file (0);
3154   if (exec_file == NULL)
3155     exec_file = "";
3156 
3157   pid = inferior_ptid.pid ();
3158   printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3159 		     target_pid_to_str (ptid_t (pid)));
3160   gdb_flush (gdb_stdout);
3161 }
3162 
3163 /* The inferior process has died.  Long live the inferior!  */
3164 
3165 void
3166 generic_mourn_inferior (void)
3167 {
3168   inferior *inf = current_inferior ();
3169 
3170   inferior_ptid = null_ptid;
3171 
3172   /* Mark breakpoints uninserted in case something tries to delete a
3173      breakpoint while we delete the inferior's threads (which would
3174      fail, since the inferior is long gone).  */
3175   mark_breakpoints_out ();
3176 
3177   if (inf->pid != 0)
3178     exit_inferior (inf);
3179 
3180   /* Note this wipes step-resume breakpoints, so needs to be done
3181      after exit_inferior, which ends up referencing the step-resume
3182      breakpoints through clear_thread_inferior_resources.  */
3183   breakpoint_init_inferior (inf_exited);
3184 
3185   registers_changed ();
3186 
3187   reopen_exec_file ();
3188   reinit_frame_cache ();
3189 
3190   if (deprecated_detach_hook)
3191     deprecated_detach_hook ();
3192 }
3193 
3194 /* Convert a normal process ID to a string.  Returns the string in a
3195    static buffer.  */
3196 
3197 const char *
3198 normal_pid_to_str (ptid_t ptid)
3199 {
3200   static char buf[32];
3201 
3202   xsnprintf (buf, sizeof buf, "process %d", ptid.pid ());
3203   return buf;
3204 }
3205 
3206 static const char *
3207 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3208 {
3209   return normal_pid_to_str (ptid);
3210 }
3211 
3212 /* Error-catcher for target_find_memory_regions.  */
3213 static int
3214 dummy_find_memory_regions (struct target_ops *self,
3215 			   find_memory_region_ftype ignore1, void *ignore2)
3216 {
3217   error (_("Command not implemented for this target."));
3218   return 0;
3219 }
3220 
3221 /* Error-catcher for target_make_corefile_notes.  */
3222 static char *
3223 dummy_make_corefile_notes (struct target_ops *self,
3224 			   bfd *ignore1, int *ignore2)
3225 {
3226   error (_("Command not implemented for this target."));
3227   return NULL;
3228 }
3229 
3230 #include "target-delegates.c"
3231 
3232 
3233 static const target_info dummy_target_info = {
3234   "None",
3235   N_("None"),
3236   ""
3237 };
3238 
3239 strata
3240 dummy_target::stratum () const
3241 {
3242   return dummy_stratum;
3243 }
3244 
3245 strata
3246 debug_target::stratum () const
3247 {
3248   return debug_stratum;
3249 }
3250 
3251 const target_info &
3252 dummy_target::info () const
3253 {
3254   return dummy_target_info;
3255 }
3256 
3257 const target_info &
3258 debug_target::info () const
3259 {
3260   return beneath ()->info ();
3261 }
3262 
3263 
3264 
3265 void
3266 target_close (struct target_ops *targ)
3267 {
3268   gdb_assert (!target_is_pushed (targ));
3269 
3270   fileio_handles_invalidate_target (targ);
3271 
3272   targ->close ();
3273 
3274   if (targetdebug)
3275     fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3276 }
3277 
3278 int
3279 target_thread_alive (ptid_t ptid)
3280 {
3281   return current_top_target ()->thread_alive (ptid);
3282 }
3283 
3284 void
3285 target_update_thread_list (void)
3286 {
3287   current_top_target ()->update_thread_list ();
3288 }
3289 
3290 void
3291 target_stop (ptid_t ptid)
3292 {
3293   if (!may_stop)
3294     {
3295       warning (_("May not interrupt or stop the target, ignoring attempt"));
3296       return;
3297     }
3298 
3299   current_top_target ()->stop (ptid);
3300 }
3301 
3302 void
3303 target_interrupt ()
3304 {
3305   if (!may_stop)
3306     {
3307       warning (_("May not interrupt or stop the target, ignoring attempt"));
3308       return;
3309     }
3310 
3311   current_top_target ()->interrupt ();
3312 }
3313 
3314 /* See target.h.  */
3315 
3316 void
3317 target_pass_ctrlc (void)
3318 {
