xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/stap-probe.c (revision 2f62cc9c12bc202c40224f32c879f81443fee079)
1 /* SystemTap probe support for GDB.
2 
3    Copyright (C) 2012-2020 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "stap-probe.h"
22 #include "probe.h"
23 #include "ui-out.h"
24 #include "objfiles.h"
25 #include "arch-utils.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "filenames.h"
29 #include "value.h"
30 #include "ax.h"
31 #include "ax-gdb.h"
32 #include "complaints.h"
33 #include "cli/cli-utils.h"
34 #include "linespec.h"
35 #include "user-regs.h"
36 #include "parser-defs.h"
37 #include "language.h"
38 #include "elf-bfd.h"
39 
40 #include <ctype.h>
41 
42 /* The name of the SystemTap section where we will find information about
43    the probes.  */
44 
45 #define STAP_BASE_SECTION_NAME ".stapsdt.base"
46 
47 /* Should we display debug information for the probe's argument expression
48    parsing?  */
49 
50 static unsigned int stap_expression_debug = 0;
51 
52 /* The various possibilities of bitness defined for a probe's argument.
53 
54    The relationship is:
55 
56    - STAP_ARG_BITNESS_UNDEFINED:  The user hasn't specified the bitness.
57    - STAP_ARG_BITNESS_8BIT_UNSIGNED:  argument string starts with `1@'.
58    - STAP_ARG_BITNESS_8BIT_SIGNED:  argument string starts with `-1@'.
59    - STAP_ARG_BITNESS_16BIT_UNSIGNED:  argument string starts with `2@'.
60    - STAP_ARG_BITNESS_16BIT_SIGNED:  argument string starts with `-2@'.
61    - STAP_ARG_BITNESS_32BIT_UNSIGNED:  argument string starts with `4@'.
62    - STAP_ARG_BITNESS_32BIT_SIGNED:  argument string starts with `-4@'.
63    - STAP_ARG_BITNESS_64BIT_UNSIGNED:  argument string starts with `8@'.
64    - STAP_ARG_BITNESS_64BIT_SIGNED:  argument string starts with `-8@'.  */
65 
66 enum stap_arg_bitness
67 {
68   STAP_ARG_BITNESS_UNDEFINED,
69   STAP_ARG_BITNESS_8BIT_UNSIGNED,
70   STAP_ARG_BITNESS_8BIT_SIGNED,
71   STAP_ARG_BITNESS_16BIT_UNSIGNED,
72   STAP_ARG_BITNESS_16BIT_SIGNED,
73   STAP_ARG_BITNESS_32BIT_UNSIGNED,
74   STAP_ARG_BITNESS_32BIT_SIGNED,
75   STAP_ARG_BITNESS_64BIT_UNSIGNED,
76   STAP_ARG_BITNESS_64BIT_SIGNED,
77 };
78 
79 /* The following structure represents a single argument for the probe.  */
80 
81 struct stap_probe_arg
82 {
83   /* Constructor for stap_probe_arg.  */
84   stap_probe_arg (enum stap_arg_bitness bitness_, struct type *atype_,
85 		  expression_up &&aexpr_)
86   : bitness (bitness_), atype (atype_), aexpr (std::move (aexpr_))
87   {}
88 
89   /* The bitness of this argument.  */
90   enum stap_arg_bitness bitness;
91 
92   /* The corresponding `struct type *' to the bitness.  */
93   struct type *atype;
94 
95   /* The argument converted to an internal GDB expression.  */
96   expression_up aexpr;
97 };
98 
99 /* Class that implements the static probe methods for "stap" probes.  */
100 
101 class stap_static_probe_ops : public static_probe_ops
102 {
103 public:
104   /* We need a user-provided constructor to placate some compilers.
105      See PR build/24937.  */
106   stap_static_probe_ops ()
107   {
108   }
109 
110   /* See probe.h.  */
111   bool is_linespec (const char **linespecp) const override;
112 
113   /* See probe.h.  */
114   void get_probes (std::vector<std::unique_ptr<probe>> *probesp,
115 		   struct objfile *objfile) const override;
116 
117   /* See probe.h.  */
118   const char *type_name () const override;
119 
120   /* See probe.h.  */
121   std::vector<struct info_probe_column> gen_info_probes_table_header
122     () const override;
123 };
124 
125 /* SystemTap static_probe_ops.  */
126 
127 const stap_static_probe_ops stap_static_probe_ops {};
128 
129 class stap_probe : public probe
130 {
131 public:
132   /* Constructor for stap_probe.  */
133   stap_probe (std::string &&name_, std::string &&provider_, CORE_ADDR address_,
134 	      struct gdbarch *arch_, CORE_ADDR sem_addr, const char *args_text)
135     : probe (std::move (name_), std::move (provider_), address_, arch_),
136       m_sem_addr (sem_addr),
137       m_have_parsed_args (false), m_unparsed_args_text (args_text)
138   {}
139 
140   /* See probe.h.  */
141   CORE_ADDR get_relocated_address (struct objfile *objfile) override;
142 
143   /* See probe.h.  */
144   unsigned get_argument_count (struct gdbarch *gdbarch) override;
145 
146   /* See probe.h.  */
147   bool can_evaluate_arguments () const override;
148 
149   /* See probe.h.  */
150   struct value *evaluate_argument (unsigned n,
151 				   struct frame_info *frame) override;
152 
153   /* See probe.h.  */
154   void compile_to_ax (struct agent_expr *aexpr,
155 		      struct axs_value *axs_value,
156 		      unsigned n) override;
157 
158   /* See probe.h.  */
159   void set_semaphore (struct objfile *objfile,
160 		      struct gdbarch *gdbarch) override;
161 
162   /* See probe.h.  */
163   void clear_semaphore (struct objfile *objfile,
164 			struct gdbarch *gdbarch) override;
165 
166   /* See probe.h.  */
167   const static_probe_ops *get_static_ops () const override;
168 
169   /* See probe.h.  */
170   std::vector<const char *> gen_info_probes_table_values () const override;
171 
172   /* Return argument N of probe.
173 
174      If the probe's arguments have not been parsed yet, parse them.  If
175      there are no arguments, throw an exception (error).  Otherwise,
176      return the requested argument.  */
177   struct stap_probe_arg *get_arg_by_number (unsigned n,
178 					    struct gdbarch *gdbarch)
179   {
180     if (!m_have_parsed_args)
181       this->parse_arguments (gdbarch);
182 
183     gdb_assert (m_have_parsed_args);
184     if (m_parsed_args.empty ())
185       internal_error (__FILE__, __LINE__,
186 		      _("Probe '%s' apparently does not have arguments, but \n"
187 			"GDB is requesting its argument number %u anyway.  "
188 			"This should not happen.  Please report this bug."),
189 		      this->get_name ().c_str (), n);
190 
191     if (n > m_parsed_args.size ())
192       internal_error (__FILE__, __LINE__,
193 		      _("Probe '%s' has %d arguments, but GDB is requesting\n"
194 			"argument %u.  This should not happen.  Please\n"
195 			"report this bug."),
196 		      this->get_name ().c_str (),
197 		      (int) m_parsed_args.size (), n);
198 
199     return &m_parsed_args[n];
200   }
201 
202   /* Function which parses an argument string from the probe,
203      correctly splitting the arguments and storing their information
204      in properly ways.
