xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/symfile.c (revision a04395531661c5e8d314125d5ae77d4cbedd5d73)
1 /* Generic symbol file reading for the GNU debugger, GDB.
2 
3    Copyright (C) 1990-2019 Free Software Foundation, Inc.
4 
5    Contributed by Cygnus Support, using pieces from other GDB modules.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h"		/* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "common/pathstuff.h"
61 #include "common/selftest.h"
62 #include "cli/cli-style.h"
63 #include "common/forward-scope-exit.h"
64 
65 #include <sys/types.h>
66 #include <fcntl.h>
67 #include <sys/stat.h>
68 #include <ctype.h>
69 #include <chrono>
70 #include <algorithm>
71 
72 #include "psymtab.h"
73 
74 int (*deprecated_ui_load_progress_hook) (const char *section,
75 					 unsigned long num);
76 void (*deprecated_show_load_progress) (const char *section,
77 			    unsigned long section_sent,
78 			    unsigned long section_size,
79 			    unsigned long total_sent,
80 			    unsigned long total_size);
81 void (*deprecated_pre_add_symbol_hook) (const char *);
82 void (*deprecated_post_add_symbol_hook) (void);
83 
84 using clear_symtab_users_cleanup
85   = FORWARD_SCOPE_EXIT (clear_symtab_users);
86 
87 /* Global variables owned by this file.  */
88 int readnow_symbol_files;	/* Read full symbols immediately.  */
89 int readnever_symbol_files;	/* Never read full symbols.  */
90 
91 /* Functions this file defines.  */
92 
93 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
94 				    objfile_flags flags, CORE_ADDR reloff);
95 
96 static const struct sym_fns *find_sym_fns (bfd *);
97 
98 static void overlay_invalidate_all (void);
99 
100 static void simple_free_overlay_table (void);
101 
102 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
103 				    enum bfd_endian);
104 
105 static int simple_read_overlay_table (void);
106 
107 static int simple_overlay_update_1 (struct obj_section *);
108 
109 static void symfile_find_segment_sections (struct objfile *objfile);
110 
111 /* List of all available sym_fns.  On gdb startup, each object file reader
112    calls add_symtab_fns() to register information on each format it is
113    prepared to read.  */
114 
115 struct registered_sym_fns
116 {
117   registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
118   : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
119   {}
120 
121   /* BFD flavour that we handle.  */
122   enum bfd_flavour sym_flavour;
123 
124   /* The "vtable" of symbol functions.  */
125   const struct sym_fns *sym_fns;
126 };
127 
128 static std::vector<registered_sym_fns> symtab_fns;
129 
130 /* Values for "set print symbol-loading".  */
131 
132 const char print_symbol_loading_off[] = "off";
133 const char print_symbol_loading_brief[] = "brief";
134 const char print_symbol_loading_full[] = "full";
135 static const char *print_symbol_loading_enums[] =
136 {
137   print_symbol_loading_off,
138   print_symbol_loading_brief,
139   print_symbol_loading_full,
140   NULL
141 };
142 static const char *print_symbol_loading = print_symbol_loading_full;
143 
144 /* If non-zero, shared library symbols will be added automatically
145    when the inferior is created, new libraries are loaded, or when
146    attaching to the inferior.  This is almost always what users will
147    want to have happen; but for very large programs, the startup time
148    will be excessive, and so if this is a problem, the user can clear
149    this flag and then add the shared library symbols as needed.  Note
150    that there is a potential for confusion, since if the shared
151    library symbols are not loaded, commands like "info fun" will *not*
152    report all the functions that are actually present.  */
153 
154 int auto_solib_add = 1;
155 
156 
157 /* Return non-zero if symbol-loading messages should be printed.
158    FROM_TTY is the standard from_tty argument to gdb commands.
159    If EXEC is non-zero the messages are for the executable.
160    Otherwise, messages are for shared libraries.
161    If FULL is non-zero then the caller is printing a detailed message.
162    E.g., the message includes the shared library name.
163    Otherwise, the caller is printing a brief "summary" message.  */
164 
165 int
166 print_symbol_loading_p (int from_tty, int exec, int full)
167 {
168   if (!from_tty && !info_verbose)
169     return 0;
170 
171   if (exec)
172     {
173       /* We don't check FULL for executables, there are few such
174 	 messages, therefore brief == full.  */
175       return print_symbol_loading != print_symbol_loading_off;
176     }
177   if (full)
178     return print_symbol_loading == print_symbol_loading_full;
179   return print_symbol_loading == print_symbol_loading_brief;
180 }
181 
182 /* True if we are reading a symbol table.  */
183 
184 int currently_reading_symtab = 0;
185 
186 /* Increment currently_reading_symtab and return a cleanup that can be
187    used to decrement it.  */
188 
189 scoped_restore_tmpl<int>
190 increment_reading_symtab (void)
191 {
192   gdb_assert (currently_reading_symtab >= 0);
193   return make_scoped_restore (&currently_reading_symtab,
194 			      currently_reading_symtab + 1);
195 }
196 
197 /* Remember the lowest-addressed loadable section we've seen.
198    This function is called via bfd_map_over_sections.
199 
200    In case of equal vmas, the section with the largest size becomes the
201    lowest-addressed loadable section.
202 
203    If the vmas and sizes are equal, the last section is considered the
204    lowest-addressed loadable section.  */
205 
206 void
207 find_lowest_section (bfd *abfd, asection *sect, void *obj)
208 {
209   asection **lowest = (asection **) obj;
210 
211   if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
212     return;
213   if (!*lowest)
214     *lowest = sect;		/* First loadable section */
215   else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
216     *lowest = sect;		/* A lower loadable section */
217   else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
218 	   && (bfd_section_size (abfd, (*lowest))
219 	       <= bfd_section_size (abfd, sect)))
220     *lowest = sect;
221 }
222 
223 /* Build (allocate and populate) a section_addr_info struct from
224    an existing section table.  */
225 
226 section_addr_info
227 build_section_addr_info_from_section_table (const struct target_section *start,
228                                             const struct target_section *end)
229 {
230   const struct target_section *stp;
231 
232   section_addr_info sap;
233 
234   for (stp = start; stp != end; stp++)
235     {
236       struct bfd_section *asect = stp->the_bfd_section;
237       bfd *abfd = asect->owner;
238 
239       if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
240 	  && sap.size () < end - start)
241 	sap.emplace_back (stp->addr,
242 			  bfd_section_name (abfd, asect),
243 			  gdb_bfd_section_index (abfd, asect));
244     }
245 
246   return sap;
247 }
248 
249 /* Create a section_addr_info from section offsets in ABFD.  */
250 
251 static section_addr_info
252 build_section_addr_info_from_bfd (bfd *abfd)
253 {
254   struct bfd_section *sec;
255 
256   section_addr_info sap;
257   for (sec = abfd->sections; sec != NULL; sec = sec->next)
258     if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
259       sap.emplace_back (bfd_get_section_vma (abfd, sec),
260 			bfd_get_section_name (abfd, sec),
261 			gdb_bfd_section_index (abfd, sec));
262 
263   return sap;
264 }
265 
266 /* Create a section_addr_info from section offsets in OBJFILE.  */
267 
268 section_addr_info
269 build_section_addr_info_from_objfile (const struct objfile *objfile)
270 {
271   int i;
272 
273   /* Before reread_symbols gets rewritten it is not safe to call:
274      gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
275      */
276   section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
277   for (i = 0; i < sap.size (); i++)
278     {
279       int sectindex = sap[i].sectindex;
280 
281       sap[i].addr += objfile->section_offsets->offsets[sectindex];
282     }
283   return sap;
284 }
285 
286 /* Initialize OBJFILE's sect_index_* members.  */
287 
288 static void
289 init_objfile_sect_indices (struct objfile *objfile)
290 {
291   asection *sect;
292   int i;
293 
294   sect = bfd_get_section_by_name (objfile->obfd, ".text");
295   if (sect)
296     objfile->sect_index_text = sect->index;
297 
298   sect = bfd_get_section_by_name (objfile->obfd, ".data");
299   if (sect)
300     objfile->sect_index_data = sect->index;
301 
302   sect = bfd_get_section_by_name (objfile->obfd, ".bss");
303   if (sect)
304     objfile->sect_index_bss = sect->index;
305 
306   sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
307   if (sect)
308     objfile->sect_index_rodata = sect->index;
309 
310   /* This is where things get really weird...  We MUST have valid
311      indices for the various sect_index_* members or gdb will abort.
312      So if for example, there is no ".text" section, we have to
313      accomodate that.  First, check for a file with the standard
314      one or two segments.  */
315 
316   symfile_find_segment_sections (objfile);
317 
318   /* Except when explicitly adding symbol files at some address,
319      section_offsets contains nothing but zeros, so it doesn't matter
320      which slot in section_offsets the individual sect_index_* members
321      index into.  So if they are all zero, it is safe to just point
322      all the currently uninitialized indices to the first slot.  But
323      beware: if this is the main executable, it may be relocated
324      later, e.g. by the remote qOffsets packet, and then this will
325      be wrong!  That's why we try segments first.  */
326 
327   for (i = 0; i < objfile->num_sections; i++)
328     {
329       if (ANOFFSET (objfile->section_offsets, i) != 0)
330 	{
331 	  break;
332 	}
333     }
334   if (i == objfile->num_sections)
335     {
336       if (objfile->sect_index_text == -1)
337 	objfile->sect_index_text = 0;
338       if (objfile->sect_index_data == -1)
339 	objfile->sect_index_data = 0;
340       if (objfile->sect_index_bss == -1)
341 	objfile->sect_index_bss = 0;
342       if (objfile->sect_index_rodata == -1)
343 	objfile->sect_index_rodata = 0;
344     }
345 }
346 
347 /* The arguments to place_section.  */
348 
349 struct place_section_arg
350 {
351   struct section_offsets *offsets;
352   CORE_ADDR lowest;
353 };
354 
355 /* Find a unique offset to use for loadable section SECT if
356    the user did not provide an offset.  */
357 
358 static void
359 place_section (bfd *abfd, asection *sect, void *obj)
360 {
361   struct place_section_arg *arg = (struct place_section_arg *) obj;
362   CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
363   int done;
364   ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
365 
366   /* We are only interested in allocated sections.  */
367   if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
368     return;
369 
370   /* If the user specified an offset, honor it.  */
371   if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
372     return;
373 
374   /* Otherwise, let's try to find a place for the section.  */
375   start_addr = (arg->lowest + align - 1) & -align;
376 
377   do {
378     asection *cur_sec;
379 
380     done = 1;
381 
382     for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
383       {
384 	int indx = cur_sec->index;
385 
386 	/* We don't need to compare against ourself.  */
387 	if (cur_sec == sect)
388 	  continue;
389 
390 	/* We can only conflict with allocated sections.  */
391 	if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
392 	  continue;
393 
394 	/* If the section offset is 0, either the section has not been placed
395 	   yet, or it was the lowest section placed (in which case LOWEST
396 	   will be past its end).  */
397 	if (offsets[indx] == 0)
398 	  continue;
399 
400 	/* If this section would overlap us, then we must move up.  */
401 	if (start_addr + bfd_get_section_size (sect) > offsets[indx]
402 	    && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
403 	  {
404 	    start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
405 	    start_addr = (start_addr + align - 1) & -align;
406 	    done = 0;
407 	    break;
408 	  }
409 
410 	/* Otherwise, we appear to be OK.  So far.  */
411       }
412     }
413   while (!done);
414 
415   offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
416   arg->lowest = start_addr + bfd_get_section_size (sect);
417 }
418 
419 /* Store section_addr_info as prepared (made relative and with SECTINDEX
420    filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
421    entries.  */
422 
423 void
424 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
425 				       int num_sections,
426 				       const section_addr_info &addrs)
427 {
428   int i;
429 
430   memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
431 
432   /* Now calculate offsets for section that were specified by the caller.  */
433   for (i = 0; i < addrs.size (); i++)
434     {
435       const struct other_sections *osp;
436 
437       osp = &addrs[i];
438       if (osp->sectindex == -1)
439   	continue;
440 
441       /* Record all sections in offsets.  */
442       /* The section_offsets in the objfile are here filled in using
443          the BFD index.  */
444       section_offsets->offsets[osp->sectindex] = osp->addr;
445     }
446 }
447 
448 /* Transform section name S for a name comparison.  prelink can split section
449    `.bss' into two sections `.dynbss' and `.bss' (in this order).  Similarly
450    prelink can split `.sbss' into `.sdynbss' and `.sbss'.  Use virtual address
451    of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
452    (`.sbss') section has invalid (increased) virtual address.  */
453 
454 static const char *
455 addr_section_name (const char *s)
456 {
457   if (strcmp (s, ".dynbss") == 0)
458     return ".bss";
459   if (strcmp (s, ".sdynbss") == 0)
460     return ".sbss";
461 
462   return s;
463 }
464 
465 /* std::sort comparator for addrs_section_sort.  Sort entries in
466    ascending order by their (name, sectindex) pair.  sectindex makes
467    the sort by name stable.  */
468 
469 static bool
470 addrs_section_compar (const struct other_sections *a,
471 		      const struct other_sections *b)
472 {
473   int retval;
474 
475   retval = strcmp (addr_section_name (a->name.c_str ()),
476 		   addr_section_name (b->name.c_str ()));
477   if (retval != 0)
478     return retval < 0;
479 
480   return a->sectindex < b->sectindex;
481 }
482 
483 /* Provide sorted array of pointers to sections of ADDRS.  */
484 
485 static std::vector<const struct other_sections *>
486 addrs_section_sort (const section_addr_info &addrs)
487 {
488   int i;
489 
490   std::vector<const struct other_sections *> array (addrs.size ());
491   for (i = 0; i < addrs.size (); i++)
492     array[i] = &addrs[i];
493 
494   std::sort (array.begin (), array.end (), addrs_section_compar);
495 
496   return array;
497 }
498 
499 /* Relativize absolute addresses in ADDRS into offsets based on ABFD.  Fill-in
500    also SECTINDEXes specific to ABFD there.  This function can be used to
501    rebase ADDRS to start referencing different BFD than before.  */
502 
503 void
504 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
505 {
506   asection *lower_sect;
507   CORE_ADDR lower_offset;
508   int i;
509 
510   /* Find lowest loadable section to be used as starting point for
511      continguous sections.  */
512   lower_sect = NULL;
513   bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
514   if (lower_sect == NULL)
515     {
516       warning (_("no loadable sections found in added symbol-file %s"),
517 	       bfd_get_filename (abfd));
518       lower_offset = 0;
519     }
520   else
521     lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
522 
523   /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
524      in ABFD.  Section names are not unique - there can be multiple sections of
525      the same name.  Also the sections of the same name do not have to be
526      adjacent to each other.  Some sections may be present only in one of the
527      files.  Even sections present in both files do not have to be in the same
528      order.
529 
530      Use stable sort by name for the sections in both files.  Then linearly
531      scan both lists matching as most of the entries as possible.  */
532 
533   std::vector<const struct other_sections *> addrs_sorted
534     = addrs_section_sort (*addrs);
535 
536   section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
537   std::vector<const struct other_sections *> abfd_addrs_sorted
538     = addrs_section_sort (abfd_addrs);
539 
540   /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
541      ABFD_ADDRS_SORTED.  */
542 
543   std::vector<const struct other_sections *>
544     addrs_to_abfd_addrs (addrs->size (), nullptr);
545 
546   std::vector<const struct other_sections *>::iterator abfd_sorted_iter
547     = abfd_addrs_sorted.begin ();
548   for (const other_sections *sect : addrs_sorted)
549     {
550       const char *sect_name = addr_section_name (sect->name.c_str ());
551 
552       while (abfd_sorted_iter != abfd_addrs_sorted.end ()
553 	     && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
554 			sect_name) < 0)
555 	abfd_sorted_iter++;
556 
557       if (abfd_sorted_iter != abfd_addrs_sorted.end ()
558 	  && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
559 		     sect_name) == 0)
560 	{
561 	  int index_in_addrs;
562 
563 	  /* Make the found item directly addressable from ADDRS.  */
564 	  index_in_addrs = sect - addrs->data ();
565 	  gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
566 	  addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
567 
568 	  /* Never use the same ABFD entry twice.  */
569 	  abfd_sorted_iter++;
570 	}
571     }
572 
573   /* Calculate offsets for the loadable sections.
574      FIXME! Sections must be in order of increasing loadable section
575      so that contiguous sections can use the lower-offset!!!
576 
577      Adjust offsets if the segments are not contiguous.
578      If the section is contiguous, its offset should be set to
579      the offset of the highest loadable section lower than it
580      (the loadable section directly below it in memory).
