1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger. 2 Copyright (C) 2004-2023 Free Software Foundation, Inc. 3 4 This file is part of GDB. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 18 19 20 #include "defs.h" 21 #include "inferior.h" 22 #include "gdbcore.h" 23 #include "solib.h" 24 #include "solist.h" 25 #include "frv-tdep.h" 26 #include "objfiles.h" 27 #include "symtab.h" 28 #include "language.h" 29 #include "command.h" 30 #include "gdbcmd.h" 31 #include "elf/frv.h" 32 #include "gdb_bfd.h" 33 34 /* FR-V pointers are four bytes wide. */ 35 enum { FRV_PTR_SIZE = 4 }; 36 37 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */ 38 39 /* External versions; the size and alignment of the fields should be 40 the same as those on the target. When loaded, the placement of 41 the bits in each field will be the same as on the target. */ 42 typedef gdb_byte ext_Elf32_Half[2]; 43 typedef gdb_byte ext_Elf32_Addr[4]; 44 typedef gdb_byte ext_Elf32_Word[4]; 45 46 struct ext_elf32_fdpic_loadseg 47 { 48 /* Core address to which the segment is mapped. */ 49 ext_Elf32_Addr addr; 50 /* VMA recorded in the program header. */ 51 ext_Elf32_Addr p_vaddr; 52 /* Size of this segment in memory. */ 53 ext_Elf32_Word p_memsz; 54 }; 55 56 struct ext_elf32_fdpic_loadmap { 57 /* Protocol version number, must be zero. */ 58 ext_Elf32_Half version; 59 /* Number of segments in this map. */ 60 ext_Elf32_Half nsegs; 61 /* The actual memory map. */ 62 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */]; 63 }; 64 65 /* Internal versions; the types are GDB types and the data in each 66 of the fields is (or will be) decoded from the external struct 67 for ease of consumption. */ 68 struct int_elf32_fdpic_loadseg 69 { 70 /* Core address to which the segment is mapped. */ 71 CORE_ADDR addr; 72 /* VMA recorded in the program header. */ 73 CORE_ADDR p_vaddr; 74 /* Size of this segment in memory. */ 75 long p_memsz; 76 }; 77 78 struct int_elf32_fdpic_loadmap { 79 /* Protocol version number, must be zero. */ 80 int version; 81 /* Number of segments in this map. */ 82 int nsegs; 83 /* The actual memory map. */ 84 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */]; 85 }; 86 87 /* Given address LDMADDR, fetch and decode the loadmap at that address. 88 Return NULL if there is a problem reading the target memory or if 89 there doesn't appear to be a loadmap at the given address. The 90 allocated space (representing the loadmap) returned by this 91 function may be freed via a single call to xfree(). */ 92 93 static struct int_elf32_fdpic_loadmap * 94 fetch_loadmap (CORE_ADDR ldmaddr) 95 { 96 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); 97 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial; 98 struct ext_elf32_fdpic_loadmap *ext_ldmbuf; 99 struct int_elf32_fdpic_loadmap *int_ldmbuf; 100 int ext_ldmbuf_size, int_ldmbuf_size; 101 int version, seg, nsegs; 102 103 /* Fetch initial portion of the loadmap. */ 104 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial, 105 sizeof ext_ldmbuf_partial)) 106 { 107 /* Problem reading the target's memory. */ 108 return NULL; 109 } 110 111 /* Extract the version. */ 112 version = extract_unsigned_integer (ext_ldmbuf_partial.version, 113 sizeof ext_ldmbuf_partial.version, 114 byte_order); 115 if (version != 0) 116 { 117 /* We only handle version 0. */ 118 return NULL; 119 } 120 121 /* Extract the number of segments. */ 122 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs, 123 sizeof ext_ldmbuf_partial.nsegs, 124 byte_order); 125 126 if (nsegs <= 0) 127 return NULL; 128 129 /* Allocate space for the complete (external) loadmap. */ 130 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap) 131 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg); 132 ext_ldmbuf = (struct ext_elf32_fdpic_loadmap *) xmalloc (ext_ldmbuf_size); 133 134 /* Copy over the portion of the loadmap that's already been read. */ 135 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial); 136 137 /* Read the rest of the loadmap from the target. */ 138 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial, 139 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial, 140 ext_ldmbuf_size - sizeof ext_ldmbuf_partial)) 141 { 142 /* Couldn't