xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/symfile.c (revision 92e958de60c71aa0f2452bd7074cbb006fe6546b)
1 /* Generic symbol file reading for the GNU debugger, GDB.
2 
3    Copyright (C) 1990-2015 Free Software Foundation, Inc.
4 
5    Contributed by Cygnus Support, using pieces from other GDB modules.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h"		/* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include <sys/stat.h>
63 #include <ctype.h>
64 #include <time.h>
65 #include <sys/time.h>
66 
67 #include "psymtab.h"
68 
69 int (*deprecated_ui_load_progress_hook) (const char *section,
70 					 unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 			    unsigned long section_sent,
73 			    unsigned long section_size,
74 			    unsigned long total_sent,
75 			    unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78 
79 static void clear_symtab_users_cleanup (void *ignore);
80 
81 /* Global variables owned by this file.  */
82 int readnow_symbol_files;	/* Read full symbols immediately.  */
83 
84 /* Functions this file defines.  */
85 
86 static void load_command (char *, int);
87 
88 static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
89 
90 static void add_symbol_file_command (char *, int);
91 
92 static const struct sym_fns *find_sym_fns (bfd *);
93 
94 static void decrement_reading_symtab (void *);
95 
96 static void overlay_invalidate_all (void);
97 
98 static void overlay_auto_command (char *, int);
99 
100 static void overlay_manual_command (char *, int);
101 
102 static void overlay_off_command (char *, int);
103 
104 static void overlay_load_command (char *, int);
105 
106 static void overlay_command (char *, int);
107 
108 static void simple_free_overlay_table (void);
109 
110 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 				    enum bfd_endian);
112 
113 static int simple_read_overlay_table (void);
114 
115 static int simple_overlay_update_1 (struct obj_section *);
116 
117 static void add_filename_language (char *ext, enum language lang);
118 
119 static void info_ext_lang_command (char *args, int from_tty);
120 
121 static void init_filename_language_table (void);
122 
123 static void symfile_find_segment_sections (struct objfile *objfile);
124 
125 void _initialize_symfile (void);
126 
127 /* List of all available sym_fns.  On gdb startup, each object file reader
128    calls add_symtab_fns() to register information on each format it is
129    prepared to read.  */
130 
131 typedef struct
132 {
133   /* BFD flavour that we handle.  */
134   enum bfd_flavour sym_flavour;
135 
136   /* The "vtable" of symbol functions.  */
137   const struct sym_fns *sym_fns;
138 } registered_sym_fns;
139 
140 DEF_VEC_O (registered_sym_fns);
141 
142 static VEC (registered_sym_fns) *symtab_fns = NULL;
143 
144 /* Values for "set print symbol-loading".  */
145 
146 const char print_symbol_loading_off[] = "off";
147 const char print_symbol_loading_brief[] = "brief";
148 const char print_symbol_loading_full[] = "full";
149 static const char *print_symbol_loading_enums[] =
150 {
151   print_symbol_loading_off,
152   print_symbol_loading_brief,
153   print_symbol_loading_full,
154   NULL
155 };
156 static const char *print_symbol_loading = print_symbol_loading_full;
157 
158 /* If non-zero, shared library symbols will be added automatically
159    when the inferior is created, new libraries are loaded, or when
160    attaching to the inferior.  This is almost always what users will
161    want to have happen; but for very large programs, the startup time
162    will be excessive, and so if this is a problem, the user can clear
163    this flag and then add the shared library symbols as needed.  Note
164    that there is a potential for confusion, since if the shared
165    library symbols are not loaded, commands like "info fun" will *not*
166    report all the functions that are actually present.  */
167 
168 int auto_solib_add = 1;
169 
170 
171 /* Return non-zero if symbol-loading messages should be printed.
172    FROM_TTY is the standard from_tty argument to gdb commands.
173    If EXEC is non-zero the messages are for the executable.
174    Otherwise, messages are for shared libraries.
175    If FULL is non-zero then the caller is printing a detailed message.
176    E.g., the message includes the shared library name.
177    Otherwise, the caller is printing a brief "summary" message.  */
178 
179 int
180 print_symbol_loading_p (int from_tty, int exec, int full)
181 {
182   if (!from_tty && !info_verbose)
183     return 0;
184 
185   if (exec)
186     {
187       /* We don't check FULL for executables, there are few such
188 	 messages, therefore brief == full.  */
189       return print_symbol_loading != print_symbol_loading_off;
190     }
191   if (full)
192     return print_symbol_loading == print_symbol_loading_full;
193   return print_symbol_loading == print_symbol_loading_brief;
194 }
195 
196 /* True if we are reading a symbol table.  */
197 
198 int currently_reading_symtab = 0;
199 
200 static void
201 decrement_reading_symtab (void *dummy)
202 {
203   currently_reading_symtab--;
204   gdb_assert (currently_reading_symtab >= 0);
205 }
206 
207 /* Increment currently_reading_symtab and return a cleanup that can be
208    used to decrement it.  */
209 
210 struct cleanup *
211 increment_reading_symtab (void)
212 {
213   ++currently_reading_symtab;
214   gdb_assert (currently_reading_symtab > 0);
215   return make_cleanup (decrement_reading_symtab, NULL);
216 }
217 
218 /* Remember the lowest-addressed loadable section we've seen.
219    This function is called via bfd_map_over_sections.
220 
221    In case of equal vmas, the section with the largest size becomes the
222    lowest-addressed loadable section.
223 
224    If the vmas and sizes are equal, the last section is considered the
225    lowest-addressed loadable section.  */
226 
227 void
228 find_lowest_section (bfd *abfd, asection *sect, void *obj)
229 {
230   asection **lowest = (asection **) obj;
231 
232   if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
233     return;
234   if (!*lowest)
235     *lowest = sect;		/* First loadable section */
236   else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
237     *lowest = sect;		/* A lower loadable section */
238   else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
239 	   && (bfd_section_size (abfd, (*lowest))
240 	       <= bfd_section_size (abfd, sect)))
241     *lowest = sect;
242 }
243 
244 /* Create a new section_addr_info, with room for NUM_SECTIONS.  The
245    new object's 'num_sections' field is set to 0; it must be updated
246    by the caller.  */
247 
248 struct section_addr_info *
249 alloc_section_addr_info (size_t num_sections)
250 {
251   struct section_addr_info *sap;
252   size_t size;
253 
254   size = (sizeof (struct section_addr_info)
255 	  +  sizeof (struct other_sections) * (num_sections - 1));
256   sap = (struct section_addr_info *) xmalloc (size);
257   memset (sap, 0, size);
258 
259   return sap;
260 }
261 
262 /* Build (allocate and populate) a section_addr_info struct from
263    an existing section table.  */
264 
265 extern struct section_addr_info *
266 build_section_addr_info_from_section_table (const struct target_section *start,
267                                             const struct target_section *end)
268 {
269   struct section_addr_info *sap;
270   const struct target_section *stp;
271   int oidx;
272 
273   sap = alloc_section_addr_info (end - start);
274 
275   for (stp = start, oidx = 0; stp != end; stp++)
276     {
277       struct bfd_section *asect = stp->the_bfd_section;
278       bfd *abfd = asect->owner;
279 
280       if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
281 	  && oidx < end - start)
282 	{
283 	  sap->other[oidx].addr = stp->addr;
284 	  sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
285 	  sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
286 	  oidx++;
287 	}
288     }
289 
290   sap->num_sections = oidx;
291 
292   return sap;
293 }
294 
295 /* Create a section_addr_info from section offsets in ABFD.  */
296 
297 static struct section_addr_info *
298 build_section_addr_info_from_bfd (bfd *abfd)
299 {
300   struct section_addr_info *sap;
301   int i;
302   struct bfd_section *sec;
303 
304   sap = alloc_section_addr_info (bfd_count_sections (abfd));
305   for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
306     if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
307       {
308 	sap->other[i].addr = bfd_get_section_vma (abfd, sec);
309 	sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
310 	sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
311 	i++;
312       }
313 
314   sap->num_sections = i;
315 
316   return sap;
317 }
318 
319 /* Create a section_addr_info from section offsets in OBJFILE.  */
320 
321 struct section_addr_info *
322 build_section_addr_info_from_objfile (const struct objfile *objfile)
323 {
324   struct section_addr_info *sap;
325   int i;
326 
327   /* Before reread_symbols gets rewritten it is not safe to call:
328      gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
329      */
330   sap = build_section_addr_info_from_bfd (objfile->obfd);
331   for (i = 0; i < sap->num_sections; i++)
332     {
333       int sectindex = sap->other[i].sectindex;
334 
335       sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
336     }
337   return sap;
338 }
339 
340 /* Free all memory allocated by build_section_addr_info_from_section_table.  */
341 
342 extern void
343 free_section_addr_info (struct section_addr_info *sap)
344 {
345   int idx;
346 
347   for (idx = 0; idx < sap->num_sections; idx++)
348     xfree (sap->other[idx].name);
349   xfree (sap);
350 }
351 
352 /* Initialize OBJFILE's sect_index_* members.  */
353 
354 static void
355 init_objfile_sect_indices (struct objfile *objfile)
356 {
357   asection *sect;
358   int i;
359 
360   sect = bfd_get_section_by_name (objfile->obfd, ".text");
361   if (sect)
362     objfile->sect_index_text = sect->index;
363 
364   sect = bfd_get_section_by_name (objfile->obfd, ".data");
365   if (sect)
366     objfile->sect_index_data = sect->index;
367 
368   sect = bfd_get_section_by_name (objfile->obfd, ".bss");
369   if (sect)
370     objfile->sect_index_bss = sect->index;
371 
372   sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
373   if (sect)
374     objfile->sect_index_rodata = sect->index;
375 
376   /* This is where things get really weird...  We MUST have valid
377      indices for the various sect_index_* members or gdb will abort.
378      So if for example, there is no ".text" section, we have to
379      accomodate that.  First, check for a file with the standard
380      one or two segments.  */
381 
382   symfile_find_segment_sections (objfile);
383 
384   /* Except when explicitly adding symbol files at some address,
385      section_offsets contains nothing but zeros, so it doesn't matter
386      which slot in section_offsets the individual sect_index_* members
387      index into.  So if they are all zero, it is safe to just point
388      all the currently uninitialized indices to the first slot.  But
389      beware: if this is the main executable, it may be relocated
390      later, e.g. by the remote qOffsets packet, and then this will
391      be wrong!  That's why we try segments first.  */
392 
393   for (i = 0; i < objfile->num_sections; i++)
394     {
395       if (ANOFFSET (objfile->section_offsets, i) != 0)
396 	{
397 	  break;
398 	}
399     }
400   if (i == objfile->num_sections)
401     {
402       if (objfile->sect_index_text == -1)
403 	objfile->sect_index_text = 0;
404       if (objfile->sect_index_data == -1)
405 	objfile->sect_index_data = 0;
406       if (objfile->sect_index_bss == -1)
407 	objfile->sect_index_bss = 0;
408       if (objfile->sect_index_rodata == -1)
409 	objfile->sect_index_rodata = 0;
410     }
411 }
412 
413 /* The arguments to place_section.  */
414 
415 struct place_section_arg
416 {
417   struct section_offsets *offsets;
418   CORE_ADDR lowest;
419 };
420 
421 /* Find a unique offset to use for loadable section SECT if
422    the user did not provide an offset.  */
423 
424 static void
425 place_section (bfd *abfd, asection *sect, void *obj)
426 {
427   struct place_section_arg *arg = obj;
428   CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
429   int done;
430   ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
431 
432   /* We are only interested in allocated sections.  */
433   if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
434     return;
435 
436   /* If the user specified an offset, honor it.  */
437   if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
438     return;
439 
440   /* Otherwise, let's try to find a place for the section.  */
441   start_addr = (arg->lowest + align - 1) & -align;
442 
443   do {
444     asection *cur_sec;
445 
446     done = 1;
447 
448     for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
449       {
450 	int indx = cur_sec->index;
451 
452 	/* We don't need to compare against ourself.  */
453 	if (cur_sec == sect)
454 	  continue;
455 
456 	/* We can only conflict with allocated sections.  */
457 	if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
458 	  continue;
459 
460 	/* If the section offset is 0, either the section has not been placed
461 	   yet, or it was the lowest section placed (in which case LOWEST
462 	   will be past its end).  */
463 	if (offsets[indx] == 0)
464 	  continue;
465 
466 	/* If this section would overlap us, then we must move up.  */
467 	if (start_addr + bfd_get_section_size (sect) > offsets[indx]
468 	    && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
469 	  {
470 	    start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
471 	    start_addr = (start_addr + align - 1) & -align;
472 	    done = 0;
473 	    break;
474 	  }
475 
476 	/* Otherwise, we appear to be OK.  So far.  */
477       }
478     }
479   while (!done);
480 
481   offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
482   arg->lowest = start_addr + bfd_get_section_size (sect);
483 }
484 
485 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
486    filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
487    entries.  */
488 
489 void
490 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
491 				       int num_sections,
492 				       const struct section_addr_info *addrs)
493 {
494   int i;
495 
496   memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
497 
498   /* Now calculate offsets for section that were specified by the caller.  */
499   for (i = 0; i < addrs->num_sections; i++)
500     {
501       const struct other_sections *osp;
502 
503       osp = &addrs->other[i];
504       if (osp->sectindex == -1)
505   	continue;
506 
507       /* Record all sections in offsets.  */
508       /* The section_offsets in the objfile are here filled in using
509          the BFD index.  */
510       section_offsets->offsets[osp->sectindex] = osp->addr;
511     }
512 }
513 
514 /* Transform section name S for a name comparison.  prelink can split section
515    `.bss' into two sections `.dynbss' and `.bss' (in this order).  Similarly
516    prelink can split `.sbss' into `.sdynbss' and `.sbss'.  Use virtual address
517    of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
518    (`.sbss') section has invalid (increased) virtual address.  */
519 
520 static const char *
521 addr_section_name (const char *s)
522 {
523   if (strcmp (s, ".dynbss") == 0)
524     return ".bss";
525   if (strcmp (s, ".sdynbss") == 0)
526     return ".sbss";
527 
528   return s;
529 }
530 
531 /* qsort comparator for addrs_section_sort.  Sort entries in ascending order by
532    their (name, sectindex) pair.  sectindex makes the sort by name stable.  */
533 
534 static int
535 addrs_section_compar (const void *ap, const void *bp)
536 {
537   const struct other_sections *a = *((struct other_sections **) ap);
538   const struct other_sections *b = *((struct other_sections **) bp);
539   int retval;
540 
541   retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
542   if (retval)
543     return retval;
544 
545   return a->sectindex - b->sectindex;
546 }
547 
548 /* Provide sorted array of pointers to sections of ADDRS.  The array is
549    terminated by NULL.  Caller is responsible to call xfree for it.  */
550 
551 static struct other_sections **
552 addrs_section_sort (struct section_addr_info *addrs)
553 {
554   struct other_sections **array;
555   int i;
556 
557   /* `+ 1' for the NULL terminator.  */
558   array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
559   for (i = 0; i < addrs->num_sections; i++)
560     array[i] = &addrs->other[i];
561   array[i] = NULL;
562 
563   qsort (array, i, sizeof (*array), addrs_section_compar);
564 
565   return array;
566 }
567 
568 /* Relativize absolute addresses in ADDRS into offsets based on ABFD.  Fill-in
569    also SECTINDEXes specific to ABFD there.  This function can be used to
570    rebase ADDRS to start referencing different BFD than before.  */
571 
572 void
573 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
574 {
575   asection *lower_sect;
576   CORE_ADDR lower_offset;
577   int i;
578   struct cleanup *my_cleanup;
579   struct section_addr_info *abfd_addrs;
580   struct other_sections **addrs_sorted, **abfd_addrs_sorted;
581   struct other_sections **addrs_to_abfd_addrs;
582 
583   /* Find lowest loadable section to be used as starting point for
584      continguous sections.  */
585   lower_sect = NULL;
586   bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
587   if (lower_sect == NULL)
588     {
589       warning (_("no loadable sections found in added symbol-file %s"),
590 	       bfd_get_filename (abfd));
591       lower_offset = 0;
592     }
593   else
594     lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
595 
596   /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
597      in ABFD.  Section names are not unique - there can be multiple sections of
598      the same name.  Also the sections of the same name do not have to be
599      adjacent to each other.  Some sections may be present only in one of the
600      files.  Even sections present in both files do not have to be in the same
601      order.
