xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/stap-probe.c (revision 8b657b0747480f8989760d71343d6dd33f8d4cf9)
1 /* SystemTap probe support for GDB.
2 
3    Copyright (C) 2012-2023 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "stap-probe.h"
22 #include "probe.h"
23 #include "ui-out.h"
24 #include "objfiles.h"
25 #include "arch-utils.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "filenames.h"
29 #include "value.h"
30 #include "ax.h"
31 #include "ax-gdb.h"
32 #include "complaints.h"
33 #include "cli/cli-utils.h"
34 #include "linespec.h"
35 #include "user-regs.h"
36 #include "parser-defs.h"
37 #include "language.h"
38 #include "elf-bfd.h"
39 #include "expop.h"
40 #include <unordered_map>
41 #include "gdbsupport/hash_enum.h"
42 
43 #include <ctype.h>
44 
45 /* The name of the SystemTap section where we will find information about
46    the probes.  */
47 
48 #define STAP_BASE_SECTION_NAME ".stapsdt.base"
49 
50 /* Should we display debug information for the probe's argument expression
51    parsing?  */
52 
53 static unsigned int stap_expression_debug = 0;
54 
55 /* The various possibilities of bitness defined for a probe's argument.
56 
57    The relationship is:
58 
59    - STAP_ARG_BITNESS_UNDEFINED:  The user hasn't specified the bitness.
60    - STAP_ARG_BITNESS_8BIT_UNSIGNED:  argument string starts with `1@'.
61    - STAP_ARG_BITNESS_8BIT_SIGNED:  argument string starts with `-1@'.
62    - STAP_ARG_BITNESS_16BIT_UNSIGNED:  argument string starts with `2@'.
63    - STAP_ARG_BITNESS_16BIT_SIGNED:  argument string starts with `-2@'.
64    - STAP_ARG_BITNESS_32BIT_UNSIGNED:  argument string starts with `4@'.
65    - STAP_ARG_BITNESS_32BIT_SIGNED:  argument string starts with `-4@'.
66    - STAP_ARG_BITNESS_64BIT_UNSIGNED:  argument string starts with `8@'.
67    - STAP_ARG_BITNESS_64BIT_SIGNED:  argument string starts with `-8@'.  */
68 
69 enum stap_arg_bitness
70 {
71   STAP_ARG_BITNESS_UNDEFINED,
72   STAP_ARG_BITNESS_8BIT_UNSIGNED,
73   STAP_ARG_BITNESS_8BIT_SIGNED,
74   STAP_ARG_BITNESS_16BIT_UNSIGNED,
75   STAP_ARG_BITNESS_16BIT_SIGNED,
76   STAP_ARG_BITNESS_32BIT_UNSIGNED,
77   STAP_ARG_BITNESS_32BIT_SIGNED,
78   STAP_ARG_BITNESS_64BIT_UNSIGNED,
79   STAP_ARG_BITNESS_64BIT_SIGNED,
80 };
81 
82 /* The following structure represents a single argument for the probe.  */
83 
84 struct stap_probe_arg
85 {
86   /* Constructor for stap_probe_arg.  */
87   stap_probe_arg (enum stap_arg_bitness bitness_, struct type *atype_,
88 		  expression_up &&aexpr_)
89   : bitness (bitness_), atype (atype_), aexpr (std::move (aexpr_))
90   {}
91 
92   /* The bitness of this argument.  */
93   enum stap_arg_bitness bitness;
94 
95   /* The corresponding `struct type *' to the bitness.  */
96   struct type *atype;
97 
98   /* The argument converted to an internal GDB expression.  */
99   expression_up aexpr;
100 };
101 
102 /* Class that implements the static probe methods for "stap" probes.  */
103 
104 class stap_static_probe_ops : public static_probe_ops
105 {
106 public:
107   /* We need a user-provided constructor to placate some compilers.
108      See PR build/24937.  */
109   stap_static_probe_ops ()
110   {
111   }
112 
113   /* See probe.h.  */
114   bool is_linespec (const char **linespecp) const override;
115 
116   /* See probe.h.  */
117   void get_probes (std::vector<std::unique_ptr<probe>> *probesp,
118 		   struct objfile *objfile) const override;
119 
120   /* See probe.h.  */
121   const char *type_name () const override;
122 
123   /* See probe.h.  */
124   std::vector<struct info_probe_column> gen_info_probes_table_header
125     () const override;
126 };
127 
128 /* SystemTap static_probe_ops.  */
129 
130 const stap_static_probe_ops stap_static_probe_ops {};
131 
132 class stap_probe : public probe
133 {
134 public:
135   /* Constructor for stap_probe.  */
136   stap_probe (std::string &&name_, std::string &&provider_, CORE_ADDR address_,
137 	      struct gdbarch *arch_, CORE_ADDR sem_addr, const char *args_text)
138     : probe (std::move (name_), std::move (provider_), address_, arch_),
139       m_sem_addr (sem_addr),
140       m_have_parsed_args (false), m_unparsed_args_text (args_text)
141   {}
142 
143   /* See probe.h.  */
144   CORE_ADDR get_relocated_address (struct objfile *objfile) override;
145 
146   /* See probe.h.  */
147   unsigned get_argument_count (struct gdbarch *gdbarch) override;
148 
149   /* See probe.h.  */
150   bool can_evaluate_arguments () const override;
151 
152   /* See probe.h.  */
153   struct value *evaluate_argument (unsigned n,
154 				   frame_info_ptr frame) override;
155 
156   /* See probe.h.  */
157   void compile_to_ax (struct agent_expr *aexpr,
158 		      struct axs_value *axs_value,
159 		      unsigned n) override;
160 
161   /* See probe.h.  */
162   void set_semaphore (struct objfile *objfile,
163 		      struct gdbarch *gdbarch) override;
164 
165   /* See probe.h.  */
166   void clear_semaphore (struct objfile *objfile,
167 			struct gdbarch *gdbarch) override;
168 
169   /* See probe.h.  */
170   const static_probe_ops *get_static_ops () const override;
171 
172   /* See probe.h.  */
173   std::vector<const char *> gen_info_probes_table_values () const override;
174 
175   /* Return argument N of probe.
176 
177      If the probe's arguments have not been parsed yet, parse them.  If
178      there are no arguments, throw an exception (error).  Otherwise,
179      return the requested argument.  */
180   struct stap_probe_arg *get_arg_by_number (unsigned n,
181 					    struct gdbarch *gdbarch)
182   {
183     if (!m_have_parsed_args)
184       this->parse_arguments (gdbarch);
185 
186     gdb_assert (m_have_parsed_args);
187     if (m_parsed_args.empty ())
188       internal_error (_("Probe '%s' apparently does not have arguments, but \n"
189 			"GDB is requesting its argument number %u anyway.  "
190 			"This should not happen.  Please report this bug."),
191 		      this->get_name ().c_str (), n);
192 
193     if (n > m_parsed_args.size ())
194       internal_error (_("Probe '%s' has %d arguments, but GDB is requesting\n"
195 			"argument %u.  This should not happen.  Please\n"
196 			"report this bug."),
197 		      this->get_name ().c_str (),
198 		      (int) m_parsed_args.size (), n);
199 
200     return &m_parsed_args[n];
201   }
202 
203   /* Function which parses an argument string from the probe,
204      correctly splitting the arguments and storing their information
205      in properly ways.
206 
207      Consider the following argument string (x86 syntax):
208 
209      `4@%eax 4@$10'
210 
211      We have two arguments, `%eax' and `$10', both with 32-bit
212      unsigned bitness.  This function basically handles them, properly
213      filling some structures with this information.  */
214   void parse_arguments (struct gdbarch *gdbarch);
215 
216 private:
217   /* If the probe has a semaphore associated, then this is the value of
218      it, relative to SECT_OFF_DATA.  */
219   CORE_ADDR m_sem_addr;
220 
221   /* True if the arguments have been parsed.  */
222   bool m_have_parsed_args;
223 
224   /* The text version of the probe's arguments, unparsed.  */
225   const char *m_unparsed_args_text;
226 
227   /* Information about each argument.  This is an array of `stap_probe_arg',
228      with each entry representing one argument.  This is only valid if
229      M_ARGS_PARSED is true.  */
230   std::vector<struct stap_probe_arg> m_parsed_args;
231 };
232 
233 /* When parsing the arguments, we have to establish different precedences
234    for the various kinds of asm operators.  This enumeration represents those
235    precedences.
