xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/rs6000-tdep.c (revision 8b657b0747480f8989760d71343d6dd33f8d4cf9)
1 /* Target-dependent code for GDB, the GNU debugger.
2 
3    Copyright (C) 1986-2023 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "infrun.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "gdbcmd.h"
28 #include "objfiles.h"
29 #include "arch-utils.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "target-float.h"
33 #include "value.h"
34 #include "parser-defs.h"
35 #include "osabi.h"
36 #include "infcall.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2/frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43 #include "record-full.h"
44 #include "auxv.h"
45 
46 #include "coff/internal.h"	/* for libcoff.h */
47 #include "libcoff.h"		/* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50 
51 #include "elf-bfd.h"
52 #include "elf/ppc.h"
53 #include "elf/ppc64.h"
54 
55 #include "solib-svr4.h"
56 #include "ppc-tdep.h"
57 #include "ppc-ravenscar-thread.h"
58 
59 #include "dis-asm.h"
60 
61 #include "trad-frame.h"
62 #include "frame-unwind.h"
63 #include "frame-base.h"
64 
65 #include "ax.h"
66 #include "ax-gdb.h"
67 #include <algorithm>
68 
69 #include "features/rs6000/powerpc-32.c"
70 #include "features/rs6000/powerpc-altivec32.c"
71 #include "features/rs6000/powerpc-vsx32.c"
72 #include "features/rs6000/powerpc-403.c"
73 #include "features/rs6000/powerpc-403gc.c"
74 #include "features/rs6000/powerpc-405.c"
75 #include "features/rs6000/powerpc-505.c"
76 #include "features/rs6000/powerpc-601.c"
77 #include "features/rs6000/powerpc-602.c"
78 #include "features/rs6000/powerpc-603.c"
79 #include "features/rs6000/powerpc-604.c"
80 #include "features/rs6000/powerpc-64.c"
81 #include "features/rs6000/powerpc-altivec64.c"
82 #include "features/rs6000/powerpc-vsx64.c"
83 #include "features/rs6000/powerpc-7400.c"
84 #include "features/rs6000/powerpc-750.c"
85 #include "features/rs6000/powerpc-860.c"
86 #include "features/rs6000/powerpc-e500.c"
87 #include "features/rs6000/rs6000.c"
88 
89 /* Determine if regnum is an SPE pseudo-register.  */
90 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91     && (regnum) >= (tdep)->ppc_ev0_regnum \
92     && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93 
94 /* Determine if regnum is a decimal float pseudo-register.  */
95 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96     && (regnum) >= (tdep)->ppc_dl0_regnum \
97     && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98 
99 /* Determine if regnum is a "vX" alias for the raw "vrX" vector
100    registers.  */
101 #define IS_V_ALIAS_PSEUDOREG(tdep, regnum) (\
102     (tdep)->ppc_v0_alias_regnum >= 0 \
103     && (regnum) >= (tdep)->ppc_v0_alias_regnum \
104     && (regnum) < (tdep)->ppc_v0_alias_regnum + ppc_num_vrs)
105 
106 /* Determine if regnum is a POWER7 VSX register.  */
107 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
108     && (regnum) >= (tdep)->ppc_vsr0_regnum \
109     && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
110 
111 /* Determine if regnum is a POWER7 Extended FP register.  */
112 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
113     && (regnum) >= (tdep)->ppc_efpr0_regnum \
114     && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
115 
116 /* Determine if regnum is a checkpointed decimal float
117    pseudo-register.  */
118 #define IS_CDFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cdl0_regnum >= 0 \
119     && (regnum) >= (tdep)->ppc_cdl0_regnum \
120     && (regnum) < (tdep)->ppc_cdl0_regnum + 16)
121 
122 /* Determine if regnum is a Checkpointed POWER7 VSX register.  */
123 #define IS_CVSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cvsr0_regnum >= 0 \
124     && (regnum) >= (tdep)->ppc_cvsr0_regnum \
125     && (regnum) < (tdep)->ppc_cvsr0_regnum + ppc_num_vsrs)
126 
127 /* Determine if regnum is a Checkpointed POWER7 Extended FP register.  */
128 #define IS_CEFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cefpr0_regnum >= 0 \
129     && (regnum) >= (tdep)->ppc_cefpr0_regnum \
130     && (regnum) < (tdep)->ppc_cefpr0_regnum + ppc_num_efprs)
131 
132 /* Holds the current set of options to be passed to the disassembler.  */
133 static char *powerpc_disassembler_options;
134 
135 /* The list of available "set powerpc ..." and "show powerpc ..."
136    commands.  */
137 static struct cmd_list_element *setpowerpccmdlist = NULL;
138 static struct cmd_list_element *showpowerpccmdlist = NULL;
139 
140 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
141 
142 /* The vector ABI to use.  Keep this in sync with powerpc_vector_abi.  */
143 static const char *const powerpc_vector_strings[] =
144 {
145   "auto",
146   "generic",
147   "altivec",
148   "spe",
149   NULL
150 };
151 
152 /* A variable that can be configured by the user.  */
153 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
154 static const char *powerpc_vector_abi_string = "auto";
155 
156 /* PowerPC-related per-inferior data.  */
157 
158 static const registry<inferior>::key<ppc_inferior_data> ppc_inferior_data_key;
159 
160 /* Get the per-inferior PowerPC data for INF.  */
161 
162 ppc_inferior_data *
163 get_ppc_per_inferior (inferior *inf)
164 {
165   ppc_inferior_data *per_inf = ppc_inferior_data_key.get (inf);
166 
167   if (per_inf == nullptr)
168     per_inf = ppc_inferior_data_key.emplace (inf);
169 
170   return per_inf;
171 }
172 
173 /* To be used by skip_prologue.  */
174 
175 struct rs6000_framedata
176   {
177     int offset;			/* total size of frame --- the distance
178 				   by which we decrement sp to allocate
179 				   the frame */
180     int saved_gpr;		/* smallest # of saved gpr */
181     unsigned int gpr_mask;	/* Each bit is an individual saved GPR.  */
182     int saved_fpr;		/* smallest # of saved fpr */
183     int saved_vr;               /* smallest # of saved vr */
184     int saved_ev;               /* smallest # of saved ev */
185     int alloca_reg;		/* alloca register number (frame ptr) */
186     char frameless;		/* true if frameless functions.  */
187     char nosavedpc;		/* true if pc not saved.  */
188     char used_bl;		/* true if link register clobbered */
189     int gpr_offset;		/* offset of saved gprs from prev sp */
190     int fpr_offset;		/* offset of saved fprs from prev sp */
191     int vr_offset;              /* offset of saved vrs from prev sp */
192     int ev_offset;              /* offset of saved evs from prev sp */
193     int lr_offset;		/* offset of saved lr */
194     int lr_register;		/* register of saved lr, if trustworthy */
195     int cr_offset;		/* offset of saved cr */
196     int vrsave_offset;          /* offset of saved vrsave register */
197   };
198 
199 
200 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise.  */
201 int
202 vsx_register_p (struct gdbarch *gdbarch, int regno)
203 {
204   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
205   if (tdep->ppc_vsr0_regnum < 0)
206     return 0;
207   else
208     return (regno >= tdep->ppc_vsr0_upper_regnum && regno
209 	    <= tdep->ppc_vsr0_upper_regnum + 31);
210 }
211 
212 /* Is REGNO an AltiVec register?  Return 1 if so, 0 otherwise.  */
213 int
214 altivec_register_p (struct gdbarch *gdbarch, int regno)
215 {
216   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
217   if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
218     return 0;
219   else
220     return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
221 }
222 
223 
224 /* Return true if REGNO is an SPE register, false otherwise.  */
225 int
226 spe_register_p (struct gdbarch *gdbarch, int regno)
227 {
228   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
229 
230   /* Is it a reference to EV0 -- EV31, and do we have those?  */
231   if (IS_SPE_PSEUDOREG (tdep, regno))
232     return 1;
233 
234   /* Is it a reference to one of the raw upper GPR halves?  */
235   if (tdep->ppc_ev0_upper_regnum >= 0
236       && tdep->ppc_ev0_upper_regnum <= regno
237       && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
238     return 1;
239 
240   /* Is it a reference to the 64-bit accumulator, and do we have that?  */
241   if (tdep->ppc_acc_regnum >= 0
242       && tdep->ppc_acc_regnum == regno)
243     return 1;
244 
245   /* Is it a reference to the SPE floating-point status and control register,
246      and do we have that?  */
247   if (tdep->ppc_spefscr_regnum >= 0
248       && tdep->ppc_spefscr_regnum == regno)
249     return 1;
250 
251   return 0;
252 }
253 
254 
255 /* Return non-zero if the architecture described by GDBARCH has
256    floating-point registers (f0 --- f31 and fpscr).  */
257 int
258 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
259 {
260   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
261 
262   return (tdep->ppc_fp0_regnum >= 0
263 	  && tdep->ppc_fpscr_regnum >= 0);
264 }
265 
266 /* Return non-zero if the architecture described by GDBARCH has
267    Altivec registers (vr0 --- vr31, vrsave and vscr).  */
268 int
269 ppc_altivec_support_p (struct gdbarch *gdbarch)
270 {
271   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
272 
273   return (tdep->ppc_vr0_regnum >= 0
274 	  && tdep->ppc_vrsave_regnum >= 0);
275 }
276 
277 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
278    set it to SIM_REGNO.