602 
603      Use stable sort by name for the sections in both files.  Then linearly
604      scan both lists matching as most of the entries as possible.  */
605 
606   addrs_sorted = addrs_section_sort (addrs);
607   my_cleanup = make_cleanup (xfree, addrs_sorted);
608 
609   abfd_addrs = build_section_addr_info_from_bfd (abfd);
610   make_cleanup_free_section_addr_info (abfd_addrs);
611   abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
612   make_cleanup (xfree, abfd_addrs_sorted);
613 
614   /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
615      ABFD_ADDRS_SORTED.  */
616 
617   addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
618 				 * addrs->num_sections);
619   make_cleanup (xfree, addrs_to_abfd_addrs);
620 
621   while (*addrs_sorted)
622     {
623       const char *sect_name = addr_section_name ((*addrs_sorted)->name);
624 
625       while (*abfd_addrs_sorted
626 	     && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
627 			sect_name) < 0)
628 	abfd_addrs_sorted++;
629 
630       if (*abfd_addrs_sorted
631 	  && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
632 		     sect_name) == 0)
633 	{
634 	  int index_in_addrs;
635 
636 	  /* Make the found item directly addressable from ADDRS.  */
637 	  index_in_addrs = *addrs_sorted - addrs->other;
638 	  gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
639 	  addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
640 
641 	  /* Never use the same ABFD entry twice.  */
642 	  abfd_addrs_sorted++;
643 	}
644 
645       addrs_sorted++;
646     }
647 
648   /* Calculate offsets for the loadable sections.
649      FIXME! Sections must be in order of increasing loadable section
650      so that contiguous sections can use the lower-offset!!!
651 
652      Adjust offsets if the segments are not contiguous.
653      If the section is contiguous, its offset should be set to
654      the offset of the highest loadable section lower than it
655      (the loadable section directly below it in memory).
656      this_offset = lower_offset = lower_addr - lower_orig_addr */
657 
658   for (i = 0; i < addrs->num_sections; i++)
659     {
660       struct other_sections *sect = addrs_to_abfd_addrs[i];
661 
662       if (sect)
663 	{
664 	  /* This is the index used by BFD.  */
665 	  addrs->other[i].sectindex = sect->sectindex;
666 
667 	  if (addrs->other[i].addr != 0)
668 	    {
669 	      addrs->other[i].addr -= sect->addr;
670 	      lower_offset = addrs->other[i].addr;
671 	    }
672 	  else
673 	    addrs->other[i].addr = lower_offset;
674 	}
675       else
676 	{
677 	  /* addr_section_name transformation is not used for SECT_NAME.  */
678 	  const char *sect_name = addrs->other[i].name;
679 
680 	  /* This section does not exist in ABFD, which is normally
681 	     unexpected and we want to issue a warning.
682 
683 	     However, the ELF prelinker does create a few sections which are
684 	     marked in the main executable as loadable (they are loaded in
685 	     memory from the DYNAMIC segment) and yet are not present in
686 	     separate debug info files.  This is fine, and should not cause
687 	     a warning.  Shared libraries contain just the section
688 	     ".gnu.liblist" but it is not marked as loadable there.  There is
689 	     no other way to identify them than by their name as the sections
690 	     created by prelink have no special flags.
691 
692 	     For the sections `.bss' and `.sbss' see addr_section_name.  */
693 
694 	  if (!(strcmp (sect_name, ".gnu.liblist") == 0
695 		|| strcmp (sect_name, ".gnu.conflict") == 0
696 		|| (strcmp (sect_name, ".bss") == 0
697 		    && i > 0
698 		    && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
699 		    && addrs_to_abfd_addrs[i - 1] != NULL)
700 		|| (strcmp (sect_name, ".sbss") == 0
701 		    && i > 0
702 		    && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
703 		    && addrs_to_abfd_addrs[i - 1] != NULL)))
704 	    warning (_("section %s not found in %s"), sect_name,
705 		     bfd_get_filename (abfd));
706 
707 	  addrs->other[i].addr = 0;
708 	  addrs->other[i].sectindex = -1;
709 	}
710     }
711 
712   do_cleanups (my_cleanup);
713 }
714 
715 /* Parse the user's idea of an offset for dynamic linking, into our idea
716    of how to represent it for fast symbol reading.  This is the default
717    version of the sym_fns.sym_offsets function for symbol readers that
718    don't need to do anything special.  It allocates a section_offsets table
719    for the objectfile OBJFILE and stuffs ADDR into all of the offsets.  */
720 
721 void
722 default_symfile_offsets (struct objfile *objfile,
723 			 const struct section_addr_info *addrs)
724 {
725   objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
726   objfile->section_offsets = (struct section_offsets *)
727     obstack_alloc (&objfile->objfile_obstack,
728 		   SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
729   relative_addr_info_to_section_offsets (objfile->section_offsets,
730 					 objfile->num_sections, addrs);
731 
732   /* For relocatable files, all loadable sections will start at zero.
733      The zero is meaningless, so try to pick arbitrary addresses such
734      that no loadable sections overlap.  This algorithm is quadratic,
735      but the number of sections in a single object file is generally
736      small.  */
737   if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
738     {
739       struct place_section_arg arg;
740       bfd *abfd = objfile->obfd;
741       asection *cur_sec;
742 
743       for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
744 	/* We do not expect this to happen; just skip this step if the
745 	   relocatable file has a section with an assigned VMA.  */
746 	if (bfd_section_vma (abfd, cur_sec) != 0)
747 	  break;
748 
749       if (cur_sec == NULL)
750 	{
751 	  CORE_ADDR *offsets = objfile->section_offsets->offsets;
752 
753 	  /* Pick non-overlapping offsets for sections the user did not
754 	     place explicitly.  */
755 	  arg.offsets = objfile->section_offsets;
756 	  arg.lowest = 0;
757 	  bfd_map_over_sections (objfile->obfd, place_section, &arg);
758 
759 	  /* Correctly filling in the section offsets is not quite
760 	     enough.  Relocatable files have two properties that
761 	     (most) shared objects do not:
762 
763 	     - Their debug information will contain relocations.  Some
764 	     shared libraries do also, but many do not, so this can not
765 	     be assumed.
766 
767 	     - If there are multiple code sections they will be loaded
768 	     at different relative addresses in memory than they are
769 	     in the objfile, since all sections in the file will start
770 	     at address zero.
771 
772 	     Because GDB has very limited ability to map from an
773 	     address in debug info to the correct code section,
774 	     it relies on adding SECT_OFF_TEXT to things which might be
775 	     code.  If we clear all the section offsets, and set the
776 	     section VMAs instead, then symfile_relocate_debug_section
777 	     will return meaningful debug information pointing at the
778 	     correct sections.
779 
780 	     GDB has too many different data structures for section
781 	     addresses - a bfd, objfile, and so_list all have section
782 	     tables, as does exec_ops.  Some of these could probably
783 	     be eliminated.  */
784 
785 	  for (cur_sec = abfd->sections; cur_sec != NULL;
786 	       cur_sec = cur_sec->next)
787 	    {
788 	      if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
789 		continue;
790 
791 	      bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
792 	      exec_set_section_address (bfd_get_filename (abfd),
793 					cur_sec->index,
794 					offsets[cur_sec->index]);
795 	      offsets[cur_sec->index] = 0;
796 	    }
797 	}
798     }
799 
800   /* Remember the bfd indexes for the .text, .data, .bss and
801      .rodata sections.  */
802   init_objfile_sect_indices (objfile);
803 }
804 
805 /* Divide the file into segments, which are individual relocatable units.
806    This is the default version of the sym_fns.sym_segments function for
807    symbol readers that do not have an explicit representation of segments.
808    It assumes that object files do not have segments, and fully linked
809    files have a single segment.  */
810 
811 struct symfile_segment_data *
812 default_symfile_segments (bfd *abfd)
813 {
814   int num_sections, i;
815   asection *sect;
816   struct symfile_segment_data *data;
817   CORE_ADDR low, high;
818 
819   /* Relocatable files contain enough information to position each
820      loadable section independently; they should not be relocated
821      in segments.  */
822   if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
823     return NULL;
824 
825   /* Make sure there is at least one loadable section in the file.  */
826   for (sect = abfd->sections; sect != NULL; sect = sect->next)
827     {
828       if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
829 	continue;
830 
831       break;
832     }
833   if (sect == NULL)
834     return NULL;
835 
836   low = bfd_get_section_vma (abfd, sect);
837   high = low + bfd_get_section_size (sect);
838 
839   data = XCNEW (struct symfile_segment_data);
840   data->num_segments = 1;
841   data->segment_bases = XCNEW (CORE_ADDR);
842   data->segment_sizes = XCNEW (CORE_ADDR);
843 
844   num_sections = bfd_count_sections (abfd);
845   data->segment_info = XCNEWVEC (int, num_sections);
846 
847   for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
848     {
849       CORE_ADDR vma;
850 
851       if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
852 	continue;
853 
854       vma = bfd_get_section_vma (abfd, sect);
855       if (vma < low)
856 	low = vma;
857       if (vma + bfd_get_section_size (sect) > high)
858 	high = vma + bfd_get_section_size (sect);
859 
860       data->segment_info[i] = 1;
861     }
862 
863   data->segment_bases[0] = low;
864   data->segment_sizes[0] = high - low;
865 
866   return data;
867 }
868 
869 /* This is a convenience function to call sym_read for OBJFILE and
870    possibly force the partial symbols to be read.  */
871 
872 static void
873 read_symbols (struct objfile *objfile, int add_flags)
874 {
875   (*objfile->sf->sym_read) (objfile, add_flags);
876   objfile->per_bfd->minsyms_read = 1;
877 
878   /* find_separate_debug_file_in_section should be called only if there is
879      single binary with no existing separate debug info file.  */
880   if (!objfile_has_partial_symbols (objfile)
881       && objfile->separate_debug_objfile == NULL
882       && objfile->separate_debug_objfile_backlink == NULL)
883     {
884       bfd *abfd = find_separate_debug_file_in_section (objfile);
885       struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
886 
887       if (abfd != NULL)
888 	{
889 	  /* find_separate_debug_file_in_section uses the same filename for the
890 	     virtual section-as-bfd like the bfd filename containing the
891 	     section.  Therefore use also non-canonical name form for the same
892 	     file containing the section.  */
893 	  symbol_file_add_separate (abfd, objfile->original_name, add_flags,
894 				    objfile);
895 	}
896 
897       do_cleanups (cleanup);
898     }
899   if ((add_flags & SYMFILE_NO_READ) == 0)
900     require_partial_symbols (objfile, 0);
901 }
902 
903 /* Initialize entry point information for this objfile.  */
904 
905 static void
906 init_entry_point_info (struct objfile *objfile)
907 {
908   struct entry_info *ei = &objfile->per_bfd->ei;
909 
910   if (ei->initialized)
911     return;
912   ei->initialized = 1;
913 
914   /* Save startup file's range of PC addresses to help blockframe.c
915      decide where the bottom of the stack is.  */
916 
917   if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
918     {
919       /* Executable file -- record its entry point so we'll recognize
920          the startup file because it contains the entry point.  */
921       ei->entry_point = bfd_get_start_address (objfile->obfd);
922       ei->entry_point_p = 1;
923     }
924   else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
925 	   && bfd_get_start_address (objfile->obfd) != 0)
926     {
927       /* Some shared libraries may have entry points set and be
928 	 runnable.  There's no clear way to indicate this, so just check
929 	 for values other than zero.  */
930       ei->entry_point = bfd_get_start_address (objfile->obfd);
931       ei->entry_point_p = 1;
932     }
933   else
934     {
935       /* Examination of non-executable.o files.  Short-circuit this stuff.  */
936       ei->entry_point_p = 0;
937     }
938 
939   if (ei->entry_point_p)
940     {
941       struct obj_section *osect;
942       CORE_ADDR entry_point =  ei->entry_point;
943       int found;
944 
945       /* Make certain that the address points at real code, and not a
946 	 function descriptor.  */
947       entry_point
948 	= gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
949 					      entry_point,
950 					      &current_target);
951 
952       /* Remove any ISA markers, so that this matches entries in the
953 	 symbol table.  */
954       ei->entry_point
955 	= gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
956 
957       found = 0;
958       ALL_OBJFILE_OSECTIONS (objfile, osect)
959 	{
960 	  struct bfd_section *sect = osect->the_bfd_section;
961 
962 	  if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
963 	      && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
964 				+ bfd_get_section_size (sect)))
965 	    {
966 	      ei->the_bfd_section_index
967 		= gdb_bfd_section_index (objfile->obfd, sect);
968 	      found = 1;
969 	      break;
970 	    }
971 	}
972 
973       if (!found)
974 	ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
975     }
976 }
977 
978 /* Process a symbol file, as either the main file or as a dynamically
979    loaded file.
980 
981    This function does not set the OBJFILE's entry-point info.
982 
983    OBJFILE is where the symbols are to be read from.
984 
985    ADDRS is the list of section load addresses.  If the user has given
986    an 'add-symbol-file' command, then this is the list of offsets and
987    addresses he or she provided as arguments to the command; or, if
988    we're handling a shared library, these are the actual addresses the
989    sections are loaded at, according to the inferior's dynamic linker
990    (as gleaned by GDB's shared library code).  We convert each address
991    into an offset from the section VMA's as it appears in the object
992    file, and then call the file's sym_offsets function to convert this
993    into a format-specific offset table --- a `struct section_offsets'.
994 
995    ADD_FLAGS encodes verbosity level, whether this is main symbol or
996    an extra symbol file such as dynamically loaded code, and wether
997    breakpoint reset should be deferred.  */
998 
999 static void
1000 syms_from_objfile_1 (struct objfile *objfile,
1001 		     struct section_addr_info *addrs,
1002 		     int add_flags)
1003 {
1004   struct section_addr_info *local_addr = NULL;
1005   struct cleanup *old_chain;
1006   const int mainline = add_flags & SYMFILE_MAINLINE;
1007 
1008   objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
1009 
1010   if (objfile->sf == NULL)
1011     {
1012       /* No symbols to load, but we still need to make sure
1013 	 that the section_offsets table is allocated.  */
1014       int num_sections = gdb_bfd_count_sections (objfile->obfd);
1015       size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
1016 
1017       objfile->num_sections = num_sections;
1018       objfile->section_offsets
1019         = obstack_alloc (&objfile->objfile_obstack, size);
1020       memset (objfile->section_offsets, 0, size);
1021       return;
1022     }
1023 
1024   /* Make sure that partially constructed symbol tables will be cleaned up
1025      if an error occurs during symbol reading.  */
1026   old_chain = make_cleanup_free_objfile (objfile);
1027 
1028   /* If ADDRS is NULL, put together a dummy address list.
1029      We now establish the convention that an addr of zero means
1030      no load address was specified.  */
1031   if (! addrs)
1032     {
1033       local_addr = alloc_section_addr_info (1);
1034       make_cleanup (xfree, local_addr);
1035       addrs = local_addr;
1036     }
1037 
1038   if (mainline)
1039     {
1040       /* We will modify the main symbol table, make sure that all its users
1041          will be cleaned up if an error occurs during symbol reading.  */
1042       make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1043 
1044       /* Since no error yet, throw away the old symbol table.  */
1045 
1046       if (symfile_objfile != NULL)
1047 	{
1048 	  free_objfile (symfile_objfile);
1049 	  gdb_assert (symfile_objfile == NULL);
1050 	}
1051 
1052       /* Currently we keep symbols from the add-symbol-file command.
1053          If the user wants to get rid of them, they should do "symbol-file"
1054          without arguments first.  Not sure this is the best behavior
1055          (PR 2207).  */
1056 
1057       (*objfile->sf->sym_new_init) (objfile);
1058     }
1059 
1060   /* Convert addr into an offset rather than an absolute address.
1061      We find the lowest address of a loaded segment in the objfile,
1062      and assume that <addr> is where that got loaded.
1063 
1064      We no longer warn if the lowest section is not a text segment (as
1065      happens for the PA64 port.  */
1066   if (addrs->num_sections > 0)
1067     addr_info_make_relative (addrs, objfile->obfd);
1068 
1069   /* Initialize symbol reading routines for this objfile, allow complaints to
1070      appear for this new file, and record how verbose to be, then do the
1071      initial symbol reading for this file.  */
1072 
1073   (*objfile->sf->sym_init) (objfile);
1074   clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1075 
1076   (*objfile->sf->sym_offsets) (objfile, addrs);
1077 
1078   read_symbols (objfile, add_flags);
1079 
1080   /* Discard cleanups as symbol reading was successful.  */
1081 
1082   discard_cleanups (old_chain);
1083   xfree (local_addr);
1084 }
1085 
1086 /* Same as syms_from_objfile_1, but also initializes the objfile
1087    entry-point info.  */
1088 
1089 static void
1090 syms_from_objfile (struct objfile *objfile,
1091 		   struct section_addr_info *addrs,
1092 		   int add_flags)
1093 {
1094   syms_from_objfile_1 (objfile, addrs, add_flags);
1095   init_entry_point_info (objfile);
1096 }
1097 
1098 /* Perform required actions after either reading in the initial
1099    symbols for a new objfile, or mapping in the symbols from a reusable
1100    objfile.  ADD_FLAGS is a bitmask of enum symfile_add_flags.  */
1101 
1102 void
1103 new_symfile_objfile (struct objfile *objfile, int add_flags)
1104 {
1105   /* If this is the main symbol file we have to clean up all users of the
1106      old main symbol file.  Otherwise it is sufficient to fixup all the
1107      breakpoints that may have been redefined by this symbol file.  */
1108   if (add_flags & SYMFILE_MAINLINE)
1109     {
1110       /* OK, make it the "real" symbol file.  */
1111       symfile_objfile = objfile;
1112 
1113       clear_symtab_users (add_flags);
1114     }
1115   else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1116     {
1117       breakpoint_re_set ();
1118     }
1119 
1120   /* We're done reading the symbol file; finish off complaints.  */
1121   clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1122 }
1123 
1124 /* Process a symbol file, as either the main file or as a dynamically
1125    loaded file.