205 
206      Consider the following argument string (x86 syntax):
207 
208      `4@%eax 4@$10'
209 
210      We have two arguments, `%eax' and `$10', both with 32-bit
211      unsigned bitness.  This function basically handles them, properly
212      filling some structures with this information.  */
213   void parse_arguments (struct gdbarch *gdbarch);
214 
215 private:
216   /* If the probe has a semaphore associated, then this is the value of
217      it, relative to SECT_OFF_DATA.  */
218   CORE_ADDR m_sem_addr;
219 
220   /* True if the arguments have been parsed.  */
221   bool m_have_parsed_args;
222 
223   /* The text version of the probe's arguments, unparsed.  */
224   const char *m_unparsed_args_text;
225 
226   /* Information about each argument.  This is an array of `stap_probe_arg',
227      with each entry representing one argument.  This is only valid if
228      M_ARGS_PARSED is true.  */
229   std::vector<struct stap_probe_arg> m_parsed_args;
230 };
231 
232 /* When parsing the arguments, we have to establish different precedences
233    for the various kinds of asm operators.  This enumeration represents those
234    precedences.
235 
236    This logic behind this is available at
237    <http://sourceware.org/binutils/docs/as/Infix-Ops.html#Infix-Ops>, or using
238    the command "info '(as)Infix Ops'".  */
239 
240 enum stap_operand_prec
241 {
242   /* Lowest precedence, used for non-recognized operands or for the beginning
243      of the parsing process.  */
244   STAP_OPERAND_PREC_NONE = 0,
245 
246   /* Precedence of logical OR.  */
247   STAP_OPERAND_PREC_LOGICAL_OR,
248 
249   /* Precedence of logical AND.  */
250   STAP_OPERAND_PREC_LOGICAL_AND,
251 
252   /* Precedence of additive (plus, minus) and comparative (equal, less,
253      greater-than, etc) operands.  */
254   STAP_OPERAND_PREC_ADD_CMP,
255 
256   /* Precedence of bitwise operands (bitwise OR, XOR, bitwise AND,
257      logical NOT).  */
258   STAP_OPERAND_PREC_BITWISE,
259 
260   /* Precedence of multiplicative operands (multiplication, division,
261      remainder, left shift and right shift).  */
262   STAP_OPERAND_PREC_MUL
263 };
264 
265 static void stap_parse_argument_1 (struct stap_parse_info *p, bool has_lhs,
266 				   enum stap_operand_prec prec);
267 
268 static void stap_parse_argument_conditionally (struct stap_parse_info *p);
269 
270 /* Returns true if *S is an operator, false otherwise.  */
271 
272 static bool stap_is_operator (const char *op);
273 
274 static void
275 show_stapexpressiondebug (struct ui_file *file, int from_tty,
276 			  struct cmd_list_element *c, const char *value)
277 {
278   fprintf_filtered (file, _("SystemTap Probe expression debugging is %s.\n"),
279 		    value);
280 }
281 
282 /* Returns the operator precedence level of OP, or STAP_OPERAND_PREC_NONE
283    if the operator code was not recognized.  */
284 
285 static enum stap_operand_prec
286 stap_get_operator_prec (enum exp_opcode op)
287 {
288   switch (op)
289     {
290     case BINOP_LOGICAL_OR:
291       return STAP_OPERAND_PREC_LOGICAL_OR;
292 
293     case BINOP_LOGICAL_AND:
294       return STAP_OPERAND_PREC_LOGICAL_AND;
295 
296     case BINOP_ADD:
297     case BINOP_SUB:
298     case BINOP_EQUAL:
299     case BINOP_NOTEQUAL:
300     case BINOP_LESS:
301     case BINOP_LEQ:
302     case BINOP_GTR:
303     case BINOP_GEQ:
304       return STAP_OPERAND_PREC_ADD_CMP;
305 
306     case BINOP_BITWISE_IOR:
307     case BINOP_BITWISE_AND:
308     case BINOP_BITWISE_XOR:
309     case UNOP_LOGICAL_NOT:
310       return STAP_OPERAND_PREC_BITWISE;
311 
312     case BINOP_MUL:
313     case BINOP_DIV:
314     case BINOP_REM:
315     case BINOP_LSH:
316     case BINOP_RSH:
317       return STAP_OPERAND_PREC_MUL;
318 
319     default:
320       return STAP_OPERAND_PREC_NONE;
321     }
322 }
323 
324 /* Given S, read the operator in it.  Return the EXP_OPCODE which
325    represents the operator detected, or throw an error if no operator
326    was found.  */
327 
328 static enum exp_opcode
329 stap_get_opcode (const char **s)
330 {
331   const char c = **s;
332   enum exp_opcode op;
333 
334   *s += 1;
335 
336   switch (c)
337     {
338     case '*':
339       op = BINOP_MUL;
340       break;
341 
342     case '/':
343       op = BINOP_DIV;
344       break;
345 
346     case '%':
347       op = BINOP_REM;
348     break;
349 
350     case '<':
351       op = BINOP_LESS;
352       if (**s == '<')
353 	{
354 	  *s += 1;
355 	  op = BINOP_LSH;
356 	}
357       else if (**s == '=')
358 	{
359 	  *s += 1;
360 	  op = BINOP_LEQ;
361 	}
362       else if (**s == '>')
363 	{
364 	  *s += 1;
365 	  op = BINOP_NOTEQUAL;
366 	}
367     break;
368 
369     case '>':
370       op = BINOP_GTR;
371       if (**s == '>')
372 	{
373 	  *s += 1;
374 	  op = BINOP_RSH;
375 	}
376       else if (**s == '=')
377 	{
378 	  *s += 1;
379 	  op = BINOP_GEQ;
380 	}
381     break;
382 
383     case '|':
384       op = BINOP_BITWISE_IOR;
385       if (**s == '|')
386 	{
387 	  *s += 1;
388 	  op = BINOP_LOGICAL_OR;
389 	}
390     break;
391 
392     case '&':
393       op = BINOP_BITWISE_AND;
394       if (**s == '&')
395 	{
396 	  *s += 1;
397 	  op = BINOP_LOGICAL_AND;
398 	}
399     break;
400 
401     case '^':
402       op = BINOP_BITWISE_XOR;
403       break;
404 
405     case '!':
406       op = UNOP_LOGICAL_NOT;
407       break;
408 
409     case '+':
410       op = BINOP_ADD;
411       break;
412 
413     case '-':
414       op = BINOP_SUB;
415       break;
416 
417     case '=':
418       gdb_assert (**s == '=');
419       op = BINOP_EQUAL;
420       break;
421 
422     default:
423       error (_("Invalid opcode in expression `%s' for SystemTap"
424 	       "probe"), *s);
425     }
426 
427   return op;
428 }
429 
430 /* Given the bitness of the argument, represented by B, return the
431    corresponding `struct type *', or throw an error if B is
432    unknown.  */
433 
434 static struct type *
435 stap_get_expected_argument_type (struct gdbarch *gdbarch,
436 				 enum stap_arg_bitness b,
437 				 const char *probe_name)
438 {
439   switch (b)
440     {
441     case STAP_ARG_BITNESS_UNDEFINED:
442       if (gdbarch_addr_bit (gdbarch) == 32)
443 	return builtin_type (gdbarch)->builtin_uint32;
444       else
445 	return builtin_type (gdbarch)->builtin_uint64;
446 
447     case STAP_ARG_BITNESS_8BIT_UNSIGNED:
448       return builtin_type (gdbarch)->builtin_uint8;
449 
450     case STAP_ARG_BITNESS_8BIT_SIGNED:
451       return builtin_type (gdbarch)->builtin_int8;
452 
453     case STAP_ARG_BITNESS_16BIT_UNSIGNED:
454       return builtin_type (gdbarch)->builtin_uint16;
455 
456     case STAP_ARG_BITNESS_16BIT_SIGNED:
457       return builtin_type (gdbarch)->builtin_int16;
458 
459     case STAP_ARG_BITNESS_32BIT_SIGNED:
460       return builtin_type (gdbarch)->builtin_int32;
461 
462     case STAP_ARG_BITNESS_32BIT_UNSIGNED:
463       return builtin_type (gdbarch)->builtin_uint32;
464 
465     case STAP_ARG_BITNESS_64BIT_SIGNED:
466       return builtin_type (gdbarch)->builtin_int64;
467 
468     case STAP_ARG_BITNESS_64BIT_UNSIGNED:
469       return builtin_type (gdbarch)->builtin_uint64;
470 
471     default:
472       error (_("Undefined bitness for probe '%s'."), probe_name);
473       break;
474     }
475 }
476 
477 /* Helper function to check for a generic list of prefixes.  GDBARCH
478    is the current gdbarch being used.  S is the expression being
479    analyzed.  If R is not NULL, it will be used to return the found
480    prefix.  PREFIXES is the list of expected prefixes.
