1 /* SystemTap probe support for GDB. 2 3 Copyright (C) 2012-2015 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "stap-probe.h" 22 #include "probe.h" 23 #include "vec.h" 24 #include "ui-out.h" 25 #include "objfiles.h" 26 #include "arch-utils.h" 27 #include "command.h" 28 #include "gdbcmd.h" 29 #include "filenames.h" 30 #include "value.h" 31 #include "ax.h" 32 #include "ax-gdb.h" 33 #include "complaints.h" 34 #include "cli/cli-utils.h" 35 #include "linespec.h" 36 #include "user-regs.h" 37 #include "parser-defs.h" 38 #include "language.h" 39 #include "elf-bfd.h" 40 41 #include <ctype.h> 42 43 /* The name of the SystemTap section where we will find information about 44 the probes. */ 45 46 #define STAP_BASE_SECTION_NAME ".stapsdt.base" 47 48 /* Forward declaration. */ 49 50 static const struct probe_ops stap_probe_ops; 51 52 /* Should we display debug information for the probe's argument expression 53 parsing? */ 54 55 static unsigned int stap_expression_debug = 0; 56 57 /* The various possibilities of bitness defined for a probe's argument. 58 59 The relationship is: 60 61 - STAP_ARG_BITNESS_UNDEFINED: The user hasn't specified the bitness. 62 - STAP_ARG_BITNESS_8BIT_UNSIGNED: argument string starts with `1@'. 63 - STAP_ARG_BITNESS_8BIT_SIGNED: argument string starts with `-1@'. 64 - STAP_ARG_BITNESS_16BIT_UNSIGNED: argument string starts with `2@'. 65 - STAP_ARG_BITNESS_16BIT_SIGNED: argument string starts with `-2@'. 66 - STAP_ARG_BITNESS_32BIT_UNSIGNED: argument string starts with `4@'. 67 - STAP_ARG_BITNESS_32BIT_SIGNED: argument string starts with `-4@'. 68 - STAP_ARG_BITNESS_64BIT_UNSIGNED: argument string starts with `8@'. 69 - STAP_ARG_BITNESS_64BIT_SIGNED: argument string starts with `-8@'. */ 70 71 enum stap_arg_bitness 72 { 73 STAP_ARG_BITNESS_UNDEFINED, 74 STAP_ARG_BITNESS_8BIT_UNSIGNED, 75 STAP_ARG_BITNESS_8BIT_SIGNED, 76 STAP_ARG_BITNESS_16BIT_UNSIGNED, 77 STAP_ARG_BITNESS_16BIT_SIGNED, 78 STAP_ARG_BITNESS_32BIT_UNSIGNED, 79 STAP_ARG_BITNESS_32BIT_SIGNED, 80 STAP_ARG_BITNESS_64BIT_UNSIGNED, 81 STAP_ARG_BITNESS_64BIT_SIGNED, 82 }; 83 84 /* The following structure represents a single argument for the probe. */ 85 86 struct stap_probe_arg 87 { 88 /* The bitness of this argument. */ 89 enum stap_arg_bitness bitness; 90 91 /* The corresponding `struct type *' to the bitness. */ 92 struct type *atype; 93 94 /* The argument converted to an internal GDB expression. */ 95 struct expression *aexpr; 96 }; 97 98 typedef struct stap_probe_arg stap_probe_arg_s; 99 DEF_VEC_O (stap_probe_arg_s); 100 101 struct stap_probe 102 { 103 /* Generic information about the probe. This shall be the first element 104 of this struct, in order to maintain binary compatibility with the 105 `struct probe' and be able to fully abstract it. */ 106 struct probe p; 107 108 /* If the probe has a semaphore associated, then this is the value of 109 it, relative to SECT_OFF_DATA. */ 110 CORE_ADDR sem_addr; 111 112 /* One if the arguments have been parsed. */ 113 unsigned int args_parsed : 1; 114 115 union 116 { 117 const char *text; 118 119 /* Information about each argument. This is an array of `stap_probe_arg', 120 with each entry representing one argument. */ 121 VEC (stap_probe_arg_s) *vec; 122 } 123 args_u; 124 }; 125 126 /* When parsing the arguments, we have to establish different precedences 127 for the various kinds of asm operators. This enumeration represents those 128 precedences. 129 130 This logic behind this is available at 131 <http://sourceware.org/binutils/docs/as/Infix-Ops.html#Infix-Ops>, or using 132 the command "info '(as)Infix Ops'". */ 133 134 enum stap_operand_prec 135 { 136 /* Lowest precedence, used for non-recognized operands or for the beginning 137 of the parsing process. */ 138 STAP_OPERAND_PREC_NONE = 0, 139 140 /* Precedence of logical OR. */ 141 STAP_OPERAND_PREC_LOGICAL_OR, 142 143 /* Precedence of logical AND. */ 144 STAP_OPERAND_PREC_LOGICAL_AND, 145 146 /* Precedence of additive (plus, minus) and comparative (equal, less, 147 greater-than, etc) operands. */ 148 STAP_OPERAND_PREC_ADD_CMP, 149 150 /* Precedence of bitwise operands (bitwise OR, XOR, bitwise AND, 151 logical NOT). */ 152 STAP_OPERAND_PREC_BITWISE, 153 154 /* Precedence of multiplicative operands (multiplication, division, 155 remainder, left shift and right shift). */ 156 STAP_OPERAND_PREC_MUL 157 }; 158 159 static void stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs, 160 enum stap_operand_prec prec); 161 162 static void stap_parse_argument_conditionally (struct stap_parse_info *p); 163 164 /* Returns 1 if *S is an operator, zero otherwise. */ 165 166 static int stap_is_operator (const char *op); 167 168 static void 169 show_stapexpressiondebug (struct ui_file *file, int from_tty, 170 struct cmd_list_element *c, const char *value) 171 { 172 fprintf_filtered (file, _("SystemTap Probe expression debugging is %s.\n"), 173 value); 174 } 175 176 /* Returns the operator precedence level of OP, or STAP_OPERAND_PREC_NONE 177 if the operator code was not recognized. */ 178 179 static enum stap_operand_prec 180 stap_get_operator_prec (enum exp_opcode op) 181 { 182 switch (op) 183 { 184 case BINOP_LOGICAL_OR: 185 return STAP_OPERAND_PREC_LOGICAL_OR; 186 187 case BINOP_LOGICAL_AND: 188 return STAP_OPERAND_PREC_LOGICAL_AND; 189 190 case BINOP_ADD: 191 case BINOP_SUB: 192 case BINOP_EQUAL: 193 case BINOP_NOTEQUAL: 194 case BINOP_LESS: 195 case BINOP_LEQ: 196 case BINOP_GTR: 197 case BINOP_GEQ: 198 return STAP_OPERAND_PREC_ADD_CMP; 199 200 case BINOP_BITWISE_IOR: 201 case BINOP_BITWISE_AND: 202 case BINOP_BITWISE_XOR: 203 case UNOP_LOGICAL_NOT: 204 return STAP_OPERAND_PREC_BITWISE; 205 206 case BINOP_MUL: 207 case BINOP_DIV: 208 case BINOP_REM: 209 case BINOP_LSH: 210 case BINOP_RSH: 211 return STAP_OPERAND_PREC_MUL; 212 213 default: 214 return STAP_OPERAND_PREC_NONE; 215 } 216 } 217 218 /* Given S, read the operator in it and fills the OP pointer with its code. 219 Return 1 on success, zero if the operator was not recognized. */ 220 221 static enum exp_opcode 222 stap_get_opcode (const char **s) 223 { 224 const char c = **s; 225 enum exp_opcode op; 226 227 *s += 1; 228 229 switch (c) 230 { 231 case '*': 232 op = BINOP_MUL; 233 break; 234 235 case '/': 236 op = BINOP_DIV; 237 break; 238 239 case '%': 240 op = BINOP_REM; 241 break; 242 243 case '<': 244 op = BINOP_LESS; 245 if (**s == '<') 246 { 247 *s += 1; 248 op = BINOP_LSH; 249 } 250 else if (**s == '=') 251 { 252 *s += 1; 253 op = BINOP_LEQ; 254 } 255 else if (**s == '>') 256 { 257 *s += 1; 258 op = BINOP_NOTEQUAL; 259 } 260 break; 261 262 case '>': 263 op = BINOP_GTR; 264 if (**s == '>') 265 { 266 *s += 1; 267 op = BINOP_RSH; 268 } 269 else if (**s == '=') 270 { 271 *s += 1; 272 op = BINOP_GEQ; 273 } 274 break; 275 276 case '|': 277 op = BINOP_BITWISE_IOR; 278 if (**s == '|') 279 { 280 *s += 1; 281 op = BINOP_LOGICAL_OR; 282 } 283 break; 284 285 case '&': 286 op = BINOP_BITWISE_AND; 287 if (**s == '&') 288 { 289 *s += 1; 290 op = BINOP_LOGICAL_AND; 291 } 292 break; 293 294 case '^': 295 op = BINOP_BITWISE_XOR; 296 break; 297 298 case '!': 299 op = UNOP_LOGICAL_NOT; 300 break; 301 302 case '+': 303 op = BINOP_ADD; 304 break; 305 306 case '-': 307 op = BINOP_SUB; 308 break; 309 310 case '=': 311 gdb_assert (**s == '='); 312 op = BINOP_EQUAL; 313 break; 314 315 default: 316 internal_error (__FILE__, __LINE__, 317 _("Invalid opcode in expression `%s' for SystemTap" 318 "probe"), *s); 319 } 320 321 return op; 322 } 323 324 /* Given the bitness of the argument, represented by B, return the 325 corresponding `struct type *'. */ 326 327 static struct type * 328 stap_get_expected_argument_type (struct gdbarch *gdbarch, 329 enum stap_arg_bitness b) 330 { 331 switch (b) 332 { 333 case STAP_ARG_BITNESS_UNDEFINED: 334 if (gdbarch_addr_bit (gdbarch) == 32) 335 return builtin_type (gdbarch)->builtin_uint32; 336 else 337 return builtin_type (gdbarch)->builtin_uint64; 338 339 case STAP_ARG_BITNESS_8BIT_UNSIGNED: 340 return builtin_type (gdbarch)->builtin_uint8; 341 342 case STAP_ARG_BITNESS_8BIT_SIGNED: 343 return builtin_type (gdbarch)->builtin_int8; 344 345 case STAP_ARG_BITNESS_16BIT_UNSIGNED: 346 return builtin_type (gdbarch)->builtin_uint16; 347 348 case STAP_ARG_BITNESS_16BIT_SIGNED: 349 return builtin_type (gdbarch)->builtin_int16; 350 351 case STAP_ARG_BITNESS_32BIT_SIGNED: 352 return builtin_type (gdbarch)->builtin_int32; 353 354 case STAP_ARG_BITNESS_32BIT_UNSIGNED: 355 return builtin_type (gdbarch)->builtin_uint32; 356 357 case STAP_ARG_BITNESS_64BIT_SIGNED: 358 return builtin_type (gdbarch)->builtin_int64; 359 360 case STAP_ARG_BITNESS_64BIT_UNSIGNED: 361 return builtin_type (gdbarch)->builtin_uint64; 362 363 default: 364 internal_error (__FILE__, __LINE__, 365 _("Undefined bitness for probe.")); 366 break; 367 } 368 } 369 370 /* Helper function to check for a generic list of prefixes. GDBARCH 371 is the current gdbarch being used. S is the expression being 372 analyzed. If R is not NULL, it will be used to return the found 373 prefix. PREFIXES is the list of expected prefixes. 374 375 This function does a case-insensitive match. 376 377 Return 1 if any prefix has been found, zero otherwise. */ 378 379 static int 380 stap_is_generic_prefix (struct gdbarch *gdbarch, const char *s, 381 const char **r, const char *const *prefixes) 382 { 383 const char *const *p; 384 385 if (prefixes == NULL) 386 { 387 if (r != NULL) 388 *r = ""; 389 390 return 1; 391 } 392 393 for (p = prefixes; *p != NULL; ++p) 394 if (strncasecmp (s, *p, strlen (*p)) == 0) 395 { 396 if (r != NULL) 397 *r = *p; 398 399 return 1; 400 } 401 402 return 0; 403 } 404 405 /* Return 1 if S points to a register prefix, zero otherwise. For a 406 description of the arguments, look at stap_is_generic_prefix. */ 407 408 static int 409 stap_is_register_prefix (struct gdbarch *gdbarch, const char *s, 410 const char **r) 411 { 412 const char *const *t = gdbarch_stap_register_prefixes (gdbarch); 413 414 return stap_is_generic_prefix (gdbarch, s, r, t); 415 } 416 417 /* Return 1 if S points to a register indirection prefix, zero 418 otherwise. For a description of the arguments, look at 419 stap_is_generic_prefix. */ 420 421 static int 422 stap_is_register_indirection_prefix (struct gdbarch *gdbarch, const char *s, 423 const char **r) 424 { 425 const char *const *t = gdbarch_stap_register_indirection_prefixes (gdbarch); 426 427 return stap_is_generic_prefix (gdbarch, s, r, t); 428 } 429 430 /* Return 1 if S points to an integer prefix, zero otherwise. For a 431 description of the arguments, look at stap_is_generic_prefix. 432 433 This function takes care of analyzing whether we are dealing with 434 an expected integer prefix, or, if there is no integer prefix to be 435 expected, whether we are dealing with a digit. It does a 436 case-insensitive match. */ 437 438 static int 439 stap_is_integer_prefix (struct gdbarch *gdbarch, const char *s, 440 const char **r) 441 { 442 const char *const *t = gdbarch_stap_integer_prefixes (gdbarch); 443 const char *const *p; 444 445 if (t == NULL) 446 { 447 /* A NULL value here means that integers do not have a prefix. 448 We just check for a digit then. */ 449 if (r != NULL) 450 *r = ""; 451 452 return isdigit (*s); 453 } 454 455 for (p = t; *p != NULL; ++p) 456 { 457 size_t len = strlen (*p); 458 459 if ((len == 0 && isdigit (*s)) 460 || (len > 0 && strncasecmp (s, *p, len) == 0)) 461 { 462 /* Integers may or may not have a prefix. The "len == 0" 463 check covers the case when integers do not have a prefix 464 (therefore, we just check if we have a digit). The call 465 to "strncasecmp" covers the case when they have a 466 prefix. */ 467 if (r != NULL) 468 *r = *p; 469 470 return 1; 471 } 472 } 473 474 return 0; 475 } 476 477 /* Helper function to check for a generic list of suffixes. If we are 478 not expecting any suffixes, then it just returns 1. If we are 479 expecting at least one suffix, then it returns 1 if a suffix has 480 been found, zero otherwise. GDBARCH is the current gdbarch being 481 used. S is the expression being analyzed. If R is not NULL, it 482 will be used to return the found suffix. SUFFIXES is the list of 483 expected suffixes. This function does a case-insensitive 484 match. */ 485 486 static int 487 stap_generic_check_suffix (struct gdbarch *gdbarch, const char *s, 488 const char **r, const char *const *suffixes) 489 { 490 const char *const *p; 491 int found = 0; 492 493 if (suffixes == NULL) 494 { 495 if (r != NULL) 496 *r = ""; 497 498 return 1; 499 } 500 501 for (p = suffixes; *p != NULL; ++p) 502 if (strncasecmp (s, *p, strlen (*p)) == 0) 503 { 504 if (r != NULL) 505 *r = *p; 506 507 found = 1; 508 break; 509 } 510 511 return found; 512 } 513 514 /* Return 1 if S points to an integer suffix, zero otherwise. For a 515 description of the arguments, look at 516 stap_generic_check_suffix. */ 517 518 static int 519 stap_check_integer_suffix (struct gdbarch *gdbarch, const char *s, 520 const char **r) 521 { 522 const char *const *p = gdbarch_stap_integer_suffixes (gdbarch); 523 524 return stap_generic_check_suffix (gdbarch, s, r, p); 525 } 526 527 /* Return 1 if S points to a register suffix, zero otherwise. For a 528 description of the arguments, look at 529 stap_generic_check_suffix. */ 530 531 static int 532 stap_check_register_suffix (struct gdbarch *gdbarch, const char *s, 533 const char **r) 534 { 535 const char *const *p = gdbarch_stap_register_suffixes (gdbarch); 536 537 return