1126 
1127    ABFD is a BFD already open on the file, as from symfile_bfd_open.
1128    A new reference is acquired by this function.
1129 
1130    For NAME description see allocate_objfile's definition.
1131 
1132    ADD_FLAGS encodes verbosity, whether this is main symbol file or
1133    extra, such as dynamically loaded code, and what to do with breakpoins.
1134 
1135    ADDRS is as described for syms_from_objfile_1, above.
1136    ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1137 
1138    PARENT is the original objfile if ABFD is a separate debug info file.
1139    Otherwise PARENT is NULL.
1140 
1141    Upon success, returns a pointer to the objfile that was added.
1142    Upon failure, jumps back to command level (never returns).  */
1143 
1144 static struct objfile *
1145 symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
1146 			    struct section_addr_info *addrs,
1147 			    int flags, struct objfile *parent)
1148 {
1149   struct objfile *objfile;
1150   const int from_tty = add_flags & SYMFILE_VERBOSE;
1151   const int mainline = add_flags & SYMFILE_MAINLINE;
1152   const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1153 			    && (readnow_symbol_files
1154 				|| (add_flags & SYMFILE_NO_READ) == 0));
1155 
1156   if (readnow_symbol_files)
1157     {
1158       flags |= OBJF_READNOW;
1159       add_flags &= ~SYMFILE_NO_READ;
1160     }
1161 
1162   /* Give user a chance to burp if we'd be
1163      interactively wiping out any existing symbols.  */
1164 
1165   if ((have_full_symbols () || have_partial_symbols ())
1166       && mainline
1167       && from_tty
1168       && !query (_("Load new symbol table from \"%s\"? "), name))
1169     error (_("Not confirmed."));
1170 
1171   objfile = allocate_objfile (abfd, name,
1172 			      flags | (mainline ? OBJF_MAINLINE : 0));
1173 
1174   if (parent)
1175     add_separate_debug_objfile (objfile, parent);
1176 
1177   /* We either created a new mapped symbol table, mapped an existing
1178      symbol table file which has not had initial symbol reading
1179      performed, or need to read an unmapped symbol table.  */
1180   if (should_print)
1181     {
1182       if (deprecated_pre_add_symbol_hook)
1183 	deprecated_pre_add_symbol_hook (name);
1184       else
1185 	{
1186 	  printf_unfiltered (_("Reading symbols from %s..."), name);
1187 	  wrap_here ("");
1188 	  gdb_flush (gdb_stdout);
1189 	}
1190     }
1191   syms_from_objfile (objfile, addrs, add_flags);
1192 
1193   /* We now have at least a partial symbol table.  Check to see if the
1194      user requested that all symbols be read on initial access via either
1195      the gdb startup command line or on a per symbol file basis.  Expand
1196      all partial symbol tables for this objfile if so.  */
1197 
1198   if ((flags & OBJF_READNOW))
1199     {
1200       if (should_print)
1201 	{
1202 	  printf_unfiltered (_("expanding to full symbols..."));
1203 	  wrap_here ("");
1204 	  gdb_flush (gdb_stdout);
1205 	}
1206 
1207       if (objfile->sf)
1208 	objfile->sf->qf->expand_all_symtabs (objfile);
1209     }
1210 
1211   if (should_print && !objfile_has_symbols (objfile))
1212     {
1213       wrap_here ("");
1214       printf_unfiltered (_("(no debugging symbols found)..."));
1215       wrap_here ("");
1216     }
1217 
1218   if (should_print)
1219     {
1220       if (deprecated_post_add_symbol_hook)
1221 	deprecated_post_add_symbol_hook ();
1222       else
1223 	printf_unfiltered (_("done.\n"));
1224     }
1225 
1226   /* We print some messages regardless of whether 'from_tty ||
1227      info_verbose' is true, so make sure they go out at the right
1228      time.  */
1229   gdb_flush (gdb_stdout);
1230 
1231   if (objfile->sf == NULL)
1232     {
1233       observer_notify_new_objfile (objfile);
1234       return objfile;	/* No symbols.  */
1235     }
1236 
1237   new_symfile_objfile (objfile, add_flags);
1238 
1239   observer_notify_new_objfile (objfile);
1240 
1241   bfd_cache_close_all ();
1242   return (objfile);
1243 }
1244 
1245 /* Add BFD as a separate debug file for OBJFILE.  For NAME description
1246    see allocate_objfile's definition.  */
1247 
1248 void
1249 symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1250 			  struct objfile *objfile)
1251 {
1252   struct objfile *new_objfile;
1253   struct section_addr_info *sap;
1254   struct cleanup *my_cleanup;
1255 
1256   /* Create section_addr_info.  We can't directly use offsets from OBJFILE
1257      because sections of BFD may not match sections of OBJFILE and because
1258      vma may have been modified by tools such as prelink.  */
1259   sap = build_section_addr_info_from_objfile (objfile);
1260   my_cleanup = make_cleanup_free_section_addr_info (sap);
1261 
1262   new_objfile = symbol_file_add_with_addrs
1263     (bfd, name, symfile_flags, sap,
1264      objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1265 		       | OBJF_USERLOADED),
1266      objfile);
1267 
1268   do_cleanups (my_cleanup);
1269 }
1270 
1271 /* Process the symbol file ABFD, as either the main file or as a
1272    dynamically loaded file.
1273    See symbol_file_add_with_addrs's comments for details.  */
1274 
1275 struct objfile *
1276 symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
1277                           struct section_addr_info *addrs,
1278                           int flags, struct objfile *parent)
1279 {
1280   return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1281 				     parent);
1282 }
1283 
1284 /* Process a symbol file, as either the main file or as a dynamically
1285    loaded file.  See symbol_file_add_with_addrs's comments for details.  */
1286 
1287 struct objfile *
1288 symbol_file_add (const char *name, int add_flags,
1289 		 struct section_addr_info *addrs, int flags)
1290 {
1291   bfd *bfd = symfile_bfd_open (name);
1292   struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1293   struct objfile *objf;
1294 
1295   objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1296   do_cleanups (cleanup);
1297   return objf;
1298 }
1299 
1300 /* Call symbol_file_add() with default values and update whatever is
1301    affected by the loading of a new main().
1302    Used when the file is supplied in the gdb command line
1303    and by some targets with special loading requirements.
1304    The auxiliary function, symbol_file_add_main_1(), has the flags
1305    argument for the switches that can only be specified in the symbol_file
1306    command itself.  */
1307 
1308 void
1309 symbol_file_add_main (const char *args, int from_tty)
1310 {
1311   symbol_file_add_main_1 (args, from_tty, 0);
1312 }
1313 
1314 static void
1315 symbol_file_add_main_1 (const char *args, int from_tty, int flags)
1316 {
1317   const int add_flags = (current_inferior ()->symfile_flags
1318 			 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1319 
1320   symbol_file_add (args, add_flags, NULL, flags);
1321 
1322   /* Getting new symbols may change our opinion about
1323      what is frameless.  */
1324   reinit_frame_cache ();
1325 
1326   if ((flags & SYMFILE_NO_READ) == 0)
1327     set_initial_language ();
1328 }
1329 
1330 void
1331 symbol_file_clear (int from_tty)
1332 {
1333   if ((have_full_symbols () || have_partial_symbols ())
1334       && from_tty
1335       && (symfile_objfile
1336 	  ? !query (_("Discard symbol table from `%s'? "),
1337 		    objfile_name (symfile_objfile))
1338 	  : !query (_("Discard symbol table? "))))
1339     error (_("Not confirmed."));
1340 
1341   /* solib descriptors may have handles to objfiles.  Wipe them before their
1342      objfiles get stale by free_all_objfiles.  */
1343   no_shared_libraries (NULL, from_tty);
1344 
1345   free_all_objfiles ();
1346 
1347   gdb_assert (symfile_objfile == NULL);
1348   if (from_tty)
1349     printf_unfiltered (_("No symbol file now.\n"));
1350 }
1351 
1352 static int
1353 separate_debug_file_exists (const char *name, unsigned long crc,
1354 			    struct objfile *parent_objfile)
1355 {
1356   unsigned long file_crc;
1357   int file_crc_p;
1358   bfd *abfd;
1359   struct stat parent_stat, abfd_stat;
1360   int verified_as_different;
1361 
1362   /* Find a separate debug info file as if symbols would be present in
1363      PARENT_OBJFILE itself this function would not be called.  .gnu_debuglink
1364      section can contain just the basename of PARENT_OBJFILE without any
1365      ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1366      the separate debug infos with the same basename can exist.  */
1367 
1368   if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1369     return 0;
1370 
1371   abfd = gdb_bfd_open_maybe_remote (name);
1372 
1373   if (!abfd)
1374     return 0;
1375 
1376   /* Verify symlinks were not the cause of filename_cmp name difference above.
1377 
1378      Some operating systems, e.g. Windows, do not provide a meaningful
1379      st_ino; they always set it to zero.  (Windows does provide a
1380      meaningful st_dev.)  Do not indicate a duplicate library in that
1381      case.  While there is no guarantee that a system that provides
1382      meaningful inode numbers will never set st_ino to zero, this is
1383      merely an optimization, so we do not need to worry about false
1384      negatives.  */
1385 
1386   if (bfd_stat (abfd, &abfd_stat) == 0
1387       && abfd_stat.st_ino != 0
1388       && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1389     {
1390       if (abfd_stat.st_dev == parent_stat.st_dev
1391 	  && abfd_stat.st_ino == parent_stat.st_ino)
1392 	{
1393 	  gdb_bfd_unref (abfd);
1394 	  return 0;
1395 	}
1396       verified_as_different = 1;
1397     }
1398   else
1399     verified_as_different = 0;
1400 
1401   file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1402 
1403   gdb_bfd_unref (abfd);
1404 
1405   if (!file_crc_p)
1406     return 0;
1407 
1408   if (crc != file_crc)
1409     {
1410       unsigned long parent_crc;
1411 
1412       /* If one (or both) the files are accessed for example the via "remote:"
1413 	 gdbserver way it does not support the bfd_stat operation.  Verify
1414 	 whether those two files are not the same manually.  */
1415 
1416       if (!verified_as_different)
1417 	{
1418 	  if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1419 	    return 0;
1420 	}
1421 
1422       if (verified_as_different || parent_crc != file_crc)
1423 	warning (_("the debug information found in \"%s\""
1424 		   " does not match \"%s\" (CRC mismatch).\n"),
1425 		 name, objfile_name (parent_objfile));
1426 
1427       return 0;
1428     }
1429 
1430   return 1;
1431 }
1432 
1433 char *debug_file_directory = NULL;
1434 static void
1435 show_debug_file_directory (struct ui_file *file, int from_tty,
1436 			   struct cmd_list_element *c, const char *value)
1437 {
1438   fprintf_filtered (file,
1439 		    _("The directory where separate debug "
1440 		      "symbols are searched for is \"%s\".\n"),
1441 		    value);
1442 }
1443 
1444 #if ! defined (DEBUG_SUBDIRECTORY)
1445 #define DEBUG_SUBDIRECTORY ".debug"
1446 #endif
1447 
1448 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1449    where the original file resides (may not be the same as
1450    dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1451    looking for.  CANON_DIR is the "realpath" form of DIR.
1452    DIR must contain a trailing '/'.
1453    Returns the path of the file with separate debug info, of NULL.  */
1454 
1455 static char *
1456 find_separate_debug_file (const char *dir,
1457 			  const char *canon_dir,
1458 			  const char *debuglink,
1459 			  unsigned long crc32, struct objfile *objfile)
1460 {
1461   char *debugdir;
1462   char *debugfile;
1463   int i;
1464   VEC (char_ptr) *debugdir_vec;
1465   struct cleanup *back_to;
1466   int ix;
1467 
1468   /* Set I to max (strlen (canon_dir), strlen (dir)).  */
1469   i = strlen (dir);
1470   if (canon_dir != NULL && strlen (canon_dir) > i)
1471     i = strlen (canon_dir);
1472 
1473   debugfile = xmalloc (strlen (debug_file_directory) + 1
1474 		       + i
1475 		       + strlen (DEBUG_SUBDIRECTORY)
1476 		       + strlen ("/")
1477 		       + strlen (debuglink)
1478 		       + 1);
1479 
1480   /* First try in the same directory as the original file.  */
1481   strcpy (debugfile, dir);
1482   strcat (debugfile, debuglink);
1483 
1484   if (separate_debug_file_exists (debugfile, crc32, objfile))
1485     return debugfile;
1486 
1487   /* Then try in the subdirectory named DEBUG_SUBDIRECTORY.  */
1488   strcpy (debugfile, dir);
1489   strcat (debugfile, DEBUG_SUBDIRECTORY);
1490   strcat (debugfile, "/");
1491   strcat (debugfile, debuglink);
1492 
1493   if (separate_debug_file_exists (debugfile, crc32, objfile))
1494     return debugfile;
1495 
1496   /* Then try in the global debugfile directories.
1497 
1498      Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1499      cause "/..." lookups.  */
1500 
1501   debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1502   back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1503 
1504   for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1505     {
1506       strcpy (debugfile, debugdir);
1507       strcat (debugfile, "/");
1508       strcat (debugfile, dir);
1509       strcat (debugfile, debuglink);
1510 
1511       if (separate_debug_file_exists (debugfile, crc32, objfile))
1512 	{
1513 	  do_cleanups (back_to);
1514 	  return debugfile;
1515 	}
1516 
1517       /* If the file is in the sysroot, try using its base path in the
1518 	 global debugfile directory.  */
1519       if (canon_dir != NULL
1520 	  && filename_ncmp (canon_dir, gdb_sysroot,
1521 			    strlen (gdb_sysroot)) == 0
1522 	  && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1523 	{
1524 	  strcpy (debugfile, debugdir);
1525 	  strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1526 	  strcat (debugfile, "/");
1527 	  strcat (debugfile, debuglink);
1528 
1529 	  if (separate_debug_file_exists (debugfile, crc32, objfile))
1530 	    {
1531 	      do_cleanups (back_to);
1532 	      return debugfile;
1533 	    }
1534 	}
1535     }
1536 
1537   do_cleanups (back_to);
1538   xfree (debugfile);
1539   return NULL;
1540 }
1541 
1542 /* Modify PATH to contain only "[/]directory/" part of PATH.
1543    If there were no directory separators in PATH, PATH will be empty
1544    string on return.  */
1545 
1546 static void
1547 terminate_after_last_dir_separator (char *path)
1548 {
1549   int i;
1550 
1551   /* Strip off the final filename part, leaving the directory name,
1552      followed by a slash.  The directory can be relative or absolute.  */
1553   for (i = strlen(path) - 1; i >= 0; i--)
1554     if (IS_DIR_SEPARATOR (path[i]))
1555       break;
1556 
1557   /* If I is -1 then no directory is present there and DIR will be "".  */
1558   path[i + 1] = '\0';
1559 }
1560 
1561 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1562    Returns pathname, or NULL.  */
1563 
1564 char *
1565 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1566 {
1567   char *debuglink;
1568   char *dir, *canon_dir;
1569   char *debugfile;
1570   unsigned long crc32;
1571   struct cleanup *cleanups;
1572 
1573   debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1574 
1575   if (debuglink == NULL)
1576     {
1577       /* There's no separate debug info, hence there's no way we could
1578 	 load it => no warning.  */
1579       return NULL;
1580     }
1581 
1582   cleanups = make_cleanup (xfree, debuglink);
1583   dir = xstrdup (objfile_name (objfile));
1584   make_cleanup (xfree, dir);
1585   terminate_after_last_dir_separator (dir);
1586   canon_dir = lrealpath (dir);
1587 
1588   debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1589 					crc32, objfile);
1590   xfree (canon_dir);
1591 
1592   if (debugfile == NULL)
1593     {
1594       /* For PR gdb/9538, try again with realpath (if different from the
1595 	 original).  */
1596 
1597       struct stat st_buf;
1598 
1599       if (lstat (objfile_name (objfile), &st_buf) == 0
1600 	  && S_ISLNK (st_buf.st_mode))
1601 	{
1602 	  char *symlink_dir;
1603 
1604 	  symlink_dir = lrealpath (objfile_name (objfile));
1605 	  if (symlink_dir != NULL)
1606 	    {
1607 	      make_cleanup (xfree, symlink_dir);
1608 	      terminate_after_last_dir_separator (symlink_dir);
1609 	      if (strcmp (dir, symlink_dir) != 0)
1610 		{
1611 		  /* Different directory, so try using it.  */
1612 		  debugfile = find_separate_debug_file (symlink_dir,
1613 							symlink_dir,
1614 							debuglink,
1615 							crc32,
1616 							objfile);
1617 		}
1618 	    }
1619 	}
1620     }
1621 
1622   do_cleanups (cleanups);
1623   return debugfile;
1624 }
1625 
1626 /* This is the symbol-file command.  Read the file, analyze its
1627    symbols, and add a struct symtab to a symtab list.  The syntax of
1628    the command is rather bizarre:
1629 
1630    1. The function buildargv implements various quoting conventions
1631    which are undocumented and have little or nothing in common with
1632    the way things are quoted (or not quoted) elsewhere in GDB.