279 
280    This is a helper function for init_sim_regno_table, constructing
281    the table mapping GDB register numbers to sim register numbers; we
282    initialize every element in that table to -1 before we start
283    filling it in.  */
284 static void
285 set_sim_regno (int *table, int gdb_regno, int sim_regno)
286 {
287   /* Make sure we don't try to assign any given GDB register a sim
288      register number more than once.  */
289   gdb_assert (table[gdb_regno] == -1);
290   table[gdb_regno] = sim_regno;
291 }
292 
293 
294 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
295    numbers to simulator register numbers, based on the values placed
296    in the ARCH->tdep->ppc_foo_regnum members.  */
297 static void
298 init_sim_regno_table (struct gdbarch *arch)
299 {
300   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (arch);
301   int total_regs = gdbarch_num_regs (arch);
302   int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
303   int i;
304   static const char *const segment_regs[] = {
305     "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
306     "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
307   };
308 
309   /* Presume that all registers not explicitly mentioned below are
310      unavailable from the sim.  */
311   for (i = 0; i < total_regs; i++)
312     sim_regno[i] = -1;
313 
314   /* General-purpose registers.  */
315   for (i = 0; i < ppc_num_gprs; i++)
316     set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
317 
318   /* Floating-point registers.  */
319   if (tdep->ppc_fp0_regnum >= 0)
320     for (i = 0; i < ppc_num_fprs; i++)
321       set_sim_regno (sim_regno,
322 		     tdep->ppc_fp0_regnum + i,
323 		     sim_ppc_f0_regnum + i);
324   if (tdep->ppc_fpscr_regnum >= 0)
325     set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
326 
327   set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
328   set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
329   set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
330 
331   /* Segment registers.  */
332   for (i = 0; i < ppc_num_srs; i++)
333     {
334       int gdb_regno;
335 
336       gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
337       if (gdb_regno >= 0)
338 	set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
339     }
340 
341   /* Altivec registers.  */
342   if (tdep->ppc_vr0_regnum >= 0)
343     {
344       for (i = 0; i < ppc_num_vrs; i++)
345 	set_sim_regno (sim_regno,
346 		       tdep->ppc_vr0_regnum + i,
347 		       sim_ppc_vr0_regnum + i);
348 
349       /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
350 	 we can treat this more like the other cases.  */
351       set_sim_regno (sim_regno,
352 		     tdep->ppc_vr0_regnum + ppc_num_vrs,
353 		     sim_ppc_vscr_regnum);
354     }
355   /* vsave is a special-purpose register, so the code below handles it.  */
356 
357   /* SPE APU (E500) registers.  */
358   if (tdep->ppc_ev0_upper_regnum >= 0)
359     for (i = 0; i < ppc_num_gprs; i++)
360       set_sim_regno (sim_regno,
361 		     tdep->ppc_ev0_upper_regnum + i,
362 		     sim_ppc_rh0_regnum + i);
363   if (tdep->ppc_acc_regnum >= 0)
364     set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
365   /* spefscr is a special-purpose register, so the code below handles it.  */
366 
367 #ifdef WITH_PPC_SIM
368   /* Now handle all special-purpose registers.  Verify that they
369      haven't mistakenly been assigned numbers by any of the above
370      code.  */
371   for (i = 0; i < sim_ppc_num_sprs; i++)
372     {
373       const char *spr_name = sim_spr_register_name (i);
374       int gdb_regno = -1;
375 
376       if (spr_name != NULL)
377 	gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
378 
379       if (gdb_regno != -1)
380 	set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
381     }
382 #endif
383 
384   /* Drop the initialized array into place.  */
385   tdep->sim_regno = sim_regno;
386 }
387 
388 
389 /* Given a GDB register number REG, return the corresponding SIM
390    register number.  */
391 static int
392 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
393 {
394   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
395   int sim_regno;
396 
397   if (tdep->sim_regno == NULL)
398     init_sim_regno_table (gdbarch);
399 
400   gdb_assert (0 <= reg && reg <= gdbarch_num_cooked_regs (gdbarch));
401   sim_regno = tdep->sim_regno[reg];
402 
403   if (sim_regno >= 0)
404     return sim_regno;
405   else
406     return LEGACY_SIM_REGNO_IGNORE;
407 }
408 
409 
410 
411 /* Register set support functions.  */
412 
413 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
414    Write the register to REGCACHE.  */
415 
416 void
417 ppc_supply_reg (struct regcache *regcache, int regnum,
418 		const gdb_byte *regs, size_t offset, int regsize)
419 {
420   if (regnum != -1 && offset != -1)
421     {
422       if (regsize > 4)
423 	{
424 	  struct gdbarch *gdbarch = regcache->arch ();
425 	  int gdb_regsize = register_size (gdbarch, regnum);
426 	  if (gdb_regsize < regsize
427 	      && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
428 	    offset += regsize - gdb_regsize;
429 	}
430       regcache->raw_supply (regnum, regs + offset);
431     }
432 }
433 
434 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
435    in a field REGSIZE wide.  Zero pad as necessary.  */
436 
437 void
438 ppc_collect_reg (const struct regcache *regcache, int regnum,
439 		 gdb_byte *regs, size_t offset, int regsize)
440 {
441   if (regnum != -1 && offset != -1)
442     {
443       if (regsize > 4)
444 	{
445 	  struct gdbarch *gdbarch = regcache->arch ();
446 	  int gdb_regsize = register_size (gdbarch, regnum);
447 	  if (gdb_regsize < regsize)
448 	    {
449 	      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
450 		{
451 		  memset (regs + offset, 0, regsize - gdb_regsize);
452 		  offset += regsize - gdb_regsize;
453 		}
454 	      else
455 		memset (regs + offset + regsize - gdb_regsize, 0,
456 			regsize - gdb_regsize);
457 	    }
458 	}
459       regcache->raw_collect (regnum, regs + offset);
460     }
461 }
462 
463 static int
464 ppc_greg_offset (struct gdbarch *gdbarch,
465 		 ppc_gdbarch_tdep *tdep,
466 		 const struct ppc_reg_offsets *offsets,
467 		 int regnum,
468 		 int *regsize)
469 {
470   *regsize = offsets->gpr_size;
471   if (regnum >= tdep->ppc_gp0_regnum
472       && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
473     return (offsets->r0_offset
474 	    + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
475 
476   if (regnum == gdbarch_pc_regnum (gdbarch))
477     return offsets->pc_offset;
478 
479   if (regnum == tdep->ppc_ps_regnum)
480     return offsets->ps_offset;
481 
482   if (regnum == tdep->ppc_lr_regnum)
483     return offsets->lr_offset;
484 
485   if (regnum == tdep->ppc_ctr_regnum)
486     return offsets->ctr_offset;
487 
488   *regsize = offsets->xr_size;
489   if (regnum == tdep->ppc_cr_regnum)
490     return offsets->cr_offset;
491 
492   if (regnum == tdep->ppc_xer_regnum)
493     return offsets->xer_offset;
494 
495   if (regnum == tdep->ppc_mq_regnum)
496     return offsets->mq_offset;
497 
498   return -1;
499 }
500 
501 static int
502 ppc_fpreg_offset (ppc_gdbarch_tdep *tdep,
503 		  const struct ppc_reg_offsets *offsets,
504 		  int regnum)
505 {
506   if (regnum >= tdep->ppc_fp0_regnum
507       && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
508     return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
509 
510   if (regnum == tdep->ppc_fpscr_regnum)
511     return offsets->fpscr_offset;
512 
513   return -1;
514 }
515 
516 /* Supply register REGNUM in the general-purpose register set REGSET
517    from the buffer specified by GREGS and LEN to register cache
518    REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
519 
520 void
521 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
522 		    int regnum, const void *gregs, size_t len)
523 {
524   struct gdbarch *gdbarch = regcache->arch ();
525   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
526   const struct ppc_reg_offsets *offsets
527     = (const struct ppc_reg_offsets *) regset->regmap;
528   size_t offset;
529   int regsize;
530 
531   if (regnum == -1)
532     {
533       int i;
534       int gpr_size = offsets->gpr_size;
535 
536       for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
537 	   i < tdep->ppc_gp0_regnum + ppc_num_gprs;
538 	   i++, offset += gpr_size)
539 	ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
540 			gpr_size);
541 
542       ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
543 		      (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
544       ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
545 		      (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
546       ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
547 		      (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
548       ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
549 		      (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
550       ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
551 		      (const gdb_byte *) gregs, offsets->cr_offset,
552 		      offsets->xr_size);
553       ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
554 		      (const gdb_byte *) gregs, offsets->xer_offset,
555 		      offsets->xr_size);
556       ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
557 		      (const gdb_byte *) gregs, offsets->mq_offset,
558 		      offsets->xr_size);
559       return;
560     }
561 
562   offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
563   ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
564 }
565 
566 /* Supply register REGNUM in the floating-point register set REGSET
567    from the buffer specified by FPREGS and LEN to register cache
568    REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
569 
570 void
571 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
572 		     int regnum, const void *fpregs, size_t len)
573 {
574   struct gdbarch *gdbarch = regcache->arch ();
575   const struct ppc_reg_offsets *offsets;
576   size_t offset;
577 
578   if (!ppc_floating_point_unit_p (gdbarch))
579     return;
580 
581   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