stap_generic_check_suffix (gdbarch, s, r, p); 538 } 539 540 /* Return 1 if S points to a register indirection suffix, zero 541 otherwise. For a description of the arguments, look at 542 stap_generic_check_suffix. */ 543 544 static int 545 stap_check_register_indirection_suffix (struct gdbarch *gdbarch, const char *s, 546 const char **r) 547 { 548 const char *const *p = gdbarch_stap_register_indirection_suffixes (gdbarch); 549 550 return stap_generic_check_suffix (gdbarch, s, r, p); 551 } 552 553 /* Function responsible for parsing a register operand according to 554 SystemTap parlance. Assuming: 555 556 RP = register prefix 557 RS = register suffix 558 RIP = register indirection prefix 559 RIS = register indirection suffix 560 561 Then a register operand can be: 562 563 [RIP] [RP] REGISTER [RS] [RIS] 564 565 This function takes care of a register's indirection, displacement and 566 direct access. It also takes into consideration the fact that some 567 registers are named differently inside and outside GDB, e.g., PPC's 568 general-purpose registers are represented by integers in the assembly 569 language (e.g., `15' is the 15th general-purpose register), but inside 570 GDB they have a prefix (the letter `r') appended. */ 571 572 static void 573 stap_parse_register_operand (struct stap_parse_info *p) 574 { 575 /* Simple flag to indicate whether we have seen a minus signal before 576 certain number. */ 577 int got_minus = 0; 578 /* Flags to indicate whether this register access is being displaced and/or 579 indirected. */ 580 int disp_p = 0, indirect_p = 0; 581 struct gdbarch *gdbarch = p->gdbarch; 582 /* Needed to generate the register name as a part of an expression. */ 583 struct stoken str; 584 /* Variables used to extract the register name from the probe's 585 argument. */ 586 const char *start; 587 char *regname; 588 int len; 589 const char *gdb_reg_prefix = gdbarch_stap_gdb_register_prefix (gdbarch); 590 int gdb_reg_prefix_len = gdb_reg_prefix ? strlen (gdb_reg_prefix) : 0; 591 const char *gdb_reg_suffix = gdbarch_stap_gdb_register_suffix (gdbarch); 592 int gdb_reg_suffix_len = gdb_reg_suffix ? strlen (gdb_reg_suffix) : 0; 593 const char *reg_prefix; 594 const char *reg_ind_prefix; 595 const char *reg_suffix; 596 const char *reg_ind_suffix; 597 598 /* Checking for a displacement argument. */ 599 if (*p->arg == '+') 600 { 601 /* If it's a plus sign, we don't need to do anything, just advance the 602 pointer. */ 603 ++p->arg; 604 } 605 606 if (*p->arg == '-') 607 { 608 got_minus = 1; 609 ++p->arg; 610 } 611 612 if (isdigit (*p->arg)) 613 { 614 /* The value of the displacement. */ 615 long displacement; 616 char *endp; 617 618 disp_p = 1; 619 displacement = strtol (p->arg, &endp, 10); 620 p->arg = endp; 621 622 /* Generating the expression for the displacement. */ 623 write_exp_elt_opcode (&p->pstate, OP_LONG); 624 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long); 625 write_exp_elt_longcst (&p->pstate, displacement); 626 write_exp_elt_opcode (&p->pstate, OP_LONG); 627 if (got_minus) 628 write_exp_elt_opcode (&p->pstate, UNOP_NEG); 629 } 630 631 /* Getting rid of register indirection prefix. */ 632 if (stap_is_register_indirection_prefix (gdbarch, p->arg, ®_ind_prefix)) 633 { 634 indirect_p = 1; 635 p->arg += strlen (reg_ind_prefix); 636 } 637 638 if (disp_p && !indirect_p) 639 error (_("Invalid register displacement syntax on expression `%s'."), 640 p->saved_arg); 641 642 /* Getting rid of register prefix. */ 643 if (stap_is_register_prefix (gdbarch, p->arg, ®_prefix)) 644 p->arg += strlen (reg_prefix); 645 646 /* Now we should have only the register name. Let's extract it and get 647 the associated number. */ 648 start = p->arg; 649 650 /* We assume the register name is composed by letters and numbers. */ 651 while (isalnum (*p->arg)) 652 ++p->arg; 653 654 len = p->arg - start; 655 656 regname = alloca (len + gdb_reg_prefix_len + gdb_reg_suffix_len + 1); 657 regname[0] = '\0'; 658 659 /* We only add the GDB's register prefix/suffix if we are dealing with 660 a numeric register. */ 661 if (gdb_reg_prefix && isdigit (*start)) 662 { 663 strncpy (regname, gdb_reg_prefix, gdb_reg_prefix_len); 664 strncpy (regname + gdb_reg_prefix_len, start, len); 665 666 if (gdb_reg_suffix) 667 strncpy (regname + gdb_reg_prefix_len + len, 668 gdb_reg_suffix, gdb_reg_suffix_len); 669 670 len += gdb_reg_prefix_len + gdb_reg_suffix_len; 671 } 672 else 673 strncpy (regname, start, len); 674 675 regname[len] = '\0'; 676 677 /* Is this a valid register name? */ 678 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1) 679 error (_("Invalid register name `%s' on expression `%s'."), 680 regname, p->saved_arg); 681 682 write_exp_elt_opcode (&p->pstate, OP_REGISTER); 683 str.ptr = regname; 684 str.length = len; 685 write_exp_string (&p->pstate, str); 686 write_exp_elt_opcode (&p->pstate, OP_REGISTER); 687 688 if (indirect_p) 689 { 690 if (disp_p) 691 write_exp_elt_opcode (&p->pstate, BINOP_ADD); 692 693 /* Casting to the expected type. */ 694 write_exp_elt_opcode (&p->pstate, UNOP_CAST); 695 write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type)); 696 write_exp_elt_opcode (&p->pstate, UNOP_CAST); 697 698 write_exp_elt_opcode (&p->pstate, UNOP_IND); 699 } 700 701 /* Getting rid of the register name suffix. */ 702 if (stap_check_register_suffix (gdbarch, p->arg, ®_suffix)) 703 p->arg += strlen (reg_suffix); 704 else 705 error (_("Missing register name suffix on expression `%s'."), 706 p->saved_arg); 707 708 /* Getting rid of the register indirection suffix. */ 709 if (indirect_p) 710 { 711 if (stap_check_register_indirection_suffix (gdbarch, p->arg, 712 ®_ind_suffix)) 713 p->arg += strlen (reg_ind_suffix); 714 else 715 error (_("Missing indirection suffix on expression `%s'."), 716 p->saved_arg); 717 } 718 } 719 720 /* This function is responsible for parsing a single operand. 721 722 A single operand can be: 723 724 - an unary operation (e.g., `-5', `~2', or even with subexpressions 725 like `-(2 + 1)') 726 - a register displacement, which will be treated as a register 727 operand (e.g., `-4(%eax)' on x86) 728 - a numeric constant, or 729 - a register operand (see function `stap_parse_register_operand') 730 731 The function also calls special-handling functions to deal with 732 unrecognized operands, allowing arch-specific parsers to be 733 created. */ 734 735 static void 736 stap_parse_single_operand (struct stap_parse_info *p) 737 { 738 struct gdbarch *gdbarch = p->gdbarch; 739 const char *int_prefix = NULL; 740 741 /* We first try to parse this token as a "special token". */ 742 if (gdbarch_stap_parse_special_token_p (gdbarch)) 743 if (gdbarch_stap_parse_special_token (gdbarch, p) != 0) 744 { 745 /* If the return value of the above function is not zero, 746 it means it successfully parsed the special token. 