1 /* Generic symbol file reading for the GNU debugger, GDB. 2 3 Copyright (C) 1990-2023 Free Software Foundation, Inc. 4 5 Contributed by Cygnus Support, using pieces from other GDB modules. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 #include "defs.h" 23 #include "arch-utils.h" 24 #include "bfdlink.h" 25 #include "symtab.h" 26 #include "gdbtypes.h" 27 #include "gdbcore.h" 28 #include "frame.h" 29 #include "target.h" 30 #include "value.h" 31 #include "symfile.h" 32 #include "objfiles.h" 33 #include "source.h" 34 #include "gdbcmd.h" 35 #include "breakpoint.h" 36 #include "language.h" 37 #include "complaints.h" 38 #include "demangle.h" 39 #include "inferior.h" 40 #include "regcache.h" 41 #include "filenames.h" /* for DOSish file names */ 42 #include "gdb-stabs.h" 43 #include "gdbsupport/gdb_obstack.h" 44 #include "completer.h" 45 #include "bcache.h" 46 #include "hashtab.h" 47 #include "readline/tilde.h" 48 #include "block.h" 49 #include "observable.h" 50 #include "exec.h" 51 #include "parser-defs.h" 52 #include "varobj.h" 53 #include "elf-bfd.h" 54 #include "solib.h" 55 #include "remote.h" 56 #include "stack.h" 57 #include "gdb_bfd.h" 58 #include "cli/cli-utils.h" 59 #include "gdbsupport/byte-vector.h" 60 #include "gdbsupport/pathstuff.h" 61 #include "gdbsupport/selftest.h" 62 #include "cli/cli-style.h" 63 #include "gdbsupport/forward-scope-exit.h" 64 #include "gdbsupport/buildargv.h" 65 66 #include <sys/types.h> 67 #include <fcntl.h> 68 #include <sys/stat.h> 69 #include <ctype.h> 70 #include <chrono> 71 #include <algorithm> 72 73 int (*deprecated_ui_load_progress_hook) (const char *section, 74 unsigned long num); 75 void (*deprecated_show_load_progress) (const char *section, 76 unsigned long section_sent, 77 unsigned long section_size, 78 unsigned long total_sent, 79 unsigned long total_size); 80 void (*deprecated_pre_add_symbol_hook) (const char *); 81 void (*deprecated_post_add_symbol_hook) (void); 82 83 using clear_symtab_users_cleanup 84 = FORWARD_SCOPE_EXIT (clear_symtab_users); 85 86 /* Global variables owned by this file. */ 87 88 /* See symfile.h. */ 89 90 int readnow_symbol_files; 91 92 /* See symfile.h. */ 93 94 int readnever_symbol_files; 95 96 /* Functions this file defines. */ 97 98 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags, 99 objfile_flags flags, CORE_ADDR reloff); 100 101 static const struct sym_fns *find_sym_fns (bfd *); 102 103 static void overlay_invalidate_all (void); 104 105 static void simple_free_overlay_table (void); 106 107 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int, 108 enum bfd_endian); 109 110 static int simple_read_overlay_table (void); 111 112 static int simple_overlay_update_1 (struct obj_section *); 113 114 static void symfile_find_segment_sections (struct objfile *objfile); 115 116 /* List of all available sym_fns. On gdb startup, each object file reader 117 calls add_symtab_fns() to register information on each format it is 118 prepared to read. */ 119 120 struct registered_sym_fns 121 { 122 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_) 123 : sym_flavour (sym_flavour_), sym_fns (sym_fns_) 124 {} 125 126 /* BFD flavour that we handle. */ 127 enum bfd_flavour sym_flavour; 128 129 /* The "vtable" of symbol functions. */ 130 const struct sym_fns *sym_fns; 131 }; 132 133 static std::vector<registered_sym_fns> symtab_fns; 134 135 /* Values for "set print symbol-loading". */ 136 137 const char print_symbol_loading_off[] = "off"; 138 const char print_symbol_loading_brief[] = "brief"; 139 const char print_symbol_loading_full[] = "full"; 140 static const char *print_symbol_loading_enums[] = 141 { 142 print_symbol_loading_off, 143 print_symbol_loading_brief, 144 print_symbol_loading_full, 145 NULL 146 }; 147 static const char *print_symbol_loading = print_symbol_loading_full; 148 149 /* See symfile.h. */ 150 151 bool auto_solib_add = true; 152 153 154 /* Return non-zero if symbol-loading messages should be printed. 155 FROM_TTY is the standard from_tty argument to gdb commands. 156 If EXEC is non-zero the messages are for the executable. 157 Otherwise, messages are for shared libraries. 158 If FULL is non-zero then the caller is printing a detailed message. 159 E.g., the message includes the shared library name. 160 Otherwise, the caller is printing a brief "summary" message. */ 161 162 int 163 print_symbol_loading_p (int from_tty, int exec, int full) 164 { 165 if (!from_tty && !info_verbose) 166 return 0; 167 168 if (exec) 169 { 170 /* We don't check FULL for executables, there are few such 171 messages, therefore brief == full. */ 172 return print_symbol_loading != print_symbol_loading_off; 173 } 174 if (full) 175 return print_symbol_loading == print_symbol_loading_full; 176 return print_symbol_loading == print_symbol_loading_brief; 177 } 178 179 /* True if we are reading a symbol table. */ 180 181 int currently_reading_symtab = 0; 182 183 /* Increment currently_reading_symtab and return a cleanup that can be 184 used to decrement it. */ 185 186 scoped_restore_tmpl<int> 187 increment_reading_symtab (void) 188 { 189 gdb_assert (currently_reading_symtab >= 0); 190 return make_scoped_restore (¤tly_reading_symtab, 191 currently_reading_symtab + 1); 192 } 193 194 /* Remember the lowest-addressed loadable section we've seen. 195 196 In case of equal vmas, the section with the largest size becomes the 197 lowest-addressed loadable section. 198 199 If the vmas and sizes are equal, the last section is considered the 200 lowest-addressed loadable section. */ 201 202 static void 203 find_lowest_section (asection *sect, asection **lowest) 204 { 205 if (0 == (bfd_section_flags (sect) & (SEC_ALLOC | SEC_LOAD))) 206 return; 207 if (!*lowest) 208 *lowest = sect; /* First loadable section */ 209 else if (bfd_section_vma (*lowest) > bfd_section_vma (sect)) 210 *lowest = sect; /* A lower loadable section */ 211 else if (bfd_section_vma (*lowest) == bfd_section_vma (sect) 212 && (bfd_section_size (*lowest) <= bfd_section_size (sect))) 213 *lowest = sect; 214 } 215 216 /* Build (allocate and populate) a section_addr_info struct from 217 an existing section table. */ 218 219 section_addr_info 220 build_section_addr_info_from_section_table (const target_section_table &table) 221 { 222 section_addr_info sap; 223 224 for (const target_section &stp : table) 225 { 226 struct bfd_section *asect = stp.the_bfd_section; 227 bfd *abfd = asect->owner; 228 229 if (bfd_section_flags (asect) & (SEC_ALLOC | SEC_LOAD) 230 && sap.size () < table.size ()) 231 sap.emplace_back (stp.addr, 232 bfd_section_name (asect), 233 gdb_bfd_section_index (abfd, asect)); 234 } 235 236 return sap; 237 } 238 239 /* Create a section_addr_info from section offsets in ABFD. */ 240 241 static section_addr_info 242 build_section_addr_info_from_bfd (bfd *abfd) 243 { 244 struct bfd_section *sec; 245 246 section_addr_info sap; 247 for (sec = abfd->sections; sec != NULL; sec = sec->next) 248 if (bfd_section_flags (sec) & (SEC_ALLOC | SEC_LOAD)) 249 sap.emplace_back (bfd_section_vma (sec), 250 bfd_section_name (sec), 251 gdb_bfd_section_index (abfd, sec)); 252 253 return sap; 254 } 255 256 /* Create a section_addr_info from section offsets in OBJFILE. */ 257 258 section_addr_info 259 build_section_addr_info_from_objfile (const struct objfile *objfile) 260 { 261 int i; 262 263 /* Before reread_symbols gets rewritten it is not safe to call: 264 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd)); 265 */ 266 section_addr_info sap 267 = build_section_addr_info_from_bfd (objfile->obfd.get ()); 268 for (i = 0; i < sap.size (); i++) 269 { 270 int sectindex = sap[i].sectindex; 271 272 sap[i].addr += objfile->section_offsets[sectindex]; 273 } 274 return sap; 275 } 276 277 /* Initialize OBJFILE's sect_index_* members. */ 278 279 static void 280 init_objfile_sect_indices (struct objfile *objfile) 281 { 282 asection *sect; 283 int i; 284 285 sect = bfd_get_section_by_name (objfile->obfd.get (), ".text"); 286 if (sect) 287 objfile->sect_index_text = sect->index; 288 289 sect = bfd_get_section_by_name (objfile->obfd.get (), ".data"); 290 if (sect) 291 objfile->sect_index_data = sect->index; 292 293 sect = bfd_get_section_by_name (objfile->obfd.get (), ".bss"); 294 if (sect) 295 objfile->sect_index_bss = sect->index; 296 297 sect = bfd_get_section_by_name (objfile->obfd.get (), ".rodata"); 298 if (sect) 299 objfile->sect_index_rodata = sect->index; 300 301 /* This is where things get really weird... We MUST have valid 302 indices for the various sect_index_* members or gdb will abort. 303 So if for example, there is no ".text" section, we have to 304 accomodate that. First, check for a file with the standard 305 one or two segments. */ 306 307 symfile_find_segment_sections (objfile); 308 309 /* Except when explicitly adding symbol files at some address, 310 section_offsets contains nothing but zeros, so it doesn't matter 311 which slot in section_offsets the individual sect_index_* members 312 index into. So if they are all zero, it is safe to just point 313 all the currently uninitialized indices to the first slot. But 314 beware: if this is the main executable, it may be relocated 315 later, e.g. by the remote qOffsets packet, and then this will 316 be wrong! That's why we try segments first. */ 317 318 for (i = 0; i < objfile->section_offsets.size (); i++) 319 { 320 if (objfile->section_offsets[i] != 0) 321 { 322 break; 323 } 324 } 325 if (i == objfile->section_offsets.size ()) 326 { 327 if (objfile->sect_index_text == -1) 328 objfile->sect_index_text = 0; 329 if (objfile->sect_index_data == -1) 330 objfile->sect_index_data = 0; 331 if (objfile->sect_index_bss == -1) 332 objfile->sect_index_bss = 0; 333 if (objfile->sect_index_rodata == -1) 334 objfile->sect_index_rodata = 0; 335 } 336 } 337 338 /* Find a unique offset to use for loadable section SECT if 339 the user did not provide an offset. */ 340 341 static void 342 place_section (bfd *abfd, asection *sect, section_offsets &offsets, 343 CORE_ADDR &lowest) 344 { 345 CORE_ADDR start_addr; 346 int done; 347 ULONGEST align = ((ULONGEST) 1) << bfd_section_alignment (sect); 348 349 /* We are only interested in allocated sections. */ 350 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0) 351 return; 352 353 /* If the user specified an offset, honor it. */ 354 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0) 355 return; 356 357 /* Otherwise, let's try to find a place for the section. */ 358 start_addr = (lowest + align - 1) & -align; 359 360 do { 361 asection *cur_sec; 362 363 done = 1; 364 365 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next) 366 { 367 int indx = cur_sec->index; 368 369 /* We don't need to compare against ourself. */ 370 if (cur_sec == sect) 371 continue; 372 373 /* We can only conflict with allocated sections. */ 374 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0) 375 continue; 376 377 /* If the section offset is 0, either the section has not been placed 378 yet, or it was the lowest section placed (in which case LOWEST 379 will be past its end). */ 380 if (offsets[indx] == 0) 381 continue; 382 383 /* If this section would overlap us, then we must move up. */ 384 if (start_addr + bfd_section_size (sect) > offsets[indx] 385 && start_addr < offsets[indx] + bfd_section_size (cur_sec)) 386 { 387 start_addr = offsets[indx] + bfd_section_size (cur_sec); 388 start_addr = (start_addr + align - 1) & -align; 389 done = 0; 390 break; 391 } 392 393 /* Otherwise, we appear to be OK. So far. */ 394 } 395 } 396 while (!done); 397 398 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr; 399 lowest = start_addr + bfd_section_size (sect); 400 } 401 402 /* Store section_addr_info as prepared (made relative and with SECTINDEX 403 filled-in) by addr_info_make_relative into SECTION_OFFSETS. */ 404 405 void 406 relative_addr_info_to_section_offsets (section_offsets §ion_offsets, 407 const section_addr_info &addrs) 408 { 409 int i; 410 411 section_offsets.assign (section_offsets.size (), 0); 412 413 /* Now calculate offsets for section that were specified by the caller. */ 414 for (i = 0; i < addrs.size (); i++) 415 { 416 const struct other_sections *osp; 417 418 osp = &addrs[i]; 419 if (osp->sectindex == -1) 420 continue; 421 422 /* Record all sections in offsets. */ 423 /* The section_offsets in the objfile are here filled in using 424 the BFD index. */ 425 section_offsets[osp->sectindex] = osp->addr; 426 } 427 } 428 429 /* Transform section name S for a name comparison. prelink can split section 430 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly 431 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address 432 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss' 433 (`.sbss') section has invalid (increased) virtual address. */ 434 435 static const char * 436 addr_section_name (const char *s) 437 { 438 if (strcmp (s, ".dynbss") == 0) 439 return ".bss"; 440 if (strcmp (s, ".sdynbss") == 0) 441 return ".sbss"; 442 443 return s; 444 } 445 446 /* std::sort comparator for addrs_section_sort. Sort entries in 447 ascending order by their (name, sectindex) pair. sectindex makes 448 the sort by name stable. */ 449 450 static bool 451 addrs_section_compar (const struct other_sections *a, 452 const struct other_sections *b) 453 { 454 int retval; 455 456 retval = strcmp (addr_section_name (a->name.c_str ()), 457 addr_section_name (b->name.c_str ())); 458 if (retval != 0) 459 return retval < 0; 460 461 return a->sectindex < b->sectindex; 462 } 463 464 /* Provide sorted array of pointers to sections of ADDRS. */ 465 466 static std::vector<const struct other_sections *> 467 addrs_section_sort (const section_addr_info &addrs) 468 { 469 int i; 470 471 std::vector<const struct other_sections *> array (addrs.size ()); 472 for (i = 0; i < addrs.size (); i++) 473 array[i] = &addrs[i]; 474 475 std::sort (array.begin (), array.end (), addrs_section_compar); 476 477 return array; 478 } 479 480 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in 481 also SECTINDEXes specific to ABFD there. This function can be used to 482 rebase ADDRS to start referencing different BFD than before. */ 483 484 void 485 addr_info_make_relative (section_addr_info *addrs, bfd *abfd) 486 { 487 asection *lower_sect; 488 CORE_ADDR lower_offset; 489 int i; 490 491 /* Find lowest loadable section to be used as starting point for 492 contiguous sections. */ 493 lower_sect = NULL; 494 for (asection *iter : gdb_bfd_sections (abfd)) 495 find_lowest_section (iter, &lower_sect); 496 if (lower_sect == NULL) 497 { 498 warning (_("no loadable sections found in added symbol-file %s"), 499 bfd_get_filename (abfd)); 500 lower_offset = 0; 501 } 502 else 503 lower_offset = bfd_section_vma (lower_sect); 504 505 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections 506 in ABFD. Section names are not unique - there can be multiple sections of 507 the same name. Also the sections of the same name do not have to be 508 adjacent to each other. Some sections may be present only in one of the 509 files. Even sections present in both files do not have to be in the same 510 order. 511 512 Use stable sort by name for the sections in both files. Then linearly 513 scan both lists matching as most of the entries as possible. */ 514 515 std::vector<const struct other_sections *> addrs_sorted 516 = addrs_section_sort (*addrs); 517 518 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd); 519 std::vector<const struct other_sections *> abfd_addrs_sorted 520 = addrs_section_sort (abfd_addrs); 521 522 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and 523 ABFD_ADDRS_SORTED. */ 524 525 std::vector<const struct other_sections *> 526 addrs_to_abfd_addrs (addrs->size (), nullptr); 527 528 std::vector<const struct other_sections *>::iterator abfd_sorted_iter 529 = abfd_addrs_sorted.begin (); 530 for (const other_sections *sect : addrs_sorted) 531 { 532 const char *sect_name = addr_section_name (sect->name.c_str ()); 533 534 while (abfd_sorted_iter != abfd_addrs_sorted.end () 535 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()), 536 sect_name) < 0) 537 abfd_sorted_iter++; 538 539 if (abfd_sorted_iter != abfd_addrs_sorted.end () 540 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()), 541 sect_name) == 0) 542 { 543 int index_in_addrs; 544 545 /* Make the found item directly addressable from ADDRS. */ 546 index_in_addrs = sect - addrs->data (); 547 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL); 548 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter; 549 550 /* Never use the same ABFD entry twice. */ 551 abfd_sorted_iter++; 552 } 553 } 554 555 /* Calculate offsets for the loadable sections. 