read rest of the loadmap. */ 143 xfree (ext_ldmbuf); 144 return NULL; 145 } 146 147 /* Allocate space into which to put information extract from the 148 external loadsegs. I.e, allocate the internal loadsegs. */ 149 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap) 150 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg); 151 int_ldmbuf = (struct int_elf32_fdpic_loadmap *) xmalloc (int_ldmbuf_size); 152 153 /* Place extracted information in internal structs. */ 154 int_ldmbuf->version = version; 155 int_ldmbuf->nsegs = nsegs; 156 for (seg = 0; seg < nsegs; seg++) 157 { 158 int_ldmbuf->segs[seg].addr 159 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr, 160 sizeof (ext_ldmbuf->segs[seg].addr), 161 byte_order); 162 int_ldmbuf->segs[seg].p_vaddr 163 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr, 164 sizeof (ext_ldmbuf->segs[seg].p_vaddr), 165 byte_order); 166 int_ldmbuf->segs[seg].p_memsz 167 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz, 168 sizeof (ext_ldmbuf->segs[seg].p_memsz), 169 byte_order); 170 } 171 172 xfree (ext_ldmbuf); 173 return int_ldmbuf; 174 } 175 176 /* External link_map and elf32_fdpic_loadaddr struct definitions. */ 177 178 typedef gdb_byte ext_ptr[4]; 179 180 struct ext_elf32_fdpic_loadaddr 181 { 182 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */ 183 ext_ptr got_value; /* void *got_value; */ 184 }; 185 186 struct ext_link_map 187 { 188 struct ext_elf32_fdpic_loadaddr l_addr; 189 190 /* Absolute file name object was found in. */ 191 ext_ptr l_name; /* char *l_name; */ 192 193 /* Dynamic section of the shared object. */ 194 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */ 195 196 /* Chain of loaded objects. */ 197 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */ 198 }; 199 200 /* Link map info to include in an allocated so_list entry. */ 201 202 struct lm_info_frv : public lm_info_base 203 { 204 ~lm_info_frv () 205 { 206 xfree (this->map); 207 xfree (this->dyn_syms); 208 xfree (this->dyn_relocs); 209 } 210 211 /* The loadmap, digested into an easier to use form. */ 212 int_elf32_fdpic_loadmap *map = NULL; 213 /* The GOT address for this link map entry. */ 214 CORE_ADDR got_value = 0; 215 /* The link map address, needed for frv_fetch_objfile_link_map(). */ 216 CORE_ADDR lm_addr = 0; 217 218 /* Cached dynamic symbol table and dynamic relocs initialized and 219 used only by find_canonical_descriptor_in_load_object(). 220 221 Note: kevinb/2004-02-26: It appears that calls to 222 bfd_canonicalize_dynamic_reloc() will use the same symbols as 223 those supplied to the first call to this function. Therefore, 224 it's important to NOT free the asymbol ** data structure 225 supplied to the first call. Thus the caching of the dynamic 226 symbols (dyn_syms) is critical for correct operation. The 227 caching of the dynamic relocations could be dispensed with. */ 228 asymbol **dyn_syms = NULL; 229 arelent **dyn_relocs = NULL; 230 int dyn_reloc_count = 0; /* Number of dynamic relocs. */ 231 }; 232 233 /* The load map, got value, etc. are not available from the chain 234 of loaded shared objects. ``main_executable_lm_info'' provides 235 a way to get at this information so that it doesn't need to be 236 frequently recomputed. Initialized by frv_relocate_main_executable(). */ 237 static lm_info_frv *main_executable_lm_info; 238 239 static void frv_relocate_main_executable (void); 240 static CORE_ADDR main_got (void); 241 static int enable_break2 (void); 242 243 /* Implement the "open_symbol_file_object" target_so_ops method. */ 244 245 static int 246 open_symbol_file_object (int from_tty) 247 { 248 /* Unimplemented. */ 249 return 0; 250 } 251 252 /* Cached value for lm_base(), below. */ 253 static CORE_ADDR lm_base_cache = 0; 254 255 /* Link map address for main module. */ 256 static CORE_ADDR main_lm_addr = 0; 257 258 /* Return the address from which the link map chain may be found. On 259 the FR-V, this may be found in a number of ways. Assuming that the 260 main executable has already been relocated, the easiest way to find 261 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A 262 pointer to the start of the link map will be located at the word found 263 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker 264 reserve area mandated by the ABI.) */ 265 266 static CORE_ADDR 267 lm_base (void) 268 { 269 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); 270 struct bound_minimal_symbol got_sym; 271 CORE_ADDR addr; 272 gdb_byte buf[FRV_PTR_SIZE]; 273 274 /* One of our assumptions is that the main executable has been relocated. 