581      this_offset = lower_offset = lower_addr - lower_orig_addr */
582 
583   for (i = 0; i < addrs->size (); i++)
584     {
585       const struct other_sections *sect = addrs_to_abfd_addrs[i];
586 
587       if (sect)
588 	{
589 	  /* This is the index used by BFD.  */
590 	  (*addrs)[i].sectindex = sect->sectindex;
591 
592 	  if ((*addrs)[i].addr != 0)
593 	    {
594 	      (*addrs)[i].addr -= sect->addr;
595 	      lower_offset = (*addrs)[i].addr;
596 	    }
597 	  else
598 	    (*addrs)[i].addr = lower_offset;
599 	}
600       else
601 	{
602 	  /* addr_section_name transformation is not used for SECT_NAME.  */
603 	  const std::string &sect_name = (*addrs)[i].name;
604 
605 	  /* This section does not exist in ABFD, which is normally
606 	     unexpected and we want to issue a warning.
607 
608 	     However, the ELF prelinker does create a few sections which are
609 	     marked in the main executable as loadable (they are loaded in
610 	     memory from the DYNAMIC segment) and yet are not present in
611 	     separate debug info files.  This is fine, and should not cause
612 	     a warning.  Shared libraries contain just the section
613 	     ".gnu.liblist" but it is not marked as loadable there.  There is
614 	     no other way to identify them than by their name as the sections
615 	     created by prelink have no special flags.
616 
617 	     For the sections `.bss' and `.sbss' see addr_section_name.  */
618 
619 	  if (!(sect_name == ".gnu.liblist"
620 		|| sect_name == ".gnu.conflict"
621 		|| (sect_name == ".bss"
622 		    && i > 0
623 		    && (*addrs)[i - 1].name == ".dynbss"
624 		    && addrs_to_abfd_addrs[i - 1] != NULL)
625 		|| (sect_name == ".sbss"
626 		    && i > 0
627 		    && (*addrs)[i - 1].name == ".sdynbss"
628 		    && addrs_to_abfd_addrs[i - 1] != NULL)))
629 	    warning (_("section %s not found in %s"), sect_name.c_str (),
630 		     bfd_get_filename (abfd));
631 
632 	  (*addrs)[i].addr = 0;
633 	  (*addrs)[i].sectindex = -1;
634 	}
635     }
636 }
637 
638 /* Parse the user's idea of an offset for dynamic linking, into our idea
639    of how to represent it for fast symbol reading.  This is the default
640    version of the sym_fns.sym_offsets function for symbol readers that
641    don't need to do anything special.  It allocates a section_offsets table
642    for the objectfile OBJFILE and stuffs ADDR into all of the offsets.  */
643 
644 void
645 default_symfile_offsets (struct objfile *objfile,
646 			 const section_addr_info &addrs)
647 {
648   objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
649   objfile->section_offsets = (struct section_offsets *)
650     obstack_alloc (&objfile->objfile_obstack,
651 		   SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
652   relative_addr_info_to_section_offsets (objfile->section_offsets,
653 					 objfile->num_sections, addrs);
654 
655   /* For relocatable files, all loadable sections will start at zero.
656      The zero is meaningless, so try to pick arbitrary addresses such
657      that no loadable sections overlap.  This algorithm is quadratic,
658      but the number of sections in a single object file is generally
659      small.  */
660   if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
661     {
662       struct place_section_arg arg;
663       bfd *abfd = objfile->obfd;
664       asection *cur_sec;
665 
666       for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
667 	/* We do not expect this to happen; just skip this step if the
668 	   relocatable file has a section with an assigned VMA.  */
669 	if (bfd_section_vma (abfd, cur_sec) != 0)
670 	  break;
671 
672       if (cur_sec == NULL)
673 	{
674 	  CORE_ADDR *offsets = objfile->section_offsets->offsets;
675 
676 	  /* Pick non-overlapping offsets for sections the user did not
677 	     place explicitly.  */
678 	  arg.offsets = objfile->section_offsets;
679 	  arg.lowest = 0;
680 	  bfd_map_over_sections (objfile->obfd, place_section, &arg);
681 
682 	  /* Correctly filling in the section offsets is not quite
683 	     enough.  Relocatable files have two properties that
684 	     (most) shared objects do not:
685 
686 	     - Their debug information will contain relocations.  Some
687 	     shared libraries do also, but many do not, so this can not
688 	     be assumed.
689 
690 	     - If there are multiple code sections they will be loaded
691 	     at different relative addresses in memory than they are
692 	     in the objfile, since all sections in the file will start
693 	     at address zero.
694 
695 	     Because GDB has very limited ability to map from an
696 	     address in debug info to the correct code section,
697 	     it relies on adding SECT_OFF_TEXT to things which might be
698 	     code.  If we clear all the section offsets, and set the
699 	     section VMAs instead, then symfile_relocate_debug_section
700 	     will return meaningful debug information pointing at the
701 	     correct sections.
702 
703 	     GDB has too many different data structures for section
704 	     addresses - a bfd, objfile, and so_list all have section
705 	     tables, as does exec_ops.  Some of these could probably
706 	     be eliminated.  */
707 
708 	  for (cur_sec = abfd->sections; cur_sec != NULL;
709 	       cur_sec = cur_sec->next)
710 	    {
711 	      if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
712 		continue;
713 
714 	      bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
715 	      exec_set_section_address (bfd_get_filename (abfd),
716 					cur_sec->index,
717 					offsets[cur_sec->index]);
718 	      offsets[cur_sec->index] = 0;
719 	    }
720 	}
721     }
722 
723   /* Remember the bfd indexes for the .text, .data, .bss and
724      .rodata sections.  */
725   init_objfile_sect_indices (objfile);
726 }
727 
728 /* Divide the file into segments, which are individual relocatable units.
729    This is the default version of the sym_fns.sym_segments function for
730    symbol readers that do not have an explicit representation of segments.
731    It assumes that object files do not have segments, and fully linked
732    files have a single segment.  */
733 
734 struct symfile_segment_data *
735 default_symfile_segments (bfd *abfd)
736 {
737   int num_sections, i;
738   asection *sect;
739   struct symfile_segment_data *data;
740   CORE_ADDR low, high;
741 
742   /* Relocatable files contain enough information to position each
743      loadable section independently; they should not be relocated
744      in segments.  */
745   if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
746     return NULL;
747 
748   /* Make sure there is at least one loadable section in the file.  */
749   for (sect = abfd->sections; sect != NULL; sect = sect->next)
750     {
751       if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
752 	continue;
753 
754       break;
755     }
756   if (sect == NULL)
757     return NULL;
758 
759   low = bfd_get_section_vma (abfd, sect);
760   high = low + bfd_get_section_size (sect);
761 
762   data = XCNEW (struct symfile_segment_data);
763   data->num_segments = 1;
764   data->segment_bases = XCNEW (CORE_ADDR);
765   data->segment_sizes = XCNEW (CORE_ADDR);
766 
767   num_sections = bfd_count_sections (abfd);
768   data->segment_info = XCNEWVEC (int, num_sections);
769 
770   for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
771     {
772       CORE_ADDR vma;
773 
774       if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
775 	continue;
776 
777       vma = bfd_get_section_vma (abfd, sect);
778       if (vma < low)
779 	low = vma;
780       if (vma + bfd_get_section_size (sect) > high)
781 	high = vma + bfd_get_section_size (sect);
782 
783       data->segment_info[i] = 1;
784     }
785 
786   data->segment_bases[0] = low;
787   data->segment_sizes[0] = high - low;
788 
789   return data;
790 }
791 
792 /* This is a convenience function to call sym_read for OBJFILE and
793    possibly force the partial symbols to be read.  */
794 
795 static void
796 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
797 {
798   (*objfile->sf->sym_read) (objfile, add_flags);
799   objfile->per_bfd->minsyms_read = true;
800 
801   /* find_separate_debug_file_in_section should be called only if there is
802      single binary with no existing separate debug info file.  */
803   if (!objfile_has_partial_symbols (objfile)
804       && objfile->separate_debug_objfile == NULL
805       && objfile->separate_debug_objfile_backlink == NULL)
806     {
807       gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
808 
809       if (abfd != NULL)
810 	{
811 	  /* find_separate_debug_file_in_section uses the same filename for the
812 	     virtual section-as-bfd like the bfd filename containing the
813 	     section.  Therefore use also non-canonical name form for the same
814 	     file containing the section.  */
815 	  symbol_file_add_separate (abfd.get (),
816 				    bfd_get_filename (abfd.get ()),
817 				    add_flags | SYMFILE_NOT_FILENAME, objfile);
818 	}
819     }
820   if ((add_flags & SYMFILE_NO_READ) == 0)
821     require_partial_symbols (objfile, 0);
822 }
823 
824 /* Initialize entry point information for this objfile.  */
825 
826 static void
827 init_entry_point_info (struct objfile *objfile)
828 {
829   struct entry_info *ei = &objfile->per_bfd->ei;
830 
831   if (ei->initialized)
832     return;
833   ei->initialized = 1;
834 
835   /* Save startup file's range of PC addresses to help blockframe.c
836      decide where the bottom of the stack is.  */
837 
838   if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
839     {
840       /* Executable file -- record its entry point so we'll recognize
841          the startup file because it contains the entry point.  */
842       ei->entry_point = bfd_get_start_address (objfile->obfd);
843       ei->entry_point_p = 1;
844     }
845   else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
846 	   && bfd_get_start_address (objfile->obfd) != 0)
847     {
848       /* Some shared libraries may have entry points set and be
849 	 runnable.  There's no clear way to indicate this, so just check
850 	 for values other than zero.  */
851       ei->entry_point = bfd_get_start_address (objfile->obfd);
852       ei->entry_point_p = 1;
853     }
854   else
855     {
856       /* Examination of non-executable.o files.  Short-circuit this stuff.  */
857       ei->entry_point_p = 0;
858     }
859 
860   if (ei->entry_point_p)
861     {
862       struct obj_section *osect;
863       CORE_ADDR entry_point =  ei->entry_point;
864       int found;
865 
866       /* Make certain that the address points at real code, and not a
867 	 function descriptor.  */
868       entry_point
869 	= gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
870 					      entry_point,
871 					      current_top_target ());
872 
873       /* Remove any ISA markers, so that this matches entries in the
874 	 symbol table.  */
875       ei->entry_point
876 	= gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
877 
878       found = 0;
879       ALL_OBJFILE_OSECTIONS (objfile, osect)
880 	{
881 	  struct bfd_section *sect = osect->the_bfd_section;
882 
883 	  if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
884 	      && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
885 				+ bfd_get_section_size (sect)))
886 	    {
887 	      ei->the_bfd_section_index
888 		= gdb_bfd_section_index (objfile->obfd, sect);
889 	      found = 1;
890 	      break;
891 	    }
892 	}
893 
894       if (!found)
895 	ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
896     }
897 }
898 
899 /* Process a symbol file, as either the main file or as a dynamically
900    loaded file.
901 
902    This function does not set the OBJFILE's entry-point info.
903 
904    OBJFILE is where the symbols are to be read from.
905 
906    ADDRS is the list of section load addresses.  If the user has given
907    an 'add-symbol-file' command, then this is the list of offsets and
908    addresses he or she provided as arguments to the command; or, if
909    we're handling a shared library, these are the actual addresses the
910    sections are loaded at, according to the inferior's dynamic linker
911    (as gleaned by GDB's shared library code).  We convert each address
912    into an offset from the section VMA's as it appears in the object
913    file, and then call the file's sym_offsets function to convert this
914    into a format-specific offset table --- a `struct section_offsets'.
915    The sectindex field is used to control the ordering of sections
916    with the same name.  Upon return, it is updated to contain the
917    correspondig BFD section index, or -1 if the section was not found.
918 
919    ADD_FLAGS encodes verbosity level, whether this is main symbol or
920    an extra symbol file such as dynamically loaded code, and wether
921    breakpoint reset should be deferred.  */
922 
923 static void
924 syms_from_objfile_1 (struct objfile *objfile,
925 		     section_addr_info *addrs,
926 		     symfile_add_flags add_flags)
927 {
928   section_addr_info local_addr;
929   const int mainline = add_flags & SYMFILE_MAINLINE;
930 
931   objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
932 
933   if (objfile->sf == NULL)
934     {
935       /* No symbols to load, but we still need to make sure
936 	 that the section_offsets table is allocated.  */
937       int num_sections = gdb_bfd_count_sections (objfile->obfd);
938       size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
939 
940       objfile->num_sections = num_sections;
941       objfile->section_offsets
942 	= (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
943 						    size);
944       memset (objfile->section_offsets, 0, size);
945       return;
946     }
947 
948   /* Make sure that partially constructed symbol tables will be cleaned up
949      if an error occurs during symbol reading.  */
950   gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
951 
952   std::unique_ptr<struct objfile> objfile_holder (objfile);
953 
954   /* If ADDRS is NULL, put together a dummy address list.
955      We now establish the convention that an addr of zero means
956      no load address was specified.  */
957   if (! addrs)
958     addrs = &local_addr;
959 
960   if (mainline)
961     {
962       /* We will modify the main symbol table, make sure that all its users
963          will be cleaned up if an error occurs during symbol reading.  */
964       defer_clear_users.emplace ((symfile_add_flag) 0);
965 
966       /* Since no error yet, throw away the old symbol table.  */
967 
968       if (symfile_objfile != NULL)
969 	{
970 	  delete symfile_objfile;
971 	  gdb_assert (symfile_objfile == NULL);
972 	}
973 
974       /* Currently we keep symbols from the add-symbol-file command.
975          If the user wants to get rid of them, they should do "symbol-file"
976          without arguments first.  Not sure this is the best behavior
977          (PR 2207).  */
978 
979       (*objfile->sf->sym_new_init) (objfile);
980     }
981 
982   /* Convert addr into an offset rather than an absolute address.
983      We find the lowest address of a loaded segment in the objfile,
984      and assume that <addr> is where that got loaded.
985 
986      We no longer warn if the lowest section is not a text segment (as
987      happens for the PA64 port.  */
988   if (addrs->size () > 0)
989     addr_info_make_relative (addrs, objfile->obfd);
990 
991   /* Initialize symbol reading routines for this objfile, allow complaints to
992      appear for this new file, and record how verbose to be, then do the
993      initial symbol reading for this file.  */
994 
995   (*objfile->sf->sym_init) (objfile);
996   clear_complaints ();
997 
998   (*objfile->sf->sym_offsets) (objfile, *addrs);
999 
1000   read_symbols (objfile, add_flags);
1001 
1002   /* Discard cleanups as symbol reading was successful.  */
1003 
1004   objfile_holder.release ();
1005   if (defer_clear_users)
1006     defer_clear_users->release ();
1007 }
1008 
1009 /* Same as syms_from_objfile_1, but also initializes the objfile
1010    entry-point info.  */
1011 
1012 static void
1013 syms_from_objfile (struct objfile *objfile,
1014 		   section_addr_info *addrs,
1015 		   symfile_add_flags add_flags)
1016 {
1017   syms_from_objfile_1 (objfile, addrs, add_flags);
1018   init_entry_point_info (objfile);
1019 }
1020 
1021 /* Perform required actions after either reading in the initial
1022    symbols for a new objfile, or mapping in the symbols from a reusable
1023    objfile.  ADD_FLAGS is a bitmask of enum symfile_add_flags.  */
1024 
1025 static void
1026 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1027 {
1028   /* If this is the main symbol file we have to clean up all users of the
1029      old main symbol file.  Otherwise it is sufficient to fixup all the
1030      breakpoints that may have been redefined by this symbol file.  */
1031   if (add_flags & SYMFILE_MAINLINE)
1032     {
1033       /* OK, make it the "real" symbol file.  */
1034       symfile_objfile = objfile;
1035 
1036       clear_symtab_users (add_flags);
1037     }
1038   else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1039     {
1040       breakpoint_re_set ();
1041     }
1042 
1043   /* We're done reading the symbol file; finish off complaints.  */
1044   clear_complaints ();
1045 }
1046 
1047 /* Process a symbol file, as either the main file or as a dynamically
1048    loaded file.
1049 
1050    ABFD is a BFD already open on the file, as from symfile_bfd_open.
1051    A new reference is acquired by this function.
1052 
1053    For NAME description see the objfile constructor.
1054 
1055    ADD_FLAGS encodes verbosity, whether this is main symbol file or
1056    extra, such as dynamically loaded code, and what to do with breakpoins.
