1 /* SystemTap probe support for GDB. 2 3 Copyright (C) 2012-2019 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "stap-probe.h" 22 #include "probe.h" 23 #include "common/vec.h" 24 #include "ui-out.h" 25 #include "objfiles.h" 26 #include "arch-utils.h" 27 #include "command.h" 28 #include "gdbcmd.h" 29 #include "filenames.h" 30 #include "value.h" 31 #include "ax.h" 32 #include "ax-gdb.h" 33 #include "complaints.h" 34 #include "cli/cli-utils.h" 35 #include "linespec.h" 36 #include "user-regs.h" 37 #include "parser-defs.h" 38 #include "language.h" 39 #include "elf-bfd.h" 40 41 #include <ctype.h> 42 43 /* The name of the SystemTap section where we will find information about 44 the probes. */ 45 46 #define STAP_BASE_SECTION_NAME ".stapsdt.base" 47 48 /* Should we display debug information for the probe's argument expression 49 parsing? */ 50 51 static unsigned int stap_expression_debug = 0; 52 53 /* The various possibilities of bitness defined for a probe's argument. 54 55 The relationship is: 56 57 - STAP_ARG_BITNESS_UNDEFINED: The user hasn't specified the bitness. 58 - STAP_ARG_BITNESS_8BIT_UNSIGNED: argument string starts with `1@'. 59 - STAP_ARG_BITNESS_8BIT_SIGNED: argument string starts with `-1@'. 60 - STAP_ARG_BITNESS_16BIT_UNSIGNED: argument string starts with `2@'. 61 - STAP_ARG_BITNESS_16BIT_SIGNED: argument string starts with `-2@'. 62 - STAP_ARG_BITNESS_32BIT_UNSIGNED: argument string starts with `4@'. 63 - STAP_ARG_BITNESS_32BIT_SIGNED: argument string starts with `-4@'. 64 - STAP_ARG_BITNESS_64BIT_UNSIGNED: argument string starts with `8@'. 65 - STAP_ARG_BITNESS_64BIT_SIGNED: argument string starts with `-8@'. */ 66 67 enum stap_arg_bitness 68 { 69 STAP_ARG_BITNESS_UNDEFINED, 70 STAP_ARG_BITNESS_8BIT_UNSIGNED, 71 STAP_ARG_BITNESS_8BIT_SIGNED, 72 STAP_ARG_BITNESS_16BIT_UNSIGNED, 73 STAP_ARG_BITNESS_16BIT_SIGNED, 74 STAP_ARG_BITNESS_32BIT_UNSIGNED, 75 STAP_ARG_BITNESS_32BIT_SIGNED, 76 STAP_ARG_BITNESS_64BIT_UNSIGNED, 77 STAP_ARG_BITNESS_64BIT_SIGNED, 78 }; 79 80 /* The following structure represents a single argument for the probe. */ 81 82 struct stap_probe_arg 83 { 84 /* Constructor for stap_probe_arg. */ 85 stap_probe_arg (enum stap_arg_bitness bitness_, struct type *atype_, 86 expression_up &&aexpr_) 87 : bitness (bitness_), atype (atype_), aexpr (std::move (aexpr_)) 88 {} 89 90 /* The bitness of this argument. */ 91 enum stap_arg_bitness bitness; 92 93 /* The corresponding `struct type *' to the bitness. */ 94 struct type *atype; 95 96 /* The argument converted to an internal GDB expression. */ 97 expression_up aexpr; 98 }; 99 100 /* Class that implements the static probe methods for "stap" probes. */ 101 102 class stap_static_probe_ops : public static_probe_ops 103 { 104 public: 105 /* See probe.h. */ 106 bool is_linespec (const char **linespecp) const override; 107 108 /* See probe.h. */ 109 void get_probes (std::vector<probe *> *probesp, 110 struct objfile *objfile) const override; 111 112 /* See probe.h. */ 113 const char *type_name () const override; 114 115 /* See probe.h. */ 116 std::vector<struct info_probe_column> gen_info_probes_table_header 117 () const override; 118 }; 119 120 /* SystemTap static_probe_ops. */ 121 122 const stap_static_probe_ops stap_static_probe_ops {}; 123 124 class stap_probe : public probe 125 { 126 public: 127 /* Constructor for stap_probe. */ 128 stap_probe (std::string &&name_, std::string &&provider_, CORE_ADDR address_, 129 struct gdbarch *arch_, CORE_ADDR sem_addr, const char *args_text) 130 : probe (std::move (name_), std::move (provider_), address_, arch_), 131 m_sem_addr (sem_addr), 132 m_have_parsed_args (false), m_unparsed_args_text (args_text) 133 {} 134 135 /* See probe.h. */ 136 CORE_ADDR get_relocated_address (struct objfile *objfile) override; 137 138 /* See probe.h. */ 139 unsigned get_argument_count (struct frame_info *frame) override; 140 141 /* See probe.h. */ 142 bool can_evaluate_arguments () const override; 143 144 /* See probe.h. */ 145 struct value *evaluate_argument (unsigned n, 146 struct frame_info *frame) override; 147 148 /* See probe.h. */ 149 void compile_to_ax (struct agent_expr *aexpr, 150 struct axs_value *axs_value, 151 unsigned n) override; 152 153 /* See probe.h. */ 154 void set_semaphore (struct objfile *objfile, 155 struct gdbarch *gdbarch) override; 156 157 /* See probe.h. */ 158 void clear_semaphore (struct objfile *objfile, 159 struct gdbarch *gdbarch) override; 160 161 /* See probe.h. */ 162 const static_probe_ops *get_static_ops () const override; 163 164 /* See probe.h. */ 165 std::vector<const char *> gen_info_probes_table_values () const override; 166 167 /* Return argument N of probe. 168 169 If the probe's arguments have not been parsed yet, parse them. If 170 there are no arguments, throw an exception (error). Otherwise, 171 return the requested argument. */ 172 struct stap_probe_arg *get_arg_by_number (unsigned n, 173 struct gdbarch *gdbarch) 174 { 175 if (!m_have_parsed_args) 176 this->parse_arguments (gdbarch); 177 178 gdb_assert (m_have_parsed_args); 179 if (m_parsed_args.empty ()) 180 internal_error (__FILE__, __LINE__, 181 _("Probe '%s' apparently does not have arguments, but \n" 182 "GDB is requesting its argument number %u anyway. " 183 "This should not happen. Please report this bug."), 184 this->get_name ().c_str (), n); 185 186 if (n > m_parsed_args.size ()) 187 internal_error (__FILE__, __LINE__, 188 _("Probe '%s' has %d arguments, but GDB is requesting\n" 189 "argument %u. This should not happen. Please\n" 190 "report this bug."), 191 this->get_name ().c_str (), 192 (int) m_parsed_args.size (), n); 193 194 return &m_parsed_args[n]; 195 } 196 197 /* Function which parses an argument string from the probe, 198 correctly splitting the arguments and storing their information 199 in properly ways. 200 201 Consider the following argument string (x86 syntax): 202 203 `4@%eax 4@$10' 204 205 We have two arguments, `%eax' and `$10', both with 32-bit 206 unsigned bitness. This function basically handles them, properly 207 filling some structures with this information. */ 208 void parse_arguments (struct gdbarch *gdbarch); 209 210 private: 211 /* If the probe has a semaphore associated, then this is the value of 212 it, relative to SECT_OFF_DATA. */ 213 CORE_ADDR m_sem_addr; 214 215 /* True if the arguments have been parsed. */ 216 bool m_have_parsed_args; 217 218 /* The text version of the probe's arguments, unparsed. */ 219 const char *m_unparsed_args_text; 220 221 /* Information about each argument. This is an array of `stap_probe_arg', 222 with each entry representing one argument. This is only valid if 223 M_ARGS_PARSED is true. */ 224 std::vector<struct stap_probe_arg> m_parsed_args; 225 }; 226 227 /* When parsing the arguments, we have to establish different precedences 228 for the various kinds of asm operators. This enumeration represents those 229 precedences. 