1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger. 2 Copyright (C) 2004-2020 Free Software Foundation, Inc. 3 4 This file is part of GDB. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 18 19 20 #include "defs.h" 21 #include "inferior.h" 22 #include "gdbcore.h" 23 #include "solib.h" 24 #include "solist.h" 25 #include "frv-tdep.h" 26 #include "objfiles.h" 27 #include "symtab.h" 28 #include "language.h" 29 #include "command.h" 30 #include "gdbcmd.h" 31 #include "elf/frv.h" 32 #include "gdb_bfd.h" 33 34 /* Flag which indicates whether internal debug messages should be printed. */ 35 static unsigned int solib_frv_debug; 36 37 /* FR-V pointers are four bytes wide. */ 38 enum { FRV_PTR_SIZE = 4 }; 39 40 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */ 41 42 /* External versions; the size and alignment of the fields should be 43 the same as those on the target. When loaded, the placement of 44 the bits in each field will be the same as on the target. */ 45 typedef gdb_byte ext_Elf32_Half[2]; 46 typedef gdb_byte ext_Elf32_Addr[4]; 47 typedef gdb_byte ext_Elf32_Word[4]; 48 49 struct ext_elf32_fdpic_loadseg 50 { 51 /* Core address to which the segment is mapped. */ 52 ext_Elf32_Addr addr; 53 /* VMA recorded in the program header. */ 54 ext_Elf32_Addr p_vaddr; 55 /* Size of this segment in memory. */ 56 ext_Elf32_Word p_memsz; 57 }; 58 59 struct ext_elf32_fdpic_loadmap { 60 /* Protocol version number, must be zero. */ 61 ext_Elf32_Half version; 62 /* Number of segments in this map. */ 63 ext_Elf32_Half nsegs; 64 /* The actual memory map. */ 65 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */]; 66 }; 67 68 /* Internal versions; the types are GDB types and the data in each 69 of the fields is (or will be) decoded from the external struct 70 for ease of consumption. */ 71 struct int_elf32_fdpic_loadseg 72 { 73 /* Core address to which the segment is mapped. */ 74 CORE_ADDR addr; 75 /* VMA recorded in the program header. */ 76 CORE_ADDR p_vaddr; 77 /* Size of this segment in memory. */ 78 long p_memsz; 79 }; 80 81 struct int_elf32_fdpic_loadmap { 82 /* Protocol version number, must be zero. */ 83 int version; 84 /* Number of segments in this map. */ 85 int nsegs; 86 /* The actual memory map. */ 87 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */]; 88 }; 89 90 /* Given address LDMADDR, fetch and decode the loadmap at that address. 91 Return NULL if there is a problem reading the target memory or if 92 there doesn't appear to be a loadmap at the given address. The 93 allocated space (representing the loadmap) returned by this 94 function may be freed via a single call to xfree(). */ 95 96 static struct int_elf32_fdpic_loadmap * 97 fetch_loadmap (CORE_ADDR ldmaddr) 98 { 99 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); 100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial; 101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf; 102 struct int_elf32_fdpic_loadmap *int_ldmbuf; 103 int ext_ldmbuf_size, int_ldmbuf_size; 104 int version, seg, nsegs; 105 106 /* Fetch initial portion of the loadmap. */ 107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial, 108 sizeof ext_ldmbuf_partial)) 109 { 110 /* Problem reading the target's memory. */ 111 return NULL; 112 } 113 114 /* Extract the version. */ 115 version = extract_unsigned_integer (ext_ldmbuf_partial.version, 116 sizeof ext_ldmbuf_partial.version, 117 byte_order); 118 if (version != 0) 119 { 120 /* We only handle version 0. */ 121 return NULL; 122 } 123 124 /* Extract the number of segments. */ 125 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs, 126 sizeof ext_ldmbuf_partial.nsegs, 127 byte_order); 128 129 if (nsegs <= 0) 130 return NULL; 131 132 /* Allocate space for the complete (external) loadmap. */ 133 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap) 134 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg); 135 ext_ldmbuf = (struct ext_elf32_fdpic_loadmap *) xmalloc (ext_ldmbuf_size); 136 137 /* Copy over the portion of the loadmap that's already been read. */ 138 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial); 139 140 /* Read the rest of the loadmap from the target. */ 141 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial, 142 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial, 143 ext_ldmbuf_size - sizeof ext_ldmbuf_partial)) 144 { 145 /* Couldn't read rest of the loadmap. */ 146 xfree (ext_ldmbuf); 147 return NULL; 148 } 149 150 /* Allocate space into which to put information extract from the 151 external loadsegs. I.e, allocate the internal loadsegs. */ 152 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap) 153 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg); 154 int_ldmbuf = (struct int_elf32_fdpic_loadmap *) xmalloc (int_ldmbuf_size); 155 156 /* Place extracted information in internal structs. */ 157 int_ldmbuf->version = version; 158 int_ldmbuf->nsegs = nsegs; 159 for (seg = 0; seg < nsegs; seg++) 160 { 161 int_ldmbuf->segs[seg].addr 162 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr, 163 sizeof (ext_ldmbuf->segs[seg].addr), 164 byte_order); 165 int_ldmbuf->segs[seg].p_vaddr 166 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr, 167 sizeof (ext_ldmbuf->segs[seg].p_vaddr), 168 byte_order); 169 int_ldmbuf->segs[seg].p_memsz 170 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz, 171 sizeof (ext_ldmbuf->segs[seg].p_memsz), 172 byte_order); 173 } 174 175 xfree (ext_ldmbuf); 176 return int_ldmbuf; 177 } 178 179 /* External link_map and elf32_fdpic_loadaddr struct definitions. */ 180 181 typedef gdb_byte ext_ptr[4]; 182 183 struct ext_elf32_fdpic_loadaddr 184 { 185 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */ 186 ext_ptr got_value; /* void *got_value; */ 187 }; 188 189 struct ext_link_map 190 { 191 struct ext_elf32_fdpic_loadaddr l_addr; 192 193 /* Absolute file name object was found in. */ 194 ext_ptr l_name; /* char *l_name; */ 195 196 /* Dynamic section of the shared object. */ 197 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */ 198 199 /* Chain of loaded objects. */ 200 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */ 201 }; 202 203 /* Link map info to include in an allocated so_list entry. */ 204 205 struct lm_info_frv : public lm_info_base 206 { 207 ~lm_info_frv () 208 { 209 xfree (this->map); 210 xfree (this->dyn_syms); 211 xfree (this->dyn_relocs); 212 } 213 214 /* The loadmap, digested into an easier to use form. */ 215 int_elf32_fdpic_loadmap *map = NULL; 216 /* The GOT address for this link map entry. */ 217 CORE_ADDR got_value = 0; 218 /* The link map address, needed for frv_fetch_objfile_link_map(). */ 219 CORE_ADDR lm_addr = 0; 220 221 /* Cached dynamic symbol table and dynamic relocs initialized and 222 used only by find_canonical_descriptor_in_load_object(). 223 224 Note: kevinb/2004-02-26: It appears that calls to 225 bfd_canonicalize_dynamic_reloc() will use the same symbols as 226 those supplied to the first call to this function. Therefore, 227 it's important to NOT free the asymbol ** data structure 228 supplied to the first call. Thus the caching of the dynamic 229 symbols (dyn_syms) is critical for correct operation. The 230 caching of the dynamic relocations could be dispensed with. */ 231 asymbol **dyn_syms = NULL; 232 arelent **dyn_relocs = NULL; 233 int dyn_reloc_count = 0; /* Number of dynamic relocs. */ 234 }; 235 236 /* The load map, got value, etc. are not available from the chain 237 of loaded shared objects. ``main_executable_lm_info'' provides 238 a way to get at this information so that it doesn't need to be 239 frequently recomputed. Initialized by frv_relocate_main_executable(). */ 240 static lm_info_frv *main_executable_lm_info; 241 242 static void frv_relocate_main_executable (void); 243 static CORE_ADDR main_got (void); 244 static int enable_break2 (void); 245 246 /* Implement the "open_symbol_file_object" target_so_ops method. */ 247 248 static int 249 open_symbol_file_object (int from_tty) 250 { 251 /* Unimplemented. */ 252 return 0; 253 } 254 255 /* Cached value for lm_base(), below. */ 256 static CORE_ADDR lm_base_cache = 0; 257 258 /* Link map address for main module. */ 259 static CORE_ADDR main_lm_addr = 0; 260 261 /* Return the address from which the link map chain may be found. On 262 the FR-V, this may be found in a number of ways. Assuming that the 263 main executable has already been relocated, the easiest way to find 264 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A 265 pointer to the start of the link map will be located at the word found 266 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker 267 reserve area mandated by the ABI.) */ 268 269 static CORE_ADDR 270 lm_base (void) 271 { 272 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); 273 struct bound_minimal_symbol got_sym; 274 CORE_ADDR addr; 275 gdb_byte buf[FRV_PTR_SIZE]; 276 277 /* One of our assumptions is that the main executable has been relocated. 