3319   current_top_target ()->pass_ctrlc ();
3320 }
3321 
3322 /* See target.h.  */
3323 
3324 void
3325 default_target_pass_ctrlc (struct target_ops *ops)
3326 {
3327   target_interrupt ();
3328 }
3329 
3330 /* See target/target.h.  */
3331 
3332 void
3333 target_stop_and_wait (ptid_t ptid)
3334 {
3335   struct target_waitstatus status;
3336   int was_non_stop = non_stop;
3337 
3338   non_stop = 1;
3339   target_stop (ptid);
3340 
3341   memset (&status, 0, sizeof (status));
3342   target_wait (ptid, &status, 0);
3343 
3344   non_stop = was_non_stop;
3345 }
3346 
3347 /* See target/target.h.  */
3348 
3349 void
3350 target_continue_no_signal (ptid_t ptid)
3351 {
3352   target_resume (ptid, 0, GDB_SIGNAL_0);
3353 }
3354 
3355 /* See target/target.h.  */
3356 
3357 void
3358 target_continue (ptid_t ptid, enum gdb_signal signal)
3359 {
3360   target_resume (ptid, 0, signal);
3361 }
3362 
3363 /* Concatenate ELEM to LIST, a comma-separated list.  */
3364 
3365 static void
3366 str_comma_list_concat_elem (std::string *list, const char *elem)
3367 {
3368   if (!list->empty ())
3369     list->append (", ");
3370 
3371   list->append (elem);
3372 }
3373 
3374 /* Helper for target_options_to_string.  If OPT is present in
3375    TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3376    OPT is removed from TARGET_OPTIONS.  */
3377 
3378 static void
3379 do_option (int *target_options, std::string *ret,
3380 	   int opt, const char *opt_str)
3381 {
3382   if ((*target_options & opt) != 0)
3383     {
3384       str_comma_list_concat_elem (ret, opt_str);
3385       *target_options &= ~opt;
3386     }
3387 }
3388 
3389 /* See target.h.  */
3390 
3391 std::string
3392 target_options_to_string (int target_options)
3393 {
3394   std::string ret;
3395 
3396 #define DO_TARG_OPTION(OPT) \
3397   do_option (&target_options, &ret, OPT, #OPT)
3398 
3399   DO_TARG_OPTION (TARGET_WNOHANG);
3400 
3401   if (target_options != 0)
3402     str_comma_list_concat_elem (&ret, "unknown???");
3403 
3404   return ret;
3405 }
3406 
3407 void
3408 target_fetch_registers (struct regcache *regcache, int regno)
3409 {
3410   current_top_target ()->fetch_registers (regcache, regno);
3411   if (targetdebug)
3412     regcache->debug_print_register ("target_fetch_registers", regno);
3413 }
3414 
3415 void
3416 target_store_registers (struct regcache *regcache, int regno)
3417 {
3418   if (!may_write_registers)
3419     error (_("Writing to registers is not allowed (regno %d)"), regno);
3420 
3421   current_top_target ()->store_registers (regcache, regno);
3422   if (targetdebug)
3423     {
3424       regcache->debug_print_register ("target_store_registers", regno);
3425     }
3426 }
3427 
3428 int
3429 target_core_of_thread (ptid_t ptid)
3430 {
3431   return current_top_target ()->core_of_thread (ptid);
3432 }
3433 
3434 int
3435 simple_verify_memory (struct target_ops *ops,
3436 		      const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3437 {
3438   LONGEST total_xfered = 0;
3439 
3440   while (total_xfered < size)
3441     {
3442       ULONGEST xfered_len;
3443       enum target_xfer_status status;
3444       gdb_byte buf[1024];
3445       ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3446 
3447       status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3448 				    buf, NULL, lma + total_xfered, howmuch,
3449 				    &xfered_len);
3450       if (status == TARGET_XFER_OK
3451 	  && memcmp (data + total_xfered, buf, xfered_len) == 0)
3452 	{
3453 	  total_xfered += xfered_len;
3454 	  QUIT;
3455 	}
3456       else
3457 	return 0;
3458     }
3459   return 1;
3460 }
3461 
3462 /* Default implementation of memory verification.  */
3463 
3464 static int
3465 default_verify_memory (struct target_ops *self,
3466 		       const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3467 {
3468   /* Start over from the top of the target stack.  */
3469   return simple_verify_memory (current_top_target (),