230 231 This logic behind this is available at 232 <http://sourceware.org/binutils/docs/as/Infix-Ops.html#Infix-Ops>, or using 233 the command "info '(as)Infix Ops'". */ 234 235 enum stap_operand_prec 236 { 237 /* Lowest precedence, used for non-recognized operands or for the beginning 238 of the parsing process. */ 239 STAP_OPERAND_PREC_NONE = 0, 240 241 /* Precedence of logical OR. */ 242 STAP_OPERAND_PREC_LOGICAL_OR, 243 244 /* Precedence of logical AND. */ 245 STAP_OPERAND_PREC_LOGICAL_AND, 246 247 /* Precedence of additive (plus, minus) and comparative (equal, less, 248 greater-than, etc) operands. */ 249 STAP_OPERAND_PREC_ADD_CMP, 250 251 /* Precedence of bitwise operands (bitwise OR, XOR, bitwise AND, 252 logical NOT). */ 253 STAP_OPERAND_PREC_BITWISE, 254 255 /* Precedence of multiplicative operands (multiplication, division, 256 remainder, left shift and right shift). */ 257 STAP_OPERAND_PREC_MUL 258 }; 259 260 static void stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs, 261 enum stap_operand_prec prec); 262 263 static void stap_parse_argument_conditionally (struct stap_parse_info *p); 264 265 /* Returns 1 if *S is an operator, zero otherwise. */ 266 267 static int stap_is_operator (const char *op); 268 269 static void 270 show_stapexpressiondebug (struct ui_file *file, int from_tty, 271 struct cmd_list_element *c, const char *value) 272 { 273 fprintf_filtered (file, _("SystemTap Probe expression debugging is %s.\n"), 274 value); 275 } 276 277 /* Returns the operator precedence level of OP, or STAP_OPERAND_PREC_NONE 278 if the operator code was not recognized. */ 279 280 static enum stap_operand_prec 281 stap_get_operator_prec (enum exp_opcode op) 282 { 283 switch (op) 284 { 285 case BINOP_LOGICAL_OR: 286 return STAP_OPERAND_PREC_LOGICAL_OR; 287 288 case BINOP_LOGICAL_AND: 289 return STAP_OPERAND_PREC_LOGICAL_AND; 290 291 case BINOP_ADD: 292 case BINOP_SUB: 293 case BINOP_EQUAL: 294 case BINOP_NOTEQUAL: 295 case BINOP_LESS: 296 case BINOP_LEQ: 297 case BINOP_GTR: 298 case BINOP_GEQ: 299 return STAP_OPERAND_PREC_ADD_CMP; 300 301 case BINOP_BITWISE_IOR: 302 case BINOP_BITWISE_AND: 303 case BINOP_BITWISE_XOR: 304 case UNOP_LOGICAL_NOT: 305 return STAP_OPERAND_PREC_BITWISE; 306 307 case BINOP_MUL: 308 case BINOP_DIV: 309 case BINOP_REM: 310 case BINOP_LSH: 311 case BINOP_RSH: 312 return STAP_OPERAND_PREC_MUL; 313 314 default: 315 return STAP_OPERAND_PREC_NONE; 316 } 317 } 318 319 /* Given S, read the operator in it and fills the OP pointer with its code. 320 Return 1 on success, zero if the operator was not recognized. */ 321 322 static enum exp_opcode 323 stap_get_opcode (const char **s) 324 { 325 const char c = **s; 326 enum exp_opcode op; 327 328 *s += 1; 329 330 switch (c) 331 { 332 case '*': 333 op = BINOP_MUL; 334 break; 335 336 case '/': 337 op = BINOP_DIV; 338 break; 339 340 case '%': 341 op = BINOP_REM; 342 break; 343 344 case '<': 345 op = BINOP_LESS; 346 if (**s == '<') 347 { 348 *s += 1; 349 op = BINOP_LSH; 350 } 351 else if (**s == '=') 352 { 353 *s += 1; 354 op = BINOP_LEQ; 355 } 356 else if (**s == '>') 357 { 358 *s += 1; 359 op = BINOP_NOTEQUAL; 360 } 361 break; 362 363 case '>': 364 op = BINOP_GTR; 365 if (**s == '>') 366 { 367 *s += 1; 368 op = BINOP_RSH; 369 } 370 else if (**s == '=') 371 { 372 *s += 1; 373 op = BINOP_GEQ; 374 } 375 break; 376 377 case '|': 378 op = BINOP_BITWISE_IOR; 379 if (**s == '|') 380 { 381 *s += 1; 382 op = BINOP_LOGICAL_OR; 383 } 384 break; 385 386 case '&': 387 op = BINOP_BITWISE_AND; 388 if (**s == '&') 389 { 390 *s += 1; 391 op = BINOP_LOGICAL_AND; 392 } 393 break; 394 395 case '^': 396 op = BINOP_BITWISE_XOR; 397 break; 398 399 case '!': 400 op = UNOP_LOGICAL_NOT; 401 break; 402 403 case '+': 404 op = BINOP_ADD; 405 break; 406 407 case '-': 408 op = BINOP_SUB; 409 break; 410 411 case '=': 412 gdb_assert (**s == '='); 413 op = BINOP_EQUAL; 414 break; 415 416 default: 417 error (_("Invalid opcode in expression `%s' for SystemTap" 418 "probe"), *s); 419 } 420 421 return op; 422 } 423 424 /* Given the bitness of the argument, represented by B, return the 425 corresponding `struct type *'. */ 426 427 static struct type * 428 stap_get_expected_argument_type (struct gdbarch *gdbarch, 429 enum stap_arg_bitness b, 430 const char *probe_name) 431 { 432 switch (b) 433 { 434 case STAP_ARG_BITNESS_UNDEFINED: 435 if (gdbarch_addr_bit (gdbarch) == 32) 436 return builtin_type (gdbarch)->builtin_uint32; 437 else 438 return builtin_type (gdbarch)->builtin_uint64; 439 440 case STAP_ARG_BITNESS_8BIT_UNSIGNED: 441 return builtin_type (gdbarch)->builtin_uint8; 442 443 case STAP_ARG_BITNESS_8BIT_SIGNED: 444 return builtin_type (gdbarch)->builtin_int8; 445 446 case STAP_ARG_BITNESS_16BIT_UNSIGNED: 447 return builtin_type (gdbarch)->builtin_uint16; 448 449 case STAP_ARG_BITNESS_16BIT_SIGNED: 450 return builtin_type (gdbarch)->builtin_int16; 451 452 case STAP_ARG_BITNESS_32BIT_SIGNED: 453 return builtin_type (gdbarch)->builtin_int32; 454 455 case STAP_ARG_BITNESS_32BIT_UNSIGNED: 456 return builtin_type (gdbarch)->builtin_uint32; 457 458 case STAP_ARG_BITNESS_64BIT_SIGNED: 459 return builtin_type (gdbarch)->builtin_int64; 460 461 case STAP_ARG_BITNESS_64BIT_UNSIGNED: 462 return builtin_type (gdbarch)->builtin_uint64; 463 464 default: 465 error (_("Undefined bitness for probe '%s'."), probe_name); 466 break; 467 } 468 } 469 470 /* Helper function to check for a generic list of prefixes. GDBARCH 471 is the current gdbarch being used. S is the expression being 472 analyzed. If R is not NULL, it will be used to return the found 473 prefix. PREFIXES is the list of expected prefixes. 474 475 This function does a case-insensitive match. 