1633 
1634    2. Options are used, which are not generally used in GDB (perhaps
1635    "set mapped on", "set readnow on" would be better)
1636 
1637    3. The order of options matters, which is contrary to GNU
1638    conventions (because it is confusing and inconvenient).  */
1639 
1640 void
1641 symbol_file_command (char *args, int from_tty)
1642 {
1643   dont_repeat ();
1644 
1645   if (args == NULL)
1646     {
1647       symbol_file_clear (from_tty);
1648     }
1649   else
1650     {
1651       char **argv = gdb_buildargv (args);
1652       int flags = OBJF_USERLOADED;
1653       struct cleanup *cleanups;
1654       char *name = NULL;
1655 
1656       cleanups = make_cleanup_freeargv (argv);
1657       while (*argv != NULL)
1658 	{
1659 	  if (strcmp (*argv, "-readnow") == 0)
1660 	    flags |= OBJF_READNOW;
1661 	  else if (**argv == '-')
1662 	    error (_("unknown option `%s'"), *argv);
1663 	  else
1664 	    {
1665 	      symbol_file_add_main_1 (*argv, from_tty, flags);
1666 	      name = *argv;
1667 	    }
1668 
1669 	  argv++;
1670 	}
1671 
1672       if (name == NULL)
1673 	error (_("no symbol file name was specified"));
1674 
1675       do_cleanups (cleanups);
1676     }
1677 }
1678 
1679 /* Set the initial language.
1680 
1681    FIXME: A better solution would be to record the language in the
1682    psymtab when reading partial symbols, and then use it (if known) to
1683    set the language.  This would be a win for formats that encode the
1684    language in an easily discoverable place, such as DWARF.  For
1685    stabs, we can jump through hoops looking for specially named
1686    symbols or try to intuit the language from the specific type of
1687    stabs we find, but we can't do that until later when we read in
1688    full symbols.  */
1689 
1690 void
1691 set_initial_language (void)
1692 {
1693   enum language lang = main_language ();
1694 
1695   if (lang == language_unknown)
1696     {
1697       char *name = main_name ();
1698       struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
1699 
1700       if (sym != NULL)
1701 	lang = SYMBOL_LANGUAGE (sym);
1702     }
1703 
1704   if (lang == language_unknown)
1705     {
1706       /* Make C the default language */
1707       lang = language_c;
1708     }
1709 
1710   set_language (lang);
1711   expected_language = current_language; /* Don't warn the user.  */
1712 }
1713 
1714 /* If NAME is a remote name open the file using remote protocol, otherwise
1715    open it normally.  Returns a new reference to the BFD.  On error,
1716    returns NULL with the BFD error set.  */
1717 
1718 bfd *
1719 gdb_bfd_open_maybe_remote (const char *name)
1720 {
1721   bfd *result;
1722 
1723   if (remote_filename_p (name))
1724     result = remote_bfd_open (name, gnutarget);
1725   else
1726     result = gdb_bfd_open (name, gnutarget, -1);
1727 
1728   return result;
1729 }
1730 
1731 /* Open the file specified by NAME and hand it off to BFD for
1732    preliminary analysis.  Return a newly initialized bfd *, which
1733    includes a newly malloc'd` copy of NAME (tilde-expanded and made
1734    absolute).  In case of trouble, error() is called.  */
1735 
1736 bfd *
1737 symfile_bfd_open (const char *cname)
1738 {
1739   bfd *sym_bfd;
1740   int desc;
1741   char *name, *absolute_name;
1742   struct cleanup *back_to;
1743 
1744   if (remote_filename_p (cname))
1745     {
1746       sym_bfd = remote_bfd_open (cname, gnutarget);
1747       if (!sym_bfd)
1748 	error (_("`%s': can't open to read symbols: %s."), cname,
1749 	       bfd_errmsg (bfd_get_error ()));
1750 
1751       if (!bfd_check_format (sym_bfd, bfd_object))
1752 	{
1753 	  make_cleanup_bfd_unref (sym_bfd);
1754 	  error (_("`%s': can't read symbols: %s."), cname,
1755 		 bfd_errmsg (bfd_get_error ()));
1756 	}
1757 
1758       return sym_bfd;
1759     }
1760 
1761   name = tilde_expand (cname);	/* Returns 1st new malloc'd copy.  */
1762 
1763   /* Look down path for it, allocate 2nd new malloc'd copy.  */
1764   desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
1765 		O_RDONLY | O_BINARY, &absolute_name);
1766 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1767   if (desc < 0)
1768     {
1769       char *exename = alloca (strlen (name) + 5);
1770 
1771       strcat (strcpy (exename, name), ".exe");
1772       desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1773 		    exename, O_RDONLY | O_BINARY, &absolute_name);
1774     }
1775 #endif
1776   if (desc < 0)
1777     {
1778       make_cleanup (xfree, name);
1779       perror_with_name (name);
1780     }
1781 
1782   xfree (name);
1783   name = absolute_name;
1784   back_to = make_cleanup (xfree, name);
1785 
1786   sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1787   if (!sym_bfd)
1788     error (_("`%s': can't open to read symbols: %s."), name,
1789 	   bfd_errmsg (bfd_get_error ()));
1790   bfd_set_cacheable (sym_bfd, 1);
1791 
1792   if (!bfd_check_format (sym_bfd, bfd_object))
1793     {
1794       make_cleanup_bfd_unref (sym_bfd);
1795       error (_("`%s': can't read symbols: %s."), name,
1796 	     bfd_errmsg (bfd_get_error ()));
1797     }
1798 
1799   do_cleanups (back_to);
1800 
1801   return sym_bfd;
1802 }
1803 
1804 /* Return the section index for SECTION_NAME on OBJFILE.  Return -1 if
1805    the section was not found.  */
1806 
1807 int
1808 get_section_index (struct objfile *objfile, char *section_name)
1809 {
1810   asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1811 
1812   if (sect)
1813     return sect->index;
1814   else
1815     return -1;
1816 }
1817 
1818 /* Link SF into the global symtab_fns list.
1819    FLAVOUR is the file format that SF handles.
1820    Called on startup by the _initialize routine in each object file format
1821    reader, to register information about each format the reader is prepared
1822    to handle.  */
1823 
1824 void
1825 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1826 {
1827   registered_sym_fns fns = { flavour, sf };
1828 
1829   VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1830 }
1831 
1832 /* Initialize OBJFILE to read symbols from its associated BFD.  It
1833    either returns or calls error().  The result is an initialized
1834    struct sym_fns in the objfile structure, that contains cached
1835    information about the symbol file.  */
1836 
1837 static const struct sym_fns *
1838 find_sym_fns (bfd *abfd)
1839 {
1840   registered_sym_fns *rsf;
1841   enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1842   int i;
1843 
1844   if (our_flavour == bfd_target_srec_flavour
1845       || our_flavour == bfd_target_ihex_flavour
1846       || our_flavour == bfd_target_tekhex_flavour)
1847     return NULL;	/* No symbols.  */
1848 
1849   for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1850     if (our_flavour == rsf->sym_flavour)
1851       return rsf->sym_fns;
1852 
1853   error (_("I'm sorry, Dave, I can't do that.  Symbol format `%s' unknown."),
1854 	 bfd_get_target (abfd));
1855 }
1856 
1857 
1858 /* This function runs the load command of our current target.  */
1859 
1860 static void
1861 load_command (char *arg, int from_tty)
1862 {
1863   struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1864 
1865   dont_repeat ();
1866 
1867   /* The user might be reloading because the binary has changed.  Take
1868      this opportunity to check.  */
1869   reopen_exec_file ();
1870   reread_symbols ();
1871 
1872   if (arg == NULL)
1873     {
1874       char *parg;
1875       int count = 0;
1876 
1877       parg = arg = get_exec_file (1);
1878 
1879       /* Count how many \ " ' tab space there are in the name.  */
1880       while ((parg = strpbrk (parg, "\\\"'\t ")))
1881 	{
1882 	  parg++;
1883 	  count++;
1884 	}
1885 
1886       if (count)
1887 	{
1888 	  /* We need to quote this string so buildargv can pull it apart.  */
1889 	  char *temp = xmalloc (strlen (arg) + count + 1 );
1890 	  char *ptemp = temp;
1891 	  char *prev;
1892 
1893 	  make_cleanup (xfree, temp);
1894 
1895 	  prev = parg = arg;
1896 	  while ((parg = strpbrk (parg, "\\\"'\t ")))
1897 	    {
1898 	      strncpy (ptemp, prev, parg - prev);
1899 	      ptemp += parg - prev;
1900 	      prev = parg++;
1901 	      *ptemp++ = '\\';
1902 	    }
1903 	  strcpy (ptemp, prev);
1904 
1905 	  arg = temp;
1906 	}
1907     }
1908 
1909   target_load (arg, from_tty);
1910 
1911   /* After re-loading the executable, we don't really know which
1912      overlays are mapped any more.  */
1913   overlay_cache_invalid = 1;
1914 
1915   do_cleanups (cleanup);
1916 }
1917 
1918 /* This version of "load" should be usable for any target.  Currently
1919    it is just used for remote targets, not inftarg.c or core files,
1920    on the theory that only in that case is it useful.
1921 
1922    Avoiding xmodem and the like seems like a win (a) because we don't have
1923    to worry about finding it, and (b) On VMS, fork() is very slow and so
1924    we don't want to run a subprocess.  On the other hand, I'm not sure how
1925    performance compares.  */
1926 
1927 static int validate_download = 0;
1928 
1929 /* Callback service function for generic_load (bfd_map_over_sections).  */
1930 
1931 static void
1932 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1933 {
1934   bfd_size_type *sum = data;
1935 
1936   *sum += bfd_get_section_size (asec);
1937 }
1938 
1939 /* Opaque data for load_section_callback.  */
1940 struct load_section_data {
1941   CORE_ADDR load_offset;
1942   struct load_progress_data *progress_data;
1943   VEC(memory_write_request_s) *requests;
1944 };
1945 
1946 /* Opaque data for load_progress.  */
1947 struct load_progress_data {
1948   /* Cumulative data.  */
1949   unsigned long write_count;
1950   unsigned long data_count;
1951   bfd_size_type total_size;
1952 };
1953 
1954 /* Opaque data for load_progress for a single section.  */
1955 struct load_progress_section_data {
1956   struct load_progress_data *cumulative;
1957 
1958   /* Per-section data.  */
1959   const char *section_name;
1960   ULONGEST section_sent;
1961   ULONGEST section_size;
1962   CORE_ADDR lma;
1963   gdb_byte *buffer;
1964 };
1965 
1966 /* Target write callback routine for progress reporting.  */
1967 
1968 static void
1969 load_progress (ULONGEST bytes, void *untyped_arg)
1970 {
1971   struct load_progress_section_data *args = untyped_arg;
1972   struct load_progress_data *totals;
1973 
1974   if (args == NULL)
1975     /* Writing padding data.  No easy way to get at the cumulative
1976        stats, so just ignore this.  */
1977     return;
1978 
1979   totals = args->cumulative;
1980 
1981   if (bytes == 0 && args->section_sent == 0)
1982     {
1983       /* The write is just starting.  Let the user know we've started
1984 	 this section.  */
1985       ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1986 		      args->section_name, hex_string (args->section_size),
1987 		      paddress (target_gdbarch (), args->lma));
1988       return;
1989     }
1990 
1991   if (validate_download)
1992     {
1993       /* Broken memories and broken monitors manifest themselves here
1994 	 when bring new computers to life.  This doubles already slow
1995 	 downloads.  */
1996       /* NOTE: cagney/1999-10-18: A more efficient implementation
1997 	 might add a verify_memory() method to the target vector and
1998 	 then use that.  remote.c could implement that method using
1999 	 the ``qCRC'' packet.  */
2000       gdb_byte *check = xmalloc (bytes);
2001       struct cleanup *verify_cleanups = make_cleanup (xfree, check);
2002 
2003       if (target_read_memory (args->lma, check, bytes) != 0)
2004 	error (_("Download verify read failed at %s"),
2005 	       paddress (target_gdbarch (), args->lma));
2006       if (memcmp (args->buffer, check, bytes) != 0)
2007 	error (_("Download verify compare failed at %s"),
2008 	       paddress (target_gdbarch (), args->lma));
2009       do_cleanups (verify_cleanups);
2010     }
2011   totals->data_count += bytes;
2012   args->lma += bytes;
2013   args->buffer += bytes;
2014   totals->write_count += 1;
2015   args->section_sent += bytes;
2016   if (check_quit_flag ()
2017       || (deprecated_ui_load_progress_hook != NULL
2018 	  && deprecated_ui_load_progress_hook (args->section_name,
2019 					       args->section_sent)))
2020     error (_("Canceled the download"));
2021 
2022   if (deprecated_show_load_progress != NULL)
2023     deprecated_show_load_progress (args->section_name,
2024 				   args->section_sent,
2025 				   args->section_size,
2026 				   totals->data_count,
2027 				   totals->total_size);
2028 }
2029 
2030 /* Callback service function for generic_load (bfd_map_over_sections).  */
2031 
2032 static void
2033 load_section_callback (bfd *abfd, asection *asec, void *data)
2034 {
2035   struct memory_write_request *new_request;
2036   struct load_section_data *args = data;
2037   struct load_progress_section_data *section_data;
2038   bfd_size_type size = bfd_get_section_size (asec);
2039   gdb_byte *buffer;
2040   const char *sect_name = bfd_get_section_name (abfd, asec);
2041 
2042   if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2043     return;
2044 
2045   if (size == 0)
2046     return;
2047 
2048   new_request = VEC_safe_push (memory_write_request_s,
2049 			       args->requests, NULL);
2050   memset (new_request, 0, sizeof (struct memory_write_request));
2051   section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2052   new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2053   new_request->end = new_request->begin + size; /* FIXME Should size
2054 						   be in instead?  */
2055   new_request->data = xmalloc (size);
2056   new_request->baton = section_data;
2057 
2058   buffer = new_request->data;
2059 
2060   section_data->cumulative = args->progress_data;
2061   section_data->section_name = sect_name;
2062   section_data->section_size = size;
2063   section_data->lma = new_request->begin;
2064   section_data->buffer = buffer;
2065 
2066   bfd_get_section_contents (abfd, asec, buffer, 0, size);
2067 }
2068 
2069 /* Clean up an entire memory request vector, including load
2070    data and progress records.  */
2071 
2072 static void
2073 clear_memory_write_data (void *arg)
2074 {
2075   VEC(memory_write_request_s) **vec_p = arg;
2076   VEC(memory_write_request_s) *vec = *vec_p;
2077   int i;
2078   struct memory_write_request *mr;
2079 
2080   for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2081     {
2082       xfree (mr->data);
2083       xfree (mr->baton);
2084     }
2085   VEC_free (memory_write_request_s, vec);
2086 }
2087 
2088 void
2089 generic_load (const char *args, int from_tty)
2090 {
2091   bfd *loadfile_bfd;
2092   struct timeval start_time, end_time;
2093   char *filename;
2094   struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2095   struct load_section_data cbdata;
2096   struct load_progress_data total_progress;
2097   struct ui_out *uiout = current_uiout;
2098 
2099   CORE_ADDR entry;
2100   char **argv;
2101 
2102   memset (&cbdata, 0, sizeof (cbdata));
2103   memset (&total_progress, 0, sizeof (total_progress));
2104   cbdata.progress_data = &total_progress;
2105 
2106   make_cleanup (clear_memory_write_data, &cbdata.requests);
2107 
2108   if (args == NULL)
2109     error_no_arg (_("file to load"));
2110 
2111   argv = gdb_buildargv (args);
2112   make_cleanup_freeargv (argv);
2113 
2114   filename = tilde_expand (argv[0]);
2115   make_cleanup (xfree, filename);
2116 
2117   if (argv[1] != NULL)
2118     {
2119       const char *endptr;
2120 
2121       cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2122 
2123       /* If the last word was not a valid number then
2124          treat it as a file name with spaces in.  */
2125       if (argv[1] == endptr)
2126         error (_("Invalid download offset:%s."), argv[1]);
2127 
2128       if (argv[2] != NULL)
2129 	error (_("Too many parameters."));
2130     }
2131 
2132   /* Open the file for loading.  */
2133   loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2134   if (loadfile_bfd == NULL)
2135     {
2136       perror_with_name (filename);
2137       return;
2138     }
2139 
2140   make_cleanup_bfd_unref (loadfile_bfd);
2141 
2142   if (!bfd_check_format (loadfile_bfd, bfd_object))
2143     {
2144       error (_("\"%s\" is not an object file: %s"), filename,
2145 	     bfd_errmsg (bfd_get_error ()));
2146     }
2147 
2148   bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2149 			 (void *) &total_progress.total_size);
2150 
2151   bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2152 
2153   gettimeofday (&start_time, NULL);
2154 
2155   if (target_write_memory_blocks (cbdata.requests, flash_discard,
2156 				  load_progress) != 0)
2157     error (_("Load failed"));
2158 
2159   gettimeofday (&end_time, NULL);
2160 
2161   entry = bfd_get_start_address (loadfile_bfd);
2162   entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2163   ui_out_text (uiout, "Start address ");
2164   ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2165   ui_out_text (uiout, ", load size ");
2166   ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2167   ui_out_text (uiout, "\n");
2168   /* We were doing this in remote-mips.c, I suspect it is right
2169      for other targets too.  */
2170   regcache_write_pc (get_current_regcache (), entry);
2171 
2172   /* Reset breakpoints, now that we have changed the load image.  For
2173      instance, breakpoints may have been set (or reset, by
2174      post_create_inferior) while connected to the target but before we
2175      loaded the program.  In that case, the prologue analyzer could
2176      have read instructions from the target to find the right
2177      breakpoint locations.  Loading has changed the contents of that
2178      memory.  */
2179 
2180   breakpoint_re_set ();
2181 
2182   /* FIXME: are we supposed to call symbol_file_add or not?  According
2183      to a comment from remote-mips.c (where a call to symbol_file_add
2184      was commented out), making the call confuses GDB if more than one
2185      file is loaded in.  Some targets do (e.g., remote-vx.c) but
2186      others don't (or didn't - perhaps they have all been deleted).  */
2187 
2188   print_transfer_performance (gdb_stdout, total_progress.data_count,
2189 			      total_progress.write_count,
2190 			      &start_time, &end_time);
2191 
2192   do_cleanups (old_cleanups);
2193 }
2194 
2195 /* Report how fast the transfer went.  */
2196 
2197 void
2198 print_transfer_performance (struct ui_file *stream,
2199 			    unsigned long data_count,
2200 			    unsigned long write_count,
2201 			    const struct timeval *start_time,
2202 			    const struct timeval *end_time)
2203 {
2204   ULONGEST time_count;
2205   struct ui_out *uiout = current_uiout;
2206 
2207   /* Compute the elapsed time in milliseconds, as a tradeoff between
2208      accuracy and overflow.  */
2209   time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2210   time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2211 
2212   ui_out_text (uiout, "Transfer rate: ");
2213   if (time_count > 0)
2214     {
2215       unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2216 
2217       if (ui_out_is_mi_like_p (uiout))
2218 	{
2219 	  ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2220 	  ui_out_text (uiout, " bits/sec");
2221 	}
2222       else if (rate < 1024)
2223 	{
2224 	  ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2225 	  ui_out_text (uiout, " bytes/sec");
2226 	}
2227       else
2228 	{
2229 	  ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2230 	  ui_out_text (uiout, " KB/sec");
2231 	}
2232     }
2233   else
2234     {
2235       ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2236       ui_out_text (uiout, " bits in <1 sec");
2237     }
2238   if (write_count > 0)
2239     {
2240       ui_out_text (uiout, ", ");
2241       ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2242       ui_out_text (uiout, " bytes/write");
2243     }
2244   ui_out_text (uiout, ".\n");
2245 }
2246 
2247 /* This function allows the addition of incrementally linked object files.