275 Bail out if this has not happened. (Note that post_create_inferior() 276 in infcmd.c will call solib_add prior to solib_create_inferior_hook(). 277 If we allow this to happen, lm_base_cache will be initialized with 278 a bogus value. */ 279 if (main_executable_lm_info == 0) 280 return 0; 281 282 /* If we already have a cached value, return it. */ 283 if (lm_base_cache) 284 return lm_base_cache; 285 286 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, 287 current_program_space->symfile_object_file); 288 if (got_sym.minsym == 0) 289 { 290 solib_debug_printf ("_GLOBAL_OFFSET_TABLE_ not found."); 291 return 0; 292 } 293 294 addr = got_sym.value_address () + 8; 295 296 solib_debug_printf ("_GLOBAL_OFFSET_TABLE_ + 8 = %s", 297 hex_string_custom (addr, 8)); 298 299 if (target_read_memory (addr, buf, sizeof buf) != 0) 300 return 0; 301 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order); 302 303 solib_debug_printf ("lm_base_cache = %s", 304 hex_string_custom (lm_base_cache, 8)); 305 306 return lm_base_cache; 307 } 308 309 310 /* Implement the "current_sos" target_so_ops method. */ 311 312 static struct so_list * 313 frv_current_sos (void) 314 { 315 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); 316 CORE_ADDR lm_addr, mgot; 317 struct so_list *sos_head = NULL; 318 struct so_list **sos_next_ptr = &sos_head; 319 320 /* Make sure that the main executable has been relocated. This is 321 required in order to find the address of the global offset table, 322 which in turn is used to find the link map info. (See lm_base() 323 for details.) 324 325 Note that the relocation of the main executable is also performed 326 by solib_create_inferior_hook(), however, in the case of core 327 files, this hook is called too late in order to be of benefit to 328 solib_add. solib_add eventually calls this this function, 329 frv_current_sos, and also precedes the call to 330 solib_create_inferior_hook(). (See post_create_inferior() in 331 infcmd.c.) */ 332 if (main_executable_lm_info == 0 && core_bfd != NULL) 333 frv_relocate_main_executable (); 334 335 /* Fetch the GOT corresponding to the main executable. */ 336 mgot = main_got (); 337 338 /* Locate the address of the first link map struct. */ 339 lm_addr = lm_base (); 340 341 /* We have at least one link map entry. Fetch the lot of them, 342 building the solist chain. */ 343 while (lm_addr) 344 { 345 struct ext_link_map lm_buf; 346 CORE_ADDR got_addr; 347 348 solib_debug_printf ("reading link_map entry at %s", 349 hex_string_custom (lm_addr, 8)); 350 351 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf, 352 sizeof (lm_buf)) != 0) 353 { 354 warning (_("frv_current_sos: Unable to read link map entry. " 355 "Shared object chain may be incomplete.")); 356 break; 357 } 358 359 got_addr 360 = extract_unsigned_integer (lm_buf.l_addr.got_value, 361 sizeof (lm_buf.l_addr.got_value), 362 byte_order); 363 /* If the got_addr is the same as mgotr, then we're looking at the 364 entry for the main executable. By convention, we don't include 365 this in the list of shared objects. */ 366 if (got_addr != mgot) 367 { 368 struct int_elf32_fdpic_loadmap *loadmap; 369 struct so_list *sop; 370 CORE_ADDR addr; 371 372 /* Fetch the load map address. */ 373 addr = extract_unsigned_integer (lm_buf.l_addr.map, 374 sizeof lm_buf.l_addr.map, 375 byte_order); 376 loadmap = fetch_loadmap (addr); 377 if (loadmap == NULL) 378 { 379 warning (_("frv_current_sos: Unable to fetch load map. " 380 "Shared object chain may be incomplete.")); 381 break; 382 } 383 384 sop = XCNEW (struct so_list); 385 lm_info_frv *li = new lm_info_frv; 386 sop->lm_info = li; 387 li->map = loadmap; 388 li->got_value = got_addr; 389 li->lm_addr = lm_addr; 390 /* Fetch the name. */ 391 addr = extract_unsigned_integer (lm_buf.l_name, 392 sizeof (lm_buf.l_name), 393 byte_order); 394 