1057 
1058    ADDRS is as described for syms_from_objfile_1, above.
1059    ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1060 
1061    PARENT is the original objfile if ABFD is a separate debug info file.
1062    Otherwise PARENT is NULL.
1063 
1064    Upon success, returns a pointer to the objfile that was added.
1065    Upon failure, jumps back to command level (never returns).  */
1066 
1067 static struct objfile *
1068 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1069 			    symfile_add_flags add_flags,
1070 			    section_addr_info *addrs,
1071 			    objfile_flags flags, struct objfile *parent)
1072 {
1073   struct objfile *objfile;
1074   const int from_tty = add_flags & SYMFILE_VERBOSE;
1075   const int mainline = add_flags & SYMFILE_MAINLINE;
1076   const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1077 			    && (readnow_symbol_files
1078 				|| (add_flags & SYMFILE_NO_READ) == 0));
1079 
1080   if (readnow_symbol_files)
1081     {
1082       flags |= OBJF_READNOW;
1083       add_flags &= ~SYMFILE_NO_READ;
1084     }
1085   else if (readnever_symbol_files
1086 	   || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1087     {
1088       flags |= OBJF_READNEVER;
1089       add_flags |= SYMFILE_NO_READ;
1090     }
1091   if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1092     flags |= OBJF_NOT_FILENAME;
1093 
1094   /* Give user a chance to burp if we'd be
1095      interactively wiping out any existing symbols.  */
1096 
1097   if ((have_full_symbols () || have_partial_symbols ())
1098       && mainline
1099       && from_tty
1100       && !query (_("Load new symbol table from \"%s\"? "), name))
1101     error (_("Not confirmed."));
1102 
1103   if (mainline)
1104     flags |= OBJF_MAINLINE;
1105   objfile = new struct objfile (abfd, name, flags);
1106 
1107   if (parent)
1108     add_separate_debug_objfile (objfile, parent);
1109 
1110   /* We either created a new mapped symbol table, mapped an existing
1111      symbol table file which has not had initial symbol reading
1112      performed, or need to read an unmapped symbol table.  */
1113   if (should_print)
1114     {
1115       if (deprecated_pre_add_symbol_hook)
1116 	deprecated_pre_add_symbol_hook (name);
1117       else
1118 	{
1119 	  puts_filtered (_("Reading symbols from "));
1120 	  fputs_styled (name, file_name_style.style (), gdb_stdout);
1121 	  puts_filtered ("...\n");
1122 	}
1123     }
1124   syms_from_objfile (objfile, addrs, add_flags);
1125 
1126   /* We now have at least a partial symbol table.  Check to see if the
1127      user requested that all symbols be read on initial access via either
1128      the gdb startup command line or on a per symbol file basis.  Expand
1129      all partial symbol tables for this objfile if so.  */
1130 
1131   if ((flags & OBJF_READNOW))
1132     {
1133       if (should_print)
1134 	printf_filtered (_("Expanding full symbols from %s...\n"), name);
1135 
1136       if (objfile->sf)
1137 	objfile->sf->qf->expand_all_symtabs (objfile);
1138     }
1139 
1140   /* Note that we only print a message if we have no symbols and have
1141      no separate debug file.  If there is a separate debug file which
1142      does not have symbols, we'll have emitted this message for that
1143      file, and so printing it twice is just redundant.  */
1144   if (should_print && !objfile_has_symbols (objfile)
1145       && objfile->separate_debug_objfile == nullptr)
1146     printf_filtered (_("(No debugging symbols found in %s)\n"), name);
1147 
1148   if (should_print)
1149     {
1150       if (deprecated_post_add_symbol_hook)
1151 	deprecated_post_add_symbol_hook ();
1152     }
1153 
1154   /* We print some messages regardless of whether 'from_tty ||
1155      info_verbose' is true, so make sure they go out at the right
1156      time.  */
1157   gdb_flush (gdb_stdout);
1158 
1159   if (objfile->sf == NULL)
1160     {
1161       gdb::observers::new_objfile.notify (objfile);
1162       return objfile;	/* No symbols.  */
1163     }
1164 
1165   finish_new_objfile (objfile, add_flags);
1166 
1167   gdb::observers::new_objfile.notify (objfile);
1168 
1169   bfd_cache_close_all ();
1170   return (objfile);
1171 }
1172 
1173 /* Add BFD as a separate debug file for OBJFILE.  For NAME description
1174    see the objfile constructor.  */
1175 
1176 void
1177 symbol_file_add_separate (bfd *bfd, const char *name,
1178 			  symfile_add_flags symfile_flags,
1179 			  struct objfile *objfile)
1180 {
1181   /* Create section_addr_info.  We can't directly use offsets from OBJFILE
1182      because sections of BFD may not match sections of OBJFILE and because
1183      vma may have been modified by tools such as prelink.  */
1184   section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1185 
1186   symbol_file_add_with_addrs
1187     (bfd, name, symfile_flags, &sap,
1188      objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1189 		       | OBJF_USERLOADED),
1190      objfile);
1191 }
1192 
1193 /* Process the symbol file ABFD, as either the main file or as a
1194    dynamically loaded file.
1195    See symbol_file_add_with_addrs's comments for details.  */
1196 
1197 struct objfile *
1198 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1199 			  symfile_add_flags add_flags,
1200 			  section_addr_info *addrs,
1201                           objfile_flags flags, struct objfile *parent)
1202 {
1203   return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1204 				     parent);
1205 }
1206 
1207 /* Process a symbol file, as either the main file or as a dynamically
1208    loaded file.  See symbol_file_add_with_addrs's comments for details.  */
1209 
1210 struct objfile *
1211 symbol_file_add (const char *name, symfile_add_flags add_flags,
1212 		 section_addr_info *addrs, objfile_flags flags)
1213 {
1214   gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1215 
1216   return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1217 				   flags, NULL);
1218 }
1219 
1220 /* Call symbol_file_add() with default values and update whatever is
1221    affected by the loading of a new main().
1222    Used when the file is supplied in the gdb command line
1223    and by some targets with special loading requirements.
1224    The auxiliary function, symbol_file_add_main_1(), has the flags
1225    argument for the switches that can only be specified in the symbol_file
1226    command itself.  */
1227 
1228 void
1229 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1230 {
1231   symbol_file_add_main_1 (args, add_flags, 0, 0);
1232 }
1233 
1234 static void
1235 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1236 			objfile_flags flags, CORE_ADDR reloff)
1237 {
1238   add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1239 
1240   struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1241   if (reloff != 0)
1242     objfile_rebase (objfile, reloff);
1243 
1244   /* Getting new symbols may change our opinion about
1245      what is frameless.  */
1246   reinit_frame_cache ();
1247 
1248   if ((add_flags & SYMFILE_NO_READ) == 0)
1249     set_initial_language ();
1250 }
1251 
1252 void
1253 symbol_file_clear (int from_tty)
1254 {
1255   if ((have_full_symbols () || have_partial_symbols ())
1256       && from_tty
1257       && (symfile_objfile
1258 	  ? !query (_("Discard symbol table from `%s'? "),
1259 		    objfile_name (symfile_objfile))
1260 	  : !query (_("Discard symbol table? "))))
1261     error (_("Not confirmed."));
1262 
1263   /* solib descriptors may have handles to objfiles.  Wipe them before their
1264      objfiles get stale by free_all_objfiles.  */
1265   no_shared_libraries (NULL, from_tty);
1266 
1267   free_all_objfiles ();
1268 
1269   gdb_assert (symfile_objfile == NULL);
1270   if (from_tty)
1271     printf_filtered (_("No symbol file now.\n"));
1272 }
1273 
1274 /* See symfile.h.  */
1275 
1276 int separate_debug_file_debug = 0;
1277 
1278 static int
1279 separate_debug_file_exists (const std::string &name, unsigned long crc,
1280 			    struct objfile *parent_objfile)
1281 {
1282   unsigned long file_crc;
1283   int file_crc_p;
1284   struct stat parent_stat, abfd_stat;
1285   int verified_as_different;
1286 
1287   /* Find a separate debug info file as if symbols would be present in
1288      PARENT_OBJFILE itself this function would not be called.  .gnu_debuglink
1289      section can contain just the basename of PARENT_OBJFILE without any
1290      ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1291      the separate debug infos with the same basename can exist.  */
1292 
1293   if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1294     return 0;
1295 
1296   if (separate_debug_file_debug)
1297     {
1298       printf_filtered (_("  Trying %s..."), name.c_str ());
1299       gdb_flush (gdb_stdout);
1300     }
1301 
1302   gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1303 
1304   if (abfd == NULL)
1305     {
1306       if (separate_debug_file_debug)
1307 	printf_filtered (_(" no, unable to open.\n"));
1308 
1309       return 0;
1310     }
1311 
1312   /* Verify symlinks were not the cause of filename_cmp name difference above.
1313 
1314      Some operating systems, e.g. Windows, do not provide a meaningful
1315      st_ino; they always set it to zero.  (Windows does provide a
1316      meaningful st_dev.)  Files accessed from gdbservers that do not
1317      support the vFile:fstat packet will also have st_ino set to zero.
1318      Do not indicate a duplicate library in either case.  While there
1319      is no guarantee that a system that provides meaningful inode
1320      numbers will never set st_ino to zero, this is merely an
1321      optimization, so we do not need to worry about false negatives.  */
1322 
1323   if (bfd_stat (abfd.get (), &abfd_stat) == 0
1324       && abfd_stat.st_ino != 0
1325       && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1326     {
1327       if (abfd_stat.st_dev == parent_stat.st_dev
1328 	  && abfd_stat.st_ino == parent_stat.st_ino)
1329 	{
1330 	  if (separate_debug_file_debug)
1331 	    printf_filtered (_(" no, same file as the objfile.\n"));
1332 
1333 	  return 0;
1334 	}
1335       verified_as_different = 1;
1336     }
1337   else
1338     verified_as_different = 0;
1339 
1340   file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1341 
1342   if (!file_crc_p)
1343     {
1344       if (separate_debug_file_debug)
1345 	printf_filtered (_(" no, error computing CRC.\n"));
1346 
1347       return 0;
1348     }
1349 
1350   if (crc != file_crc)
1351     {
1352       unsigned long parent_crc;
1353 
1354       /* If the files could not be verified as different with
1355 	 bfd_stat then we need to calculate the parent's CRC
1356 	 to verify whether the files are different or not.  */
1357 
1358       if (!verified_as_different)
1359 	{
1360 	  if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1361 	    {
1362 	      if (separate_debug_file_debug)
1363 		printf_filtered (_(" no, error computing CRC.\n"));
1364 
1365 	      return 0;
1366 	    }
1367 	}
1368 
1369       if (verified_as_different || parent_crc != file_crc)
1370 	warning (_("the debug information found in \"%s\""
1371 		   " does not match \"%s\" (CRC mismatch).\n"),
1372 		 name.c_str (), objfile_name (parent_objfile));
1373 
1374       if (separate_debug_file_debug)
1375 	printf_filtered (_(" no, CRC doesn't match.\n"));
1376 
1377       return 0;
1378     }
1379 
1380   if (separate_debug_file_debug)
1381     printf_filtered (_(" yes!\n"));
1382 
1383   return 1;
1384 }
1385 
1386 char *debug_file_directory = NULL;
1387 static void
1388 show_debug_file_directory (struct ui_file *file, int from_tty,
1389 			   struct cmd_list_element *c, const char *value)
1390 {
1391   fprintf_filtered (file,
1392 		    _("The directory where separate debug "
1393 		      "symbols are searched for is \"%s\".\n"),
1394 		    value);
1395 }
1396 
1397 #if ! defined (DEBUG_SUBDIRECTORY)
1398 #define DEBUG_SUBDIRECTORY ".debug"
1399 #endif
1400 
1401 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1402    where the original file resides (may not be the same as
1403    dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1404    looking for.  CANON_DIR is the "realpath" form of DIR.
1405    DIR must contain a trailing '/'.
1406    Returns the path of the file with separate debug info, or an empty
1407    string.  */
1408 
1409 static std::string
1410 find_separate_debug_file (const char *dir,
1411 			  const char *canon_dir,
1412 			  const char *debuglink,
1413 			  unsigned long crc32, struct objfile *objfile)
1414 {
1415   if (separate_debug_file_debug)
1416     printf_filtered (_("\nLooking for separate debug info (debug link) for "
1417 		       "%s\n"), objfile_name (objfile));
1418 
1419   /* First try in the same directory as the original file.  */
1420   std::string debugfile = dir;
1421   debugfile += debuglink;
1422 
1423   if (separate_debug_file_exists (debugfile, crc32, objfile))
1424     return debugfile;
1425 
1426   /* Then try in the subdirectory named DEBUG_SUBDIRECTORY.  */
1427   debugfile = dir;
1428   debugfile += DEBUG_SUBDIRECTORY;
1429   debugfile += "/";
1430   debugfile += debuglink;
1431 
1432   if (separate_debug_file_exists (debugfile, crc32, objfile))
1433     return debugfile;
1434 
1435   /* Then try in the global debugfile directories.
1436 
1437      Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1438      cause "/..." lookups.  */
1439 
1440   bool target_prefix = startswith (dir, "target:");
1441   const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1442   std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1443     = dirnames_to_char_ptr_vec (debug_file_directory);
1444   gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
1445 
1446  /* MS-Windows/MS-DOS don't allow colons in file names; we must
1447     convert the drive letter into a one-letter directory, so that the
1448     file name resulting from splicing below will be valid.
1449 
1450     FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1451     There are various remote-debugging scenarios where such a
1452     transformation of the drive letter might be required when GDB runs
1453     on a Posix host, see
1454 
1455     https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1456 
1457     If some of those scenarions need to be supported, we will need to
1458     use a different condition for HAS_DRIVE_SPEC and a different macro
1459     instead of STRIP_DRIVE_SPEC, which work on Posix systems as well.  */
1460   std::string drive;
1461   if (HAS_DRIVE_SPEC (dir_notarget))
1462     {
1463       drive = dir_notarget[0];
1464       dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1465     }
1466 
1467   for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1468     {
1469       debugfile = target_prefix ? "target:" : "";
1470       debugfile += debugdir.get ();
1471       debugfile += "/";
1472       debugfile += drive;
1473       debugfile += dir_notarget;
1474       debugfile += debuglink;
1475 
1476       if (separate_debug_file_exists (debugfile, crc32, objfile))
1477 	return debugfile;
1478 
1479       const char *base_path = NULL;
1480       if (canon_dir != NULL)
1481 	{
1482 	  if (canon_sysroot.get () != NULL)
1483 	    base_path = child_path (canon_sysroot.get (), canon_dir);
1484 	  else
1485 	    base_path = child_path (gdb_sysroot, canon_dir);
1486 	}
1487       if (base_path != NULL)
1488 	{
1489 	  /* If the file is in the sysroot, try using its base path in
1490 	     the global debugfile directory.  */
1491 	  debugfile = target_prefix ? "target:" : "";
1492 	  debugfile += debugdir.get ();
1493 	  debugfile += "/";
1494 	  debugfile += base_path;
1495 	  debugfile += "/";
1496 	  debugfile += debuglink;
1497 
1498 	  if (separate_debug_file_exists (debugfile, crc32, objfile))
1499 	    return debugfile;
1500 
1501 	  /* If the file is in the sysroot, try using its base path in
1502 	     the sysroot's global debugfile directory.  */
1503 	  debugfile = target_prefix ? "target:" : "";
1504 	  debugfile += gdb_sysroot;
1505 	  debugfile += debugdir.get ();
1506 	  debugfile += "/";
1507 	  debugfile += base_path;
1508 	  debugfile += "/";
1509 	  debugfile += debuglink;
1510 
1511 	  if (separate_debug_file_exists (debugfile, crc32, objfile))
1512 	    return debugfile;
1513 	}
1514 
1515     }
1516 
1517   return std::string ();
1518 }
1519 
1520 /* Modify PATH to contain only "[/]directory/" part of PATH.
1521    If there were no directory separators in PATH, PATH will be empty
1522    string on return.  */
1523 
1524 static void
1525 terminate_after_last_dir_separator (char *path)
1526 {
1527   int i;
1528 
1529   /* Strip off the final filename part, leaving the directory name,
1530      followed by a slash.  The directory can be relative or absolute.  */
1531   for (i = strlen(path) - 1; i >= 0; i--)
1532     if (IS_DIR_SEPARATOR (path[i]))
1533       break;
1534 
1535   /* If I is -1 then no directory is present there and DIR will be "".  */
1536   path[i + 1] = '\0';
1537 }
1538 
1539 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1540    Returns pathname, or an empty string.  */
1541 
1542 std::string
1543 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1544 {
1545   unsigned long crc32;
1546 
1547   gdb::unique_xmalloc_ptr<char> debuglink
1548     (bfd_get_debug_link_info (objfile->obfd, &crc32));
1549 
1550   if (debuglink == NULL)
1551     {
1552       /* There's no separate debug info, hence there's no way we could
1553 	 load it => no warning.  */
1554       return std::string ();
1555     }
1556 
1557   std::string dir = objfile_name (objfile);
1558   terminate_after_last_dir_separator (&dir[0]);
1559   gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1560 
1561   std::string debugfile
1562     = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1563 				debuglink.get (), crc32, objfile);
1564 
1565   if (debugfile.empty ())
1566     {
1567       /* For PR gdb/9538, try again with realpath (if different from the
1568 	 original).  */
1569 
1570       struct stat st_buf;
1571 
1572       if (lstat (objfile_name (objfile), &st_buf) == 0
1573 	  && S_ISLNK (st_buf.st_mode))
1574 	{
1575 	  gdb::unique_xmalloc_ptr<char> symlink_dir
1576 	    (lrealpath (objfile_name (objfile)));
1577 	  if (symlink_dir != NULL)
1578 	    {
1579 	      terminate_after_last_dir_separator (symlink_dir.get ());
1580 	      if (dir != symlink_dir.get ())
1581 		{
1582 		  /* Different directory, so try using it.  */
1583 		  debugfile = find_separate_debug_file (symlink_dir.get (),
1584 							symlink_dir.get (),
1585 							debuglink.get (),
1586 							crc32,
1587 							objfile);
1588 		}
1589 	    }
1590 	}
1591     }
1592 
1593   return debugfile;
1594 }
1595 
1596 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1597    simultaneously.  */
1598 
1599 static void
1600 validate_readnow_readnever (objfile_flags flags)
1601 {
1602   if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1603     error (_("-readnow and -readnever cannot be used simultaneously"));
1604 }
1605 
1606 /* This is the symbol-file command.  Read the file, analyze its
1607    symbols, and add a struct symtab to a symtab list.  The syntax of
1608    the command is rather bizarre:
1609 
1610    1. The function buildargv implements various quoting conventions
1611    which are undocumented and have little or nothing in common with
1612    the way things are quoted (or not quoted) elsewhere in GDB.