3470 			       data, memaddr, size);
3471 }
3472 
3473 int
3474 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3475 {
3476   return current_top_target ()->verify_memory (data, memaddr, size);
3477 }
3478 
3479 /* The documentation for this function is in its prototype declaration in
3480    target.h.  */
3481 
3482 int
3483 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3484 			       enum target_hw_bp_type rw)
3485 {
3486   return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3487 }
3488 
3489 /* The documentation for this function is in its prototype declaration in
3490    target.h.  */
3491 
3492 int
3493 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3494 			       enum target_hw_bp_type rw)
3495 {
3496   return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3497 }
3498 
3499 /* The documentation for this function is in its prototype declaration
3500    in target.h.  */
3501 
3502 int
3503 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3504 {
3505   return current_top_target ()->masked_watch_num_registers (addr, mask);
3506 }
3507 
3508 /* The documentation for this function is in its prototype declaration
3509    in target.h.  */
3510 
3511 int
3512 target_ranged_break_num_registers (void)
3513 {
3514   return current_top_target ()->ranged_break_num_registers ();
3515 }
3516 
3517 /* See target.h.  */
3518 
3519 struct btrace_target_info *
3520 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3521 {
3522   return current_top_target ()->enable_btrace (ptid, conf);
3523 }
3524 
3525 /* See target.h.  */
3526 
3527 void
3528 target_disable_btrace (struct btrace_target_info *btinfo)
3529 {
3530   current_top_target ()->disable_btrace (btinfo);
3531 }
3532 
3533 /* See target.h.  */
3534 
3535 void
3536 target_teardown_btrace (struct btrace_target_info *btinfo)
3537 {
3538   current_top_target ()->teardown_btrace (btinfo);
3539 }
3540 
3541 /* See target.h.  */
3542 
3543 enum btrace_error
3544 target_read_btrace (struct btrace_data *btrace,
3545 		    struct btrace_target_info *btinfo,
3546 		    enum btrace_read_type type)
3547 {
3548   return current_top_target ()->read_btrace (btrace, btinfo, type);
3549 }
3550 
3551 /* See target.h.  */
3552 
3553 const struct btrace_config *
3554 target_btrace_conf (const struct btrace_target_info *btinfo)
3555 {
3556   return current_top_target ()->btrace_conf (btinfo);
3557 }
3558 
3559 /* See target.h.  */
3560 
3561 void
3562 target_stop_recording (void)
3563 {
3564   current_top_target ()->stop_recording ();
3565 }
3566 
3567 /* See target.h.  */
3568 
3569 void
3570 target_save_record (const char *filename)
3571 {
3572   current_top_target ()->save_record (filename);
3573 }
3574 
3575 /* See target.h.  */
3576 
3577 int
3578 target_supports_delete_record ()
3579 {
3580   return current_top_target ()->supports_delete_record ();
3581 }
3582 
3583 /* See target.h.  */
3584 
3585 void
3586 target_delete_record (void)
3587 {
3588   current_top_target ()->delete_record ();
3589 }
3590 
3591 /* See target.h.  */
3592 
3593 enum record_method
3594 target_record_method (ptid_t ptid)
3595 {
3596   return current_top_target ()->record_method (ptid);
3597 }
3598 
3599 /* See target.h.  */
3600 
3601 int
3602 target_record_is_replaying (ptid_t ptid)
3603 {
3604   return current_top_target ()->record_is_replaying (ptid);
3605 }
3606 
3607 /* See target.h.  */
3608 
3609 int
3610 target_record_will_replay (ptid_t ptid, int dir)
3611 {
3612   return current_top_target ()->record_will_replay (ptid, dir);
3613 }
3614 
3615 /* See target.h.  */
3616 
3617 void
3618 target_record_stop_replaying (void)
3619 {
3620   current_top_target ()->record_stop_replaying ();
3621 }
3622 
3623 /* See target.h.  */
3624 
3625 void
3626 target_goto_record_begin (void)
3627 {
3628   current_top_target ()->goto_record_begin ();
3629 }
3630 
3631 /* See target.h.  */
3632 
3633 void
3634 target_goto_record_end (void)
3635 {