2248    It does not modify any state in the target, only in the debugger.  */
2249 /* Note: ezannoni 2000-04-13 This function/command used to have a
2250    special case syntax for the rombug target (Rombug is the boot
2251    monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2252    rombug case, the user doesn't need to supply a text address,
2253    instead a call to target_link() (in target.c) would supply the
2254    value to use.  We are now discontinuing this type of ad hoc syntax.  */
2255 
2256 static void
2257 add_symbol_file_command (char *args, int from_tty)
2258 {
2259   struct gdbarch *gdbarch = get_current_arch ();
2260   char *filename = NULL;
2261   int flags = OBJF_USERLOADED | OBJF_SHARED;
2262   char *arg;
2263   int section_index = 0;
2264   int argcnt = 0;
2265   int sec_num = 0;
2266   int i;
2267   int expecting_sec_name = 0;
2268   int expecting_sec_addr = 0;
2269   char **argv;
2270   struct objfile *objf;
2271 
2272   struct sect_opt
2273   {
2274     char *name;
2275     char *value;
2276   };
2277 
2278   struct section_addr_info *section_addrs;
2279   struct sect_opt *sect_opts = NULL;
2280   size_t num_sect_opts = 0;
2281   struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2282 
2283   num_sect_opts = 16;
2284   sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2285 					   * sizeof (struct sect_opt));
2286 
2287   dont_repeat ();
2288 
2289   if (args == NULL)
2290     error (_("add-symbol-file takes a file name and an address"));
2291 
2292   argv = gdb_buildargv (args);
2293   make_cleanup_freeargv (argv);
2294 
2295   for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2296     {
2297       /* Process the argument.  */
2298       if (argcnt == 0)
2299 	{
2300 	  /* The first argument is the file name.  */
2301 	  filename = tilde_expand (arg);
2302 	  make_cleanup (xfree, filename);
2303 	}
2304       else if (argcnt == 1)
2305 	{
2306 	  /* The second argument is always the text address at which
2307 	     to load the program.  */
2308 	  sect_opts[section_index].name = ".text";
2309 	  sect_opts[section_index].value = arg;
2310 	  if (++section_index >= num_sect_opts)
2311 	    {
2312 	      num_sect_opts *= 2;
2313 	      sect_opts = ((struct sect_opt *)
2314 			   xrealloc (sect_opts,
2315 				     num_sect_opts
2316 				     * sizeof (struct sect_opt)));
2317 	    }
2318 	}
2319       else
2320 	{
2321 	  /* It's an option (starting with '-') or it's an argument
2322 	     to an option.  */
2323 	  if (expecting_sec_name)
2324 	    {
2325 	      sect_opts[section_index].name = arg;
2326 	      expecting_sec_name = 0;
2327 	    }
2328 	  else if (expecting_sec_addr)
2329 	    {
2330 	      sect_opts[section_index].value = arg;
2331 	      expecting_sec_addr = 0;
2332 	      if (++section_index >= num_sect_opts)
2333 		{
2334 		  num_sect_opts *= 2;
2335 		  sect_opts = ((struct sect_opt *)
2336 			       xrealloc (sect_opts,
2337 					 num_sect_opts
2338 					 * sizeof (struct sect_opt)));
2339 		}
2340 	    }
2341 	  else if (strcmp (arg, "-readnow") == 0)
2342 	    flags |= OBJF_READNOW;
2343 	  else if (strcmp (arg, "-s") == 0)
2344 	    {
2345 	      expecting_sec_name = 1;
2346 	      expecting_sec_addr = 1;
2347 	    }
2348 	  else
2349 	    error (_("USAGE: add-symbol-file <filename> <textaddress>"
2350 		     " [-readnow] [-s <secname> <addr>]*"));
2351 	}
2352     }
2353 
2354   /* This command takes at least two arguments.  The first one is a
2355      filename, and the second is the address where this file has been
2356      loaded.  Abort now if this address hasn't been provided by the
2357      user.  */
2358   if (section_index < 1)
2359     error (_("The address where %s has been loaded is missing"), filename);
2360 
2361   /* Print the prompt for the query below.  And save the arguments into
2362      a sect_addr_info structure to be passed around to other
2363      functions.  We have to split this up into separate print
2364      statements because hex_string returns a local static
2365      string.  */
2366 
2367   printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2368   section_addrs = alloc_section_addr_info (section_index);
2369   make_cleanup (xfree, section_addrs);
2370   for (i = 0; i < section_index; i++)
2371     {
2372       CORE_ADDR addr;
2373       char *val = sect_opts[i].value;
2374       char *sec = sect_opts[i].name;
2375 
2376       addr = parse_and_eval_address (val);
2377 
2378       /* Here we store the section offsets in the order they were
2379          entered on the command line.  */
2380       section_addrs->other[sec_num].name = sec;
2381       section_addrs->other[sec_num].addr = addr;
2382       printf_unfiltered ("\t%s_addr = %s\n", sec,
2383 			 paddress (gdbarch, addr));
2384       sec_num++;
2385 
2386       /* The object's sections are initialized when a
2387 	 call is made to build_objfile_section_table (objfile).
2388 	 This happens in reread_symbols.
2389 	 At this point, we don't know what file type this is,
2390 	 so we can't determine what section names are valid.  */
2391     }
2392   section_addrs->num_sections = sec_num;
2393 
2394   if (from_tty && (!query ("%s", "")))
2395     error (_("Not confirmed."));
2396 
2397   objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2398 			  section_addrs, flags);
2399 
2400   add_target_sections_of_objfile (objf);
2401 
2402   /* Getting new symbols may change our opinion about what is
2403      frameless.  */
2404   reinit_frame_cache ();
2405   do_cleanups (my_cleanups);
2406 }
2407 
2408 
2409 /* This function removes a symbol file that was added via add-symbol-file.  */
2410 
2411 static void
2412 remove_symbol_file_command (char *args, int from_tty)
2413 {
2414   char **argv;
2415   struct objfile *objf = NULL;
2416   struct cleanup *my_cleanups;
2417   struct program_space *pspace = current_program_space;
2418   struct gdbarch *gdbarch = get_current_arch ();
2419 
2420   dont_repeat ();
2421 
2422   if (args == NULL)
2423     error (_("remove-symbol-file: no symbol file provided"));
2424 
2425   my_cleanups = make_cleanup (null_cleanup, NULL);
2426 
2427   argv = gdb_buildargv (args);
2428 
2429   if (strcmp (argv[0], "-a") == 0)
2430     {
2431       /* Interpret the next argument as an address.  */
2432       CORE_ADDR addr;
2433 
2434       if (argv[1] == NULL)
2435 	error (_("Missing address argument"));
2436 
2437       if (argv[2] != NULL)
2438 	error (_("Junk after %s"), argv[1]);
2439 
2440       addr = parse_and_eval_address (argv[1]);
2441 
2442       ALL_OBJFILES (objf)
2443 	{
2444 	  if ((objf->flags & OBJF_USERLOADED) != 0
2445 	      && (objf->flags & OBJF_SHARED) != 0
2446 	      && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2447 	    break;
2448 	}
2449     }
2450   else if (argv[0] != NULL)
2451     {
2452       /* Interpret the current argument as a file name.  */
2453       char *filename;
2454 
2455       if (argv[1] != NULL)
2456 	error (_("Junk after %s"), argv[0]);
2457 
2458       filename = tilde_expand (argv[0]);
2459       make_cleanup (xfree, filename);
2460 
2461       ALL_OBJFILES (objf)
2462 	{
2463 	  if ((objf->flags & OBJF_USERLOADED) != 0
2464 	      && (objf->flags & OBJF_SHARED) != 0
2465 	      && objf->pspace == pspace
2466 	      && filename_cmp (filename, objfile_name (objf)) == 0)
2467 	    break;
2468 	}
2469     }
2470 
2471   if (objf == NULL)
2472     error (_("No symbol file found"));
2473 
2474   if (from_tty
2475       && !query (_("Remove symbol table from file \"%s\"? "),
2476 		 objfile_name (objf)))
2477     error (_("Not confirmed."));
2478 
2479   free_objfile (objf);
2480   clear_symtab_users (0);
2481 
2482   do_cleanups (my_cleanups);
2483 }
2484 
2485 typedef struct objfile *objfilep;
2486 
2487 DEF_VEC_P (objfilep);
2488 
2489 /* Re-read symbols if a symbol-file has changed.  */
2490 
2491 void
2492 reread_symbols (void)
2493 {
2494   struct objfile *objfile;
2495   long new_modtime;
2496   struct stat new_statbuf;
2497   int res;
2498   VEC (objfilep) *new_objfiles = NULL;
2499   struct cleanup *all_cleanups;
2500 
2501   all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2502 
2503   /* With the addition of shared libraries, this should be modified,
2504      the load time should be saved in the partial symbol tables, since
2505      different tables may come from different source files.  FIXME.
2506      This routine should then walk down each partial symbol table
2507      and see if the symbol table that it originates from has been changed.  */
2508 
2509   for (objfile = object_files; objfile; objfile = objfile->next)
2510     {
2511       if (objfile->obfd == NULL)
2512 	continue;
2513 
2514       /* Separate debug objfiles are handled in the main objfile.  */
2515       if (objfile->separate_debug_objfile_backlink)
2516 	continue;
2517 
2518       /* If this object is from an archive (what you usually create with
2519 	 `ar', often called a `static library' on most systems, though
2520 	 a `shared library' on AIX is also an archive), then you should
2521 	 stat on the archive name, not member name.  */
2522       if (objfile->obfd->my_archive)
2523 	res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2524       else
2525 	res = stat (objfile_name (objfile), &new_statbuf);
2526       if (res != 0)
2527 	{
2528 	  /* FIXME, should use print_sys_errmsg but it's not filtered.  */
2529 	  printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2530 			     objfile_name (objfile));
2531 	  continue;
2532 	}
2533       new_modtime = new_statbuf.st_mtime;
2534       if (new_modtime != objfile->mtime)
2535 	{
2536 	  struct cleanup *old_cleanups;
2537 	  struct section_offsets *offsets;
2538 	  int num_offsets;
2539 	  char *original_name;
2540 
2541 	  printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2542 			     objfile_name (objfile));
2543 
2544 	  /* There are various functions like symbol_file_add,
2545 	     symfile_bfd_open, syms_from_objfile, etc., which might
2546 	     appear to do what we want.  But they have various other
2547 	     effects which we *don't* want.  So we just do stuff
2548 	     ourselves.  We don't worry about mapped files (for one thing,
2549 	     any mapped file will be out of date).  */
2550 
2551 	  /* If we get an error, blow away this objfile (not sure if
2552 	     that is the correct response for things like shared
2553 	     libraries).  */
2554 	  old_cleanups = make_cleanup_free_objfile (objfile);
2555 	  /* We need to do this whenever any symbols go away.  */
2556 	  make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2557 
2558 	  if (exec_bfd != NULL
2559 	      && filename_cmp (bfd_get_filename (objfile->obfd),
2560 			       bfd_get_filename (exec_bfd)) == 0)
2561 	    {
2562 	      /* Reload EXEC_BFD without asking anything.  */
2563 
2564 	      exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2565 	    }
2566 
2567 	  /* Keep the calls order approx. the same as in free_objfile.  */
2568 
2569 	  /* Free the separate debug objfiles.  It will be
2570 	     automatically recreated by sym_read.  */
2571 	  free_objfile_separate_debug (objfile);
2572 
2573 	  /* Remove any references to this objfile in the global
2574 	     value lists.  */
2575 	  preserve_values (objfile);
2576 
2577 	  /* Nuke all the state that we will re-read.  Much of the following
2578 	     code which sets things to NULL really is necessary to tell
2579 	     other parts of GDB that there is nothing currently there.