236 
237    This logic behind this is available at
238    <http://sourceware.org/binutils/docs/as/Infix-Ops.html#Infix-Ops>, or using
239    the command "info '(as)Infix Ops'".  */
240 
241 enum stap_operand_prec
242 {
243   /* Lowest precedence, used for non-recognized operands or for the beginning
244      of the parsing process.  */
245   STAP_OPERAND_PREC_NONE = 0,
246 
247   /* Precedence of logical OR.  */
248   STAP_OPERAND_PREC_LOGICAL_OR,
249 
250   /* Precedence of logical AND.  */
251   STAP_OPERAND_PREC_LOGICAL_AND,
252 
253   /* Precedence of additive (plus, minus) and comparative (equal, less,
254      greater-than, etc) operands.  */
255   STAP_OPERAND_PREC_ADD_CMP,
256 
257   /* Precedence of bitwise operands (bitwise OR, XOR, bitwise AND,
258      logical NOT).  */
259   STAP_OPERAND_PREC_BITWISE,
260 
261   /* Precedence of multiplicative operands (multiplication, division,
262      remainder, left shift and right shift).  */
263   STAP_OPERAND_PREC_MUL
264 };
265 
266 static expr::operation_up stap_parse_argument_1 (struct stap_parse_info *p,
267 						 expr::operation_up &&lhs,
268 						 enum stap_operand_prec prec)
269   ATTRIBUTE_UNUSED_RESULT;
270 
271 static expr::operation_up stap_parse_argument_conditionally
272      (struct stap_parse_info *p) ATTRIBUTE_UNUSED_RESULT;
273 
274 /* Returns true if *S is an operator, false otherwise.  */
275 
276 static bool stap_is_operator (const char *op);
277 
278 static void
279 show_stapexpressiondebug (struct ui_file *file, int from_tty,
280 			  struct cmd_list_element *c, const char *value)
281 {
282   gdb_printf (file, _("SystemTap Probe expression debugging is %s.\n"),
283 	      value);
284 }
285 
286 /* Returns the operator precedence level of OP, or STAP_OPERAND_PREC_NONE
287    if the operator code was not recognized.  */
288 
289 static enum stap_operand_prec
290 stap_get_operator_prec (enum exp_opcode op)
291 {
292   switch (op)
293     {
294     case BINOP_LOGICAL_OR:
295       return STAP_OPERAND_PREC_LOGICAL_OR;
296 
297     case BINOP_LOGICAL_AND:
298       return STAP_OPERAND_PREC_LOGICAL_AND;
299 
300     case BINOP_ADD:
301     case BINOP_SUB:
302     case BINOP_EQUAL:
303     case BINOP_NOTEQUAL:
304     case BINOP_LESS:
305     case BINOP_LEQ:
306     case BINOP_GTR:
307     case BINOP_GEQ:
308       return STAP_OPERAND_PREC_ADD_CMP;
309 
310     case BINOP_BITWISE_IOR:
311     case BINOP_BITWISE_AND:
312     case BINOP_BITWISE_XOR:
313     case UNOP_LOGICAL_NOT:
314       return STAP_OPERAND_PREC_BITWISE;
315 
316     case BINOP_MUL:
317     case BINOP_DIV:
318     case BINOP_REM:
319     case BINOP_LSH:
320     case BINOP_RSH:
321       return STAP_OPERAND_PREC_MUL;
322 
323     default:
324       return STAP_OPERAND_PREC_NONE;
325     }
326 }
327 
328 /* Given S, read the operator in it.  Return the EXP_OPCODE which
329    represents the operator detected, or throw an error if no operator
330    was found.  */
331 
332 static enum exp_opcode
333 stap_get_opcode (const char **s)
334 {
335   const char c = **s;
336   enum exp_opcode op;
337 
338   *s += 1;
339 
340   switch (c)
341     {
342     case '*':
343       op = BINOP_MUL;
344       break;
345 
346     case '/':
347       op = BINOP_DIV;
348       break;
349 
350     case '%':
351       op = BINOP_REM;
352     break;
353 
354     case '<':
355       op = BINOP_LESS;
356       if (**s == '<')
357 	{
358 	  *s += 1;
359 	  op = BINOP_LSH;
360 	}
361       else if (**s == '=')
362 	{
363 	  *s += 1;
364 	  op = BINOP_LEQ;
365 	}
366       else if (**s == '>')
367 	{
368 	  *s += 1;
369 	  op = BINOP_NOTEQUAL;
370 	}
371     break;
372 
373     case '>':
374       op = BINOP_GTR;
375       if (**s == '>')
376 	{
377 	  *s += 1;
378 	  op = BINOP_RSH;
379 	}
380       else if (**s == '=')
381 	{
382 	  *s += 1;
383 	  op = BINOP_GEQ;
384 	}
385     break;
386 
387     case '|':
388       op = BINOP_BITWISE_IOR;
389       if (**s == '|')
390 	{
391 	  *s += 1;
392 	  op = BINOP_LOGICAL_OR;
393 	}
394     break;
395 
396     case '&':
397       op = BINOP_BITWISE_AND;
398       if (**s == '&')
399 	{
400 	  *s += 1;
401 	  op = BINOP_LOGICAL_AND;
402 	}
403     break;
404 
405     case '^':
406       op = BINOP_BITWISE_XOR;
407       break;
408 
409     case '!':
410       op = UNOP_LOGICAL_NOT;
411       break;
412 
413     case '+':
414       op = BINOP_ADD;
415       break;
416 
417     case '-':
418       op = BINOP_SUB;
419       break;
420 
421     case '=':
422       gdb_assert (**s == '=');
423       op = BINOP_EQUAL;
424       break;
425 
426     default:
427       error (_("Invalid opcode in expression `%s' for SystemTap"
428 	       "probe"), *s);
429     }
430 
431   return op;
432 }
433 
434 typedef expr::operation_up binop_maker_ftype (expr::operation_up &&,
435 					      expr::operation_up &&);
436 /* Map from an expression opcode to a function that can create a
437    binary operation of that type.  */
438 static std::unordered_map<exp_opcode, binop_maker_ftype *,
439 			  gdb::hash_enum<exp_opcode>> stap_maker_map;
440 
441 /* Helper function to create a binary operation.  */
442 static expr::operation_up
443 stap_make_binop (enum exp_opcode opcode, expr::operation_up &&lhs,
444 		 expr::operation_up &&rhs)
445 {
446   auto iter = stap_maker_map.find (opcode);
447   gdb_assert (iter != stap_maker_map.end ());
448   return iter->second (std::move (lhs), std::move (rhs));
449 }
450 
451 /* Given the bitness of the argument, represented by B, return the
452    corresponding `struct type *', or throw an error if B is
453    unknown.  */
454 
455 static struct type *
456 stap_get_expected_argument_type (struct gdbarch *gdbarch,
457 				 enum stap_arg_bitness b,
458 				 const char *probe_name)
459 {
460   switch (b)
461     {
462     case STAP_ARG_BITNESS_UNDEFINED:
463       if (gdbarch_addr_bit (gdbarch) == 32)
464 	return builtin_type (gdbarch)->builtin_uint32;
465       else
466 	return builtin_type (gdbarch)->builtin_uint64;
467 
468     case STAP_ARG_BITNESS_8BIT_UNSIGNED:
469       return builtin_type (gdbarch)->builtin_uint8;
470 
471     case STAP_ARG_BITNESS_8BIT_SIGNED:
472       return builtin_type (gdbarch)->builtin_int8;
473 
474     case STAP_ARG_BITNESS_16BIT_UNSIGNED:
475       return builtin_type (gdbarch)->builtin_uint16;
476 
477     case STAP_ARG_BITNESS_16BIT_SIGNED:
478       return builtin_type (gdbarch)->builtin_int16;
479 
480     case STAP_ARG_BITNESS_32BIT_SIGNED:
481       return builtin_type (gdbarch)->builtin_int32;
482 
483     case STAP_ARG_BITNESS_32BIT_UNSIGNED:
484       return builtin_type (gdbarch)->builtin_uint32;
485 
486     case STAP_ARG_BITNESS_64BIT_SIGNED:
487       return builtin_type (gdbarch)->builtin_int64;
488 
489     case STAP_ARG_BITNESS_64BIT_UNSIGNED:
490       return builtin_type (gdbarch)->builtin_uint64;
491 
492     default:
493       error (_("Undefined bitness for probe '%s'."), probe_name);
494       break;
495     }
496 }
497 
498 /* Helper function to check for a generic list of prefixes.  GDBARCH
499    is the current gdbarch being used.  S is the expression being
500    analyzed.  If R is not NULL, it will be used to return the found
501    prefix.  PREFIXES is the list of expected prefixes.