1613 
1614    2. Options are used, which are not generally used in GDB (perhaps
1615    "set mapped on", "set readnow on" would be better)
1616 
1617    3. The order of options matters, which is contrary to GNU
1618    conventions (because it is confusing and inconvenient).  */
1619 
1620 void
1621 symbol_file_command (const char *args, int from_tty)
1622 {
1623   dont_repeat ();
1624 
1625   if (args == NULL)
1626     {
1627       symbol_file_clear (from_tty);
1628     }
1629   else
1630     {
1631       objfile_flags flags = OBJF_USERLOADED;
1632       symfile_add_flags add_flags = 0;
1633       char *name = NULL;
1634       bool stop_processing_options = false;
1635       CORE_ADDR offset = 0;
1636       int idx;
1637       char *arg;
1638 
1639       if (from_tty)
1640 	add_flags |= SYMFILE_VERBOSE;
1641 
1642       gdb_argv built_argv (args);
1643       for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1644 	{
1645 	  if (stop_processing_options || *arg != '-')
1646 	    {
1647 	      if (name == NULL)
1648 		name = arg;
1649 	      else
1650 		error (_("Unrecognized argument \"%s\""), arg);
1651 	    }
1652 	  else if (strcmp (arg, "-readnow") == 0)
1653 	    flags |= OBJF_READNOW;
1654 	  else if (strcmp (arg, "-readnever") == 0)
1655 	    flags |= OBJF_READNEVER;
1656 	  else if (strcmp (arg, "-o") == 0)
1657 	    {
1658 	      arg = built_argv[++idx];
1659 	      if (arg == NULL)
1660 		error (_("Missing argument to -o"));
1661 
1662 	      offset = parse_and_eval_address (arg);
1663 	    }
1664 	  else if (strcmp (arg, "--") == 0)
1665 	    stop_processing_options = true;
1666 	  else
1667 	    error (_("Unrecognized argument \"%s\""), arg);
1668 	}
1669 
1670       if (name == NULL)
1671 	error (_("no symbol file name was specified"));
1672 
1673       validate_readnow_readnever (flags);
1674 
1675       symbol_file_add_main_1 (name, add_flags, flags, offset);
1676     }
1677 }
1678 
1679 /* Set the initial language.
1680 
1681    FIXME: A better solution would be to record the language in the
1682    psymtab when reading partial symbols, and then use it (if known) to
1683    set the language.  This would be a win for formats that encode the
1684    language in an easily discoverable place, such as DWARF.  For
1685    stabs, we can jump through hoops looking for specially named
1686    symbols or try to intuit the language from the specific type of
1687    stabs we find, but we can't do that until later when we read in
1688    full symbols.  */
1689 
1690 void
1691 set_initial_language (void)
1692 {
1693   enum language lang = main_language ();
1694 
1695   if (lang == language_unknown)
1696     {
1697       char *name = main_name ();
1698       struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1699 
1700       if (sym != NULL)
1701 	lang = SYMBOL_LANGUAGE (sym);
1702     }
1703 
1704   if (lang == language_unknown)
1705     {
1706       /* Make C the default language */
1707       lang = language_c;
1708     }
1709 
1710   set_language (lang);
1711   expected_language = current_language; /* Don't warn the user.  */
1712 }
1713 
1714 /* Open the file specified by NAME and hand it off to BFD for
1715    preliminary analysis.  Return a newly initialized bfd *, which
1716    includes a newly malloc'd` copy of NAME (tilde-expanded and made
1717    absolute).  In case of trouble, error() is called.  */
1718 
1719 gdb_bfd_ref_ptr
1720 symfile_bfd_open (const char *name)
1721 {
1722   int desc = -1;
1723 
1724   gdb::unique_xmalloc_ptr<char> absolute_name;
1725   if (!is_target_filename (name))
1726     {
1727       gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1728 
1729       /* Look down path for it, allocate 2nd new malloc'd copy.  */
1730       desc = openp (getenv ("PATH"),
1731 		    OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1732 		    expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1733 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1734       if (desc < 0)
1735 	{
1736 	  char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1737 
1738 	  strcat (strcpy (exename, expanded_name.get ()), ".exe");
1739 	  desc = openp (getenv ("PATH"),
1740 			OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1741 			exename, O_RDONLY | O_BINARY, &absolute_name);
1742 	}
1743 #endif
1744       if (desc < 0)
1745 	perror_with_name (expanded_name.get ());
1746 
1747       name = absolute_name.get ();
1748     }
1749 
1750   gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1751   if (sym_bfd == NULL)
1752     error (_("`%s': can't open to read symbols: %s."), name,
1753 	   bfd_errmsg (bfd_get_error ()));
1754 
1755   if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1756     bfd_set_cacheable (sym_bfd.get (), 1);
1757 
1758   if (!bfd_check_format (sym_bfd.get (), bfd_object))
1759     error (_("`%s': can't read symbols: %s."), name,
1760 	   bfd_errmsg (bfd_get_error ()));
1761 
1762   return sym_bfd;
1763 }
1764 
1765 /* Return the section index for SECTION_NAME on OBJFILE.  Return -1 if
1766    the section was not found.  */
1767 
1768 int
1769 get_section_index (struct objfile *objfile, const char *section_name)
1770 {
1771   asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1772 
1773   if (sect)
1774     return sect->index;
1775   else
1776     return -1;
1777 }
1778 
1779 /* Link SF into the global symtab_fns list.
1780    FLAVOUR is the file format that SF handles.
1781    Called on startup by the _initialize routine in each object file format
1782    reader, to register information about each format the reader is prepared
1783    to handle.  */
1784 
1785 void
1786 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1787 {
1788   symtab_fns.emplace_back (flavour, sf);
1789 }
1790 
1791 /* Initialize OBJFILE to read symbols from its associated BFD.  It
1792    either returns or calls error().  The result is an initialized
1793    struct sym_fns in the objfile structure, that contains cached
1794    information about the symbol file.  */
1795 
1796 static const struct sym_fns *
1797 find_sym_fns (bfd *abfd)
1798 {
1799   enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1800 
1801   if (our_flavour == bfd_target_srec_flavour
1802       || our_flavour == bfd_target_ihex_flavour
1803       || our_flavour == bfd_target_tekhex_flavour)
1804     return NULL;	/* No symbols.  */
1805 
1806   for (const registered_sym_fns &rsf : symtab_fns)
1807     if (our_flavour == rsf.sym_flavour)
1808       return rsf.sym_fns;
1809 
1810   error (_("I'm sorry, Dave, I can't do that.  Symbol format `%s' unknown."),
1811 	 bfd_get_target (abfd));
1812 }
1813 
1814 
1815 /* This function runs the load command of our current target.  */
1816 
1817 static void
1818 load_command (const char *arg, int from_tty)
1819 {
1820   dont_repeat ();
1821 
1822   /* The user might be reloading because the binary has changed.  Take
1823      this opportunity to check.  */
1824   reopen_exec_file ();
1825   reread_symbols ();
1826 
1827   std::string temp;
1828   if (arg == NULL)
1829     {
1830       const char *parg, *prev;
1831 
1832       arg = get_exec_file (1);
1833 
1834       /* We may need to quote this string so buildargv can pull it
1835 	 apart.  */
1836       prev = parg = arg;
1837       while ((parg = strpbrk (parg, "\\\"'\t ")))
1838 	{
1839 	  temp.append (prev, parg - prev);
1840 	  prev = parg++;
1841 	  temp.push_back ('\\');
1842 	}
1843       /* If we have not copied anything yet, then we didn't see a
1844 	 character to quote, and we can just leave ARG unchanged.  */
1845       if (!temp.empty ())
1846 	{
1847 	  temp.append (prev);
1848 	  arg = temp.c_str ();
1849 	}
1850     }
1851 
1852   target_load (arg, from_tty);
1853 
1854   /* After re-loading the executable, we don't really know which
1855      overlays are mapped any more.  */
1856   overlay_cache_invalid = 1;
1857 }
1858 
1859 /* This version of "load" should be usable for any target.  Currently
1860    it is just used for remote targets, not inftarg.c or core files,
1861    on the theory that only in that case is it useful.
1862 
1863    Avoiding xmodem and the like seems like a win (a) because we don't have
1864    to worry about finding it, and (b) On VMS, fork() is very slow and so
1865    we don't want to run a subprocess.  On the other hand, I'm not sure how
1866    performance compares.  */
1867 
1868 static int validate_download = 0;
1869 
1870 /* Callback service function for generic_load (bfd_map_over_sections).  */
1871 
1872 static void
1873 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1874 {
1875   bfd_size_type *sum = (bfd_size_type *) data;
1876 
1877   *sum += bfd_get_section_size (asec);
1878 }
1879 
1880 /* Opaque data for load_progress.  */
1881 struct load_progress_data
1882 {
1883   /* Cumulative data.  */
1884   unsigned long write_count = 0;
1885   unsigned long data_count = 0;
1886   bfd_size_type total_size = 0;
1887 };
1888 
1889 /* Opaque data for load_progress for a single section.  */
1890 struct load_progress_section_data
1891 {
1892   load_progress_section_data (load_progress_data *cumulative_,
1893 			      const char *section_name_, ULONGEST section_size_,
1894 			      CORE_ADDR lma_, gdb_byte *buffer_)
1895     : cumulative (cumulative_), section_name (section_name_),
1896       section_size (section_size_), lma (lma_), buffer (buffer_)
1897   {}
1898 
1899   struct load_progress_data *cumulative;
1900 
1901   /* Per-section data.  */
1902   const char *section_name;
1903   ULONGEST section_sent = 0;
1904   ULONGEST section_size;
1905   CORE_ADDR lma;
1906   gdb_byte *buffer;
1907 };
1908 
1909 /* Opaque data for load_section_callback.  */
1910 struct load_section_data
1911 {
1912   load_section_data (load_progress_data *progress_data_)
1913     : progress_data (progress_data_)
1914   {}
1915 
1916   ~load_section_data ()
1917   {
1918     for (auto &&request : requests)
1919       {
1920 	xfree (request.data);
1921 	delete ((load_progress_section_data *) request.baton);
1922       }
1923   }
1924 
1925   CORE_ADDR load_offset = 0;
1926   struct load_progress_data *progress_data;
1927   std::vector<struct memory_write_request> requests;
1928 };
1929 
1930 /* Target write callback routine for progress reporting.  */
1931 
1932 static void
1933 load_progress (ULONGEST bytes, void *untyped_arg)
1934 {
1935   struct load_progress_section_data *args
1936     = (struct load_progress_section_data *) untyped_arg;
1937   struct load_progress_data *totals;
1938 
1939   if (args == NULL)
1940     /* Writing padding data.  No easy way to get at the cumulative
1941        stats, so just ignore this.  */
1942     return;
1943 
1944   totals = args->cumulative;
1945 
1946   if (bytes == 0 && args->section_sent == 0)
1947     {
1948       /* The write is just starting.  Let the user know we've started
1949 	 this section.  */
1950       current_uiout->message ("Loading section %s, size %s lma %s\n",
1951 			      args->section_name,
1952 			      hex_string (args->section_size),
1953 			      paddress (target_gdbarch (), args->lma));
1954       return;
1955     }
1956 
1957   if (validate_download)
1958     {
1959       /* Broken memories and broken monitors manifest themselves here
1960 	 when bring new computers to life.  This doubles already slow
1961 	 downloads.  */
1962       /* NOTE: cagney/1999-10-18: A more efficient implementation
1963 	 might add a verify_memory() method to the target vector and
1964 	 then use that.  remote.c could implement that method using
1965 	 the ``qCRC'' packet.  */
1966       gdb::byte_vector check (bytes);
1967 
1968       if (target_read_memory (args->lma, check.data (), bytes) != 0)
1969 	error (_("Download verify read failed at %s"),
1970 	       paddress (target_gdbarch (), args->lma));
1971       if (memcmp (args->buffer, check.data (), bytes) != 0)
1972 	error (_("Download verify compare failed at %s"),
1973 	       paddress (target_gdbarch (), args->lma));
1974     }
1975   totals->data_count += bytes;
1976   args->lma += bytes;
1977   args->buffer += bytes;
1978   totals->write_count += 1;
1979   args->section_sent += bytes;
1980   if (check_quit_flag ()
1981       || (deprecated_ui_load_progress_hook != NULL
1982 	  && deprecated_ui_load_progress_hook (args->section_name,
1983 					       args->section_sent)))
1984     error (_("Canceled the download"));
1985 
1986   if (deprecated_show_load_progress != NULL)
1987     deprecated_show_load_progress (args->section_name,
1988 				   args->section_sent,
1989 				   args->section_size,
1990 				   totals->data_count,
1991 				   totals->total_size);
1992 }
1993 
1994 /* Callback service function for generic_load (bfd_map_over_sections).  */
1995 
1996 static void
1997 load_section_callback (bfd *abfd, asection *asec, void *data)
1998 {
1999   struct load_section_data *args = (struct load_section_data *) data;
2000   bfd_size_type size = bfd_get_section_size (asec);
2001   const char *sect_name = bfd_get_section_name (abfd, asec);
2002 
2003   if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2004     return;
2005 
2006   if (size == 0)
2007     return;
2008 
2009   ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
2010   ULONGEST end = begin + size;
2011   gdb_byte *buffer = (gdb_byte *) xmalloc (size);
2012   bfd_get_section_contents (abfd, asec, buffer, 0, size);
2013 
2014   load_progress_section_data *section_data
2015     = new load_progress_section_data (args->progress_data, sect_name, size,
2016 				      begin, buffer);
2017 
2018   args->requests.emplace_back (begin, end, buffer, section_data);
2019 }
2020 
2021 static void print_transfer_performance (struct ui_file *stream,
2022 					unsigned long data_count,
2023 					unsigned long write_count,
2024 				        std::chrono::steady_clock::duration d);
2025 
2026 void
2027 generic_load (const char *args, int from_tty)
2028 {
2029   struct load_progress_data total_progress;
2030   struct load_section_data cbdata (&total_progress);
2031   struct ui_out *uiout = current_uiout;
2032 
2033   if (args == NULL)
2034     error_no_arg (_("file to load"));
2035 
2036   gdb_argv argv (args);
2037 
2038   gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2039 
2040   if (argv[1] != NULL)
2041     {
2042       const char *endptr;
2043 
2044       cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2045 
2046       /* If the last word was not a valid number then
2047          treat it as a file name with spaces in.  */
2048       if (argv[1] == endptr)
2049         error (_("Invalid download offset:%s."), argv[1]);
2050 
2051       if (argv[2] != NULL)
2052 	error (_("Too many parameters."));
2053     }
2054 
2055   /* Open the file for loading.  */
2056   gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2057   if (loadfile_bfd == NULL)
2058     perror_with_name (filename.get ());
2059 
2060   if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2061     {
2062       error (_("\"%s\" is not an object file: %s"), filename.get (),
2063 	     bfd_errmsg (bfd_get_error ()));
2064     }
2065 
2066   bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2067 			 (void *) &total_progress.total_size);
2068 
2069   bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2070 
2071   using namespace std::chrono;
2072 
2073   steady_clock::time_point start_time = steady_clock::now ();
2074 
2075   if (target_write_memory_blocks (cbdata.requests, flash_discard,
2076 				  load_progress) != 0)
2077     error (_("Load failed"));
2078 
2079   steady_clock::time_point end_time = steady_clock::now ();
2080 
2081   CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2082   entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2083   uiout->text ("Start address ");
2084   uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2085   uiout->text (", load size ");
2086   uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2087   uiout->text ("\n");
2088   regcache_write_pc (get_current_regcache (), entry);
2089 
2090   /* Reset breakpoints, now that we have changed the load image.  For
2091      instance, breakpoints may have been set (or reset, by
2092      post_create_inferior) while connected to the target but before we
2093      loaded the program.  In that case, the prologue analyzer could
2094      have read instructions from the target to find the right
2095      breakpoint locations.  Loading has changed the contents of that
2096      memory.  */
2097 
2098   breakpoint_re_set ();
2099 
2100   print_transfer_performance (gdb_stdout, total_progress.data_count,
2101 			      total_progress.write_count,
2102 			      end_time - start_time);
2103 }
2104 
2105 /* Report on STREAM the performance of a memory transfer operation,
2106    such as 'load'.  DATA_COUNT is the number of bytes transferred.