gdb::unique_xmalloc_ptr<char> name_buf 395 = target_read_string (addr, SO_NAME_MAX_PATH_SIZE - 1); 396 397 solib_debug_printf ("name = %s", name_buf.get ()); 398 399 if (name_buf == nullptr) 400 warning (_("Can't read pathname for link map entry.")); 401 else 402 { 403 strncpy (sop->so_name, name_buf.get (), 404 SO_NAME_MAX_PATH_SIZE - 1); 405 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; 406 strcpy (sop->so_original_name, sop->so_name); 407 } 408 409 *sos_next_ptr = sop; 410 sos_next_ptr = &sop->next; 411 } 412 else 413 { 414 main_lm_addr = lm_addr; 415 } 416 417 lm_addr = extract_unsigned_integer (lm_buf.l_next, 418 sizeof (lm_buf.l_next), byte_order); 419 } 420 421 enable_break2 (); 422 423 return sos_head; 424 } 425 426 427 /* Return 1 if PC lies in the dynamic symbol resolution code of the 428 run time loader. */ 429 430 static CORE_ADDR interp_text_sect_low; 431 static CORE_ADDR interp_text_sect_high; 432 static CORE_ADDR interp_plt_sect_low; 433 static CORE_ADDR interp_plt_sect_high; 434 435 static int 436 frv_in_dynsym_resolve_code (CORE_ADDR pc) 437 { 438 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high) 439 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high) 440 || in_plt_section (pc)); 441 } 442 443 /* Given a loadmap and an address, return the displacement needed 444 to relocate the address. */ 445 446 static CORE_ADDR 447 displacement_from_map (struct int_elf32_fdpic_loadmap *map, 448 CORE_ADDR addr) 449 { 450 int seg; 451 452 for (seg = 0; seg < map->nsegs; seg++) 453 { 454 if (map->segs[seg].p_vaddr <= addr 455 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz) 456 { 457 return map->segs[seg].addr - map->segs[seg].p_vaddr; 458 } 459 } 460 461 return 0; 462 } 463 464 /* Print a warning about being unable to set the dynamic linker 465 breakpoint. */ 466 467 static void 468 enable_break_failure_warning (void) 469 { 470 warning (_("Unable to find dynamic linker breakpoint function.\n" 471 "GDB will be unable to debug shared library initializers\n" 472 "and track explicitly loaded dynamic code.")); 473 } 474 475 /* Helper function for gdb_bfd_lookup_symbol. */ 476 477 static int 478 cmp_name (const asymbol *sym, const void *data) 479 { 480 return (strcmp (sym->name, (const char *) data) == 0); 481 } 482 483 /* Arrange for dynamic linker to hit breakpoint. 484 485 The dynamic linkers has, as part of its debugger interface, support 486 for arranging for the inferior to hit a breakpoint after mapping in 487 the shared libraries. This function enables that breakpoint. 488 489 On the FR-V, using the shared library (FDPIC) ABI, the symbol 490 _dl_debug_addr points to the r_debug struct which contains 491 a field called r_brk. r_brk is the address of the function 492 descriptor upon which a breakpoint must be placed. Being a 493 function descriptor, we must extract the entry point in order 494 to set the breakpoint. 495 496 Our strategy will be to get the .interp section from the 497 executable. This section will provide us with the name of the 498 interpreter. We'll open the interpreter and then look up 499 the address of _dl_debug_addr. We then relocate this address 500 using the interpreter's loadmap. Once the relocated address 501 is known, we fetch the value (address) corresponding to r_brk 502 and then use that value to fetch the entry point of the function 503 we're interested in. */ 504 505 static int enable_break2_done = 0; 506 507 static int 508 enable_break2 (void) 509 { 510 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); 511 asection *interp_sect; 512 513 if (enable_break2_done) 514 return 1; 515 516 interp_text_sect_low = interp_text_sect_high = 0; 517 interp_plt_sect_low = interp_plt_sect_high = 0; 518 519 /* Find the .interp section; if not found, warn the user and drop 520 into the old breakpoint at symbol code. */ 521 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (), 522 ".interp"); 523 if (interp_sect) 524 { 525 unsigned int interp_sect_size; 526 char *buf; 527 int status; 528 CORE_ADDR addr, interp_loadmap_addr; 529 gdb_byte addr_buf[FRV_PTR_SIZE]; 530 struct int_elf32_fdpic_loadmap *ldm; 531 532 /* Read the contents of the .interp section into a local buffer; 533 the contents specify the dynamic linker this program uses. */ 534 interp_sect_size = bfd_section_size (interp_sect); 535 buf = (char *) alloca (interp_sect_size); 536 bfd_get_section_contents (current_program_space->exec_bfd (), 537 interp_sect, buf, 0, interp_sect_size); 538 539 /* Now we need to figure out where the dynamic linker was 540 loaded so that we can load its symbols and place a breakpoint 541 in the dynamic linker itself. 