278 Bail out if this has not happened. (Note that post_create_inferior() 279 in infcmd.c will call solib_add prior to solib_create_inferior_hook(). 280 If we allow this to happen, lm_base_cache will be initialized with 281 a bogus value. */ 282 if (main_executable_lm_info == 0) 283 return 0; 284 285 /* If we already have a cached value, return it. */ 286 if (lm_base_cache) 287 return lm_base_cache; 288 289 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, 290 symfile_objfile); 291 if (got_sym.minsym == 0) 292 { 293 if (solib_frv_debug) 294 fprintf_unfiltered (gdb_stdlog, 295 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n"); 296 return 0; 297 } 298 299 addr = BMSYMBOL_VALUE_ADDRESS (got_sym) + 8; 300 301 if (solib_frv_debug) 302 fprintf_unfiltered (gdb_stdlog, 303 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n", 304 hex_string_custom (addr, 8)); 305 306 if (target_read_memory (addr, buf, sizeof buf) != 0) 307 return 0; 308 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order); 309 310 if (solib_frv_debug) 311 fprintf_unfiltered (gdb_stdlog, 312 "lm_base: lm_base_cache = %s\n", 313 hex_string_custom (lm_base_cache, 8)); 314 315 return lm_base_cache; 316 } 317 318 319 /* Implement the "current_sos" target_so_ops method. */ 320 321 static struct so_list * 322 frv_current_sos (void) 323 { 324 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); 325 CORE_ADDR lm_addr, mgot; 326 struct so_list *sos_head = NULL; 327 struct so_list **sos_next_ptr = &sos_head; 328 329 /* Make sure that the main executable has been relocated. This is 330 required in order to find the address of the global offset table, 331 which in turn is used to find the link map info. (See lm_base() 332 for details.) 333 334 Note that the relocation of the main executable is also performed 335 by solib_create_inferior_hook(), however, in the case of core 336 files, this hook is called too late in order to be of benefit to 337 solib_add. solib_add eventually calls this this function, 338 frv_current_sos, and also precedes the call to 339 solib_create_inferior_hook(). (See post_create_inferior() in 340 infcmd.c.) */ 341 if (main_executable_lm_info == 0 && core_bfd != NULL) 342 frv_relocate_main_executable (); 343 344 /* Fetch the GOT corresponding to the main executable. */ 345 mgot = main_got (); 346 347 /* Locate the address of the first link map struct. */ 348 lm_addr = lm_base (); 349 350 /* We have at least one link map entry. Fetch the lot of them, 351 building the solist chain. */ 352 while (lm_addr) 353 { 354 struct ext_link_map lm_buf; 355 CORE_ADDR got_addr; 356 357 if (solib_frv_debug) 358 fprintf_unfiltered (gdb_stdlog, 359 "current_sos: reading link_map entry at %s\n", 360 hex_string_custom (lm_addr, 8)); 361 362 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf, 363 sizeof (lm_buf)) != 0) 364 { 365 warning (_("frv_current_sos: Unable to read link map entry. " 366 "Shared object chain may be incomplete.")); 367 break; 368 } 369 370 got_addr 371 = extract_unsigned_integer (lm_buf.l_addr.got_value, 372 sizeof (lm_buf.l_addr.got_value), 373 byte_order); 374 /* If the got_addr is the same as mgotr, then we're looking at the 375 entry for the main executable. By convention, we don't include 376 this in the list of shared objects. */ 377 if (got_addr != mgot) 378 { 379 struct int_elf32_fdpic_loadmap *loadmap; 380 struct so_list *sop; 381 CORE_ADDR addr; 382 383 /* Fetch the load map address. */ 384 addr = extract_unsigned_integer (lm_buf.l_addr.map, 385 sizeof lm_buf.l_addr.map, 386 byte_order); 387 loadmap = fetch_loadmap (addr); 388 if (loadmap == NULL) 389 { 390 warning (_("frv_current_sos: Unable to fetch load map. " 391 "Shared object chain may be incomplete.")); 392 break; 393 } 394 395 sop = XCNEW (struct so_list); 396 lm_info_frv *li = new lm_info_frv; 397 sop->lm_info = li; 398 li->map = loadmap; 399 li->got_value = got_addr; 400 li->lm_addr = lm_addr; 401 /* Fetch the name. */ 402 addr = extract_unsigned_integer (lm_buf.l_name, 403 sizeof (lm_buf.l_name), 404 byte_order); 405 gdb::unique_xmalloc_ptr<char> name_buf 406 = target_read_string (addr, SO_NAME_MAX_PATH_SIZE - 1); 407 408 if (solib_frv_debug) 409 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n", 410 name_buf.get ()); 411 412 if (name_buf == nullptr) 413 warning (_("Can't read pathname for link map entry.")); 414 else 415 { 416 strncpy (sop->so_name, name_buf.get (), 417 SO_NAME_MAX_PATH_SIZE - 1); 418 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; 419 strcpy (sop->so_original_name, sop->so_name); 420 } 421 422 *sos_next_ptr = sop; 423 sos_next_ptr = &sop->next; 424 } 425 else 426 { 427 main_lm_addr = lm_addr; 428 } 429 430 lm_addr = extract_unsigned_integer (lm_buf.l_next, 431 sizeof (lm_buf.l_next), byte_order); 432 } 433 434 enable_break2 (); 435 436 return sos_head; 437 } 438 439 440 /* Return 1 if PC lies in the dynamic symbol resolution code of the 441 run time loader. */ 442 443 static CORE_ADDR interp_text_sect_low; 444 static CORE_ADDR interp_text_sect_high; 445 static CORE_ADDR interp_plt_sect_low; 446 static CORE_ADDR interp_plt_sect_high; 447 448 static int 449 frv_in_dynsym_resolve_code (CORE_ADDR pc) 450 { 451 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high) 452 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high) 453 || in_plt_section (pc)); 454 } 455 456 /* Given a loadmap and an address, return the displacement needed 457 to relocate the address. */ 458 459 static CORE_ADDR 460 displacement_from_map (struct int_elf32_fdpic_loadmap *map, 461 CORE_ADDR addr) 462 { 463 int seg; 464 465 for (seg = 0; seg < map->nsegs; seg++) 466 { 467 if (map->segs[seg].p_vaddr <= addr 468 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz) 469 { 470 return map->segs[seg].addr - map->segs[seg].p_vaddr; 471 } 472 } 473 474 return 0; 475 } 476 477 /* Print a warning about being unable to set the dynamic linker 478 breakpoint. */ 479 480 static void 481 enable_break_failure_warning (void) 482 { 483 warning (_("Unable to find dynamic linker breakpoint function.\n" 484 "GDB will be unable to debug shared library initializers\n" 485 "and track explicitly loaded dynamic code.")); 486 } 487 488 /* Helper function for gdb_bfd_lookup_symbol. */ 489 490 static int 491 cmp_name (const asymbol *sym, const void *data) 492 { 493 return (strcmp (sym->name, (const char *) data) == 0); 494 } 495 496 /* Arrange for dynamic linker to hit breakpoint. 497 498 The dynamic linkers has, as part of its debugger interface, support 499 for arranging for the inferior to hit a breakpoint after mapping in 500 the shared libraries. This function enables that breakpoint. 501 502 On the FR-V, using the shared library (FDPIC) ABI, the symbol 503 _dl_debug_addr points to the r_debug struct which contains 504 a field called r_brk. r_brk is the address of the function 505 descriptor upon which a breakpoint must be placed. Being a 506 function descriptor, we must extract the entry point in order 507 to set the breakpoint. 508 509 Our strategy will be to get the .interp section from the 510 executable. This section will provide us with the name of the 511 interpreter. We'll open the interpreter and then look up 512 the address of _dl_debug_addr. We then relocate this address 513 using the interpreter's loadmap. Once the relocated address 514 is known, we fetch the value (address) corresponding to r_brk 515 and then use that value to fetch the entry point of the function 516 we're interested in. */ 517 518 static int enable_break2_done = 0; 519 520 static int 521 enable_break2 (void) 522 { 523 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); 524 asection *interp_sect; 525 526 if (enable_break2_done) 527 return 1; 528 529 interp_text_sect_low = interp_text_sect_high = 0; 530 interp_plt_sect_low = interp_plt_sect_high = 0; 531 532 /* Find the .interp section; if not found, warn the user and drop 533 into the old breakpoint at symbol code. */ 534 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp"); 535 if (interp_sect) 536 { 537 unsigned int interp_sect_size; 538 char *buf; 539 int status; 540 CORE_ADDR addr, interp_loadmap_addr; 541 gdb_byte addr_buf[FRV_PTR_SIZE]; 542 struct int_elf32_fdpic_loadmap *ldm; 543 544 /* Read the contents of the .interp section into a local buffer; 545 the contents specify the dynamic linker this program uses. */ 546 interp_sect_size = bfd_section_size (interp_sect); 547 buf = (char *) alloca (interp_sect_size); 548 bfd_get_section_contents (exec_bfd, interp_sect, 549 buf, 0, interp_sect_size); 550 551 /* Now we need to figure out where the dynamic linker was 552 loaded so that we can load its symbols and place a breakpoint 553 in the dynamic linker itself. 