481 
482    This function does a case-insensitive match.
483 
484    Return true if any prefix has been found, false otherwise.  */
485 
486 static bool
487 stap_is_generic_prefix (struct gdbarch *gdbarch, const char *s,
488 			const char **r, const char *const *prefixes)
489 {
490   const char *const *p;
491 
492   if (prefixes == NULL)
493     {
494       if (r != NULL)
495 	*r = "";
496 
497       return true;
498     }
499 
500   for (p = prefixes; *p != NULL; ++p)
501     if (strncasecmp (s, *p, strlen (*p)) == 0)
502       {
503 	if (r != NULL)
504 	  *r = *p;
505 
506 	return true;
507       }
508 
509   return false;
510 }
511 
512 /* Return true if S points to a register prefix, false otherwise.  For
513    a description of the arguments, look at stap_is_generic_prefix.  */
514 
515 static bool
516 stap_is_register_prefix (struct gdbarch *gdbarch, const char *s,
517 			 const char **r)
518 {
519   const char *const *t = gdbarch_stap_register_prefixes (gdbarch);
520 
521   return stap_is_generic_prefix (gdbarch, s, r, t);
522 }
523 
524 /* Return true if S points to a register indirection prefix, false
525    otherwise.  For a description of the arguments, look at
526    stap_is_generic_prefix.  */
527 
528 static bool
529 stap_is_register_indirection_prefix (struct gdbarch *gdbarch, const char *s,
530 				     const char **r)
531 {
532   const char *const *t = gdbarch_stap_register_indirection_prefixes (gdbarch);
533 
534   return stap_is_generic_prefix (gdbarch, s, r, t);
535 }
536 
537 /* Return true if S points to an integer prefix, false otherwise.  For
538    a description of the arguments, look at stap_is_generic_prefix.
539 
540    This function takes care of analyzing whether we are dealing with
541    an expected integer prefix, or, if there is no integer prefix to be
542    expected, whether we are dealing with a digit.  It does a
543    case-insensitive match.  */
544 
545 static bool
546 stap_is_integer_prefix (struct gdbarch *gdbarch, const char *s,
547 			const char **r)
548 {
549   const char *const *t = gdbarch_stap_integer_prefixes (gdbarch);
550   const char *const *p;
551 
552   if (t == NULL)
553     {
554       /* A NULL value here means that integers do not have a prefix.
555 	 We just check for a digit then.  */
556       if (r != NULL)
557 	*r = "";
558 
559       return isdigit (*s) > 0;
560     }
561 
562   for (p = t; *p != NULL; ++p)
563     {
564       size_t len = strlen (*p);
565 
566       if ((len == 0 && isdigit (*s))
567 	  || (len > 0 && strncasecmp (s, *p, len) == 0))
568 	{
569 	  /* Integers may or may not have a prefix.  The "len == 0"
570 	     check covers the case when integers do not have a prefix
571 	     (therefore, we just check if we have a digit).  The call
572 	     to "strncasecmp" covers the case when they have a
573 	     prefix.  */
574 	  if (r != NULL)
575 	    *r = *p;
576 
577 	  return true;
578 	}
579     }
580 
581   return false;
582 }
583 
584 /* Helper function to check for a generic list of suffixes.  If we are
585    not expecting any suffixes, then it just returns 1.  If we are
586    expecting at least one suffix, then it returns true if a suffix has
587    been found, false otherwise.  GDBARCH is the current gdbarch being
588    used.  S is the expression being analyzed.  If R is not NULL, it
589    will be used to return the found suffix.  SUFFIXES is the list of
590    expected suffixes.  This function does a case-insensitive
591    match.  */
592 
593 static bool
594 stap_generic_check_suffix (struct gdbarch *gdbarch, const char *s,
595 			   const char **r, const char *const *suffixes)
596 {
597   const char *const *p;
598   bool found = false;
599 
600   if (suffixes == NULL)
601     {
602       if (r != NULL)
603 	*r = "";
604 
605       return true;
606     }
607 
608   for (p = suffixes; *p != NULL; ++p)
609     if (strncasecmp (s, *p, strlen (*p)) == 0)
610       {
611 	if (r != NULL)
612 	  *r = *p;
613 
614 	found = true;
615 	break;
616       }
617 
618   return found;
619 }
620 
621 /* Return true if S points to an integer suffix, false otherwise.  For
622    a description of the arguments, look at
623    stap_generic_check_suffix.  */
624 
625 static bool
626 stap_check_integer_suffix (struct gdbarch *gdbarch, const char *s,
627 			   const char **r)
628 {
629   const char *const *p = gdbarch_stap_integer_suffixes (gdbarch);
630 
631   return stap_generic_check_suffix (gdbarch, s, r, p);
632 }
633 
634 /* Return true if S points to a register suffix, false otherwise.  For
635    a description of the arguments, look at
636    stap_generic_check_suffix.  */
637 
638 static bool
639 stap_check_register_suffix (struct gdbarch *gdbarch, const char *s,
640 			    const char **r)
641 {
642   const char *const *p = gdbarch_stap_register_suffixes (gdbarch);
643 
644   return stap_generic_check_suffix (gdbarch, s, r, p);
645 }
646 
647 /* Return true if S points to a register indirection suffix, false
648    otherwise.  For a description of the arguments, look at
649    stap_generic_check_suffix.  */
650 
651 static bool
652 stap_check_register_indirection_suffix (struct gdbarch *gdbarch, const char *s,
653 					const char **r)
654 {
655   const char *const *p = gdbarch_stap_register_indirection_suffixes (gdbarch);
656 
657   return stap_generic_check_suffix (gdbarch, s, r, p);
658 }
659 
660 /* Function responsible for parsing a register operand according to
661    SystemTap parlance.  Assuming:
662 
663    RP  = register prefix
664    RS  = register suffix
665    RIP = register indirection prefix
666    RIS = register indirection suffix
667 
668    Then a register operand can be:
669 
670    [RIP] [RP] REGISTER [RS] [RIS]
671 
672    This function takes care of a register's indirection, displacement and
673    direct access.  It also takes into consideration the fact that some
674    registers are named differently inside and outside GDB, e.g., PPC's
675    general-purpose registers are represented by integers in the assembly
676    language (e.g., `15' is the 15th general-purpose register), but inside
677    GDB they have a prefix (the letter `r') appended.  */
678 
679 static void
680 stap_parse_register_operand (struct stap_parse_info *p)
681 {
682   /* Simple flag to indicate whether we have seen a minus signal before
683      certain number.  */
684   bool got_minus = false;