556 FIXME! Sections must be in order of increasing loadable section 557 so that contiguous sections can use the lower-offset!!! 558 559 Adjust offsets if the segments are not contiguous. 560 If the section is contiguous, its offset should be set to 561 the offset of the highest loadable section lower than it 562 (the loadable section directly below it in memory). 563 this_offset = lower_offset = lower_addr - lower_orig_addr */ 564 565 for (i = 0; i < addrs->size (); i++) 566 { 567 const struct other_sections *sect = addrs_to_abfd_addrs[i]; 568 569 if (sect) 570 { 571 /* This is the index used by BFD. */ 572 (*addrs)[i].sectindex = sect->sectindex; 573 574 if ((*addrs)[i].addr != 0) 575 { 576 (*addrs)[i].addr -= sect->addr; 577 lower_offset = (*addrs)[i].addr; 578 } 579 else 580 (*addrs)[i].addr = lower_offset; 581 } 582 else 583 { 584 /* addr_section_name transformation is not used for SECT_NAME. */ 585 const std::string §_name = (*addrs)[i].name; 586 587 /* This section does not exist in ABFD, which is normally 588 unexpected and we want to issue a warning. 589 590 However, the ELF prelinker does create a few sections which are 591 marked in the main executable as loadable (they are loaded in 592 memory from the DYNAMIC segment) and yet are not present in 593 separate debug info files. This is fine, and should not cause 594 a warning. Shared libraries contain just the section 595 ".gnu.liblist" but it is not marked as loadable there. There is 596 no other way to identify them than by their name as the sections 597 created by prelink have no special flags. 598 599 For the sections `.bss' and `.sbss' see addr_section_name. */ 600 601 if (!(sect_name == ".gnu.liblist" 602 || sect_name == ".gnu.conflict" 603 || (sect_name == ".bss" 604 && i > 0 605 && (*addrs)[i - 1].name == ".dynbss" 606 && addrs_to_abfd_addrs[i - 1] != NULL) 607 || (sect_name == ".sbss" 608 && i > 0 609 && (*addrs)[i - 1].name == ".sdynbss" 610 && addrs_to_abfd_addrs[i - 1] != NULL))) 611 warning (_("section %s not found in %s"), sect_name.c_str (), 612 bfd_get_filename (abfd)); 613 614 (*addrs)[i].addr = 0; 615 (*addrs)[i].sectindex = -1; 616 } 617 } 618 } 619 620 /* Parse the user's idea of an offset for dynamic linking, into our idea 621 of how to represent it for fast symbol reading. This is the default 622 version of the sym_fns.sym_offsets function for symbol readers that 623 don't need to do anything special. It allocates a section_offsets table 624 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */ 625 626 void 627 default_symfile_offsets (struct objfile *objfile, 628 const section_addr_info &addrs) 629 { 630 objfile->section_offsets.resize (gdb_bfd_count_sections (objfile->obfd.get ())); 631 relative_addr_info_to_section_offsets (objfile->section_offsets, addrs); 632 633 /* For relocatable files, all loadable sections will start at zero. 634 The zero is meaningless, so try to pick arbitrary addresses such 635 that no loadable sections overlap. This algorithm is quadratic, 636 but the number of sections in a single object file is generally 637 small. */ 638 if ((bfd_get_file_flags (objfile->obfd.get ()) & (EXEC_P | DYNAMIC)) == 0) 639 { 640 bfd *abfd = objfile->obfd.get (); 641 asection *cur_sec; 642 643 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next) 644 /* We do not expect this to happen; just skip this step if the 645 relocatable file has a section with an assigned VMA. */ 646 if (bfd_section_vma (cur_sec) != 0) 647 break; 648 649 if (cur_sec == NULL) 650 { 651 section_offsets &offsets = objfile->section_offsets; 652 653 /* Pick non-overlapping offsets for sections the user did not 654 place explicitly. */ 655 CORE_ADDR lowest = 0; 656 for (asection *sect : gdb_bfd_sections (objfile->obfd.get ())) 657 place_section (objfile->obfd.get (), sect, objfile->section_offsets, 658 lowest); 659 660 /* Correctly filling in the section offsets is not quite 661 enough. Relocatable files have two properties that 662 (most) shared objects do not: 663 664 - Their debug information will contain relocations. Some 665 shared libraries do also, but many do not, so this can not 666 be assumed. 667 668 - If there are multiple code sections they will be loaded 669 at different relative addresses in memory than they are 670 in the objfile, since all sections in the file will start 671 at address zero. 672 673 Because GDB has very limited ability to map from an 674 address in debug info to the correct code section, 675 it relies on adding SECT_OFF_TEXT to things which might be 676 code. If we clear all the section offsets, and set the 677 section VMAs instead, then symfile_relocate_debug_section 678 will return meaningful debug information pointing at the 679 correct sections. 680 681 GDB has too many different data structures for section 682 addresses - a bfd, objfile, and so_list all have section 683 tables, as does exec_ops. Some of these could probably 684 be eliminated. */ 685 686 for (cur_sec = abfd->sections; cur_sec != NULL; 687 cur_sec = cur_sec->next) 688 { 689 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0) 690 continue; 691 692 bfd_set_section_vma (cur_sec, offsets[cur_sec->index]); 693 exec_set_section_address (bfd_get_filename (abfd), 694 cur_sec->index, 695 offsets[cur_sec->index]); 696 offsets[cur_sec->index] = 0; 697 } 698 } 699 } 700 701 /* Remember the bfd indexes for the .text, .data, .bss and 702 .rodata sections. */ 703 init_objfile_sect_indices (objfile); 704 } 705 706 /* Divide the file into segments, which are individual relocatable units. 707 This is the default version of the sym_fns.sym_segments function for 708 symbol readers that do not have an explicit representation of segments. 709 It assumes that object files do not have segments, and fully linked 710 files have a single segment. */ 711 712 symfile_segment_data_up 713 default_symfile_segments (bfd *abfd) 714 { 715 int num_sections, i; 716 asection *sect; 717 CORE_ADDR low, high; 718 719 /* Relocatable files contain enough information to position each 720 loadable section independently; they should not be relocated 721 in segments. */ 722 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0) 723 return NULL; 724 725 /* Make sure there is at least one loadable section in the file. */ 726 for (sect = abfd->sections; sect != NULL; sect = sect->next) 727 { 728 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0) 729 continue; 730 731 break; 732 } 733 if (sect == NULL) 734 return NULL; 735 736 low = bfd_section_vma (sect); 737 high = low + bfd_section_size (sect); 738 739 symfile_segment_data_up data (new symfile_segment_data); 740 741 num_sections = bfd_count_sections (abfd); 742 743 /* All elements are initialized to 0 (map to no segment). */ 744 data->segment_info.resize (num_sections); 745 746 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next) 747 { 748 CORE_ADDR vma; 749 750 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0) 751 continue; 752 753 vma = bfd_section_vma (sect); 754 if (vma < low) 755 low = vma; 756 if (vma + bfd_section_size (sect) > high) 757 high = vma + bfd_section_size (sect); 758 759 data->segment_info[i] = 1; 760 } 761 762 data->segments.emplace_back (low, high - low); 763 764 return data; 765 } 766 767 /* This is a convenience function to call sym_read for OBJFILE and 768 possibly force the partial symbols to be read. */ 769 770 static void 771 read_symbols (struct objfile *objfile, symfile_add_flags add_flags) 772 { 773 (*objfile->sf->sym_read) (objfile, add_flags); 774 objfile->per_bfd->minsyms_read = true; 775 776 /* find_separate_debug_file_in_section should be called only if there is 777 single binary with no existing separate debug info file. */ 778 if (!objfile->has_partial_symbols () 779 && objfile->separate_debug_objfile == NULL 780 && objfile->separate_debug_objfile_backlink == NULL) 781 { 782 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile)); 783 784 if (abfd != NULL) 785 { 786 /* find_separate_debug_file_in_section uses the same filename for the 787 virtual section-as-bfd like the bfd filename containing the 788 section. Therefore use also non-canonical name form for the same 789 file containing the section. */ 790 symbol_file_add_separate (abfd, bfd_get_filename (abfd.get ()), 791 add_flags | SYMFILE_NOT_FILENAME, objfile); 792 } 793 } 794 if ((add_flags & SYMFILE_NO_READ) == 0) 795 objfile->require_partial_symbols (false); 796 } 797 798 /* Initialize entry point information for this objfile. */ 799 800 static void 801 init_entry_point_info (struct objfile *objfile) 802 { 803 struct entry_info *ei = &objfile->per_bfd->ei; 804 805 if (ei->initialized) 806 return; 807 ei->initialized = 1; 808 809 /* Save startup file's range of PC addresses to help blockframe.c 810 decide where the bottom of the stack is. */ 811 812 if (bfd_get_file_flags (objfile->obfd.get ()) & EXEC_P) 813 { 814 /* Executable file -- record its entry point so we'll recognize 815 the startup file because it contains the entry point. */ 816 ei->entry_point = bfd_get_start_address (objfile->obfd.get ()); 817 ei->entry_point_p = 1; 818 } 819 else if (bfd_get_file_flags (objfile->obfd.get ()) & DYNAMIC 820 && bfd_get_start_address (objfile->obfd.get ()) != 0) 821 { 822 /* Some shared libraries may have entry points set and be 823 runnable. There's no clear way to indicate this, so just check 824 for values other than zero. */ 825 ei->entry_point = bfd_get_start_address (objfile->obfd.get ()); 826 ei->entry_point_p = 1; 827 } 828 else 829 { 830 /* Examination of non-executable.o files. Short-circuit this stuff. */ 831 ei->entry_point_p = 0; 832 } 833 834 if (ei->entry_point_p) 835 { 836 struct obj_section *osect; 837 CORE_ADDR entry_point = ei->entry_point; 838 int found; 839 840 /* Make certain that the address points at real code, and not a 841 function descriptor. */ 842 entry_point = gdbarch_convert_from_func_ptr_addr 843 (objfile->arch (), entry_point, current_inferior ()->top_target ()); 844 845 /* Remove any ISA markers, so that this matches entries in the 846 symbol table. */ 847 ei->entry_point 848 = gdbarch_addr_bits_remove (objfile->arch (), entry_point); 849 850 found = 0; 851 ALL_OBJFILE_OSECTIONS (objfile, osect) 852 { 853 struct bfd_section *sect = osect->the_bfd_section; 854 855 if (entry_point >= bfd_section_vma (sect) 856 && entry_point < (bfd_section_vma (sect) 857 + bfd_section_size (sect))) 858 { 859 ei->the_bfd_section_index 860 = gdb_bfd_section_index (objfile->obfd.get (), sect); 861 found = 1; 862 break; 863 } 864 } 865 866 if (!found) 867 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile); 868 } 869 } 870 871 /* Process a symbol file, as either the main file or as a dynamically 872 loaded file. 873 874 This function does not set the OBJFILE's entry-point info. 875 876 OBJFILE is where the symbols are to be read from. 877 878 ADDRS is the list of section load addresses. If the user has given 879 an 'add-symbol-file' command, then this is the list of offsets and 880 addresses he or she provided as arguments to the command; or, if 881 we're handling a shared library, these are the actual addresses the 882 sections are loaded at, according to the inferior's dynamic linker 883 (as gleaned by GDB's shared library code). We convert each address 884 into an offset from the section VMA's as it appears in the object 885 file, and then call the file's sym_offsets function to convert this 886 into a format-specific offset table --- a `section_offsets'. 887 The sectindex field is used to control the ordering of sections 888 with the same name. Upon return, it is updated to contain the 889 corresponding BFD section index, or -1 if the section was not found. 890 891 ADD_FLAGS encodes verbosity level, whether this is main symbol or 892 an extra symbol file such as dynamically loaded code, and whether 893 breakpoint reset should be deferred. */ 894 895 static void 896 syms_from_objfile_1 (struct objfile *objfile, 897 section_addr_info *addrs, 898 symfile_add_flags add_flags) 899 { 900 section_addr_info local_addr; 901 const int mainline = add_flags & SYMFILE_MAINLINE; 902 903 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd.get ())); 904 objfile->qf.clear (); 905 906 if (objfile->sf == NULL) 907 { 908 /* No symbols to load, but we still need to make sure 909 that the section_offsets table is allocated. */ 910 int num_sections = gdb_bfd_count_sections (objfile->obfd.get ()); 911 912 objfile->section_offsets.assign (num_sections, 0); 913 return; 914 } 915 916 /* Make sure that partially constructed symbol tables will be cleaned up 917 if an error occurs during symbol reading. */ 918 gdb::optional<clear_symtab_users_cleanup> defer_clear_users; 919 920 objfile_up objfile_holder (objfile); 921 922 /* If ADDRS is NULL, put together a dummy address list. 923 We now establish the convention that an addr of zero means 924 no load address was specified. */ 925 if (! addrs) 926 addrs = &local_addr; 927 928 if (mainline) 929 { 930 /* We will modify the main symbol table, make sure that all its users 931 will be cleaned up if an error occurs during symbol reading. */ 932 defer_clear_users.emplace ((symfile_add_flag) 0); 933 934 /* Since no error yet, throw away the old symbol table. */ 935 936 if (current_program_space->symfile_object_file != NULL) 937 { 938 current_program_space->symfile_object_file->unlink (); 939 gdb_assert (current_program_space->symfile_object_file == NULL); 940 } 941 942 /* Currently we keep symbols from the add-symbol-file command. 943 If the user wants to get rid of them, they should do "symbol-file" 944 without arguments first. Not sure this is the best behavior 945 (PR 2207). */ 946 947 (*objfile->sf->sym_new_init) (objfile); 948 } 949 950 /* Convert addr into an offset rather than an absolute address. 951 We find the lowest address of a loaded segment in the objfile, 952 and assume that <addr> is where that got loaded. 953 954 We no longer warn if the lowest section is not a text segment (as 955 happens for the PA64 port. */ 956 if (addrs->size () > 0) 957 addr_info_make_relative (addrs, objfile->obfd.get ()); 958 959 /* Initialize symbol reading routines for this objfile, allow complaints to 960 appear for this new file, and record how verbose to be, then do the 961 initial symbol reading for this file. */ 962 963 (*objfile->sf->sym_init) (objfile); 964 clear_complaints (); 965 966 (*objfile->sf->sym_offsets) (objfile, *addrs); 967 968 read_symbols (objfile, add_flags); 969 970 /* Discard cleanups as symbol reading was successful. */ 971 972 objfile_holder.release (); 973 if (defer_clear_users) 974 defer_clear_users->release (); 975 } 976 977 /* Same as syms_from_objfile_1, but also initializes the objfile 978 entry-point info. */ 979 980 static void 981 syms_from_objfile (struct objfile *objfile, 982 section_addr_info *addrs, 983 symfile_add_flags add_flags) 984 { 985 syms_from_objfile_1 (objfile, addrs, add_flags); 986 init_entry_point_info (objfile); 987 } 988 989 /* Perform required actions after either reading in the initial 990 symbols for a new objfile, or mapping in the symbols from a reusable 991 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */ 992 993 static void 994 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags) 995 { 996 /* If this is the main symbol file we have to clean up all users of the 997 old main symbol file. Otherwise it is sufficient to fixup all the 998 breakpoints that may have been redefined by this symbol file. */ 999 if (add_flags & SYMFILE_MAINLINE) 1000 { 1001 /* OK, make it the "real" symbol file. */ 1002 current_program_space->symfile_object_file = objfile; 1003 1004 clear_symtab_users (add_flags); 1005 } 1006 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0) 1007 { 1008 breakpoint_re_set (); 1009 } 1010 1011 /* We're done reading the symbol file; finish off complaints. */ 1012 clear_complaints (); 1013 } 1014 1015 /* Process a symbol file, as either the main file or as a dynamically 1016 loaded file. 1017 1018 ABFD is a BFD already open on the file, as from symfile_bfd_open. 1019 A new reference is acquired by this function. 