554 555 This address is stored on the stack. However, I've been unable 556 to find any magic formula to find it for Solaris (appears to 557 be trivial on GNU/Linux). Therefore, we have to try an alternate 558 mechanism to find the dynamic linker's base address. */ 559 560 gdb_bfd_ref_ptr tmp_bfd; 561 try 562 { 563 tmp_bfd = solib_bfd_open (buf); 564 } 565 catch (const gdb_exception &ex) 566 { 567 } 568 569 if (tmp_bfd == NULL) 570 { 571 enable_break_failure_warning (); 572 return 0; 573 } 574 575 status = frv_fdpic_loadmap_addresses (target_gdbarch (), 576 &interp_loadmap_addr, 0); 577 if (status < 0) 578 { 579 warning (_("Unable to determine dynamic linker loadmap address.")); 580 enable_break_failure_warning (); 581 return 0; 582 } 583 584 if (solib_frv_debug) 585 fprintf_unfiltered (gdb_stdlog, 586 "enable_break: interp_loadmap_addr = %s\n", 587 hex_string_custom (interp_loadmap_addr, 8)); 588 589 ldm = fetch_loadmap (interp_loadmap_addr); 590 if (ldm == NULL) 591 { 592 warning (_("Unable to load dynamic linker loadmap at address %s."), 593 hex_string_custom (interp_loadmap_addr, 8)); 594 enable_break_failure_warning (); 595 return 0; 596 } 597 598 /* Record the relocated start and end address of the dynamic linker 599 text and plt section for svr4_in_dynsym_resolve_code. */ 600 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text"); 601 if (interp_sect) 602 { 603 interp_text_sect_low = bfd_section_vma (interp_sect); 604 interp_text_sect_low 605 += displacement_from_map (ldm, interp_text_sect_low); 606 interp_text_sect_high 607 = interp_text_sect_low + bfd_section_size (interp_sect); 608 } 609 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt"); 610 if (interp_sect) 611 { 612 interp_plt_sect_low = bfd_section_vma (interp_sect); 613 interp_plt_sect_low 614 += displacement_from_map (ldm, interp_plt_sect_low); 615 interp_plt_sect_high = 616 interp_plt_sect_low + bfd_section_size (interp_sect); 617 } 618 619 addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), cmp_name, "_dl_debug_addr"); 620 621 if (addr == 0) 622 { 623 warning (_("Could not find symbol _dl_debug_addr " 624 "in dynamic linker")); 625 enable_break_failure_warning (); 626 return 0; 627 } 628 629 if (solib_frv_debug) 630 fprintf_unfiltered (gdb_stdlog, 631 "enable_break: _dl_debug_addr " 632 "(prior to relocation) = %s\n", 633 hex_string_custom (addr, 8)); 634 635 addr += displacement_from_map (ldm, addr); 636 637 if (solib_frv_debug) 638 fprintf_unfiltered (gdb_stdlog, 639 "enable_break: _dl_debug_addr " 640 "(after relocation) = %s\n", 641 hex_string_custom (addr, 8)); 642 643 /* Fetch the address of the r_debug struct. */ 644 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0) 645 { 646 warning (_("Unable to fetch contents of _dl_debug_addr " 647 "(at address %s) from dynamic linker"), 648 hex_string_custom (addr, 8)); 649 } 650 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order); 651 652 if (solib_frv_debug) 653 fprintf_unfiltered (gdb_stdlog, 654 "enable_break: _dl_debug_addr[0..3] = %s\n", 655 hex_string_custom (addr, 8)); 656 657 /* If it's zero, then the ldso hasn't initialized yet, and so 658 there are no shared libs yet loaded. */ 659 if (addr == 0) 660 { 661 if (solib_frv_debug) 662 fprintf_unfiltered (gdb_stdlog, 663 "enable_break: ldso not yet initialized\n"); 664 /* Do not warn, but mark to run again. */ 665 return 0; 666 } 667 668 /* Fetch the r_brk field. It's 8 bytes from the start of 669 _dl_debug_addr. */ 670 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0) 671 { 672 warning (_("Unable to fetch _dl_debug_addr->r_brk " 673 "(at address %s) from dynamic linker"), 674 hex_string_custom (addr + 8, 8)); 675 enable_break_failure_warning (); 676 return 0; 677 } 678 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order); 679 680 /* Now fetch the function entry point. */ 681 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0) 682 { 683 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point " 684 "(at address %s) from dynamic linker"), 685 hex_string_custom (addr, 8)); 686 enable_break_failure_warning (); 687 return 0; 688 } 689 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order); 690 691 /* We're done with the loadmap. */ 692 xfree (ldm); 693 694 /* Remove all the solib event breakpoints. Their addresses 695 may have changed since the last time we ran the program. */ 696 remove_solib_event_breakpoints (); 697 698 /* Now (finally!) create the solib breakpoint. */ 699 create_solib_event_breakpoint (target_gdbarch (), addr); 700 701 enable_break2_done = 1; 702 703 return 1; 704 } 705 706 /* Tell the user we couldn't set a dynamic linker breakpoint. */ 707 enable_break_failure_warning (); 708 709 /* Failure return. */ 710 return 0; 711 } 712 713 static int 714 enable_break (void) 715 { 716 asection *interp_sect; 717 CORE_ADDR entry_point; 718 719 if (symfile_objfile == NULL) 720 { 721 if (solib_frv_debug) 722 fprintf_unfiltered (gdb_stdlog, 723 "enable_break: No symbol file found.