685   /* Flags to indicate whether this register access is being displaced and/or
686      indirected.  */
687   bool disp_p = false;
688   bool indirect_p = false;
689   struct gdbarch *gdbarch = p->gdbarch;
690   /* Needed to generate the register name as a part of an expression.  */
691   struct stoken str;
692   /* Variables used to extract the register name from the probe's
693      argument.  */
694   const char *start;
695   const char *gdb_reg_prefix = gdbarch_stap_gdb_register_prefix (gdbarch);
696   const char *gdb_reg_suffix = gdbarch_stap_gdb_register_suffix (gdbarch);
697   const char *reg_prefix;
698   const char *reg_ind_prefix;
699   const char *reg_suffix;
700   const char *reg_ind_suffix;
701 
702   /* Checking for a displacement argument.  */
703   if (*p->arg == '+')
704     {
705       /* If it's a plus sign, we don't need to do anything, just advance the
706 	 pointer.  */
707       ++p->arg;
708     }
709   else if (*p->arg == '-')
710     {
711       got_minus = true;
712       ++p->arg;
713     }
714 
715   if (isdigit (*p->arg))
716     {
717       /* The value of the displacement.  */
718       long displacement;
719       char *endp;
720 
721       disp_p = true;
722       displacement = strtol (p->arg, &endp, 10);
723       p->arg = endp;
724 
725       /* Generating the expression for the displacement.  */
726       write_exp_elt_opcode (&p->pstate, OP_LONG);
727       write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
728       write_exp_elt_longcst (&p->pstate, displacement);
729       write_exp_elt_opcode (&p->pstate, OP_LONG);
730       if (got_minus)
731 	write_exp_elt_opcode (&p->pstate, UNOP_NEG);
732     }
733 
734   /* Getting rid of register indirection prefix.  */
735   if (stap_is_register_indirection_prefix (gdbarch, p->arg, &reg_ind_prefix))
736     {
737       indirect_p = true;
738       p->arg += strlen (reg_ind_prefix);
739     }
740 
741   if (disp_p && !indirect_p)
742     error (_("Invalid register displacement syntax on expression `%s'."),
743 	   p->saved_arg);
744 
745   /* Getting rid of register prefix.  */
746   if (stap_is_register_prefix (gdbarch, p->arg, &reg_prefix))
747     p->arg += strlen (reg_prefix);
748 
749   /* Now we should have only the register name.  Let's extract it and get
750      the associated number.  */
751   start = p->arg;
752 
753   /* We assume the register name is composed by letters and numbers.  */
754   while (isalnum (*p->arg))
755     ++p->arg;
756 
757   std::string regname (start, p->arg - start);
758 
759   /* We only add the GDB's register prefix/suffix if we are dealing with
760      a numeric register.  */
761   if (isdigit (*start))
762     {
763       if (gdb_reg_prefix != NULL)
764 	regname = gdb_reg_prefix + regname;
765 
766       if (gdb_reg_suffix != NULL)
767 	regname += gdb_reg_suffix;
768     }
769 
770   int regnum = user_reg_map_name_to_regnum (gdbarch, regname.c_str (),
771 					    regname.size ());
772 
773   /* Is this a valid register name?  */
774   if (regnum == -1)
775     error (_("Invalid register name `%s' on expression `%s'."),
776 	   regname.c_str (), p->saved_arg);
777 
778   /* Check if there's any special treatment that the arch-specific
779      code would like to perform on the register name.  */
780   if (gdbarch_stap_adjust_register_p (gdbarch))
781     {
782       std::string newregname
783 	= gdbarch_stap_adjust_register (gdbarch, p, regname, regnum);
784 
785       if (regname != newregname)
786 	{
787 	  /* This is just a check we perform to make sure that the
788 	     arch-dependent code has provided us with a valid
789 	     register name.  */
790 	  regnum = user_reg_map_name_to_regnum (gdbarch, newregname.c_str (),
791 						newregname.size ());
792 
793 	  if (regnum == -1)
794 	    internal_error (__FILE__, __LINE__,
795 			    _("Invalid register name '%s' after replacing it"
796 			      " (previous name was '%s')"),
797 			    newregname.c_str (), regname.c_str ());
798 
799 	  regname = newregname;
800 	}
801     }
802 
803   write_exp_elt_opcode (&p->pstate, OP_REGISTER);
804   str.ptr = regname.c_str ();
805   str.length = regname.size ();
806   write_exp_string (&p->pstate, str);
807   write_exp_elt_opcode (&p->pstate, OP_REGISTER);
808 
809   if (indirect_p)
810     {
811       if (disp_p)
812 	write_exp_elt_opcode (&p->pstate, BINOP_ADD);
813 
814       /* Casting to the expected type.  */
815       write_exp_elt_opcode (&p->pstate, UNOP_CAST);
816       write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type));
817       write_exp_elt_opcode (&p->pstate, UNOP_CAST);
818 
819       write_exp_elt_opcode (&p->pstate, UNOP_IND);
820     }
821 
822   /* Getting rid of the register name suffix.  */
823   if (stap_check_register_suffix (gdbarch, p->arg, &reg_suffix))
824     p->arg += strlen (reg_suffix);
825   else
826     error (_("Missing register name suffix on expression `%s'."),
827 	   p->saved_arg);
828 
829   /* Getting rid of the register indirection suffix.  */
830   if (indirect_p)
831     {
832       if (stap_check_register_indirection_suffix (gdbarch, p->arg,
833 						  &reg_ind_suffix))
834 	p->arg += strlen (reg_ind_suffix);
835       else
836 	error (_("Missing indirection suffix on expression `%s'."),
837 	       p->saved_arg);
838     }
839 }
840 
841 /* This function is responsible for parsing a single operand.
842 
843    A single operand can be:
844 
845       - an unary operation (e.g., `-5', `~2', or even with subexpressions
846         like `-(2 + 1)')
847       - a register displacement, which will be treated as a register
848         operand (e.g., `-4(%eax)' on x86)
849       - a numeric constant, or
850       - a register operand (see function `stap_parse_register_operand')
851 
852    The function also calls special-handling functions to deal with
853    unrecognized operands, allowing arch-specific parsers to be
854    created.  */
855 
856 static void
857 stap_parse_single_operand (struct stap_parse_info *p)
858 {
859   struct gdbarch *gdbarch = p->gdbarch;
860   const char *int_prefix = NULL;
861 
862   /* We first try to parse this token as a "special token".  */
863   if (gdbarch_stap_parse_special_token_p (gdbarch)
864       && (gdbarch_stap_parse_special_token (gdbarch, p) != 0))
865     {
866       /* If the return value of the above function is not zero,
867 	 it means it successfully parsed the special token.