1020 1021 For NAME description see the objfile constructor. 1022 1023 ADD_FLAGS encodes verbosity, whether this is main symbol file or 1024 extra, such as dynamically loaded code, and what to do with breakpoints. 1025 1026 ADDRS is as described for syms_from_objfile_1, above. 1027 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS. 1028 1029 PARENT is the original objfile if ABFD is a separate debug info file. 1030 Otherwise PARENT is NULL. 1031 1032 Upon success, returns a pointer to the objfile that was added. 1033 Upon failure, jumps back to command level (never returns). */ 1034 1035 static struct objfile * 1036 symbol_file_add_with_addrs (const gdb_bfd_ref_ptr &abfd, const char *name, 1037 symfile_add_flags add_flags, 1038 section_addr_info *addrs, 1039 objfile_flags flags, struct objfile *parent) 1040 { 1041 struct objfile *objfile; 1042 const int from_tty = add_flags & SYMFILE_VERBOSE; 1043 const int mainline = add_flags & SYMFILE_MAINLINE; 1044 const int always_confirm = add_flags & SYMFILE_ALWAYS_CONFIRM; 1045 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1) 1046 && (readnow_symbol_files 1047 || (add_flags & SYMFILE_NO_READ) == 0)); 1048 1049 if (readnow_symbol_files) 1050 { 1051 flags |= OBJF_READNOW; 1052 add_flags &= ~SYMFILE_NO_READ; 1053 } 1054 else if (readnever_symbol_files 1055 || (parent != NULL && (parent->flags & OBJF_READNEVER))) 1056 { 1057 flags |= OBJF_READNEVER; 1058 add_flags |= SYMFILE_NO_READ; 1059 } 1060 if ((add_flags & SYMFILE_NOT_FILENAME) != 0) 1061 flags |= OBJF_NOT_FILENAME; 1062 1063 /* Give user a chance to burp if ALWAYS_CONFIRM or we'd be 1064 interactively wiping out any existing symbols. */ 1065 1066 if (from_tty 1067 && (always_confirm 1068 || ((have_full_symbols () || have_partial_symbols ()) 1069 && mainline)) 1070 && !query (_("Load new symbol table from \"%s\"? "), name)) 1071 error (_("Not confirmed.")); 1072 1073 if (mainline) 1074 flags |= OBJF_MAINLINE; 1075 objfile = objfile::make (abfd, name, flags, parent); 1076 1077 /* We either created a new mapped symbol table, mapped an existing 1078 symbol table file which has not had initial symbol reading 1079 performed, or need to read an unmapped symbol table. */ 1080 if (should_print) 1081 { 1082 if (deprecated_pre_add_symbol_hook) 1083 deprecated_pre_add_symbol_hook (name); 1084 else 1085 gdb_printf (_("Reading symbols from %ps...\n"), 1086 styled_string (file_name_style.style (), name)); 1087 } 1088 syms_from_objfile (objfile, addrs, add_flags); 1089 1090 /* We now have at least a partial symbol table. Check to see if the 1091 user requested that all symbols be read on initial access via either 1092 the gdb startup command line or on a per symbol file basis. Expand 1093 all partial symbol tables for this objfile if so. */ 1094 1095 if ((flags & OBJF_READNOW)) 1096 { 1097 if (should_print) 1098 gdb_printf (_("Expanding full symbols from %ps...\n"), 1099 styled_string (file_name_style.style (), name)); 1100 1101 objfile->expand_all_symtabs (); 1102 } 1103 1104 /* Note that we only print a message if we have no symbols and have 1105 no separate debug file. If there is a separate debug file which 1106 does not have symbols, we'll have emitted this message for that 1107 file, and so printing it twice is just redundant. */ 1108 if (should_print && !objfile_has_symbols (objfile) 1109 && objfile->separate_debug_objfile == nullptr) 1110 gdb_printf (_("(No debugging symbols found in %ps)\n"), 1111 styled_string (file_name_style.style (), name)); 1112 1113 if (should_print) 1114 { 1115 if (deprecated_post_add_symbol_hook) 1116 deprecated_post_add_symbol_hook (); 1117 } 1118 1119 /* We print some messages regardless of whether 'from_tty || 1120 info_verbose' is true, so make sure they go out at the right 1121 time. */ 1122 gdb_flush (gdb_stdout); 1123 1124 if (objfile->sf == NULL) 1125 { 1126 gdb::observers::new_objfile.notify (objfile); 1127 return objfile; /* No symbols. */ 1128 } 1129 1130 finish_new_objfile (objfile, add_flags); 1131 1132 gdb::observers::new_objfile.notify (objfile); 1133 1134 bfd_cache_close_all (); 1135 return (objfile); 1136 } 1137 1138 /* Add BFD as a separate debug file for OBJFILE. For NAME description 1139 see the objfile constructor. */ 1140 1141 void 1142 symbol_file_add_separate (const gdb_bfd_ref_ptr &bfd, const char *name, 1143 symfile_add_flags symfile_flags, 1144 struct objfile *objfile) 1145 { 1146 /* Create section_addr_info. We can't directly use offsets from OBJFILE 1147 because sections of BFD may not match sections of OBJFILE and because 1148 vma may have been modified by tools such as prelink. */ 1149 section_addr_info sap = build_section_addr_info_from_objfile (objfile); 1150 1151 symbol_file_add_with_addrs 1152 (bfd, name, symfile_flags, &sap, 1153 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW 1154 | OBJF_USERLOADED | OBJF_MAINLINE), 1155 objfile); 1156 } 1157 1158 /* Process the symbol file ABFD, as either the main file or as a 1159 dynamically loaded file. 1160 See symbol_file_add_with_addrs's comments for details. */ 1161 1162 struct objfile * 1163 symbol_file_add_from_bfd (const gdb_bfd_ref_ptr &abfd, const char *name, 1164 symfile_add_flags add_flags, 1165 section_addr_info *addrs, 1166 objfile_flags flags, struct objfile *parent) 1167 { 1168 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags, 1169 parent); 1170 } 1171 1172 /* Process a symbol file, as either the main file or as a dynamically 1173 loaded file. See symbol_file_add_with_addrs's comments for details. */ 1174 1175 struct objfile * 1176 symbol_file_add (const char *name, symfile_add_flags add_flags, 1177 section_addr_info *addrs, objfile_flags flags) 1178 { 1179 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name)); 1180 1181 return symbol_file_add_from_bfd (bfd, name, add_flags, addrs, 1182 flags, NULL); 1183 } 1184 1185 /* Call symbol_file_add() with default values and update whatever is 1186 affected by the loading of a new main(). 1187 Used when the file is supplied in the gdb command line 1188 and by some targets with special loading requirements. 1189 The auxiliary function, symbol_file_add_main_1(), has the flags 1190 argument for the switches that can only be specified in the symbol_file 1191 command itself. */ 1192 1193 void 1194 symbol_file_add_main (const char *args, symfile_add_flags add_flags) 1195 { 1196 symbol_file_add_main_1 (args, add_flags, 0, 0); 1197 } 1198 1199 static void 1200 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags, 1201 objfile_flags flags, CORE_ADDR reloff) 1202 { 1203 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE; 1204 1205 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags); 1206 if (reloff != 0) 1207 objfile_rebase (objfile, reloff); 1208 1209 /* Getting new symbols may change our opinion about 1210 what is frameless. */ 1211 reinit_frame_cache (); 1212 1213 if ((add_flags & SYMFILE_NO_READ) == 0) 1214 set_initial_language (); 1215 } 1216 1217 void 1218 symbol_file_clear (int from_tty) 1219 { 1220 if ((have_full_symbols () || have_partial_symbols ()) 1221 && from_tty 1222 && (current_program_space->symfile_object_file 1223 ? !query (_("Discard symbol table from `%s'? "), 1224 objfile_name (current_program_space->symfile_object_file)) 1225 : !query (_("Discard symbol table? ")))) 1226 error (_("Not confirmed.")); 1227 1228 /* solib descriptors may have handles to objfiles. Wipe them before their 1229 objfiles get stale by free_all_objfiles. */ 1230 no_shared_libraries (NULL, from_tty); 1231 1232 current_program_space->free_all_objfiles (); 1233 1234 clear_symtab_users (0); 1235 1236 gdb_assert (current_program_space->symfile_object_file == NULL); 1237 if (from_tty) 1238 gdb_printf (_("No symbol file now.\n")); 1239 } 1240 1241 /* See symfile.h. */ 1242 1243 bool separate_debug_file_debug = false; 1244 1245 static int 1246 separate_debug_file_exists (const std::string &name, unsigned long crc, 1247 struct objfile *parent_objfile) 1248 { 1249 unsigned long file_crc; 1250 int file_crc_p; 1251 struct stat parent_stat, abfd_stat; 1252 int verified_as_different; 1253 1254 /* Find a separate debug info file as if symbols would be present in 1255 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink 1256 section can contain just the basename of PARENT_OBJFILE without any 1257 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where 1258 the separate debug infos with the same basename can exist. */ 1259 1260 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0) 1261 return 0; 1262 1263 if (separate_debug_file_debug) 1264 { 1265 gdb_printf (gdb_stdlog, _(" Trying %s..."), name.c_str ()); 1266 gdb_flush (gdb_stdlog); 1267 } 1268 1269 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget)); 1270 1271 if (abfd == NULL) 1272 { 1273 if (separate_debug_file_debug) 1274 gdb_printf (gdb_stdlog, _(" no, unable to open.\n")); 1275 1276 return 0; 1277 } 1278 1279 /* Verify symlinks were not the cause of filename_cmp name difference above. 1280 1281 Some operating systems, e.g. Windows, do not provide a meaningful 1282 st_ino; they always set it to zero. (Windows does provide a 1283 meaningful st_dev.) Files accessed from gdbservers that do not 1284 support the vFile:fstat packet will also have st_ino set to zero. 1285 Do not indicate a duplicate library in either case. While there 1286 is no guarantee that a system that provides meaningful inode 1287 numbers will never set st_ino to zero, this is merely an 1288 optimization, so we do not need to worry about false negatives. */ 1289 1290 if (bfd_stat (abfd.get (), &abfd_stat) == 0 1291 && abfd_stat.st_ino != 0 1292 && bfd_stat (parent_objfile->obfd.get (), &parent_stat) == 0) 1293 { 1294 if (abfd_stat.st_dev == parent_stat.st_dev 1295 && abfd_stat.st_ino == parent_stat.st_ino) 1296 { 1297 if (separate_debug_file_debug) 1298 gdb_printf (gdb_stdlog, 1299 _(" no, same file as the objfile.\n")); 1300 1301 return 0; 1302 } 1303 verified_as_different = 1; 1304 } 1305 else 1306 verified_as_different = 0; 1307 1308 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc); 1309 1310 if (!file_crc_p) 1311 { 1312 if (separate_debug_file_debug) 1313 gdb_printf (gdb_stdlog, _(" no, error computing CRC.\n")); 1314 1315 return 0; 1316 } 1317 1318 if (crc != file_crc) 1319 { 1320 unsigned long parent_crc; 1321 1322 /* If the files could not be verified as different with 1323 bfd_stat then we need to calculate the parent's CRC 1324 to verify whether the files are different or not. */ 1325 1326 if (!verified_as_different) 1327 { 1328 if (!gdb_bfd_crc (parent_objfile->obfd.get (), &parent_crc)) 1329 { 1330 if (separate_debug_file_debug) 1331 gdb_printf (gdb_stdlog, 1332 _(" no, error computing CRC.\n")); 1333 1334 return 0; 1335 } 1336 } 1337 1338 if (verified_as_different || parent_crc != file_crc) 1339 warning (_("the debug information found in \"%s\"" 1340 " does not match \"%s\" (CRC mismatch).\n"), 1341 name.c_str (), objfile_name (parent_objfile)); 1342 1343 if (separate_debug_file_debug) 1344 gdb_printf (gdb_stdlog, _(" no, CRC doesn't match.\n")); 1345 1346 return 0; 1347 } 1348 1349 if (separate_debug_file_debug) 1350 gdb_printf (gdb_stdlog, _(" yes!\n")); 1351 1352 return 1; 1353 } 1354 1355 std::string debug_file_directory; 1356 static void 1357 show_debug_file_directory (struct ui_file *file, int from_tty, 1358 struct cmd_list_element *c, const char *value) 1359 { 1360 gdb_printf (file, 1361 _("The directory where separate debug " 1362 "symbols are searched for is \"%s\".\n"), 1363 value); 1364 } 1365 1366 #if ! defined (DEBUG_SUBDIRECTORY) 1367 #define DEBUG_SUBDIRECTORY ".debug" 1368 #endif 1369 1370 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory 1371 where the original file resides (may not be the same as 1372 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are 1373 looking for. CANON_DIR is the "realpath" form of DIR. 1374 DIR must contain a trailing '/'. 1375 Returns the path of the file with separate debug info, or an empty 1376 string. */ 1377 1378 static std::string 1379 find_separate_debug_file (const char *dir, 1380 const char *canon_dir, 1381 const char *debuglink, 1382 unsigned long crc32, struct objfile *objfile) 1383 { 1384 if (separate_debug_file_debug) 1385 gdb_printf (gdb_stdlog, 1386 _("\nLooking for separate debug info (debug link) for " 1387 "%s\n"), objfile_name (objfile)); 1388 1389 /* First try in the same directory as the original file. */ 1390 std::string debugfile = dir; 1391 debugfile += debuglink; 1392 1393 if (separate_debug_file_exists (debugfile, crc32, objfile)) 1394 return debugfile; 1395 1396 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */ 1397 debugfile = dir; 1398 debugfile += DEBUG_SUBDIRECTORY; 1399 debugfile += "/"; 1400 debugfile += debuglink; 1401 1402 if (separate_debug_file_exists (debugfile, crc32, objfile)) 1403 return debugfile; 1404 1405 /* Then try in the global debugfile directories. 1406 1407 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will 1408 cause "/..." lookups. */ 1409 1410 bool target_prefix = startswith (dir, "target:"); 1411 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir; 1412 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec 1413 = dirnames_to_char_ptr_vec (debug_file_directory.c_str ()); 1414 gdb::unique_xmalloc_ptr<char> canon_sysroot 1415 = gdb_realpath (gdb_sysroot.c_str ()); 1416 1417 /* MS-Windows/MS-DOS don't allow colons in file names; we must 1418 convert the drive letter into a one-letter directory, so that the 1419 file name resulting from splicing below will be valid. 1420 1421 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS. 1422 There are various remote-debugging scenarios where such a 1423 transformation of the drive letter might be required when GDB runs 1424 on a Posix host, see 1425 1426 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html 1427 1428 If some of those scenarios need to be supported, we will need to 1429 use a different condition for HAS_DRIVE_SPEC and a different macro 1430 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */ 1431 std::string drive; 1432 if (HAS_DRIVE_SPEC (dir_notarget)) 1433 { 1434 drive = dir_notarget[0]; 1435 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget); 1436 } 1437 1438 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec) 1439 { 1440 debugfile = target_prefix ? "target:" : ""; 1441 debugfile += debugdir; 1442 debugfile += "/"; 1443 debugfile += drive; 1444 debugfile += dir_notarget; 1445 debugfile += debuglink; 1446 1447 if (separate_debug_file_exists (debugfile, crc32, objfile)) 1448 return debugfile; 1449 1450 const char *base_path = NULL; 1451 if (canon_dir != NULL) 1452 { 1453 if (canon_sysroot.get () != NULL) 1454 base_path = child_path (canon_sysroot.get (), canon_dir); 1455 else 1456 base_path = child_path (gdb_sysroot.c_str (), canon_dir); 1457 } 1458 if (base_path != NULL) 1459 { 1460 /* If the file is in the sysroot, try using its base path in 1461 the global debugfile directory. */ 1462 debugfile = target_prefix ? "target:" : ""; 1463 debugfile += debugdir; 1464 debugfile += "/"; 1465 debugfile += base_path; 1466 debugfile += "/"; 1467 debugfile += debuglink; 1468 1469 if (separate_debug_file_exists (debugfile, crc32, objfile)) 1470 return debugfile; 1471 1472 /* If the file is in the sysroot, try using its base path in 1473 the sysroot's global debugfile directory. */ 1474 debugfile = target_prefix ? "target:" : ""; 1475 debugfile += gdb_sysroot; 1476 debugfile += debugdir; 1477 debugfile += "/"; 1478 debugfile += base_path; 1479 debugfile += "/"; 1480 debugfile += debuglink; 1481 1482 if (separate_debug_file_exists (debugfile, crc32, objfile)) 1483 return debugfile; 1484 } 1485 1486 } 1487 1488 return std::string (); 1489 } 1490 1491 /* Modify PATH to contain only "[/]directory/" part of PATH. 1492 If there were no directory separators in PATH, PATH will be empty 1493 string on return. */ 1494 1495 static void 1496 terminate_after_last_dir_separator (char *path) 1497 { 1498 int i; 1499 1500 /* Strip off the final filename part, leaving the directory name, 1501 followed by a slash. The directory can be relative or absolute. */ 1502 for (i = strlen(path) - 1; i >= 0; i--) 1503 if (IS_DIR_SEPARATOR (path[i])) 1504 break; 1505 1506 /* If I is -1 then no directory is present there and DIR will be "". */ 1507 path[i + 1] = '\0'; 1508 } 1509 1510 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section). 