747 748 If it is NULL, we try to parse it using our method. */ 749 return; 750 } 751 752 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+') 753 { 754 char c = *p->arg; 755 /* We use this variable to do a lookahead. */ 756 const char *tmp = p->arg; 757 int has_digit = 0; 758 759 /* Skipping signal. */ 760 ++tmp; 761 762 /* This is an unary operation. Here is a list of allowed tokens 763 here: 764 765 - numeric literal; 766 - number (from register displacement) 767 - subexpression (beginning with `(') 768 769 We handle the register displacement here, and the other cases 770 recursively. */ 771 if (p->inside_paren_p) 772 tmp = skip_spaces_const (tmp); 773 774 while (isdigit (*tmp)) 775 { 776 /* We skip the digit here because we are only interested in 777 knowing what kind of unary operation this is. The digit 778 will be handled by one of the functions that will be 779 called below ('stap_parse_argument_conditionally' or 780 'stap_parse_register_operand'). */ 781 ++tmp; 782 has_digit = 1; 783 } 784 785 if (has_digit && stap_is_register_indirection_prefix (gdbarch, tmp, 786 NULL)) 787 { 788 /* If we are here, it means it is a displacement. The only 789 operations allowed here are `-' and `+'. */ 790 if (c == '~') 791 error (_("Invalid operator `%c' for register displacement " 792 "on expression `%s'."), c, p->saved_arg); 793 794 stap_parse_register_operand (p); 795 } 796 else 797 { 798 /* This is not a displacement. We skip the operator, and 799 deal with it when the recursion returns. */ 800 ++p->arg; 801 stap_parse_argument_conditionally (p); 802 if (c == '-') 803 write_exp_elt_opcode (&p->pstate, UNOP_NEG); 804 else if (c == '~') 805 write_exp_elt_opcode (&p->pstate, UNOP_COMPLEMENT); 806 } 807 } 808 else if (isdigit (*p->arg)) 809 { 810 /* A temporary variable, needed for lookahead. */ 811 const char *tmp = p->arg; 812 char *endp; 813 long number; 814 815 /* We can be dealing with a numeric constant, or with a register 816 displacement. */ 817 number = strtol (tmp, &endp, 10); 818 tmp = endp; 819 820 if (p->inside_paren_p) 821 tmp = skip_spaces_const (tmp); 822 823 /* If "stap_is_integer_prefix" returns true, it means we can 824 accept integers without a prefix here. But we also need to 825 check whether the next token (i.e., "tmp") is not a register 826 indirection prefix. */ 827 if (stap_is_integer_prefix (gdbarch, p->arg, NULL) 828 && !stap_is_register_indirection_prefix (gdbarch, tmp, NULL)) 829 { 830 const char *int_suffix; 831 832 /* We are dealing with a numeric constant. */ 833 write_exp_elt_opcode (&p->pstate, OP_LONG); 834 write_exp_elt_type (&p->pstate, 835 builtin_type (gdbarch)->builtin_long); 836 write_exp_elt_longcst (&p->pstate, number); 837 write_exp_elt_opcode (&p->pstate, OP_LONG); 838 839 p->arg = tmp; 840 841 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix)) 842 p->arg += strlen (int_suffix); 843 else 844 error (_("Invalid constant suffix on expression `%s'."), 845 p->saved_arg); 846 } 847 else if (stap_is_register_indirection_prefix (gdbarch, tmp, NULL)) 848 stap_parse_register_operand (p); 849 else 850 error (_("Unknown numeric token on expression `%s'."), 851 p->saved_arg); 852 } 853 else if (stap_is_integer_prefix (gdbarch, p->arg, &int_prefix)) 854 { 855 /* We are dealing with a numeric constant. */ 856 long number; 857 char *endp; 858 const char *int_suffix; 859 860 p->arg += strlen (int_prefix); 861 number = strtol (p->arg, &endp, 10); 862 p->arg = endp; 863 864 write_exp_elt_opcode (&p->pstate, OP_LONG); 865 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long); 866 write_exp_elt_longcst (&p->pstate, number); 867 write_exp_elt_opcode (&p->pstate, OP_LONG); 868 869 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix)) 870 p->arg += strlen (int_suffix); 871 else 872 error (_("Invalid constant suffix on expression `%s'."), 873 p->saved_arg); 874 } 875 else if (stap_is_register_prefix (gdbarch, p->arg, NULL) 876 || stap_is_register_indirection_prefix (gdbarch, p->arg, NULL)) 877 stap_parse_register_operand (p); 878 else 879 error (_("Operator `%c' not recognized on expression `%s'."), 880 *p->arg, p->saved_arg); 881 } 882 883 /* This function parses an argument conditionally, based on single or 884 non-single operands. A non-single operand would be a parenthesized 885 expression (e.g., `(2 + 1)'), and a single operand is anything that 886 starts with `-', `~', `+' (i.e., unary operators), a digit, or 887 something recognized by `gdbarch_stap_is_single_operand'. */ 888 889 static void 890 stap_parse_argument_conditionally (struct stap_parse_info *p) 891 { 892 gdb_assert (gdbarch_stap_is_single_operand_p (p->gdbarch)); 893 894 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+' /* Unary. */ 895 || isdigit (*p->arg) 896 || gdbarch_stap_is_single_operand (p->gdbarch, p->arg)) 897 stap_parse_single_operand (p); 898 else if (*p->arg == '(') 899 { 900 /* We are dealing with a parenthesized operand. It means we 901 have to parse it as it was a separate expression, without 902 left-side or precedence. */ 903 ++p->arg; 904 p->arg = skip_spaces_const (p->arg); 905 ++p->inside_paren_p; 906 907 stap_parse_argument_1 (p, 0, STAP_OPERAND_PREC_NONE); 908 909 --p->inside_paren_p; 910 if (*p->arg != ')') 911 error (_("Missign close-paren on expression `%s'."), 912 p->saved_arg); 913 914 ++p->arg; 915 if (p->inside_paren_p) 916 p->arg = skip_spaces_const (p->arg); 917 } 918 else 919 error (_("Cannot parse expression `%s'."), p->saved_arg); 920 } 921 922 /* Helper function for `stap_parse_argument'. Please, see its comments to 923 better understand what this function does. */ 924 925 static void 926 stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs, 927 enum stap_operand_prec prec) 928 { 929 /* This is an operator-precedence parser. 930 931 We work with left- and right-sides of expressions, and 932 parse them depending on the precedence of the operators 933 we find. */ 934 935 gdb_assert (p->arg != NULL); 936 937 if (p->inside_paren_p) 938 p->arg = skip_spaces_const (p->arg); 939 940 if (!has_lhs) 941 { 942 /* We were called without a left-side, either because this is the 943 first call, or because we were called to parse a parenthesized 944 expression. It doesn't really matter; we have to parse the 945 left-side in order to continue the process. */ 946 stap_parse_argument_conditionally (p); 947 } 948 949 /* Start to parse the right-side, and to "join" left and right sides 950 depending on the operation specified. 