868 
869 	 If it is NULL, we try to parse it using our method.  */
870       return;
871     }
872 
873   if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+')
874     {
875       char c = *p->arg;
876       /* We use this variable to do a lookahead.  */
877       const char *tmp = p->arg;
878       bool has_digit = false;
879 
880       /* Skipping signal.  */
881       ++tmp;
882 
883       /* This is an unary operation.  Here is a list of allowed tokens
884 	 here:
885 
886 	 - numeric literal;
887 	 - number (from register displacement)
888 	 - subexpression (beginning with `(')
889 
890 	 We handle the register displacement here, and the other cases
891 	 recursively.  */
892       if (p->inside_paren_p)
893 	tmp = skip_spaces (tmp);
894 
895       while (isdigit (*tmp))
896 	{
897 	  /* We skip the digit here because we are only interested in
898 	     knowing what kind of unary operation this is.  The digit
899 	     will be handled by one of the functions that will be
900 	     called below ('stap_parse_argument_conditionally' or
901 	     'stap_parse_register_operand').  */
902 	  ++tmp;
903 	  has_digit = true;
904 	}
905 
906       if (has_digit && stap_is_register_indirection_prefix (gdbarch, tmp,
907 							    NULL))
908 	{
909 	  /* If we are here, it means it is a displacement.  The only
910 	     operations allowed here are `-' and `+'.  */
911 	  if (c != '-' && c != '+')
912 	    error (_("Invalid operator `%c' for register displacement "
913 		     "on expression `%s'."), c, p->saved_arg);
914 
915 	  stap_parse_register_operand (p);
916 	}
917       else
918 	{
919 	  /* This is not a displacement.  We skip the operator, and
920 	     deal with it when the recursion returns.  */
921 	  ++p->arg;
922 	  stap_parse_argument_conditionally (p);
923 	  if (c == '-')
924 	    write_exp_elt_opcode (&p->pstate, UNOP_NEG);
925 	  else if (c == '~')
926 	    write_exp_elt_opcode (&p->pstate, UNOP_COMPLEMENT);
927 	}
928     }
929   else if (isdigit (*p->arg))
930     {
931       /* A temporary variable, needed for lookahead.  */
932       const char *tmp = p->arg;
933       char *endp;
934       long number;
935 
936       /* We can be dealing with a numeric constant, or with a register
937 	 displacement.  */
938       number = strtol (tmp, &endp, 10);
939       tmp = endp;
940 
941       if (p->inside_paren_p)
942 	tmp = skip_spaces (tmp);
943 
944       /* If "stap_is_integer_prefix" returns true, it means we can
945 	 accept integers without a prefix here.  But we also need to
946 	 check whether the next token (i.e., "tmp") is not a register
947 	 indirection prefix.  */
948       if (stap_is_integer_prefix (gdbarch, p->arg, NULL)
949 	  && !stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
950 	{
951 	  const char *int_suffix;
952 
953 	  /* We are dealing with a numeric constant.  */
954 	  write_exp_elt_opcode (&p->pstate, OP_LONG);
955 	  write_exp_elt_type (&p->pstate,
956 			      builtin_type (gdbarch)->builtin_long);
957 	  write_exp_elt_longcst (&p->pstate, number);
958 	  write_exp_elt_opcode (&p->pstate, OP_LONG);
959 
960 	  p->arg = tmp;
961 
962 	  if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
963 	    p->arg += strlen (int_suffix);
964 	  else
965 	    error (_("Invalid constant suffix on expression `%s'."),
966 		   p->saved_arg);
967 	}
968       else if (stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
969 	stap_parse_register_operand (p);
970       else
971 	error (_("Unknown numeric token on expression `%s'."),
972 	       p->saved_arg);
973     }
974   else if (stap_is_integer_prefix (gdbarch, p->arg, &int_prefix))
975     {
976       /* We are dealing with a numeric constant.  */
977       long number;
978       char *endp;
979       const char *int_suffix;
980 
981       p->arg += strlen (int_prefix);
982       number = strtol (p->arg, &endp, 10);
983       p->arg = endp;
984 
985       write_exp_elt_opcode (&p->pstate, OP_LONG);
986       write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
987       write_exp_elt_longcst (&p->pstate, number);
988       write_exp_elt_opcode (&p->pstate, OP_LONG);
989 
990       if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
991 	p->arg += strlen (int_suffix);
992       else
993 	error (_("Invalid constant suffix on expression `%s'."),
994 	       p->saved_arg);
995     }
996   else if (stap_is_register_prefix (gdbarch, p->arg, NULL)
997 	   || stap_is_register_indirection_prefix (gdbarch, p->arg, NULL))
998     stap_parse_register_operand (p);
999   else
1000     error (_("Operator `%c' not recognized on expression `%s'."),
1001 	   *p->arg, p->saved_arg);
1002 }
1003 
1004 /* This function parses an argument conditionally, based on single or
1005    non-single operands.  A non-single operand would be a parenthesized
1006    expression (e.g., `(2 + 1)'), and a single operand is anything that
1007    starts with `-', `~', `+' (i.e., unary operators), a digit, or
1008    something recognized by `gdbarch_stap_is_single_operand'.  */
1009 
1010 static void
1011 stap_parse_argument_conditionally (struct stap_parse_info *p)
1012 {
1013   gdb_assert (gdbarch_stap_is_single_operand_p (p->gdbarch));
1014 
1015   if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+' /* Unary.  */
1016       || isdigit (*p->arg)
1017       || gdbarch_stap_is_single_operand (p->gdbarch, p->arg))
1018     stap_parse_single_operand (p);
1019   else if (*p->arg == '(')
1020     {
1021       /* We are dealing with a parenthesized operand.  It means we
1022 	 have to parse it as it was a separate expression, without
1023 	 left-side or precedence.  */
1024       ++p->arg;
1025       p->arg = skip_spaces (p->arg);
1026       ++p->inside_paren_p;
1027 
1028       stap_parse_argument_1 (p, 0, STAP_OPERAND_PREC_NONE);
1029 
1030       --p->inside_paren_p;
1031       if (*p->arg != ')')
1032 	error (_("Missign close-paren on expression `%s'."),
1033 	       p->saved_arg);
1034 
1035       ++p->arg;
1036       if (p->inside_paren_p)
1037 	p->arg = skip_spaces (p->arg);
1038     }
1039   else
1040     error (_("Cannot parse expression `%s'."), p->saved_arg);
1041 }
1042 
1043 /* Helper function for `stap_parse_argument'.  Please, see its comments to
1044    better understand what this function does.  */
1045 
1046 static void
1047 stap_parse_argument_1 (struct stap_parse_info *p, bool has_lhs,
1048 		       enum stap_operand_prec prec)
1049 {
1050   /* This is an operator-precedence parser.
1051 
1052      We work with left- and right-sides of expressions, and
1053      parse them depending on the precedence of the operators
1054      we find.  */
1055 
1056   gdb_assert (p->arg != NULL);
1057 
1058   if (p->inside_paren_p)
1059     p->arg = skip_spaces (p->arg);
1060 
1061   if (!has_lhs)
1062     {
1063       /* We were called without a left-side, either because this is the
1064 	 first call, or because we were called to parse a parenthesized
1065 	 expression.  It doesn't really matter; we have to parse the
1066 	 left-side in order to continue the process.  */
1067       stap_parse_argument_conditionally (p);
1068     }
1069 
1070   /* Start to parse the right-side, and to "join" left and right sides
1071      depending on the operation specified.