1511 Returns pathname, or an empty string. */ 1512 1513 std::string 1514 find_separate_debug_file_by_debuglink (struct objfile *objfile) 1515 { 1516 unsigned long crc32; 1517 1518 gdb::unique_xmalloc_ptr<char> debuglink 1519 (bfd_get_debug_link_info (objfile->obfd.get (), &crc32)); 1520 1521 if (debuglink == NULL) 1522 { 1523 /* There's no separate debug info, hence there's no way we could 1524 load it => no warning. */ 1525 return std::string (); 1526 } 1527 1528 std::string dir = objfile_name (objfile); 1529 terminate_after_last_dir_separator (&dir[0]); 1530 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ())); 1531 1532 std::string debugfile 1533 = find_separate_debug_file (dir.c_str (), canon_dir.get (), 1534 debuglink.get (), crc32, objfile); 1535 1536 if (debugfile.empty ()) 1537 { 1538 /* For PR gdb/9538, try again with realpath (if different from the 1539 original). */ 1540 1541 struct stat st_buf; 1542 1543 if (lstat (objfile_name (objfile), &st_buf) == 0 1544 && S_ISLNK (st_buf.st_mode)) 1545 { 1546 gdb::unique_xmalloc_ptr<char> symlink_dir 1547 (lrealpath (objfile_name (objfile))); 1548 if (symlink_dir != NULL) 1549 { 1550 terminate_after_last_dir_separator (symlink_dir.get ()); 1551 if (dir != symlink_dir.get ()) 1552 { 1553 /* Different directory, so try using it. */ 1554 debugfile = find_separate_debug_file (symlink_dir.get (), 1555 symlink_dir.get (), 1556 debuglink.get (), 1557 crc32, 1558 objfile); 1559 } 1560 } 1561 } 1562 } 1563 1564 return debugfile; 1565 } 1566 1567 /* Make sure that OBJF_{READNOW,READNEVER} are not set 1568 simultaneously. */ 1569 1570 static void 1571 validate_readnow_readnever (objfile_flags flags) 1572 { 1573 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER)) 1574 error (_("-readnow and -readnever cannot be used simultaneously")); 1575 } 1576 1577 /* This is the symbol-file command. Read the file, analyze its 1578 symbols, and add a struct symtab to a symtab list. The syntax of 1579 the command is rather bizarre: 1580 1581 1. The function buildargv implements various quoting conventions 1582 which are undocumented and have little or nothing in common with 1583 the way things are quoted (or not quoted) elsewhere in GDB. 1584 1585 2. Options are used, which are not generally used in GDB (perhaps 1586 "set mapped on", "set readnow on" would be better) 1587 1588 3. The order of options matters, which is contrary to GNU 1589 conventions (because it is confusing and inconvenient). */ 1590 1591 void 1592 symbol_file_command (const char *args, int from_tty) 1593 { 1594 dont_repeat (); 1595 1596 if (args == NULL) 1597 { 1598 symbol_file_clear (from_tty); 1599 } 1600 else 1601 { 1602 objfile_flags flags = OBJF_USERLOADED; 1603 symfile_add_flags add_flags = 0; 1604 char *name = NULL; 1605 bool stop_processing_options = false; 1606 CORE_ADDR offset = 0; 1607 int idx; 1608 char *arg; 1609 1610 if (from_tty) 1611 add_flags |= SYMFILE_VERBOSE; 1612 1613 gdb_argv built_argv (args); 1614 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx]) 1615 { 1616 if (stop_processing_options || *arg != '-') 1617 { 1618 if (name == NULL) 1619 name = arg; 1620 else 1621 error (_("Unrecognized argument \"%s\""), arg); 1622 } 1623 else if (strcmp (arg, "-readnow") == 0) 1624 flags |= OBJF_READNOW; 1625 else if (strcmp (arg, "-readnever") == 0) 1626 flags |= OBJF_READNEVER; 1627 else if (strcmp (arg, "-o") == 0) 1628 { 1629 arg = built_argv[++idx]; 1630 if (arg == NULL) 1631 error (_("Missing argument to -o")); 1632 1633 offset = parse_and_eval_address (arg); 1634 } 1635 else if (strcmp (arg, "--") == 0) 1636 stop_processing_options = true; 1637 else 1638 error (_("Unrecognized argument \"%s\""), arg); 1639 } 1640 1641 if (name == NULL) 1642 error (_("no symbol file name was specified")); 1643 1644 validate_readnow_readnever (flags); 1645 1646 /* Set SYMFILE_DEFER_BP_RESET because the proper displacement for a PIE 1647 (Position Independent Executable) main symbol file will only be 1648 computed by the solib_create_inferior_hook below. Without it, 1649 breakpoint_re_set would fail to insert the breakpoints with the zero 1650 displacement. */ 1651 add_flags |= SYMFILE_DEFER_BP_RESET; 1652 1653 symbol_file_add_main_1 (name, add_flags, flags, offset); 1654 1655 solib_create_inferior_hook (from_tty); 1656 1657 /* Now it's safe to re-add the breakpoints. */ 1658 breakpoint_re_set (); 1659 1660 /* Also, it's safe to re-add varobjs. */ 1661 varobj_re_set (); 1662 } 1663 } 1664 1665 /* Set the initial language. */ 1666 1667 void 1668 set_initial_language (void) 1669 { 1670 if (language_mode == language_mode_manual) 1671 return; 1672 enum language lang = main_language (); 1673 /* Make C the default language. */ 1674 enum language default_lang = language_c; 1675 1676 if (lang == language_unknown) 1677 { 1678 const char *name = main_name (); 1679 struct symbol *sym 1680 = lookup_symbol_in_language (name, NULL, VAR_DOMAIN, default_lang, 1681 NULL).symbol; 1682 1683 if (sym != NULL) 1684 lang = sym->language (); 1685 } 1686 1687 if (lang == language_unknown) 1688 { 1689 lang = default_lang; 1690 } 1691 1692 set_language (lang); 1693 expected_language = current_language; /* Don't warn the user. */ 1694 } 1695 1696 /* Open the file specified by NAME and hand it off to BFD for 1697 preliminary analysis. Return a newly initialized bfd *, which 1698 includes a newly malloc'd` copy of NAME (tilde-expanded and made 1699 absolute). In case of trouble, error() is called. */ 1700 1701 gdb_bfd_ref_ptr 1702 symfile_bfd_open (const char *name) 1703 { 1704 int desc = -1; 1705 1706 gdb::unique_xmalloc_ptr<char> absolute_name; 1707 if (!is_target_filename (name)) 1708 { 1709 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name)); 1710 1711 /* Look down path for it, allocate 2nd new malloc'd copy. */ 1712 desc = openp (getenv ("PATH"), 1713 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, 1714 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name); 1715 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__) 1716 if (desc < 0) 1717 { 1718 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5); 1719 1720 strcat (strcpy (exename, expanded_name.get ()), ".exe"); 1721 desc = openp (getenv ("PATH"), 1722 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, 1723 exename, O_RDONLY | O_BINARY, &absolute_name); 1724 } 1725 #endif 1726 if (desc < 0) 1727 perror_with_name (expanded_name.get ()); 1728 1729 name = absolute_name.get (); 1730 } 1731 1732 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc)); 1733 if (sym_bfd == NULL) 1734 error (_("`%s': can't open to read symbols: %s."), name, 1735 bfd_errmsg (bfd_get_error ())); 1736 1737 if (!gdb_bfd_has_target_filename (sym_bfd.get ())) 1738 bfd_set_cacheable (sym_bfd.get (), 1); 1739 1740 if (!bfd_check_format (sym_bfd.get (), bfd_object)) 1741 error (_("`%s': can't read symbols: %s."), name, 1742 bfd_errmsg (bfd_get_error ())); 1743 1744 return sym_bfd; 1745 } 1746 1747 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if 1748 the section was not found. */ 1749 1750 int 1751 get_section_index (struct objfile *objfile, const char *section_name) 1752 { 1753 asection *sect = bfd_get_section_by_name (objfile->obfd.get (), section_name); 1754 1755 if (sect) 1756 return sect->index; 1757 else 1758 return -1; 1759 } 1760 1761 /* Link SF into the global symtab_fns list. 1762 FLAVOUR is the file format that SF handles. 1763 Called on startup by the _initialize routine in each object file format 1764 reader, to register information about each format the reader is prepared 1765 to handle. */ 1766 1767 void 1768 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf) 1769 { 1770 symtab_fns.emplace_back (flavour, sf); 1771 } 1772 1773 /* Initialize OBJFILE to read symbols from its associated BFD. It 1774 either returns or calls error(). The result is an initialized 1775 struct sym_fns in the objfile structure, that contains cached 1776 information about the symbol file. */ 1777 1778 static const struct sym_fns * 1779 find_sym_fns (bfd *abfd) 1780 { 1781 enum bfd_flavour our_flavour = bfd_get_flavour (abfd); 1782 1783 if (our_flavour == bfd_target_srec_flavour 1784 || our_flavour == bfd_target_ihex_flavour 1785 || our_flavour == bfd_target_tekhex_flavour) 1786 return NULL; /* No symbols. */ 1787 1788 for (const registered_sym_fns &rsf : symtab_fns) 1789 if (our_flavour == rsf.sym_flavour) 1790 return rsf.sym_fns; 1791 1792 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."), 1793 bfd_get_target (abfd)); 1794 } 1795 1796 1797 /* This function runs the load command of our current target. */ 1798 1799 static void 1800 load_command (const char *arg, int from_tty) 1801 { 1802 dont_repeat (); 1803 1804 /* The user might be reloading because the binary has changed. Take 1805 this opportunity to check. */ 1806 reopen_exec_file (); 1807 reread_symbols (from_tty); 1808 1809 std::string temp; 1810 if (arg == NULL) 1811 { 1812 const char *parg, *prev; 1813 1814 arg = get_exec_file (1); 1815 1816 /* We may need to quote this string so buildargv can pull it 1817 apart. */ 1818 prev = parg = arg; 1819 while ((parg = strpbrk (parg, "\\\"'\t "))) 1820 { 1821 temp.append (prev, parg - prev); 1822 prev = parg++; 1823 temp.push_back ('\\'); 1824 } 1825 /* If we have not copied anything yet, then we didn't see a 1826 character to quote, and we can just leave ARG unchanged. */ 1827 if (!temp.empty ()) 1828 { 1829 temp.append (prev); 1830 arg = temp.c_str (); 1831 } 1832 } 1833 1834 target_load (arg, from_tty); 1835 1836 /* After re-loading the executable, we don't really know which 1837 overlays are mapped any more. */ 1838 overlay_cache_invalid = 1; 1839 } 1840 1841 /* This version of "load" should be usable for any target. Currently 1842 it is just used for remote targets, not inftarg.c or core files, 1843 on the theory that only in that case is it useful. 1844 1845 Avoiding xmodem and the like seems like a win (a) because we don't have 1846 to worry about finding it, and (b) On VMS, fork() is very slow and so 1847 we don't want to run a subprocess. On the other hand, I'm not sure how 1848 performance compares. */ 1849 1850 static int validate_download = 0; 1851 1852 /* Opaque data for load_progress. */ 1853 struct load_progress_data 1854 { 1855 /* Cumulative data. */ 1856 unsigned long write_count = 0; 1857 unsigned long data_count = 0; 1858 bfd_size_type total_size = 0; 1859 }; 1860 1861 /* Opaque data for load_progress for a single section. */ 1862 struct load_progress_section_data 1863 { 1864 load_progress_section_data (load_progress_data *cumulative_, 1865 const char *section_name_, ULONGEST section_size_, 1866 CORE_ADDR lma_, gdb_byte *buffer_) 1867 : cumulative (cumulative_), section_name (section_name_), 1868 section_size (section_size_), lma (lma_), buffer (buffer_) 1869 {} 1870 1871 struct load_progress_data *cumulative; 1872 1873 /* Per-section data. */ 1874 const char *section_name; 1875 ULONGEST section_sent = 0; 1876 ULONGEST section_size; 1877 CORE_ADDR lma; 1878 gdb_byte *buffer; 1879 }; 1880 1881 /* Opaque data for load_section_callback. */ 1882 struct load_section_data 1883 { 1884 load_section_data (load_progress_data *progress_data_) 1885 : progress_data (progress_data_) 1886 {} 1887 1888 ~load_section_data () 1889 { 1890 for (auto &&request : requests) 1891 { 1892 xfree (request.data); 1893 delete ((load_progress_section_data *) request.baton); 1894 } 1895 } 1896 1897 CORE_ADDR load_offset = 0; 1898 struct load_progress_data *progress_data; 1899 std::vector<struct memory_write_request> requests; 1900 }; 1901 1902 /* Target write callback routine for progress reporting. */ 1903 1904 static void 1905 load_progress (ULONGEST bytes, void *untyped_arg) 1906 { 1907 struct load_progress_section_data *args 1908 = (struct load_progress_section_data *) untyped_arg; 1909 struct load_progress_data *totals; 1910 1911 if (args == NULL) 1912 /* Writing padding data. No easy way to get at the cumulative 1913 stats, so just ignore this. */ 1914 return; 1915 1916 totals = args->cumulative; 1917 1918 if (bytes == 0 && args->section_sent == 0) 1919 { 1920 /* The write is just starting. Let the user know we've started 1921 this section. */ 1922 current_uiout->message ("Loading section %s, size %s lma %s\n", 1923 args->section_name, 1924 hex_string (args->section_size), 1925 paddress (target_gdbarch (), args->lma)); 1926 return; 1927 } 1928 1929 if (validate_download) 1930 { 1931 /* Broken memories and broken monitors manifest themselves here 1932 when bring new computers to life. This doubles already slow 1933 downloads. */ 1934 /* NOTE: cagney/1999-10-18: A more efficient implementation 1935 might add a verify_memory() method to the target vector and 1936 then use that. remote.c could implement that method using 1937 the ``qCRC'' packet. */ 1938 gdb::byte_vector check (bytes); 1939 1940 if (target_read_memory (args->lma, check.data (), bytes) != 0) 1941 error (_("Download verify read failed at %s"), 1942 paddress (target_gdbarch (), args->lma)); 1943 if (memcmp (args->buffer, check.data (), bytes) != 0) 1944 error (_("Download verify compare failed at %s"), 1945 paddress (target_gdbarch (), args->lma)); 1946 } 1947 totals->data_count += bytes; 1948 args->lma += bytes; 1949 args->buffer += bytes; 1950 totals->write_count += 1; 1951 args->section_sent += bytes; 1952 if (check_quit_flag () 1953 || (deprecated_ui_load_progress_hook != NULL 1954 && deprecated_ui_load_progress_hook (args->section_name, 1955 args->section_sent))) 1956 error (_("Canceled the download")); 1957 1958 if (deprecated_show_load_progress != NULL) 1959 deprecated_show_load_progress (args->section_name, 1960 args->section_sent, 1961 args->section_size, 1962 totals->data_count, 1963 totals->total_size); 1964 } 1965 1966 /* Service function for generic_load. */ 1967 1968 static void 1969 load_one_section (bfd *abfd, asection *asec, 1970 struct load_section_data *args) 1971 { 1972 bfd_size_type size = bfd_section_size (asec); 1973 const char *sect_name = bfd_section_name (asec); 1974 1975 if ((bfd_section_flags (asec) & SEC_LOAD) == 0) 1976 return; 1977 1978 if (size == 0) 1979 return; 1980 1981 ULONGEST begin = bfd_section_lma (asec) + args->load_offset; 1982 ULONGEST end = begin + size; 1983 gdb_byte *buffer = (gdb_byte *) xmalloc (size); 1984 bfd_get_section_contents (abfd, asec, buffer, 0, size); 1985 1986 load_progress_section_data *section_data 1987 = new load_progress_section_data (args->progress_data, sect_name, size, 1988 begin, buffer); 1989 1990 args->requests.emplace_back (begin, end, buffer, section_data); 1991 } 1992 1993 static void print_transfer_performance (struct ui_file *stream, 1994 unsigned long data_count, 1995 unsigned long write_count, 1996 std::chrono::steady_clock::duration d); 1997 1998 /* See symfile.h. */ 1999 2000 void 2001 generic_load (const char *args, int from_tty) 2002 { 2003 struct load_progress_data total_progress; 2004 struct load_section_data cbdata (&total_progress); 2005 struct ui_out *uiout = current_uiout; 2006 2007 if (args == NULL) 2008 error_no_arg (_("file to load")); 2009 2010 gdb_argv argv (args); 2011 2012 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0])); 2013 2014 if (argv[1] != NULL) 2015 { 2016 const char *endptr; 2017 2018 cbdata.load_offset = strtoulst (argv[1], &endptr, 0); 2019 2020 /* If the last word was not a valid number then 2021 treat it as a file name with spaces in. */ 2022 if (argv[1] == endptr) 2023 error (_("Invalid download offset:%s."), argv[1]); 2024 2025 if (argv[2] != NULL) 2026 error (_("Too many parameters.")); 2027 } 2028 2029 /* Open the file for loading. */ 2030 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget)); 2031 if (loadfile_bfd == NULL) 2032 perror_with_name (filename.get ()); 2033 2034 if (!bfd_check_format (loadfile_bfd.get (), bfd_object)) 2035 { 2036 error (_("\"%s\" is not an object file: %s"), filename.get (), 2037 bfd_errmsg (bfd_get_error ())); 2038 } 2039 2040 for (asection *asec : gdb_bfd_sections (loadfile_bfd)) 2041 total_progress.total_size += bfd_section_size (asec); 2042 2043 for (asection *asec : gdb_bfd_sections (loadfile_bfd)) 2044 load_one_section (loadfile_bfd.get (), asec, &cbdata); 2045 2046 using namespace std::chrono; 2047 2048 steady_clock::time_point start_time = steady_clock::now (); 2049 2050 if (target_write_memory_blocks (cbdata.requests, flash_discard, 2051 load_progress) != 0) 2052 error (_("Load failed")); 2053 2054 steady_clock::time_point end_time = steady_clock::now (); 2055 2056 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ()); 2057 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry); 2058 uiout->text ("Start address "); 2059 uiout->field_core_addr ("address", target_gdbarch (), entry); 2060 uiout->text (", load size "); 2061 uiout->field_unsigned ("load-size", total_progress.data_count); 2062 uiout->text ("\n"); 2063 regcache_write_pc (get_current_regcache (), entry); 2064 2065 /* Reset breakpoints, now that we have changed the load image. For 2066 instance, breakpoints may have been set (or reset, by 2067 post_create_inferior) while connected to the target but before we 2068 loaded the program. In that case, the prologue analyzer could 2069 have read instructions from the target to find the right 2070 breakpoint locations. Loading has changed the contents of that 2071 memory. */ 2072 2073 breakpoint_re_set (); 2074 2075 print_transfer_performance (gdb_stdout, total_progress.data_count, 2076 total_progress.write_count, 2077 end_time - start_time); 2078 } 2079 2080 /* Report on STREAM the performance of a memory transfer operation, 2081 such as 'load'. DATA_COUNT is the number of bytes transferred. 