542 543 This address is stored on the stack. However, I've been unable 544 to find any magic formula to find it for Solaris (appears to 545 be trivial on GNU/Linux). Therefore, we have to try an alternate 546 mechanism to find the dynamic linker's base address. */ 547 548 gdb_bfd_ref_ptr tmp_bfd; 549 try 550 { 551 tmp_bfd = solib_bfd_open (buf); 552 } 553 catch (const gdb_exception &ex) 554 { 555 } 556 557 if (tmp_bfd == NULL) 558 { 559 enable_break_failure_warning (); 560 return 0; 561 } 562 563 status = frv_fdpic_loadmap_addresses (target_gdbarch (), 564 &interp_loadmap_addr, 0); 565 if (status < 0) 566 { 567 warning (_("Unable to determine dynamic linker loadmap address.")); 568 enable_break_failure_warning (); 569 return 0; 570 } 571 572 solib_debug_printf ("interp_loadmap_addr = %s", 573 hex_string_custom (interp_loadmap_addr, 8)); 574 575 ldm = fetch_loadmap (interp_loadmap_addr); 576 if (ldm == NULL) 577 { 578 warning (_("Unable to load dynamic linker loadmap at address %s."), 579 hex_string_custom (interp_loadmap_addr, 8)); 580 enable_break_failure_warning (); 581 return 0; 582 } 583 584 /* Record the relocated start and end address of the dynamic linker 585 text and plt section for svr4_in_dynsym_resolve_code. */ 586 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text"); 587 if (interp_sect) 588 { 589 interp_text_sect_low = bfd_section_vma (interp_sect); 590 interp_text_sect_low 591 += displacement_from_map (ldm, interp_text_sect_low); 592 interp_text_sect_high 593 = interp_text_sect_low + bfd_section_size (interp_sect); 594 } 595 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt"); 596 if (interp_sect) 597 { 598 interp_plt_sect_low = bfd_section_vma (interp_sect); 599 interp_plt_sect_low 600 += displacement_from_map (ldm, interp_plt_sect_low); 601 interp_plt_sect_high = 602 interp_plt_sect_low + bfd_section_size (interp_sect); 603 } 604 605 addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), cmp_name, "_dl_debug_addr"); 606 607 if (addr == 0) 608 { 609 warning (_("Could not find symbol _dl_debug_addr " 610 "in dynamic linker")); 611 enable_break_failure_warning (); 612 return 0; 613 } 614 615 solib_debug_printf ("_dl_debug_addr (prior to relocation) = %s", 616 hex_string_custom (addr, 8)); 617 618 addr += displacement_from_map (ldm, addr); 619 620 solib_debug_printf ("_dl_debug_addr (after relocation) = %s", 621 hex_string_custom (addr, 8)); 622 623 /* Fetch the address of the r_debug struct. */ 624 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0) 625 { 626 warning (_("Unable to fetch contents of _dl_debug_addr " 627 "(at address %s) from dynamic linker"), 628 hex_string_custom (addr, 8)); 629 } 630 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order); 631 632 solib_debug_printf ("_dl_debug_addr[0..3] = %s", 633 hex_string_custom (addr, 8)); 634 635 /* If it's zero, then the ldso hasn't initialized yet, and so 636 there are no shared libs yet loaded. */ 637 if (addr == 0) 638 { 639 solib_debug_printf ("ldso not yet initialized"); 640 /* Do not warn, but mark to run again. */ 641 return 0; 642 } 643 644 /* Fetch the r_brk field. It's 8 bytes from the start of 645 _dl_debug_addr. */ 646 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0) 647 { 648 warning (_("Unable to fetch _dl_debug_addr->r_brk " 649 "(at address %s) from dynamic linker"), 650 hex_string_custom (addr + 8, 8)); 651 enable_break_failure_warning (); 652 return 0; 653 } 654 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order); 655 656 /* Now fetch the function entry point. */ 657 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0) 658 { 659 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point " 660 "(at address %s) from dynamic linker"), 661 hex_string_custom (addr, 8)); 662 enable_break_failure_warning (); 663 return 0; 