476 477 Return 1 if any prefix has been found, zero otherwise. */ 478 479 static int 480 stap_is_generic_prefix (struct gdbarch *gdbarch, const char *s, 481 const char **r, const char *const *prefixes) 482 { 483 const char *const *p; 484 485 if (prefixes == NULL) 486 { 487 if (r != NULL) 488 *r = ""; 489 490 return 1; 491 } 492 493 for (p = prefixes; *p != NULL; ++p) 494 if (strncasecmp (s, *p, strlen (*p)) == 0) 495 { 496 if (r != NULL) 497 *r = *p; 498 499 return 1; 500 } 501 502 return 0; 503 } 504 505 /* Return 1 if S points to a register prefix, zero otherwise. For a 506 description of the arguments, look at stap_is_generic_prefix. */ 507 508 static int 509 stap_is_register_prefix (struct gdbarch *gdbarch, const char *s, 510 const char **r) 511 { 512 const char *const *t = gdbarch_stap_register_prefixes (gdbarch); 513 514 return stap_is_generic_prefix (gdbarch, s, r, t); 515 } 516 517 /* Return 1 if S points to a register indirection prefix, zero 518 otherwise. For a description of the arguments, look at 519 stap_is_generic_prefix. */ 520 521 static int 522 stap_is_register_indirection_prefix (struct gdbarch *gdbarch, const char *s, 523 const char **r) 524 { 525 const char *const *t = gdbarch_stap_register_indirection_prefixes (gdbarch); 526 527 return stap_is_generic_prefix (gdbarch, s, r, t); 528 } 529 530 /* Return 1 if S points to an integer prefix, zero otherwise. For a 531 description of the arguments, look at stap_is_generic_prefix. 532 533 This function takes care of analyzing whether we are dealing with 534 an expected integer prefix, or, if there is no integer prefix to be 535 expected, whether we are dealing with a digit. It does a 536 case-insensitive match. */ 537 538 static int 539 stap_is_integer_prefix (struct gdbarch *gdbarch, const char *s, 540 const char **r) 541 { 542 const char *const *t = gdbarch_stap_integer_prefixes (gdbarch); 543 const char *const *p; 544 545 if (t == NULL) 546 { 547 /* A NULL value here means that integers do not have a prefix. 548 We just check for a digit then. */ 549 if (r != NULL) 550 *r = ""; 551 552 return isdigit (*s); 553 } 554 555 for (p = t; *p != NULL; ++p) 556 { 557 size_t len = strlen (*p); 558 559 if ((len == 0 && isdigit (*s)) 560 || (len > 0 && strncasecmp (s, *p, len) == 0)) 561 { 562 /* Integers may or may not have a prefix. The "len == 0" 563 check covers the case when integers do not have a prefix 564 (therefore, we just check if we have a digit). The call 565 to "strncasecmp" covers the case when they have a 566 prefix. */ 567 if (r != NULL) 568 *r = *p; 569 570 return 1; 571 } 572 } 573 574 return 0; 575 } 576 577 /* Helper function to check for a generic list of suffixes. If we are 578 not expecting any suffixes, then it just returns 1. If we are 579 expecting at least one suffix, then it returns 1 if a suffix has 580 been found, zero otherwise. GDBARCH is the current gdbarch being 581 used. S is the expression being analyzed. If R is not NULL, it 582 will be used to return the found suffix. SUFFIXES is the list of 583 expected suffixes. This function does a case-insensitive 584 match. */ 585 586 static int 587 stap_generic_check_suffix (struct gdbarch *gdbarch, const char *s, 588 const char **r, const char *const *suffixes) 589 { 590 const char *const *p; 591 int found = 0; 592 593 if (suffixes == NULL) 594 { 595 if (r != NULL) 596 *r = ""; 597 598 return 1; 599 } 600 601 for (p = suffixes; *p != NULL; ++p) 602 if (strncasecmp (s, *p, strlen (*p)) == 0) 603 { 604 if (r != NULL) 605 *r = *p; 606 607 found = 1; 608 break; 609 } 610 611 return found; 612 } 613 614 /* Return 1 if S points to an integer suffix, zero otherwise. For a 615 description of the arguments, look at 616 stap_generic_check_suffix. */ 617 618 static int 619 stap_check_integer_suffix (struct gdbarch *gdbarch, const char *s, 620 const char **r) 621 { 622 const char *const *p = gdbarch_stap_integer_suffixes (gdbarch); 623 624 return stap_generic_check_suffix (gdbarch, s, r, p); 625 } 626 627 /* Return 1 if S points to a register suffix, zero otherwise. For a 628 description of the arguments, look at 629 stap_generic_check_suffix. */ 630 631 static int 632 stap_check_register_suffix (struct gdbarch *gdbarch, const char *s, 633 const char **r) 634 { 635 const char *const *p = gdbarch_stap_register_suffixes (gdbarch); 636 637 return stap_generic_check_suffix (gdbarch, s, r, p); 638 } 639 640 /* Return 1 if S points to a register indirection suffix, zero 641 otherwise. For a description of the arguments, look at 642 stap_generic_check_suffix. */ 643 644 static int 645 stap_check_register_indirection_suffix (struct gdbarch *gdbarch, const char *s, 646 const char **r) 647 { 648 const char *const *p = gdbarch_stap_register_indirection_suffixes (gdbarch); 649 650 return stap_generic_check_suffix (gdbarch, s, r, p); 651 } 652 653 /* Function responsible for parsing a register operand according to 654 SystemTap parlance. Assuming: 655 656 RP = register prefix 657 RS = register suffix 658 RIP = register indirection prefix 659 RIS = register indirection suffix 660 661 Then a register operand can be: 662 663 [RIP] [RP] REGISTER [RS] [RIS] 664 665 This function takes care of a register's indirection, displacement and 666 direct access. It also takes into consideration the fact that some 667 registers are named differently inside and outside GDB, e.g., PPC's 668 general-purpose registers are represented by integers in the assembly 669 language (e.g., `15' is the 15th general-purpose register), but inside 670 GDB they have a prefix (the letter `r') appended. */ 671 672 static void 673 stap_parse_register_operand (struct stap_parse_info *p) 674 { 675 /* Simple flag to indicate whether we have seen a minus signal before 676 certain number. */ 677 int got_minus = 0; 678 /* Flags to indicate whether this register access is being displaced and/or 679 indirected. */ 680 int disp_p = 0, indirect_p = 0; 681 struct gdbarch *gdbarch = p->gdbarch; 682 /* Needed to generate the register name as a part of an expression. */ 683 struct stoken str; 684 /* Variables used to extract the register name from the probe's 685 argument. */ 686 const char *start; 687 char *regname; 688 int len; 689 const char *gdb_reg_prefix = gdbarch_stap_gdb_register_prefix (gdbarch); 690 int gdb_reg_prefix_len = gdb_reg_prefix ? strlen (gdb_reg_prefix) : 0; 