2082 WRITE_COUNT is the number of separate write operations, or 0, if 2083 that information is not available. TIME is how long the operation 2084 lasted. */ 2085 2086 static void 2087 print_transfer_performance (struct ui_file *stream, 2088 unsigned long data_count, 2089 unsigned long write_count, 2090 std::chrono::steady_clock::duration time) 2091 { 2092 using namespace std::chrono; 2093 struct ui_out *uiout = current_uiout; 2094 2095 milliseconds ms = duration_cast<milliseconds> (time); 2096 2097 uiout->text ("Transfer rate: "); 2098 if (ms.count () > 0) 2099 { 2100 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count (); 2101 2102 if (uiout->is_mi_like_p ()) 2103 { 2104 uiout->field_unsigned ("transfer-rate", rate * 8); 2105 uiout->text (" bits/sec"); 2106 } 2107 else if (rate < 1024) 2108 { 2109 uiout->field_unsigned ("transfer-rate", rate); 2110 uiout->text (" bytes/sec"); 2111 } 2112 else 2113 { 2114 uiout->field_unsigned ("transfer-rate", rate / 1024); 2115 uiout->text (" KB/sec"); 2116 } 2117 } 2118 else 2119 { 2120 uiout->field_unsigned ("transferred-bits", (data_count * 8)); 2121 uiout->text (" bits in <1 sec"); 2122 } 2123 if (write_count > 0) 2124 { 2125 uiout->text (", "); 2126 uiout->field_unsigned ("write-rate", data_count / write_count); 2127 uiout->text (" bytes/write"); 2128 } 2129 uiout->text (".\n"); 2130 } 2131 2132 /* Add an OFFSET to the start address of each section in OBJF, except 2133 sections that were specified in ADDRS. */ 2134 2135 static void 2136 set_objfile_default_section_offset (struct objfile *objf, 2137 const section_addr_info &addrs, 2138 CORE_ADDR offset) 2139 { 2140 /* Add OFFSET to all sections by default. */ 2141 section_offsets offsets (objf->section_offsets.size (), offset); 2142 2143 /* Create sorted lists of all sections in ADDRS as well as all 2144 sections in OBJF. */ 2145 2146 std::vector<const struct other_sections *> addrs_sorted 2147 = addrs_section_sort (addrs); 2148 2149 section_addr_info objf_addrs 2150 = build_section_addr_info_from_objfile (objf); 2151 std::vector<const struct other_sections *> objf_addrs_sorted 2152 = addrs_section_sort (objf_addrs); 2153 2154 /* Walk the BFD section list, and if a matching section is found in 2155 ADDRS_SORTED_LIST, set its offset to zero to keep its address 2156 unchanged. 2157 2158 Note that both lists may contain multiple sections with the same 2159 name, and then the sections from ADDRS are matched in BFD order 2160 (thanks to sectindex). */ 2161 2162 std::vector<const struct other_sections *>::iterator addrs_sorted_iter 2163 = addrs_sorted.begin (); 2164 for (const other_sections *objf_sect : objf_addrs_sorted) 2165 { 2166 const char *objf_name = addr_section_name (objf_sect->name.c_str ()); 2167 int cmp = -1; 2168 2169 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ()) 2170 { 2171 const struct other_sections *sect = *addrs_sorted_iter; 2172 const char *sect_name = addr_section_name (sect->name.c_str ()); 2173 cmp = strcmp (sect_name, objf_name); 2174 if (cmp <= 0) 2175 ++addrs_sorted_iter; 2176 } 2177 2178 if (cmp == 0) 2179 offsets[objf_sect->sectindex] = 0; 2180 } 2181 2182 /* Apply the new section offsets. */ 2183 objfile_relocate (objf, offsets); 2184 } 2185 2186 /* This function allows the addition of incrementally linked object files. 2187 It does not modify any state in the target, only in the debugger. */ 2188 2189 static void 2190 add_symbol_file_command (const char *args, int from_tty) 2191 { 2192 struct gdbarch *gdbarch = get_current_arch (); 2193 gdb::unique_xmalloc_ptr<char> filename; 2194 char *arg; 2195 int argcnt = 0; 2196 struct objfile *objf; 2197 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED; 2198 symfile_add_flags add_flags = 0; 2199 2200 if (from_tty) 2201 add_flags |= SYMFILE_VERBOSE; 2202 2203 struct sect_opt 2204 { 2205 const char *name; 2206 const char *value; 2207 }; 2208 2209 std::vector<sect_opt> sect_opts = { { ".text", NULL } }; 2210 bool stop_processing_options = false; 2211 CORE_ADDR offset = 0; 2212 2213 dont_repeat (); 2214 2215 if (args == NULL) 2216 error (_("add-symbol-file takes a file name and an address")); 2217 2218 bool seen_addr = false; 2219 bool seen_offset = false; 2220 gdb_argv argv (args); 2221 2222 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt]) 2223 { 2224 if (stop_processing_options || *arg != '-') 2225 { 2226 if (filename == NULL) 2227 { 2228 /* First non-option argument is always the filename. */ 2229 filename.reset (tilde_expand (arg)); 2230 } 2231 else if (!seen_addr) 2232 { 2233 /* The second non-option argument is always the text 2234 address at which to load the program. */ 2235 sect_opts[0].value = arg; 2236 seen_addr = true; 2237 } 2238 else 2239 error (_("Unrecognized argument \"%s\""), arg); 2240 } 2241 else if (strcmp (arg, "-readnow") == 0) 2242 flags |= OBJF_READNOW; 2243 else if (strcmp (arg, "-readnever") == 0) 2244 flags |= OBJF_READNEVER; 2245 else if (strcmp (arg, "-s") == 0) 2246 { 2247 if (argv[argcnt + 1] == NULL) 2248 error (_("Missing section name after \"-s\"")); 2249 else if (argv[argcnt + 2] == NULL) 2250 error (_("Missing section address after \"-s\"")); 2251 2252 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] }; 2253 2254 sect_opts.push_back (sect); 2255 argcnt += 2; 2256 } 2257 else if (strcmp (arg, "-o") == 0) 2258 { 2259 arg = argv[++argcnt]; 2260 if (arg == NULL) 2261 error (_("Missing argument to -o")); 2262 2263 offset = parse_and_eval_address (arg); 2264 seen_offset = true; 2265 } 2266 else if (strcmp (arg, "--") == 0) 2267 stop_processing_options = true; 2268 else 2269 error (_("Unrecognized argument \"%s\""), arg); 2270 } 2271 2272 if (filename == NULL) 2273 error (_("You must provide a filename to be loaded.")); 2274 2275 validate_readnow_readnever (flags); 2276 2277 /* Print the prompt for the query below. And save the arguments into 2278 a sect_addr_info structure to be passed around to other 2279 functions. We have to split this up into separate print 2280 statements because hex_string returns a local static 2281 string. */ 2282 2283 gdb_printf (_("add symbol table from file \"%s\""), 2284 filename.get ()); 2285 section_addr_info section_addrs; 2286 std::vector<sect_opt>::const_iterator it = sect_opts.begin (); 2287 if (!seen_addr) 2288 ++it; 2289 for (; it != sect_opts.end (); ++it) 2290 { 2291 CORE_ADDR addr; 2292 const char *val = it->value; 2293 const char *sec = it->name; 2294 2295 if (section_addrs.empty ()) 2296 gdb_printf (_(" at\n")); 2297 addr = parse_and_eval_address (val); 2298 2299 /* Here we store the section offsets in the order they were 2300 entered on the command line. Every array element is 2301 assigned an ascending section index to preserve the above 2302 order over an unstable sorting algorithm. This dummy 2303 index is not used for any other purpose. 2304 */ 2305 section_addrs.emplace_back (addr, sec, section_addrs.size ()); 2306 gdb_printf ("\t%s_addr = %s\n", sec, 2307 paddress (gdbarch, addr)); 2308 2309 /* The object's sections are initialized when a 2310 call is made to build_objfile_section_table (objfile). 2311 This happens in reread_symbols. 2312 At this point, we don't know what file type this is, 2313 so we can't determine what section names are valid. */ 2314 } 2315 if (seen_offset) 2316 gdb_printf (_("%s offset by %s\n"), 2317 (section_addrs.empty () 2318 ? _(" with all sections") 2319 : _("with other sections")), 2320 paddress (gdbarch, offset)); 2321 else if (section_addrs.empty ()) 2322 gdb_printf ("\n"); 2323 2324 if (from_tty && (!query ("%s", ""))) 2325 error (_("Not confirmed.")); 2326 2327 objf = symbol_file_add (filename.get (), add_flags, §ion_addrs, 2328 flags); 2329 if (!objfile_has_symbols (objf) && objf->per_bfd->minimal_symbol_count <= 0) 2330 warning (_("newly-added symbol file \"%s\" does not provide any symbols"), 2331 filename.get ()); 2332 2333 if (seen_offset) 2334 set_objfile_default_section_offset (objf, section_addrs, offset); 2335 2336 current_program_space->add_target_sections (objf); 2337 2338 /* Getting new symbols may change our opinion about what is 2339 frameless. */ 2340 reinit_frame_cache (); 2341 } 2342 2343 2344 /* This function removes a symbol file that was added via add-symbol-file. */ 2345 2346 static void 2347 remove_symbol_file_command (const char *args, int from_tty) 2348 { 2349 struct objfile *objf = NULL; 2350 struct program_space *pspace = current_program_space; 2351 2352 dont_repeat (); 2353 2354 if (args == NULL) 2355 error (_("remove-symbol-file: no symbol file provided")); 2356 2357 gdb_argv argv (args); 2358 2359 if (strcmp (argv[0], "-a") == 0) 2360 { 2361 /* Interpret the next argument as an address. */ 2362 CORE_ADDR addr; 2363 2364 if (argv[1] == NULL) 2365 error (_("Missing address argument")); 2366 2367 if (argv[2] != NULL) 2368 error (_("Junk after %s"), argv[1]); 2369 2370 addr = parse_and_eval_address (argv[1]); 2371 2372 for (objfile *objfile : current_program_space->objfiles ()) 2373 { 2374 if ((objfile->flags & OBJF_USERLOADED) != 0 2375 && (objfile->flags & OBJF_SHARED) != 0 2376 && objfile->pspace == pspace 2377 && is_addr_in_objfile (addr, objfile)) 2378 { 2379 objf = objfile; 2380 break; 2381 } 2382 } 2383 } 2384 else if (argv[0] != NULL) 2385 { 2386 /* Interpret the current argument as a file name. */ 2387 2388 if (argv[1] != NULL) 2389 error (_("Junk after %s"), argv[0]); 2390 2391 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0])); 2392 2393 for (objfile *objfile : current_program_space->objfiles ()) 2394 { 2395 if ((objfile->flags & OBJF_USERLOADED) != 0 2396 && (objfile->flags & OBJF_SHARED) != 0 2397 && objfile->pspace == pspace 2398 && filename_cmp (filename.get (), objfile_name (objfile)) == 0) 2399 { 2400 objf = objfile; 2401 break; 2402 } 2403 } 2404 } 2405 2406 if (objf == NULL) 2407 error (_("No symbol file found")); 2408 2409 if (from_tty 2410 && !query (_("Remove symbol table from file \"%s\"? "), 2411 objfile_name (objf))) 2412 error (_("Not confirmed.")); 2413 2414 objf->unlink (); 2415 clear_symtab_users (0); 2416 } 2417 2418 /* Re-read symbols if a symbol-file has changed. */ 2419 2420 void 2421 reread_symbols (int from_tty) 2422 { 2423 long new_modtime; 2424 struct stat new_statbuf; 2425 int res; 2426 std::vector<struct objfile *> new_objfiles; 2427 2428 for (objfile *objfile : current_program_space->objfiles ()) 2429 { 2430 if (objfile->obfd.get () == NULL) 2431 continue; 2432 2433 /* Separate debug objfiles are handled in the main objfile. */ 2434 if (objfile->separate_debug_objfile_backlink) 2435 continue; 2436 2437 /* If this object is from an archive (what you usually create with 2438 `ar', often called a `static library' on most systems, though 2439 a `shared library' on AIX is also an archive), then you should 2440 stat on the archive name, not member name. */ 2441 if (objfile->obfd->my_archive) 2442 res = stat (bfd_get_filename (objfile->obfd->my_archive), &new_statbuf); 2443 else 2444 res = stat (objfile_name (objfile), &new_statbuf); 2445 if (res != 0) 2446 { 2447 /* FIXME, should use print_sys_errmsg but it's not filtered. */ 2448 gdb_printf (_("`%s' has disappeared; keeping its symbols.\n"), 2449 objfile_name (objfile)); 2450 continue; 2451 } 2452 new_modtime = new_statbuf.st_mtime; 2453 if (new_modtime != objfile->mtime) 2454 { 2455 gdb_printf (_("`%s' has changed; re-reading symbols.\n"), 2456 objfile_name (objfile)); 2457 2458 /* There are various functions like symbol_file_add, 2459 symfile_bfd_open, syms_from_objfile, etc., which might 2460 appear to do what we want. But they have various other 2461 effects which we *don't* want. So we just do stuff 2462 ourselves. We don't worry about mapped files (for one thing, 2463 any mapped file will be out of date). */ 2464 2465 /* If we get an error, blow away this objfile (not sure if 2466 that is the correct response for things like shared 2467 libraries). */ 2468 objfile_up objfile_holder (objfile); 2469 2470 /* We need to do this whenever any symbols go away. */ 2471 clear_symtab_users_cleanup defer_clear_users (0); 2472 2473 if (current_program_space->exec_bfd () != NULL 2474 && filename_cmp (bfd_get_filename (objfile->obfd.get ()), 2475 bfd_get_filename (current_program_space->exec_bfd ())) == 0) 2476 { 2477 /* Reload EXEC_BFD without asking anything. */ 2478 2479 exec_file_attach (bfd_get_filename (objfile->obfd.get ()), 0); 2480 } 2481 2482 /* Keep the calls order approx. the same as in free_objfile. */ 2483 2484 /* Free the separate debug objfiles. It will be 2485 automatically recreated by sym_read. */ 2486 free_objfile_separate_debug (objfile); 2487 2488 /* Clear the stale source cache. */ 2489 forget_cached_source_info (); 2490 2491 /* Remove any references to this objfile in the global 2492 value lists. */ 2493 preserve_values (objfile); 2494 2495 /* Nuke all the state that we will re-read. Much of the following 2496 code which sets things to NULL really is necessary to tell 2497 other parts of GDB that there is nothing currently there. 