2107    WRITE_COUNT is the number of separate write operations, or 0, if
2108    that information is not available.  TIME is how long the operation
2109    lasted.  */
2110 
2111 static void
2112 print_transfer_performance (struct ui_file *stream,
2113 			    unsigned long data_count,
2114 			    unsigned long write_count,
2115 			    std::chrono::steady_clock::duration time)
2116 {
2117   using namespace std::chrono;
2118   struct ui_out *uiout = current_uiout;
2119 
2120   milliseconds ms = duration_cast<milliseconds> (time);
2121 
2122   uiout->text ("Transfer rate: ");
2123   if (ms.count () > 0)
2124     {
2125       unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2126 
2127       if (uiout->is_mi_like_p ())
2128 	{
2129 	  uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2130 	  uiout->text (" bits/sec");
2131 	}
2132       else if (rate < 1024)
2133 	{
2134 	  uiout->field_fmt ("transfer-rate", "%lu", rate);
2135 	  uiout->text (" bytes/sec");
2136 	}
2137       else
2138 	{
2139 	  uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2140 	  uiout->text (" KB/sec");
2141 	}
2142     }
2143   else
2144     {
2145       uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2146       uiout->text (" bits in <1 sec");
2147     }
2148   if (write_count > 0)
2149     {
2150       uiout->text (", ");
2151       uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2152       uiout->text (" bytes/write");
2153     }
2154   uiout->text (".\n");
2155 }
2156 
2157 /* Add an OFFSET to the start address of each section in OBJF, except
2158    sections that were specified in ADDRS.  */
2159 
2160 static void
2161 set_objfile_default_section_offset (struct objfile *objf,
2162 				    const section_addr_info &addrs,
2163 				    CORE_ADDR offset)
2164 {
2165   /* Add OFFSET to all sections by default.  */
2166   std::vector<struct section_offsets> offsets (objf->num_sections,
2167 					       { { offset } });
2168 
2169   /* Create sorted lists of all sections in ADDRS as well as all
2170      sections in OBJF.  */
2171 
2172   std::vector<const struct other_sections *> addrs_sorted
2173     = addrs_section_sort (addrs);
2174 
2175   section_addr_info objf_addrs
2176     = build_section_addr_info_from_objfile (objf);
2177   std::vector<const struct other_sections *> objf_addrs_sorted
2178     = addrs_section_sort (objf_addrs);
2179 
2180   /* Walk the BFD section list, and if a matching section is found in
2181      ADDRS_SORTED_LIST, set its offset to zero to keep its address
2182      unchanged.
2183 
2184      Note that both lists may contain multiple sections with the same
2185      name, and then the sections from ADDRS are matched in BFD order
2186      (thanks to sectindex).  */
2187 
2188   std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2189     = addrs_sorted.begin ();
2190   for (const other_sections *objf_sect : objf_addrs_sorted)
2191     {
2192       const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2193       int cmp = -1;
2194 
2195       while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2196 	{
2197 	  const struct other_sections *sect = *addrs_sorted_iter;
2198 	  const char *sect_name = addr_section_name (sect->name.c_str ());
2199 	  cmp = strcmp (sect_name, objf_name);
2200 	  if (cmp <= 0)
2201 	    ++addrs_sorted_iter;
2202 	}
2203 
2204       if (cmp == 0)
2205 	offsets[objf_sect->sectindex].offsets[0] = 0;
2206     }
2207 
2208   /* Apply the new section offsets.  */
2209   objfile_relocate (objf, offsets.data ());
2210 }
2211 
2212 /* This function allows the addition of incrementally linked object files.
2213    It does not modify any state in the target, only in the debugger.  */
2214 /* Note: ezannoni 2000-04-13 This function/command used to have a
2215    special case syntax for the rombug target (Rombug is the boot
2216    monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2217    rombug case, the user doesn't need to supply a text address,
2218    instead a call to target_link() (in target.c) would supply the
2219    value to use.  We are now discontinuing this type of ad hoc syntax.  */
2220 
2221 static void
2222 add_symbol_file_command (const char *args, int from_tty)
2223 {
2224   struct gdbarch *gdbarch = get_current_arch ();
2225   gdb::unique_xmalloc_ptr<char> filename;
2226   char *arg;
2227   int argcnt = 0;
2228   struct objfile *objf;
2229   objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2230   symfile_add_flags add_flags = 0;
2231 
2232   if (from_tty)
2233     add_flags |= SYMFILE_VERBOSE;
2234 
2235   struct sect_opt
2236   {
2237     const char *name;
2238     const char *value;
2239   };
2240 
2241   std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2242   bool stop_processing_options = false;
2243   CORE_ADDR offset = 0;
2244 
2245   dont_repeat ();
2246 
2247   if (args == NULL)
2248     error (_("add-symbol-file takes a file name and an address"));
2249 
2250   bool seen_addr = false;
2251   bool seen_offset = false;
2252   gdb_argv argv (args);
2253 
2254   for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2255     {
2256       if (stop_processing_options || *arg != '-')
2257 	{
2258 	  if (filename == NULL)
2259 	    {
2260 	      /* First non-option argument is always the filename.  */
2261 	      filename.reset (tilde_expand (arg));
2262 	    }
2263 	  else if (!seen_addr)
2264 	    {
2265 	      /* The second non-option argument is always the text
2266 		 address at which to load the program.  */
2267 	      sect_opts[0].value = arg;
2268 	      seen_addr = true;
2269 	    }
2270 	  else
2271 	    error (_("Unrecognized argument \"%s\""), arg);
2272 	}
2273       else if (strcmp (arg, "-readnow") == 0)
2274 	flags |= OBJF_READNOW;
2275       else if (strcmp (arg, "-readnever") == 0)
2276 	flags |= OBJF_READNEVER;
2277       else if (strcmp (arg, "-s") == 0)
2278 	{
2279 	  if (argv[argcnt + 1] == NULL)
2280 	    error (_("Missing section name after \"-s\""));
2281 	  else if (argv[argcnt + 2] == NULL)
2282 	    error (_("Missing section address after \"-s\""));
2283 
2284 	  sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2285 
2286 	  sect_opts.push_back (sect);
2287 	  argcnt += 2;
2288 	}
2289       else if (strcmp (arg, "-o") == 0)
2290 	{
2291 	  arg = argv[++argcnt];
2292 	  if (arg == NULL)
2293 	    error (_("Missing argument to -o"));
2294 
2295 	  offset = parse_and_eval_address (arg);
2296 	  seen_offset = true;
2297 	}
2298       else if (strcmp (arg, "--") == 0)
2299 	stop_processing_options = true;
2300       else
2301 	error (_("Unrecognized argument \"%s\""), arg);
2302     }
2303 
2304   if (filename == NULL)
2305     error (_("You must provide a filename to be loaded."));
2306 
2307   validate_readnow_readnever (flags);
2308 
2309   /* Print the prompt for the query below.  And save the arguments into
2310      a sect_addr_info structure to be passed around to other
2311      functions.  We have to split this up into separate print
2312      statements because hex_string returns a local static
2313      string.  */
2314 
2315   printf_unfiltered (_("add symbol table from file \"%s\""),
2316 		     filename.get ());
2317   section_addr_info section_addrs;
2318   std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2319   if (!seen_addr)
2320     ++it;
2321   for (; it != sect_opts.end (); ++it)
2322     {
2323       CORE_ADDR addr;
2324       const char *val = it->value;
2325       const char *sec = it->name;
2326 
2327       if (section_addrs.empty ())
2328 	printf_unfiltered (_(" at\n"));
2329       addr = parse_and_eval_address (val);
2330 
2331       /* Here we store the section offsets in the order they were
2332          entered on the command line.  Every array element is
2333          assigned an ascending section index to preserve the above
2334          order over an unstable sorting algorithm.  This dummy
2335          index is not used for any other purpose.
2336       */
2337       section_addrs.emplace_back (addr, sec, section_addrs.size ());
2338       printf_filtered ("\t%s_addr = %s\n", sec,
2339 		       paddress (gdbarch, addr));
2340 
2341       /* The object's sections are initialized when a
2342 	 call is made to build_objfile_section_table (objfile).
2343 	 This happens in reread_symbols.
2344 	 At this point, we don't know what file type this is,
2345 	 so we can't determine what section names are valid.  */
2346     }
2347   if (seen_offset)
2348       printf_unfiltered (_("%s offset by %s\n"),
2349 			 (section_addrs.empty ()
2350 			  ? _(" with all sections")
2351 			  : _("with other sections")),
2352 			 paddress (gdbarch, offset));
2353   else if (section_addrs.empty ())
2354     printf_unfiltered ("\n");
2355 
2356   if (from_tty && (!query ("%s", "")))
2357     error (_("Not confirmed."));
2358 
2359   objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2360 			  flags);
2361 
2362   if (seen_offset)
2363     set_objfile_default_section_offset (objf, section_addrs, offset);
2364 
2365   add_target_sections_of_objfile (objf);
2366 
2367   /* Getting new symbols may change our opinion about what is
2368      frameless.  */
2369   reinit_frame_cache ();
2370 }
2371 
2372 
2373 /* This function removes a symbol file that was added via add-symbol-file.  */
2374 
2375 static void
2376 remove_symbol_file_command (const char *args, int from_tty)
2377 {
2378   struct objfile *objf = NULL;
2379   struct program_space *pspace = current_program_space;
2380 
2381   dont_repeat ();
2382 
2383   if (args == NULL)
2384     error (_("remove-symbol-file: no symbol file provided"));
2385 
2386   gdb_argv argv (args);
2387 
2388   if (strcmp (argv[0], "-a") == 0)
2389     {
2390       /* Interpret the next argument as an address.  */
2391       CORE_ADDR addr;
2392 
2393       if (argv[1] == NULL)
2394 	error (_("Missing address argument"));
2395 
2396       if (argv[2] != NULL)
2397 	error (_("Junk after %s"), argv[1]);
2398 
2399       addr = parse_and_eval_address (argv[1]);
2400 
2401       for (objfile *objfile : current_program_space->objfiles ())
2402 	{
2403 	  if ((objfile->flags & OBJF_USERLOADED) != 0
2404 	      && (objfile->flags & OBJF_SHARED) != 0
2405 	      && objfile->pspace == pspace
2406 	      && is_addr_in_objfile (addr, objfile))
2407 	    {
2408 	      objf = objfile;
2409 	      break;
2410 	    }
2411 	}
2412     }
2413   else if (argv[0] != NULL)
2414     {
2415       /* Interpret the current argument as a file name.  */
2416 
2417       if (argv[1] != NULL)
2418 	error (_("Junk after %s"), argv[0]);
2419 
2420       gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2421 
2422       for (objfile *objfile : current_program_space->objfiles ())
2423 	{
2424 	  if ((objfile->flags & OBJF_USERLOADED) != 0
2425 	      && (objfile->flags & OBJF_SHARED) != 0
2426 	      && objfile->pspace == pspace
2427 	      && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2428 	    {
2429 	      objf = objfile;
2430 	      break;
2431 	    }
2432 	}
2433     }
2434 
2435   if (objf == NULL)
2436     error (_("No symbol file found"));
2437 
2438   if (from_tty
2439       && !query (_("Remove symbol table from file \"%s\"? "),
2440 		 objfile_name (objf)))
2441     error (_("Not confirmed."));
2442 
2443   delete objf;
2444   clear_symtab_users (0);
2445 }
2446 
2447 /* Re-read symbols if a symbol-file has changed.  */
2448 
2449 void
2450 reread_symbols (void)
2451 {
2452   struct objfile *objfile;
2453   long new_modtime;
2454   struct stat new_statbuf;
2455   int res;
2456   std::vector<struct objfile *> new_objfiles;
2457 
2458   /* With the addition of shared libraries, this should be modified,
2459      the load time should be saved in the partial symbol tables, since
2460      different tables may come from different source files.  FIXME.
2461      This routine should then walk down each partial symbol table
2462      and see if the symbol table that it originates from has been changed.  */
2463 
2464   for (objfile = object_files; objfile; objfile = objfile->next)
2465     {
2466       if (objfile->obfd == NULL)
2467 	continue;
2468 
2469       /* Separate debug objfiles are handled in the main objfile.  */
2470       if (objfile->separate_debug_objfile_backlink)
2471 	continue;
2472 
2473       /* If this object is from an archive (what you usually create with
2474 	 `ar', often called a `static library' on most systems, though
2475 	 a `shared library' on AIX is also an archive), then you should
2476 	 stat on the archive name, not member name.  */
2477       if (objfile->obfd->my_archive)
2478 	res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2479       else
2480 	res = stat (objfile_name (objfile), &new_statbuf);
2481       if (res != 0)
2482 	{
2483 	  /* FIXME, should use print_sys_errmsg but it's not filtered.  */
2484 	  printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2485 			   objfile_name (objfile));
2486 	  continue;
2487 	}
2488       new_modtime = new_statbuf.st_mtime;
2489       if (new_modtime != objfile->mtime)
2490 	{
2491 	  struct section_offsets *offsets;
2492 	  int num_offsets;
2493 
2494 	  printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2495 			   objfile_name (objfile));
2496 
2497 	  /* There are various functions like symbol_file_add,
2498 	     symfile_bfd_open, syms_from_objfile, etc., which might
2499 	     appear to do what we want.  But they have various other
2500 	     effects which we *don't* want.  So we just do stuff
2501 	     ourselves.  We don't worry about mapped files (for one thing,
2502 	     any mapped file will be out of date).  */
2503 
2504 	  /* If we get an error, blow away this objfile (not sure if
2505 	     that is the correct response for things like shared
2506 	     libraries).  */
2507 	  std::unique_ptr<struct objfile> objfile_holder (objfile);
2508 
2509 	  /* We need to do this whenever any symbols go away.  */
2510 	  clear_symtab_users_cleanup defer_clear_users (0);
2511 
2512 	  if (exec_bfd != NULL
2513 	      && filename_cmp (bfd_get_filename (objfile->obfd),
2514 			       bfd_get_filename (exec_bfd)) == 0)
2515 	    {
2516 	      /* Reload EXEC_BFD without asking anything.  */
2517 
2518 	      exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2519 	    }
2520 
2521 	  /* Keep the calls order approx. the same as in free_objfile.  */
2522 
2523 	  /* Free the separate debug objfiles.  It will be
2524 	     automatically recreated by sym_read.  */
2525 	  free_objfile_separate_debug (objfile);
2526 
2527 	  /* Remove any references to this objfile in the global
2528 	     value lists.  */
2529 	  preserve_values (objfile);
2530 
2531 	  /* Nuke all the state that we will re-read.  Much of the following
2532 	     code which sets things to NULL really is necessary to tell
2533 	     other parts of GDB that there is nothing currently there.
2534 
2535 	     Try to keep the freeing order compatible with free_objfile.  */
2536 
2537 	  if (objfile->sf != NULL)
2538 	    {
2539 	      (*objfile->sf->sym_finish) (objfile);
2540 	    }
2541 
2542 	  clear_objfile_data (objfile);
2543 
2544 	  /* Clean up any state BFD has sitting around.  */
2545 	  {
2546 	    gdb_bfd_ref_ptr obfd (objfile->obfd);
2547 	    char *obfd_filename;
2548 
2549 	    obfd_filename = bfd_get_filename (objfile->obfd);
2550 	    /* Open the new BFD before freeing the old one, so that
2551 	       the filename remains live.  */
2552 	    gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2553 	    objfile->obfd = temp.release ();
2554 	    if (objfile->obfd == NULL)
2555 	      error (_("Can't open %s to read symbols."), obfd_filename);
2556 	  }
2557 
2558 	  std::string original_name = objfile->original_name;
2559 
2560 	  /* bfd_openr sets cacheable to true, which is what we want.  */
2561 	  if (!bfd_check_format (objfile->obfd, bfd_object))
2562 	    error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2563 		   bfd_errmsg (bfd_get_error ()));
2564 
2565 	  /* Save the offsets, we will nuke them with the rest of the
2566 	     objfile_obstack.  */
2567 	  num_offsets = objfile->num_sections;
2568 	  offsets = ((struct section_offsets *)
2569 		     alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2570 	  memcpy (offsets, objfile->section_offsets,
2571 		  SIZEOF_N_SECTION_OFFSETS (num_offsets));
2572 
2573 	  objfile->reset_psymtabs ();
2574 
2575 	  /* NB: after this call to obstack_free, objfiles_changed
2576 	     will need to be called (see discussion below).  */
2577 	  obstack_free (&objfile->objfile_obstack, 0);
2578 	  objfile->sections = NULL;
2579 	  objfile->compunit_symtabs = NULL;
2580 	  objfile->template_symbols = NULL;
2581 	  objfile->static_links = NULL;
2582 
2583 	  /* obstack_init also initializes the obstack so it is
2584 	     empty.  We could use obstack_specify_allocation but
2585 	     gdb_obstack.h specifies the alloc/dealloc functions.  */
2586 	  obstack_init (&objfile->objfile_obstack);
2587 
2588 	  /* set_objfile_per_bfd potentially allocates the per-bfd
2589 	     data on the objfile's obstack (if sharing data across
2590 	     multiple users is not possible), so it's important to
2591 	     do it *after* the obstack has been initialized.  */
2592 	  set_objfile_per_bfd (objfile);
2593 
2594 	  objfile->original_name
2595 	    = (char *) obstack_copy0 (&objfile->objfile_obstack,
2596 				      original_name.c_str (),
2597 				      original_name.size ());
2598 
2599 	  /* Reset the sym_fns pointer.  The ELF reader can change it
2600 	     based on whether .gdb_index is present, and we need it to
2601 	     start over.  PR symtab/15885  */
2602 	  objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2603 
2604 	  build_objfile_section_table (objfile);
2605 	  terminate_minimal_symbol_table (objfile);
2606 
2607 	  /* We use the same section offsets as from last time.  I'm not
2608 	     sure whether that is always correct for shared libraries.  */
2609 	  objfile->section_offsets = (struct section_offsets *)
2610 	    obstack_alloc (&objfile->objfile_obstack,
2611 			   SIZEOF_N_SECTION_OFFSETS (num_offsets));
2612 	  memcpy (objfile->section_offsets, offsets,
2613 		  SIZEOF_N_SECTION_OFFSETS (num_offsets));
2614 	  objfile->num_sections = num_offsets;
2615 
2616 	  /* What the hell is sym_new_init for, anyway?  The concept of
2617 	     distinguishing between the main file and additional files
2618 	     in this way seems rather dubious.  */
2619 	  if (objfile == symfile_objfile)
2620 	    {
2621 	      (*objfile->sf->sym_new_init) (objfile);
2622 	    }
2623 
2624 	  (*objfile->sf->sym_init) (objfile);
2625 	  clear_complaints ();
2626 
2627 	  objfile->flags &= ~OBJF_PSYMTABS_READ;
2628 
2629 	  /* We are about to read new symbols and potentially also
2630 	     DWARF information.  Some targets may want to pass addresses
2631 	     read from DWARF DIE's through an adjustment function before
2632 	     saving them, like MIPS, which may call into
2633 	     "find_pc_section".  When called, that function will make
2634 	     use of per-objfile program space data.