691 const char *gdb_reg_suffix = gdbarch_stap_gdb_register_suffix (gdbarch); 692 int gdb_reg_suffix_len = gdb_reg_suffix ? strlen (gdb_reg_suffix) : 0; 693 const char *reg_prefix; 694 const char *reg_ind_prefix; 695 const char *reg_suffix; 696 const char *reg_ind_suffix; 697 698 /* Checking for a displacement argument. */ 699 if (*p->arg == '+') 700 { 701 /* If it's a plus sign, we don't need to do anything, just advance the 702 pointer. */ 703 ++p->arg; 704 } 705 706 if (*p->arg == '-') 707 { 708 got_minus = 1; 709 ++p->arg; 710 } 711 712 if (isdigit (*p->arg)) 713 { 714 /* The value of the displacement. */ 715 long displacement; 716 char *endp; 717 718 disp_p = 1; 719 displacement = strtol (p->arg, &endp, 10); 720 p->arg = endp; 721 722 /* Generating the expression for the displacement. */ 723 write_exp_elt_opcode (&p->pstate, OP_LONG); 724 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long); 725 write_exp_elt_longcst (&p->pstate, displacement); 726 write_exp_elt_opcode (&p->pstate, OP_LONG); 727 if (got_minus) 728 write_exp_elt_opcode (&p->pstate, UNOP_NEG); 729 } 730 731 /* Getting rid of register indirection prefix. */ 732 if (stap_is_register_indirection_prefix (gdbarch, p->arg, ®_ind_prefix)) 733 { 734 indirect_p = 1; 735 p->arg += strlen (reg_ind_prefix); 736 } 737 738 if (disp_p && !indirect_p) 739 error (_("Invalid register displacement syntax on expression `%s'."), 740 p->saved_arg); 741 742 /* Getting rid of register prefix. */ 743 if (stap_is_register_prefix (gdbarch, p->arg, ®_prefix)) 744 p->arg += strlen (reg_prefix); 745 746 /* Now we should have only the register name. Let's extract it and get 747 the associated number. */ 748 start = p->arg; 749 750 /* We assume the register name is composed by letters and numbers. */ 751 while (isalnum (*p->arg)) 752 ++p->arg; 753 754 len = p->arg - start; 755 756 regname = (char *) alloca (len + gdb_reg_prefix_len + gdb_reg_suffix_len + 1); 757 regname[0] = '\0'; 758 759 /* We only add the GDB's register prefix/suffix if we are dealing with 760 a numeric register. */ 761 if (gdb_reg_prefix && isdigit (*start)) 762 { 763 strncpy (regname, gdb_reg_prefix, gdb_reg_prefix_len); 764 strncpy (regname + gdb_reg_prefix_len, start, len); 765 766 if (gdb_reg_suffix) 767 strncpy (regname + gdb_reg_prefix_len + len, 768 gdb_reg_suffix, gdb_reg_suffix_len); 769 770 len += gdb_reg_prefix_len + gdb_reg_suffix_len; 771 } 772 else 773 strncpy (regname, start, len); 774 775 regname[len] = '\0'; 776 777 /* Is this a valid register name? */ 778 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1) 779 error (_("Invalid register name `%s' on expression `%s'."), 780 regname, p->saved_arg); 781 782 write_exp_elt_opcode (&p->pstate, OP_REGISTER); 783 str.ptr = regname; 784 str.length = len; 785 write_exp_string (&p->pstate, str); 786 write_exp_elt_opcode (&p->pstate, OP_REGISTER); 787 788 if (indirect_p) 789 { 790 if (disp_p) 791 write_exp_elt_opcode (&p->pstate, BINOP_ADD); 792 793 /* Casting to the expected type. */ 794 write_exp_elt_opcode (&p->pstate, UNOP_CAST); 795 write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type)); 796 write_exp_elt_opcode (&p->pstate, UNOP_CAST); 797 798 write_exp_elt_opcode (&p->pstate, UNOP_IND); 799 } 800 801 /* Getting rid of the register name suffix. */ 802 if (stap_check_register_suffix (gdbarch, p->arg, ®_suffix)) 803 p->arg += strlen (reg_suffix); 804 else 805 error (_("Missing register name suffix on expression `%s'."), 806 p->saved_arg); 807 808 /* Getting rid of the register indirection suffix. */ 809 if (indirect_p) 810 { 811 if (stap_check_register_indirection_suffix (gdbarch, p->arg, 812 ®_ind_suffix)) 813 p->arg += strlen (reg_ind_suffix); 814 else 815 error (_("Missing indirection suffix on expression `%s'."), 816 p->saved_arg); 817 } 818 } 819 820 /* This function is responsible for parsing a single operand. 821 822 A single operand can be: 823 824 - an unary operation (e.g., `-5', `~2', or even with subexpressions 825 like `-(2 + 1)') 826 - a register displacement, which will be treated as a register 827 operand (e.g., `-4(%eax)' on x86) 828 - a numeric constant, or 829 - a register operand (see function `stap_parse_register_operand') 830 831 The function also calls special-handling functions to deal with 832 unrecognized operands, allowing arch-specific parsers to be 833 created. */ 834 835 static void 836 stap_parse_single_operand (struct stap_parse_info *p) 837 { 838 struct gdbarch *gdbarch = p->gdbarch; 839 const char *int_prefix = NULL; 840 841 /* We first try to parse this token as a "special token". */ 842 if (gdbarch_stap_parse_special_token_p (gdbarch)) 843 if (gdbarch_stap_parse_special_token (gdbarch, p) != 0) 844 { 845 /* If the return value of the above function is not zero, 846 it means it successfully parsed the special token. 847 848 If it is NULL, we try to parse it using our method. */ 849 return; 850 } 851 852 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+') 853 { 854 char c = *p->arg; 855 /* We use this variable to do a lookahead. */ 856 const char *tmp = p->arg; 857 int has_digit = 0; 858 859 /* Skipping signal. */ 860 ++tmp; 861 862 /* This is an unary operation. Here is a list of allowed tokens 863 here: 864 865 - numeric literal; 866 - number (from register displacement) 867 - subexpression (beginning with `(') 868 869 We handle the register displacement here, and the other cases 870 recursively. */ 871 if (p->inside_paren_p) 872 tmp = skip_spaces (tmp); 873 874 while (isdigit (*tmp)) 875 { 876 /* We skip the digit here because we are only interested in 877 knowing what kind of unary operation this is. The digit 878 will be handled by one of the functions that will be 879 called below ('stap_parse_argument_conditionally' or 880 'stap_parse_register_operand'). */ 881 ++tmp; 882 has_digit = 1; 883 } 884 885 if (has_digit && stap_is_register_indirection_prefix (gdbarch, tmp, 886 NULL)) 887 { 888 /* If we are here, it means it is a displacement. The only 889 operations allowed here are `-' and `+'. */ 890 if (c == '~') 891 error (_("Invalid operator `%c' for register displacement " 892 "on expression `%s'."), c, p->saved_arg); 893 894 stap_parse_register_operand (p); 895 } 896 else 897 { 898 /* This is not a displacement. We skip the operator, and 899 deal with it when the