582   offsets = (const struct ppc_reg_offsets *) regset->regmap;
583   if (regnum == -1)
584     {
585       int i;
586 
587       for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
588 	   i < tdep->ppc_fp0_regnum + ppc_num_fprs;
589 	   i++, offset += 8)
590 	ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
591 
592       ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
593 		      (const gdb_byte *) fpregs, offsets->fpscr_offset,
594 		      offsets->fpscr_size);
595       return;
596     }
597 
598   offset = ppc_fpreg_offset (tdep, offsets, regnum);
599   ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
600 		  regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
601 }
602 
603 /* Collect register REGNUM in the general-purpose register set
604    REGSET from register cache REGCACHE into the buffer specified by
605    GREGS and LEN.  If REGNUM is -1, do this for all registers in
606    REGSET.  */
607 
608 void
609 ppc_collect_gregset (const struct regset *regset,
610 		     const struct regcache *regcache,
611 		     int regnum, void *gregs, size_t len)
612 {
613   struct gdbarch *gdbarch = regcache->arch ();
614   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
615   const struct ppc_reg_offsets *offsets
616     = (const struct ppc_reg_offsets *) regset->regmap;
617   size_t offset;
618   int regsize;
619 
620   if (regnum == -1)
621     {
622       int i;
623       int gpr_size = offsets->gpr_size;
624 
625       for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
626 	   i < tdep->ppc_gp0_regnum + ppc_num_gprs;
627 	   i++, offset += gpr_size)
628 	ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
629 
630       ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
631 		       (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
632       ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
633 		       (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
634       ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
635 		       (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
636       ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
637 		       (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
638       ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
639 		       (gdb_byte *) gregs, offsets->cr_offset,
640 		       offsets->xr_size);
641       ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
642 		       (gdb_byte *) gregs, offsets->xer_offset,
643 		       offsets->xr_size);
644       ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
645 		       (gdb_byte *) gregs, offsets->mq_offset,
646 		       offsets->xr_size);
647       return;
648     }
649 
650   offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
651   ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
652 }
653 
654 /* Collect register REGNUM in the floating-point register set
655    REGSET from register cache REGCACHE into the buffer specified by
656    FPREGS and LEN.  If REGNUM is -1, do this for all registers in
657    REGSET.  */
658 
659 void
660 ppc_collect_fpregset (const struct regset *regset,
661 		      const struct regcache *regcache,
662 		      int regnum, void *fpregs, size_t len)
663 {
664   struct gdbarch *gdbarch = regcache->arch ();
665   const struct ppc_reg_offsets *offsets;
666   size_t offset;
667 
668   if (!ppc_floating_point_unit_p (gdbarch))
669     return;
670 
671   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
672   offsets = (const struct ppc_reg_offsets *) regset->regmap;
673   if (regnum == -1)
674     {
675       int i;
676 
677       for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
678 	   i < tdep->ppc_fp0_regnum + ppc_num_fprs;
679 	   i++, offset += 8)
680 	ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
681 
682       ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
683 		       (gdb_byte *) fpregs, offsets->fpscr_offset,
684 		       offsets->fpscr_size);
685       return;
686     }
687 
688   offset = ppc_fpreg_offset (tdep, offsets, regnum);
689   ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
690 		   regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
691 }
692 
693 static int
694 insn_changes_sp_or_jumps (unsigned long insn)
695 {
696   int opcode = (insn >> 26) & 0x03f;
697   int sd = (insn >> 21) & 0x01f;
698   int a = (insn >> 16) & 0x01f;
699   int subcode = (insn >> 1) & 0x3ff;
700 
701   /* Changes the stack pointer.  */
702 
703   /* NOTE: There are many ways to change the value of a given register.
704 	   The ways below are those used when the register is R1, the SP,
705 	   in a funtion's epilogue.  */
706 
707   if (opcode == 31 && subcode == 444 && a == 1)
708     return 1;  /* mr R1,Rn */
709   if (opcode == 14 && sd == 1)
710     return 1;  /* addi R1,Rn,simm */
711   if (opcode == 58 && sd == 1)
712     return 1;  /* ld R1,ds(Rn) */
713 
714   /* Transfers control.  */
715 
716   if (opcode == 18)
717     return 1;  /* b */
718   if (opcode == 16)
719     return 1;  /* bc */
720   if (opcode == 19 && subcode == 16)
721     return 1;  /* bclr */
722   if (opcode == 19 && subcode == 528)
723     return 1;  /* bcctr */
724 
725   return 0;
726 }
727 
728 /* Return true if we are in the function's epilogue, i.e. after the
729    instruction that destroyed the function's stack frame.
730 
731    1) scan forward from the point of execution:
732        a) If you find an instruction that modifies the stack pointer
733 	  or transfers control (except a return), execution is not in
734 	  an epilogue, return.
735        b) Stop scanning if you find a return instruction or reach the
736 	  end of the function or reach the hard limit for the size of
737 	  an epilogue.
738    2) scan backward from the point of execution:
739 	a) If you find an instruction that modifies the stack pointer,
740 	    execution *is* in an epilogue, return.
741 	b) Stop scanning if you reach an instruction that transfers
742 	   control or the beginning of the function or reach the hard
743 	   limit for the size of an epilogue.  */
744 
745 static int
746 rs6000_in_function_epilogue_frame_p (frame_info_ptr curfrm,
747 				     struct gdbarch *gdbarch, CORE_ADDR pc)
748 {
749   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
750   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
751   bfd_byte insn_buf[PPC_INSN_SIZE];
752   CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
753   unsigned long insn;
754 
755   /* Find the search limits based on function boundaries and hard limit.  */
756 
757   if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
758     return 0;
759 
760   epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
761   if (epilogue_start < func_start) epilogue_start = func_start;
762 
763   epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
764   if (epilogue_end > func_end) epilogue_end = func_end;
765 
766   /* Scan forward until next 'blr'.  */
767 
768   for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
769     {
770       if (!safe_frame_unwind_memory (curfrm, scan_pc,
771 				     {insn_buf, PPC_INSN_SIZE}))
772 	return 0;
773       insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
774       if (insn == 0x4e800020)
775 	break;
776       /* Assume a bctr is a tail call unless it points strictly within
777 	 this function.  */
778       if (insn == 0x4e800420)
779 	{
780 	  CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
781 						       tdep->ppc_ctr_regnum);
782 	  if (ctr > func_start && ctr < func_end)
783 	    return 0;
784 	  else
785 	    break;
786 	}
787       if (insn_changes_sp_or_jumps (insn))
788 	return 0;
789     }
790 
791   /* Scan backward until adjustment to stack pointer (R1).  */
792 
793   for (scan_pc = pc - PPC_INSN_SIZE;
794        scan_pc >= epilogue_start;
795        scan_pc -= PPC_INSN_SIZE)
796     {
797       if (!safe_frame_unwind_memory (curfrm, scan_pc,
798 				     {insn_buf, PPC_INSN_SIZE}))
799 	return 0;
800       insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
801       if (insn_changes_sp_or_jumps (insn))
802 	return 1;
803     }
804 
805   return 0;
806 }
807 
808 /* Implement the stack_frame_destroyed_p gdbarch method.  */
809 
810 static int
811 rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
812 {
813   return rs6000_in_function_epilogue_frame_p (get_current_frame (),
814 					      gdbarch, pc);
815 }
816 
817 /* Get the ith function argument for the current function.  */
818 static CORE_ADDR
819 rs6000_fetch_pointer_argument (frame_info_ptr frame, int argi,
820 			       struct type *type)
821 {
822   return get_frame_register_unsigned (frame, 3 + argi);
823 }
824 
825 /* Sequence of bytes for breakpoint instruction.  */
826 
827 constexpr gdb_byte big_breakpoint[] = { 0x7f, 0xe0, 0x00, 0x08 };
828 constexpr gdb_byte little_breakpoint[] = { 0x08, 0x00, 0xe0, 0x7f };
829 
830 typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
831   rs6000_breakpoint;
832 
833 /* Instruction masks for displaced stepping.  */
834 #define OP_MASK 0xfc000000
835 #define BP_MASK 0xFC0007FE
836 #define B_INSN 0x48000000
837 #define BC_INSN 0x40000000
838 #define BXL_INSN 0x4c000000
839 #define BP_INSN 0x7C000008
840 
841 /* Instruction masks used during single-stepping of atomic
842    sequences.  */
843 #define LOAD_AND_RESERVE_MASK 0xfc0007fe
844 #define LWARX_INSTRUCTION 0x7c000028
845 #define LDARX_INSTRUCTION 0x7c0000A8
846 #define LBARX_INSTRUCTION 0x7c000068
847 #define LHARX_INSTRUCTION 0x7c0000e8
848 #define LQARX_INSTRUCTION 0x7c000228
849 #define STORE_CONDITIONAL_MASK 0xfc0007ff
850 #define STWCX_INSTRUCTION 0x7c00012d
851 #define STDCX_INSTRUCTION 0x7c0001ad
852 #define STBCX_INSTRUCTION 0x7c00056d
853 #define STHCX_INSTRUCTION 0x7c0005ad
854 #define STQCX_INSTRUCTION 0x7c00016d
855 
856 /* Instruction masks for single-stepping of addpcis/lnia.  */
857 #define ADDPCIS_INSN            0x4c000004
858 #define ADDPCIS_INSN_MASK       0xfc00003e
859 #define ADDPCIS_TARGET_REGISTER 0x03F00000
860 #define ADDPCIS_INSN_REGSHIFT   21
861 
862 #define PNOP_MASK 0xfff3ffff
863 #define PNOP_INSN 0x07000000
864 #define R_MASK 0x00100000
865 #define R_ZERO 0x00000000
866 
867 /* Check if insn is one of the Load And Reserve instructions used for atomic