3636   current_top_target ()->goto_record_end ();
3637 }
3638 
3639 /* See target.h.  */
3640 
3641 void
3642 target_goto_record (ULONGEST insn)
3643 {
3644   current_top_target ()->goto_record (insn);
3645 }
3646 
3647 /* See target.h.  */
3648 
3649 void
3650 target_insn_history (int size, gdb_disassembly_flags flags)
3651 {
3652   current_top_target ()->insn_history (size, flags);
3653 }
3654 
3655 /* See target.h.  */
3656 
3657 void
3658 target_insn_history_from (ULONGEST from, int size,
3659 			  gdb_disassembly_flags flags)
3660 {
3661   current_top_target ()->insn_history_from (from, size, flags);
3662 }
3663 
3664 /* See target.h.  */
3665 
3666 void
3667 target_insn_history_range (ULONGEST begin, ULONGEST end,
3668 			   gdb_disassembly_flags flags)
3669 {
3670   current_top_target ()->insn_history_range (begin, end, flags);
3671 }
3672 
3673 /* See target.h.  */
3674 
3675 void
3676 target_call_history (int size, record_print_flags flags)
3677 {
3678   current_top_target ()->call_history (size, flags);
3679 }
3680 
3681 /* See target.h.  */
3682 
3683 void
3684 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3685 {
3686   current_top_target ()->call_history_from (begin, size, flags);
3687 }
3688 
3689 /* See target.h.  */
3690 
3691 void
3692 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3693 {
3694   current_top_target ()->call_history_range (begin, end, flags);
3695 }
3696 
3697 /* See target.h.  */
3698 
3699 const struct frame_unwind *
3700 target_get_unwinder (void)
3701 {
3702   return current_top_target ()->get_unwinder ();
3703 }
3704 
3705 /* See target.h.  */
3706 
3707 const struct frame_unwind *
3708 target_get_tailcall_unwinder (void)
3709 {
3710   return current_top_target ()->get_tailcall_unwinder ();
3711 }
3712 
3713 /* See target.h.  */
3714 
3715 void
3716 target_prepare_to_generate_core (void)
3717 {
3718   current_top_target ()->prepare_to_generate_core ();
3719 }
3720 
3721 /* See target.h.  */
3722 
3723 void
3724 target_done_generating_core (void)
3725 {
3726   current_top_target ()->done_generating_core ();
3727 }
3728 
3729 
3730 
3731 static char targ_desc[] =
3732 "Names of targets and files being debugged.\nShows the entire \
3733 stack of targets currently in use (including the exec-file,\n\
3734 core-file, and process, if any), as well as the symbol file name.";
3735 
3736 static void
3737 default_rcmd (struct target_ops *self, const char *command,
3738 	      struct ui_file *output)
3739 {
3740   error (_("\"monitor\" command not supported by this target."));
3741 }
3742 
3743 static void
3744 do_monitor_command (const char *cmd, int from_tty)
3745 {
3746   target_rcmd (cmd, gdb_stdtarg);
3747 }
3748 
3749 /* Erases all the memory regions marked as flash.  CMD and FROM_TTY are
3750    ignored.  */
3751 
3752 void
3753 flash_erase_command (const char *cmd, int from_tty)
3754 {
3755   /* Used to communicate termination of flash operations to the target.  */
3756   bool found_flash_region = false;
3757   struct gdbarch *gdbarch = target_gdbarch ();
3758 
3759   std::vector<mem_region> mem_regions = target_memory_map ();
3760 
3761   /* Iterate over all memory regions.  */
3762   for (const mem_region &m : mem_regions)
3763     {
3764       /* Is this a flash memory region?  */
3765       if (m.attrib.mode == MEM_FLASH)
3766         {
3767           found_flash_region = true;
3768           target_flash_erase (m.lo, m.hi - m.lo);
3769 
3770 	  ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3771 
3772           current_uiout->message (_("Erasing flash memory region at address "));
3773           current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3774           current_uiout->message (", size = ");
3775           current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3776           current_uiout->message ("\n");
3777         }
3778     }
3779 
3780   /* Did we do any flash operations?  If so, we need to finalize them.  */