recursion returns. */ 900 ++p->arg; 901 stap_parse_argument_conditionally (p); 902 if (c == '-') 903 write_exp_elt_opcode (&p->pstate, UNOP_NEG); 904 else if (c == '~') 905 write_exp_elt_opcode (&p->pstate, UNOP_COMPLEMENT); 906 } 907 } 908 else if (isdigit (*p->arg)) 909 { 910 /* A temporary variable, needed for lookahead. */ 911 const char *tmp = p->arg; 912 char *endp; 913 long number; 914 915 /* We can be dealing with a numeric constant, or with a register 916 displacement. */ 917 number = strtol (tmp, &endp, 10); 918 tmp = endp; 919 920 if (p->inside_paren_p) 921 tmp = skip_spaces (tmp); 922 923 /* If "stap_is_integer_prefix" returns true, it means we can 924 accept integers without a prefix here. But we also need to 925 check whether the next token (i.e., "tmp") is not a register 926 indirection prefix. */ 927 if (stap_is_integer_prefix (gdbarch, p->arg, NULL) 928 && !stap_is_register_indirection_prefix (gdbarch, tmp, NULL)) 929 { 930 const char *int_suffix; 931 932 /* We are dealing with a numeric constant. */ 933 write_exp_elt_opcode (&p->pstate, OP_LONG); 934 write_exp_elt_type (&p->pstate, 935 builtin_type (gdbarch)->builtin_long); 936 write_exp_elt_longcst (&p->pstate, number); 937 write_exp_elt_opcode (&p->pstate, OP_LONG); 938 939 p->arg = tmp; 940 941 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix)) 942 p->arg += strlen (int_suffix); 943 else 944 error (_("Invalid constant suffix on expression `%s'."), 945 p->saved_arg); 946 } 947 else if (stap_is_register_indirection_prefix (gdbarch, tmp, NULL)) 948 stap_parse_register_operand (p); 949 else 950 error (_("Unknown numeric token on expression `%s'."), 951 p->saved_arg); 952 } 953 else if (stap_is_integer_prefix (gdbarch, p->arg, &int_prefix)) 954 { 955 /* We are dealing with a numeric constant. */ 956 long number; 957 char *endp; 958 const char *int_suffix; 959 960 p->arg += strlen (int_prefix); 961 number = strtol (p->arg, &endp, 10); 962 p->arg = endp; 963 964 write_exp_elt_opcode (&p->pstate, OP_LONG); 965 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long); 966 write_exp_elt_longcst (&p->pstate, number); 967 write_exp_elt_opcode (&p->pstate, OP_LONG); 968 969 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix)) 970 p->arg += strlen (int_suffix); 971 else 972 error (_("Invalid constant suffix on expression `%s'."), 973 p->saved_arg); 974 } 975 else if (stap_is_register_prefix (gdbarch, p->arg, NULL) 976 || stap_is_register_indirection_prefix (gdbarch, p->arg, NULL)) 977 stap_parse_register_operand (p); 978 else 979 error (_("Operator `%c' not recognized on expression `%s'."), 980 *p->arg, p->saved_arg); 981 } 982 983 /* This function parses an argument conditionally, based on single or 984 non-single operands. A non-single operand would be a parenthesized 985 expression (e.g., `(2 + 1)'), and a single operand is anything that 986 starts with `-', `~', `+' (i.e., unary operators), a digit, or 987 something recognized by `gdbarch_stap_is_single_operand'. */ 988 989 static void 990 stap_parse_argument_conditionally (struct stap_parse_info *p) 991 { 992 gdb_assert (gdbarch_stap_is_single_operand_p (p->gdbarch)); 993 994 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+' /* Unary. */ 995 || isdigit (*p->arg) 996 || gdbarch_stap_is_single_operand (p->gdbarch, p->arg)) 997 stap_parse_single_operand (p); 998 else if (*p->arg == '(') 999 { 1000 /* We are dealing with a parenthesized operand. It means we 1001 have to parse it as it was a separate expression, without 1002 left-side or precedence. */ 1003 ++p->arg; 1004 p->arg = skip_spaces (p->arg); 1005 ++p->inside_paren_p; 1006 1007 stap_parse_argument_1 (p, 0, STAP_OPERAND_PREC_NONE); 1008 1009 --p->inside_paren_p; 1010 if (*p->arg != ')') 1011 error (_("Missign close-paren on expression `%s'."), 1012 p->saved_arg); 1013 1014 ++p->arg; 1015 if (p->inside_paren_p) 1016 p->arg = skip_spaces (p->arg); 1017 } 1018 else 1019 error (_("Cannot parse expression `%s'."), p->saved_arg); 1020 } 1021 1022 /* Helper function for `stap_parse_argument'. Please, see its comments to 1023 better understand what this function does. */ 1024 1025 static void 1026 stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs, 1027 enum stap_operand_prec prec) 1028 { 1029 /* This is an operator-precedence parser. 1030 1031 We work with left- and right-sides of expressions, and 1032 parse them depending on the precedence of the operators 1033 we find. */ 1034 1035 gdb_assert (p->arg != NULL); 1036 1037 if (p->inside_paren_p) 1038 p->arg = skip_spaces (p->arg); 1039 1040 if (!has_lhs) 1041 { 1042 /* We were called without a left-side, either because this is the 1043 first call, or because we were called to parse a parenthesized 1044 expression. It doesn't really matter; we have to parse the 1045 left-side in order to continue the process. */ 1046 stap_parse_argument_conditionally (p); 1047 } 1048 1049 /* Start to parse the right-side, and to "join" left and right sides 1050 depending on the operation specified. 1051 1052 This loop shall continue until we run out of characters in the input, 1053 or until we find a close-parenthesis, which means that we've reached 1054 the end of a sub-expression. */ 1055 while (*p->arg != '\0' && *p->arg != ')' && !isspace (*p->arg)) 1056 { 1057 const char *tmp_exp_buf; 1058 enum exp_opcode opcode; 1059 enum stap_operand_prec cur_prec; 1060 1061 if (!stap_is_operator (p->arg)) 1062 error (_("Invalid operator `%c' on expression `%s'."), *p->arg, 1063 p->saved_arg); 1064 1065 /* We have to save the current value of the expression buffer because 1066 the `stap_get_opcode' modifies it in order to get the current 1067 operator. If this operator's precedence is lower than PREC, we 1068 should return and not advance the expression buffer pointer. */ 1069 tmp_exp_buf = p->arg; 1070 opcode = stap_get_opcode (&tmp_exp_buf); 1071 1072 cur_prec = stap_get_operator_prec (opcode); 1073 if (cur_prec < prec) 1074 { 1075 /* If the precedence of the operator that we are seeing now is 1076 lower than the precedence of the first operator seen before 1077 this parsing process began, it means we should stop parsing 1078 and return. */ 1079 break; 1080 } 1081 1082 p->arg = tmp_exp_buf; 1083 if (p->inside_paren_p) 1084 p->arg = skip_spaces (p->arg); 1085 1086 /* Parse the right-side