1072 
1073      This loop shall continue until we run out of characters in the input,
1074      or until we find a close-parenthesis, which means that we've reached
1075      the end of a sub-expression.  */
1076   while (*p->arg != '\0' && *p->arg != ')' && !isspace (*p->arg))
1077     {
1078       const char *tmp_exp_buf;
1079       enum exp_opcode opcode;
1080       enum stap_operand_prec cur_prec;
1081 
1082       if (!stap_is_operator (p->arg))
1083 	error (_("Invalid operator `%c' on expression `%s'."), *p->arg,
1084 	       p->saved_arg);
1085 
1086       /* We have to save the current value of the expression buffer because
1087 	 the `stap_get_opcode' modifies it in order to get the current
1088 	 operator.  If this operator's precedence is lower than PREC, we
1089 	 should return and not advance the expression buffer pointer.  */
1090       tmp_exp_buf = p->arg;
1091       opcode = stap_get_opcode (&tmp_exp_buf);
1092 
1093       cur_prec = stap_get_operator_prec (opcode);
1094       if (cur_prec < prec)
1095 	{
1096 	  /* If the precedence of the operator that we are seeing now is
1097 	     lower than the precedence of the first operator seen before
1098 	     this parsing process began, it means we should stop parsing
1099 	     and return.  */
1100 	  break;
1101 	}
1102 
1103       p->arg = tmp_exp_buf;
1104       if (p->inside_paren_p)
1105 	p->arg = skip_spaces (p->arg);
1106 
1107       /* Parse the right-side of the expression.  */
1108       stap_parse_argument_conditionally (p);
1109 
1110       /* While we still have operators, try to parse another
1111 	 right-side, but using the current right-side as a left-side.  */
1112       while (*p->arg != '\0' && stap_is_operator (p->arg))
1113 	{
1114 	  enum exp_opcode lookahead_opcode;
1115 	  enum stap_operand_prec lookahead_prec;
1116 
1117 	  /* Saving the current expression buffer position.  The explanation
1118 	     is the same as above.  */
1119 	  tmp_exp_buf = p->arg;
1120 	  lookahead_opcode = stap_get_opcode (&tmp_exp_buf);
1121 	  lookahead_prec = stap_get_operator_prec (lookahead_opcode);
1122 
1123 	  if (lookahead_prec <= prec)
1124 	    {
1125 	      /* If we are dealing with an operator whose precedence is lower
1126 		 than the first one, just abandon the attempt.  */
1127 	      break;
1128 	    }
1129 
1130 	  /* Parse the right-side of the expression, but since we already
1131 	     have a left-side at this point, set `has_lhs' to 1.  */
1132 	  stap_parse_argument_1 (p, 1, lookahead_prec);
1133 	}
1134 
1135       write_exp_elt_opcode (&p->pstate, opcode);
1136     }
1137 }
1138 
1139 /* Parse a probe's argument.
1140 
1141    Assuming that:
1142 
1143    LP = literal integer prefix
1144    LS = literal integer suffix
1145 
1146    RP = register prefix
1147    RS = register suffix
1148 
1149    RIP = register indirection prefix
1150    RIS = register indirection suffix
1151 
1152    This routine assumes that arguments' tokens are of the form:
1153 
1154    - [LP] NUMBER [LS]
1155    - [RP] REGISTER [RS]
1156    - [RIP] [RP] REGISTER [RS] [RIS]
1157    - If we find a number without LP, we try to parse it as a literal integer
1158    constant (if LP == NULL), or as a register displacement.
1159    - We count parenthesis, and only skip whitespaces if we are inside them.
1160    - If we find an operator, we skip it.
1161 
1162    This function can also call a special function that will try to match
1163    unknown tokens.  It will return the expression_up generated from
1164    parsing the argument.  */
1165 
1166 static expression_up
1167 stap_parse_argument (const char **arg, struct type *atype,
1168 		     struct gdbarch *gdbarch)
1169 {
1170   /* We need to initialize the expression buffer, in order to begin
1171      our parsing efforts.  We use language_c here because we may need
1172      to do pointer arithmetics.  */
1173   struct stap_parse_info p (*arg, atype, language_def (language_c),
1174 			    gdbarch);
1175 
1176   stap_parse_argument_1 (&p, 0, STAP_OPERAND_PREC_NONE);
1177 
1178   gdb_assert (p.inside_paren_p == 0);
1179 
1180   /* Casting the final expression to the appropriate type.  */
1181   write_exp_elt_opcode (&p.pstate, UNOP_CAST);
1182   write_exp_elt_type (&p.pstate, atype);
1183   write_exp_elt_opcode (&p.pstate, UNOP_CAST);
1184 
1185   p.arg = skip_spaces (p.arg);
1186   *arg = p.arg;
1187 
1188   return p.pstate.release ();
1189 }
1190 
1191 /* Implementation of 'parse_arguments' method.  */
1192 
1193 void
1194 stap_probe::parse_arguments (struct gdbarch *gdbarch)
1195 {
1196   const char *cur;
1197 
1198   gdb_assert (!m_have_parsed_args);
1199   cur = m_unparsed_args_text;
1200   m_have_parsed_args = true;
1201 
1202   if (cur == NULL || *cur == '\0' || *cur == ':')
1203     return;
1204 
1205   while (*cur != '\0')
1206     {
1207       enum stap_arg_bitness bitness;
1208       bool got_minus = false;
1209 
1210       /* We expect to find something like:
1211 
1212 	 N@OP
1213 
1214 	 Where `N' can be [+,-][1,2,4,8].  This is not mandatory, so
1215 	 we check it here.  If we don't find it, go to the next
1216 	 state.  */
1217       if ((cur[0] == '-' && isdigit (cur[1]) && cur[2] == '@')
1218 	  || (isdigit (cur[0]) && cur[1] == '@'))
1219 	{
1220 	  if (*cur == '-')
1221 	    {
1222 	      /* Discard the `-'.  */
1223 	      ++cur;
1224 	      got_minus = true;
1225 	    }
1226 
1227 	  /* Defining the bitness.  */
1228 	  switch (*cur)
1229 	    {
1230 	    case '1':
1231 	      bitness = (got_minus ? STAP_ARG_BITNESS_8BIT_SIGNED
1232 			 : STAP_ARG_BITNESS_8BIT_UNSIGNED);
1233 	      break;
1234 
1235 	    case '2':
1236 	      bitness = (got_minus ? STAP_ARG_BITNESS_16BIT_SIGNED
1237 			 : STAP_ARG_BITNESS_16BIT_UNSIGNED);
1238 	      break;
1239 
1240 	    case '4':
1241 	      bitness = (got_minus ? STAP_ARG_BITNESS_32BIT_SIGNED
1242 			 : STAP_ARG_BITNESS_32BIT_UNSIGNED);
1243 	      break;
1244 
1245 	    case '8':
1246 	      bitness = (got_minus ? STAP_ARG_BITNESS_64BIT_SIGNED
1247 			 : STAP_ARG_BITNESS_64BIT_UNSIGNED);
1248 	      break;
1249 
1250 	    default:
1251 	      {
1252 		/* We have an error, because we don't expect anything
1253 		   except 1, 2, 4 and 8.  */
1254 		warning (_("unrecognized bitness %s%c' for probe `%s'"),
1255 			 got_minus ? "`-" : "`", *cur,
1256 			 this->get_name ().c_str ());
1257 		return;
1258 	      }
1259 	    }
1260 	  /* Discard the number and the `@' sign.  */
1261 	  cur += 2;
1262 	}
1263       else
1264 	bitness = STAP_ARG_BITNESS_UNDEFINED;
1265 
1266       struct type *atype
1267 	= stap_get_expected_argument_type (gdbarch, bitness,
1268 					   this->get_name ().c_str ());
1269 
1270       expression_up expr = stap_parse_argument (&cur, atype, gdbarch);
1271 
1272       if (stap_expression_debug)
1273 	dump_raw_expression (expr.get (), gdb_stdlog,
1274 			     "before conversion to prefix form");
1275 
1276       prefixify_expression (expr.get ());
1277 
1278       if (stap_expression_debug)
1279 	dump_prefix_expression (expr.get (), gdb_stdlog);
1280 
1281       m_parsed_args.emplace_back (bitness, atype, std::move (expr));
1282 
1283       /* Start it over again.  */
1284       cur = skip_spaces (cur);
1285     }
1286 }
1287 
1288 /* Helper function to relocate an address.  */
1289 