502 
503    This function does a case-insensitive match.
504 
505    Return true if any prefix has been found, false otherwise.  */
506 
507 static bool
508 stap_is_generic_prefix (struct gdbarch *gdbarch, const char *s,
509 			const char **r, const char *const *prefixes)
510 {
511   const char *const *p;
512 
513   if (prefixes == NULL)
514     {
515       if (r != NULL)
516 	*r = "";
517 
518       return true;
519     }
520 
521   for (p = prefixes; *p != NULL; ++p)
522     if (strncasecmp (s, *p, strlen (*p)) == 0)
523       {
524 	if (r != NULL)
525 	  *r = *p;
526 
527 	return true;
528       }
529 
530   return false;
531 }
532 
533 /* Return true if S points to a register prefix, false otherwise.  For
534    a description of the arguments, look at stap_is_generic_prefix.  */
535 
536 static bool
537 stap_is_register_prefix (struct gdbarch *gdbarch, const char *s,
538 			 const char **r)
539 {
540   const char *const *t = gdbarch_stap_register_prefixes (gdbarch);
541 
542   return stap_is_generic_prefix (gdbarch, s, r, t);
543 }
544 
545 /* Return true if S points to a register indirection prefix, false
546    otherwise.  For a description of the arguments, look at
547    stap_is_generic_prefix.  */
548 
549 static bool
550 stap_is_register_indirection_prefix (struct gdbarch *gdbarch, const char *s,
551 				     const char **r)
552 {
553   const char *const *t = gdbarch_stap_register_indirection_prefixes (gdbarch);
554 
555   return stap_is_generic_prefix (gdbarch, s, r, t);
556 }
557 
558 /* Return true if S points to an integer prefix, false otherwise.  For
559    a description of the arguments, look at stap_is_generic_prefix.
560 
561    This function takes care of analyzing whether we are dealing with
562    an expected integer prefix, or, if there is no integer prefix to be
563    expected, whether we are dealing with a digit.  It does a
564    case-insensitive match.  */
565 
566 static bool
567 stap_is_integer_prefix (struct gdbarch *gdbarch, const char *s,
568 			const char **r)
569 {
570   const char *const *t = gdbarch_stap_integer_prefixes (gdbarch);
571   const char *const *p;
572 
573   if (t == NULL)
574     {
575       /* A NULL value here means that integers do not have a prefix.
576 	 We just check for a digit then.  */
577       if (r != NULL)
578 	*r = "";
579 
580       return isdigit (*s) > 0;
581     }
582 
583   for (p = t; *p != NULL; ++p)
584     {
585       size_t len = strlen (*p);
586 
587       if ((len == 0 && isdigit (*s))
588 	  || (len > 0 && strncasecmp (s, *p, len) == 0))
589 	{
590 	  /* Integers may or may not have a prefix.  The "len == 0"
591 	     check covers the case when integers do not have a prefix
592 	     (therefore, we just check if we have a digit).  The call
593 	     to "strncasecmp" covers the case when they have a
594 	     prefix.  */
595 	  if (r != NULL)
596 	    *r = *p;
597 
598 	  return true;
599 	}
600     }
601 
602   return false;
603 }
604 
605 /* Helper function to check for a generic list of suffixes.  If we are
606    not expecting any suffixes, then it just returns 1.  If we are
607    expecting at least one suffix, then it returns true if a suffix has
608    been found, false otherwise.  GDBARCH is the current gdbarch being
609    used.  S is the expression being analyzed.  If R is not NULL, it
610    will be used to return the found suffix.  SUFFIXES is the list of
611    expected suffixes.  This function does a case-insensitive
612    match.  */
613 
614 static bool
615 stap_generic_check_suffix (struct gdbarch *gdbarch, const char *s,
616 			   const char **r, const char *const *suffixes)
617 {
618   const char *const *p;
619   bool found = false;
620 
621   if (suffixes == NULL)
622     {
623       if (r != NULL)
624 	*r = "";
625 
626       return true;
627     }
628 
629   for (p = suffixes; *p != NULL; ++p)
630     if (strncasecmp (s, *p, strlen (*p)) == 0)
631       {
632 	if (r != NULL)
633 	  *r = *p;
634 
635 	found = true;
636 	break;
637       }
638 
639   return found;
640 }
641 
642 /* Return true if S points to an integer suffix, false otherwise.  For
643    a description of the arguments, look at
644    stap_generic_check_suffix.  */
645 
646 static bool
647 stap_check_integer_suffix (struct gdbarch *gdbarch, const char *s,
648 			   const char **r)
649 {
650   const char *const *p = gdbarch_stap_integer_suffixes (gdbarch);
651 
652   return stap_generic_check_suffix (gdbarch, s, r, p);
653 }
654 
655 /* Return true if S points to a register suffix, false otherwise.  For
656    a description of the arguments, look at
657    stap_generic_check_suffix.  */
658 
659 static bool
660 stap_check_register_suffix (struct gdbarch *gdbarch, const char *s,
661 			    const char **r)
662 {
663   const char *const *p = gdbarch_stap_register_suffixes (gdbarch);
664 
665   return stap_generic_check_suffix (gdbarch, s, r, p);
666 }
667 
668 /* Return true if S points to a register indirection suffix, false
669    otherwise.  For a description of the arguments, look at
670    stap_generic_check_suffix.  */
671 
672 static bool
673 stap_check_register_indirection_suffix (struct gdbarch *gdbarch, const char *s,
674 					const char **r)
675 {
676   const char *const *p = gdbarch_stap_register_indirection_suffixes (gdbarch);
677 
678   return stap_generic_check_suffix (gdbarch, s, r, p);
679 }
680 
681 /* Function responsible for parsing a register operand according to
682    SystemTap parlance.  Assuming:
683 
684    RP  = register prefix
685    RS  = register suffix
686    RIP = register indirection prefix
687    RIS = register indirection suffix
688 
689    Then a register operand can be:
690 
691    [RIP] [RP] REGISTER [RS] [RIS]
692 
693    This function takes care of a register's indirection, displacement and
694    direct access.  It also takes into consideration the fact that some
695    registers are named differently inside and outside GDB, e.g., PPC's
696    general-purpose registers are represented by integers in the assembly
697    language (e.g., `15' is the 15th general-purpose register), but inside
698    GDB they have a prefix (the letter `r') appended.  */
699 
700 static expr::operation_up
701 stap_parse_register_operand (struct stap_parse_info *p)
702 {
703   /* Simple flag to indicate whether we have seen a minus signal before
704      certain number.  */
705   bool got_minus = false;
706   /* Flag to indicate whether this register access is being
707      indirected.  */
708   bool indirect_p = false;
709   struct gdbarch *gdbarch = p->gdbarch;
710   /* Variables used to extract the register name from the probe's
711      argument.  */
712   const char *start;
713   const char *gdb_reg_prefix = gdbarch_stap_gdb_register_prefix (gdbarch);
714   const char *gdb_reg_suffix = gdbarch_stap_gdb_register_suffix (gdbarch);
715   const char *reg_prefix;
716   const char *reg_ind_prefix;
717   const char *reg_suffix;
718   const char *reg_ind_suffix;
719 
720   using namespace expr;
721 
722   /* Checking for a displacement argument.  */
723   if (*p->arg == '+')
724     {
725       /* If it's a plus sign, we don't need to do anything, just advance the
726 	 pointer.  */
727       ++p->arg;
728     }
729   else if (*p->arg == '-')
730     {
731       got_minus = true;
732       ++p->arg;
733     }
734 
735   struct type *long_type = builtin_type (gdbarch)->builtin_long;
736   operation_up disp_op;
737   if (isdigit (*p->arg))
738     {
739       /* The value of the displacement.  */
740       long displacement;
741       char *endp;
742 
743       displacement = strtol (p->arg, &endp, 10);
744       p->arg = endp;
745 