2635 
2636 	     Since we discarded our section information above, we have
2637 	     dangling pointers in the per-objfile program space data
2638 	     structure.  Force GDB to update the section mapping
2639 	     information by letting it know the objfile has changed,
2640 	     making the dangling pointers point to correct data
2641 	     again.  */
2642 
2643 	  objfiles_changed ();
2644 
2645 	  read_symbols (objfile, 0);
2646 
2647 	  if (!objfile_has_symbols (objfile))
2648 	    {
2649 	      wrap_here ("");
2650 	      printf_filtered (_("(no debugging symbols found)\n"));
2651 	      wrap_here ("");
2652 	    }
2653 
2654 	  /* We're done reading the symbol file; finish off complaints.  */
2655 	  clear_complaints ();
2656 
2657 	  /* Getting new symbols may change our opinion about what is
2658 	     frameless.  */
2659 
2660 	  reinit_frame_cache ();
2661 
2662 	  /* Discard cleanups as symbol reading was successful.  */
2663 	  objfile_holder.release ();
2664 	  defer_clear_users.release ();
2665 
2666 	  /* If the mtime has changed between the time we set new_modtime
2667 	     and now, we *want* this to be out of date, so don't call stat
2668 	     again now.  */
2669 	  objfile->mtime = new_modtime;
2670 	  init_entry_point_info (objfile);
2671 
2672 	  new_objfiles.push_back (objfile);
2673 	}
2674     }
2675 
2676   if (!new_objfiles.empty ())
2677     {
2678       clear_symtab_users (0);
2679 
2680       /* clear_objfile_data for each objfile was called before freeing it and
2681 	 gdb::observers::new_objfile.notify (NULL) has been called by
2682 	 clear_symtab_users above.  Notify the new files now.  */
2683       for (auto iter : new_objfiles)
2684 	gdb::observers::new_objfile.notify (iter);
2685 
2686       /* At least one objfile has changed, so we can consider that
2687          the executable we're debugging has changed too.  */
2688       gdb::observers::executable_changed.notify ();
2689     }
2690 }
2691 
2692 
2693 struct filename_language
2694 {
2695   filename_language (const std::string &ext_, enum language lang_)
2696   : ext (ext_), lang (lang_)
2697   {}
2698 
2699   std::string ext;
2700   enum language lang;
2701 };
2702 
2703 static std::vector<filename_language> filename_language_table;
2704 
2705 /* See symfile.h.  */
2706 
2707 void
2708 add_filename_language (const char *ext, enum language lang)
2709 {
2710   filename_language_table.emplace_back (ext, lang);
2711 }
2712 
2713 static char *ext_args;
2714 static void
2715 show_ext_args (struct ui_file *file, int from_tty,
2716 	       struct cmd_list_element *c, const char *value)
2717 {
2718   fprintf_filtered (file,
2719 		    _("Mapping between filename extension "
2720 		      "and source language is \"%s\".\n"),
2721 		    value);
2722 }
2723 
2724 static void
2725 set_ext_lang_command (const char *args,
2726 		      int from_tty, struct cmd_list_element *e)
2727 {
2728   char *cp = ext_args;
2729   enum language lang;
2730 
2731   /* First arg is filename extension, starting with '.'  */
2732   if (*cp != '.')
2733     error (_("'%s': Filename extension must begin with '.'"), ext_args);
2734 
2735   /* Find end of first arg.  */
2736   while (*cp && !isspace (*cp))
2737     cp++;
2738 
2739   if (*cp == '\0')
2740     error (_("'%s': two arguments required -- "
2741 	     "filename extension and language"),
2742 	   ext_args);
2743 
2744   /* Null-terminate first arg.  */
2745   *cp++ = '\0';
2746 
2747   /* Find beginning of second arg, which should be a source language.  */
2748   cp = skip_spaces (cp);
2749 
2750   if (*cp == '\0')
2751     error (_("'%s': two arguments required -- "
2752 	     "filename extension and language"),
2753 	   ext_args);
2754 
2755   /* Lookup the language from among those we know.  */
2756   lang = language_enum (cp);
2757 
2758   auto it = filename_language_table.begin ();
2759   /* Now lookup the filename extension: do we already know it?  */
2760   for (; it != filename_language_table.end (); it++)
2761     {
2762       if (it->ext == ext_args)
2763 	break;
2764     }
2765 
2766   if (it == filename_language_table.end ())
2767     {
2768       /* New file extension.  */
2769       add_filename_language (ext_args, lang);
2770     }
2771   else
2772     {
2773       /* Redefining a previously known filename extension.  */
2774 
2775       /* if (from_tty) */
2776       /*   query ("Really make files of type %s '%s'?", */
2777       /*          ext_args, language_str (lang));           */
2778 
2779       it->lang = lang;
2780     }
2781 }
2782 
2783 static void
2784 info_ext_lang_command (const char *args, int from_tty)
2785 {
2786   printf_filtered (_("Filename extensions and the languages they represent:"));
2787   printf_filtered ("\n\n");
2788   for (const filename_language &entry : filename_language_table)
2789     printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2790 		     language_str (entry.lang));
2791 }
2792 
2793 enum language
2794 deduce_language_from_filename (const char *filename)
2795 {
2796   const char *cp;
2797 
2798   if (filename != NULL)
2799     if ((cp = strrchr (filename, '.')) != NULL)
2800       {
2801 	for (const filename_language &entry : filename_language_table)
2802 	  if (entry.ext == cp)
2803 	    return entry.lang;
2804       }
2805 
2806   return language_unknown;
2807 }
2808 
2809 /* Allocate and initialize a new symbol table.
2810    CUST is from the result of allocate_compunit_symtab.  */
2811 
2812 struct symtab *
2813 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2814 {
2815   struct objfile *objfile = cust->objfile;
2816   struct symtab *symtab
2817     = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2818 
2819   symtab->filename
2820     = (const char *) bcache (filename, strlen (filename) + 1,
2821 			     objfile->per_bfd->filename_cache);
2822   symtab->fullname = NULL;
2823   symtab->language = deduce_language_from_filename (filename);
2824 
2825   /* This can be very verbose with lots of headers.
2826      Only print at higher debug levels.  */
2827   if (symtab_create_debug >= 2)
2828     {
2829       /* Be a bit clever with debugging messages, and don't print objfile
2830 	 every time, only when it changes.  */
2831       static char *last_objfile_name = NULL;
2832 
2833       if (last_objfile_name == NULL
2834 	  || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2835 	{
2836 	  xfree (last_objfile_name);
2837 	  last_objfile_name = xstrdup (objfile_name (objfile));
2838 	  fprintf_filtered (gdb_stdlog,
2839 			    "Creating one or more symtabs for objfile %s ...\n",
2840 			    last_objfile_name);
2841 	}
2842       fprintf_filtered (gdb_stdlog,
2843 			"Created symtab %s for module %s.\n",
2844 			host_address_to_string (symtab), filename);
2845     }
2846 
2847   /* Add it to CUST's list of symtabs.  */
2848   if (cust->filetabs == NULL)
2849     {
2850       cust->filetabs = symtab;
2851       cust->last_filetab = symtab;
2852     }
2853   else
2854     {
2855       cust->last_filetab->next = symtab;
2856       cust->last_filetab = symtab;
2857     }
2858 
2859   /* Backlink to the containing compunit symtab.  */
2860   symtab->compunit_symtab = cust;
2861 
2862   return symtab;
2863 }
2864 
2865 /* Allocate and initialize a new compunit.
2866    NAME is the name of the main source file, if there is one, or some
2867    descriptive text if there are no source files.  */
2868 
2869 struct compunit_symtab *
2870 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2871 {
2872   struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2873 					       struct compunit_symtab);
2874   const char *saved_name;
2875 
2876   cu->objfile = objfile;
2877 
2878   /* The name we record here is only for display/debugging purposes.
2879      Just save the basename to avoid path issues (too long for display,
2880      relative vs absolute, etc.).  */
2881   saved_name = lbasename (name);
2882   cu->name
2883     = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2884 				    strlen (saved_name));
2885 
2886   COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2887 
2888   if (symtab_create_debug)
2889     {
2890       fprintf_filtered (gdb_stdlog,
2891 			"Created compunit symtab %s for %s.\n",
2892 			host_address_to_string (cu),
2893 			cu->name);
2894     }
2895 
2896   return cu;
2897 }
2898 
2899 /* Hook CU to the objfile it comes from.  */
2900 
2901 void
2902 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2903 {
2904   cu->next = cu->objfile->compunit_symtabs;
2905   cu->objfile->compunit_symtabs = cu;
2906 }
2907 
2908 
2909 /* Reset all data structures in gdb which may contain references to
2910    symbol table data.  */
2911 
2912 void
2913 clear_symtab_users (symfile_add_flags add_flags)
2914 {
2915   /* Someday, we should do better than this, by only blowing away
2916      the things that really need to be blown.  */
2917 
2918   /* Clear the "current" symtab first, because it is no longer valid.
2919      breakpoint_re_set may try to access the current symtab.  */
2920   clear_current_source_symtab_and_line ();
2921 
2922   clear_displays ();
2923   clear_last_displayed_sal ();
2924   clear_pc_function_cache ();
2925   gdb::observers::new_objfile.notify (NULL);
2926 
2927   /* Clear globals which might have pointed into a removed objfile.
2928      FIXME: It's not clear which of these are supposed to persist
2929      between expressions and which ought to be reset each time.  */
2930   expression_context_block = NULL;
2931   innermost_block.reset ();
2932 
2933   /* Varobj may refer to old symbols, perform a cleanup.  */
2934   varobj_invalidate ();
2935 
2936   /* Now that the various caches have been cleared, we can re_set
2937      our breakpoints without risking it using stale data.  */
2938   if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2939     breakpoint_re_set ();
2940 }
2941 
2942 /* OVERLAYS:
2943    The following code implements an abstraction for debugging overlay sections.
2944 
2945    The target model is as follows:
2946    1) The gnu linker will permit multiple sections to be mapped into the
2947    same VMA, each with its own unique LMA (or load address).
2948    2) It is assumed that some runtime mechanism exists for mapping the
2949    sections, one by one, from the load address into the VMA address.
2950    3) This code provides a mechanism for gdb to keep track of which
2951    sections should be considered to be mapped from the VMA to the LMA.
2952    This information is used for symbol lookup, and memory read/write.
2953    For instance, if a section has been mapped then its contents
2954    should be read from the VMA, otherwise from the LMA.
2955 
2956    Two levels of debugger support for overlays are available.  One is
2957    "manual", in which the debugger relies on the user to tell it which
2958    overlays are currently mapped.  This level of support is
2959    implemented entirely in the core debugger, and the information about
2960    whether a section is mapped is kept in the objfile->obj_section table.
2961 
2962    The second level of support is "automatic", and is only available if
2963    the target-specific code provides functionality to read the target's
2964    overlay mapping table, and translate its contents for the debugger
2965    (by updating the mapped state information in the obj_section tables).
2966 
2967    The interface is as follows:
2968    User commands:
2969    overlay map <name>   -- tell gdb to consider this section mapped
2970    overlay unmap <name> -- tell gdb to consider this section unmapped
2971    overlay list         -- list the sections that GDB thinks are mapped
2972    overlay read-target  -- get the target's state of what's mapped
2973    overlay off/manual/auto -- set overlay debugging state
2974    Functional interface:
2975    find_pc_mapped_section(pc):    if the pc is in the range of a mapped
2976    section, return that section.
2977    find_pc_overlay(pc):       find any overlay section that contains
2978    the pc, either in its VMA or its LMA
2979    section_is_mapped(sect):       true if overlay is marked as mapped
2980    section_is_overlay(sect):      true if section's VMA != LMA
2981    pc_in_mapped_range(pc,sec):    true if pc belongs to section's VMA
2982    pc_in_unmapped_range(...):     true if pc belongs to section's LMA
2983    sections_overlap(sec1, sec2):  true if mapped sec1 and sec2 ranges overlap
2984    overlay_mapped_address(...):   map an address from section's LMA to VMA
2985    overlay_unmapped_address(...): map an address from section's VMA to LMA
2986    symbol_overlayed_address(...): Return a "current" address for symbol:
2987    either in VMA or LMA depending on whether
2988    the symbol's section is currently mapped.  */
2989 
2990 /* Overlay debugging state: */
2991 
2992 enum overlay_debugging_state overlay_debugging = ovly_off;
2993 int overlay_cache_invalid = 0;	/* True if need to refresh mapped state.  */
2994 
2995 /* Function: section_is_overlay (SECTION)
2996    Returns true if SECTION has VMA not equal to LMA, ie.
2997    SECTION is loaded at an address different from where it will "run".  */
2998 
2999 int
3000 section_is_overlay (struct obj_section *section)
3001 {
3002   if (overlay_debugging && section)
3003     {
3004       asection *bfd_section = section->the_bfd_section;
3005 
3006       if (bfd_section_lma (abfd, bfd_section) != 0
3007 	  && bfd_section_lma (abfd, bfd_section)
3008 	     != bfd_section_vma (abfd, bfd_section))
3009 	return 1;
3010     }
3011 
3012   return 0;
3013 }
3014 
3015 /* Function: overlay_invalidate_all (void)
3016    Invalidate the mapped state of all overlay sections (mark it as stale).  */
3017 
3018 static void
3019 overlay_invalidate_all (void)
3020 {
3021   struct obj_section *sect;
3022 
3023   for (objfile *objfile : current_program_space->objfiles ())
3024     ALL_OBJFILE_OSECTIONS (objfile, sect)
3025       if (section_is_overlay (sect))
3026 	sect->ovly_mapped = -1;
3027 }
3028 
3029 /* Function: section_is_mapped (SECTION)