664 } 665 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order); 666 667 /* We're done with the loadmap. */ 668 xfree (ldm); 669 670 /* Remove all the solib event breakpoints. Their addresses 671 may have changed since the last time we ran the program. */ 672 remove_solib_event_breakpoints (); 673 674 /* Now (finally!) create the solib breakpoint. */ 675 create_solib_event_breakpoint (target_gdbarch (), addr); 676 677 enable_break2_done = 1; 678 679 return 1; 680 } 681 682 /* Tell the user we couldn't set a dynamic linker breakpoint. */ 683 enable_break_failure_warning (); 684 685 /* Failure return. */ 686 return 0; 687 } 688 689 static int 690 enable_break (void) 691 { 692 asection *interp_sect; 693 CORE_ADDR entry_point; 694 695 if (current_program_space->symfile_object_file == NULL) 696 { 697 solib_debug_printf ("No symbol file found."); 698 return 0; 699 } 700 701 if (!entry_point_address_query (&entry_point)) 702 { 703 solib_debug_printf ("Symbol file has no entry point."); 704 return 0; 705 } 706 707 /* Check for the presence of a .interp section. If there is no 708 such section, the executable is statically linked. */ 709 710 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (), 711 ".interp"); 712 713 if (interp_sect == NULL) 714 { 715 solib_debug_printf ("No .interp section found."); 716 return 0; 717 } 718 719 create_solib_event_breakpoint (target_gdbarch (), entry_point); 720 721 solib_debug_printf ("solib event breakpoint placed at entry point: %s", 722 hex_string_custom (entry_point, 8)); 723 return 1; 724 } 725 726 static void 727 frv_relocate_main_executable (void) 728 { 729 int status; 730 CORE_ADDR exec_addr, interp_addr; 731 struct int_elf32_fdpic_loadmap *ldm; 732 int changed; 733 struct obj_section *osect; 734 735 status = frv_fdpic_loadmap_addresses (target_gdbarch (), 736 &interp_addr, &exec_addr); 737 738 if (status < 0 || (exec_addr == 0 && interp_addr == 0)) 739 { 740 /* Not using FDPIC ABI, so do nothing. */ 741 return; 742 } 743 744 /* Fetch the loadmap located at ``exec_addr''. */ 745 ldm = fetch_loadmap (exec_addr); 746 if (ldm == NULL) 747 error (_("Unable to load the executable's loadmap.")); 748 749 delete main_executable_lm_info; 750 main_executable_lm_info = new lm_info_frv; 751 main_executable_lm_info->map = ldm; 752 753 objfile *objf = current_program_space->symfile_object_file; 754 section_offsets new_offsets (objf->section_offsets.size ()); 755 changed = 0; 756 757 ALL_OBJFILE_OSECTIONS (objf, osect) 758 { 759 CORE_ADDR orig_addr, addr, offset; 760 int osect_idx; 761 int seg; 762 763 osect_idx = osect - objf->sections; 764 765 /* Current address of section. */ 766 addr = osect->addr (); 767 /* Offset from where this section started. */ 768 offset = objf->section_offsets[osect_idx]; 769 /* Original address prior to any past relocations. */ 770 orig_addr = addr - offset; 771 772 for (seg = 0; seg < ldm->nsegs; seg++) 773 { 774 if (ldm->segs[seg].p_vaddr <= orig_addr 775 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz) 776 { 777 new_offsets[osect_idx] 778 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr; 779 780 if (new_offsets[osect_idx] != offset) 781 changed = 1; 782 break; 783 } 784 } 785 } 786 787 if (changed) 788 objfile_relocate (objf, new_offsets); 789 790 /* Now that OBJF has been relocated, we can compute the GOT value 791 and stash it away. */ 792 main_executable_lm_info->got_value = main_got (); 793 } 794 795 /* Implement the "create_inferior_hook" target_solib_ops method. 796 797 For the FR-V shared library ABI (FDPIC), the main executable needs 798 to be relocated. The shared library breakpoints also need to be 799 enabled. */ 800 801 static void 802 frv_solib_create_inferior_hook (int from_tty) 803 { 804 /* Relocate main executable. */ 805 frv_relocate_main_executable (); 806 807 /* Enable shared library breakpoints. */ 808 if (!enable_break ()) 809 { 810 warning (_("shared library handler failed to enable breakpoint")); 811 return; 812 } 813 } 814 815 static void 816 frv_clear_solib (void) 817 { 818 lm_base_cache = 0; 819 enable_break2_done = 0; 820 main_lm_addr = 0; 821 822 delete main_executable_lm_info; 823 main_executable_lm_info = NULL; 824 } 825 826 static void 827 