1290 static CORE_ADDR
1291 relocate_address (CORE_ADDR address, struct objfile *objfile)
1292 {
1293   return address + objfile->data_section_offset ();
1294 }
1295 
1296 /* Implementation of the get_relocated_address method.  */
1297 
1298 CORE_ADDR
1299 stap_probe::get_relocated_address (struct objfile *objfile)
1300 {
1301   return relocate_address (this->get_address (), objfile);
1302 }
1303 
1304 /* Given PROBE, returns the number of arguments present in that probe's
1305    argument string.  */
1306 
1307 unsigned
1308 stap_probe::get_argument_count (struct gdbarch *gdbarch)
1309 {
1310   if (!m_have_parsed_args)
1311     {
1312       if (this->can_evaluate_arguments ())
1313 	this->parse_arguments (gdbarch);
1314       else
1315 	{
1316 	  static bool have_warned_stap_incomplete = false;
1317 
1318 	  if (!have_warned_stap_incomplete)
1319 	    {
1320 	      warning (_(
1321 "The SystemTap SDT probe support is not fully implemented on this target;\n"
1322 "you will not be able to inspect the arguments of the probes.\n"
1323 "Please report a bug against GDB requesting a port to this target."));
1324 	      have_warned_stap_incomplete = true;
1325 	    }
1326 
1327 	  /* Marking the arguments as "already parsed".  */
1328 	  m_have_parsed_args = true;
1329 	}
1330     }
1331 
1332   gdb_assert (m_have_parsed_args);
1333   return m_parsed_args.size ();
1334 }
1335 
1336 /* Return true if OP is a valid operator inside a probe argument, or
1337    false otherwise.  */
1338 
1339 static bool
1340 stap_is_operator (const char *op)
1341 {
1342   bool ret = true;
1343 
1344   switch (*op)
1345     {
1346     case '*':
1347     case '/':
1348     case '%':
1349     case '^':
1350     case '!':
1351     case '+':
1352     case '-':
1353     case '<':
1354     case '>':
1355     case '|':
1356     case '&':
1357       break;
1358 
1359     case '=':
1360       if (op[1] != '=')
1361 	ret = false;
1362       break;
1363 
1364     default:
1365       /* We didn't find any operator.  */
1366       ret = false;
1367     }
1368 
1369   return ret;
1370 }
1371 
1372 /* Implement the `can_evaluate_arguments' method.  */
1373 
1374 bool
1375 stap_probe::can_evaluate_arguments () const
1376 {
1377   struct gdbarch *gdbarch = this->get_gdbarch ();
1378 
1379   /* For SystemTap probes, we have to guarantee that the method
1380      stap_is_single_operand is defined on gdbarch.  If it is not, then it
1381      means that argument evaluation is not implemented on this target.  */
1382   return gdbarch_stap_is_single_operand_p (gdbarch);
1383 }
1384 
1385 /* Evaluate the probe's argument N (indexed from 0), returning a value
1386    corresponding to it.  Assertion is thrown if N does not exist.  */
1387 
1388 struct value *
1389 stap_probe::evaluate_argument (unsigned n, struct frame_info *frame)
1390 {
1391   struct stap_probe_arg *arg;
1392   int pos = 0;
1393   struct gdbarch *gdbarch = get_frame_arch (frame);
1394 
1395   arg = this->get_arg_by_number (n, gdbarch);
1396   return evaluate_subexp_standard (arg->atype, arg->aexpr.get (), &pos,
1397 				   EVAL_NORMAL);
1398 }
1399 
1400 /* Compile the probe's argument N (indexed from 0) to agent expression.
1401    Assertion is thrown if N does not exist.  */
1402 
1403 void
1404 stap_probe::compile_to_ax (struct agent_expr *expr, struct axs_value *value,
1405 			   unsigned n)
1406 {
1407   struct stap_probe_arg *arg;
1408   union exp_element *pc;
1409 
1410   arg = this->get_arg_by_number (n, expr->gdbarch);
1411 
1412   pc = arg->aexpr->elts;
1413   gen_expr (arg->aexpr.get (), &pc, expr, value);
1414 
1415   require_rvalue (expr, value);
1416   value->type = arg->atype;
1417 }
1418 
1419 
1420 /* Set or clear a SystemTap semaphore.  ADDRESS is the semaphore's
1421    address.  SET is zero if the semaphore should be cleared, or one if
1422    it should be set.  This is a helper function for
1423    'stap_probe::set_semaphore' and 'stap_probe::clear_semaphore'.  */
1424 
1425 static void
1426 stap_modify_semaphore (CORE_ADDR address, int set, struct gdbarch *gdbarch)
1427 {
1428   gdb_byte bytes[sizeof (LONGEST)];
1429   /* The ABI specifies "unsigned short".  */
1430   struct type *type = builtin_type (gdbarch)->builtin_unsigned_short;
1431   ULONGEST value;
1432 
1433   /* Swallow errors.  */
1434   if (target_read_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1435     {
1436       warning (_("Could not read the value of a SystemTap semaphore."));
1437       return;
1438     }
1439 
1440   enum bfd_endian byte_order = type_byte_order (type);
1441   value = extract_unsigned_integer (bytes, TYPE_LENGTH (type), byte_order);
1442   /* Note that we explicitly don't worry about overflow or
1443      underflow.  */
1444   if (set)
1445     ++value;
1446   else
1447     --value;
1448 
1449   store_unsigned_integer (bytes, TYPE_LENGTH (type), byte_order, value);
1450 
1451   if (target_write_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1452     warning (_("Could not write the value of a SystemTap semaphore."));
1453 }
1454 
1455 /* Implementation of the 'set_semaphore' method.
1456 
1457    SystemTap semaphores act as reference counters, so calls to this
1458    function must be paired with calls to 'clear_semaphore'.
1459 
1460    This function and 'clear_semaphore' race with another tool
1461    changing the probes, but that is too rare to care.  */
1462 
1463 void
1464 stap_probe::set_semaphore (struct objfile *objfile, struct gdbarch *gdbarch)
1465 {
1466   if (m_sem_addr == 0)
1467     return;
1468   stap_modify_semaphore (relocate_address (m_sem_addr, objfile), 1, gdbarch);
1469 }
1470 
1471 /* Implementation of the 'clear_semaphore' method.  */
1472 
1473 void
1474 stap_probe::clear_semaphore (struct objfile *objfile, struct gdbarch *gdbarch)
1475 {
1476   if (m_sem_addr == 0)
1477     return;
1478   stap_modify_semaphore (relocate_address (m_sem_addr, objfile), 0, gdbarch);
1479 }
1480 
1481 /* Implementation of the 'get_static_ops' method.  */
1482 
1483 const static_probe_ops *
1484 stap_probe::get_static_ops () const
1485 {
1486   return &stap_static_probe_ops;
1487 }
1488 
1489 /* Implementation of the 'gen_info_probes_table_values' method.  */
1490 
1491 std::vector<const char *>
1492 stap_probe::gen_info_probes_table_values () const
1493 {
1494   const char *val = NULL;
1495 
1496   if (m_sem_addr != 0)
1497     val = print_core_address (this->get_gdbarch (), m_sem_addr);
1498 
1499   return std::vector<const char *> { val };
1500 }
1501 
1502 /* Helper function that parses the information contained in a
1503    SystemTap's probe.  Basically, the information consists in:
1504 
1505    - Probe's PC address;
1506    - Link-time section address of `.stapsdt.base' section;
1507    - Link-time address of the semaphore variable, or ZERO if the
1508      probe doesn't have an associated semaphore;
1509    - Probe's provider name;
1510    - Probe's name;
1511    - Probe's argument format.  */
1512 
1513 static void
1514 handle_stap_probe (struct objfile *objfile, struct sdt_note *el,
1515 		   std::vector<std::unique_ptr<probe>> *probesp,
1516 		   CORE_ADDR base)
1517 {
1518   bfd *abfd = objfile->obfd;
1519   int size = bfd_get_arch_size (abfd) / 8;
1520   struct gdbarch *gdbarch = objfile->arch ();