868    sequences.  */
869 #define IS_LOAD_AND_RESERVE_INSN(insn)	((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
870 					 || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
871 					 || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
872 					 || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
873 					 || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
874 /* Check if insn is one of the Store Conditional instructions used for atomic
875    sequences.  */
876 #define IS_STORE_CONDITIONAL_INSN(insn)	((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
877 					 || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
878 					 || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
879 					 || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
880 					 || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)
881 
882 typedef buf_displaced_step_copy_insn_closure
883   ppc_displaced_step_copy_insn_closure;
884 
885 /* We can't displaced step atomic sequences.  */
886 
887 static displaced_step_copy_insn_closure_up
888 ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
889 			      CORE_ADDR from, CORE_ADDR to,
890 			      struct regcache *regs)
891 {
892   size_t len = gdbarch_max_insn_length (gdbarch);
893   std::unique_ptr<ppc_displaced_step_copy_insn_closure> closure
894     (new ppc_displaced_step_copy_insn_closure (len));
895   gdb_byte *buf = closure->buf.data ();
896   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
897   int insn;
898 
899   len = target_read (current_inferior()->top_target(), TARGET_OBJECT_MEMORY, NULL,
900 		     buf, from, len);
901   if ((ssize_t) len < PPC_INSN_SIZE)
902     memory_error (TARGET_XFER_E_IO, from);
903 
904   insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
905 
906   /* Check for PNOP and for prefixed instructions with R=0.  Those
907      instructions are safe to displace.  Prefixed instructions with R=1
908      will read/write data to/from locations relative to the current PC.
909      We would not be able to fixup after an instruction has written data
910     into a displaced location, so decline to displace those instructions.  */
911   if ((insn & OP_MASK) == 1 << 26)
912     {
913       if (((insn & PNOP_MASK) != PNOP_INSN)
914 	  && ((insn & R_MASK) != R_ZERO))
915 	{
916 	  displaced_debug_printf ("Not displacing prefixed instruction %08x at %s",
917 				  insn, paddress (gdbarch, from));
918 	  return NULL;
919 	}
920     }
921   else
922     /* Non-prefixed instructions..  */
923     {
924       /* Set the instruction length to 4 to match the actual instruction
925 	 length.  */
926       len = 4;
927     }
928 
929   /* Assume all atomic sequences start with a Load and Reserve instruction.  */
930   if (IS_LOAD_AND_RESERVE_INSN (insn))
931     {
932       displaced_debug_printf ("can't displaced step atomic sequence at %s",
933 			      paddress (gdbarch, from));
934 
935       return NULL;
936     }
937 
938   write_memory (to, buf, len);
939 
940   displaced_debug_printf ("copy %s->%s: %s",
941 			  paddress (gdbarch, from), paddress (gdbarch, to),
942 			  displaced_step_dump_bytes (buf, len).c_str ());
943 
944   /* This is a work around for a problem with g++ 4.8.  */
945   return displaced_step_copy_insn_closure_up (closure.release ());
946 }
947 
948 /* Fix up the state of registers and memory after having single-stepped
949    a displaced instruction.  */
950 static void
951 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
952 			  struct displaced_step_copy_insn_closure *closure_,
953 			  CORE_ADDR from, CORE_ADDR to,
954 			  struct regcache *regs)
955 {
956   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
957   /* Our closure is a copy of the instruction.  */
958   ppc_displaced_step_copy_insn_closure *closure
959     = (ppc_displaced_step_copy_insn_closure *) closure_;
960   ULONGEST insn  = extract_unsigned_integer (closure->buf.data (),
961 					     PPC_INSN_SIZE, byte_order);
962   ULONGEST opcode;
963   /* Offset for non PC-relative instructions.  */
964   LONGEST offset;
965 
966   opcode = insn & OP_MASK;
967 
968   /* Set offset to 8 if this is an 8-byte (prefixed) instruction.  */
969   if ((opcode) == 1 << 26)
970     offset = 2 * PPC_INSN_SIZE;
971   else
972     offset = PPC_INSN_SIZE;
973 
974   displaced_debug_printf ("(ppc) fixup (%s, %s)",
975 			  paddress (gdbarch, from), paddress (gdbarch, to));
976 
977   /* Handle the addpcis/lnia instruction.  */
978   if ((insn & ADDPCIS_INSN_MASK) == ADDPCIS_INSN)
979     {
980       LONGEST displaced_offset;
981       ULONGEST current_val;
982       /* Measure the displacement.  */
983       displaced_offset = from - to;
984       /* Identify the target register that was updated by the instruction.  */
985       int regnum = (insn & ADDPCIS_TARGET_REGISTER) >> ADDPCIS_INSN_REGSHIFT;
986       /* Read and update the target value.  */
987       regcache_cooked_read_unsigned (regs, regnum , &current_val);
988       displaced_debug_printf ("addpcis target regnum %d was %s now %s",
989 			      regnum, paddress (gdbarch, current_val),
990 			      paddress (gdbarch, current_val
991 					+ displaced_offset));
992       regcache_cooked_write_unsigned (regs, regnum,
993 					current_val + displaced_offset);
994       /* point the PC back at the non-displaced instruction.  */
995       regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
996 				    from + offset);
997     }
998   /* Handle PC-relative branch instructions.  */
999   else if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
1000     {
1001       ULONGEST current_pc;
1002 
1003       /* Read the current PC value after the instruction has been executed
1004 	 in a displaced location.  Calculate the offset to be applied to the
1005 	 original PC value before the displaced stepping.  */
1006       regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1007 				      &current_pc);
1008       offset = current_pc - to;
1009 
1010       if (opcode != BXL_INSN)
1011 	{
1012 	  /* Check for AA bit indicating whether this is an absolute
1013 	     addressing or PC-relative (1: absolute, 0: relative).  */
1014 	  if (!(insn & 0x2))
1015 	    {
1016 	      /* PC-relative addressing is being used in the branch.  */
1017 	      displaced_debug_printf ("(ppc) branch instruction: %s",
1018 				      paddress (gdbarch, insn));
1019 	      displaced_debug_printf ("(ppc) adjusted PC from %s to %s",
1020 				      paddress (gdbarch, current_pc),
1021 				      paddress (gdbarch, from + offset));
1022 
1023 	      regcache_cooked_write_unsigned (regs,
1024 					      gdbarch_pc_regnum (gdbarch),
1025 					      from + offset);
1026 	    }
1027 	}
1028       else
1029 	{
1030 	  /* If we're here, it means we have a branch to LR or CTR.  If the
1031 	     branch was taken, the offset is probably greater than 4 (the next
1032 	     instruction), so it's safe to assume that an offset of 4 means we
1033 	     did not take the branch.  */
1034 	  if (offset == PPC_INSN_SIZE)
1035 	    regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1036 					    from + PPC_INSN_SIZE);
1037 	}
1038 
1039       /* Check for LK bit indicating whether we should set the link
1040 	 register to point to the next instruction
1041 	 (1: Set, 0: Don't set).  */
1042       if (insn & 0x1)
1043 	{
1044 	  /* Link register needs to be set to the next instruction's PC.  */
1045 	  ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1046 	  regcache_cooked_write_unsigned (regs,
1047 					  tdep->ppc_lr_regnum,
1048 					  from + PPC_INSN_SIZE);
1049 	  displaced_debug_printf ("(ppc) adjusted LR to %s",
1050 				  paddress (gdbarch, from + PPC_INSN_SIZE));
1051 
1052 	}
1053     }
1054   /* Check for breakpoints in the inferior.  If we've found one, place the PC
1055      right at the breakpoint instruction.  */
1056   else if ((insn & BP_MASK) == BP_INSN)
1057     regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1058   else
1059     {
1060       /* Handle any other instructions that do not fit in the categories
1061          above.  */
1062       regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1063 				      from + offset);
1064     }
1065 }
1066 
1067 /* Implementation of gdbarch_displaced_step_prepare.  */
1068 
1069 static displaced_step_prepare_status
1070 ppc_displaced_step_prepare  (gdbarch *arch, thread_info *thread,
1071 			     CORE_ADDR &displaced_pc)
1072 {
1073   ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf);
1074 
1075   if (!per_inferior->disp_step_buf.has_value ())
1076     {
1077       /* Figure out where the displaced step buffer is.  */
1078       CORE_ADDR disp_step_buf_addr
1079 	= displaced_step_at_entry_point (thread->inf->gdbarch);
1080 
1081       per_inferior->disp_step_buf.emplace (disp_step_buf_addr);
1082     }
1083 
1084   return per_inferior->disp_step_buf->prepare (thread, displaced_pc);
1085 }
1086 
1087 /* Implementation of gdbarch_displaced_step_finish.  */
1088 
1089 static displaced_step_finish_status
1090 ppc_displaced_step_finish (gdbarch *arch, thread_info *thread,
1091 			   gdb_signal sig)
1092 {
1093   ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf);
1094 
1095   gdb_assert (per_inferior->disp_step_buf.has_value ());
1096 
1097   return per_inferior->disp_step_buf->finish (arch, thread, sig);
1098 }
1099 
1100 /* Implementation of gdbarch_displaced_step_restore_all_in_ptid.  */
1101 
1102 static void
1103 ppc_displaced_step_restore_all_in_ptid (inferior *parent_inf, ptid_t ptid)
1104 {
1105   ppc_inferior_data *per_inferior = ppc_inferior_data_key.get (parent_inf);
1106 
1107   if (per_inferior == nullptr
1108       || !per_inferior->disp_step_buf.has_value ())
1109     return;
1110 
1111   per_inferior->disp_step_buf->restore_in_ptid (ptid);
1112 }
1113 
1114 /* Always use hardware single-stepping to execute the
1115    displaced instruction.  */
1116 static bool
1117 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch)
1118 {
1119   return true;
1120 }
1121 
1122 /* Checks for an atomic sequence of instructions beginning with a
1123    Load And Reserve instruction and ending with a Store Conditional
1124    instruction.  If such a sequence is found, attempt to step through it.