2580 
2581 	     Try to keep the freeing order compatible with free_objfile.  */
2582 
2583 	  if (objfile->sf != NULL)
2584 	    {
2585 	      (*objfile->sf->sym_finish) (objfile);
2586 	    }
2587 
2588 	  clear_objfile_data (objfile);
2589 
2590 	  /* Clean up any state BFD has sitting around.  */
2591 	  {
2592 	    struct bfd *obfd = objfile->obfd;
2593 	    char *obfd_filename;
2594 
2595 	    obfd_filename = bfd_get_filename (objfile->obfd);
2596 	    /* Open the new BFD before freeing the old one, so that
2597 	       the filename remains live.  */
2598 	    objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2599 	    if (objfile->obfd == NULL)
2600 	      {
2601 		/* We have to make a cleanup and error here, rather
2602 		   than erroring later, because once we unref OBFD,
2603 		   OBFD_FILENAME will be freed.  */
2604 		make_cleanup_bfd_unref (obfd);
2605 		error (_("Can't open %s to read symbols."), obfd_filename);
2606 	      }
2607 	    gdb_bfd_unref (obfd);
2608 	  }
2609 
2610 	  original_name = xstrdup (objfile->original_name);
2611 	  make_cleanup (xfree, original_name);
2612 
2613 	  /* bfd_openr sets cacheable to true, which is what we want.  */
2614 	  if (!bfd_check_format (objfile->obfd, bfd_object))
2615 	    error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2616 		   bfd_errmsg (bfd_get_error ()));
2617 
2618 	  /* Save the offsets, we will nuke them with the rest of the
2619 	     objfile_obstack.  */
2620 	  num_offsets = objfile->num_sections;
2621 	  offsets = ((struct section_offsets *)
2622 		     alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2623 	  memcpy (offsets, objfile->section_offsets,
2624 		  SIZEOF_N_SECTION_OFFSETS (num_offsets));
2625 
2626 	  /* FIXME: Do we have to free a whole linked list, or is this
2627 	     enough?  */
2628 	  if (objfile->global_psymbols.list)
2629 	    xfree (objfile->global_psymbols.list);
2630 	  memset (&objfile->global_psymbols, 0,
2631 		  sizeof (objfile->global_psymbols));
2632 	  if (objfile->static_psymbols.list)
2633 	    xfree (objfile->static_psymbols.list);
2634 	  memset (&objfile->static_psymbols, 0,
2635 		  sizeof (objfile->static_psymbols));
2636 
2637 	  /* Free the obstacks for non-reusable objfiles.  */
2638 	  psymbol_bcache_free (objfile->psymbol_cache);
2639 	  objfile->psymbol_cache = psymbol_bcache_init ();
2640 	  obstack_free (&objfile->objfile_obstack, 0);
2641 	  objfile->sections = NULL;
2642 	  objfile->compunit_symtabs = NULL;
2643 	  objfile->psymtabs = NULL;
2644 	  objfile->psymtabs_addrmap = NULL;
2645 	  objfile->free_psymtabs = NULL;
2646 	  objfile->template_symbols = NULL;
2647 
2648 	  /* obstack_init also initializes the obstack so it is
2649 	     empty.  We could use obstack_specify_allocation but
2650 	     gdb_obstack.h specifies the alloc/dealloc functions.  */
2651 	  obstack_init (&objfile->objfile_obstack);
2652 
2653 	  /* set_objfile_per_bfd potentially allocates the per-bfd
2654 	     data on the objfile's obstack (if sharing data across
2655 	     multiple users is not possible), so it's important to
2656 	     do it *after* the obstack has been initialized.  */
2657 	  set_objfile_per_bfd (objfile);
2658 
2659 	  objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2660 						  original_name,
2661 						  strlen (original_name));
2662 
2663 	  /* Reset the sym_fns pointer.  The ELF reader can change it
2664 	     based on whether .gdb_index is present, and we need it to
2665 	     start over.  PR symtab/15885  */
2666 	  objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2667 
2668 	  build_objfile_section_table (objfile);
2669 	  terminate_minimal_symbol_table (objfile);
2670 
2671 	  /* We use the same section offsets as from last time.  I'm not
2672 	     sure whether that is always correct for shared libraries.  */
2673 	  objfile->section_offsets = (struct section_offsets *)
2674 	    obstack_alloc (&objfile->objfile_obstack,
2675 			   SIZEOF_N_SECTION_OFFSETS (num_offsets));
2676 	  memcpy (objfile->section_offsets, offsets,
2677 		  SIZEOF_N_SECTION_OFFSETS (num_offsets));
2678 	  objfile->num_sections = num_offsets;
2679 
2680 	  /* What the hell is sym_new_init for, anyway?  The concept of
2681 	     distinguishing between the main file and additional files
2682 	     in this way seems rather dubious.  */
2683 	  if (objfile == symfile_objfile)
2684 	    {
2685 	      (*objfile->sf->sym_new_init) (objfile);
2686 	    }
2687 
2688 	  (*objfile->sf->sym_init) (objfile);
2689 	  clear_complaints (&symfile_complaints, 1, 1);
2690 
2691 	  objfile->flags &= ~OBJF_PSYMTABS_READ;
2692 	  read_symbols (objfile, 0);
2693 
2694 	  if (!objfile_has_symbols (objfile))
2695 	    {
2696 	      wrap_here ("");
2697 	      printf_unfiltered (_("(no debugging symbols found)\n"));
2698 	      wrap_here ("");
2699 	    }
2700 
2701 	  /* We're done reading the symbol file; finish off complaints.  */
2702 	  clear_complaints (&symfile_complaints, 0, 1);
2703 
2704 	  /* Getting new symbols may change our opinion about what is
2705 	     frameless.  */
2706 
2707 	  reinit_frame_cache ();
2708 
2709 	  /* Discard cleanups as symbol reading was successful.  */
2710 	  discard_cleanups (old_cleanups);
2711 
2712 	  /* If the mtime has changed between the time we set new_modtime
2713 	     and now, we *want* this to be out of date, so don't call stat
2714 	     again now.  */
2715 	  objfile->mtime = new_modtime;
2716 	  init_entry_point_info (objfile);
2717 
2718 	  VEC_safe_push (objfilep, new_objfiles, objfile);
2719 	}
2720     }
2721 
2722   if (new_objfiles)
2723     {
2724       int ix;
2725 
2726       /* Notify objfiles that we've modified objfile sections.  */
2727       objfiles_changed ();
2728 
2729       clear_symtab_users (0);
2730 
2731       /* clear_objfile_data for each objfile was called before freeing it and
2732 	 observer_notify_new_objfile (NULL) has been called by
2733 	 clear_symtab_users above.  Notify the new files now.  */
2734       for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2735 	observer_notify_new_objfile (objfile);
2736 
2737       /* At least one objfile has changed, so we can consider that
2738          the executable we're debugging has changed too.  */
2739       observer_notify_executable_changed ();
2740     }
2741 
2742   do_cleanups (all_cleanups);
2743 }
2744 
2745 
2746 typedef struct
2747 {
2748   char *ext;
2749   enum language lang;
2750 }
2751 filename_language;
2752 
2753 static filename_language *filename_language_table;
2754 static int fl_table_size, fl_table_next;
2755 
2756 static void
2757 add_filename_language (char *ext, enum language lang)
2758 {
2759   if (fl_table_next >= fl_table_size)
2760     {
2761       fl_table_size += 10;
2762       filename_language_table =
2763 	xrealloc (filename_language_table,
2764 		  fl_table_size * sizeof (*filename_language_table));
2765     }
2766 
2767   filename_language_table[fl_table_next].ext = xstrdup (ext);
2768   filename_language_table[fl_table_next].lang = lang;
2769   fl_table_next++;
2770 }
2771 
2772 static char *ext_args;
2773 static void
2774 show_ext_args (struct ui_file *file, int from_tty,
2775 	       struct cmd_list_element *c, const char *value)
2776 {
2777   fprintf_filtered (file,
2778 		    _("Mapping between filename extension "
2779 		      "and source language is \"%s\".\n"),
2780 		    value);
2781 }
2782 
2783 static void
2784 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2785 {
2786   int i;
2787   char *cp = ext_args;
2788   enum language lang;
2789 
2790   /* First arg is filename extension, starting with '.'  */
2791   if (*cp != '.')
2792     error (_("'%s': Filename extension must begin with '.'"), ext_args);
2793 
2794   /* Find end of first arg.  */
2795   while (*cp && !isspace (*cp))
2796     cp++;
2797 
2798   if (*cp == '\0')
2799     error (_("'%s': two arguments required -- "
2800 	     "filename extension and language"),
2801 	   ext_args);
2802 
2803   /* Null-terminate first arg.  */
2804   *cp++ = '\0';
2805 
2806   /* Find beginning of second arg, which should be a source language.  */
2807   cp = skip_spaces (cp);
2808 
2809   if (*cp == '\0')
2810     error (_("'%s': two arguments required -- "
2811 	     "filename extension and language"),
2812 	   ext_args);
2813 
2814   /* Lookup the language from among those we know.  */
2815   lang = language_enum (cp);
2816 
2817   /* Now lookup the filename extension: do we already know it?  */
2818   for (i = 0; i < fl_table_next; i++)
2819     if (0 == strcmp (ext_args, filename_language_table[i].ext))
2820       break;
2821 
2822   if (i >= fl_table_next)
2823     {
2824       /* New file extension.  */
2825       add_filename_language (ext_args, lang);
2826     }
2827   else
2828     {
2829       /* Redefining a previously known filename extension.  */
2830 
2831       /* if (from_tty) */
2832       /*   query ("Really make files of type %s '%s'?", */
2833       /*          ext_args, language_str (lang));           */
2834 
2835       xfree (filename_language_table[i].ext);
2836       filename_language_table[i].ext = xstrdup (ext_args);
2837       filename_language_table[i].lang = lang;
2838     }
2839 }
2840 
2841 static void
2842 info_ext_lang_command (char *args, int from_tty)
2843 {
2844   int i;
2845 
2846   printf_filtered (_("Filename extensions and the languages they represent:"));
2847   printf_filtered ("\n\n");
2848   for (i = 0; i < fl_table_next; i++)
2849     printf_filtered ("\t%s\t- %s\n",
2850 		     filename_language_table[i].ext,
2851 		     language_str (filename_language_table[i].lang));
2852 }
2853 
2854 static void
2855 init_filename_language_table (void)
2856 {
2857   if (fl_table_size == 0)	/* Protect against repetition.  */
2858     {
2859       fl_table_size = 20;
2860       fl_table_next = 0;
2861       filename_language_table =
2862 	xmalloc (fl_table_size * sizeof (*filename_language_table));
2863       add_filename_language (".c", language_c);
2864       add_filename_language (".d", language_d);
2865       add_filename_language (".C", language_cplus);
2866       add_filename_language (".cc", language_cplus);
2867       add_filename_language (".cp", language_cplus);
2868       add_filename_language (".cpp", language_cplus);
2869       add_filename_language (".cxx", language_cplus);
2870       add_filename_language (".c++", language_cplus);
2871       add_filename_language (".java", language_java);
2872       add_filename_language (".class", language_java);
2873       add_filename_language (".m", language_objc);
2874       add_filename_language (".f", language_fortran);
2875       add_filename_language (".F", language_fortran);
2876       add_filename_language (".for", language_fortran);
2877       add_filename_language (".FOR", language_fortran);
2878       add_filename_language (".ftn", language_fortran);
2879       add_filename_language (".FTN", language_fortran);
2880       add_filename_language (".fpp", language_fortran);
2881       add_filename_language (".FPP", language_fortran);
2882       add_filename_language (".f90", language_fortran);
2883       add_filename_language (".F90", language_fortran);
2884       add_filename_language (".f95", language_fortran);
2885       add_filename_language (".F95", language_fortran);
2886       add_filename_language (".f03", language_fortran);
2887       add_filename_language (".F03", language_fortran);
2888       add_filename_language (".f08", language_fortran);
2889       add_filename_language (".F08", language_fortran);
2890       add_filename_language (".s", language_asm);
2891       add_filename_language (".sx", language_asm);
2892       add_filename_language (".S", language_asm);
2893       add_filename_language (".pas", language_pascal);
2894       add_filename_language (".p", language_pascal);
2895       add_filename_language (".pp", language_pascal);
2896       add_filename_language (".adb", language_ada);
2897       add_filename_language (".ads", language_ada);
2898       add_filename_language (".a", language_ada);
2899       add_filename_language (".ada", language_ada);
2900       add_filename_language (".dg", language_ada);
2901     }
2902 }
2903 
2904 enum language
2905 deduce_language_from_filename (const char *filename)
2906 {
2907   int i;
2908   char *cp;
2909 
2910   if (filename != NULL)
2911     if ((cp = strrchr (filename, '.')) != NULL)
2912       for (i = 0; i < fl_table_next; i++)
2913 	if (strcmp (cp, filename_language_table[i].ext) == 0)
2914 	  return filename_language_table[i].lang;
2915 
2916   return language_unknown;
2917 }
2918 
2919 /* Allocate and initialize a new symbol table.
2920    CUST is from the result of allocate_compunit_symtab.  */
2921 
2922 struct symtab *
2923 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2924 {
2925   struct objfile *objfile = cust->objfile;
2926   struct symtab *symtab
2927     = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2928 
2929   symtab->filename = bcache (filename, strlen (filename) + 1,
2930 			     objfile->per_bfd->filename_cache);
2931   symtab->fullname = NULL;
2932   symtab->language = deduce_language_from_filename (filename);
2933 
2934   /* This can be very verbose with lots of headers.
2935      Only print at higher debug levels.  */
2936   if (symtab_create_debug >= 2)
2937     {
2938       /* Be a bit clever with debugging messages, and don't print objfile
2939 	 every time, only when it changes.  */
2940       static char *last_objfile_name = NULL;
2941 
2942       if (last_objfile_name == NULL
2943 	  || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2944 	{
2945 	  xfree (last_objfile_name);
2946 	  last_objfile_name = xstrdup (objfile_name (objfile));
2947 	  fprintf_unfiltered (gdb_stdlog,
2948 			      "Creating one or more symtabs for objfile %s ...\n",
2949 			      last_objfile_name);
2950 	}
2951       fprintf_unfiltered (gdb_stdlog,
2952 			  "Created symtab %s for module %s.\n",
2953 			  host_address_to_string (symtab), filename);
2954     }
2955 
2956   /* Add it to CUST's list of symtabs.  */
2957   if (cust->filetabs == NULL)
2958     {
2959       cust->filetabs = symtab;
2960       cust->last_filetab = symtab;
2961     }
2962   else
2963     {
2964       cust->last_filetab->next = symtab;
2965       cust->last_filetab = symtab;
2966     }
2967 
2968   /* Backlink to the containing compunit symtab.  */
2969   symtab->compunit_symtab = cust;
2970 
2971   return symtab;
2972 }
2973 
2974 /* Allocate and initialize a new compunit.
2975    NAME is the name of the main source file, if there is one, or some
2976    descriptive text if there are no source files.  */
2977 
2978 struct compunit_symtab *
2979 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2980 {
2981   struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2982 					       struct compunit_symtab);
2983   const char *saved_name;
2984 
2985   cu->objfile = objfile;
2986 
2987   /* The name we record here is only for display/debugging purposes.
2988      Just save the basename to avoid path issues (too long for display,
2989      relative vs absolute, etc.).  */
2990   saved_name = lbasename (name);
2991   cu->name = obstack_copy0 (&objfile->objfile_obstack, saved_name,
2992 			    strlen (saved_name));
2993 
2994   COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2995 
2996   if (symtab_create_debug)
2997     {
2998       fprintf_unfiltered (gdb_stdlog,
2999 			  "Created compunit symtab %s for %s.\n",
3000 			  host_address_to_string (cu),
3001 			  cu->name);
3002     }
3003 
3004   return cu;
3005 }
3006 
3007 /* Hook CU to the objfile it comes from.  */
3008 
3009 void
3010 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
3011 {
3012   cu->next = cu->objfile->compunit_symtabs;
3013   cu->objfile->compunit_symtabs = cu;
3014 }
3015 
3016 
3017 /* Reset all data structures in gdb which may contain references to symbol
3018    table data.  ADD_FLAGS is a bitmask of enum symfile_add_flags.  */
3019 
3020 void
3021 clear_symtab_users (int add_flags)
3022 {
3023   /* Someday, we should do better than this, by only blowing away
3024      the things that really need to be blown.  */
3025 
3026   /* Clear the "current" symtab first, because it is no longer valid.
3027      breakpoint_re_set may try to access the current symtab.  */
3028   clear_current_source_symtab_and_line ();
3029 
3030   clear_displays ();
3031   clear_last_displayed_sal ();
3032   clear_pc_function_cache ();
3033   observer_notify_new_objfile (NULL);
3034 
3035   /* Clear globals which might have pointed into a removed objfile.
3036      FIXME: It's not clear which of these are supposed to persist
3037      between expressions and which ought to be reset each time.  */
3038   expression_context_block = NULL;
3039   innermost_block = NULL;
3040 
3041   /* Varobj may refer to old symbols, perform a cleanup.  */
3042   varobj_invalidate ();
3043 
3044   /* Now that the various caches have been cleared, we can re_set
3045      our breakpoints without risking it using stale data.  */
3046   if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
3047     breakpoint_re_set ();
3048 }
3049 
3050 static void
3051 clear_symtab_users_cleanup (void *ignore)
3052 {
3053   clear_symtab_users (0);
3054 }
3055 
3056 /* OVERLAYS:
3057    The following code implements an abstraction for debugging overlay sections.
3058 
3059    The target model is as follows:
3060    1) The gnu linker will permit multiple sections to be mapped into the
3061    same VMA, each with its own unique LMA (or load address).
3062    2) It is assumed that some runtime mechanism exists for mapping the
3063    sections, one by one, from the load address into the VMA address.
3064    3) This code provides a mechanism for gdb to keep track of which
3065    sections should be considered to be mapped from the VMA to the LMA.
3066    This information is used for symbol lookup, and memory read/write.
3067    For instance, if a section has been mapped then its contents
3068    should be read from the VMA, otherwise from the LMA.
3069 
3070    Two levels of debugger support for overlays are available.  One is
3071    "manual", in which the debugger relies on the user to tell it which
3072    overlays are currently mapped.  This level of support is
3073    implemented entirely in the core debugger, and the information about
3074    whether a section is mapped is kept in the objfile->obj_section table.
3075 
3076    The second level of support is "automatic", and is only available if
3077    the target-specific code provides functionality to read the target's
3078    overlay mapping table, and translate its contents for the debugger
3079    (by updating the mapped state information in the obj_section tables).
3080 
3081    The interface is as follows:
3082    User commands:
3083    overlay map <name>   -- tell gdb to consider this section mapped
3084    overlay unmap <name> -- tell gdb to consider this section unmapped
3085    overlay list         -- list the sections that GDB thinks are mapped
3086    overlay read-target  -- get the target's state of what's mapped
3087    overlay off/manual/auto -- set overlay debugging state
3088    Functional interface:
3089    find_pc_mapped_section(pc):    if the pc is in the range of a mapped
3090    section, return that section.