2498 2499 Try to keep the freeing order compatible with free_objfile. */ 2500 2501 if (objfile->sf != NULL) 2502 { 2503 (*objfile->sf->sym_finish) (objfile); 2504 } 2505 2506 objfile->registry_fields.clear_registry (); 2507 2508 /* Clean up any state BFD has sitting around. */ 2509 { 2510 gdb_bfd_ref_ptr obfd = objfile->obfd; 2511 const char *obfd_filename; 2512 2513 obfd_filename = bfd_get_filename (objfile->obfd.get ()); 2514 /* Open the new BFD before freeing the old one, so that 2515 the filename remains live. */ 2516 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget)); 2517 objfile->obfd = std::move (temp); 2518 if (objfile->obfd == NULL) 2519 error (_("Can't open %s to read symbols."), obfd_filename); 2520 } 2521 2522 std::string original_name = objfile->original_name; 2523 2524 /* bfd_openr sets cacheable to true, which is what we want. */ 2525 if (!bfd_check_format (objfile->obfd.get (), bfd_object)) 2526 error (_("Can't read symbols from %s: %s."), objfile_name (objfile), 2527 bfd_errmsg (bfd_get_error ())); 2528 2529 /* NB: after this call to obstack_free, objfiles_changed 2530 will need to be called (see discussion below). */ 2531 obstack_free (&objfile->objfile_obstack, 0); 2532 objfile->sections = NULL; 2533 objfile->section_offsets.clear (); 2534 objfile->sect_index_bss = -1; 2535 objfile->sect_index_data = -1; 2536 objfile->sect_index_rodata = -1; 2537 objfile->sect_index_text = -1; 2538 objfile->compunit_symtabs = NULL; 2539 objfile->template_symbols = NULL; 2540 objfile->static_links.reset (nullptr); 2541 2542 /* obstack_init also initializes the obstack so it is 2543 empty. We could use obstack_specify_allocation but 2544 gdb_obstack.h specifies the alloc/dealloc functions. */ 2545 obstack_init (&objfile->objfile_obstack); 2546 2547 /* set_objfile_per_bfd potentially allocates the per-bfd 2548 data on the objfile's obstack (if sharing data across 2549 multiple users is not possible), so it's important to 2550 do it *after* the obstack has been initialized. */ 2551 set_objfile_per_bfd (objfile); 2552 2553 objfile->original_name 2554 = obstack_strdup (&objfile->objfile_obstack, original_name); 2555 2556 /* Reset the sym_fns pointer. The ELF reader can change it 2557 based on whether .gdb_index is present, and we need it to 2558 start over. PR symtab/15885 */ 2559 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd.get ())); 2560 objfile->qf.clear (); 2561 2562 build_objfile_section_table (objfile); 2563 2564 /* What the hell is sym_new_init for, anyway? The concept of 2565 distinguishing between the main file and additional files 2566 in this way seems rather dubious. */ 2567 if (objfile == current_program_space->symfile_object_file) 2568 { 2569 (*objfile->sf->sym_new_init) (objfile); 2570 } 2571 2572 (*objfile->sf->sym_init) (objfile); 2573 clear_complaints (); 2574 2575 objfile->flags &= ~OBJF_PSYMTABS_READ; 2576 2577 /* We are about to read new symbols and potentially also 2578 DWARF information. Some targets may want to pass addresses 2579 read from DWARF DIE's through an adjustment function before 2580 saving them, like MIPS, which may call into 2581 "find_pc_section". When called, that function will make 2582 use of per-objfile program space data. 2583 2584 Since we discarded our section information above, we have 2585 dangling pointers in the per-objfile program space data 2586 structure. Force GDB to update the section mapping 2587 information by letting it know the objfile has changed, 2588 making the dangling pointers point to correct data 2589 again. */ 2590 2591 objfiles_changed (); 2592 2593 /* Recompute section offsets and section indices. */ 2594 objfile->sf->sym_offsets (objfile, {}); 2595 2596 read_symbols (objfile, 0); 2597 2598 if ((objfile->flags & OBJF_READNOW)) 2599 { 2600 const int mainline = objfile->flags & OBJF_MAINLINE; 2601 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1) 2602 && readnow_symbol_files); 2603 if (should_print) 2604 gdb_printf (_("Expanding full symbols from %ps...\n"), 2605 styled_string (file_name_style.style (), 2606 objfile_name (objfile))); 2607 2608 objfile->expand_all_symtabs (); 2609 } 2610 2611 if (!objfile_has_symbols (objfile)) 2612 { 2613 gdb_stdout->wrap_here (0); 2614 gdb_printf (_("(no debugging symbols found)\n")); 2615 gdb_stdout->wrap_here (0); 2616 } 2617 2618 /* We're done reading the symbol file; finish off complaints. */ 2619 clear_complaints (); 2620 2621 /* Getting new symbols may change our opinion about what is 2622 frameless. */ 2623 2624 reinit_frame_cache (); 2625 2626 /* Discard cleanups as symbol reading was successful. */ 2627 objfile_holder.release (); 2628 defer_clear_users.release (); 2629 2630 /* If the mtime has changed between the time we set new_modtime 2631 and now, we *want* this to be out of date, so don't call stat 2632 again now. */ 2633 objfile->mtime = new_modtime; 2634 init_entry_point_info (objfile); 2635 2636 new_objfiles.push_back (objfile); 2637 } 2638 } 2639 2640 if (!new_objfiles.empty ()) 2641 { 2642 clear_symtab_users (0); 2643 2644 /* The registry for each objfile was cleared and 2645 gdb::observers::new_objfile.notify (NULL) has been called by 2646 clear_symtab_users above. Notify the new files now. */ 2647 for (auto iter : new_objfiles) 2648 gdb::observers::new_objfile.notify (iter); 2649 2650 /* At least one objfile has changed, so we can consider that 2651 the executable we're debugging has changed too. */ 2652 gdb::observers::executable_changed.notify (); 2653 } 2654 } 2655 2656 2657 struct filename_language 2658 { 2659 filename_language (const std::string &ext_, enum language lang_) 2660 : ext (ext_), lang (lang_) 2661 {} 2662 2663 std::string ext; 2664 enum language lang; 2665 }; 2666 2667 static std::vector<filename_language> filename_language_table; 2668 2669 /* See symfile.h. */ 2670 2671 void 2672 add_filename_language (const char *ext, enum language lang) 2673 { 2674 gdb_assert (ext != nullptr); 2675 filename_language_table.emplace_back (ext, lang); 2676 } 2677 2678 static std::string ext_args; 2679 static void 2680 show_ext_args (struct ui_file *file, int from_tty, 2681 struct cmd_list_element *c, const char *value) 2682 { 2683 gdb_printf (file, 2684 _("Mapping between filename extension " 2685 "and source language is \"%s\".\n"), 2686 value); 2687 } 2688 2689 static void 2690 set_ext_lang_command (const char *args, 2691 int from_tty, struct cmd_list_element *e) 2692 { 2693 const char *begin = ext_args.c_str (); 2694 const char *end = ext_args.c_str (); 2695 2696 /* First arg is filename extension, starting with '.' */ 2697 if (*end != '.') 2698 error (_("'%s': Filename extension must begin with '.'"), ext_args.c_str ()); 2699 2700 /* Find end of first arg. */ 2701 while (*end != '\0' && !isspace (*end)) 2702 end++; 2703 2704 if (*end == '\0') 2705 error (_("'%s': two arguments required -- " 2706 "filename extension and language"), 2707 ext_args.c_str ()); 2708 2709 /* Extract first arg, the extension. */ 2710 std::string extension = ext_args.substr (0, end - begin); 2711 2712 /* Find beginning of second arg, which should be a source language. */ 2713 begin = skip_spaces (end); 2714 2715 if (*begin == '\0') 2716 error (_("'%s': two arguments required -- " 2717 "filename extension and language"), 2718 ext_args.c_str ()); 2719 2720 /* Lookup the language from among those we know. */ 2721 language lang = language_enum (begin); 2722 2723 auto it = filename_language_table.begin (); 2724 /* Now lookup the filename extension: do we already know it? */ 2725 for (; it != filename_language_table.end (); it++) 2726 { 2727 if (it->ext == extension) 2728 break; 2729 } 2730 2731 if (it == filename_language_table.end ()) 2732 { 2733 /* New file extension. */ 2734 add_filename_language (extension.data (), lang); 2735 } 2736 else 2737 { 2738 /* Redefining a previously known filename extension. */ 2739 2740 /* if (from_tty) */ 2741 /* query ("Really make files of type %s '%s'?", */ 2742 /* ext_args, language_str (lang)); */ 2743 2744 it->lang = lang; 2745 } 2746 } 2747 2748 static void 2749 info_ext_lang_command (const char *args, int from_tty) 2750 { 2751 gdb_printf (_("Filename extensions and the languages they represent:")); 2752 gdb_printf ("\n\n"); 2753 for (const filename_language &entry : filename_language_table) 2754 gdb_printf ("\t%s\t- %s\n", entry.ext.c_str (), 2755 language_str (entry.lang)); 2756 } 2757 2758 enum language 2759 deduce_language_from_filename (const char *filename) 2760 { 2761 const char *cp; 2762 2763 if (filename != NULL) 2764 if ((cp = strrchr (filename, '.')) != NULL) 2765 { 2766 for (const filename_language &entry : filename_language_table) 2767 if (entry.ext == cp) 2768 return entry.lang; 2769 } 2770 2771 return language_unknown; 2772 } 2773 2774 /* Allocate and initialize a new symbol table. 2775 CUST is from the result of allocate_compunit_symtab. */ 2776 2777 struct symtab * 2778 allocate_symtab (struct compunit_symtab *cust, const char *filename, 2779 const char *filename_for_id) 2780 { 2781 struct objfile *objfile = cust->objfile (); 2782 struct symtab *symtab 2783 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab); 2784 2785 symtab->filename = objfile->intern (filename); 2786 symtab->filename_for_id = objfile->intern (filename_for_id); 2787 symtab->fullname = NULL; 2788 symtab->set_language (deduce_language_from_filename (filename)); 2789 2790 /* This can be very verbose with lots of headers. 2791 Only print at higher debug levels. */ 2792 if (symtab_create_debug >= 2) 2793 { 2794 /* Be a bit clever with debugging messages, and don't print objfile 2795 every time, only when it changes. */ 2796 static std::string last_objfile_name; 2797 const char *this_objfile_name = objfile_name (objfile); 2798 2799 if (last_objfile_name.empty () || last_objfile_name != this_objfile_name) 2800 { 2801 last_objfile_name = this_objfile_name; 2802 2803 symtab_create_debug_printf_v 2804 ("creating one or more symtabs for objfile %s", this_objfile_name); 2805 } 2806 2807 symtab_create_debug_printf_v ("created symtab %s for module %s", 2808 host_address_to_string (symtab), filename); 2809 } 2810 2811 /* Add it to CUST's list of symtabs. */ 2812 cust->add_filetab (symtab); 2813 2814 /* Backlink to the containing compunit symtab. */ 2815 symtab->set_compunit (cust); 2816 2817 return symtab; 2818 } 2819 2820 /* Allocate and initialize a new compunit. 2821 NAME is the name of the main source file, if there is one, or some 2822 descriptive text if there are no source files. */ 2823 2824 struct compunit_symtab * 2825 allocate_compunit_symtab (struct objfile *objfile, const char *name) 2826 { 2827 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack, 2828 struct compunit_symtab); 2829 const char *saved_name; 2830 2831 cu->set_objfile (objfile); 2832 2833 /* The name we record here is only for display/debugging purposes. 2834 Just save the basename to avoid path issues (too long for display, 2835 relative vs absolute, etc.). */ 2836 saved_name = lbasename (name); 2837 cu->name = obstack_strdup (&objfile->objfile_obstack, saved_name); 2838 2839 cu->set_debugformat ("unknown"); 2840 2841 symtab_create_debug_printf_v ("created compunit symtab %s for %s", 2842 host_address_to_string (cu), 2843 cu->name); 2844 2845 return cu; 2846 } 2847 2848 /* Hook CU to the objfile it comes from. */ 2849 2850 void 2851 add_compunit_symtab_to_objfile (struct compunit_symtab *cu) 2852 { 2853 cu->next = cu->objfile ()->compunit_symtabs; 2854 cu->objfile ()->compunit_symtabs = cu; 2855 } 2856 2857 2858 /* Reset all data structures in gdb which may contain references to 2859 symbol table data. */ 2860 2861 void 2862 clear_symtab_users (symfile_add_flags add_flags) 2863 { 2864 /* Someday, we should do better than this, by only blowing away 2865 the things that really need to be blown. */ 2866 2867 /* Clear the "current" symtab first, because it is no longer valid. 2868 breakpoint_re_set may try to access the current symtab. */ 2869 clear_current_source_symtab_and_line (); 2870 2871 clear_displays (); 2872 clear_last_displayed_sal (); 2873 clear_pc_function_cache (); 2874 gdb::observers::new_objfile.notify (NULL); 2875 2876 /* Now that the various caches have been cleared, we can re_set 2877 our breakpoints without risking it using stale data. */ 2878 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0) 2879 breakpoint_re_set (); 2880 } 2881 2882 /* OVERLAYS: 2883 The following code implements an abstraction for debugging overlay sections. 2884 2885 The target model is as follows: 2886 1) The gnu linker will permit multiple sections to be mapped into the 2887 same VMA, each with its own unique LMA (or load address). 2888 2) It is assumed that some runtime mechanism exists for mapping the 2889 sections, one by one, from the load address into the VMA address. 2890 3) This code provides a mechanism for gdb to keep track of which 2891 sections should be considered to be mapped from the VMA to the LMA. 2892 This information is used for symbol lookup, and memory read/write. 2893 For instance, if a section has been mapped then its contents 2894 should be read from the VMA, otherwise from the LMA. 2895 2896 Two levels of debugger support for overlays are available. One is 2897 "manual", in which the debugger relies on the user to tell it which 2898 overlays are currently mapped. This level of support is 2899 implemented entirely in the core debugger, and the information about 2900 whether a section is mapped is kept in the objfile->obj_section table. 2901 2902 The second level of support is "automatic", and is only available if 2903 the target-specific code provides functionality to read the target's 2904 overlay mapping table, and translate its contents for the debugger 2905 (by updating the mapped state information in the obj_section tables). 2906 2907 The interface is as follows: 2908 User commands: 2909 overlay map <name> -- tell gdb to consider this section mapped 2910 overlay unmap <name> -- tell gdb to consider this section unmapped 2911 overlay list -- list the sections that GDB thinks are mapped 2912 overlay read-target -- get the target's state of what's mapped 2913 overlay off/manual/auto -- set overlay debugging state 2914 Functional interface: 2915 find_pc_mapped_section(pc): if the pc is in the range of a mapped 2916 section, return that section. 2917 find_pc_overlay(pc): find any overlay section that contains 2918 the pc, either in its VMA or its LMA 2919 section_is_mapped(sect): true if overlay is marked as mapped 2920 section_is_overlay(sect): true if section's VMA != LMA 2921 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA 2922 pc_in_unmapped_range(...): true if pc belongs to section's LMA 2923 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap 2924 overlay_mapped_address(...): map an address from section's LMA to VMA 2925 overlay_unmapped_address(...): map an address from section's VMA to LMA 2926 symbol_overlayed_address(...): Return a "current" address for symbol: 2927 either in VMA or LMA depending on whether 2928 the symbol's section is currently mapped. */ 2929 2930 /* Overlay debugging state: */ 2931 2932 enum overlay_debugging_state overlay_debugging = ovly_off; 2933 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */ 2934 2935 /* Function: section_is_overlay (SECTION) 2936 Returns true if SECTION has VMA not equal to LMA, ie. 2937 SECTION is loaded at an address different from where it will "run". */ 2938 2939 int 2940 section_is_overlay (struct obj_section *section) 2941 { 2942 if (overlay_debugging && section) 2943 { 2944 asection *bfd_section = section->the_bfd_section; 2945 2946 if (bfd_section_lma (bfd_section) != 0 2947 && bfd_section_lma (bfd_section) != bfd_section_vma (bfd_section)) 2948 return 1; 2949 } 2950 2951 return 0; 2952 } 2953 2954 /* Function: overlay_invalidate_all (void) 2955 Invalidate the mapped state of all overlay sections (mark it as stale). */ 2956 2957 static void 2958 overlay_invalidate_all (void) 2959 { 2960 struct obj_section *sect; 2961 2962 for (objfile *objfile : current_program_space->objfiles ()) 2963 ALL_OBJFILE_OSECTIONS (objfile, sect) 2964 if (section_is_overlay (sect)) 2965 sect->ovly_mapped = -1; 2966 } 2967 2968 /* Function: section_is_mapped (SECTION) 2969 Returns true if section is an overlay, and is currently mapped. 2970 2971 Access to the ovly_mapped flag is restricted to this function, so 2972 that we can do automatic update. If the global flag 2973 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call 2974 overlay_invalidate_all. If the mapped state of the particular 2975 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */ 2976 2977 int 2978 section_is_mapped (struct obj_section *osect) 2979 { 2980 struct gdbarch *gdbarch; 2981 2982 if (osect == 0 || !section_is_overlay (osect)) 2983 return 0; 2984 2985 switch (overlay_debugging) 2986 { 2987 default: 2988 case ovly_off: 2989 return 0; /* overlay debugging off */ 2990 case ovly_auto: /* overlay debugging automatic */ 2991 /* Unles there is a gdbarch_overlay_update function, 2992 there's really nothing useful to do here (can't really go auto). */ 2993 gdbarch = osect->objfile->arch (); 2994 if (gdbarch_overlay_update_p (gdbarch)) 2995 { 2996 if (overlay_cache_invalid) 2997 { 2998 overlay_invalidate_all (); 2999 overlay_cache_invalid = 0; 3000 } 3001 if (osect->ovly_mapped == -1) 3002 gdbarch_overlay_update (gdbarch, osect); 3003 } 3004 /* fall thru */ 3005 case ovly_on: /* overlay debugging manual */ 3006 return osect->ovly_mapped == 1; 3007 } 3008 } 3009 3010 /* Function: pc_in_unmapped_range 3011 If PC falls into the lma range of SECTION, return true, else false. */ 3012 3013 CORE_ADDR 3014 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section) 3015 { 3016 if (section_is_overlay (section)) 3017 { 3018 asection *bfd_section = section->the_bfd_section; 3019 3020 /* We assume the LMA is relocated by the same offset as the VMA. */ 3021 bfd_vma size = bfd_section_size (bfd_section); 3022 CORE_ADDR offset = section->offset (); 3023 3024 if (bfd_section_lma (bfd_section) + offset <= pc 3025 && pc < bfd_section_lma (bfd_section) + offset + size) 3026 return 1; 3027 } 3028 3029 return 0; 3030 } 3031 3032 /* Function: pc_in_mapped_range 3033 If PC falls into the vma range of SECTION, return true, else false. */ 3034 3035 CORE_ADDR 3036 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section) 3037 { 3038 if (section_is_overlay (section)) 3039 { 3040 if (section->addr () <= pc 3041 && pc < section->endaddr ()) 3042 return 1; 3043 } 3044 3045 return 0; 3046 } 3047 3048 /* Return true if the mapped ranges of sections A and B overlap, false 3049 otherwise. */ 3050 3051 static int 3052 sections_overlap (struct obj_section *a, struct obj_section *b) 3053 { 3054 CORE_ADDR a_start = a->addr (); 3055 CORE_ADDR a_end = a->endaddr (); 3056 CORE_ADDR b_start = b->addr (); 3057 CORE_ADDR b_end = b->endaddr (); 3058 3059 return (a_start < b_end && b_start < a_end); 3060 } 3061 3062 /* Function: overlay_unmapped_address (PC, SECTION) 3063 Returns the address corresponding to PC in the unmapped (load) range. 