1125    A breakpoint is placed at the end of the sequence.  */
1126 std::vector<CORE_ADDR>
1127 ppc_deal_with_atomic_sequence (struct regcache *regcache)
1128 {
1129   struct gdbarch *gdbarch = regcache->arch ();
1130   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1131   CORE_ADDR pc = regcache_read_pc (regcache);
1132   CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
1133   CORE_ADDR loc = pc;
1134   CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence.  */
1135   int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1136   int insn_count;
1137   int index;
1138   int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed).  */
1139   const int atomic_sequence_length = 16; /* Instruction sequence length.  */
1140   int bc_insn_count = 0; /* Conditional branch instruction count.  */
1141 
1142   /* Assume all atomic sequences start with a Load And Reserve instruction.  */
1143   if (!IS_LOAD_AND_RESERVE_INSN (insn))
1144     return {};
1145 
1146   /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1147      instructions.  */
1148   for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1149     {
1150       if ((insn & OP_MASK) == 1 << 26)
1151 	loc += 2 * PPC_INSN_SIZE;
1152       else
1153 	loc += PPC_INSN_SIZE;
1154       insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1155 
1156       /* Assume that there is at most one conditional branch in the atomic
1157 	 sequence.  If a conditional branch is found, put a breakpoint in
1158 	 its destination address.  */
1159       if ((insn & OP_MASK) == BC_INSN)
1160 	{
1161 	  int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1162 	  int absolute = insn & 2;
1163 
1164 	  if (bc_insn_count >= 1)
1165 	    return {}; /* More than one conditional branch found, fallback
1166 			  to the standard single-step code.  */
1167 
1168 	  if (absolute)
1169 	    breaks[1] = immediate;
1170 	  else
1171 	    breaks[1] = loc + immediate;
1172 
1173 	  bc_insn_count++;
1174 	  last_breakpoint++;
1175 	}
1176 
1177       if (IS_STORE_CONDITIONAL_INSN (insn))
1178 	break;
1179     }
1180 
1181   /* Assume that the atomic sequence ends with a Store Conditional
1182      instruction.  */
1183   if (!IS_STORE_CONDITIONAL_INSN (insn))
1184     return {};
1185 
1186   closing_insn = loc;
1187   loc += PPC_INSN_SIZE;
1188 
1189   /* Insert a breakpoint right after the end of the atomic sequence.  */
1190   breaks[0] = loc;
1191 
1192   /* Check for duplicated breakpoints.  Check also for a breakpoint
1193      placed (branch instruction's destination) anywhere in sequence.  */
1194   if (last_breakpoint
1195       && (breaks[1] == breaks[0]
1196 	  || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1197     last_breakpoint = 0;
1198 
1199   std::vector<CORE_ADDR> next_pcs;
1200 
1201   for (index = 0; index <= last_breakpoint; index++)
1202     next_pcs.push_back (breaks[index]);
1203 
1204   return next_pcs;
1205 }
1206 
1207 
1208 #define SIGNED_SHORT(x) 						\
1209   ((sizeof (short) == 2)						\
1210    ? ((int)(short)(x))							\
1211    : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1212 
1213 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1214 
1215 /* Limit the number of skipped non-prologue instructions, as the examining
1216    of the prologue is expensive.  */
1217 static int max_skip_non_prologue_insns = 10;
1218 
1219 /* Return nonzero if the given instruction OP can be part of the prologue
1220    of a function and saves a parameter on the stack.  FRAMEP should be
1221    set if one of the previous instructions in the function has set the
1222    Frame Pointer.  */
1223 
1224 static int
1225 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1226 {
1227   /* Move parameters from argument registers to temporary register.  */
1228   if ((op & 0xfc0007fe) == 0x7c000378)         /* mr(.)  Rx,Ry */
1229     {
1230       /* Rx must be scratch register r0.  */
1231       const int rx_regno = (op >> 16) & 31;
1232       /* Ry: Only r3 - r10 are used for parameter passing.  */
1233       const int ry_regno = GET_SRC_REG (op);
1234 
1235       if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1236 	{
1237 	  *r0_contains_arg = 1;
1238 	  return 1;
1239 	}
1240       else
1241 	return 0;
1242     }
1243 
1244   /* Save a General Purpose Register on stack.  */
1245 
1246   if ((op & 0xfc1f0003) == 0xf8010000 ||       /* std  Rx,NUM(r1) */
1247       (op & 0xfc1f0000) == 0xd8010000)         /* stfd Rx,NUM(r1) */
1248     {
1249       /* Rx: Only r3 - r10 are used for parameter passing.  */
1250       const int rx_regno = GET_SRC_REG (op);
1251 
1252       return (rx_regno >= 3 && rx_regno <= 10);
1253     }
1254 
1255   /* Save a General Purpose Register on stack via the Frame Pointer.  */
1256 
1257   if (framep &&
1258       ((op & 0xfc1f0000) == 0x901f0000 ||     /* st rx,NUM(r31) */
1259        (op & 0xfc1f0000) == 0x981f0000 ||     /* stb Rx,NUM(r31) */
1260        (op & 0xfc1f0000) == 0xd81f0000))      /* stfd Rx,NUM(r31) */
1261     {
1262       /* Rx: Usually, only r3 - r10 are used for parameter passing.
1263 	 However, the compiler sometimes uses r0 to hold an argument.  */
1264       const int rx_regno = GET_SRC_REG (op);
1265 
1266       return ((rx_regno >= 3 && rx_regno <= 10)
1267 	      || (rx_regno == 0 && *r0_contains_arg));
1268     }
1269 
1270   if ((op & 0xfc1f0000) == 0xfc010000)         /* frsp, fp?,NUM(r1) */
1271     {
1272       /* Only f2 - f8 are used for parameter passing.  */
1273       const int src_regno = GET_SRC_REG (op);
1274 
1275       return (src_regno >= 2 && src_regno <= 8);
1276     }
1277 
1278   if (framep && ((op & 0xfc1f0000) == 0xfc1f0000))  /* frsp, fp?,NUM(r31) */
1279     {
1280       /* Only f2 - f8 are used for parameter passing.  */
1281       const int src_regno = GET_SRC_REG (op);
1282 
1283       return (src_regno >= 2 && src_regno <= 8);
1284     }
1285 
1286   /* Not an insn that saves a parameter on stack.  */
1287   return 0;
1288 }
1289 
1290 /* Assuming that INSN is a "bl" instruction located at PC, return
1291    nonzero if the destination of the branch is a "blrl" instruction.