\n"); 724 return 0; 725 } 726 727 if (!entry_point_address_query (&entry_point)) 728 { 729 if (solib_frv_debug) 730 fprintf_unfiltered (gdb_stdlog, 731 "enable_break: Symbol file has no entry point.\n"); 732 return 0; 733 } 734 735 /* Check for the presence of a .interp section. If there is no 736 such section, the executable is statically linked. */ 737 738 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp"); 739 740 if (interp_sect == NULL) 741 { 742 if (solib_frv_debug) 743 fprintf_unfiltered (gdb_stdlog, 744 "enable_break: No .interp section found.\n"); 745 return 0; 746 } 747 748 create_solib_event_breakpoint (target_gdbarch (), entry_point); 749 750 if (solib_frv_debug) 751 fprintf_unfiltered (gdb_stdlog, 752 "enable_break: solib event breakpoint " 753 "placed at entry point: %s\n", 754 hex_string_custom (entry_point, 8)); 755 return 1; 756 } 757 758 static void 759 frv_relocate_main_executable (void) 760 { 761 int status; 762 CORE_ADDR exec_addr, interp_addr; 763 struct int_elf32_fdpic_loadmap *ldm; 764 int changed; 765 struct obj_section *osect; 766 767 status = frv_fdpic_loadmap_addresses (target_gdbarch (), 768 &interp_addr, &exec_addr); 769 770 if (status < 0 || (exec_addr == 0 && interp_addr == 0)) 771 { 772 /* Not using FDPIC ABI, so do nothing. */ 773 return; 774 } 775 776 /* Fetch the loadmap located at ``exec_addr''. */ 777 ldm = fetch_loadmap (exec_addr); 778 if (ldm == NULL) 779 error (_("Unable to load the executable's loadmap.")); 780 781 delete main_executable_lm_info; 782 main_executable_lm_info = new lm_info_frv; 783 main_executable_lm_info->map = ldm; 784 785 section_offsets new_offsets (symfile_objfile->section_offsets.size ()); 786 changed = 0; 787 788 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect) 789 { 790 CORE_ADDR orig_addr, addr, offset; 791 int osect_idx; 792 int seg; 793 794 osect_idx = osect - symfile_objfile->sections; 795 796 /* Current address of section. */ 797 addr = obj_section_addr (osect); 798 /* Offset from where this section started. */ 799 offset = symfile_objfile->section_offsets[osect_idx]; 800 /* Original address prior to any past relocations. */ 801 orig_addr = addr - offset; 802 803 for (seg = 0; seg < ldm->nsegs; seg++) 804 { 805 if (ldm->segs[seg].p_vaddr <= orig_addr 806 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz) 807 { 808 new_offsets[osect_idx] 809 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr; 810 811 if (new_offsets[osect_idx] != offset) 812 changed = 1; 813 break; 814 } 815 } 816 } 817 818 if (changed) 819 objfile_relocate (symfile_objfile, new_offsets); 820 821 /* Now that symfile_objfile has been relocated, we can compute the 822 GOT value and stash it away. */ 823 main_executable_lm_info->got_value = main_got (); 824 } 825 826 /* Implement the "create_inferior_hook" target_solib_ops method. 827 828 For the FR-V shared library ABI (FDPIC), the main executable needs 829 to be relocated. The shared library breakpoints also need to be 830 enabled. */ 831 832 static void 833 frv_solib_create_inferior_hook (int from_tty) 834 { 835 /* Relocate main executable. */ 836 frv_relocate_main_executable (); 837 838 /* Enable shared library breakpoints. */ 839 if (!enable_break ()) 840 { 841 warning (_("shared library handler failed to enable breakpoint")); 842 return; 843 } 844 } 845 846 static void 847 frv_clear_solib (void) 848 { 849 lm_base_cache = 0; 850 enable_break2_done = 0; 851 main_lm_addr = 0; 852 853 delete main_executable_lm_info; 854 main_executable_lm_info = NULL; 855 } 856 857 static void 858 frv_free_so (struct so_list *so) 859 { 860 lm_info_frv *li = (lm_info_frv *) so->lm_info; 861 862 delete li; 863 } 864 865 static void 866 frv_relocate_section_addresses (struct so_list *so, 867 struct target_section *sec) 868 { 869 int