of the expression. */ 1087 stap_parse_argument_conditionally (p); 1088 1089 /* While we still have operators, try to parse another 1090 right-side, but using the current right-side as a left-side. */ 1091 while (*p->arg != '\0' && stap_is_operator (p->arg)) 1092 { 1093 enum exp_opcode lookahead_opcode; 1094 enum stap_operand_prec lookahead_prec; 1095 1096 /* Saving the current expression buffer position. The explanation 1097 is the same as above. */ 1098 tmp_exp_buf = p->arg; 1099 lookahead_opcode = stap_get_opcode (&tmp_exp_buf); 1100 lookahead_prec = stap_get_operator_prec (lookahead_opcode); 1101 1102 if (lookahead_prec <= prec) 1103 { 1104 /* If we are dealing with an operator whose precedence is lower 1105 than the first one, just abandon the attempt. */ 1106 break; 1107 } 1108 1109 /* Parse the right-side of the expression, but since we already 1110 have a left-side at this point, set `has_lhs' to 1. */ 1111 stap_parse_argument_1 (p, 1, lookahead_prec); 1112 } 1113 1114 write_exp_elt_opcode (&p->pstate, opcode); 1115 } 1116 } 1117 1118 /* Parse a probe's argument. 1119 1120 Assuming that: 1121 1122 LP = literal integer prefix 1123 LS = literal integer suffix 1124 1125 RP = register prefix 1126 RS = register suffix 1127 1128 RIP = register indirection prefix 1129 RIS = register indirection suffix 1130 1131 This routine assumes that arguments' tokens are of the form: 1132 1133 - [LP] NUMBER [LS] 1134 - [RP] REGISTER [RS] 1135 - [RIP] [RP] REGISTER [RS] [RIS] 1136 - If we find a number without LP, we try to parse it as a literal integer 1137 constant (if LP == NULL), or as a register displacement. 1138 - We count parenthesis, and only skip whitespaces if we are inside them. 1139 - If we find an operator, we skip it. 1140 1141 This function can also call a special function that will try to match 1142 unknown tokens. It will return the expression_up generated from 1143 parsing the argument. */ 1144 1145 static expression_up 1146 stap_parse_argument (const char **arg, struct type *atype, 1147 struct gdbarch *gdbarch) 1148 { 1149 /* We need to initialize the expression buffer, in order to begin 1150 our parsing efforts. We use language_c here because we may need 1151 to do pointer arithmetics. */ 1152 struct stap_parse_info p (*arg, atype, 10, language_def (language_c), 1153 gdbarch); 1154 1155 stap_parse_argument_1 (&p, 0, STAP_OPERAND_PREC_NONE); 1156 1157 gdb_assert (p.inside_paren_p == 0); 1158 1159 /* Casting the final expression to the appropriate type. */ 1160 write_exp_elt_opcode (&p.pstate, UNOP_CAST); 1161 write_exp_elt_type (&p.pstate, atype); 1162 write_exp_elt_opcode (&p.pstate, UNOP_CAST); 1163 1164 p.arg = skip_spaces (p.arg); 1165 *arg = p.arg; 1166 1167 return p.pstate.release (); 1168 } 1169 1170 /* Implementation of 'parse_arguments' method. */ 1171 1172 void 1173 stap_probe::parse_arguments (struct gdbarch *gdbarch) 1174 { 1175 const char *cur; 1176 1177 gdb_assert (!m_have_parsed_args); 1178 cur = m_unparsed_args_text; 1179 m_have_parsed_args = true; 1180 1181 if (cur == NULL || *cur == '\0' || *cur == ':') 1182 return; 1183 1184 while (*cur != '\0') 1185 { 1186 enum stap_arg_bitness bitness; 1187 bool got_minus = false; 1188 1189 /* We expect to find something like: 1190 1191 N@OP 1192 1193 Where `N' can be [+,-][1,2,4,8]. This is not mandatory, so 1194 we check it here. If we don't find it, go to the next 1195 state. */ 1196 if ((cur[0] == '-' && isdigit (cur[1]) && cur[2] == '@') 1197 || (isdigit (cur[0]) && cur[1] == '@')) 1198 { 1199 if (*cur == '-') 1200 { 1201 /* Discard the `-'. */ 1202 ++cur; 1203 got_minus = true; 1204 } 1205 1206 /* Defining the bitness. */ 1207 switch (*cur) 1208 { 1209 case '1': 1210 bitness = (got_minus ? STAP_ARG_BITNESS_8BIT_SIGNED 1211 : STAP_ARG_BITNESS_8BIT_UNSIGNED); 1212 break; 1213 1214 case '2': 1215 bitness = (got_minus ? STAP_ARG_BITNESS_16BIT_SIGNED 1216 : STAP_ARG_BITNESS_16BIT_UNSIGNED); 1217 break; 1218 1219 case '4': 1220 bitness = (got_minus ? STAP_ARG_BITNESS_32BIT_SIGNED 1221 : STAP_ARG_BITNESS_32BIT_UNSIGNED); 1222 break; 1223 1224 case '8': 1225 bitness = (got_minus ? STAP_ARG_BITNESS_64BIT_SIGNED 1226 : STAP_ARG_BITNESS_64BIT_UNSIGNED); 1227 break; 1228 1229 default: 1230 { 1231 /* We have an error, because we don't expect anything 1232 except 1, 2, 4 and 8. */ 1233 warning (_("unrecognized bitness %s%c' for probe `%s'"), 1234 got_minus ? "`-" : "`", *cur, 1235 this->get_name ().c_str ()); 1236 return; 1237 } 1238 } 1239 /* Discard the number and the `@' sign. */ 1240 cur += 2; 1241 } 1242 else 1243 bitness = STAP_ARG_BITNESS_UNDEFINED; 1244 1245 struct type *atype 1246 = stap_get_expected_argument_type (gdbarch, bitness, 1247 this->get_name ().c_str ()); 1248 1249 expression_up expr = stap_parse_argument (&cur, atype, gdbarch); 1250 1251 if (stap_expression_debug) 1252 dump_raw_expression (expr.get (), gdb_stdlog, 1253 "before conversion to prefix form"); 1254 1255 prefixify_expression (expr.get ()); 1256 1257 if (stap_expression_debug) 1258 dump_prefix_expression (expr.get (), gdb_stdlog); 1259 1260 m_parsed_args.emplace_back (bitness, atype, std::move (expr)); 1261 1262 /* Start it over again. */ 1263 cur = skip_spaces (cur); 1264 } 1265 } 1266 1267 /* Helper function to relocate an address. */ 1268 1269 static CORE_ADDR 1270 relocate_address (CORE_ADDR address, struct objfile *objfile) 1271 { 1272 return address + ANOFFSET (objfile->section_offsets, 1273 SECT_OFF_DATA (objfile)); 1274 } 1275 1276 /* Implementation of the get_relocated_address method. */ 1277 1278 CORE_ADDR 1279 stap_probe::get_relocated_address (struct objfile *objfile) 1280 { 1281 return relocate_address (this->get_address (), objfile); 1282 } 1283 1284 /* Given PROBE, returns the number of arguments present in that probe's 1285 argument string. */ 1286 1287 unsigned 1288 stap_probe::get_argument_count (struct frame_info *frame) 1289 { 1290 struct gdbarch *gdbarch = get_frame_arch (frame); 1291 1292 if (!m_have_parsed_args) 1293 { 1294 if (this->can_evaluate_arguments ()) 1295 this->parse_arguments (gdbarch); 1296 else 1297 { 1298 static int have_warned_stap_incomplete = 0; 1299 1300 if (!have_warned_stap_incomplete) 1301 { 1302 warning (_( 1303 "The SystemTap SDT probe support is not fully implemented on this target;\n" 1304 "you will not be able to inspect the arguments of the probes.