3781   if (found_flash_region)
3782     target_flash_done ();
3783   else
3784     current_uiout->message (_("No flash memory regions found.\n"));
3785 }
3786 
3787 /* Print the name of each layers of our target stack.  */
3788 
3789 static void
3790 maintenance_print_target_stack (const char *cmd, int from_tty)
3791 {
3792   printf_filtered (_("The current target stack is:\n"));
3793 
3794   for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3795     {
3796       if (t->stratum () == debug_stratum)
3797 	continue;
3798       printf_filtered ("  - %s (%s)\n", t->shortname (), t->longname ());
3799     }
3800 }
3801 
3802 /* See target.h.  */
3803 
3804 void
3805 target_async (int enable)
3806 {
3807   infrun_async (enable);
3808   current_top_target ()->async (enable);
3809 }
3810 
3811 /* See target.h.  */
3812 
3813 void
3814 target_thread_events (int enable)
3815 {
3816   current_top_target ()->thread_events (enable);
3817 }
3818 
3819 /* Controls if targets can report that they can/are async.  This is
3820    just for maintainers to use when debugging gdb.  */
3821 int target_async_permitted = 1;
3822 
3823 /* The set command writes to this variable.  If the inferior is
3824    executing, target_async_permitted is *not* updated.  */
3825 static int target_async_permitted_1 = 1;
3826 
3827 static void
3828 maint_set_target_async_command (const char *args, int from_tty,
3829 				struct cmd_list_element *c)
3830 {
3831   if (have_live_inferiors ())
3832     {
3833       target_async_permitted_1 = target_async_permitted;
3834       error (_("Cannot change this setting while the inferior is running."));
3835     }
3836 
3837   target_async_permitted = target_async_permitted_1;
3838 }
3839 
3840 static void
3841 maint_show_target_async_command (struct ui_file *file, int from_tty,
3842 				 struct cmd_list_element *c,
3843 				 const char *value)
3844 {
3845   fprintf_filtered (file,
3846 		    _("Controlling the inferior in "
3847 		      "asynchronous mode is %s.\n"), value);
3848 }
3849 
3850 /* Return true if the target operates in non-stop mode even with "set
3851    non-stop off".  */
3852 
3853 static int
3854 target_always_non_stop_p (void)
3855 {
3856   return current_top_target ()->always_non_stop_p ();
3857 }
3858 
3859 /* See target.h.  */
3860 
3861 int
3862 target_is_non_stop_p (void)
3863 {
3864   return (non_stop
3865 	  || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3866 	  || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3867 	      && target_always_non_stop_p ()));
3868 }
3869 
3870 /* Controls if targets can report that they always run in non-stop
3871    mode.  This is just for maintainers to use when debugging gdb.  */
3872 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3873 
3874 /* The set command writes to this variable.  If the inferior is
3875    executing, target_non_stop_enabled is *not* updated.  */
3876 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3877 
3878 /* Implementation of "maint set target-non-stop".  */
3879 
3880 static void
3881 maint_set_target_non_stop_command (const char *args, int from_tty,
3882 				   struct cmd_list_element *c)
3883 {
3884   if (have_live_inferiors ())
3885     {
3886       target_non_stop_enabled_1 = target_non_stop_enabled;
3887       error (_("Cannot change this setting while the inferior is running."));
3888     }
3889 
3890   target_non_stop_enabled = target_non_stop_enabled_1;
3891 }
3892 
3893 /* Implementation of "maint show target-non-stop".  */
3894 
3895 static void
3896 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3897 				    struct cmd_list_element *c,
3898 				    const char *value)
3899 {
3900   if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3901     fprintf_filtered (file,
3902 		      _("Whether the target is always in non-stop mode "
3903 			"is %s (currently %s).\n"), value,
3904 		      target_always_non_stop_p () ? "on" : "off");
3905   else