3091    find_pc_overlay(pc):       find any overlay section that contains
3092    the pc, either in its VMA or its LMA
3093    section_is_mapped(sect):       true if overlay is marked as mapped
3094    section_is_overlay(sect):      true if section's VMA != LMA
3095    pc_in_mapped_range(pc,sec):    true if pc belongs to section's VMA
3096    pc_in_unmapped_range(...):     true if pc belongs to section's LMA
3097    sections_overlap(sec1, sec2):  true if mapped sec1 and sec2 ranges overlap
3098    overlay_mapped_address(...):   map an address from section's LMA to VMA
3099    overlay_unmapped_address(...): map an address from section's VMA to LMA
3100    symbol_overlayed_address(...): Return a "current" address for symbol:
3101    either in VMA or LMA depending on whether
3102    the symbol's section is currently mapped.  */
3103 
3104 /* Overlay debugging state: */
3105 
3106 enum overlay_debugging_state overlay_debugging = ovly_off;
3107 int overlay_cache_invalid = 0;	/* True if need to refresh mapped state.  */
3108 
3109 /* Function: section_is_overlay (SECTION)
3110    Returns true if SECTION has VMA not equal to LMA, ie.
3111    SECTION is loaded at an address different from where it will "run".  */
3112 
3113 int
3114 section_is_overlay (struct obj_section *section)
3115 {
3116   if (overlay_debugging && section)
3117     {
3118       bfd *abfd = section->objfile->obfd;
3119       asection *bfd_section = section->the_bfd_section;
3120 
3121       if (bfd_section_lma (abfd, bfd_section) != 0
3122 	  && bfd_section_lma (abfd, bfd_section)
3123 	     != bfd_section_vma (abfd, bfd_section))
3124 	return 1;
3125     }
3126 
3127   return 0;
3128 }
3129 
3130 /* Function: overlay_invalidate_all (void)
3131    Invalidate the mapped state of all overlay sections (mark it as stale).  */
3132 
3133 static void
3134 overlay_invalidate_all (void)
3135 {
3136   struct objfile *objfile;
3137   struct obj_section *sect;
3138 
3139   ALL_OBJSECTIONS (objfile, sect)
3140     if (section_is_overlay (sect))
3141       sect->ovly_mapped = -1;
3142 }
3143 
3144 /* Function: section_is_mapped (SECTION)
3145    Returns true if section is an overlay, and is currently mapped.
3146 
3147    Access to the ovly_mapped flag is restricted to this function, so
3148    that we can do automatic update.  If the global flag
3149    OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3150    overlay_invalidate_all.  If the mapped state of the particular
3151    section is stale, then call TARGET_OVERLAY_UPDATE to refresh it.  */
3152 
3153 int
3154 section_is_mapped (struct obj_section *osect)
3155 {
3156   struct gdbarch *gdbarch;
3157 
3158   if (osect == 0 || !section_is_overlay (osect))
3159     return 0;
3160 
3161   switch (overlay_debugging)
3162     {
3163     default:
3164     case ovly_off:
3165       return 0;			/* overlay debugging off */
3166     case ovly_auto:		/* overlay debugging automatic */
3167       /* Unles there is a gdbarch_overlay_update function,
3168          there's really nothing useful to do here (can't really go auto).  */
3169       gdbarch = get_objfile_arch (osect->objfile);
3170       if (gdbarch_overlay_update_p (gdbarch))
3171 	{
3172 	  if (overlay_cache_invalid)
3173 	    {
3174 	      overlay_invalidate_all ();
3175 	      overlay_cache_invalid = 0;
3176 	    }
3177 	  if (osect->ovly_mapped == -1)
3178 	    gdbarch_overlay_update (gdbarch, osect);
3179 	}
3180       /* fall thru to manual case */
3181     case ovly_on:		/* overlay debugging manual */
3182       return osect->ovly_mapped == 1;
3183     }
3184 }
3185 
3186 /* Function: pc_in_unmapped_range
3187    If PC falls into the lma range of SECTION, return true, else false.  */
3188 
3189 CORE_ADDR
3190 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3191 {
3192   if (section_is_overlay (section))
3193     {
3194       bfd *abfd = section->objfile->obfd;
3195       asection *bfd_section = section->the_bfd_section;
3196 
3197       /* We assume the LMA is relocated by the same offset as the VMA.  */
3198       bfd_vma size = bfd_get_section_size (bfd_section);
3199       CORE_ADDR offset = obj_section_offset (section);
3200 
3201       if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3202 	  && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3203 	return 1;
3204     }
3205 
3206   return 0;
3207 }
3208 
3209 /* Function: pc_in_mapped_range
3210    If PC falls into the vma range of SECTION, return true, else false.  */
3211 
3212 CORE_ADDR
3213 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3214 {
3215   if (section_is_overlay (section))
3216     {
3217       if (obj_section_addr (section) <= pc
3218 	  && pc < obj_section_endaddr (section))
3219 	return 1;
3220     }
3221 
3222   return 0;
3223 }
3224 
3225 /* Return true if the mapped ranges of sections A and B overlap, false
3226    otherwise.  */
3227 
3228 static int
3229 sections_overlap (struct obj_section *a, struct obj_section *b)
3230 {
3231   CORE_ADDR a_start = obj_section_addr (a);
3232   CORE_ADDR a_end = obj_section_endaddr (a);
3233   CORE_ADDR b_start = obj_section_addr (b);
3234   CORE_ADDR b_end = obj_section_endaddr (b);
3235 
3236   return (a_start < b_end && b_start < a_end);
3237 }
3238 
3239 /* Function: overlay_unmapped_address (PC, SECTION)
3240    Returns the address corresponding to PC in the unmapped (load) range.
3241    May be the same as PC.  */
3242 
3243 CORE_ADDR
3244 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3245 {
3246   if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3247     {
3248       bfd *abfd = section->objfile->obfd;
3249       asection *bfd_section = section->the_bfd_section;
3250 
3251       return pc + bfd_section_lma (abfd, bfd_section)
3252 		- bfd_section_vma (abfd, bfd_section);
3253     }
3254 
3255   return pc;
3256 }
3257 
3258 /* Function: overlay_mapped_address (PC, SECTION)
3259    Returns the address corresponding to PC in the mapped (runtime) range.
3260    May be the same as PC.  */
3261 
3262 CORE_ADDR
3263 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3264 {
3265   if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3266     {
3267       bfd *abfd = section->objfile->obfd;
3268       asection *bfd_section = section->the_bfd_section;
3269 
3270       return pc + bfd_section_vma (abfd, bfd_section)
3271 		- bfd_section_lma (abfd, bfd_section);
3272     }
3273 
3274   return pc;
3275 }
3276 
3277 /* Function: symbol_overlayed_address
3278    Return one of two addresses (relative to the VMA or to the LMA),
3279    depending on whether the section is mapped or not.  */
3280 
3281 CORE_ADDR
3282 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3283 {
3284   if (overlay_debugging)
3285     {
3286       /* If the symbol has no section, just return its regular address.  */
3287       if (section == 0)
3288 	return address;
3289       /* If the symbol's section is not an overlay, just return its
3290 	 address.  */
3291       if (!section_is_overlay (section))
3292 	return address;
3293       /* If the symbol's section is mapped, just return its address.  */
3294       if (section_is_mapped (section))
3295 	return address;
3296       /*
3297        * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3298        * then return its LOADED address rather than its vma address!!
3299        */
3300       return overlay_unmapped_address (address, section);
3301     }
3302   return address;
3303 }
3304 
3305 /* Function: find_pc_overlay (PC)
3306    Return the best-match overlay section for PC:
3307    If PC matches a mapped overlay section's VMA, return that section.
3308    Else if PC matches an unmapped section's VMA, return that section.
3309    Else if PC matches an unmapped section's LMA, return that section.  */
3310 
3311 struct obj_section *
3312 find_pc_overlay (CORE_ADDR pc)
3313 {
3314   struct objfile *objfile;
3315   struct obj_section *osect, *best_match = NULL;
3316 
3317   if (overlay_debugging)
3318     ALL_OBJSECTIONS (objfile, osect)
3319       if (section_is_overlay (osect))
3320       {
3321 	if (pc_in_mapped_range (pc, osect))
3322 	  {
3323 	    if (section_is_mapped (osect))
3324 	      return osect;
3325 	    else
3326 	      best_match = osect;
3327 	  }
3328 	else if (pc_in_unmapped_range (pc, osect))
3329 	  best_match = osect;
3330       }
3331   return best_match;
3332 }
3333 
3334 /* Function: find_pc_mapped_section (PC)
3335    If PC falls into the VMA address range of an overlay section that is
3336    currently marked as MAPPED, return that section.  Else return NULL.  */
3337 
3338 struct obj_section *
3339 find_pc_mapped_section (CORE_ADDR pc)
3340 {
3341   struct objfile *objfile;
3342   struct obj_section *osect;
3343 
3344   if (overlay_debugging)
3345     ALL_OBJSECTIONS (objfile, osect)
3346       if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3347 	return osect;
3348 
3349   return NULL;
3350 }
3351 
3352 /* Function: list_overlays_command
3353    Print a list of mapped sections and their PC ranges.  */
3354 
3355 static void
3356 list_overlays_command (char *args, int from_tty)
3357 {
3358   int nmapped = 0;
3359   struct objfile *objfile;
3360   struct obj_section *osect;
3361 
3362   if (overlay_debugging)
3363     ALL_OBJSECTIONS (objfile, osect)
3364       if (section_is_mapped (osect))
3365       {
3366 	struct gdbarch *gdbarch = get_objfile_arch (objfile);
3367 	const char *name;
3368 	bfd_vma lma, vma;
3369 	int size;
3370 
3371 	vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3372 	lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3373 	size = bfd_get_section_size (osect->the_bfd_section);
3374 	name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3375 
3376 	printf_filtered ("Section %s, loaded at ", name);
3377 	fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3378 	puts_filtered (" - ");
3379 	fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3380 	printf_filtered (", mapped at ");
3381 	fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3382 	puts_filtered (" - ");
3383 	fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3384 	puts_filtered ("\n");
3385 
3386 	nmapped++;
3387       }
3388   if (nmapped == 0)
3389     printf_filtered (_("No sections are mapped.\n"));
3390 }
3391 
3392 /* Function: map_overlay_command
3393    Mark the named section as mapped (ie. residing at its VMA address).  */
3394 
3395 static void
3396 map_overlay_command (char *args, int from_tty)
3397 {
3398   struct objfile *objfile, *objfile2;
3399   struct obj_section *sec, *sec2;
3400 
3401   if (!overlay_debugging)
3402     error (_("Overlay debugging not enabled.  Use "
3403 	     "either the 'overlay auto' or\n"
3404 	     "the 'overlay manual' command."));
3405 
3406   if (args == 0 || *args == 0)
3407     error (_("Argument required: name of an overlay section"));
3408 
3409   /* First, find a section matching the user supplied argument.  */
3410   ALL_OBJSECTIONS (objfile, sec)
3411     if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3412     {
3413       /* Now, check to see if the section is an overlay.  */
3414       if (!section_is_overlay (sec))
3415 	continue;		/* not an overlay section */
3416 
3417       /* Mark the overlay as "mapped".  */
3418       sec->ovly_mapped = 1;
3419 
3420       /* Next, make a pass and unmap any sections that are
3421          overlapped by this new section: */
3422       ALL_OBJSECTIONS (objfile2, sec2)
3423 	if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3424 	{
3425 	  if (info_verbose)
3426 	    printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3427 			     bfd_section_name (objfile->obfd,
3428 					       sec2->the_bfd_section));
3429 	  sec2->ovly_mapped = 0;	/* sec2 overlaps sec: unmap sec2.  */
3430 	}
3431       return;
3432     }
3433   error (_("No overlay section called %s"), args);
3434 }
3435 
3436 /* Function: unmap_overlay_command
3437    Mark the overlay section as unmapped
3438    (ie. resident in its LMA address range, rather than the VMA range).  */
3439 
3440 static void
3441 unmap_overlay_command (char *args, int from_tty)
3442 {
3443   struct objfile *objfile;
3444   struct obj_section *sec;
3445 
3446   if (!overlay_debugging)
3447     error (_("Overlay debugging not enabled.  "
3448 	     "Use either the 'overlay auto' or\n"
3449 	     "the 'overlay manual' command."));
3450 
3451   if (args == 0 || *args == 0)
3452     error (_("Argument required: name of an overlay section"));
3453 
3454   /* First, find a section matching the user supplied argument.  */
3455   ALL_OBJSECTIONS (objfile, sec)
3456     if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3457     {
3458       if (!sec->ovly_mapped)
3459 	error (_("Section %s is not mapped"), args);
3460       sec->ovly_mapped = 0;
3461       return;
3462     }
3463   error (_("No overlay section called %s"), args);
3464 }
3465 
3466 /* Function: overlay_auto_command
3467    A utility command to turn on overlay debugging.
3468    Possibly this should be done via a set/show command.  */
3469 
3470 static void
3471 overlay_auto_command (char *args, int from_tty)
3472 {
3473   overlay_debugging = ovly_auto;
3474   enable_overlay_breakpoints ();
3475   if (info_verbose)
3476     printf_unfiltered (_("Automatic overlay debugging enabled."));
3477 }
3478 
3479 /* Function: overlay_manual_command
3480    A utility command to turn on overlay debugging.
3481    Possibly this should be done via a set/show command.  */
3482 
3483 static void
3484 overlay_manual_command (char *args, int from_tty)
3485 {
3486   overlay_debugging = ovly_on;
3487   disable_overlay_breakpoints ();
3488   if (info_verbose)
3489     printf_unfiltered (_("Overlay debugging enabled."));
3490 }
3491 
3492 /* Function: overlay_off_command
3493    A utility command to turn on overlay debugging.
3494    Possibly this should be done via a set/show command.  */
3495 
3496 static void
3497 overlay_off_command (char *args, int from_tty)
3498 {
3499   overlay_debugging = ovly_off;
3500   disable_overlay_breakpoints ();
3501   if (info_verbose)
3502     printf_unfiltered (_("Overlay debugging disabled."));
3503 }
3504 
3505 static void
3506 overlay_load_command (char *args, int from_tty)
3507 {
3508   struct gdbarch *gdbarch = get_current_arch ();
3509 
3510   if (gdbarch_overlay_update_p (gdbarch))
3511     gdbarch_overlay_update (gdbarch, NULL);
3512   else
3513     error (_("This target does not know how to read its overlay state."));
3514 }
3515 
3516 /* Function: overlay_command
3517    A place-holder for a mis-typed command.  */
3518 
3519 /* Command list chain containing all defined "overlay" subcommands.  */
3520 static struct cmd_list_element *overlaylist;
3521 
3522 static void
3523 overlay_command (char *args, int from_tty)
3524 {
3525   printf_unfiltered
3526     ("\"overlay\" must be followed by the name of an overlay command.\n");
3527   help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3528 }
3529 
3530 /* Target Overlays for the "Simplest" overlay manager:
3531 
3532    This is GDB's default target overlay layer.  It works with the
3533    minimal overlay manager supplied as an example by Cygnus.  The
3534    entry point is via a function pointer "gdbarch_overlay_update",
3535    so targets that use a different runtime overlay manager can
3536    substitute their own overlay_update function and take over the
3537    function pointer.
3538 
3539    The overlay_update function pokes around in the target's data structures
3540    to see what overlays are mapped, and updates GDB's overlay mapping with
3541    this information.
3542 
3543    In this simple implementation, the target data structures are as follows:
3544    unsigned _novlys;            /# number of overlay sections #/
3545    unsigned _ovly_table[_novlys][4] = {
3546    {VMA, SIZE, LMA, MAPPED},    /# one entry per overlay section #/
3547    {..., ...,  ..., ...},
3548    }
3549    unsigned _novly_regions;     /# number of overlay regions #/
3550    unsigned _ovly_region_table[_novly_regions][3] = {
3551    {VMA, SIZE, MAPPED_TO_LMA},  /# one entry per overlay region #/
3552    {..., ...,  ...},
3553    }
3554    These functions will attempt to update GDB's mappedness state in the
3555    symbol section table, based on the target's mappedness state.
3556 
3557    To do this, we keep a cached copy of the target's _ovly_table, and
3558    attempt to detect when the cached copy is invalidated.  The main
3559    entry point is "simple_overlay_update(SECT), which looks up SECT in
3560    the cached table and re-reads only the entry for that section from
3561    the target (whenever possible).  */
3562 
3563 /* Cached, dynamically allocated copies of the target data structures: */
3564 static unsigned (*cache_ovly_table)[4] = 0;
3565 static unsigned cache_novlys = 0;
3566 static CORE_ADDR cache_ovly_table_base = 0;
3567 enum ovly_index
3568   {
3569     VMA, SIZE, LMA, MAPPED
3570   };
3571 
3572 /* Throw away the cached copy of _ovly_table.  */
3573 
3574 static void
3575 simple_free_overlay_table (void)
3576 {
3577   if (cache_ovly_table)
3578     xfree (cache_ovly_table);
3579   cache_novlys = 0;
3580   cache_ovly_table = NULL;
3581   cache_ovly_table_base = 0;
3582 }
3583 
3584 /* Read an array of ints of size SIZE from the target into a local buffer.