3064 May be the same as PC. */ 3065 3066 CORE_ADDR 3067 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section) 3068 { 3069 if (section_is_overlay (section) && pc_in_mapped_range (pc, section)) 3070 { 3071 asection *bfd_section = section->the_bfd_section; 3072 3073 return (pc + bfd_section_lma (bfd_section) 3074 - bfd_section_vma (bfd_section)); 3075 } 3076 3077 return pc; 3078 } 3079 3080 /* Function: overlay_mapped_address (PC, SECTION) 3081 Returns the address corresponding to PC in the mapped (runtime) range. 3082 May be the same as PC. */ 3083 3084 CORE_ADDR 3085 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section) 3086 { 3087 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section)) 3088 { 3089 asection *bfd_section = section->the_bfd_section; 3090 3091 return (pc + bfd_section_vma (bfd_section) 3092 - bfd_section_lma (bfd_section)); 3093 } 3094 3095 return pc; 3096 } 3097 3098 /* Function: symbol_overlayed_address 3099 Return one of two addresses (relative to the VMA or to the LMA), 3100 depending on whether the section is mapped or not. */ 3101 3102 CORE_ADDR 3103 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section) 3104 { 3105 if (overlay_debugging) 3106 { 3107 /* If the symbol has no section, just return its regular address. */ 3108 if (section == 0) 3109 return address; 3110 /* If the symbol's section is not an overlay, just return its 3111 address. */ 3112 if (!section_is_overlay (section)) 3113 return address; 3114 /* If the symbol's section is mapped, just return its address. */ 3115 if (section_is_mapped (section)) 3116 return address; 3117 /* 3118 * HOWEVER: if the symbol is in an overlay section which is NOT mapped, 3119 * then return its LOADED address rather than its vma address!! 3120 */ 3121 return overlay_unmapped_address (address, section); 3122 } 3123 return address; 3124 } 3125 3126 /* Function: find_pc_overlay (PC) 3127 Return the best-match overlay section for PC: 3128 If PC matches a mapped overlay section's VMA, return that section. 3129 Else if PC matches an unmapped section's VMA, return that section. 3130 Else if PC matches an unmapped section's LMA, return that section. */ 3131 3132 struct obj_section * 3133 find_pc_overlay (CORE_ADDR pc) 3134 { 3135 struct obj_section *osect, *best_match = NULL; 3136 3137 if (overlay_debugging) 3138 { 3139 for (objfile *objfile : current_program_space->objfiles ()) 3140 ALL_OBJFILE_OSECTIONS (objfile, osect) 3141 if (section_is_overlay (osect)) 3142 { 3143 if (pc_in_mapped_range (pc, osect)) 3144 { 3145 if (section_is_mapped (osect)) 3146 return osect; 3147 else 3148 best_match = osect; 3149 } 3150 else if (pc_in_unmapped_range (pc, osect)) 3151 best_match = osect; 3152 } 3153 } 3154 return best_match; 3155 } 3156 3157 /* Function: find_pc_mapped_section (PC) 3158 If PC falls into the VMA address range of an overlay section that is 3159 currently marked as MAPPED, return that section. Else return NULL. */ 3160 3161 struct obj_section * 3162 find_pc_mapped_section (CORE_ADDR pc) 3163 { 3164 struct obj_section *osect; 3165 3166 if (overlay_debugging) 3167 { 3168 for (objfile *objfile : current_program_space->objfiles ()) 3169 ALL_OBJFILE_OSECTIONS (objfile, osect) 3170 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect)) 3171 return osect; 3172 } 3173 3174 return NULL; 3175 } 3176 3177 /* Function: list_overlays_command 3178 Print a list of mapped sections and their PC ranges. */ 3179 3180 static void 3181 list_overlays_command (const char *args, int from_tty) 3182 { 3183 int nmapped = 0; 3184 struct obj_section *osect; 3185 3186 if (overlay_debugging) 3187 { 3188 for (objfile *objfile : current_program_space->objfiles ()) 3189 ALL_OBJFILE_OSECTIONS (objfile, osect) 3190 if (section_is_mapped (osect)) 3191 { 3192 struct gdbarch *gdbarch = objfile->arch (); 3193 const char *name; 3194 bfd_vma lma, vma; 3195 int size; 3196 3197 vma = bfd_section_vma (osect->the_bfd_section); 3198 lma = bfd_section_lma (osect->the_bfd_section); 3199 size = bfd_section_size (osect->the_bfd_section); 3200 name = bfd_section_name (osect->the_bfd_section); 3201 3202 gdb_printf ("Section %s, loaded at ", name); 3203 gdb_puts (paddress (gdbarch, lma)); 3204 gdb_puts (" - "); 3205 gdb_puts (paddress (gdbarch, lma + size)); 3206 gdb_printf (", mapped at "); 3207 gdb_puts (paddress (gdbarch, vma)); 3208 gdb_puts (" - "); 3209 gdb_puts (paddress (gdbarch, vma + size)); 3210 gdb_puts ("\n"); 3211 3212 nmapped++; 3213 } 3214 } 3215 if (nmapped == 0) 3216 gdb_printf (_("No sections are mapped.\n")); 3217 } 3218 3219 /* Function: map_overlay_command 3220 Mark the named section as mapped (ie. residing at its VMA address). */ 3221 3222 static void 3223 map_overlay_command (const char *args, int from_tty) 3224 { 3225 struct obj_section *sec, *sec2; 3226 3227 if (!overlay_debugging) 3228 error (_("Overlay debugging not enabled. Use " 3229 "either the 'overlay auto' or\n" 3230 "the 'overlay manual' command.")); 3231 3232 if (args == 0 || *args == 0) 3233 error (_("Argument required: name of an overlay section")); 3234 3235 /* First, find a section matching the user supplied argument. */ 3236 for (objfile *obj_file : current_program_space->objfiles ()) 3237 ALL_OBJFILE_OSECTIONS (obj_file, sec) 3238 if (!strcmp (bfd_section_name (sec->the_bfd_section), args)) 3239 { 3240 /* Now, check to see if the section is an overlay. */ 3241 if (!section_is_overlay (sec)) 3242 continue; /* not an overlay section */ 3243 3244 /* Mark the overlay as "mapped". */ 3245 sec->ovly_mapped = 1; 3246 3247 /* Next, make a pass and unmap any sections that are 3248 overlapped by this new section: */ 3249 for (objfile *objfile2 : current_program_space->objfiles ()) 3250 ALL_OBJFILE_OSECTIONS (objfile2, sec2) 3251 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, 3252 sec2)) 3253 { 3254 if (info_verbose) 3255 gdb_printf (_("Note: section %s unmapped by overlap\n"), 3256 bfd_section_name (sec2->the_bfd_section)); 3257 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */ 3258 } 3259 return; 3260 } 3261 error (_("No overlay section called %s"), args); 3262 } 3263 3264 /* Function: unmap_overlay_command 3265 Mark the overlay section as unmapped 3266 (ie. resident in its LMA address range, rather than the VMA range). */ 3267 3268 static void 3269 unmap_overlay_command (const char *args, int from_tty) 3270 { 3271 struct obj_section *sec = NULL; 3272 3273 if (!overlay_debugging) 3274 error (_("Overlay debugging not enabled. " 3275 "Use either the 'overlay auto' or\n" 3276 "the 'overlay manual' command.")); 3277 3278 if (args == 0 || *args == 0) 3279 error (_("Argument required: name of an overlay section")); 3280 3281 /* First, find a section matching the user supplied argument. */ 3282 for (objfile *objfile : current_program_space->objfiles ()) 3283 ALL_OBJFILE_OSECTIONS (objfile, sec) 3284 if (!strcmp (bfd_section_name (sec->the_bfd_section), args)) 3285 { 3286 if (!sec->ovly_mapped) 3287 error (_("Section %s is not mapped"), args); 3288 sec->ovly_mapped = 0; 3289 return; 3290 } 3291 error (_("No overlay section called %s"), args); 3292 } 3293 3294 /* Function: overlay_auto_command 3295 A utility command to turn on overlay debugging. 3296 Possibly this should be done via a set/show command. */ 3297 3298 static void 3299 overlay_auto_command (const char *args, int from_tty) 3300 { 3301 overlay_debugging = ovly_auto; 3302 enable_overlay_breakpoints (); 3303 if (info_verbose) 3304 gdb_printf (_("Automatic overlay debugging enabled.")); 3305 } 3306 3307 /* Function: overlay_manual_command 3308 A utility command to turn on overlay debugging. 3309 Possibly this should be done via a set/show command. */ 3310 3311 static void 3312 overlay_manual_command (const char *args, int from_tty) 3313 { 3314 overlay_debugging = ovly_on; 3315 disable_overlay_breakpoints (); 3316 if (info_verbose) 3317 gdb_printf (_("Overlay debugging enabled.")); 3318 } 3319 3320 /* Function: overlay_off_command 3321 A utility command to turn on overlay debugging. 3322 Possibly this should be done via a set/show command. */ 3323 3324 static void 3325 overlay_off_command (const char *args, int from_tty) 3326 { 3327 overlay_debugging = ovly_off; 3328 disable_overlay_breakpoints (); 3329 if (info_verbose) 3330 gdb_printf (_("Overlay debugging disabled.")); 3331 } 3332 3333 static void 3334 overlay_load_command (const char *args, int from_tty) 3335 { 3336 struct gdbarch *gdbarch = get_current_arch (); 3337 3338 if (gdbarch_overlay_update_p (gdbarch)) 3339 gdbarch_overlay_update (gdbarch, NULL); 3340 else 3341 error (_("This target does not know how to read its overlay state.")); 3342 } 3343 3344 /* Command list chain containing all defined "overlay" subcommands. */ 3345 static struct cmd_list_element *overlaylist; 3346 3347 /* Target Overlays for the "Simplest" overlay manager: 3348 3349 This is GDB's default target overlay layer. It works with the 3350 minimal overlay manager supplied as an example by Cygnus. The 3351 entry point is via a function pointer "gdbarch_overlay_update", 3352 so targets that use a different runtime overlay manager can 3353 substitute their own overlay_update function and take over the 3354 function pointer. 3355 3356 The overlay_update function pokes around in the target's data structures 3357 to see what overlays are mapped, and updates GDB's overlay mapping with 3358 this information. 3359 3360 In this simple implementation, the target data structures are as follows: 3361 unsigned _novlys; /# number of overlay sections #/ 3362 unsigned _ovly_table[_novlys][4] = { 3363 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/ 3364 {..., ..., ..., ...}, 3365 } 3366 unsigned _novly_regions; /# number of overlay regions #/ 3367 unsigned _ovly_region_table[_novly_regions][3] = { 3368 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/ 3369 {..., ..., ...}, 3370 } 3371 These functions will attempt to update GDB's mappedness state in the 3372 symbol section table, based on the target's mappedness state. 3373 3374 To do this, we keep a cached copy of the target's _ovly_table, and 3375 attempt to detect when the cached copy is invalidated. The main 3376 entry point is "simple_overlay_update(SECT), which looks up SECT in 3377 the cached table and re-reads only the entry for that section from 3378 the target (whenever possible). */ 3379 3380 /* Cached, dynamically allocated copies of the target data structures: */ 3381 static unsigned (*cache_ovly_table)[4] = 0; 3382 static unsigned cache_novlys = 0; 3383 static CORE_ADDR cache_ovly_table_base = 0; 3384 enum ovly_index 3385 { 3386 VMA, OSIZE, LMA, MAPPED 3387 }; 3388 3389 /* Throw away the cached copy of _ovly_table. */ 3390 3391 static void 3392 simple_free_overlay_table (void) 3393 { 3394 xfree (cache_ovly_table); 3395 cache_novlys = 0; 3396 cache_ovly_table = NULL; 3397 cache_ovly_table_base = 0; 3398 } 3399 3400 /* Read an array of ints of size SIZE from the target into a local buffer. 3401 Convert to host order. int LEN is number of ints. */ 3402 3403 static void 3404 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, 3405 int len, int size, enum bfd_endian byte_order) 3406 { 3407 /* FIXME (alloca): Not safe if array is very large. */ 3408 gdb_byte *buf = (gdb_byte *) alloca (len * size); 3409 int i; 3410 3411 read_memory (memaddr, buf, len * size); 3412 for (i = 0; i < len; i++) 3413 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order); 3414 } 3415 3416 /* Find and grab a copy of the target _ovly_table 3417 (and _novlys, which is needed for the table's size). */ 3418 3419 static int 3420 simple_read_overlay_table (void) 3421 { 3422 struct bound_minimal_symbol novlys_msym; 3423 struct bound_minimal_symbol ovly_table_msym; 3424 struct gdbarch *gdbarch; 3425 int word_size; 3426 enum bfd_endian byte_order; 3427 3428 simple_free_overlay_table (); 3429 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL); 3430 if (! novlys_msym.minsym) 3431 { 3432 error (_("Error reading inferior's overlay table: " 3433 "couldn't find `_novlys' variable\n" 3434 "in inferior. Use `overlay manual' mode.")); 3435 return 0; 3436 } 3437 3438 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table"); 3439 if (! ovly_table_msym.minsym) 3440 { 3441 error (_("Error reading inferior's overlay table: couldn't find " 3442 "`_ovly_table' array\n" 3443 "in inferior. Use `overlay manual' mode.")); 3444 return 0; 3445 } 3446 3447 gdbarch = ovly_table_msym.objfile->arch (); 3448 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT; 3449 byte_order = gdbarch_byte_order (gdbarch); 3450 3451 cache_novlys = read_memory_integer (novlys_msym.value_address (), 3452 4, byte_order); 3453 cache_ovly_table 3454 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table)); 3455 cache_ovly_table_base = ovly_table_msym.value_address (); 3456 read_target_long_array (cache_ovly_table_base, 3457 (unsigned int *) cache_ovly_table, 3458 cache_novlys * 4, word_size, byte_order); 3459 3460 return 1; /* SUCCESS */ 3461 } 3462 3463 /* Function: simple_overlay_update_1 3464 A helper function for simple_overlay_update. Assuming a cached copy 3465 of _ovly_table exists, look through it to find an entry whose vma, 3466 lma and size match those of OSECT. Re-read the entry and make sure 3467 it still matches OSECT (else the table may no longer be valid). 3468 Set OSECT's mapped state to match the entry. Return: 1 for 3469 success, 0 for failure. */ 3470 3471 static int 3472 simple_overlay_update_1 (struct obj_section *osect) 3473 { 3474 int i; 3475 asection *bsect = osect->the_bfd_section; 3476 struct gdbarch *gdbarch = osect->objfile->arch (); 3477 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT; 3478 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 3479 3480 for (i = 0; i < cache_novlys; i++) 3481 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect) 3482 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect)) 3483 { 3484 read_target_long_array (cache_ovly_table_base + i * word_size, 3485 (unsigned int *) cache_ovly_table[i], 3486 4, word_size, byte_order); 3487 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect) 3488 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect)) 3489 { 3490 osect->ovly_mapped = cache_ovly_table[i][MAPPED]; 3491 return 1; 3492 } 3493 else /* Warning! Warning! Target's ovly table has changed! */ 3494 return 0; 3495 } 3496 return 0; 3497 } 3498 3499 /* Function: simple_overlay_update 3500 If OSECT is NULL, then update all sections' mapped state 3501 (after re-reading the entire target _ovly_table). 3502 If OSECT is non-NULL, then try to find a matching entry in the 3503 cached ovly_table and update only OSECT's mapped state. 