746       /* Generating the expression for the displacement.  */
747       if (got_minus)
748 	displacement = -displacement;
749       disp_op = make_operation<long_const_operation> (long_type, displacement);
750     }
751 
752   /* Getting rid of register indirection prefix.  */
753   if (stap_is_register_indirection_prefix (gdbarch, p->arg, &reg_ind_prefix))
754     {
755       indirect_p = true;
756       p->arg += strlen (reg_ind_prefix);
757     }
758 
759   if (disp_op != nullptr && !indirect_p)
760     error (_("Invalid register displacement syntax on expression `%s'."),
761 	   p->saved_arg);
762 
763   /* Getting rid of register prefix.  */
764   if (stap_is_register_prefix (gdbarch, p->arg, &reg_prefix))
765     p->arg += strlen (reg_prefix);
766 
767   /* Now we should have only the register name.  Let's extract it and get
768      the associated number.  */
769   start = p->arg;
770 
771   /* We assume the register name is composed by letters and numbers.  */
772   while (isalnum (*p->arg))
773     ++p->arg;
774 
775   std::string regname (start, p->arg - start);
776 
777   /* We only add the GDB's register prefix/suffix if we are dealing with
778      a numeric register.  */
779   if (isdigit (*start))
780     {
781       if (gdb_reg_prefix != NULL)
782 	regname = gdb_reg_prefix + regname;
783 
784       if (gdb_reg_suffix != NULL)
785 	regname += gdb_reg_suffix;
786     }
787 
788   int regnum = user_reg_map_name_to_regnum (gdbarch, regname.c_str (),
789 					    regname.size ());
790 
791   /* Is this a valid register name?  */
792   if (regnum == -1)
793     error (_("Invalid register name `%s' on expression `%s'."),
794 	   regname.c_str (), p->saved_arg);
795 
796   /* Check if there's any special treatment that the arch-specific
797      code would like to perform on the register name.  */
798   if (gdbarch_stap_adjust_register_p (gdbarch))
799     {
800       std::string newregname
801 	= gdbarch_stap_adjust_register (gdbarch, p, regname, regnum);
802 
803       if (regname != newregname)
804 	{
805 	  /* This is just a check we perform to make sure that the
806 	     arch-dependent code has provided us with a valid
807 	     register name.  */
808 	  regnum = user_reg_map_name_to_regnum (gdbarch, newregname.c_str (),
809 						newregname.size ());
810 
811 	  if (regnum == -1)
812 	    internal_error (_("Invalid register name '%s' after replacing it"
813 			      " (previous name was '%s')"),
814 			    newregname.c_str (), regname.c_str ());
815 
816 	  regname = std::move (newregname);
817 	}
818     }
819 
820   operation_up reg = make_operation<register_operation> (std::move (regname));
821 
822   /* If the argument has been placed into a vector register then (for most
823      architectures), the type of this register will be a union of arrays.
824      As a result, attempting to cast from the register type to the scalar
825      argument type will not be possible (GDB will throw an error during
826      expression evaluation).
827 
828      The solution is to extract the scalar type from the value contents of
829      the entire register value.  */
830   if (!is_scalar_type (gdbarch_register_type (gdbarch, regnum)))
831     {
832       gdb_assert (is_scalar_type (p->arg_type));
833       reg = make_operation<unop_extract_operation> (std::move (reg),
834 						    p->arg_type);
835     }
836 
837   if (indirect_p)
838     {
839       if (disp_op != nullptr)
840 	reg = make_operation<add_operation> (std::move (disp_op),
841 					     std::move (reg));
842 
843       /* Casting to the expected type.  */
844       struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
845       reg = make_operation<unop_cast_operation> (std::move (reg),
846 						 arg_ptr_type);
847       reg = make_operation<unop_ind_operation> (std::move (reg));
848     }
849 
850   /* Getting rid of the register name suffix.  */
851   if (stap_check_register_suffix (gdbarch, p->arg, &reg_suffix))
852     p->arg += strlen (reg_suffix);
853   else
854     error (_("Missing register name suffix on expression `%s'."),
855 	   p->saved_arg);
856 
857   /* Getting rid of the register indirection suffix.  */
858   if (indirect_p)
859     {
860       if (stap_check_register_indirection_suffix (gdbarch, p->arg,
861 						  &reg_ind_suffix))
862 	p->arg += strlen (reg_ind_suffix);
863       else
864 	error (_("Missing indirection suffix on expression `%s'."),
865 	       p->saved_arg);
866     }
867 
868   return reg;
869 }
870 
871 /* This function is responsible for parsing a single operand.
872 
873    A single operand can be:
874 
875       - an unary operation (e.g., `-5', `~2', or even with subexpressions
876 	like `-(2 + 1)')
877       - a register displacement, which will be treated as a register
878 	operand (e.g., `-4(%eax)' on x86)
879       - a numeric constant, or
880       - a register operand (see function `stap_parse_register_operand')
881 
882    The function also calls special-handling functions to deal with
883    unrecognized operands, allowing arch-specific parsers to be
884    created.  */
885 
886 static expr::operation_up
887 stap_parse_single_operand (struct stap_parse_info *p)
888 {
889   struct gdbarch *gdbarch = p->gdbarch;
890   const char *int_prefix = NULL;
891 
892   using namespace expr;
893 
894   /* We first try to parse this token as a "special token".  */
895   if (gdbarch_stap_parse_special_token_p (gdbarch))
896     {
897       operation_up token = gdbarch_stap_parse_special_token (gdbarch, p);
898       if (token != nullptr)
899 	return token;
900     }
901 
902   struct type *long_type = builtin_type (gdbarch)->builtin_long;
903   operation_up result;
904   if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+' || *p->arg == '!')
905     {
906       char c = *p->arg;
907       /* We use this variable to do a lookahead.  */
908       const char *tmp = p->arg;
909       bool has_digit = false;
910 
911       /* Skipping signal.  */
912       ++tmp;
913 
914       /* This is an unary operation.  Here is a list of allowed tokens
915 	 here:
916 
917 	 - numeric literal;
918 	 - number (from register displacement)
919 	 - subexpression (beginning with `(')
920 
921 	 We handle the register displacement here, and the other cases
922 	 recursively.  */
923       if (p->inside_paren_p)
924 	tmp = skip_spaces (tmp);
925 
926       while (isdigit (*tmp))
927 	{
928 	  /* We skip the digit here because we are only interested in
929 	     knowing what kind of unary operation this is.  The digit
930 	     will be handled by one of the functions that will be
931 	     called below ('stap_parse_argument_conditionally' or
932 	     'stap_parse_register_operand').  */
933 	  ++tmp;
934 	  has_digit = true;
935 	}
936 
937       if (has_digit && stap_is_register_indirection_prefix (gdbarch, tmp,
938 							    NULL))
939 	{
940 	  /* If we are here, it means it is a displacement.  The only
941 	     operations allowed here are `-' and `+'.  */
942 	  if (c != '-' && c != '+')
943 	    error (_("Invalid operator `%c' for register displacement "
944 		     "on expression `%s'."), c, p->saved_arg);
945 
946 	  result = stap_parse_register_operand (p);
947 	}
948       else
949 	{
950 	  /* This is not a displacement.  We skip the operator, and
951 	     deal with it when the recursion returns.  */
952 	  ++p->arg;
953 	  result = stap_parse_argument_conditionally (p);
954 	  if (c == '-')
955 	    result = make_operation<unary_neg_operation> (std::move (result));
956 	  else if (c == '~')
957 	    result = (make_operation<unary_complement_operation>
958 		      (std::move (result)));
959 	  else if (c == '!')