3585    Convert to host order.  int LEN is number of ints.  */
3586 
3587 static void
3588 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3589 			int len, int size, enum bfd_endian byte_order)
3590 {
3591   /* FIXME (alloca): Not safe if array is very large.  */
3592   gdb_byte *buf = alloca (len * size);
3593   int i;
3594 
3595   read_memory (memaddr, buf, len * size);
3596   for (i = 0; i < len; i++)
3597     myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3598 }
3599 
3600 /* Find and grab a copy of the target _ovly_table
3601    (and _novlys, which is needed for the table's size).  */
3602 
3603 static int
3604 simple_read_overlay_table (void)
3605 {
3606   struct bound_minimal_symbol novlys_msym;
3607   struct bound_minimal_symbol ovly_table_msym;
3608   struct gdbarch *gdbarch;
3609   int word_size;
3610   enum bfd_endian byte_order;
3611 
3612   simple_free_overlay_table ();
3613   novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3614   if (! novlys_msym.minsym)
3615     {
3616       error (_("Error reading inferior's overlay table: "
3617              "couldn't find `_novlys' variable\n"
3618              "in inferior.  Use `overlay manual' mode."));
3619       return 0;
3620     }
3621 
3622   ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3623   if (! ovly_table_msym.minsym)
3624     {
3625       error (_("Error reading inferior's overlay table: couldn't find "
3626              "`_ovly_table' array\n"
3627              "in inferior.  Use `overlay manual' mode."));
3628       return 0;
3629     }
3630 
3631   gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3632   word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3633   byte_order = gdbarch_byte_order (gdbarch);
3634 
3635   cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3636 				      4, byte_order);
3637   cache_ovly_table
3638     = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3639   cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3640   read_target_long_array (cache_ovly_table_base,
3641                           (unsigned int *) cache_ovly_table,
3642                           cache_novlys * 4, word_size, byte_order);
3643 
3644   return 1;			/* SUCCESS */
3645 }
3646 
3647 /* Function: simple_overlay_update_1
3648    A helper function for simple_overlay_update.  Assuming a cached copy
3649    of _ovly_table exists, look through it to find an entry whose vma,
3650    lma and size match those of OSECT.  Re-read the entry and make sure
3651    it still matches OSECT (else the table may no longer be valid).
3652    Set OSECT's mapped state to match the entry.  Return: 1 for
3653    success, 0 for failure.  */
3654 
3655 static int
3656 simple_overlay_update_1 (struct obj_section *osect)
3657 {
3658   int i, size;
3659   bfd *obfd = osect->objfile->obfd;
3660   asection *bsect = osect->the_bfd_section;
3661   struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3662   int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3663   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3664 
3665   size = bfd_get_section_size (osect->the_bfd_section);
3666   for (i = 0; i < cache_novlys; i++)
3667     if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3668 	&& cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3669 	/* && cache_ovly_table[i][SIZE] == size */ )
3670       {
3671 	read_target_long_array (cache_ovly_table_base + i * word_size,
3672 				(unsigned int *) cache_ovly_table[i],
3673 				4, word_size, byte_order);
3674 	if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3675 	    && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3676 	    /* && cache_ovly_table[i][SIZE] == size */ )
3677 	  {
3678 	    osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3679 	    return 1;
3680 	  }
3681 	else	/* Warning!  Warning!  Target's ovly table has changed!  */
3682 	  return 0;
3683       }
3684   return 0;
3685 }
3686 
3687 /* Function: simple_overlay_update
3688    If OSECT is NULL, then update all sections' mapped state
3689    (after re-reading the entire target _ovly_table).
3690    If OSECT is non-NULL, then try to find a matching entry in the
3691    cached ovly_table and update only OSECT's mapped state.
3692    If a cached entry can't be found or the cache isn't valid, then
3693    re-read the entire cache, and go ahead and update all sections.  */
3694 
3695 void
3696 simple_overlay_update (struct obj_section *osect)
3697 {
3698   struct objfile *objfile;
3699 
3700   /* Were we given an osect to look up?  NULL means do all of them.  */
3701   if (osect)
3702     /* Have we got a cached copy of the target's overlay table?  */
3703     if (cache_ovly_table != NULL)
3704       {
3705 	/* Does its cached location match what's currently in the
3706 	   symtab?  */
3707 	struct bound_minimal_symbol minsym
3708 	  = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3709 
3710 	if (minsym.minsym == NULL)
3711 	  error (_("Error reading inferior's overlay table: couldn't "
3712 		   "find `_ovly_table' array\n"
3713 		   "in inferior.  Use `overlay manual' mode."));
3714 
3715 	if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3716 	  /* Then go ahead and try to look up this single section in
3717 	     the cache.  */
3718 	  if (simple_overlay_update_1 (osect))
3719 	    /* Found it!  We're done.  */
3720 	    return;
3721       }
3722 
3723   /* Cached table no good: need to read the entire table anew.
3724      Or else we want all the sections, in which case it's actually
3725      more efficient to read the whole table in one block anyway.  */
3726 
3727   if (! simple_read_overlay_table ())
3728     return;
3729 
3730   /* Now may as well update all sections, even if only one was requested.  */
3731   ALL_OBJSECTIONS (objfile, osect)
3732     if (section_is_overlay (osect))
3733     {
3734       int i, size;
3735       bfd *obfd = osect->objfile->obfd;
3736       asection *bsect = osect->the_bfd_section;
3737 
3738       size = bfd_get_section_size (bsect);
3739       for (i = 0; i < cache_novlys; i++)
3740 	if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3741 	    && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3742 	    /* && cache_ovly_table[i][SIZE] == size */ )
3743 	  { /* obj_section matches i'th entry in ovly_table.  */
3744 	    osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3745 	    break;		/* finished with inner for loop: break out.  */
3746 	  }
3747     }
3748 }
3749 
3750 /* Set the output sections and output offsets for section SECTP in
3751    ABFD.  The relocation code in BFD will read these offsets, so we
3752    need to be sure they're initialized.  We map each section to itself,
3753    with no offset; this means that SECTP->vma will be honored.  */
3754 
3755 static void
3756 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3757 {
3758   sectp->output_section = sectp;
3759   sectp->output_offset = 0;
3760 }
3761 
3762 /* Default implementation for sym_relocate.  */
3763 
3764 bfd_byte *
3765 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3766                           bfd_byte *buf)
3767 {
3768   /* Use sectp->owner instead of objfile->obfd.  sectp may point to a
3769      DWO file.  */
3770   bfd *abfd = sectp->owner;
3771 
3772   /* We're only interested in sections with relocation
3773      information.  */
3774   if ((sectp->flags & SEC_RELOC) == 0)
3775     return NULL;
3776 
3777   /* We will handle section offsets properly elsewhere, so relocate as if
3778      all sections begin at 0.  */
3779   bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3780 
3781   return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3782 }
3783 
3784 /* Relocate the contents of a debug section SECTP in ABFD.  The
3785    contents are stored in BUF if it is non-NULL, or returned in a
3786    malloc'd buffer otherwise.
3787 
3788    For some platforms and debug info formats, shared libraries contain
3789    relocations against the debug sections (particularly for DWARF-2;
3790    one affected platform is PowerPC GNU/Linux, although it depends on
3791    the version of the linker in use).  Also, ELF object files naturally
3792    have unresolved relocations for their debug sections.  We need to apply
3793    the relocations in order to get the locations of symbols correct.
3794    Another example that may require relocation processing, is the
3795    DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3796    debug section.  */
3797 
3798 bfd_byte *
3799 symfile_relocate_debug_section (struct objfile *objfile,
3800                                 asection *sectp, bfd_byte *buf)
3801 {
3802   gdb_assert (objfile->sf->sym_relocate);
3803 
3804   return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3805 }
3806 
3807 struct symfile_segment_data *
3808 get_symfile_segment_data (bfd *abfd)
3809 {
3810   const struct sym_fns *sf = find_sym_fns (abfd);
3811 
3812   if (sf == NULL)
3813     return NULL;
3814 
3815   return sf->sym_segments (abfd);
3816 }
3817 
3818 void
3819 free_symfile_segment_data (struct symfile_segment_data *data)
3820 {
3821   xfree (data->segment_bases);
3822   xfree (data->segment_sizes);
3823   xfree (data->segment_info);
3824   xfree (data);
3825 }
3826 
3827 /* Given:
3828    - DATA, containing segment addresses from the object file ABFD, and
3829      the mapping from ABFD's sections onto the segments that own them,
3830      and
3831    - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3832      segment addresses reported by the target,
3833    store the appropriate offsets for each section in OFFSETS.
3834 
3835    If there are fewer entries in SEGMENT_BASES than there are segments
3836    in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3837 
3838    If there are more entries, then ignore the extra.  The target may
3839    not be able to distinguish between an empty data segment and a
3840    missing data segment; a missing text segment is less plausible.  */
3841 
3842 int
3843 symfile_map_offsets_to_segments (bfd *abfd,
3844 				 const struct symfile_segment_data *data,
3845 				 struct section_offsets *offsets,
3846 				 int num_segment_bases,
3847 				 const CORE_ADDR *segment_bases)
3848 {
3849   int i;
3850   asection *sect;
3851 
3852   /* It doesn't make sense to call this function unless you have some
3853      segment base addresses.  */
3854   gdb_assert (num_segment_bases > 0);
3855 
3856   /* If we do not have segment mappings for the object file, we
3857      can not relocate it by segments.  */
3858   gdb_assert (data != NULL);
3859   gdb_assert (data->num_segments > 0);
3860 
3861   for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3862     {
3863       int which = data->segment_info[i];
3864 
3865       gdb_assert (0 <= which && which <= data->num_segments);
3866 
3867       /* Don't bother computing offsets for sections that aren't
3868          loaded as part of any segment.  */
3869       if (! which)
3870         continue;
3871 
3872       /* Use the last SEGMENT_BASES entry as the address of any extra
3873          segments mentioned in DATA->segment_info.  */
3874       if (which > num_segment_bases)
3875         which = num_segment_bases;
3876 
3877       offsets->offsets[i] = (segment_bases[which - 1]
3878                              - data->segment_bases[which - 1]);
3879     }
3880 
3881   return 1;
3882 }
3883 
3884 static void
3885 symfile_find_segment_sections (struct objfile *objfile)
3886 {
3887   bfd *abfd = objfile->obfd;
3888   int i;
3889   asection *sect;
3890   struct symfile_segment_data *data;
3891 
3892   data = get_symfile_segment_data (objfile->obfd);
3893   if (data == NULL)
3894     return;
3895 
3896   if (data->num_segments != 1 && data->num_segments != 2)
3897     {
3898       free_symfile_segment_data (data);
3899       return;
3900     }
3901 
3902   for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3903     {
3904       int which = data->segment_info[i];
3905 
3906       if (which == 1)
3907 	{
3908 	  if (objfile->sect_index_text == -1)
3909 	    objfile->sect_index_text = sect->index;
3910 
3911 	  if (objfile->sect_index_rodata == -1)
3912 	    objfile->sect_index_rodata = sect->index;
3913 	}
3914       else if (which == 2)
3915 	{
3916 	  if (objfile->sect_index_data == -1)
3917 	    objfile->sect_index_data = sect->index;
3918 
3919 	  if (objfile->sect_index_bss == -1)
3920 	    objfile->sect_index_bss = sect->index;
3921 	}
3922     }
3923 
3924   free_symfile_segment_data (data);
3925 }
3926 
3927 /* Listen for free_objfile events.  */
3928 
3929 static void
3930 symfile_free_objfile (struct objfile *objfile)
3931 {
3932   /* Remove the target sections owned by this objfile.  */
3933   if (objfile != NULL)
3934     remove_target_sections ((void *) objfile);
3935 }
3936 
3937 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3938    Expand all symtabs that match the specified criteria.
3939    See quick_symbol_functions.expand_symtabs_matching for details.  */
3940 
3941 void
3942 expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3943 			 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3944 			 enum search_domain kind,
3945 			 void *data)
3946 {
3947   struct objfile *objfile;
3948 
3949   ALL_OBJFILES (objfile)
3950   {
3951     if (objfile->sf)
3952       objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3953 						symbol_matcher, kind,
3954 						data);
3955   }
3956 }
3957 
3958 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3959    Map function FUN over every file.
3960    See quick_symbol_functions.map_symbol_filenames for details.  */
3961 
3962 void
3963 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3964 		      int need_fullname)
3965 {
3966   struct objfile *objfile;
3967 
3968   ALL_OBJFILES (objfile)
3969   {
3970     if (objfile->sf)
3971       objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3972 					     need_fullname);
3973   }
3974 }
3975 
3976 void
3977 _initialize_symfile (void)
3978 {
3979   struct cmd_list_element *c;
3980 
3981   observer_attach_free_objfile (symfile_free_objfile);
3982 
3983   c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3984 Load symbol table from executable file FILE.\n\
3985 The `file' command can also load symbol tables, as well as setting the file\n\
3986 to execute."), &cmdlist);
3987   set_cmd_completer (c, filename_completer);
3988 
3989   c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3990 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3991 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3992  ...]\nADDR is the starting address of the file's text.\n\
3993 The optional arguments are section-name section-address pairs and\n\
3994 should be specified if the data and bss segments are not contiguous\n\
3995 with the text.  SECT is a section name to be loaded at SECT_ADDR."),
3996 	       &cmdlist);
3997   set_cmd_completer (c, filename_completer);
3998 
3999   c = add_cmd ("remove-symbol-file", class_files,
4000 	       remove_symbol_file_command, _("\
4001 Remove a symbol file added via the add-symbol-file command.\n\
4002 Usage: remove-symbol-file FILENAME\n\
4003        remove-symbol-file -a ADDRESS\n\
4004 The file to remove can be identified by its filename or by an address\n\
4005 that lies within the boundaries of this symbol file in memory."),
4006 	       &cmdlist);
4007 
4008   c = add_cmd ("load", class_files, load_command, _("\
4009 Dynamically load FILE into the running program, and record its symbols\n\
4010 for access from GDB.\n\
4011 A load OFFSET may also be given."), &cmdlist);
4012   set_cmd_completer (c, filename_completer);
4013 
4014   add_prefix_cmd ("overlay", class_support, overlay_command,
4015 		  _("Commands for debugging overlays."), &overlaylist,
4016 		  "overlay ", 0, &cmdlist);
4017 
4018   add_com_alias ("ovly", "overlay", class_alias, 1);
4019   add_com_alias ("ov", "overlay", class_alias, 1);
4020 
4021   add_cmd ("map-overlay", class_support, map_overlay_command,
4022 	   _("Assert that an overlay section is mapped."), &overlaylist);
4023 
4024   add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4025 	   _("Assert that an overlay section is unmapped."), &overlaylist);
4026 
4027   add_cmd ("list-overlays", class_support, list_overlays_command,
4028 	   _("List mappings of overlay sections."), &overlaylist);
4029 
4030   add_cmd ("manual", class_support, overlay_manual_command,
4031 	   _("Enable overlay debugging."), &overlaylist);
4032   add_cmd ("off", class_support, overlay_off_command,
4033 	   _("Disable overlay debugging."), &overlaylist);
4034   add_cmd ("auto", class_support, overlay_auto_command,
4035 	   _("Enable automatic overlay debugging."), &overlaylist);
4036   add_cmd ("load-target", class_support, overlay_load_command,
4037 	   _("Read the overlay mapping state from the target."), &overlaylist);
4038 
4039   /* Filename extension to source language lookup table: */
4040   init_filename_language_table ();
4041   add_setshow_string_noescape_cmd ("extension-language", class_files,
4042 				   &ext_args, _("\
4043 Set mapping between filename extension and source language."), _("\
4044 Show mapping between filename extension and source language."), _("\
4045 Usage: set extension-language .foo bar"),
4046 				   set_ext_lang_command,
4047 				   show_ext_args,
4048 				   &setlist, &showlist);
4049 
4050   add_info ("extensions", info_ext_lang_command,
4051 	    _("All filename extensions associated with a source language."));
4052 
4053   add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4054 				     &debug_file_directory, _("\
4055 Set the directories where separate debug symbols are searched for."), _("\
4056 Show the directories where separate debug symbols are searched for."), _("\
4057 Separate debug symbols are first searched for in the same\n\
4058 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4059 and lastly at the path of the directory of the binary with\n\
4060 each global debug-file-directory component prepended."),
4061 				     NULL,
4062 				     show_debug_file_directory,
4063 				     &setlist, &showlist);
4064 
4065   add_setshow_enum_cmd ("symbol-loading", no_class,
4066 			print_symbol_loading_enums, &print_symbol_loading,
4067 			_("\
4068 Set printing of symbol loading messages."), _("\
4069 Show printing of symbol loading messages."), _("\
4070 off   == turn all messages off\n\
4071 brief == print messages for the executable,\n\
4072          and brief messages for shared libraries\n\
4073 full  == print messages for the executable,\n\
4074          and messages for each shared library."),
4075 			NULL,
4076 			NULL,
4077 			&setprintlist, &showprintlist);
4078 }
4079