frv_free_so (struct so_list *so) 828 { 829 lm_info_frv *li = (lm_info_frv *) so->lm_info; 830 831 delete li; 832 } 833 834 static void 835 frv_relocate_section_addresses (struct so_list *so, 836 struct target_section *sec) 837 { 838 int seg; 839 lm_info_frv *li = (lm_info_frv *) so->lm_info; 840 int_elf32_fdpic_loadmap *map = li->map; 841 842 for (seg = 0; seg < map->nsegs; seg++) 843 { 844 if (map->segs[seg].p_vaddr <= sec->addr 845 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz) 846 { 847 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr; 848 849 sec->addr += displ; 850 sec->endaddr += displ; 851 break; 852 } 853 } 854 } 855 856 /* Return the GOT address associated with the main executable. Return 857 0 if it can't be found. */ 858 859 static CORE_ADDR 860 main_got (void) 861 { 862 struct bound_minimal_symbol got_sym; 863 864 objfile *objf = current_program_space->symfile_object_file; 865 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, objf); 866 if (got_sym.minsym == 0) 867 return 0; 868 869 return got_sym.value_address (); 870 } 871 872 /* Find the global pointer for the given function address ADDR. */ 873 874 CORE_ADDR 875 frv_fdpic_find_global_pointer (CORE_ADDR addr) 876 { 877 for (struct so_list *so : current_program_space->solibs ()) 878 { 879 int seg; 880 lm_info_frv *li = (lm_info_frv *) so->lm_info; 881 int_elf32_fdpic_loadmap *map = li->map; 882 883 for (seg = 0; seg < map->nsegs; seg++) 884 { 885 if (map->segs[seg].addr <= addr 886 && addr < map->segs[seg].addr + map->segs[seg].p_memsz) 887 return li->got_value; 888 } 889 } 890 891 /* Didn't find it in any of the shared objects. So assume it's in the 892 main executable. */ 893 return main_got (); 894 } 895 896 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */ 897 static CORE_ADDR find_canonical_descriptor_in_load_object 898 (CORE_ADDR, CORE_ADDR, const char *, bfd *, lm_info_frv *); 899 900 /* Given a function entry point, attempt to find the canonical descriptor 901 associated with that entry point. Return 0 if no canonical descriptor 902 could be found. */ 903 904 CORE_ADDR 905 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point) 906 { 907 const char *name; 908 CORE_ADDR addr; 909 CORE_ADDR got_value; 910 struct symbol *sym; 911 912 /* Fetch the corresponding global pointer for the entry point. */ 913 got_value = frv_fdpic_find_global_pointer (entry_point); 914 915 /* Attempt to find the name of the function. If the name is available, 916 it'll be used as an aid in finding matching functions in the dynamic 917 symbol table. */ 918 sym = find_pc_function (entry_point); 919 if (sym == 0) 920 name = 0; 921 else 922 name = sym->linkage_name (); 923 924 /* Check the main executable. */ 925 objfile *objf = current_program_space->symfile_object_file; 926 addr = find_canonical_descriptor_in_load_object 927 (entry_point, got_value, name, objf->obfd.get (), 928 main_executable_lm_info); 929 930 /* If descriptor not found via main executable, check each load object 931 in list of shared objects. */ 932 if (addr == 0) 933 { 934 for (struct so_list *so : current_program_space->solibs ()) 935 { 936 lm_info_frv *li = (lm_info_frv *) so->lm_info; 937 938 addr = find_canonical_descriptor_in_load_object 939 (entry_point, got_value, name, so->abfd, li); 940 941 if (addr != 0) 942 break; 943 } 944 } 945 946 return addr; 947 } 948 949 static CORE_ADDR 950 find_canonical_descriptor_in_load_object 951 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd, 952 lm_info_frv *lm) 953 { 954 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); 955 arelent *rel; 956 unsigned int i; 957 CORE_ADDR addr = 0; 958 959 /* Nothing to do if no bfd. */ 960 if (abfd == 0) 961 return 0; 962 963 /* Nothing to do if no link map. */ 964 if (lm == 0) 965 return 0; 966 967 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations. 