960 	    result = (make_operation<unary_logical_not_operation>
961 		      (std::move (result)));
962 	}
963     }
964   else if (isdigit (*p->arg))
965     {
966       /* A temporary variable, needed for lookahead.  */
967       const char *tmp = p->arg;
968       char *endp;
969       long number;
970 
971       /* We can be dealing with a numeric constant, or with a register
972 	 displacement.  */
973       number = strtol (tmp, &endp, 10);
974       tmp = endp;
975 
976       if (p->inside_paren_p)
977 	tmp = skip_spaces (tmp);
978 
979       /* If "stap_is_integer_prefix" returns true, it means we can
980 	 accept integers without a prefix here.  But we also need to
981 	 check whether the next token (i.e., "tmp") is not a register
982 	 indirection prefix.  */
983       if (stap_is_integer_prefix (gdbarch, p->arg, NULL)
984 	  && !stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
985 	{
986 	  const char *int_suffix;
987 
988 	  /* We are dealing with a numeric constant.  */
989 	  result = make_operation<long_const_operation> (long_type, number);
990 
991 	  p->arg = tmp;
992 
993 	  if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
994 	    p->arg += strlen (int_suffix);
995 	  else
996 	    error (_("Invalid constant suffix on expression `%s'."),
997 		   p->saved_arg);
998 	}
999       else if (stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
1000 	result = stap_parse_register_operand (p);
1001       else
1002 	error (_("Unknown numeric token on expression `%s'."),
1003 	       p->saved_arg);
1004     }
1005   else if (stap_is_integer_prefix (gdbarch, p->arg, &int_prefix))
1006     {
1007       /* We are dealing with a numeric constant.  */
1008       long number;
1009       char *endp;
1010       const char *int_suffix;
1011 
1012       p->arg += strlen (int_prefix);
1013       number = strtol (p->arg, &endp, 10);
1014       p->arg = endp;
1015 
1016       result = make_operation<long_const_operation> (long_type, number);
1017 
1018       if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
1019 	p->arg += strlen (int_suffix);
1020       else
1021 	error (_("Invalid constant suffix on expression `%s'."),
1022 	       p->saved_arg);
1023     }
1024   else if (stap_is_register_prefix (gdbarch, p->arg, NULL)
1025 	   || stap_is_register_indirection_prefix (gdbarch, p->arg, NULL))
1026     result = stap_parse_register_operand (p);
1027   else
1028     error (_("Operator `%c' not recognized on expression `%s'."),
1029 	   *p->arg, p->saved_arg);
1030 
1031   return result;
1032 }
1033 
1034 /* This function parses an argument conditionally, based on single or
1035    non-single operands.  A non-single operand would be a parenthesized
1036    expression (e.g., `(2 + 1)'), and a single operand is anything that
1037    starts with `-', `~', `+' (i.e., unary operators), a digit, or
1038    something recognized by `gdbarch_stap_is_single_operand'.  */
1039 
1040 static expr::operation_up
1041 stap_parse_argument_conditionally (struct stap_parse_info *p)
1042 {
1043   gdb_assert (gdbarch_stap_is_single_operand_p (p->gdbarch));
1044 
1045   expr::operation_up result;
1046   if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+' || *p->arg == '!'
1047       || isdigit (*p->arg)
1048       || gdbarch_stap_is_single_operand (p->gdbarch, p->arg))
1049     result = stap_parse_single_operand (p);
1050   else if (*p->arg == '(')
1051     {
1052       /* We are dealing with a parenthesized operand.  It means we
1053 	 have to parse it as it was a separate expression, without
1054 	 left-side or precedence.  */
1055       ++p->arg;
1056       p->arg = skip_spaces (p->arg);
1057       ++p->inside_paren_p;
1058 
1059       result = stap_parse_argument_1 (p, {}, STAP_OPERAND_PREC_NONE);
1060 
1061       p->arg = skip_spaces (p->arg);
1062       if (*p->arg != ')')
1063 	error (_("Missing close-parenthesis on expression `%s'."),
1064 	       p->saved_arg);
1065 
1066       --p->inside_paren_p;
1067       ++p->arg;
1068       if (p->inside_paren_p)
1069 	p->arg = skip_spaces (p->arg);
1070     }
1071   else
1072     error (_("Cannot parse expression `%s'."), p->saved_arg);
1073 
1074   return result;
1075 }
1076 
1077 /* Helper function for `stap_parse_argument'.  Please, see its comments to
1078    better understand what this function does.  */
1079 
1080 static expr::operation_up ATTRIBUTE_UNUSED_RESULT
1081 stap_parse_argument_1 (struct stap_parse_info *p,
1082 		       expr::operation_up &&lhs_in,
1083 		       enum stap_operand_prec prec)
1084 {
1085   /* This is an operator-precedence parser.
1086 
1087      We work with left- and right-sides of expressions, and
1088      parse them depending on the precedence of the operators
1089      we find.  */
1090 
1091   gdb_assert (p->arg != NULL);
1092 
1093   if (p->inside_paren_p)
1094     p->arg = skip_spaces (p->arg);
1095 
1096   using namespace expr;
1097   operation_up lhs = std::move (lhs_in);
1098   if (lhs == nullptr)
1099     {
1100       /* We were called without a left-side, either because this is the
1101 	 first call, or because we were called to parse a parenthesized
1102 	 expression.  It doesn't really matter; we have to parse the
1103 	 left-side in order to continue the process.  */
1104       lhs = stap_parse_argument_conditionally (p);
1105     }
1106 
1107   if (p->inside_paren_p)
1108     p->arg = skip_spaces (p->arg);
1109 
1110   /* Start to parse the right-side, and to "join" left and right sides
1111      depending on the operation specified.
1112 
1113      This loop shall continue until we run out of characters in the input,
1114      or until we find a close-parenthesis, which means that we've reached
1115      the end of a sub-expression.  */
1116   while (*p->arg != '\0' && *p->arg != ')' && !isspace (*p->arg))
1117     {
1118       const char *tmp_exp_buf;
1119       enum exp_opcode opcode;
1120       enum stap_operand_prec cur_prec;
1121 
1122       if (!stap_is_operator (p->arg))
1123 	error (_("Invalid operator `%c' on expression `%s'."), *p->arg,
1124 	       p->saved_arg);
1125 
1126       /* We have to save the current value of the expression buffer because
1127 	 the `stap_get_opcode' modifies it in order to get the current
1128 	 operator.  If this operator's precedence is lower than PREC, we
1129 	 should return and not advance the expression buffer pointer.  */
1130       tmp_exp_buf = p->arg;
1131       opcode = stap_get_opcode (&tmp_exp_buf);
1132 
1133       cur_prec = stap_get_operator_prec (opcode);
1134       if (cur_prec < prec)
1135 	{
1136 	  /* If the precedence of the operator that we are seeing now is
1137 	     lower than the precedence of the first operator seen before
1138 	     this parsing process began, it means we should stop parsing
1139 	     and return.  */
1140 	  break;
1141 	}
1142 
1143       p->arg = tmp_exp_buf;
1144       if (p->inside_paren_p)
1145 	p->arg = skip_spaces (p->arg);
1146 
1147       /* Parse the right-side of the expression.