1292 
1293    This sequence is sometimes found in certain function prologues.
1294    It allows the function to load the LR register with a value that
1295    they can use to access PIC data using PC-relative offsets.  */
1296 
1297 static int
1298 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1299 {
1300   CORE_ADDR dest;
1301   int immediate;
1302   int absolute;
1303   int dest_insn;
1304 
1305   absolute = (int) ((insn >> 1) & 1);
1306   immediate = ((insn & ~3) << 6) >> 6;
1307   if (absolute)
1308     dest = immediate;
1309   else
1310     dest = pc + immediate;
1311 
1312   dest_insn = read_memory_integer (dest, 4, byte_order);
1313   if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1314     return 1;
1315 
1316   return 0;
1317 }
1318 
1319 /* Return true if OP is a stw or std instruction with
1320    register operands RS and RA and any immediate offset.
1321 
1322    If WITH_UPDATE is true, also return true if OP is
1323    a stwu or stdu instruction with the same operands.
1324 
1325    Return false otherwise.
1326    */
1327 static bool
1328 store_insn_p (unsigned long op, unsigned long rs,
1329 	      unsigned long ra, bool with_update)
1330 {
1331   rs = rs << 21;
1332   ra = ra << 16;
1333 
1334   if (/* std RS, SIMM(RA) */
1335       ((op & 0xffff0003) == (rs | ra | 0xf8000000)) ||
1336       /* stw RS, SIMM(RA) */
1337       ((op & 0xffff0000) == (rs | ra | 0x90000000)))
1338     return true;
1339 
1340   if (with_update)
1341     {
1342       if (/* stdu RS, SIMM(RA) */
1343 	  ((op & 0xffff0003) == (rs | ra | 0xf8000001)) ||
1344 	  /* stwu RS, SIMM(RA) */
1345 	  ((op & 0xffff0000) == (rs | ra | 0x94000000)))
1346 	return true;
1347     }
1348 
1349   return false;
1350 }
1351 
1352 /* Masks for decoding a branch-and-link (bl) instruction.
1353 
1354    BL_MASK and BL_INSTRUCTION are used in combination with each other.
1355    The former is anded with the opcode in question; if the result of
1356    this masking operation is equal to BL_INSTRUCTION, then the opcode in
1357    question is a ``bl'' instruction.
1358 
1359    BL_DISPLACEMENT_MASK is anded with the opcode in order to extract
1360    the branch displacement.  */
1361 
1362 #define BL_MASK 0xfc000001
1363 #define BL_INSTRUCTION 0x48000001
1364 #define BL_DISPLACEMENT_MASK 0x03fffffc
1365 
1366 static unsigned long
1367 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1368 {
1369   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1370   gdb_byte buf[4];
1371   unsigned long op;
1372 
1373   /* Fetch the instruction and convert it to an integer.  */
1374   if (target_read_memory (pc, buf, 4))
1375     return 0;
1376   op = extract_unsigned_integer (buf, 4, byte_order);
1377 
1378   return op;
1379 }
1380 
1381 /* GCC generates several well-known sequences of instructions at the begining
1382    of each function prologue when compiling with -fstack-check.  If one of
1383    such sequences starts at START_PC, then return the address of the
1384    instruction immediately past this sequence.  Otherwise, return START_PC.  */
1385 
1386 static CORE_ADDR
1387 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1388 {
1389   CORE_ADDR pc = start_pc;
1390   unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1391 
1392   /* First possible sequence: A small number of probes.
1393 	 stw 0, -<some immediate>(1)
1394 	 [repeat this instruction any (small) number of times].  */
1395 
1396   if ((op & 0xffff0000) == 0x90010000)
1397     {
1398       while ((op & 0xffff0000) == 0x90010000)
1399 	{
1400 	  pc = pc + 4;
1401 	  op = rs6000_fetch_instruction (gdbarch, pc);
1402 	}
1403       return pc;
1404     }
1405 
1406   /* Second sequence: A probing loop.
1407 	 addi 12,1,-<some immediate>
1408 	 lis 0,-<some immediate>
1409 	 [possibly ori 0,0,<some immediate>]
1410 	 add 0,12,0
1411 	 cmpw 0,12,0
1412 	 beq 0,<disp>
1413 	 addi 12,12,-<some immediate>
1414 	 stw 0,0(12)
1415 	 b <disp>
1416 	 [possibly one last probe: stw 0,<some immediate>(12)].  */
1417 
1418   while (1)
1419     {
1420       /* addi 12,1,-<some immediate> */
1421       if ((op & 0xffff0000) != 0x39810000)
1422 	break;
1423 
1424       /* lis 0,-<some immediate> */
1425       pc = pc + 4;
1426       op = rs6000_fetch_instruction (gdbarch, pc);
1427       if ((op & 0xffff0000) != 0x3c000000)
1428 	break;
1429 
1430       pc = pc + 4;
1431       op = rs6000_fetch_instruction (gdbarch, pc);
1432       /* [possibly ori 0,0,<some immediate>] */
1433       if ((op & 0xffff0000) == 0x60000000)
1434 	{
1435 	  pc = pc + 4;
1436 	  op = rs6000_fetch_instruction (gdbarch, pc);
1437 	}
1438       /* add 0,12,0 */
1439       if (op != 0x7c0c0214)
1440 	break;
1441 
1442       /* cmpw 0,12,0 */
1443       pc = pc + 4;
1444       op = rs6000_fetch_instruction (gdbarch, pc);
1445       if (op != 0x7c0c0000)
1446 	break;
1447 
1448       /* beq 0,<disp> */
1449       pc = pc + 4;
1450       op = rs6000_fetch_instruction (gdbarch, pc);
1451       if ((op & 0xff9f0001) != 0x41820000)
1452 	break;
1453 
1454       /* addi 12,12,-<some immediate> */
1455       pc = pc + 4;
1456       op = rs6000_fetch_instruction (gdbarch, pc);
1457       if ((op & 0xffff0000) != 0x398c0000)
1458 	break;
1459 
1460       /* stw 0,0(12) */
1461       pc = pc + 4;
1462       op = rs6000_fetch_instruction (gdbarch, pc);
1463       if (op != 0x900c0000)
1464 	break;
1465 
1466       /* b <disp> */
1467       pc = pc + 4;
1468       op = rs6000_fetch_instruction (gdbarch, pc);
1469       if ((op & 0xfc000001) != 0x48000000)
1470 	break;
1471 
1472       /* [possibly one last probe: stw 0,<some immediate>(12)].  */
1473       pc = pc + 4;
1474       op = rs6000_fetch_instruction (gdbarch, pc);
1475       if ((op & 0xffff0000) == 0x900c0000)
1476 	{
1477 	  pc = pc + 4;
1478 	  op = rs6000_fetch_instruction (gdbarch, pc);
1479 	}
1480 
1481       /* We found a valid stack-check sequence, return the new PC.  */
1482       return pc;
1483     }
1484 
1485   /* Third sequence: No probe; instead, a comparison between the stack size
1486      limit (saved in a run-time global variable) and the current stack
1487      pointer:
1488 
1489 	addi 0,1,-<some immediate>
1490 	lis 12,__gnat_stack_limit@ha
1491 	lwz 12,__gnat_stack_limit@l(12)
1492 	twllt 0,12
1493 
1494      or, with a small variant in the case of a bigger stack frame:
1495 	addis 0,1,<some immediate>
1496 	addic 0,0,-<some immediate>
1497 	lis 12,__gnat_stack_limit@ha
1498 	lwz 12,__gnat_stack_limit@l(12)
1499 	twllt 0,12
1500   */
1501   while (1)
1502     {
1503       /* addi 0,1,-<some immediate> */
1504       if ((op & 0xffff0000) != 0x38010000)
1505 	{
1506 	  /* small stack frame variant not recognized; try the
1507 	     big stack frame variant: */
1508 
1509 	  /* addis 0,1,<some immediate> */
1510 	  if ((op & 0xffff0000) != 0x3c010000)
1511 	    break;
1512 
1513 	  /* addic 0,0,-<some immediate> */
1514 	  pc = pc + 4;
1515 	  op = rs6000_fetch_instruction (gdbarch, pc);
1516 	  if ((op & 0xffff0000) != 0x30000000)
1517 	    break;
1518 	}
1519 
1520       /* lis 12,<some immediate> */
1521       pc = pc + 4;
1522       op = rs6000_fetch_instruction (gdbarch, pc);
1523       if ((op & 0xffff0000) != 0x3d800000)
1524 	break;
1525 
1526       /* lwz 12,<some immediate>(12) */
1527       pc = pc + 4;
1528       op = rs6000_fetch_instruction (gdbarch, pc);
1529       if ((op & 0xffff0000) != 0x818c0000)
1530 	break;
1531 
1532       /* twllt 0,12 */
1533       pc = pc + 4;
1534       op = rs6000_fetch_instruction (gdbarch, pc);
1535       if ((op & 0xfffffffe) != 0x7c406008)
1536 	break;
1537 
1538       /* We found a valid stack-check sequence, return the new PC.  */
1539       return pc;
1540     }
1541 
1542   /* No stack check code in our prologue, return the start_pc.  */
1543   return start_pc;
1544 }
1545 
1546 /* return pc value after skipping a function prologue and also return
1547    information about a function frame.