3030    Returns true if section is an overlay, and is currently mapped.
3031 
3032    Access to the ovly_mapped flag is restricted to this function, so
3033    that we can do automatic update.  If the global flag
3034    OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3035    overlay_invalidate_all.  If the mapped state of the particular
3036    section is stale, then call TARGET_OVERLAY_UPDATE to refresh it.  */
3037 
3038 int
3039 section_is_mapped (struct obj_section *osect)
3040 {
3041   struct gdbarch *gdbarch;
3042 
3043   if (osect == 0 || !section_is_overlay (osect))
3044     return 0;
3045 
3046   switch (overlay_debugging)
3047     {
3048     default:
3049     case ovly_off:
3050       return 0;			/* overlay debugging off */
3051     case ovly_auto:		/* overlay debugging automatic */
3052       /* Unles there is a gdbarch_overlay_update function,
3053          there's really nothing useful to do here (can't really go auto).  */
3054       gdbarch = get_objfile_arch (osect->objfile);
3055       if (gdbarch_overlay_update_p (gdbarch))
3056 	{
3057 	  if (overlay_cache_invalid)
3058 	    {
3059 	      overlay_invalidate_all ();
3060 	      overlay_cache_invalid = 0;
3061 	    }
3062 	  if (osect->ovly_mapped == -1)
3063 	    gdbarch_overlay_update (gdbarch, osect);
3064 	}
3065       /* fall thru */
3066     case ovly_on:		/* overlay debugging manual */
3067       return osect->ovly_mapped == 1;
3068     }
3069 }
3070 
3071 /* Function: pc_in_unmapped_range
3072    If PC falls into the lma range of SECTION, return true, else false.  */
3073 
3074 CORE_ADDR
3075 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3076 {
3077   if (section_is_overlay (section))
3078     {
3079       bfd *abfd = section->objfile->obfd;
3080       asection *bfd_section = section->the_bfd_section;
3081 
3082       /* We assume the LMA is relocated by the same offset as the VMA.  */
3083       bfd_vma size = bfd_get_section_size (bfd_section);
3084       CORE_ADDR offset = obj_section_offset (section);
3085 
3086       if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3087 	  && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3088 	return 1;
3089     }
3090 
3091   return 0;
3092 }
3093 
3094 /* Function: pc_in_mapped_range
3095    If PC falls into the vma range of SECTION, return true, else false.  */
3096 
3097 CORE_ADDR
3098 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3099 {
3100   if (section_is_overlay (section))
3101     {
3102       if (obj_section_addr (section) <= pc
3103 	  && pc < obj_section_endaddr (section))
3104 	return 1;
3105     }
3106 
3107   return 0;
3108 }
3109 
3110 /* Return true if the mapped ranges of sections A and B overlap, false
3111    otherwise.  */
3112 
3113 static int
3114 sections_overlap (struct obj_section *a, struct obj_section *b)
3115 {
3116   CORE_ADDR a_start = obj_section_addr (a);
3117   CORE_ADDR a_end = obj_section_endaddr (a);
3118   CORE_ADDR b_start = obj_section_addr (b);
3119   CORE_ADDR b_end = obj_section_endaddr (b);
3120 
3121   return (a_start < b_end && b_start < a_end);
3122 }
3123 
3124 /* Function: overlay_unmapped_address (PC, SECTION)
3125    Returns the address corresponding to PC in the unmapped (load) range.
3126    May be the same as PC.  */
3127 
3128 CORE_ADDR
3129 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3130 {
3131   if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3132     {
3133       asection *bfd_section = section->the_bfd_section;
3134 
3135       return pc + bfd_section_lma (abfd, bfd_section)
3136 		- bfd_section_vma (abfd, bfd_section);
3137     }
3138 
3139   return pc;
3140 }
3141 
3142 /* Function: overlay_mapped_address (PC, SECTION)
3143    Returns the address corresponding to PC in the mapped (runtime) range.
3144    May be the same as PC.  */
3145 
3146 CORE_ADDR
3147 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3148 {
3149   if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3150     {
3151       asection *bfd_section = section->the_bfd_section;
3152 
3153       return pc + bfd_section_vma (abfd, bfd_section)
3154 		- bfd_section_lma (abfd, bfd_section);
3155     }
3156 
3157   return pc;
3158 }
3159 
3160 /* Function: symbol_overlayed_address
3161    Return one of two addresses (relative to the VMA or to the LMA),
3162    depending on whether the section is mapped or not.  */
3163 
3164 CORE_ADDR
3165 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3166 {
3167   if (overlay_debugging)
3168     {
3169       /* If the symbol has no section, just return its regular address.  */
3170       if (section == 0)
3171 	return address;
3172       /* If the symbol's section is not an overlay, just return its
3173 	 address.  */
3174       if (!section_is_overlay (section))
3175 	return address;
3176       /* If the symbol's section is mapped, just return its address.  */
3177       if (section_is_mapped (section))
3178 	return address;
3179       /*
3180        * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3181        * then return its LOADED address rather than its vma address!!
3182        */
3183       return overlay_unmapped_address (address, section);
3184     }
3185   return address;
3186 }
3187 
3188 /* Function: find_pc_overlay (PC)
3189    Return the best-match overlay section for PC:
3190    If PC matches a mapped overlay section's VMA, return that section.
3191    Else if PC matches an unmapped section's VMA, return that section.
3192    Else if PC matches an unmapped section's LMA, return that section.  */
3193 
3194 struct obj_section *
3195 find_pc_overlay (CORE_ADDR pc)
3196 {
3197   struct obj_section *osect, *best_match = NULL;
3198 
3199   if (overlay_debugging)
3200     {
3201       for (objfile *objfile : current_program_space->objfiles ())
3202 	ALL_OBJFILE_OSECTIONS (objfile, osect)
3203 	  if (section_is_overlay (osect))
3204 	    {
3205 	      if (pc_in_mapped_range (pc, osect))
3206 		{
3207 		  if (section_is_mapped (osect))
3208 		    return osect;
3209 		  else
3210 		    best_match = osect;
3211 		}
3212 	      else if (pc_in_unmapped_range (pc, osect))
3213 		best_match = osect;
3214 	    }
3215     }
3216   return best_match;
3217 }
3218 
3219 /* Function: find_pc_mapped_section (PC)
3220    If PC falls into the VMA address range of an overlay section that is
3221    currently marked as MAPPED, return that section.  Else return NULL.  */
3222 
3223 struct obj_section *
3224 find_pc_mapped_section (CORE_ADDR pc)
3225 {
3226   struct obj_section *osect;
3227 
3228   if (overlay_debugging)
3229     {
3230       for (objfile *objfile : current_program_space->objfiles ())
3231 	ALL_OBJFILE_OSECTIONS (objfile, osect)
3232 	  if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3233 	    return osect;
3234     }
3235 
3236   return NULL;
3237 }
3238 
3239 /* Function: list_overlays_command
3240    Print a list of mapped sections and their PC ranges.  */
3241 
3242 static void
3243 list_overlays_command (const char *args, int from_tty)
3244 {
3245   int nmapped = 0;
3246   struct obj_section *osect;
3247 
3248   if (overlay_debugging)
3249     {
3250       for (objfile *objfile : current_program_space->objfiles ())
3251 	ALL_OBJFILE_OSECTIONS (objfile, osect)
3252 	  if (section_is_mapped (osect))
3253 	    {
3254 	      struct gdbarch *gdbarch = get_objfile_arch (objfile);
3255 	      const char *name;
3256 	      bfd_vma lma, vma;
3257 	      int size;
3258 
3259 	      vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3260 	      lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3261 	      size = bfd_get_section_size (osect->the_bfd_section);
3262 	      name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3263 
3264 	      printf_filtered ("Section %s, loaded at ", name);
3265 	      fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3266 	      puts_filtered (" - ");
3267 	      fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3268 	      printf_filtered (", mapped at ");
3269 	      fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3270 	      puts_filtered (" - ");
3271 	      fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3272 	      puts_filtered ("\n");
3273 
3274 	      nmapped++;
3275 	    }
3276     }
3277   if (nmapped == 0)
3278     printf_filtered (_("No sections are mapped.\n"));
3279 }
3280 
3281 /* Function: map_overlay_command
3282    Mark the named section as mapped (ie. residing at its VMA address).  */
3283 
3284 static void
3285 map_overlay_command (const char *args, int from_tty)
3286 {
3287   struct obj_section *sec, *sec2;
3288 
3289   if (!overlay_debugging)
3290     error (_("Overlay debugging not enabled.  Use "
3291 	     "either the 'overlay auto' or\n"
3292 	     "the 'overlay manual' command."));
3293 
3294   if (args == 0 || *args == 0)
3295     error (_("Argument required: name of an overlay section"));
3296 
3297   /* First, find a section matching the user supplied argument.  */
3298   for (objfile *obj_file : current_program_space->objfiles ())
3299     ALL_OBJFILE_OSECTIONS (obj_file, sec)
3300       if (!strcmp (bfd_section_name (obj_file->obfd, sec->the_bfd_section),
3301 		   args))
3302 	{
3303 	  /* Now, check to see if the section is an overlay.  */
3304 	  if (!section_is_overlay (sec))
3305 	    continue;		/* not an overlay section */
3306 
3307 	  /* Mark the overlay as "mapped".  */
3308 	  sec->ovly_mapped = 1;
3309 
3310 	  /* Next, make a pass and unmap any sections that are
3311 	     overlapped by this new section: */
3312 	  for (objfile *objfile2 : current_program_space->objfiles ())
3313 	    ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3314 	      if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3315 									sec2))
3316 		{
3317 		  if (info_verbose)
3318 		    printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3319 				       bfd_section_name (obj_file->obfd,
3320 							 sec2->the_bfd_section));
3321 		  sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2.  */
3322 		}
3323 	  return;
3324 	}
3325   error (_("No overlay section called %s"), args);
3326 }
3327 
3328 /* Function: unmap_overlay_command
3329    Mark the overlay section as unmapped
3330    (ie. resident in its LMA address range, rather than the VMA range).  */
3331 
3332 static void
3333 unmap_overlay_command (const char *args, int from_tty)
3334 {
3335   struct obj_section *sec = NULL;
3336 
3337   if (!overlay_debugging)
3338     error (_("Overlay debugging not enabled.  "
3339 	     "Use either the 'overlay auto' or\n"
3340 	     "the 'overlay manual' command."));
3341 
3342   if (args == 0 || *args == 0)
3343     error (_("Argument required: name of an overlay section"));
3344 
3345   /* First, find a section matching the user supplied argument.  */
3346   for (objfile *objfile : current_program_space->objfiles ())
3347     ALL_OBJFILE_OSECTIONS (objfile, sec)
3348       if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3349 	{
3350 	  if (!sec->ovly_mapped)
3351 	    error (_("Section %s is not mapped"), args);
3352 	  sec->ovly_mapped = 0;
3353 	  return;
3354 	}
3355   error (_("No overlay section called %s"), args);
3356 }
3357 
3358 /* Function: overlay_auto_command
3359    A utility command to turn on overlay debugging.
3360    Possibly this should be done via a set/show command.  */
3361 
3362 static void
3363 overlay_auto_command (const char *args, int from_tty)
3364 {
3365   overlay_debugging = ovly_auto;
3366   enable_overlay_breakpoints ();
3367   if (info_verbose)
3368     printf_unfiltered (_("Automatic overlay debugging enabled."));
3369 }
3370 
3371 /* Function: overlay_manual_command
3372    A utility command to turn on overlay debugging.
3373    Possibly this should be done via a set/show command.  */
3374 
3375 static void
3376 overlay_manual_command (const char *args, int from_tty)
3377 {
3378   overlay_debugging = ovly_on;
3379   disable_overlay_breakpoints ();
3380   if (info_verbose)
3381     printf_unfiltered (_("Overlay debugging enabled."));
3382 }
3383 
3384 /* Function: overlay_off_command
3385    A utility command to turn on overlay debugging.
3386    Possibly this should be done via a set/show command.  */
3387 
3388 static void
3389 overlay_off_command (const char *args, int from_tty)
3390 {
3391   overlay_debugging = ovly_off;
3392   disable_overlay_breakpoints ();
3393   if (info_verbose)
3394     printf_unfiltered (_("Overlay debugging disabled."));
3395 }
3396 
3397 static void
3398 overlay_load_command (const char *args, int from_tty)
3399 {
3400   struct gdbarch *gdbarch = get_current_arch ();
3401 
3402   if (gdbarch_overlay_update_p (gdbarch))
3403     gdbarch_overlay_update (gdbarch, NULL);
3404   else
3405     error (_("This target does not know how to read its overlay state."));
3406 }
3407 
3408 /* Function: overlay_command
3409    A place-holder for a mis-typed command.  */
3410 
3411 /* Command list chain containing all defined "overlay" subcommands.  */
3412 static struct cmd_list_element *overlaylist;
3413 
3414 static void
3415 overlay_command (const char *args, int from_tty)
3416 {
3417   printf_unfiltered
3418     ("\"overlay\" must be followed by the name of an overlay command.\n");
3419   help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3420 }
3421 
3422 /* Target Overlays for the "Simplest" overlay manager:
3423 
3424    This is GDB's default target overlay layer.  It works with the
3425    minimal overlay manager supplied as an example by Cygnus.  The
3426    entry point is via a function pointer "gdbarch_overlay_update",
3427    so targets that use a different runtime overlay manager can
3428    substitute their own overlay_update function and take over the
3429    function pointer.
3430 
3431    The overlay_update function pokes around in the target's data structures
3432    to see what overlays are mapped, and updates GDB's overlay mapping with
3433    this information.
3434 
3435    In this simple implementation, the target data structures are as follows:
3436    unsigned _novlys;            /# number of overlay sections #/
3437    unsigned _ovly_table[_novlys][4] = {
3438    {VMA, OSIZE, LMA, MAPPED},    /# one entry per overlay section #/
3439    {..., ...,  ..., ...},
3440    }
3441    unsigned _novly_regions;     /# number of overlay regions #/
3442    unsigned _ovly_region_table[_novly_regions][3] = {
3443    {VMA, OSIZE, MAPPED_TO_LMA},  /# one entry per overlay region #/
3444    {..., ...,  ...},
3445    }
3446    These functions will attempt to update GDB's mappedness state in the
3447    symbol section table, based on the target's mappedness state.
3448 
3449    To do this, we keep a cached copy of the target's _ovly_table, and
3450    attempt to detect when the cached copy is invalidated.  The main
3451    entry point is "simple_overlay_update(SECT), which looks up SECT in
3452    the cached table and re-reads only the entry for that section from
3453    the target (whenever possible).  */
3454 
3455 /* Cached, dynamically allocated copies of the target data structures: */
3456 static unsigned (*cache_ovly_table)[4] = 0;
3457 static unsigned cache_novlys = 0;
3458 static CORE_ADDR cache_ovly_table_base = 0;
3459 enum ovly_index
3460   {
3461     VMA, OSIZE, LMA, MAPPED
3462   };
3463 
3464 /* Throw away the cached copy of _ovly_table.  */
3465 
3466 static void
3467 simple_free_overlay_table (void)
3468 {
3469   if (cache_ovly_table)
3470     xfree (cache_ovly_table);
3471   cache_novlys = 0;
3472   cache_ovly_table = NULL;
3473   cache_ovly_table_base = 0;
3474 }
3475 
3476 /* Read an array of ints of size SIZE from the target into a local buffer.
3477    Convert to host order.  int LEN is number of ints.  */
3478 
3479 static void
3480 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3481 			int len, int size, enum bfd_endian byte_order)
3482 {
3483   /* FIXME (alloca): Not safe if array is very large.  */
3484   gdb_byte *buf = (gdb_byte *) alloca (len * size);
3485   int i;
3486 
3487   read_memory (memaddr, buf, len * size);
3488   for (i = 0; i < len; i++)
3489     myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3490 }
3491 
3492 /* Find and grab a copy of the target _ovly_table
3493    (and _novlys, which is needed for the table's size).  */
3494 
3495 static int
3496 simple_read_overlay_table (void)
3497 {
3498   struct bound_minimal_symbol novlys_msym;
3499   struct bound_minimal_symbol ovly_table_msym;
3500   struct gdbarch *gdbarch;
3501   int word_size;
3502   enum bfd_endian byte_order;
3503 
3504   simple_free_overlay_table ();
3505   novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3506   if (! novlys_msym.minsym)
3507     {
3508       error (_("Error reading inferior's overlay table: "
3509              "couldn't find `_novlys' variable\n"
3510              "in inferior.  Use `overlay manual' mode."));
3511       return 0;
3512     }
3513 
3514   ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3515   if (! ovly_table_msym.minsym)
3516     {
3517       error (_("Error reading inferior's overlay table: couldn't find "
3518              "`_ovly_table' array\n"
3519              "in inferior.  Use `overlay manual' mode."));
3520       return 0;
3521     }
3522 
3523   gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3524   word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3525   byte_order = gdbarch_byte_order (gdbarch);
3526 
3527   cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3528 				      4, byte_order);
3529   cache_ovly_table
3530     = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3531   cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3532   read_target_long_array (cache_ovly_table_base,
3533                           (unsigned int *) cache_ovly_table,
3534                           cache_novlys * 4, word_size, byte_order);
3535 
3536   return 1;			/* SUCCESS */
3537 }
3538 
3539 /* Function: simple_overlay_update_1
3540    A helper function for simple_overlay_update.  Assuming a cached copy
3541    of _ovly_table exists, look through it to find an entry whose vma,
3542    lma and size match those of OSECT.  Re-read the entry and make sure
3543    it still matches OSECT (else the table may no longer be valid).
3544    Set OSECT's mapped state to match the entry.  Return: 1 for
3545    success, 0 for failure.  */
3546 
3547 static int
3548 simple_overlay_update_1 (struct obj_section *osect)
3549 {
3550   int i;
3551   asection *bsect = osect->the_bfd_section;
3552   struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3553   int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3554   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3555 
3556   for (i = 0; i < cache_novlys; i++)
3557     if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3558 	&& cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3559       {
3560 	read_target_long_array (cache_ovly_table_base + i * word_size,
3561 				(unsigned int *) cache_ovly_table[i],
3562 				4, word_size, byte_order);
3563 	if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3564 	    && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3565 	  {
3566 	    osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3567 	    return 1;
3568 	  }
3569 	else	/* Warning!  Warning!  Target's ovly table has changed!  */
3570 	  return 0;
3571       }
3572   return 0;
3573 }
3574 
3575 /* Function: simple_overlay_update
3576    If OSECT is NULL, then update all sections' mapped state
3577    (after re-reading the entire target _ovly_table).