3504 If a cached entry can't be found or the cache isn't valid, then 3505 re-read the entire cache, and go ahead and update all sections. */ 3506 3507 void 3508 simple_overlay_update (struct obj_section *osect) 3509 { 3510 /* Were we given an osect to look up? NULL means do all of them. */ 3511 if (osect) 3512 /* Have we got a cached copy of the target's overlay table? */ 3513 if (cache_ovly_table != NULL) 3514 { 3515 /* Does its cached location match what's currently in the 3516 symtab? */ 3517 struct bound_minimal_symbol minsym 3518 = lookup_minimal_symbol ("_ovly_table", NULL, NULL); 3519 3520 if (minsym.minsym == NULL) 3521 error (_("Error reading inferior's overlay table: couldn't " 3522 "find `_ovly_table' array\n" 3523 "in inferior. Use `overlay manual' mode.")); 3524 3525 if (cache_ovly_table_base == minsym.value_address ()) 3526 /* Then go ahead and try to look up this single section in 3527 the cache. */ 3528 if (simple_overlay_update_1 (osect)) 3529 /* Found it! We're done. */ 3530 return; 3531 } 3532 3533 /* Cached table no good: need to read the entire table anew. 3534 Or else we want all the sections, in which case it's actually 3535 more efficient to read the whole table in one block anyway. */ 3536 3537 if (! simple_read_overlay_table ()) 3538 return; 3539 3540 /* Now may as well update all sections, even if only one was requested. */ 3541 for (objfile *objfile : current_program_space->objfiles ()) 3542 ALL_OBJFILE_OSECTIONS (objfile, osect) 3543 if (section_is_overlay (osect)) 3544 { 3545 int i; 3546 asection *bsect = osect->the_bfd_section; 3547 3548 for (i = 0; i < cache_novlys; i++) 3549 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect) 3550 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect)) 3551 { /* obj_section matches i'th entry in ovly_table. */ 3552 osect->ovly_mapped = cache_ovly_table[i][MAPPED]; 3553 break; /* finished with inner for loop: break out. */ 3554 } 3555 } 3556 } 3557 3558 /* Default implementation for sym_relocate. */ 3559 3560 bfd_byte * 3561 default_symfile_relocate (struct objfile *objfile, asection *sectp, 3562 bfd_byte *buf) 3563 { 3564 /* Use sectp->owner instead of objfile->obfd. sectp may point to a 3565 DWO file. */ 3566 bfd *abfd = sectp->owner; 3567 3568 /* We're only interested in sections with relocation 3569 information. */ 3570 if ((sectp->flags & SEC_RELOC) == 0) 3571 return NULL; 3572 3573 /* We will handle section offsets properly elsewhere, so relocate as if 3574 all sections begin at 0. */ 3575 for (asection *sect : gdb_bfd_sections (abfd)) 3576 { 3577 sect->output_section = sect; 3578 sect->output_offset = 0; 3579 } 3580 3581 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL); 3582 } 3583 3584 /* Relocate the contents of a debug section SECTP in ABFD. The 3585 contents are stored in BUF if it is non-NULL, or returned in a 3586 malloc'd buffer otherwise. 3587 3588 For some platforms and debug info formats, shared libraries contain 3589 relocations against the debug sections (particularly for DWARF-2; 3590 one affected platform is PowerPC GNU/Linux, although it depends on 3591 the version of the linker in use). Also, ELF object files naturally 3592 have unresolved relocations for their debug sections. We need to apply 3593 the relocations in order to get the locations of symbols correct. 3594 Another example that may require relocation processing, is the 3595 DWARF-2 .eh_frame section in .o files, although it isn't strictly a 3596 debug section. */ 3597 3598 bfd_byte * 3599 symfile_relocate_debug_section (struct objfile *objfile, 3600 asection *sectp, bfd_byte *buf) 3601 { 3602 gdb_assert (objfile->sf->sym_relocate); 3603 3604 return (*objfile->sf->sym_relocate) (objfile, sectp, buf); 3605 } 3606 3607 symfile_segment_data_up 3608 get_symfile_segment_data (bfd *abfd) 3609 { 3610 const struct sym_fns *sf = find_sym_fns (abfd); 3611 3612 if (sf == NULL) 3613 return NULL; 3614 3615 return sf->sym_segments (abfd); 3616 } 3617 3618 /* Given: 3619 - DATA, containing segment addresses from the object file ABFD, and 3620 the mapping from ABFD's sections onto the segments that own them, 3621 and 3622 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual 3623 segment addresses reported by the target, 3624 store the appropriate offsets for each section in OFFSETS. 3625 3626 If there are fewer entries in SEGMENT_BASES than there are segments 3627 in DATA, then apply SEGMENT_BASES' last entry to all the segments. 3628 3629 If there are more entries, then ignore the extra. The target may 3630 not be able to distinguish between an empty data segment and a 3631 missing data segment; a missing text segment is less plausible. */ 3632 3633 int 3634 symfile_map_offsets_to_segments (bfd *abfd, 3635 const struct symfile_segment_data *data, 3636 section_offsets &offsets, 3637 int num_segment_bases, 3638 const CORE_ADDR *segment_bases) 3639 { 3640 int i; 3641 asection *sect; 3642 3643 /* It doesn't make sense to call this function unless you have some 3644 segment base addresses. */ 3645 gdb_assert (num_segment_bases > 0); 3646 3647 /* If we do not have segment mappings for the object file, we 3648 can not relocate it by segments. */ 3649 gdb_assert (data != NULL); 3650 gdb_assert (data->segments.size () > 0); 3651 3652 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next) 3653 { 3654 int which = data->segment_info[i]; 3655 3656 gdb_assert (0 <= which && which <= data->segments.size ()); 3657 3658 /* Don't bother computing offsets for sections that aren't 3659 loaded as part of any segment. */ 3660 if (! which) 3661 continue; 3662 3663 /* Use the last SEGMENT_BASES entry as the address of any extra 3664 segments mentioned in DATA->segment_info. */ 3665 if (which > num_segment_bases) 3666 which = num_segment_bases; 3667 3668 offsets[i] = segment_bases[which - 1] - data->segments[which - 1].base; 3669 } 3670 3671 return 1; 3672 } 3673 3674 static void 3675 symfile_find_segment_sections (struct objfile *objfile) 3676 { 3677 bfd *abfd = objfile->obfd.get (); 3678 int i; 3679 asection *sect; 3680 3681 symfile_segment_data_up data = get_symfile_segment_data (abfd); 3682 if (data == NULL) 3683 return; 3684 3685 if (data->segments.size () != 1 && data->segments.size () != 2) 3686 return; 3687 3688 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next) 3689 { 3690 int which = data->segment_info[i]; 3691 3692 if (which == 1) 3693 { 3694 if (objfile->sect_index_text == -1) 3695 objfile->sect_index_text = sect->index; 3696 3697 if (objfile->sect_index_rodata == -1) 3698 objfile->sect_index_rodata = sect->index; 3699 } 3700 else if (which == 2) 3701 { 3702 if (objfile->sect_index_data == -1) 3703 objfile->sect_index_data = sect->index; 3704 3705 if (objfile->sect_index_bss == -1) 3706 objfile->sect_index_bss = sect->index; 3707 } 3708 } 3709 } 3710 3711 /* Listen for free_objfile events. */ 3712 3713 static void 3714 symfile_free_objfile (struct objfile *objfile) 3715 { 3716 /* Remove the target sections owned by this objfile. */ 3717 if (objfile != NULL) 3718 current_program_space->remove_target_sections ((void *) objfile); 3719 } 3720 3721 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method". 3722 Expand all symtabs that match the specified criteria. 3723 See quick_symbol_functions.expand_symtabs_matching for details. */ 3724 3725 bool 3726 expand_symtabs_matching 3727 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher, 3728 const lookup_name_info &lookup_name, 3729 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher, 3730 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify, 3731 block_search_flags search_flags, 3732 enum search_domain kind) 3733 { 3734 for (objfile *objfile : current_program_space->objfiles ()) 3735 if (!objfile->expand_symtabs_matching (file_matcher, 3736 &lookup_name, 3737 symbol_matcher, 3738 expansion_notify, 3739 search_flags, 3740 UNDEF_DOMAIN, 3741 kind)) 3742 return false; 3743 return true; 3744 } 3745 3746 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method". 3747 Map function FUN over every file. 3748 See quick_symbol_functions.map_symbol_filenames for details. */ 3749 3750 void 3751 map_symbol_filenames (gdb::function_view<symbol_filename_ftype> fun, 3752 bool need_fullname) 3753 { 3754 for (objfile *objfile : current_program_space->objfiles ()) 3755 objfile->map_symbol_filenames (fun, need_fullname); 3756 } 3757 3758 #if GDB_SELF_TEST 3759 3760 namespace selftests { 3761 namespace filename_language { 3762 3763 static void test_filename_language () 3764 { 3765 /* This test messes up the filename_language_table global. */ 3766 scoped_restore restore_flt = make_scoped_restore (&filename_language_table); 3767 3768 /* Test deducing an unknown extension. */ 3769 language lang = deduce_language_from_filename ("myfile.blah"); 3770 SELF_CHECK (lang == language_unknown); 3771 3772 /* Test deducing a known extension. */ 3773 lang = deduce_language_from_filename ("myfile.c"); 3774 SELF_CHECK (lang == language_c); 3775 3776 /* Test adding a new extension using the internal API. */ 3777 add_filename_language (".blah", language_pascal); 3778 lang = deduce_language_from_filename ("myfile.blah"); 3779 SELF_CHECK (lang == language_pascal); 3780 } 3781 3782 static void 3783 test_set_ext_lang_command () 3784 { 3785 /* This test messes up the filename_language_table global. */ 3786 scoped_restore restore_flt = make_scoped_restore (&filename_language_table); 3787 3788 /* Confirm that the .hello extension is not known. */ 3789 language lang = deduce_language_from_filename ("cake.hello"); 3790 SELF_CHECK (lang == language_unknown); 3791 3792 /* Test adding a new extension using the CLI command. */ 3793 ext_args = ".hello rust"; 3794 set_ext_lang_command (NULL, 1, NULL); 3795 3796 lang = deduce_language_from_filename ("cake.hello"); 3797 SELF_CHECK (lang == language_rust); 3798 3799 /* Test overriding an existing extension using the CLI command. */ 3800 int size_before = filename_language_table.size (); 3801 ext_args = ".hello pascal"; 3802 set_ext_lang_command (NULL, 1, NULL); 3803 int size_after = filename_language_table.size (); 3804 3805 lang = deduce_language_from_filename ("cake.hello"); 3806 SELF_CHECK (lang == language_pascal); 3807 SELF_CHECK (size_before == size_after); 3808 } 3809 3810 } /* namespace filename_language */ 3811 } /* namespace selftests */ 3812 3813 #endif /* GDB_SELF_TEST */ 3814 3815 void _initialize_symfile (); 3816 void 3817 _initialize_symfile () 3818 { 3819 struct cmd_list_element *c; 3820 3821 gdb::observers::free_objfile.attach (symfile_free_objfile, "symfile"); 3822 3823 #define READNOW_READNEVER_HELP \ 3824 "The '-readnow' option will cause GDB to read the entire symbol file\n\ 3825 immediately. This makes the command slower, but may make future operations\n\ 3826 faster.\n\ 3827 The '-readnever' option will prevent GDB from reading the symbol file's\n\ 3828 symbolic debug information." 3829 3830 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\ 3831 Load symbol table from executable file FILE.\n\ 3832 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\ 3833 OFF is an optional offset which is added to each section address.\n\ 3834 The `file' command can also load symbol tables, as well as setting the file\n\ 3835 to execute.\n" READNOW_READNEVER_HELP), &cmdlist); 3836 set_cmd_completer (c, filename_completer); 3837 3838 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\ 3839 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\ 3840 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \ 3841 [-s SECT-NAME SECT-ADDR]...\n\ 3842 ADDR is the starting address of the file's text.\n\ 3843 Each '-s' argument provides a section name and address, and\n\ 3844 should be specified if the data and bss segments are not contiguous\n\ 3845 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\ 3846 OFF is an optional offset which is added to the default load addresses\n\ 3847 of all sections for which no other address was specified.\n" 3848 READNOW_READNEVER_HELP), 3849 &cmdlist); 3850 set_cmd_completer (c, filename_completer); 3851 3852 c = add_cmd ("remove-symbol-file", class_files, 3853 remove_symbol_file_command, _("\ 3854 Remove a symbol file added via the add-symbol-file command.\n\ 3855 Usage: remove-symbol-file FILENAME\n\ 3856 remove-symbol-file -a ADDRESS\n\ 3857 The file to remove can be identified by its filename or by an address\n\ 3858 that lies within the boundaries of this symbol file in memory."), 3859 &cmdlist); 3860 3861 c = add_cmd ("load", class_files, load_command, _("\ 3862 Dynamically load FILE into the running program.\n\ 3863 FILE symbols are recorded for access from GDB.\n\ 3864 Usage: load [FILE] [OFFSET]\n\ 3865 An optional load OFFSET may also be given as a literal address.\n\ 3866 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\ 3867 on its own."), &cmdlist); 3868 set_cmd_completer (c, filename_completer); 3869 3870 cmd_list_element *overlay_cmd 3871 = add_basic_prefix_cmd ("overlay", class_support, 3872 _("Commands for debugging overlays."), &overlaylist, 3873 0, &cmdlist); 3874 3875 add_com_alias ("ovly", overlay_cmd, class_support, 1); 3876 add_com_alias ("ov", overlay_cmd, class_support, 1); 3877 3878 add_cmd ("map-overlay", class_support, map_overlay_command, 3879 _("Assert that an overlay section is mapped."), &overlaylist); 3880 3881 add_cmd ("unmap-overlay", class_support, unmap_overlay_command, 3882 _("Assert that an overlay section is unmapped."), &overlaylist); 3883 3884 add_cmd ("list-overlays", class_support, list_overlays_command, 3885 _("List mappings of overlay sections."), &overlaylist); 3886 3887 add_cmd ("manual", class_support, overlay_manual_command, 3888 _("Enable overlay debugging."), &overlaylist); 3889 add_cmd ("off", class_support, overlay_off_command, 3890 _("Disable overlay debugging."), &overlaylist); 3891 add_cmd ("auto", class_support, overlay_auto_command, 3892 _("Enable automatic overlay debugging."), &overlaylist); 3893 add_cmd ("load-target", class_support, overlay_load_command, 3894 _("Read the overlay mapping state from the target."), &overlaylist); 3895 3896 /* Filename extension to source language lookup table: */ 3897 add_setshow_string_noescape_cmd ("extension-language", class_files, 3898 &ext_args, _("\ 3899 Set mapping between filename extension and source language."), _("\ 3900 Show mapping between filename extension and source language."), _("\ 3901 Usage: set extension-language .foo bar"), 3902 set_ext_lang_command, 3903 show_ext_args, 3904 &setlist, &showlist); 3905 3906 add_info ("extensions", info_ext_lang_command, 3907 _("All filename extensions associated with a source language.")); 3908 3909 add_setshow_optional_filename_cmd ("debug-file-directory", class_support, 3910 &debug_file_directory, _("\ 3911 Set the directories where separate debug symbols are searched for."), _("\ 3912 Show the directories where separate debug symbols are searched for."), _("\ 3913 Separate debug symbols are first searched for in the same\n\ 3914 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\ 3915 and lastly at the path of the directory of the binary with\n\ 3916 each global debug-file-directory component prepended."), 3917 NULL, 3918 show_debug_file_directory, 3919 &setlist, &showlist); 3920 3921 add_setshow_enum_cmd ("symbol-loading", no_class, 3922 print_symbol_loading_enums, &print_symbol_loading, 3923 _("\ 3924 Set printing of symbol loading messages."), _("\ 3925 Show printing of symbol loading messages."), _("\ 3926 off == turn all messages off\n\ 3927 brief == print messages for the executable,\n\ 3928 and brief messages for shared libraries\n\ 3929 full == print messages for the executable,\n\ 3930 and messages for each shared library."), 3931 NULL, 3932 NULL, 3933 &setprintlist, &showprintlist); 3934 3935 add_setshow_boolean_cmd ("separate-debug-file", no_class, 3936 &separate_debug_file_debug, _("\ 3937 Set printing of separate debug info file search debug."), _("\ 3938 Show printing of separate debug info file search debug."), _("\ 3939 When on, GDB prints the searched locations while looking for separate debug \ 3940 info files."), NULL, NULL, &setdebuglist, &showdebuglist); 3941 3942 #if GDB_SELF_TEST 3943 selftests::register_test 3944 ("filename_language", selftests::filename_language::test_filename_language); 3945 selftests::register_test 3946 ("set_ext_lang_command", 3947 selftests::filename_language::test_set_ext_lang_command); 3948 #endif 3949 } 3950