1548 
1549    in struct rs6000_framedata fdata:
1550    - frameless is TRUE, if function does not have a frame.
1551    - nosavedpc is TRUE, if function does not save %pc value in its frame.
1552    - offset is the initial size of this stack frame --- the amount by
1553    which we decrement the sp to allocate the frame.
1554    - saved_gpr is the number of the first saved gpr.
1555    - saved_fpr is the number of the first saved fpr.
1556    - saved_vr is the number of the first saved vr.
1557    - saved_ev is the number of the first saved ev.
1558    - alloca_reg is the number of the register used for alloca() handling.
1559    Otherwise -1.
1560    - gpr_offset is the offset of the first saved gpr from the previous frame.
1561    - fpr_offset is the offset of the first saved fpr from the previous frame.
1562    - vr_offset is the offset of the first saved vr from the previous frame.
1563    - ev_offset is the offset of the first saved ev from the previous frame.
1564    - lr_offset is the offset of the saved lr
1565    - cr_offset is the offset of the saved cr
1566    - vrsave_offset is the offset of the saved vrsave register.  */
1567 
1568 static CORE_ADDR
1569 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1570 	       struct rs6000_framedata *fdata)
1571 {
1572   CORE_ADDR orig_pc = pc;
1573   CORE_ADDR last_prologue_pc = pc;
1574   CORE_ADDR li_found_pc = 0;
1575   gdb_byte buf[4];
1576   unsigned long op;
1577   long offset = 0;
1578   long alloca_reg_offset = 0;
1579   long vr_saved_offset = 0;
1580   int lr_reg = -1;
1581   int cr_reg = -1;
1582   int vr_reg = -1;
1583   int ev_reg = -1;
1584   long ev_offset = 0;
1585   int vrsave_reg = -1;
1586   int reg;
1587   int framep = 0;
1588   int minimal_toc_loaded = 0;
1589   int prev_insn_was_prologue_insn = 1;
1590   int num_skip_non_prologue_insns = 0;
1591   int r0_contains_arg = 0;
1592   const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1593   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1594   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1595 
1596   memset (fdata, 0, sizeof (struct rs6000_framedata));
1597   fdata->saved_gpr = -1;
1598   fdata->saved_fpr = -1;
1599   fdata->saved_vr = -1;
1600   fdata->saved_ev = -1;
1601   fdata->alloca_reg = -1;
1602   fdata->frameless = 1;
1603   fdata->nosavedpc = 1;
1604   fdata->lr_register = -1;
1605 
1606   pc = rs6000_skip_stack_check (gdbarch, pc);
1607   if (pc >= lim_pc)
1608     pc = lim_pc;
1609 
1610   for (;; pc += 4)
1611     {
1612       /* Sometimes it isn't clear if an instruction is a prologue
1613 	 instruction or not.  When we encounter one of these ambiguous
1614 	 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1615 	 Otherwise, we'll assume that it really is a prologue instruction.  */
1616       if (prev_insn_was_prologue_insn)
1617 	last_prologue_pc = pc;
1618 
1619       /* Stop scanning if we've hit the limit.  */
1620       if (pc >= lim_pc)
1621 	break;
1622 
1623       prev_insn_was_prologue_insn = 1;
1624 
1625       /* Fetch the instruction and convert it to an integer.  */
1626       if (target_read_memory (pc, buf, 4))
1627 	break;
1628       op = extract_unsigned_integer (buf, 4, byte_order);
1629 
1630       if ((op & 0xfc1fffff) == 0x7c0802a6)
1631 	{			/* mflr Rx */
1632 	  /* Since shared library / PIC code, which needs to get its
1633 	     address at runtime, can appear to save more than one link
1634 	     register vis:
1635 
1636 	     *INDENT-OFF*
1637 	     stwu r1,-304(r1)
1638 	     mflr r3
1639 	     bl 0xff570d0 (blrl)
1640 	     stw r30,296(r1)
1641 	     mflr r30
1642 	     stw r31,300(r1)
1643 	     stw r3,308(r1);
1644 	     ...
1645 	     *INDENT-ON*
1646 
1647 	     remember just the first one, but skip over additional
1648 	     ones.  */
1649 	  if (lr_reg == -1)
1650 	    lr_reg = (op & 0x03e00000) >> 21;
1651 	  if (lr_reg == 0)
1652 	    r0_contains_arg = 0;
1653 	  continue;
1654 	}
1655       else if ((op & 0xfc1fffff) == 0x7c000026)
1656 	{			/* mfcr Rx */
1657 	  cr_reg = (op & 0x03e00000) >> 21;
1658 	  if (cr_reg == 0)
1659 	    r0_contains_arg = 0;
1660 	  continue;
1661 
1662 	}
1663       else if ((op & 0xfc1f0000) == 0xd8010000)
1664 	{			/* stfd Rx,NUM(r1) */
1665 	  reg = GET_SRC_REG (op);
1666 	  if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1667 	    {
1668 	      fdata->saved_fpr = reg;
1669 	      fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1670 	    }
1671 	  continue;
1672 
1673 	}
1674       else if (((op & 0xfc1f0000) == 0xbc010000) ||	/* stm Rx, NUM(r1) */
1675 	       (((op & 0xfc1f0000) == 0x90010000 ||	/* st rx,NUM(r1) */
1676 		 (op & 0xfc1f0003) == 0xf8010000) &&	/* std rx,NUM(r1) */
1677 		(op & 0x03e00000) >= 0x01a00000))	/* rx >= r13 */
1678 	{
1679 
1680 	  reg = GET_SRC_REG (op);
1681 	  if ((op & 0xfc1f0000) == 0xbc010000)
1682 	    fdata->gpr_mask |= ~((1U << reg) - 1);
1683 	  else
1684 	    fdata->gpr_mask |= 1U << reg;
1685 	  if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1686 	    {
1687 	      fdata->saved_gpr = reg;
1688 	      if ((op & 0xfc1f0003) == 0xf8010000)
1689 		op &= ~3UL;
1690 	      fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1691 	    }
1692 	  continue;
1693 
1694 	}
1695       else if ((op & 0xffff0000) == 0x3c4c0000
1696 	       || (op & 0xffff0000) == 0x3c400000
1697 	       || (op & 0xffff0000) == 0x38420000)
1698 	{
1699 	  /* .	0:	addis 2,12,.TOC.-0b@ha
1700 	     .		addi 2,2,.TOC.-0b@l
1701 	     or
1702 	     .		lis 2,.TOC.@ha
1703 	     .		addi 2,2,.TOC.@l
1704 	     used by ELFv2 global entry points to set up r2.  */
1705 	  continue;
1706 	}
1707       else if (op == 0x60000000)
1708 	{
1709 	  /* nop */
1710 	  /* Allow nops in the prologue, but do not consider them to
1711 	     be part of the prologue unless followed by other prologue
1712 	     instructions.  */
1713 	  prev_insn_was_prologue_insn = 0;
1714 	  continue;
1715 
1716 	}
1717       else if ((op & 0xffff0000) == 0x3c000000)
1718 	{			/* addis 0,0,NUM, used for >= 32k frames */
1719 	  fdata->offset = (op & 0x0000ffff) << 16;
1720 	  fdata->frameless = 0;
1721 	  r0_contains_arg = 0;
1722 	  continue;
1723 
1724 	}
1725       else if ((op & 0xffff0000) == 0x60000000)
1726 	{			/* ori 0,0,NUM, 2nd half of >= 32k frames */
1727 	  fdata->offset |= (op & 0x0000ffff);
1728 	  fdata->frameless = 0;
1729 	  r0_contains_arg = 0;
1730 	  continue;
1731 
1732 	}
1733       else if (lr_reg >= 0 &&
1734 	       ((store_insn_p (op, lr_reg, 1, true)) ||
1735 		(framep &&
1736 		 (store_insn_p (op, lr_reg,
1737 				fdata->alloca_reg - tdep->ppc_gp0_regnum,
1738 				false)))))
1739 	{
1740 	  if (store_insn_p (op, lr_reg, 1, true))
1741 	    fdata->lr_offset = offset;
1742 	  else /* LR save through frame pointer. */
1743 	    fdata->lr_offset = alloca_reg_offset;
1744 
1745 	  fdata->nosavedpc = 0;
1746 	  /* Invalidate lr_reg, but don't set it to -1.
1747 	     That would mean that it had never been set.  */
1748 	  lr_reg = -2;
1749 	  if ((op & 0xfc000003) == 0xf8000000 ||	/* std */
1750 	      (op & 0xfc000000) == 0x90000000)		/* stw */
1751 	    {
1752 	      /* Does not update r1, so add displacement to lr_offset.  */
1753 	      fdata->lr_offset += SIGNED_SHORT (op);
1754 	    }
1755 	  continue;
1756 
1757 	}
1758       else if (cr_reg >= 0 &&
1759 	       (store_insn_p (op, cr_reg, 1, true)))
1760 	{
1761 	  fdata->cr_offset = offset;
1762 	  /* Invalidate cr_reg, but don't set it to -1.