3578    If OSECT is non-NULL, then try to find a matching entry in the
3579    cached ovly_table and update only OSECT's mapped state.
3580    If a cached entry can't be found or the cache isn't valid, then
3581    re-read the entire cache, and go ahead and update all sections.  */
3582 
3583 void
3584 simple_overlay_update (struct obj_section *osect)
3585 {
3586   /* Were we given an osect to look up?  NULL means do all of them.  */
3587   if (osect)
3588     /* Have we got a cached copy of the target's overlay table?  */
3589     if (cache_ovly_table != NULL)
3590       {
3591 	/* Does its cached location match what's currently in the
3592 	   symtab?  */
3593 	struct bound_minimal_symbol minsym
3594 	  = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3595 
3596 	if (minsym.minsym == NULL)
3597 	  error (_("Error reading inferior's overlay table: couldn't "
3598 		   "find `_ovly_table' array\n"
3599 		   "in inferior.  Use `overlay manual' mode."));
3600 
3601 	if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3602 	  /* Then go ahead and try to look up this single section in
3603 	     the cache.  */
3604 	  if (simple_overlay_update_1 (osect))
3605 	    /* Found it!  We're done.  */
3606 	    return;
3607       }
3608 
3609   /* Cached table no good: need to read the entire table anew.
3610      Or else we want all the sections, in which case it's actually
3611      more efficient to read the whole table in one block anyway.  */
3612 
3613   if (! simple_read_overlay_table ())
3614     return;
3615 
3616   /* Now may as well update all sections, even if only one was requested.  */
3617   for (objfile *objfile : current_program_space->objfiles ())
3618     ALL_OBJFILE_OSECTIONS (objfile, osect)
3619       if (section_is_overlay (osect))
3620 	{
3621 	  int i;
3622 	  asection *bsect = osect->the_bfd_section;
3623 
3624 	  for (i = 0; i < cache_novlys; i++)
3625 	    if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3626 		&& cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3627 	      { /* obj_section matches i'th entry in ovly_table.  */
3628 		osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3629 		break;		/* finished with inner for loop: break out.  */
3630 	      }
3631 	}
3632 }
3633 
3634 /* Set the output sections and output offsets for section SECTP in
3635    ABFD.  The relocation code in BFD will read these offsets, so we
3636    need to be sure they're initialized.  We map each section to itself,
3637    with no offset; this means that SECTP->vma will be honored.  */
3638 
3639 static void
3640 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3641 {
3642   sectp->output_section = sectp;
3643   sectp->output_offset = 0;
3644 }
3645 
3646 /* Default implementation for sym_relocate.  */
3647 
3648 bfd_byte *
3649 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3650                           bfd_byte *buf)
3651 {
3652   /* Use sectp->owner instead of objfile->obfd.  sectp may point to a
3653      DWO file.  */
3654   bfd *abfd = sectp->owner;
3655 
3656   /* We're only interested in sections with relocation
3657      information.  */
3658   if ((sectp->flags & SEC_RELOC) == 0)
3659     return NULL;
3660 
3661   /* We will handle section offsets properly elsewhere, so relocate as if
3662      all sections begin at 0.  */
3663   bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3664 
3665   return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3666 }
3667 
3668 /* Relocate the contents of a debug section SECTP in ABFD.  The
3669    contents are stored in BUF if it is non-NULL, or returned in a
3670    malloc'd buffer otherwise.
3671 
3672    For some platforms and debug info formats, shared libraries contain
3673    relocations against the debug sections (particularly for DWARF-2;
3674    one affected platform is PowerPC GNU/Linux, although it depends on
3675    the version of the linker in use).  Also, ELF object files naturally
3676    have unresolved relocations for their debug sections.  We need to apply
3677    the relocations in order to get the locations of symbols correct.
3678    Another example that may require relocation processing, is the
3679    DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3680    debug section.  */
3681 
3682 bfd_byte *
3683 symfile_relocate_debug_section (struct objfile *objfile,
3684                                 asection *sectp, bfd_byte *buf)
3685 {
3686   gdb_assert (objfile->sf->sym_relocate);
3687 
3688   return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3689 }
3690 
3691 struct symfile_segment_data *
3692 get_symfile_segment_data (bfd *abfd)
3693 {
3694   const struct sym_fns *sf = find_sym_fns (abfd);
3695 
3696   if (sf == NULL)
3697     return NULL;
3698 
3699   return sf->sym_segments (abfd);
3700 }
3701 
3702 void
3703 free_symfile_segment_data (struct symfile_segment_data *data)
3704 {
3705   xfree (data->segment_bases);
3706   xfree (data->segment_sizes);
3707   xfree (data->segment_info);
3708   xfree (data);
3709 }
3710 
3711 /* Given:
3712    - DATA, containing segment addresses from the object file ABFD, and
3713      the mapping from ABFD's sections onto the segments that own them,
3714      and
3715    - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3716      segment addresses reported by the target,
3717    store the appropriate offsets for each section in OFFSETS.
3718 
3719    If there are fewer entries in SEGMENT_BASES than there are segments
3720    in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3721 
3722    If there are more entries, then ignore the extra.  The target may
3723    not be able to distinguish between an empty data segment and a
3724    missing data segment; a missing text segment is less plausible.  */
3725 
3726 int
3727 symfile_map_offsets_to_segments (bfd *abfd,
3728 				 const struct symfile_segment_data *data,
3729 				 struct section_offsets *offsets,
3730 				 int num_segment_bases,
3731 				 const CORE_ADDR *segment_bases)
3732 {
3733   int i;
3734   asection *sect;
3735 
3736   /* It doesn't make sense to call this function unless you have some
3737      segment base addresses.  */
3738   gdb_assert (num_segment_bases > 0);
3739 
3740   /* If we do not have segment mappings for the object file, we
3741      can not relocate it by segments.  */
3742   gdb_assert (data != NULL);
3743   gdb_assert (data->num_segments > 0);
3744 
3745   for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3746     {
3747       int which = data->segment_info[i];
3748 
3749       gdb_assert (0 <= which && which <= data->num_segments);
3750 
3751       /* Don't bother computing offsets for sections that aren't
3752          loaded as part of any segment.  */
3753       if (! which)
3754         continue;
3755 
3756       /* Use the last SEGMENT_BASES entry as the address of any extra
3757          segments mentioned in DATA->segment_info.  */
3758       if (which > num_segment_bases)
3759         which = num_segment_bases;
3760 
3761       offsets->offsets[i] = (segment_bases[which - 1]
3762                              - data->segment_bases[which - 1]);
3763     }
3764 
3765   return 1;
3766 }
3767 
3768 static void
3769 symfile_find_segment_sections (struct objfile *objfile)
3770 {
3771   bfd *abfd = objfile->obfd;
3772   int i;
3773   asection *sect;
3774   struct symfile_segment_data *data;
3775 
3776   data = get_symfile_segment_data (objfile->obfd);
3777   if (data == NULL)
3778     return;
3779 
3780   if (data->num_segments != 1 && data->num_segments != 2)
3781     {
3782       free_symfile_segment_data (data);
3783       return;
3784     }
3785 
3786   for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3787     {
3788       int which = data->segment_info[i];
3789 
3790       if (which == 1)
3791 	{
3792 	  if (objfile->sect_index_text == -1)
3793 	    objfile->sect_index_text = sect->index;
3794 
3795 	  if (objfile->sect_index_rodata == -1)
3796 	    objfile->sect_index_rodata = sect->index;
3797 	}
3798       else if (which == 2)
3799 	{
3800 	  if (objfile->sect_index_data == -1)
3801 	    objfile->sect_index_data = sect->index;
3802 
3803 	  if (objfile->sect_index_bss == -1)
3804 	    objfile->sect_index_bss = sect->index;
3805 	}
3806     }
3807 
3808   free_symfile_segment_data (data);
3809 }
3810 
3811 /* Listen for free_objfile events.  */
3812 
3813 static void
3814 symfile_free_objfile (struct objfile *objfile)
3815 {
3816   /* Remove the target sections owned by this objfile.  */
3817   if (objfile != NULL)
3818     remove_target_sections ((void *) objfile);
3819 }
3820 
3821 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3822    Expand all symtabs that match the specified criteria.
3823    See quick_symbol_functions.expand_symtabs_matching for details.  */
3824 
3825 void
3826 expand_symtabs_matching
3827   (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3828    const lookup_name_info &lookup_name,
3829    gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3830    gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3831    enum search_domain kind)
3832 {
3833   for (objfile *objfile : current_program_space->objfiles ())
3834     {
3835       if (objfile->sf)
3836 	objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3837 						  lookup_name,
3838 						  symbol_matcher,
3839 						  expansion_notify, kind);
3840     }
3841 }
3842 
3843 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3844    Map function FUN over every file.
3845    See quick_symbol_functions.map_symbol_filenames for details.  */
3846 
3847 void
3848 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3849 		      int need_fullname)
3850 {
3851   for (objfile *objfile : current_program_space->objfiles ())
3852     {
3853       if (objfile->sf)
3854 	objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3855 					       need_fullname);
3856     }
3857 }
3858 
3859 #if GDB_SELF_TEST
3860 
3861 namespace selftests {
3862 namespace filename_language {
3863 
3864 static void test_filename_language ()
3865 {
3866   /* This test messes up the filename_language_table global.  */
3867   scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3868 
3869   /* Test deducing an unknown extension.  */
3870   language lang = deduce_language_from_filename ("myfile.blah");
3871   SELF_CHECK (lang == language_unknown);
3872 
3873   /* Test deducing a known extension.  */
3874   lang = deduce_language_from_filename ("myfile.c");
3875   SELF_CHECK (lang == language_c);
3876 
3877   /* Test adding a new extension using the internal API.  */
3878   add_filename_language (".blah", language_pascal);
3879   lang = deduce_language_from_filename ("myfile.blah");
3880   SELF_CHECK (lang == language_pascal);
3881 }
3882 
3883 static void
3884 test_set_ext_lang_command ()
3885 {
3886   /* This test messes up the filename_language_table global.  */
3887   scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3888 
3889   /* Confirm that the .hello extension is not known.  */
3890   language lang = deduce_language_from_filename ("cake.hello");
3891   SELF_CHECK (lang == language_unknown);
3892 
3893   /* Test adding a new extension using the CLI command.  */
3894   gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3895   ext_args = args_holder.get ();
3896   set_ext_lang_command (NULL, 1, NULL);
3897 
3898   lang = deduce_language_from_filename ("cake.hello");
3899   SELF_CHECK (lang == language_rust);
3900 
3901   /* Test overriding an existing extension using the CLI command.  */
3902   int size_before = filename_language_table.size ();
3903   args_holder.reset (xstrdup (".hello pascal"));
3904   ext_args = args_holder.get ();
3905   set_ext_lang_command (NULL, 1, NULL);
3906   int size_after = filename_language_table.size ();
3907 
3908   lang = deduce_language_from_filename ("cake.hello");
3909   SELF_CHECK (lang == language_pascal);
3910   SELF_CHECK (size_before == size_after);
3911 }
3912 
3913 } /* namespace filename_language */
3914 } /* namespace selftests */
3915 
3916 #endif /* GDB_SELF_TEST */
3917 
3918 void
3919 _initialize_symfile (void)
3920 {
3921   struct cmd_list_element *c;
3922 
3923   gdb::observers::free_objfile.attach (symfile_free_objfile);
3924 
3925 #define READNOW_READNEVER_HELP \
3926   "The '-readnow' option will cause GDB to read the entire symbol file\n\
3927 immediately.  This makes the command slower, but may make future operations\n\
3928 faster.\n\
3929 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3930 symbolic debug information."
3931 
3932   c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3933 Load symbol table from executable file FILE.\n\
3934 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3935 OFF is an optional offset which is added to each section address.\n\
3936 The `file' command can also load symbol tables, as well as setting the file\n\
3937 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3938   set_cmd_completer (c, filename_completer);
3939 
3940   c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3941 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3942 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3943 [-s SECT-NAME SECT-ADDR]...\n\
3944 ADDR is the starting address of the file's text.\n\
3945 Each '-s' argument provides a section name and address, and\n\
3946 should be specified if the data and bss segments are not contiguous\n\
3947 with the text.  SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3948 OFF is an optional offset which is added to the default load addresses\n\
3949 of all sections for which no other address was specified.\n"
3950 READNOW_READNEVER_HELP),
3951 	       &cmdlist);
3952   set_cmd_completer (c, filename_completer);
3953 
3954   c = add_cmd ("remove-symbol-file", class_files,
3955 	       remove_symbol_file_command, _("\
3956 Remove a symbol file added via the add-symbol-file command.\n\
3957 Usage: remove-symbol-file FILENAME\n\
3958        remove-symbol-file -a ADDRESS\n\
3959 The file to remove can be identified by its filename or by an address\n\
3960 that lies within the boundaries of this symbol file in memory."),
3961 	       &cmdlist);
3962 
3963   c = add_cmd ("load", class_files, load_command, _("\
3964 Dynamically load FILE into the running program, and record its symbols\n\
3965 for access from GDB.\n\
3966 Usage: load [FILE] [OFFSET]\n\
3967 An optional load OFFSET may also be given as a literal address.\n\
3968 When OFFSET is provided, FILE must also be provided.  FILE can be provided\n\
3969 on its own."), &cmdlist);
3970   set_cmd_completer (c, filename_completer);
3971 
3972   add_prefix_cmd ("overlay", class_support, overlay_command,
3973 		  _("Commands for debugging overlays."), &overlaylist,
3974 		  "overlay ", 0, &cmdlist);
3975 
3976   add_com_alias ("ovly", "overlay", class_alias, 1);
3977   add_com_alias ("ov", "overlay", class_alias, 1);
3978 
3979   add_cmd ("map-overlay", class_support, map_overlay_command,
3980 	   _("Assert that an overlay section is mapped."), &overlaylist);
3981 
3982   add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3983 	   _("Assert that an overlay section is unmapped."), &overlaylist);
3984 
3985   add_cmd ("list-overlays", class_support, list_overlays_command,
3986 	   _("List mappings of overlay sections."), &overlaylist);
3987 
3988   add_cmd ("manual", class_support, overlay_manual_command,
3989 	   _("Enable overlay debugging."), &overlaylist);
3990   add_cmd ("off", class_support, overlay_off_command,
3991 	   _("Disable overlay debugging."), &overlaylist);
3992   add_cmd ("auto", class_support, overlay_auto_command,
3993 	   _("Enable automatic overlay debugging."), &overlaylist);
3994   add_cmd ("load-target", class_support, overlay_load_command,
3995 	   _("Read the overlay mapping state from the target."), &overlaylist);
3996 
3997   /* Filename extension to source language lookup table: */
3998   add_setshow_string_noescape_cmd ("extension-language", class_files,
3999 				   &ext_args, _("\
4000 Set mapping between filename extension and source language."), _("\
4001 Show mapping between filename extension and source language."), _("\
4002 Usage: set extension-language .foo bar"),
4003 				   set_ext_lang_command,
4004 				   show_ext_args,
4005 				   &setlist, &showlist);
4006 
4007   add_info ("extensions", info_ext_lang_command,
4008 	    _("All filename extensions associated with a source language."));
4009 
4010   add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4011 				     &debug_file_directory, _("\
4012 Set the directories where separate debug symbols are searched for."), _("\
4013 Show the directories where separate debug symbols are searched for."), _("\
4014 Separate debug symbols are first searched for in the same\n\
4015 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4016 and lastly at the path of the directory of the binary with\n\
4017 each global debug-file-directory component prepended."),
4018 				     NULL,
4019 				     show_debug_file_directory,
4020 				     &setlist, &showlist);
4021 
4022   add_setshow_enum_cmd ("symbol-loading", no_class,
4023 			print_symbol_loading_enums, &print_symbol_loading,
4024 			_("\
4025 Set printing of symbol loading messages."), _("\
4026 Show printing of symbol loading messages."), _("\
4027 off   == turn all messages off\n\
4028 brief == print messages for the executable,\n\
4029          and brief messages for shared libraries\n\
4030 full  == print messages for the executable,\n\
4031          and messages for each shared library."),
4032 			NULL,
4033 			NULL,
4034 			&setprintlist, &showprintlist);
4035 
4036   add_setshow_boolean_cmd ("separate-debug-file", no_class,
4037 			   &separate_debug_file_debug, _("\
4038 Set printing of separate debug info file search debug."), _("\
4039 Show printing of separate debug info file search debug."), _("\
4040 When on, GDB prints the searched locations while looking for separate debug \
4041 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
4042 
4043 #if GDB_SELF_TEST
4044   selftests::register_test
4045     ("filename_language", selftests::filename_language::test_filename_language);
4046   selftests::register_test
4047     ("set_ext_lang_command",
4048      selftests::filename_language::test_set_ext_lang_command);
4049 #endif
4050 }
4051