3906     fprintf_filtered (file,
3907 		      _("Whether the target is always in non-stop mode "
3908 			"is %s.\n"), value);
3909 }
3910 
3911 /* Temporary copies of permission settings.  */
3912 
3913 static int may_write_registers_1 = 1;
3914 static int may_write_memory_1 = 1;
3915 static int may_insert_breakpoints_1 = 1;
3916 static int may_insert_tracepoints_1 = 1;
3917 static int may_insert_fast_tracepoints_1 = 1;
3918 static int may_stop_1 = 1;
3919 
3920 /* Make the user-set values match the real values again.  */
3921 
3922 void
3923 update_target_permissions (void)
3924 {
3925   may_write_registers_1 = may_write_registers;
3926   may_write_memory_1 = may_write_memory;
3927   may_insert_breakpoints_1 = may_insert_breakpoints;
3928   may_insert_tracepoints_1 = may_insert_tracepoints;
3929   may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3930   may_stop_1 = may_stop;
3931 }
3932 
3933 /* The one function handles (most of) the permission flags in the same
3934    way.  */
3935 
3936 static void
3937 set_target_permissions (const char *args, int from_tty,
3938 			struct cmd_list_element *c)
3939 {
3940   if (target_has_execution)
3941     {
3942       update_target_permissions ();
3943       error (_("Cannot change this setting while the inferior is running."));
3944     }
3945 
3946   /* Make the real values match the user-changed values.  */
3947   may_write_registers = may_write_registers_1;
3948   may_insert_breakpoints = may_insert_breakpoints_1;
3949   may_insert_tracepoints = may_insert_tracepoints_1;
3950   may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3951   may_stop = may_stop_1;
3952   update_observer_mode ();
3953 }
3954 
3955 /* Set memory write permission independently of observer mode.  */
3956 
3957 static void
3958 set_write_memory_permission (const char *args, int from_tty,
3959 			struct cmd_list_element *c)
3960 {
3961   /* Make the real values match the user-changed values.  */
3962   may_write_memory = may_write_memory_1;
3963   update_observer_mode ();
3964 }
3965 
3966 void
3967 initialize_targets (void)
3968 {
3969   the_dummy_target = new dummy_target ();
3970   push_target (the_dummy_target);
3971 
3972   the_debug_target = new debug_target ();
3973 
3974   add_info ("target", info_target_command, targ_desc);
3975   add_info ("files", info_target_command, targ_desc);
3976 
3977   add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3978 Set target debugging."), _("\
3979 Show target debugging."), _("\
3980 When non-zero, target debugging is enabled.  Higher numbers are more\n\
3981 verbose."),
3982 			     set_targetdebug,
3983 			     show_targetdebug,
3984 			     &setdebuglist, &showdebuglist);
3985 
3986   add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3987 			   &trust_readonly, _("\
3988 Set mode for reading from readonly sections."), _("\
3989 Show mode for reading from readonly sections."), _("\
3990 When this mode is on, memory reads from readonly sections (such as .text)\n\
3991 will be read from the object file instead of from the target.  This will\n\
3992 result in significant performance improvement for remote targets."),
3993 			   NULL,
3994 			   show_trust_readonly,
3995 			   &setlist, &showlist);
3996 
3997   add_com ("monitor", class_obscure, do_monitor_command,
3998 	   _("Send a command to the remote monitor (remote targets only)."));
3999 
4000   add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4001            _("Print the name of each layer of the internal target stack."),
4002            &maintenanceprintlist);
4003 
4004   add_setshow_boolean_cmd ("target-async", no_class,
4005 			   &target_async_permitted_1, _("\
4006 Set whether gdb controls the inferior in asynchronous mode."), _("\
4007 Show whether gdb controls the inferior in asynchronous mode."), _("\
4008 Tells gdb whether to control the inferior in asynchronous mode."),
4009 			   maint_set_target_async_command,
4010 			   maint_show_target_async_command,