951 952 This loop shall continue until we run out of characters in the input, 953 or until we find a close-parenthesis, which means that we've reached 954 the end of a sub-expression. */ 955 while (*p->arg != '\0' && *p->arg != ')' && !isspace (*p->arg)) 956 { 957 const char *tmp_exp_buf; 958 enum exp_opcode opcode; 959 enum stap_operand_prec cur_prec; 960 961 if (!stap_is_operator (p->arg)) 962 error (_("Invalid operator `%c' on expression `%s'."), *p->arg, 963 p->saved_arg); 964 965 /* We have to save the current value of the expression buffer because 966 the `stap_get_opcode' modifies it in order to get the current 967 operator. If this operator's precedence is lower than PREC, we 968 should return and not advance the expression buffer pointer. */ 969 tmp_exp_buf = p->arg; 970 opcode = stap_get_opcode (&tmp_exp_buf); 971 972 cur_prec = stap_get_operator_prec (opcode); 973 if (cur_prec < prec) 974 { 975 /* If the precedence of the operator that we are seeing now is 976 lower than the precedence of the first operator seen before 977 this parsing process began, it means we should stop parsing 978 and return. */ 979 break; 980 } 981 982 p->arg = tmp_exp_buf; 983 if (p->inside_paren_p) 984 p->arg = skip_spaces_const (p->arg); 985 986 /* Parse the right-side of the expression. */ 987 stap_parse_argument_conditionally (p); 988 989 /* While we still have operators, try to parse another 990 right-side, but using the current right-side as a left-side. */ 991 while (*p->arg != '\0' && stap_is_operator (p->arg)) 992 { 993 enum exp_opcode lookahead_opcode; 994 enum stap_operand_prec lookahead_prec; 995 996 /* Saving the current expression buffer position. The explanation 997 is the same as above. */ 998 tmp_exp_buf = p->arg; 999 lookahead_opcode = stap_get_opcode (&tmp_exp_buf); 1000 lookahead_prec = stap_get_operator_prec (lookahead_opcode); 1001 1002 if (lookahead_prec <= prec) 1003 { 1004 /* If we are dealing with an operator whose precedence is lower 1005 than the first one, just abandon the attempt. */ 1006 break; 1007 } 1008 1009 /* Parse the right-side of the expression, but since we already 1010 have a left-side at this point, set `has_lhs' to 1. */ 1011 stap_parse_argument_1 (p, 1, lookahead_prec); 1012 } 1013 1014 write_exp_elt_opcode (&p->pstate, opcode); 1015 } 1016 } 1017 1018 /* Parse a probe's argument. 1019 1020 Assuming that: 1021 1022 LP = literal integer prefix 1023 LS = literal integer suffix 1024 1025 RP = register prefix 1026 RS = register suffix 1027 1028 RIP = register indirection prefix 1029 RIS = register indirection suffix 1030 1031 This routine assumes that arguments' tokens are of the form: 1032 1033 - [LP] NUMBER [LS] 1034 - [RP] REGISTER [RS] 1035 - [RIP] [RP] REGISTER [RS] [RIS] 1036 - If we find a number without LP, we try to parse it as a literal integer 1037 constant (if LP == NULL), or as a register displacement. 1038 - We count parenthesis, and only skip whitespaces if we are inside them. 1039 - If we find an operator, we skip it. 1040 1041 This function can also call a special function that will try to match 1042 unknown tokens. It will return 1 if the argument has been parsed 1043 successfully, or zero otherwise. */ 1044 1045 static struct expression * 1046 stap_parse_argument (const char **arg, struct type *atype, 1047 struct gdbarch *gdbarch) 1048 { 1049 struct stap_parse_info p; 1050 struct cleanup *back_to; 1051 1052 /* We need to initialize the expression buffer, in order to begin 1053 our parsing efforts. We use language_c here because we may need 1054 to do pointer arithmetics. */ 1055 initialize_expout (&p.pstate, 10, language_def (language_c), gdbarch); 1056 back_to = make_cleanup (free_current_contents, &p.pstate.expout); 1057 1058 p.saved_arg = *arg; 1059 p.arg = *arg; 1060 p.arg_type = atype; 1061 p.gdbarch = gdbarch; 1062 p.inside_paren_p = 0; 1063 1064 stap_parse_argument_1 (&p, 0, STAP_OPERAND_PREC_NONE); 1065 1066 discard_cleanups (back_to); 1067 1068 gdb_assert (p.inside_paren_p == 0); 1069 1070 /* Casting the final expression to the appropriate type. */ 1071 write_exp_elt_opcode (&p.pstate, UNOP_CAST); 1072 write_exp_elt_type (&p.pstate, atype); 1073 write_exp_elt_opcode (&p.pstate, UNOP_CAST); 1074 1075 reallocate_expout (&p.pstate); 1076 1077 p.arg = skip_spaces_const (p.arg); 1078 *arg = p.arg; 1079 1080 /* We can safely return EXPOUT here. */ 1081 return p.pstate.expout; 1082 } 1083 1084 /* Function which parses an argument string from PROBE, correctly splitting 1085 the arguments and storing their information in properly ways. 1086 1087 Consider the following argument string (x86 syntax): 1088 1089 `4@%eax 4@$10' 1090 1091 We have two arguments, `%eax' and `$10', both with 32-bit unsigned bitness. 1092 This function basically handles them, properly filling some structures with 1093 this information. */ 1094 1095 static void 1096 stap_parse_probe_arguments (struct stap_probe *probe, struct gdbarch *gdbarch) 1097 { 1098 const char *cur; 1099 1100 gdb_assert (!probe->args_parsed); 1101 cur = probe->args_u.text; 1102 probe->args_parsed = 1; 1103 probe->args_u.vec = NULL; 1104 1105 if (cur == NULL || *cur == '\0' || *cur == ':') 1106 return; 1107 1108 while (*cur != '\0') 1109 { 1110 struct stap_probe_arg arg; 1111 enum stap_arg_bitness b; 1112 int got_minus = 0; 1113 struct expression *expr; 1114 1115 memset (&arg, 0, sizeof (arg)); 1116 1117 /* We expect to find something like: 1118 1119 N@OP 1120 1121 Where `N' can be [+,-][1,2,4,8]. This is not mandatory, so 1122 we check it here. If we don't find it, go to the next 1123 state. */ 1124 if ((cur[0] == '-' && isdigit (cur[1]) && cur[2] == '@') 1125 || (isdigit (cur[0]) && cur[1] == '@')) 1126 { 1127 if (*cur == '-') 1128 { 1129 /* Discard the `-'. */ 1130 ++cur; 1131 got_minus = 1; 1132 } 1133 1134 /* Defining the bitness. */ 1135 switch (*cur) 1136 { 1137 case '1': 1138 b = (got_minus ? STAP_ARG_BITNESS_8BIT_SIGNED 1139 : STAP_ARG_BITNESS_8BIT_UNSIGNED); 1140 break; 1141 1142 case '2': 1143 b = (got_minus ? STAP_ARG_BITNESS_16BIT_SIGNED 1144 : STAP_ARG_BITNESS_16BIT_UNSIGNED); 1145 break; 1146 1147 case '4': 1148 b = (got_minus ? STAP_ARG_BITNESS_32BIT_SIGNED 1149 : STAP_ARG_BITNESS_32BIT_UNSIGNED); 1150 break; 1151 1152 case '8': 1153 b = (got_minus ? STAP_ARG_BITNESS_64BIT_SIGNED 1154 : STAP_ARG_BITNESS_64BIT_UNSIGNED); 1155 break; 1156 1157 default: 1158 { 1159 /* We have an error, because we don't expect anything 1160 except 1, 2, 4 and 8. */ 1161 warning (_("unrecognized bitness %s%c' for probe `%s'"), 1162 got_minus ? "`-" : "`", *cur, probe->p.name); 1163 return; 1164 } 1165 } 1166 1167 arg.bitness = b; 1168 1169 /* Discard the number and the `@' sign. */ 1170 cur += 2; 1171 } 1172 else 1173 arg.bitness = STAP_ARG_BITNESS_UNDEFINED; 1174 1175 arg.atype = stap_get_expected_argument_type (gdbarch, arg.bitness); 1176 1177 expr = stap_parse_argument (&cur, arg.atype, gdbarch); 1178 1179 if (stap_expression_debug) 1180 dump_raw_expression (expr, gdb_stdlog, 1181 "before conversion to prefix form"); 1182 1183 prefixify_expression (expr); 1184 1185 if (stap_expression_debug) 1186 dump_prefix_expression (expr, gdb_stdlog); 1187 1188 arg.aexpr = expr; 1189 1190 /* Start it over again. */ 1191 cur = skip_spaces_const (cur); 1192 1193 VEC_safe_push (stap_probe_arg_s, probe->args_u.vec, &arg); 1194 } 1195 } 1196 1197 /* Implementation of the get_probe_address method. */ 1198 1199 static CORE_ADDR 1200 stap_get_probe_address (struct probe *probe, struct objfile *objfile) 1201 { 1202 return probe->address + ANOFFSET (objfile->section_offsets, 1203 SECT_OFF_DATA (objfile)); 1204 } 1205 1206 /* Given PROBE, returns the number of arguments present in that probe's 1207 argument string. */ 1208 1209 static unsigned 1210 stap_get_probe_argument_count (struct probe *probe_generic, 1211 struct frame_info *frame) 1212 { 1213 struct stap_probe *probe = (struct stap_probe *) probe_generic; 1214 struct gdbarch *gdbarch = get_frame_arch (frame); 1215 1216 gdb_assert (probe_generic->pops == &stap_probe_ops); 1217 1218 if (!probe->args_parsed) 1219 { 1220 if (can_evaluate_probe_arguments (probe_generic)) 1221 stap_parse_probe_arguments (probe, gdbarch); 1222 else 1223 { 1224 static int have_warned_stap_incomplete = 0; 1225 1226 if (!have_warned_stap_incomplete) 1227 { 1228 warning (_( 1229 "The SystemTap SDT probe support is not fully implemented on this target;\n" 1230 "you will not be able to inspect the arguments of the probes.\n" 1231 "Please report a bug against GDB requesting a port to this target.")); 1232 have_warned_stap_incomplete = 1; 1233 } 1234 1235 /* Marking the arguments as "already parsed". */ 1236 probe->args_u.vec = NULL; 1237 probe->args_parsed = 1; 1238 } 1239 } 1240 1241 gdb_assert (probe->args_parsed); 1242 return VEC_length (stap_probe_arg_s, probe->args_u.vec); 1243 } 1244 1245 /* Return 1 if OP is a valid operator inside a probe argument, or zero 1246 otherwise. */ 1247 1248 static int 1249 stap_is_operator (const char *op) 1250 { 1251 int ret = 1; 1252 1253 switch (*op) 1254 { 1255 case '*': 1256 case '/': 1257 case '%': 1258 case '^': 1259 case '!': 1260 case '+': 1261 case '-': 1262 case '<': 1263 case '>': 1264 case '|': 1265 case '&': 1266 break; 1267 1268 case '=': 1269 if (op[1] != '=') 1270 ret = 0; 1271 break; 1272 1273 default: 1274 /* We didn't find any operator. */ 1275 ret = 0; 1276 } 1277 1278 return ret; 1279 } 1280 1281 static struct stap_probe_arg * 1282 stap_get_arg (struct stap_probe *probe, unsigned n, struct gdbarch *gdbarch) 1283 { 1284 if (!probe->args_parsed) 1285 stap_parse_probe_arguments (probe, gdbarch); 1286 1287 return VEC_index (stap_probe_arg_s, probe->args_u.vec, n); 1288 } 1289 1290 /* Implement the `can_evaluate_probe_arguments' method of probe_ops. */ 1291 1292 static int 1293 stap_can_evaluate_probe_arguments (struct probe *probe_generic) 1294 { 1295 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic; 1296 struct gdbarch *gdbarch = stap_probe->p.arch; 1297 1298 /* For SystemTap probes, we have to guarantee that the method 1299 stap_is_single_operand is defined on gdbarch. If it is not, then it 1300 means that argument evaluation is not implemented on this target. */ 1301 return gdbarch_stap_is_single_operand_p (gdbarch); 1302 } 1303 1304 /* Evaluate the probe's argument N (indexed from 0), returning a value 1305 corresponding to it. Assertion is thrown if N does not exist. */ 1306 1307 static struct value * 1308 stap_evaluate_probe_argument (struct probe *probe_generic, unsigned n, 1309 struct frame_info *frame) 1310 { 1311 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic; 1312 struct gdbarch *gdbarch = get_frame_arch (frame); 1313 struct stap_probe_arg *arg; 1314 int pos = 0; 1315 1316 gdb_assert (probe_generic->pops == &stap_probe_ops); 1317 1318 arg = stap_get_arg (stap_probe, n, gdbarch); 1319 return evaluate_subexp_standard (arg->atype, arg->aexpr, &pos, EVAL_NORMAL); 1320 } 1321 1322 /* Compile the probe's argument N (indexed from 0) to agent expression. 1323 Assertion is thrown if N does not exist. */ 1324 1325 static void 1326 stap_compile_to_ax (struct probe *probe_generic, struct agent_expr *expr, 1327 struct axs_value *value, unsigned n) 1328 { 1329 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic; 1330 struct stap_probe_arg *arg; 1331 union exp_element *pc; 1332 1333 gdb_assert (probe_generic->pops == &stap_probe_ops); 1334 1335 arg = stap_get_arg (stap_probe, n, expr->gdbarch); 1336 1337 pc = arg->aexpr->elts; 1338 gen_expr (arg->aexpr, &pc, expr, value); 1339 1340 require_rvalue (expr, value); 1341 value->type = arg->atype; 1342 } 1343 1344 /* Destroy (free) the data related to PROBE. PROBE memory itself is not feed 1345 as it is allocated on an obstack. */ 1346 1347 static void 1348 stap_probe_destroy (struct probe *probe_generic) 1349 { 1350 struct stap_probe *probe = (struct stap_probe *) probe_generic; 1351 1352 gdb_assert (probe_generic->pops == &stap_probe_ops); 1353 1354 if (probe->args_parsed) 1355 { 1356 struct stap_probe_arg *arg; 1357 int ix; 1358 1359 for (ix = 0; VEC_iterate (stap_probe_arg_s, probe->args_u.vec, ix, arg); 1360 ++ix) 1361 xfree (arg->aexpr); 1362 VEC_free (stap_probe_arg_s, probe->args_u.vec); 1363 } 1364 } 1365 1366 1367 1368 /* This is called to compute the value of one of the $_probe_arg* 1369 convenience variables. */ 1370 1371 static struct value * 1372 compute_probe_arg (struct gdbarch *arch, struct internalvar *ivar, 1373 void *data) 1374 { 1375 struct frame_info *frame = get_selected_frame (_("No frame selected")); 1376 CORE_ADDR pc = get_frame_pc (frame); 1377 int sel = (int) (uintptr_t) data; 1378 struct bound_probe pc_probe; 1379 const struct sym_probe_fns *pc_probe_fns; 1380 unsigned n_args; 1381 1382 /* SEL == -1 means "_probe_argc". */ 1383 gdb_assert (sel >= -1); 1384 1385 pc_probe = find_probe_by_pc (pc); 1386 if (pc_probe.probe == NULL) 1387 error (_("No SystemTap probe at PC %s"), core_addr_to_string (pc)); 1388 1389 n_args = get_probe_argument_count (pc_probe.probe, frame); 1390 if (sel == -1) 1391 return value_from_longest (builtin_type (arch)->builtin_int, n_args); 1392 1393 if (sel >= n_args) 1394 error (_("Invalid probe argument %d -- probe has %u arguments available"), 1395 sel, n_args); 1396 1397 return evaluate_probe_argument (pc_probe.probe, sel, frame); 1398 } 1399 1400 /* This is called to compile one of the $_probe_arg* convenience 1401 variables into an agent expression. */ 1402 1403 static void 1404 compile_probe_arg (struct internalvar *ivar, struct agent_expr *expr, 1405 struct axs_value *value, void *data) 1406 { 1407 CORE_ADDR pc = expr->scope; 1408 int sel = (int) (uintptr_t) data; 