1148 
1149 	 We save whether the right-side is a parenthesized
1150 	 subexpression because, if it is, we will have to finish
1151 	 processing this part of the expression before continuing.  */
1152       bool paren_subexp = *p->arg == '(';
1153 
1154       operation_up rhs = stap_parse_argument_conditionally (p);
1155       if (p->inside_paren_p)
1156 	p->arg = skip_spaces (p->arg);
1157       if (paren_subexp)
1158 	{
1159 	  lhs = stap_make_binop (opcode, std::move (lhs), std::move (rhs));
1160 	  continue;
1161 	}
1162 
1163       /* While we still have operators, try to parse another
1164 	 right-side, but using the current right-side as a left-side.  */
1165       while (*p->arg != '\0' && stap_is_operator (p->arg))
1166 	{
1167 	  enum exp_opcode lookahead_opcode;
1168 	  enum stap_operand_prec lookahead_prec;
1169 
1170 	  /* Saving the current expression buffer position.  The explanation
1171 	     is the same as above.  */
1172 	  tmp_exp_buf = p->arg;
1173 	  lookahead_opcode = stap_get_opcode (&tmp_exp_buf);
1174 	  lookahead_prec = stap_get_operator_prec (lookahead_opcode);
1175 
1176 	  if (lookahead_prec <= prec)
1177 	    {
1178 	      /* If we are dealing with an operator whose precedence is lower
1179 		 than the first one, just abandon the attempt.  */
1180 	      break;
1181 	    }
1182 
1183 	  /* Parse the right-side of the expression, using the current
1184 	     right-hand-side as the left-hand-side of the new
1185 	     subexpression.  */
1186 	  rhs = stap_parse_argument_1 (p, std::move (rhs), lookahead_prec);
1187 	  if (p->inside_paren_p)
1188 	    p->arg = skip_spaces (p->arg);
1189 	}
1190 
1191       lhs = stap_make_binop (opcode, std::move (lhs), std::move (rhs));
1192     }
1193 
1194   return lhs;
1195 }
1196 
1197 /* Parse a probe's argument.
1198 
1199    Assuming that:
1200 
1201    LP = literal integer prefix
1202    LS = literal integer suffix
1203 
1204    RP = register prefix
1205    RS = register suffix
1206 
1207    RIP = register indirection prefix
1208    RIS = register indirection suffix
1209 
1210    This routine assumes that arguments' tokens are of the form:
1211 
1212    - [LP] NUMBER [LS]
1213    - [RP] REGISTER [RS]
1214    - [RIP] [RP] REGISTER [RS] [RIS]
1215    - If we find a number without LP, we try to parse it as a literal integer
1216    constant (if LP == NULL), or as a register displacement.
1217    - We count parenthesis, and only skip whitespaces if we are inside them.
1218    - If we find an operator, we skip it.
1219 
1220    This function can also call a special function that will try to match
1221    unknown tokens.  It will return the expression_up generated from
1222    parsing the argument.  */
1223 
1224 static expression_up
1225 stap_parse_argument (const char **arg, struct type *atype,
1226 		     struct gdbarch *gdbarch)
1227 {
1228   /* We need to initialize the expression buffer, in order to begin
1229      our parsing efforts.  We use language_c here because we may need
1230      to do pointer arithmetics.  */
1231   struct stap_parse_info p (*arg, atype, language_def (language_c),
1232 			    gdbarch);
1233 
1234   using namespace expr;
1235   operation_up result = stap_parse_argument_1 (&p, {}, STAP_OPERAND_PREC_NONE);
1236 
1237   gdb_assert (p.inside_paren_p == 0);
1238 
1239   /* Casting the final expression to the appropriate type.  */
1240   result = make_operation<unop_cast_operation> (std::move (result), atype);
1241   p.pstate.set_operation (std::move (result));
1242 
1243   p.arg = skip_spaces (p.arg);
1244   *arg = p.arg;
1245 
1246   return p.pstate.release ();
1247 }
1248 
1249 /* Implementation of 'parse_arguments' method.  */
1250 
1251 void
1252 stap_probe::parse_arguments (struct gdbarch *gdbarch)
1253 {
1254   const char *cur;
1255 
1256   gdb_assert (!m_have_parsed_args);
1257   cur = m_unparsed_args_text;
1258   m_have_parsed_args = true;
1259 
1260   if (cur == NULL || *cur == '\0' || *cur == ':')
1261     return;
1262 
1263   while (*cur != '\0')
1264     {
1265       enum stap_arg_bitness bitness;
1266       bool got_minus = false;
1267 
1268       /* We expect to find something like:
1269 
1270 	 N@OP
1271 
1272 	 Where `N' can be [+,-][1,2,4,8].  This is not mandatory, so
1273 	 we check it here.  If we don't find it, go to the next
1274 	 state.  */
1275       if ((cur[0] == '-' && isdigit (cur[1]) && cur[2] == '@')
1276 	  || (isdigit (cur[0]) && cur[1] == '@'))
1277 	{
1278 	  if (*cur == '-')
1279 	    {
1280 	      /* Discard the `-'.  */
1281 	      ++cur;
1282 	      got_minus = true;
1283 	    }
1284 
1285 	  /* Defining the bitness.  */
1286 	  switch (*cur)
1287 	    {
1288 	    case '1':
1289 	      bitness = (got_minus ? STAP_ARG_BITNESS_8BIT_SIGNED
1290 			 : STAP_ARG_BITNESS_8BIT_UNSIGNED);
1291 	      break;
1292 
1293 	    case '2':
1294 	      bitness = (got_minus ? STAP_ARG_BITNESS_16BIT_SIGNED
1295 			 : STAP_ARG_BITNESS_16BIT_UNSIGNED);
1296 	      break;
1297 
1298 	    case '4':
1299 	      bitness = (got_minus ? STAP_ARG_BITNESS_32BIT_SIGNED
1300 			 : STAP_ARG_BITNESS_32BIT_UNSIGNED);
1301 	      break;
1302 
1303 	    case '8':
1304 	      bitness = (got_minus ? STAP_ARG_BITNESS_64BIT_SIGNED
1305 			 : STAP_ARG_BITNESS_64BIT_UNSIGNED);
1306 	      break;
1307 
1308 	    default:
1309 	      {
1310 		/* We have an error, because we don't expect anything
1311 		   except 1, 2, 4 and 8.  */
1312 		warning (_("unrecognized bitness %s%c' for probe `%s'"),
1313 			 got_minus ? "`-" : "`", *cur,
1314 			 this->get_name ().c_str ());
1315 		return;
1316 	      }
1317 	    }
1318 	  /* Discard the number and the `@' sign.  */
1319 	  cur += 2;
1320 	}
1321       else
1322 	bitness = STAP_ARG_BITNESS_UNDEFINED;
1323 
1324       struct type *atype
1325 	= stap_get_expected_argument_type (gdbarch, bitness,
1326 					   this->get_name ().c_str ());
1327 
1328       expression_up expr = stap_parse_argument (&cur, atype, gdbarch);
1329 
1330       if (stap_expression_debug)
1331 	expr->dump (gdb_stdlog);
1332 
1333       m_parsed_args.emplace_back (bitness, atype, std::move (expr));
1334 
1335       /* Start it over again.  */
1336       cur = skip_spaces (cur);
1337     }
1338 }
1339 
1340 /* Helper function to relocate an address.  */
1341 
1342 static CORE_ADDR
1343 relocate_address (CORE_ADDR address, struct objfile *objfile)
1344 {
1345   return address + objfile->text_section_offset ();
1346 }
1347 
1348 /* Implementation of the get_relocated_address method.  */
1349 
1350 CORE_ADDR
1351 stap_probe::get_relocated_address (struct objfile *objfile)
1352 {
1353   return relocate_address (this->get_address (), objfile);
1354 }
1355 
1356 /* Given PROBE, returns the number of arguments present in that probe's
1357    argument string.  */
1358 
1359 unsigned
1360 stap_probe::get_argument_count (struct gdbarch *gdbarch)
1361 {
1362   if (!m_have_parsed_args)
1363     {
1364       if (this->can_evaluate_arguments ())
1365 	this->parse_arguments (gdbarch);
1366       else
1367 	{
1368 	  static bool have_warned_stap_incomplete = false;
1369 
1370 	  if (!have_warned_stap_incomplete)
1371 	    {
1372 	      warning (_(
1373 "The SystemTap SDT probe support is not fully implemented on this target;\n"
1374 "you will not be able to inspect the arguments of the probes.\n"
1375 "Please report a bug against GDB requesting a port to this target."));
1376 	      have_warned_stap_incomplete = true;
1377 	    }
1378 
1379 	  /* Marking the arguments as "already parsed".  */
1380 	  m_have_parsed_args = true;
1381 	}
1382     }
1383 
1384   gdb_assert (m_have_parsed_args);
1385   return m_parsed_args.size ();
1386 }
1387 
1388 /* Return true if OP is a valid operator inside a probe argument, or
1389    false otherwise.  */
1390 
1391 static bool
1392 stap_is_operator (const char *op)
1393 {
1394   bool ret = true;
1395 
1396   switch (*op)
1397     {
1398     case '*':
1399     case '/':
1400     case '%':
1401     case '^':
1402     case '!':
1403     case '+':
1404     case '-':
1405     case '<':
1406     case '>':
1407     case '|':
1408     case '&':
1409       break;
1410 
1411     case '=':
1412       if (op[1] != '=')
1413 	ret = false;
1414       break;
1415 
1416     default:
1417       /* We didn't find any operator.  */
1418       ret = false;
1419     }
1420 
1421   return ret;
1422 }
1423 
1424 /* Implement the `can_evaluate_arguments' method.  */
1425 
1426 bool
1427 stap_probe::can_evaluate_arguments () const
1428 {
1429   struct gdbarch *gdbarch = this->get_gdbarch ();
1430 
1431   /* For SystemTap probes, we have to guarantee that the method
1432      stap_is_single_operand is defined on gdbarch.  If it is not, then it
1433      means that argument evaluation is not implemented on this target.  */
1434   return gdbarch_stap_is_single_operand_p (gdbarch);
1435 }
1436 
1437 /* Evaluate the probe's argument N (indexed from 0), returning a value
1438    corresponding to it.  Assertion is thrown if N does not exist.  */
1439 
1440 struct value *
1441 stap_probe::evaluate_argument (unsigned n, frame_info_ptr frame)
1442 {
1443   struct stap_probe_arg *arg;
1444   struct gdbarch *gdbarch = get_frame_arch (frame);
1445 
1446   arg = this->get_arg_by_number (n, gdbarch);
1447   return evaluate_expression (arg->aexpr.get (), arg->atype);
1448 }
1449 
1450 /* Compile the probe's argument N (indexed from 0) to agent expression.