1521   struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
1522 
1523   /* Provider and the name of the probe.  */
1524   const char *provider = (const char *) &el->data[3 * size];
1525   const char *name = ((const char *)
1526 		      memchr (provider, '\0',
1527 			      (char *) el->data + el->size - provider));
1528   /* Making sure there is a name.  */
1529   if (name == NULL)
1530     {
1531       complaint (_("corrupt probe name when reading `%s'"),
1532 		 objfile_name (objfile));
1533 
1534       /* There is no way to use a probe without a name or a provider, so
1535 	 returning here makes sense.  */
1536       return;
1537     }
1538   else
1539     ++name;
1540 
1541   /* Retrieving the probe's address.  */
1542   CORE_ADDR address = extract_typed_address (&el->data[0], ptr_type);
1543 
1544   /* Link-time sh_addr of `.stapsdt.base' section.  */
1545   CORE_ADDR base_ref = extract_typed_address (&el->data[size], ptr_type);
1546 
1547   /* Semaphore address.  */
1548   CORE_ADDR sem_addr = extract_typed_address (&el->data[2 * size], ptr_type);
1549 
1550   address += base - base_ref;
1551   if (sem_addr != 0)
1552     sem_addr += base - base_ref;
1553 
1554   /* Arguments.  We can only extract the argument format if there is a valid
1555      name for this probe.  */
1556   const char *probe_args = ((const char*)
1557 			    memchr (name, '\0',
1558 				    (char *) el->data + el->size - name));
1559 
1560   if (probe_args != NULL)
1561     ++probe_args;
1562 
1563   if (probe_args == NULL
1564       || (memchr (probe_args, '\0', (char *) el->data + el->size - name)
1565 	  != el->data + el->size - 1))
1566     {
1567       complaint (_("corrupt probe argument when reading `%s'"),
1568 		 objfile_name (objfile));
1569       /* If the argument string is NULL, it means some problem happened with
1570 	 it.  So we return.  */
1571       return;
1572     }
1573 
1574   stap_probe *ret = new stap_probe (std::string (name), std::string (provider),
1575 				    address, gdbarch, sem_addr, probe_args);
1576 
1577   /* Successfully created probe.  */
1578   probesp->emplace_back (ret);
1579 }
1580 
1581 /* Helper function which tries to find the base address of the SystemTap
1582    base section named STAP_BASE_SECTION_NAME.  */
1583 
1584 static void
1585 get_stap_base_address_1 (bfd *abfd, asection *sect, void *obj)
1586 {
1587   asection **ret = (asection **) obj;
1588 
1589   if ((sect->flags & (SEC_DATA | SEC_ALLOC | SEC_HAS_CONTENTS))
1590       && sect->name && !strcmp (sect->name, STAP_BASE_SECTION_NAME))
1591     *ret = sect;
1592 }
1593 
1594 /* Helper function which iterates over every section in the BFD file,
1595    trying to find the base address of the SystemTap base section.
1596    Returns 1 if found (setting BASE to the proper value), zero otherwise.  */
1597 
1598 static int
1599 get_stap_base_address (bfd *obfd, bfd_vma *base)
1600 {
1601   asection *ret = NULL;
1602 
1603   bfd_map_over_sections (obfd, get_stap_base_address_1, (void *) &ret);
1604 
1605   if (ret == NULL)
1606     {
1607       complaint (_("could not obtain base address for "
1608 					"SystemTap section on objfile `%s'."),
1609 		 bfd_get_filename (obfd));
1610       return 0;
1611     }
1612 
1613   if (base != NULL)
1614     *base = ret->vma;
1615 
1616   return 1;
1617 }
1618 
1619 /* Implementation of the 'is_linespec' method.  */
1620 
1621 bool
1622 stap_static_probe_ops::is_linespec (const char **linespecp) const
1623 {
1624   static const char *const keywords[] = { "-pstap", "-probe-stap", NULL };
1625 
1626   return probe_is_linespec_by_keyword (linespecp, keywords);
1627 }
1628 
1629 /* Implementation of the 'get_probes' method.  */
1630 
1631 void
1632 stap_static_probe_ops::get_probes
1633   (std::vector<std::unique_ptr<probe>> *probesp,
1634    struct objfile *objfile) const
1635 {
1636   /* If we are here, then this is the first time we are parsing the
1637      SystemTap probe's information.  We basically have to count how many
1638      probes the objfile has, and then fill in the necessary information
1639      for each one.  */
1640   bfd *obfd = objfile->obfd;
1641   bfd_vma base;
1642   struct sdt_note *iter;
1643   unsigned save_probesp_len = probesp->size ();
1644 
1645   if (objfile->separate_debug_objfile_backlink != NULL)
1646     {
1647       /* This is a .debug file, not the objfile itself.  */
1648       return;
1649     }
1650 
1651   if (elf_tdata (obfd)->sdt_note_head == NULL)
1652     {
1653       /* There isn't any probe here.  */
1654       return;
1655     }
1656 
1657   if (!get_stap_base_address (obfd, &base))
1658     {
1659       /* There was an error finding the base address for the section.
1660 	 Just return NULL.  */
1661       return;
1662     }
1663 
1664   /* Parsing each probe's information.  */
1665   for (iter = elf_tdata (obfd)->sdt_note_head;
1666        iter != NULL;
1667        iter = iter->next)
1668     {
1669       /* We first have to handle all the information about the
1670 	 probe which is present in the section.  */
1671       handle_stap_probe (objfile, iter, probesp, base);
1672     }
1673 
1674   if (save_probesp_len == probesp->size ())
1675     {
1676       /* If we are here, it means we have failed to parse every known
1677 	 probe.  */
1678       complaint (_("could not parse SystemTap probe(s) from inferior"));
1679       return;
1680     }
1681 }
1682 
1683 /* Implementation of the type_name method.  */
1684 
1685 const char *
1686 stap_static_probe_ops::type_name () const
1687 {
1688   return "stap";
1689 }
1690 
1691 /* Implementation of the 'gen_info_probes_table_header' method.  */
1692 
1693 std::vector<struct info_probe_column>
1694 stap_static_probe_ops::gen_info_probes_table_header () const
1695 {
1696   struct info_probe_column stap_probe_column;
1697 
1698   stap_probe_column.field_name = "semaphore";
1699   stap_probe_column.print_name = _("Semaphore");
1700 
1701   return std::vector<struct info_probe_column> { stap_probe_column };
1702 }
1703 
1704 /* Implementation of the `info probes stap' command.  */
1705 
1706 static void
1707 info_probes_stap_command (const char *arg, int from_tty)
1708 {
1709   info_probes_for_spops (arg, from_tty, &stap_static_probe_ops);
1710 }
1711 
1712 void _initialize_stap_probe ();
1713 void
1714 _initialize_stap_probe ()
1715 {
1716   all_static_probe_ops.push_back (&stap_static_probe_ops);
1717 
1718   add_setshow_zuinteger_cmd ("stap-expression", class_maintenance,
1719 			     &stap_expression_debug,
1720 			     _("Set SystemTap expression debugging."),
1721 			     _("Show SystemTap expression debugging."),
1722 			     _("When non-zero, the internal representation "
1723 			       "of SystemTap expressions will be printed."),
1724 			     NULL,
1725 			     show_stapexpressiondebug,
1726 			     &setdebuglist, &showdebuglist);
1727 
1728   add_cmd ("stap", class_info, info_probes_stap_command,
1729 	   _("\
1730 Show information about SystemTap static probes.\n\
1731 Usage: info probes stap [PROVIDER [NAME [OBJECT]]]\n\
1732 Each argument is a regular expression, used to select probes.\n\
1733 PROVIDER matches probe provider names.\n\
1734 NAME matches the probe names.\n\
1735 OBJECT matches the executable or shared library name."),
1736 	   info_probes_cmdlist_get ());
1737 
1738 }
1739