968 (More about this later.) But in order to fetch the relocs, we 969 need to first fetch the dynamic symbols. These symbols need to 970 be cached due to the way that bfd_canonicalize_dynamic_reloc() 971 works. (See the comments in the declaration of struct lm_info 972 for more information.) */ 973 if (lm->dyn_syms == NULL) 974 { 975 long storage_needed; 976 unsigned int number_of_symbols; 977 978 /* Determine amount of space needed to hold the dynamic symbol table. */ 979 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd); 980 981 /* If there are no dynamic symbols, there's nothing to do. */ 982 if (storage_needed <= 0) 983 return 0; 984 985 /* Allocate space for the dynamic symbol table. */ 986 lm->dyn_syms = (asymbol **) xmalloc (storage_needed); 987 988 /* Fetch the dynamic symbol table. */ 989 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms); 990 991 if (number_of_symbols == 0) 992 return 0; 993 } 994 995 /* Fetch the dynamic relocations if not already cached. */ 996 if (lm->dyn_relocs == NULL) 997 { 998 long storage_needed; 999 1000 /* Determine amount of space needed to hold the dynamic relocs. */ 1001 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd); 1002 1003 /* Bail out if there are no dynamic relocs. */ 1004 if (storage_needed <= 0) 1005 return 0; 1006 1007 /* Allocate space for the relocs. */ 1008 lm->dyn_relocs = (arelent **) xmalloc (storage_needed); 1009 1010 /* Fetch the dynamic relocs. */ 1011 lm->dyn_reloc_count 1012 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms); 1013 } 1014 1015 /* Search the dynamic relocs. */ 1016 for (i = 0; i < lm->dyn_reloc_count; i++) 1017 { 1018 rel = lm->dyn_relocs[i]; 1019 1020 /* Relocs of interest are those which meet the following 1021 criteria: 1022 1023 - the names match (assuming the caller could provide 1024 a name which matches ``entry_point''). 1025 - the relocation type must be R_FRV_FUNCDESC. Relocs 1026 of this type are used (by the dynamic linker) to 1027 look up the address of a canonical descriptor (allocating 1028 it if need be) and initializing the GOT entry referred 1029 to by the offset to the address of the descriptor. 1030 1031 These relocs of interest may be used to obtain a 1032 candidate descriptor by first adjusting the reloc's 1033 address according to the link map and then dereferencing 1034 this address (which is a GOT entry) to obtain a descriptor 1035 address. */ 1036 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0) 1037 && rel->howto->type == R_FRV_FUNCDESC) 1038 { 1039 gdb_byte buf [FRV_PTR_SIZE]; 1040 1041 /* Compute address of address of candidate descriptor. */ 1042 addr = rel->address + displacement_from_map (lm->map, rel->address); 1043 1044 /* Fetch address of candidate descriptor. */ 1045 if (target_read_memory (addr, buf, sizeof buf) != 0) 1046 continue; 1047 addr = extract_unsigned_integer (buf, sizeof buf, byte_order); 1048 1049 /* Check for matching entry point. */ 1050 if (target_read_memory (addr, buf, sizeof buf) != 0) 1051 continue; 1052 if (extract_unsigned_integer (buf, sizeof buf, byte_order) 1053 != entry_point) 1054 continue; 1055 1056 /* Check for matching got value. */ 1057 if (target_read_memory (addr + 4, buf, sizeof buf) != 0) 1058 continue; 1059 if (extract_unsigned_integer (buf, sizeof buf, byte_order) 1060 != got_value) 1061 continue; 1062 1063 /* Match was successful! Exit loop. */ 1064 break; 1065 } 1066 } 1067 1068 return addr; 1069 } 1070 1071 /* Given an objfile, return the address of its link map. This value is 1072 needed for TLS support. */ 1073 CORE_ADDR 1074 frv_fetch_objfile_link_map (struct objfile *objfile) 1075 { 1076 /* Cause frv_current_sos() to be run if it hasn't been already. */ 1077 if (main_lm_addr == 0) 1078 solib_add (0, 0, 1); 1079 1080 /* frv_current_sos() will set main_lm_addr for the main executable. */ 1081 if (objfile == current_program_space->symfile_object_file) 1082 return main_lm_addr; 1083 1084 /* The other link map addresses may be found by examining the list 1085 of shared libraries. */ 1086 for (struct so_list *so : current_program_space->solibs ()) 1087 { 1088 lm_info_frv *li = (lm_info_frv *) so->lm_info; 1089 1090 if (so->objfile == objfile) 1091 return li->lm_addr; 1092 } 1093 1094 /* Not found! */ 1095 return 0; 1096 } 1097 1098 const struct target_so_ops frv_so_ops = 1099 { 1100 frv_relocate_section_addresses, 1101 frv_free_so, 1102 nullptr, 1103 frv_clear_solib, 1104 frv_solib_create_inferior_hook, 1105 frv_current_sos, 1106 open_symbol_file_object, 1107 frv_in_dynsym_resolve_code, 1108 solib_bfd_open, 1109 }; 1110