seg; 870 lm_info_frv *li = (lm_info_frv *) so->lm_info; 871 int_elf32_fdpic_loadmap *map = li->map; 872 873 for (seg = 0; seg < map->nsegs; seg++) 874 { 875 if (map->segs[seg].p_vaddr <= sec->addr 876 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz) 877 { 878 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr; 879 880 sec->addr += displ; 881 sec->endaddr += displ; 882 break; 883 } 884 } 885 } 886 887 /* Return the GOT address associated with the main executable. Return 888 0 if it can't be found. */ 889 890 static CORE_ADDR 891 main_got (void) 892 { 893 struct bound_minimal_symbol got_sym; 894 895 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", 896 NULL, symfile_objfile); 897 if (got_sym.minsym == 0) 898 return 0; 899 900 return BMSYMBOL_VALUE_ADDRESS (got_sym); 901 } 902 903 /* Find the global pointer for the given function address ADDR. */ 904 905 CORE_ADDR 906 frv_fdpic_find_global_pointer (CORE_ADDR addr) 907 { 908 for (struct so_list *so : current_program_space->solibs ()) 909 { 910 int seg; 911 lm_info_frv *li = (lm_info_frv *) so->lm_info; 912 int_elf32_fdpic_loadmap *map = li->map; 913 914 for (seg = 0; seg < map->nsegs; seg++) 915 { 916 if (map->segs[seg].addr <= addr 917 && addr < map->segs[seg].addr + map->segs[seg].p_memsz) 918 return li->got_value; 919 } 920 } 921 922 /* Didn't find it in any of the shared objects. So assume it's in the 923 main executable. */ 924 return main_got (); 925 } 926 927 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */ 928 static CORE_ADDR find_canonical_descriptor_in_load_object 929 (CORE_ADDR, CORE_ADDR, const char *, bfd *, lm_info_frv *); 930 931 /* Given a function entry point, attempt to find the canonical descriptor 932 associated with that entry point. Return 0 if no canonical descriptor 933 could be found. */ 934 935 CORE_ADDR 936 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point) 937 { 938 const char *name; 939 CORE_ADDR addr; 940 CORE_ADDR got_value; 941 struct symbol *sym; 942 943 /* Fetch the corresponding global pointer for the entry point. */ 944 got_value = frv_fdpic_find_global_pointer (entry_point); 945 946 /* Attempt to find the name of the function. If the name is available, 947 it'll be used as an aid in finding matching functions in the dynamic 948 symbol table. */ 949 sym = find_pc_function (entry_point); 950 if (sym == 0) 951 name = 0; 952 else 953 name = sym->linkage_name (); 954 955 /* Check the main executable. */ 956 addr = find_canonical_descriptor_in_load_object 957 (entry_point, got_value, name, symfile_objfile->obfd, 958 main_executable_lm_info); 959 960 /* If descriptor not found via main executable, check each load object 961 in list of shared objects. */ 962 if (addr == 0) 963 { 964 for (struct so_list *so : current_program_space->solibs ()) 965 { 966 lm_info_frv *li = (lm_info_frv *) so->lm_info; 967 968 addr = find_canonical_descriptor_in_load_object 969 (entry_point, got_value, name, so->abfd, li); 970 971 if (addr != 0) 972 break; 973 } 974 } 975 976 return addr; 977 } 978 979 static CORE_ADDR 980 find_canonical_descriptor_in_load_object 981 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd, 982 lm_info_frv *lm) 983 { 984 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); 985 arelent *rel; 986 unsigned int i; 987 CORE_ADDR addr = 0; 988 989 /* Nothing to do if no bfd. */ 990 if (abfd == 0) 991 return 0; 992 993 /* Nothing to do if no link map. */ 994 if (lm == 0) 995 return 0; 996 997 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations. 998 (More about this later.) But in order to fetch the relocs, we 999 need to first fetch the dynamic symbols. These symbols need to 1000 be cached due to the way that bfd_canonicalize_dynamic_reloc() 1001 works. (See the comments in the declaration of struct lm_info 1002 for more information.) */ 1003 if (lm->dyn_syms == NULL) 1004 { 1005 long storage_needed; 1006 unsigned int number_of_symbols; 1007 1008 /* Determine amount of space needed to hold the dynamic symbol table. */ 1009 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd); 1010 1011 /* If there are no dynamic symbols, there's nothing to do. */ 1012 if (storage_needed <= 0) 1013 return 0; 1014 1015 /* Allocate space for the dynamic symbol table. */ 1016 lm->dyn_syms = (asymbol **) xmalloc (storage_needed); 1017 1018 /* Fetch the dynamic symbol table. */ 1019 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms); 