1451    Assertion is thrown if N does not exist.  */
1452 
1453 void
1454 stap_probe::compile_to_ax (struct agent_expr *expr, struct axs_value *value,
1455 			   unsigned n)
1456 {
1457   struct stap_probe_arg *arg;
1458 
1459   arg = this->get_arg_by_number (n, expr->gdbarch);
1460 
1461   arg->aexpr->op->generate_ax (arg->aexpr.get (), expr, value);
1462 
1463   require_rvalue (expr, value);
1464   value->type = arg->atype;
1465 }
1466 
1467 
1468 /* Set or clear a SystemTap semaphore.  ADDRESS is the semaphore's
1469    address.  SET is zero if the semaphore should be cleared, or one if
1470    it should be set.  This is a helper function for
1471    'stap_probe::set_semaphore' and 'stap_probe::clear_semaphore'.  */
1472 
1473 static void
1474 stap_modify_semaphore (CORE_ADDR address, int set, struct gdbarch *gdbarch)
1475 {
1476   gdb_byte bytes[sizeof (LONGEST)];
1477   /* The ABI specifies "unsigned short".  */
1478   struct type *type = builtin_type (gdbarch)->builtin_unsigned_short;
1479   ULONGEST value;
1480 
1481   /* Swallow errors.  */
1482   if (target_read_memory (address, bytes, type->length ()) != 0)
1483     {
1484       warning (_("Could not read the value of a SystemTap semaphore."));
1485       return;
1486     }
1487 
1488   enum bfd_endian byte_order = type_byte_order (type);
1489   value = extract_unsigned_integer (bytes, type->length (), byte_order);
1490   /* Note that we explicitly don't worry about overflow or
1491      underflow.  */
1492   if (set)
1493     ++value;
1494   else
1495     --value;
1496 
1497   store_unsigned_integer (bytes, type->length (), byte_order, value);
1498 
1499   if (target_write_memory (address, bytes, type->length ()) != 0)
1500     warning (_("Could not write the value of a SystemTap semaphore."));
1501 }
1502 
1503 /* Implementation of the 'set_semaphore' method.
1504 
1505    SystemTap semaphores act as reference counters, so calls to this
1506    function must be paired with calls to 'clear_semaphore'.
1507 
1508    This function and 'clear_semaphore' race with another tool
1509    changing the probes, but that is too rare to care.  */
1510 
1511 void
1512 stap_probe::set_semaphore (struct objfile *objfile, struct gdbarch *gdbarch)
1513 {
1514   if (m_sem_addr == 0)
1515     return;
1516   stap_modify_semaphore (relocate_address (m_sem_addr, objfile), 1, gdbarch);
1517 }
1518 
1519 /* Implementation of the 'clear_semaphore' method.  */
1520 
1521 void
1522 stap_probe::clear_semaphore (struct objfile *objfile, struct gdbarch *gdbarch)
1523 {
1524   if (m_sem_addr == 0)
1525     return;
1526   stap_modify_semaphore (relocate_address (m_sem_addr, objfile), 0, gdbarch);
1527 }
1528 
1529 /* Implementation of the 'get_static_ops' method.  */
1530 
1531 const static_probe_ops *
1532 stap_probe::get_static_ops () const
1533 {
1534   return &stap_static_probe_ops;
1535 }
1536 
1537 /* Implementation of the 'gen_info_probes_table_values' method.  */
1538 
1539 std::vector<const char *>
1540 stap_probe::gen_info_probes_table_values () const
1541 {
1542   const char *val = NULL;
1543 
1544   if (m_sem_addr != 0)
1545     val = print_core_address (this->get_gdbarch (), m_sem_addr);
1546 
1547   return std::vector<const char *> { val };
1548 }
1549 
1550 /* Helper function that parses the information contained in a
1551    SystemTap's probe.  Basically, the information consists in:
1552 
1553    - Probe's PC address;
1554    - Link-time section address of `.stapsdt.base' section;
1555    - Link-time address of the semaphore variable, or ZERO if the
1556      probe doesn't have an associated semaphore;
1557    - Probe's provider name;
1558    - Probe's name;
1559    - Probe's argument format.  */
1560 
1561 static void
1562 handle_stap_probe (struct objfile *objfile, struct sdt_note *el,
1563 		   std::vector<std::unique_ptr<probe>> *probesp,
1564 		   CORE_ADDR base)
1565 {
1566   bfd *abfd = objfile->obfd.get ();
1567   int size = bfd_get_arch_size (abfd) / 8;
1568   struct gdbarch *gdbarch = objfile->arch ();
1569   struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
1570 
1571   /* Provider and the name of the probe.  */
1572   const char *provider = (const char *) &el->data[3 * size];
1573   const char *name = ((const char *)
1574 		      memchr (provider, '\0',
1575 			      (char *) el->data + el->size - provider));
1576   /* Making sure there is a name.  */
1577   if (name == NULL)
1578     {
1579       complaint (_("corrupt probe name when reading `%s'"),
1580 		 objfile_name (objfile));
1581 
1582       /* There is no way to use a probe without a name or a provider, so
1583 	 returning here makes sense.  */
1584       return;
1585     }
1586   else
1587     ++name;
1588 
1589   /* Retrieving the probe's address.  */
1590   CORE_ADDR address = extract_typed_address (&el->data[0], ptr_type);
1591 
1592   /* Link-time sh_addr of `.stapsdt.base' section.  */
1593   CORE_ADDR base_ref = extract_typed_address (&el->data[size], ptr_type);
1594 
1595   /* Semaphore address.  */
1596   CORE_ADDR sem_addr = extract_typed_address (&el->data[2 * size], ptr_type);
1597 
1598   address += base - base_ref;
1599   if (sem_addr != 0)
1600     sem_addr += base - base_ref;
1601 
1602   /* Arguments.  We can only extract the argument format if there is a valid
1603      name for this probe.  */
1604   const char *probe_args = ((const char*)
1605 			    memchr (name, '\0',
1606 				    (char *) el->data + el->size - name));
1607 
1608   if (probe_args != NULL)
1609     ++probe_args;
1610 
1611   if (probe_args == NULL
1612       || (memchr (probe_args, '\0', (char *) el->data + el->size - name)
1613 	  != el->data + el->size - 1))
1614     {
1615       complaint (_("corrupt probe argument when reading `%s'"),
1616 		 objfile_name (objfile));
1617       /* If the argument string is NULL, it means some problem happened with
1618 	 it.  So we return.  */
1619       return;
1620     }
1621 
1622   stap_probe *ret = new stap_probe (std::string (name), std::string (provider),
1623 				    address, gdbarch, sem_addr, probe_args);
1624 
1625   /* Successfully created probe.  */
1626   probesp->emplace_back (ret);
1627 }
1628 
1629 /* Helper function which iterates over every section in the BFD file,
1630    trying to find the base address of the SystemTap base section.