4011 			   &maintenance_set_cmdlist,
4012 			   &maintenance_show_cmdlist);
4013 
4014   add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4015 				&target_non_stop_enabled_1, _("\
4016 Set whether gdb always controls the inferior in non-stop mode."), _("\
4017 Show whether gdb always controls the inferior in non-stop mode."), _("\
4018 Tells gdb whether to control the inferior in non-stop mode."),
4019 			   maint_set_target_non_stop_command,
4020 			   maint_show_target_non_stop_command,
4021 			   &maintenance_set_cmdlist,
4022 			   &maintenance_show_cmdlist);
4023 
4024   add_setshow_boolean_cmd ("may-write-registers", class_support,
4025 			   &may_write_registers_1, _("\
4026 Set permission to write into registers."), _("\
4027 Show permission to write into registers."), _("\
4028 When this permission is on, GDB may write into the target's registers.\n\
4029 Otherwise, any sort of write attempt will result in an error."),
4030 			   set_target_permissions, NULL,
4031 			   &setlist, &showlist);
4032 
4033   add_setshow_boolean_cmd ("may-write-memory", class_support,
4034 			   &may_write_memory_1, _("\
4035 Set permission to write into target memory."), _("\
4036 Show permission to write into target memory."), _("\
4037 When this permission is on, GDB may write into the target's memory.\n\
4038 Otherwise, any sort of write attempt will result in an error."),
4039 			   set_write_memory_permission, NULL,
4040 			   &setlist, &showlist);
4041 
4042   add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4043 			   &may_insert_breakpoints_1, _("\
4044 Set permission to insert breakpoints in the target."), _("\
4045 Show permission to insert breakpoints in the target."), _("\
4046 When this permission is on, GDB may insert breakpoints in the program.\n\
4047 Otherwise, any sort of insertion attempt will result in an error."),
4048 			   set_target_permissions, NULL,
4049 			   &setlist, &showlist);
4050 
4051   add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4052 			   &may_insert_tracepoints_1, _("\
4053 Set permission to insert tracepoints in the target."), _("\
4054 Show permission to insert tracepoints in the target."), _("\
4055 When this permission is on, GDB may insert tracepoints in the program.\n\
4056 Otherwise, any sort of insertion attempt will result in an error."),
4057 			   set_target_permissions, NULL,
4058 			   &setlist, &showlist);
4059 
4060   add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4061 			   &may_insert_fast_tracepoints_1, _("\
4062 Set permission to insert fast tracepoints in the target."), _("\
4063 Show permission to insert fast tracepoints in the target."), _("\
4064 When this permission is on, GDB may insert fast tracepoints.\n\
4065 Otherwise, any sort of insertion attempt will result in an error."),
4066 			   set_target_permissions, NULL,
4067 			   &setlist, &showlist);
4068 
4069   add_setshow_boolean_cmd ("may-interrupt", class_support,
4070 			   &may_stop_1, _("\
4071 Set permission to interrupt or signal the target."), _("\
4072 Show permission to interrupt or signal the target."), _("\
4073 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4074 Otherwise, any attempt to interrupt or stop will be ignored."),
4075 			   set_target_permissions, NULL,
4076 			   &setlist, &showlist);
4077 
4078   add_com ("flash-erase", no_class, flash_erase_command,
4079            _("Erase all flash memory regions."));
4080 
4081   add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4082 			   &auto_connect_native_target, _("\
4083 Set whether GDB may automatically connect to the native target."), _("\
4084 Show whether GDB may automatically connect to the native target."), _("\
4085 When on, and GDB is not connected to a target yet, GDB\n\
4086 attempts \"run\" and other commands with the native target."),
4087 			   NULL, show_auto_connect_native_target,
4088 			   &setlist, &showlist);
4089 }
4090