1020 1021 if (number_of_symbols == 0) 1022 return 0; 1023 } 1024 1025 /* Fetch the dynamic relocations if not already cached. */ 1026 if (lm->dyn_relocs == NULL) 1027 { 1028 long storage_needed; 1029 1030 /* Determine amount of space needed to hold the dynamic relocs. */ 1031 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd); 1032 1033 /* Bail out if there are no dynamic relocs. */ 1034 if (storage_needed <= 0) 1035 return 0; 1036 1037 /* Allocate space for the relocs. */ 1038 lm->dyn_relocs = (arelent **) xmalloc (storage_needed); 1039 1040 /* Fetch the dynamic relocs. */ 1041 lm->dyn_reloc_count 1042 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms); 1043 } 1044 1045 /* Search the dynamic relocs. */ 1046 for (i = 0; i < lm->dyn_reloc_count; i++) 1047 { 1048 rel = lm->dyn_relocs[i]; 1049 1050 /* Relocs of interest are those which meet the following 1051 criteria: 1052 1053 - the names match (assuming the caller could provide 1054 a name which matches ``entry_point''). 1055 - the relocation type must be R_FRV_FUNCDESC. Relocs 1056 of this type are used (by the dynamic linker) to 1057 look up the address of a canonical descriptor (allocating 1058 it if need be) and initializing the GOT entry referred 1059 to by the offset to the address of the descriptor. 1060 1061 These relocs of interest may be used to obtain a 1062 candidate descriptor by first adjusting the reloc's 1063 address according to the link map and then dereferencing 1064 this address (which is a GOT entry) to obtain a descriptor 1065 address. */ 1066 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0) 1067 && rel->howto->type == R_FRV_FUNCDESC) 1068 { 1069 gdb_byte buf [FRV_PTR_SIZE]; 1070 1071 /* Compute address of address of candidate descriptor. */ 1072 addr = rel->address + displacement_from_map (lm->map, rel->address); 1073 1074 /* Fetch address of candidate descriptor. */ 1075 if (target_read_memory (addr, buf, sizeof buf) != 0) 1076 continue; 1077 addr = extract_unsigned_integer (buf, sizeof buf, byte_order); 1078 1079 /* Check for matching entry point. */ 1080 if (target_read_memory (addr, buf, sizeof buf) != 0) 1081 continue; 1082 if (extract_unsigned_integer (buf, sizeof buf, byte_order) 1083 != entry_point) 1084 continue; 1085 1086 /* Check for matching got value. */ 1087 if (target_read_memory (addr + 4, buf, sizeof buf) != 0) 1088 continue; 1089 if (extract_unsigned_integer (buf, sizeof buf, byte_order) 1090 != got_value) 1091 continue; 1092 1093 /* Match was successful! Exit loop. */ 1094 break; 1095 } 1096 } 1097 1098 return addr; 1099 } 1100 1101 /* Given an objfile, return the address of its link map. This value is 1102 needed for TLS support. */ 1103 CORE_ADDR 1104 frv_fetch_objfile_link_map (struct objfile *objfile) 1105 { 1106 /* Cause frv_current_sos() to be run if it hasn't been already. */ 1107 if (main_lm_addr == 0) 1108 solib_add (0, 0, 1); 1109 1110 /* frv_current_sos() will set main_lm_addr for the main executable. */ 1111 if (objfile == symfile_objfile) 1112 return main_lm_addr; 1113 1114 /* The other link map addresses may be found by examining the list 1115 of shared libraries. */ 1116 for (struct so_list *so : current_program_space->solibs ()) 1117 { 1118 lm_info_frv *li = (lm_info_frv *) so->lm_info; 1119 1120 if (so->objfile == objfile) 1121 return li->lm_addr; 1122 } 1123 1124 /* Not found! */ 1125 return 0; 1126 } 1127 1128 struct target_so_ops frv_so_ops; 1129 1130 void _initialize_frv_solib (); 1131 void 1132 _initialize_frv_solib () 1133 { 1134 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses; 1135 frv_so_ops.free_so = frv_free_so; 1136 frv_so_ops.clear_solib = frv_clear_solib; 1137 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook; 1138 frv_so_ops.current_sos = frv_current_sos; 1139 frv_so_ops.open_symbol_file_object = open_symbol_file_object; 1140 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code; 1141 frv_so_ops.bfd_open = solib_bfd_open; 1142 1143 /* Debug this file's internals. */ 1144 add_setshow_zuinteger_cmd ("solib-frv", class_maintenance, 1145 &solib_frv_debug, _("\ 1146 Set internal debugging of shared library code for FR-V."), _("\ 1147 Show internal debugging of shared library code for FR-V."), _("\ 1148 When non-zero, FR-V solib specific internal debugging is enabled."), 1149 NULL, 1150 NULL, /* FIXME: i18n: */ 1151 &setdebuglist, &showdebuglist); 1152 } 1153