1631    Returns 1 if found (setting BASE to the proper value), zero otherwise.  */
1632 
1633 static int
1634 get_stap_base_address (bfd *obfd, bfd_vma *base)
1635 {
1636   asection *ret = NULL;
1637 
1638   for (asection *sect : gdb_bfd_sections (obfd))
1639     if ((sect->flags & (SEC_DATA | SEC_ALLOC | SEC_HAS_CONTENTS))
1640 	&& sect->name && !strcmp (sect->name, STAP_BASE_SECTION_NAME))
1641       ret = sect;
1642 
1643   if (ret == NULL)
1644     {
1645       complaint (_("could not obtain base address for "
1646 					"SystemTap section on objfile `%s'."),
1647 		 bfd_get_filename (obfd));
1648       return 0;
1649     }
1650 
1651   if (base != NULL)
1652     *base = ret->vma;
1653 
1654   return 1;
1655 }
1656 
1657 /* Implementation of the 'is_linespec' method.  */
1658 
1659 bool
1660 stap_static_probe_ops::is_linespec (const char **linespecp) const
1661 {
1662   static const char *const keywords[] = { "-pstap", "-probe-stap", NULL };
1663 
1664   return probe_is_linespec_by_keyword (linespecp, keywords);
1665 }
1666 
1667 /* Implementation of the 'get_probes' method.  */
1668 
1669 void
1670 stap_static_probe_ops::get_probes
1671   (std::vector<std::unique_ptr<probe>> *probesp,
1672    struct objfile *objfile) const
1673 {
1674   /* If we are here, then this is the first time we are parsing the
1675      SystemTap probe's information.  We basically have to count how many
1676      probes the objfile has, and then fill in the necessary information
1677      for each one.  */
1678   bfd *obfd = objfile->obfd.get ();
1679   bfd_vma base;
1680   struct sdt_note *iter;
1681   unsigned save_probesp_len = probesp->size ();
1682 
1683   if (objfile->separate_debug_objfile_backlink != NULL)
1684     {
1685       /* This is a .debug file, not the objfile itself.  */
1686       return;
1687     }
1688 
1689   if (elf_tdata (obfd)->sdt_note_head == NULL)
1690     {
1691       /* There isn't any probe here.  */
1692       return;
1693     }
1694 
1695   if (!get_stap_base_address (obfd, &base))
1696     {
1697       /* There was an error finding the base address for the section.
1698 	 Just return NULL.  */
1699       return;
1700     }
1701 
1702   /* Parsing each probe's information.  */
1703   for (iter = elf_tdata (obfd)->sdt_note_head;
1704        iter != NULL;
1705        iter = iter->next)
1706     {
1707       /* We first have to handle all the information about the
1708 	 probe which is present in the section.  */
1709       handle_stap_probe (objfile, iter, probesp, base);
1710     }
1711 
1712   if (save_probesp_len == probesp->size ())
1713     {
1714       /* If we are here, it means we have failed to parse every known
1715 	 probe.  */
1716       complaint (_("could not parse SystemTap probe(s) from inferior"));
1717       return;
1718     }
1719 }
1720 
1721 /* Implementation of the type_name method.  */
1722 
1723 const char *
1724 stap_static_probe_ops::type_name () const
1725 {
1726   return "stap";
1727 }
1728 
1729 /* Implementation of the 'gen_info_probes_table_header' method.  */
1730 
1731 std::vector<struct info_probe_column>
1732 stap_static_probe_ops::gen_info_probes_table_header () const
1733 {
1734   struct info_probe_column stap_probe_column;
1735 
1736   stap_probe_column.field_name = "semaphore";
1737   stap_probe_column.print_name = _("Semaphore");
1738 
1739   return std::vector<struct info_probe_column> { stap_probe_column };
1740 }
1741 
1742 /* Implementation of the `info probes stap' command.  */
1743 
1744 static void
1745 info_probes_stap_command (const char *arg, int from_tty)
1746 {
1747   info_probes_for_spops (arg, from_tty, &stap_static_probe_ops);
1748 }
1749 
1750 void _initialize_stap_probe ();
1751 void
1752 _initialize_stap_probe ()
1753 {
1754   all_static_probe_ops.push_back (&stap_static_probe_ops);
1755 
1756   add_setshow_zuinteger_cmd ("stap-expression", class_maintenance,
1757 			     &stap_expression_debug,
1758 			     _("Set SystemTap expression debugging."),
1759 			     _("Show SystemTap expression debugging."),
1760 			     _("When non-zero, the internal representation "
1761 			       "of SystemTap expressions will be printed."),
1762 			     NULL,
1763 			     show_stapexpressiondebug,
1764 			     &setdebuglist, &showdebuglist);
1765 
1766   add_cmd ("stap", class_info, info_probes_stap_command,
1767 	   _("\
1768 Show information about SystemTap static probes.\n\
1769 Usage: info probes stap [PROVIDER [NAME [OBJECT]]]\n\
1770 Each argument is a regular expression, used to select probes.\n\
1771 PROVIDER matches probe provider names.\n\
1772 NAME matches the probe names.\n\
1773 OBJECT matches the executable or shared library name."),
1774 	   info_probes_cmdlist_get ());
1775 
1776 
1777   using namespace expr;
1778   stap_maker_map[BINOP_ADD] = make_operation<add_operation>;
1779   stap_maker_map[BINOP_BITWISE_AND] = make_operation<bitwise_and_operation>;
1780   stap_maker_map[BINOP_BITWISE_IOR] = make_operation<bitwise_ior_operation>;
1781   stap_maker_map[BINOP_BITWISE_XOR] = make_operation<bitwise_xor_operation>;
1782   stap_maker_map[BINOP_DIV] = make_operation<div_operation>;
1783   stap_maker_map[BINOP_EQUAL] = make_operation<equal_operation>;
1784   stap_maker_map[BINOP_GEQ] = make_operation<geq_operation>;
1785   stap_maker_map[BINOP_GTR] = make_operation<gtr_operation>;
1786   stap_maker_map[BINOP_LEQ] = make_operation<leq_operation>;
1787   stap_maker_map[BINOP_LESS] = make_operation<less_operation>;
1788   stap_maker_map[BINOP_LOGICAL_AND] = make_operation<logical_and_operation>;
1789   stap_maker_map[BINOP_LOGICAL_OR] = make_operation<logical_or_operation>;
1790   stap_maker_map[BINOP_LSH] = make_operation<lsh_operation>;
1791   stap_maker_map[BINOP_MUL] = make_operation<mul_operation>;
1792   stap_maker_map[BINOP_NOTEQUAL] = make_operation<notequal_operation>;
1793   stap_maker_map[BINOP_REM] = make_operation<rem_operation>;
1794   stap_maker_map[BINOP_RSH] = make_operation<rsh_operation>;
1795   stap_maker_map[BINOP_SUB] = make_operation<sub_operation>;
1796 }
1797