1409 struct bound_probe pc_probe; 1410 const struct sym_probe_fns *pc_probe_fns; 1411 int n_args; 1412 struct frame_info *frame = get_selected_frame (NULL); 1413 1414 /* SEL == -1 means "_probe_argc". */ 1415 gdb_assert (sel >= -1); 1416 1417 pc_probe = find_probe_by_pc (pc); 1418 if (pc_probe.probe == NULL) 1419 error (_("No SystemTap probe at PC %s"), core_addr_to_string (pc)); 1420 1421 n_args = get_probe_argument_count (pc_probe.probe, frame); 1422 1423 if (sel == -1) 1424 { 1425 value->kind = axs_rvalue; 1426 value->type = builtin_type (expr->gdbarch)->builtin_int; 1427 ax_const_l (expr, n_args); 1428 return; 1429 } 1430 1431 gdb_assert (sel >= 0); 1432 if (sel >= n_args) 1433 error (_("Invalid probe argument %d -- probe has %d arguments available"), 1434 sel, n_args); 1435 1436 pc_probe.probe->pops->compile_to_ax (pc_probe.probe, expr, value, sel); 1437 } 1438 1439 1440 1441 /* Set or clear a SystemTap semaphore. ADDRESS is the semaphore's 1442 address. SET is zero if the semaphore should be cleared, or one 1443 if it should be set. This is a helper function for `stap_semaphore_down' 1444 and `stap_semaphore_up'. */ 1445 1446 static void 1447 stap_modify_semaphore (CORE_ADDR address, int set, struct gdbarch *gdbarch) 1448 { 1449 gdb_byte bytes[sizeof (LONGEST)]; 1450 /* The ABI specifies "unsigned short". */ 1451 struct type *type = builtin_type (gdbarch)->builtin_unsigned_short; 1452 ULONGEST value; 1453 1454 if (address == 0) 1455 return; 1456 1457 /* Swallow errors. */ 1458 if (target_read_memory (address, bytes, TYPE_LENGTH (type)) != 0) 1459 { 1460 warning (_("Could not read the value of a SystemTap semaphore.")); 1461 return; 1462 } 1463 1464 value = extract_unsigned_integer (bytes, TYPE_LENGTH (type), 1465 gdbarch_byte_order (gdbarch)); 1466 /* Note that we explicitly don't worry about overflow or 1467 underflow. */ 1468 if (set) 1469 ++value; 1470 else 1471 --value; 1472 1473 store_unsigned_integer (bytes, TYPE_LENGTH (type), 1474 gdbarch_byte_order (gdbarch), value); 1475 1476 if (target_write_memory (address, bytes, TYPE_LENGTH (type)) != 0) 1477 warning (_("Could not write the value of a SystemTap semaphore.")); 1478 } 1479 1480 /* Set a SystemTap semaphore. SEM is the semaphore's address. Semaphores 1481 act as reference counters, so calls to this function must be paired with 1482 calls to `stap_semaphore_down'. 1483 1484 This function and `stap_semaphore_down' race with another tool changing 1485 the probes, but that is too rare to care. */ 1486 1487 static void 1488 stap_set_semaphore (struct probe *probe_generic, struct objfile *objfile, 1489 struct gdbarch *gdbarch) 1490 { 1491 struct stap_probe *probe = (struct stap_probe *) probe_generic; 1492 CORE_ADDR addr; 1493 1494 gdb_assert (probe_generic->pops == &stap_probe_ops); 1495 1496 addr = (probe->sem_addr 1497 + ANOFFSET (objfile->section_offsets, SECT_OFF_DATA (objfile))); 1498 stap_modify_semaphore (addr, 1, gdbarch); 1499 } 1500 1501 /* Clear a SystemTap semaphore. SEM is the semaphore's address. */ 1502 1503 static void 1504 stap_clear_semaphore (struct probe *probe_generic, struct objfile *objfile, 1505 struct gdbarch *gdbarch) 1506 { 1507 struct stap_probe *probe = (struct stap_probe *) probe_generic; 1508 CORE_ADDR addr; 1509 1510 gdb_assert (probe_generic->pops == &stap_probe_ops); 1511 1512 addr = (probe->sem_addr 1513 + ANOFFSET (objfile->section_offsets, SECT_OFF_DATA (objfile))); 1514 stap_modify_semaphore (addr, 0, gdbarch); 1515 } 1516 1517 /* Implementation of `$_probe_arg*' set of variables. */ 1518 1519 static const struct internalvar_funcs probe_funcs = 1520 { 1521 compute_probe_arg, 1522 compile_probe_arg, 1523 NULL 1524 }; 1525 1526 /* Helper function that parses the information contained in a 1527 SystemTap's probe. Basically, the information consists in: 1528 1529 - Probe's PC address; 1530 - Link-time section address of `.stapsdt.base' section; 1531 - Link-time address of the semaphore variable, or ZERO if the 1532 probe doesn't have an associated semaphore; 1533 - Probe's provider name; 1534 - Probe's name; 1535 - Probe's argument format 1536 1537 This function returns 1 if the handling was successful, and zero 1538 otherwise. */ 1539 1540 static void 1541 handle_stap_probe (struct objfile *objfile, struct sdt_note *el, 1542 VEC (probe_p) **probesp, CORE_ADDR base) 1543 { 1544 bfd *abfd = objfile->obfd; 1545 int size = bfd_get_arch_size (abfd) / 8; 1546 struct gdbarch *gdbarch = get_objfile_arch (objfile); 1547 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; 1548 CORE_ADDR base_ref; 1549 const char *probe_args = NULL; 1550 struct stap_probe *ret; 1551 1552 ret = obstack_alloc (&objfile->per_bfd->storage_obstack, sizeof (*ret)); 1553 ret->p.pops = &stap_probe_ops; 1554 ret->p.arch = gdbarch; 1555 1556 /* Provider and the name of the probe. */ 1557 ret->p.provider = (char *) &el->data[3 * size]; 1558 ret->p.name = memchr (ret->p.provider, '\0', 1559 (char *) el->data + el->size - ret->p.provider); 1560 /* Making sure there is a name. */ 1561 if (ret->p.name == NULL) 1562 { 1563 complaint (&symfile_complaints, _("corrupt probe name when " 1564 "reading `%s'"), 1565 objfile_name (objfile)); 1566 1567 /* There is no way to use a probe without a name or a provider, so 1568 returning zero here makes sense. */ 1569 return; 1570 } 1571 else 1572 ++ret->p.name; 1573 1574 /* Retrieving the probe's address. */ 1575 ret->p.address = extract_typed_address (&el->data[0], ptr_type); 1576 1577 /* Link-time sh_addr of `.stapsdt.base' section. */ 1578 base_ref = extract_typed_address (&el->data[size], ptr_type); 1579 1580 /* Semaphore address. */ 1581 ret->sem_addr = extract_typed_address (&el->data[2 * size], ptr_type); 1582 1583 ret->p.address += base - base_ref; 1584 if (ret->sem_addr != 0) 1585 ret->sem_addr += base - base_ref; 1586 1587 /* Arguments. We can only extract the argument format if there is a valid 1588 name for this probe. */ 1589 probe_args = memchr (ret->p.name, '\0', 1590 (char *) el->data + el->size - ret->p.name); 1591 1592 if (probe_args != NULL) 1593 ++probe_args; 1594 1595 if (probe_args == NULL 1596 || (memchr (probe_args, '\0', (char *) el->data + el->size - ret->p.name) 1597 != el->data + el->size - 1)) 1598 { 1599 complaint (&symfile_complaints, _("corrupt probe argument when " 1600 "reading `%s'"), 1601 objfile_name (objfile)); 1602 /* If the argument string is NULL, it means some problem happened with 1603 it. So we return 0. */ 1604 return; 1605 } 1606 1607 ret->args_parsed = 0; 1608 ret->args_u.text = (void *) probe_args; 1609 1610 /* Successfully created probe. */ 1611 VEC_safe_push (probe_p, *probesp, (struct probe *) ret); 1612 } 1613 1614 /* Helper function which tries to find the base address of the SystemTap 1615 base section named STAP_BASE_SECTION_NAME. */ 1616 1617 static void 1618 get_stap_base_address_1 (bfd *abfd, asection *sect, void *obj) 1619 { 1620 asection **ret = obj; 1621 1622 if ((sect->flags & (SEC_DATA | SEC_ALLOC | SEC_HAS_CONTENTS)) 1623 && sect->name && !strcmp (sect->name, STAP_BASE_SECTION_NAME)) 1624 *ret = sect; 1625 } 1626 1627 /* Helper function which iterates over every section in the BFD file, 1628 trying to find the base address of the SystemTap base section. 