\n" 1305 "Please report a bug against GDB requesting a port to this target.")); 1306 have_warned_stap_incomplete = 1; 1307 } 1308 1309 /* Marking the arguments as "already parsed". */ 1310 m_have_parsed_args = true; 1311 } 1312 } 1313 1314 gdb_assert (m_have_parsed_args); 1315 return m_parsed_args.size (); 1316 } 1317 1318 /* Return 1 if OP is a valid operator inside a probe argument, or zero 1319 otherwise. */ 1320 1321 static int 1322 stap_is_operator (const char *op) 1323 { 1324 int ret = 1; 1325 1326 switch (*op) 1327 { 1328 case '*': 1329 case '/': 1330 case '%': 1331 case '^': 1332 case '!': 1333 case '+': 1334 case '-': 1335 case '<': 1336 case '>': 1337 case '|': 1338 case '&': 1339 break; 1340 1341 case '=': 1342 if (op[1] != '=') 1343 ret = 0; 1344 break; 1345 1346 default: 1347 /* We didn't find any operator. */ 1348 ret = 0; 1349 } 1350 1351 return ret; 1352 } 1353 1354 /* Implement the `can_evaluate_arguments' method. */ 1355 1356 bool 1357 stap_probe::can_evaluate_arguments () const 1358 { 1359 struct gdbarch *gdbarch = this->get_gdbarch (); 1360 1361 /* For SystemTap probes, we have to guarantee that the method 1362 stap_is_single_operand is defined on gdbarch. If it is not, then it 1363 means that argument evaluation is not implemented on this target. */ 1364 return gdbarch_stap_is_single_operand_p (gdbarch); 1365 } 1366 1367 /* Evaluate the probe's argument N (indexed from 0), returning a value 1368 corresponding to it. Assertion is thrown if N does not exist. */ 1369 1370 struct value * 1371 stap_probe::evaluate_argument (unsigned n, struct frame_info *frame) 1372 { 1373 struct stap_probe_arg *arg; 1374 int pos = 0; 1375 struct gdbarch *gdbarch = get_frame_arch (frame); 1376 1377 arg = this->get_arg_by_number (n, gdbarch); 1378 return evaluate_subexp_standard (arg->atype, arg->aexpr.get (), &pos, 1379 EVAL_NORMAL); 1380 } 1381 1382 /* Compile the probe's argument N (indexed from 0) to agent expression. 1383 Assertion is thrown if N does not exist. */ 1384 1385 void 1386 stap_probe::compile_to_ax (struct agent_expr *expr, struct axs_value *value, 1387 unsigned n) 1388 { 1389 struct stap_probe_arg *arg; 1390 union exp_element *pc; 1391 1392 arg = this->get_arg_by_number (n, expr->gdbarch); 1393 1394 pc = arg->aexpr->elts; 1395 gen_expr (arg->aexpr.get (), &pc, expr, value); 1396 1397 require_rvalue (expr, value); 1398 value->type = arg->atype; 1399 } 1400 1401 1402 /* Set or clear a SystemTap semaphore. ADDRESS is the semaphore's 1403 address. SET is zero if the semaphore should be cleared, or one if 1404 it should be set. This is a helper function for 1405 'stap_probe::set_semaphore' and 'stap_probe::clear_semaphore'. */ 1406 1407 static void 1408 stap_modify_semaphore (CORE_ADDR address, int set, struct gdbarch *gdbarch) 1409 { 1410 gdb_byte bytes[sizeof (LONGEST)]; 1411 /* The ABI specifies "unsigned short". */ 1412 struct type *type = builtin_type (gdbarch)->builtin_unsigned_short; 1413 ULONGEST value; 1414 1415 if (address == 0) 1416 return; 1417 1418 /* Swallow errors. */ 1419 if (target_read_memory (address, bytes, TYPE_LENGTH (type)) != 0) 1420 { 1421 warning (_("Could not read the value of a SystemTap semaphore.")); 1422 return; 1423 } 1424 1425 value = extract_unsigned_integer (bytes, TYPE_LENGTH (type), 1426 gdbarch_byte_order (gdbarch)); 1427 /* Note that we explicitly don't worry about overflow or 1428 underflow. */ 1429 if (set) 1430 ++value; 1431 else 1432 --value; 1433 1434 store_unsigned_integer (bytes, TYPE_LENGTH (type), 1435 gdbarch_byte_order (gdbarch), value); 1436 1437 if (target_write_memory (address, bytes, TYPE_LENGTH (type)) != 0) 1438 warning (_("Could not write the value of a SystemTap semaphore.")); 1439 } 1440 1441 /* Implementation of the 'set_semaphore' method. 1442 1443 SystemTap semaphores act as reference counters, so calls to this 1444 function must be paired with calls to 'clear_semaphore'. 1445 1446 This function and 'clear_semaphore' race with another tool 1447 changing the probes, but that is too rare to care. */ 1448 1449 void 1450 stap_probe::set_semaphore (struct objfile *objfile, struct gdbarch *gdbarch) 1451 { 1452 stap_modify_semaphore (relocate_address (m_sem_addr, objfile), 1, gdbarch); 1453 } 1454 1455 /* Implementation of the 'clear_semaphore' method. */ 1456 1457 void 1458 stap_probe::clear_semaphore (struct objfile *objfile, struct gdbarch *gdbarch) 1459 { 1460 stap_modify_semaphore (relocate_address (m_sem_addr, objfile), 0, gdbarch); 1461 } 1462 1463 /* Implementation of the 'get_static_ops' method. */ 1464 1465 const static_probe_ops * 1466 stap_probe::get_static_ops () const 1467 { 1468 return &stap_static_probe_ops; 1469 } 1470 1471 /* Implementation of the 'gen_info_probes_table_values' method. */ 1472 1473 std::vector<const char *> 1474 stap_probe::gen_info_probes_table_values () const 1475 { 1476 const char *val = NULL; 1477 1478 if (m_sem_addr != 0) 1479 val = print_core_address (this->get_gdbarch (), m_sem_addr); 1480 1481 return std::vector<const char *> { val }; 1482 } 1483 1484 /* Helper function that parses the information contained in a 1485 SystemTap's probe. Basically, the information consists in: 1486 1487 - Probe's PC address; 1488 - Link-time section address of `.stapsdt.base' section; 1489 - Link-time address of the semaphore variable, or ZERO if the 1490 probe doesn't have an associated semaphore; 1491 - Probe's provider name; 1492 - Probe's name; 1493 - Probe's argument format 1494 1495 This function returns 1 if the handling was successful, and zero 1496 otherwise. */ 1497 1498 static void 1499 handle_stap_probe (struct objfile *objfile, struct sdt_note *el, 1500 std::vector<probe *> *probesp, CORE_ADDR base) 1501 { 1502 bfd *abfd = objfile->obfd; 1503 int size = bfd_get_arch_size (abfd) / 8; 1504 struct gdbarch *gdbarch = get_objfile_arch (objfile); 1505 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; 1506 1507 /* Provider and the name of the probe. */ 1508 const char *provider = (const char *) &el->data[3 * size]; 1509 const char *name = ((const char *) 1510 memchr (provider, '\0', 1511 (char *) el->data + el->size - provider)); 1512 /* Making sure there is a name. */ 1513 if (name == NULL) 1514 { 1515 complaint (_("corrupt probe name when " 1516 "reading `%s'"), 1517 objfile_name (objfile)); 1518 1519 /* There is no way to use a probe without a name or a provider, so 1520 returning zero here makes sense. */ 1521 return; 1522 } 1523 else 1524 ++name; 1525 1526 /* Retrieving the probe's address. */ 1527 CORE_ADDR address = extract_typed_address (&el->data[0], ptr_type); 1528 1529 /* Link-time sh_addr of `.stapsdt.base' section. */ 1530 CORE_ADDR base_ref = extract_typed_address (&el->data[size], ptr_type); 1531 1532 /* Semaphore address. */ 1533 CORE_ADDR sem_addr = extract_typed_address (&el->data[2 * size], ptr_type); 1534 1535 address += base - base_ref; 1536 if (sem_addr != 0) 1537 sem_addr += base - base_ref; 1538 1539 /* Arguments. We can only extract the argument format if there is a valid 1540 name for this probe. */ 1541 const char *probe_args = ((const char*) 1542 memchr (name, '\0', 1543 (char *) el->data + el->size - name)); 1544 1545 if (probe_args != NULL) 1546 ++probe_args; 1547 1548 if (probe_args == NULL 1549 || (memchr (probe_args, '\0', (char *) el->data + el->size - name) 1550 != el->data + el->size - 1)) 1551 { 1552 complaint (_("corrupt probe argument when " 1553 "reading `%s'"), 1554 objfile_name (objfile)); 1555 /* If the argument string is NULL, it means some problem happened with 1556 it. So we return 0. */ 1557 return; 1558 } 1559 1560 stap_probe *ret = new stap_probe (std::string (name), std::string (provider), 1561 address, gdbarch, sem_addr, probe_args); 1562 1563 /* Successfully created probe. */ 1564 probesp->push_back (ret); 1565 } 1566 1567 /* Helper function which tries to find the base address of the SystemTap 1568 base section named STAP_BASE_SECTION_NAME. */ 1569 1570 static void 1571 get_stap_base_address_1 (bfd *abfd, asection *sect, void *obj) 1572 { 1573 asection **ret = (asection **) obj; 1574 1575 if ((sect->flags & (SEC_DATA | SEC_ALLOC | SEC_HAS_CONTENTS)) 1576 && sect->name && !strcmp (sect->name, STAP_BASE_SECTION_NAME)) 1577 *ret = sect; 1578 } 1579 1580 /* Helper function which iterates over every section in the BFD file, 1581 trying to find the base address of the SystemTap base section. 1582 Returns 1 if found (setting BASE to the proper value), zero otherwise. */ 1583 1584 static int 1585 get_stap_base_address (bfd *obfd, bfd_vma *base) 1586 { 1587 asection *ret = NULL; 1588 1589 bfd_map_over_sections (obfd, get_stap_base_address_1, (void *) &ret); 1590 1591 if (ret == NULL) 1592 { 1593 complaint (_("could not obtain base address for " 1594 "SystemTap section on objfile `%s'."), 1595 obfd->filename); 1596 return 0; 1597 } 1598 1599 if (base != NULL) 1600 *base = ret->vma; 1601 1602 return 1; 1603 } 1604 1605 /* Implementation of the 'is_linespec' method. */ 1606 1607 bool 1608 stap_static_probe_ops::is_linespec (const char **linespecp) const 1609 { 1610 static const char *const keywords[] = { "-pstap", "-probe-stap", NULL }; 1611 1612 return probe_is_linespec_by_keyword (linespecp, keywords); 1613 } 1614 1615 /* Implementation of the 'get_probes' method. */ 1616 1617 void 1618 stap_static_probe_ops::get_probes (std::vector<probe *> *probesp, 1619 struct objfile *objfile) const 1620 { 1621 /* If we are here, then this is the first time we are parsing the 1622 SystemTap probe's information. We basically have to count how many 1623 probes the objfile has, and then fill in the necessary information 1624 for each one. */ 1625 bfd *obfd = objfile->obfd; 1626 bfd_vma base; 1627 struct sdt_note *iter; 1628 unsigned save_probesp_len = probesp->size (); 1629 1630 if (objfile->separate_debug_objfile_backlink != NULL) 1631 { 1632 /* This is a .debug file, not the objfile itself. */ 1633 return; 1634 } 1635 1636 if (elf_tdata (obfd)->sdt_note_head == NULL) 1637 { 1638 /* There isn't any probe here. */ 1639 return; 1640 } 1641 1642 if (!get_stap_base_address (obfd, &base)) 1643 { 1644 /* There was an error finding the base address for the section. 1645 Just return NULL. */ 1646 return; 1647 } 1648 1649 /* Parsing each probe's information. */ 1650 for (iter = elf_tdata (obfd)->sdt_note_head; 1651 iter != NULL; 1652 iter = iter->next) 1653 { 1654 /* We first have to handle all the information about the 1655 probe which is present in the section. */ 1656 handle_stap_probe (objfile, iter, probesp, base); 1657 } 1658 1659 if (save_probesp_len == probesp->size ()) 1660 { 1661 /* If we are here, it means we have failed to parse every known 1662 probe. */ 1663 complaint (_("could not parse SystemTap probe(s) " 1664 "from inferior")); 1665 return; 1666 } 1667 } 1668 1669 /* Implementation of the type_name method. */ 1670 1671 const char * 1672 stap_static_probe_ops::type_name () const 1673 { 1674 return "stap"; 1675 } 1676 1677 /* Implementation of the 'gen_info_probes_table_header' method. */ 1678 1679 std::vector<struct info_probe_column> 1680 stap_static_probe_ops::gen_info_probes_table_header () const 1681 { 1682 struct info_probe_column stap_probe_column; 1683 1684 stap_probe_column.field_name = "semaphore"; 1685 stap_probe_column.print_name = _("Semaphore"); 1686 1687 return std::vector<struct info_probe_column> { stap_probe_column }; 1688 } 1689 1690 /* Implementation of the `info probes stap' command. */ 1691 1692 static void 1693 info_probes_stap_command (const char *arg, int from_tty) 1694 { 1695 info_probes_for_spops (arg, from_tty, &stap_static_probe_ops); 1696 } 1697 1698 void 1699 _initialize_stap_probe (void) 1700 { 1701 all_static_probe_ops.push_back (&stap_static_probe_ops); 1702 1703 add_setshow_zuinteger_cmd ("stap-expression", class_maintenance, 1704 &stap_expression_debug, 1705 _("Set SystemTap expression debugging."), 1706 _("Show SystemTap expression debugging."), 1707 _("When non-zero, the internal representation " 1708 "of SystemTap expressions will be printed."), 1709 NULL, 1710 show_stapexpressiondebug, 1711 &setdebuglist, &showdebuglist); 1712 1713 add_cmd ("stap", class_info, info_probes_stap_command, 1714 _("\ 1715 Show information about SystemTap static probes.\n\ 1716 Usage: info probes stap [PROVIDER [NAME [OBJECT]]]\n\ 1717 Each argument is a regular expression, used to select probes.\n\ 1718 PROVIDER matches probe provider names.\n\ 1719 NAME matches the probe names.\n\ 1720 OBJECT matches the executable or shared library name."), 1721 info_probes_cmdlist_get ()); 1722 1723 } 1724