1629 Returns 1 if found (setting BASE to the proper value), zero otherwise. */ 1630 1631 static int 1632 get_stap_base_address (bfd *obfd, bfd_vma *base) 1633 { 1634 asection *ret = NULL; 1635 1636 bfd_map_over_sections (obfd, get_stap_base_address_1, (void *) &ret); 1637 1638 if (ret == NULL) 1639 { 1640 complaint (&symfile_complaints, _("could not obtain base address for " 1641 "SystemTap section on objfile `%s'."), 1642 obfd->filename); 1643 return 0; 1644 } 1645 1646 if (base != NULL) 1647 *base = ret->vma; 1648 1649 return 1; 1650 } 1651 1652 /* Helper function for `elf_get_probes', which gathers information about all 1653 SystemTap probes from OBJFILE. */ 1654 1655 static void 1656 stap_get_probes (VEC (probe_p) **probesp, struct objfile *objfile) 1657 { 1658 /* If we are here, then this is the first time we are parsing the 1659 SystemTap probe's information. We basically have to count how many 1660 probes the objfile has, and then fill in the necessary information 1661 for each one. */ 1662 bfd *obfd = objfile->obfd; 1663 bfd_vma base; 1664 struct sdt_note *iter; 1665 unsigned save_probesp_len = VEC_length (probe_p, *probesp); 1666 1667 if (objfile->separate_debug_objfile_backlink != NULL) 1668 { 1669 /* This is a .debug file, not the objfile itself. */ 1670 return; 1671 } 1672 1673 if (elf_tdata (obfd)->sdt_note_head == NULL) 1674 { 1675 /* There isn't any probe here. */ 1676 return; 1677 } 1678 1679 if (!get_stap_base_address (obfd, &base)) 1680 { 1681 /* There was an error finding the base address for the section. 1682 Just return NULL. */ 1683 return; 1684 } 1685 1686 /* Parsing each probe's information. */ 1687 for (iter = elf_tdata (obfd)->sdt_note_head; 1688 iter != NULL; 1689 iter = iter->next) 1690 { 1691 /* We first have to handle all the information about the 1692 probe which is present in the section. */ 1693 handle_stap_probe (objfile, iter, probesp, base); 1694 } 1695 1696 if (save_probesp_len == VEC_length (probe_p, *probesp)) 1697 { 1698 /* If we are here, it means we have failed to parse every known 1699 probe. */ 1700 complaint (&symfile_complaints, _("could not parse SystemTap probe(s) " 1701 "from inferior")); 1702 return; 1703 } 1704 } 1705 1706 static int 1707 stap_probe_is_linespec (const char **linespecp) 1708 { 1709 static const char *const keywords[] = { "-pstap", "-probe-stap", NULL }; 1710 1711 return probe_is_linespec_by_keyword (linespecp, keywords); 1712 } 1713 1714 static void 1715 stap_gen_info_probes_table_header (VEC (info_probe_column_s) **heads) 1716 { 1717 info_probe_column_s stap_probe_column; 1718 1719 stap_probe_column.field_name = "semaphore"; 1720 stap_probe_column.print_name = _("Semaphore"); 1721 1722 VEC_safe_push (info_probe_column_s, *heads, &stap_probe_column); 1723 } 1724 1725 static void 1726 stap_gen_info_probes_table_values (struct probe *probe_generic, 1727 VEC (const_char_ptr) **ret) 1728 { 1729 struct stap_probe *probe = (struct stap_probe *) probe_generic; 1730 struct gdbarch *gdbarch; 1731 const char *val = NULL; 1732 1733 gdb_assert (probe_generic->pops == &stap_probe_ops); 1734 1735 gdbarch = probe->p.arch; 1736 1737 if (probe->sem_addr != 0) 1738 val = print_core_address (gdbarch, probe->sem_addr); 1739 1740 VEC_safe_push (const_char_ptr, *ret, val); 1741 } 1742 1743 /* SystemTap probe_ops. */ 1744 1745 static const struct probe_ops stap_probe_ops = 1746 { 1747 stap_probe_is_linespec, 1748 stap_get_probes, 1749 stap_get_probe_address, 1750 stap_get_probe_argument_count, 1751 stap_can_evaluate_probe_arguments, 1752 stap_evaluate_probe_argument, 1753 stap_compile_to_ax, 1754 stap_set_semaphore, 1755 stap_clear_semaphore, 1756 stap_probe_destroy, 1757 stap_gen_info_probes_table_header, 1758 stap_gen_info_probes_table_values, 1759 }; 1760 1761 /* Implementation of the `info probes stap' command. */ 1762 1763 static void 1764 info_probes_stap_command (char *arg, int from_tty) 1765 { 1766 info_probes_for_ops (arg, from_tty, &stap_probe_ops); 1767 } 1768 1769 void _initialize_stap_probe (void); 1770 1771 void 1772 _initialize_stap_probe (void) 1773 { 1774 VEC_safe_push (probe_ops_cp, all_probe_ops, &stap_probe_ops); 1775 1776 add_setshow_zuinteger_cmd ("stap-expression", class_maintenance, 1777 &stap_expression_debug, 1778 _("Set SystemTap expression debugging."), 1779 _("Show SystemTap expression debugging."), 1780 _("When non-zero, the internal representation " 1781 "of SystemTap expressions will be printed."), 1782 NULL, 1783 show_stapexpressiondebug, 1784 &setdebuglist, &showdebuglist); 1785 1786 create_internalvar_type_lazy ("_probe_argc", &probe_funcs, 1787 (void *) (uintptr_t) -1); 1788 create_internalvar_type_lazy ("_probe_arg0", &probe_funcs, 1789 (void *) (uintptr_t) 0); 1790 create_internalvar_type_lazy ("_probe_arg1", &probe_funcs, 1791 (void *) (uintptr_t) 1); 1792 create_internalvar_type_lazy ("_probe_arg2", &probe_funcs, 1793 (void *) (uintptr_t) 2); 1794 create_internalvar_type_lazy ("_probe_arg3", &probe_funcs, 1795 (void *) (uintptr_t) 3); 1796 create_internalvar_type_lazy ("_probe_arg4", &probe_funcs, 1797 (void *) (uintptr_t) 4); 1798 create_internalvar_type_lazy ("_probe_arg5", &probe_funcs, 1799 (void *) (uintptr_t) 5); 1800 create_internalvar_type_lazy ("_probe_arg6", &probe_funcs, 1801 (void *) (uintptr_t) 6); 1802 create_internalvar_type_lazy ("_probe_arg7", &probe_funcs, 1803 (void *) (uintptr_t) 7); 1804 create_internalvar_type_lazy ("_probe_arg8", &probe_funcs, 1805 (void *) (uintptr_t) 8); 1806 create_internalvar_type_lazy ("_probe_arg9", &probe_funcs, 1807 (void *) (uintptr_t) 9); 1808 create_internalvar_type_lazy ("_probe_arg10", &probe_funcs, 1809 (void *) (uintptr_t) 10); 1810 create_internalvar_type_lazy ("_probe_arg11", &probe_funcs, 1811 (void *) (uintptr_t) 11); 1812 1813 add_cmd ("stap", class_info, info_probes_stap_command, 1814 _("\ 1815 Show information about SystemTap static probes.\n\ 1816 Usage: info probes stap [PROVIDER [NAME [OBJECT]]]\n\ 1817 Each argument is a regular expression, used to select probes.\n\ 1818 PROVIDER matches probe provider names.\n\ 1819 NAME matches the probe names.\n\ 1820 OBJECT matches the executable or shared library name."), 1821 info_probes_cmdlist_get ()); 1822 1823 } 1824