1763 	     That would mean that it had never been set.  */
1764 	  cr_reg = -2;
1765 	  if ((op & 0xfc000003) == 0xf8000000 ||
1766 	      (op & 0xfc000000) == 0x90000000)
1767 	    {
1768 	      /* Does not update r1, so add displacement to cr_offset.  */
1769 	      fdata->cr_offset += SIGNED_SHORT (op);
1770 	    }
1771 	  continue;
1772 
1773 	}
1774       else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1775 	{
1776 	  /* bcl 20,xx,.+4 is used to get the current PC, with or without
1777 	     prediction bits.  If the LR has already been saved, we can
1778 	     skip it.  */
1779 	  continue;
1780 	}
1781       else if (op == 0x48000005)
1782 	{			/* bl .+4 used in
1783 				   -mrelocatable */
1784 	  fdata->used_bl = 1;
1785 	  continue;
1786 
1787 	}
1788       else if (op == 0x48000004)
1789 	{			/* b .+4 (xlc) */
1790 	  break;
1791 
1792 	}
1793       else if ((op & 0xffff0000) == 0x3fc00000 ||  /* addis 30,0,foo@ha, used
1794 						      in V.4 -mminimal-toc */
1795 	       (op & 0xffff0000) == 0x3bde0000)
1796 	{			/* addi 30,30,foo@l */
1797 	  continue;
1798 
1799 	}
1800       else if ((op & 0xfc000001) == 0x48000001)
1801 	{			/* bl foo,
1802 				   to save fprs???  */
1803 
1804 	  fdata->frameless = 0;
1805 
1806 	  /* If the return address has already been saved, we can skip
1807 	     calls to blrl (for PIC).  */
1808 	  if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1809 	    {
1810 	      fdata->used_bl = 1;
1811 	      continue;
1812 	    }
1813 
1814 	  /* Don't skip over the subroutine call if it is not within
1815 	     the first three instructions of the prologue and either
1816 	     we have no line table information or the line info tells
1817 	     us that the subroutine call is not part of the line
1818 	     associated with the prologue.  */
1819 	  if ((pc - orig_pc) > 8)
1820 	    {
1821 	      struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1822 	      struct symtab_and_line this_sal = find_pc_line (pc, 0);
1823 
1824 	      if ((prologue_sal.line == 0)
1825 		  || (prologue_sal.line != this_sal.line))
1826 		break;
1827 	    }
1828 
1829 	  op = read_memory_integer (pc + 4, 4, byte_order);
1830 
1831 	  /* At this point, make sure this is not a trampoline
1832 	     function (a function that simply calls another functions,
1833 	     and nothing else).  If the next is not a nop, this branch
1834 	     was part of the function prologue.  */
1835 
1836 	  if (op == 0x4def7b82 || op == 0)	/* crorc 15, 15, 15 */
1837 	    break;		/* Don't skip over
1838 				   this branch.  */
1839 
1840 	  fdata->used_bl = 1;
1841 	  continue;
1842 	}
1843       /* update stack pointer */
1844       else if ((op & 0xfc1f0000) == 0x94010000)
1845 	{		/* stu rX,NUM(r1) ||  stwu rX,NUM(r1) */
1846 	  fdata->frameless = 0;
1847 	  fdata->offset = SIGNED_SHORT (op);
1848 	  offset = fdata->offset;
1849 	  continue;
1850 	}
1851       else if ((op & 0xfc1f07fa) == 0x7c01016a)
1852 	{		/* stwux rX,r1,rY  || stdux rX,r1,rY */
1853 	  /* No way to figure out what r1 is going to be.  */
1854 	  fdata->frameless = 0;
1855 	  offset = fdata->offset;
1856 	  continue;
1857 	}
1858       else if ((op & 0xfc1f0003) == 0xf8010001)
1859 	{			/* stdu rX,NUM(r1) */
1860 	  fdata->frameless = 0;
1861 	  fdata->offset = SIGNED_SHORT (op & ~3UL);
1862 	  offset = fdata->offset;
1863 	  continue;
1864 	}
1865       else if ((op & 0xffff0000) == 0x38210000)
1866 	{			/* addi r1,r1,SIMM */
1867 	  fdata->frameless = 0;
1868 	  fdata->offset += SIGNED_SHORT (op);
1869 	  offset = fdata->offset;
1870 	  continue;
1871 	}
1872       /* Load up minimal toc pointer.  Do not treat an epilogue restore
1873 	 of r31 as a minimal TOC load.  */
1874       else if (((op >> 22) == 0x20f	||	/* l r31,... or l r30,...  */
1875 	       (op >> 22) == 0x3af)		/* ld r31,... or ld r30,...  */
1876 	       && !framep
1877 	       && !minimal_toc_loaded)
1878 	{
1879 	  minimal_toc_loaded = 1;
1880 	  continue;
1881 
1882 	  /* move parameters from argument registers to local variable
1883 	     registers */
1884 	}
1885       else if ((op & 0xfc0007fe) == 0x7c000378 &&	/* mr(.)  Rx,Ry */
1886 	       (((op >> 21) & 31) >= 3) &&              /* R3 >= Ry >= R10 */
1887 	       (((op >> 21) & 31) <= 10) &&
1888 	       ((long) ((op >> 16) & 31)
1889 		>= fdata->saved_gpr)) /* Rx: local var reg */
1890 	{
1891 	  continue;
1892 
1893 	  /* store parameters in stack */
1894 	}
1895       /* Move parameters from argument registers to temporary register.  */
1896       else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1897 	{
1898 	  continue;
1899 
1900 	  /* Set up frame pointer */
1901 	}
1902       else if (op == 0x603d0000)       /* oril r29, r1, 0x0 */
1903 	{
1904 	  fdata->frameless = 0;
1905 	  framep = 1;
1906 	  fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1907 	  alloca_reg_offset = offset;
1908 	  continue;
1909 
1910 	  /* Another way to set up the frame pointer.  */
1911 	}
1912       else if (op == 0x603f0000	/* oril r31, r1, 0x0 */
1913 	       || op == 0x7c3f0b78)
1914 	{			/* mr r31, r1 */
1915 	  fdata->frameless = 0;
1916 	  framep = 1;
1917 	  fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1918 	  alloca_reg_offset = offset;
1919 	  continue;
1920 
1921 	  /* Another way to set up the frame pointer.  */
1922 	}
1923       else if ((op & 0xfc1fffff) == 0x38010000)
1924 	{			/* addi rX, r1, 0x0 */
1925 	  fdata->frameless = 0;
1926 	  framep = 1;
1927 	  fdata->alloca_reg = (tdep->ppc_gp0_regnum
1928 			       + ((op & ~0x38010000) >> 21));
1929 	  alloca_reg_offset = offset;
1930 	  continue;
1931 	}
1932       /* AltiVec related instructions.  */
1933       /* Store the vrsave register (spr 256) in another register for
1934 	 later manipulation, or load a register into the vrsave
1935 	 register.  2 instructions are used: mfvrsave and
1936 	 mtvrsave.  They are shorthand notation for mfspr Rn, SPR256
1937 	 and mtspr SPR256, Rn.  */
1938       /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1939 	 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110  */
1940       else if ((op & 0xfc1fffff) == 0x7c0042a6)    /* mfvrsave Rn */
1941 	{
1942 	  vrsave_reg = GET_SRC_REG (op);
1943 	  continue;
1944 	}
1945       else if ((op & 0xfc1fffff) == 0x7c0043a6)     /* mtvrsave Rn */
1946 	{
1947 	  continue;
1948 	}
1949       /* Store the register where vrsave was saved to onto the stack:
1950 	 rS is the register where vrsave was stored in a previous
1951 	 instruction.  */
1952       /* 100100 sssss 00001 dddddddd dddddddd */
1953       else if ((op & 0xfc1f0000) == 0x90010000)     /* stw rS, d(r1) */
1954 	{
1955 	  if (vrsave_reg == GET_SRC_REG (op))
1956 	    {
1957 	      fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1958 	      vrsave_reg = -1;
1959 	    }
1960 	  continue;
1961 	}
1962       /* Compute the new value of vrsave, by modifying the register
1963 	 where vrsave was saved to.  */
1964       else if (((op & 0xfc000000) == 0x64000000)    /* oris Ra, Rs, UIMM */
1965 	       || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1966 	{
1967 	  continue;
1968 	}
1969       /* li r0, SIMM (short for addi r0, 0, SIMM).  This is the first
1970 	 in a pair of insns to save the vector registers on the
1971 	 stack.  */
1972       /* 001110 00000 00000 iiii iiii iiii iiii  */
1973       /* 001110 01110 00000 iiii iiii iiii iiii  */
1974       else if ((op & 0xffff0000) == 0x38000000         /* li r0, SIMM */
1975 	       || (op & 0xffff0000) == 0x39c00000)     /* li r14, SIMM */
1976 	{
1977 	  if ((op & 0xffff0000) == 0x38000000)
1978 	    r0_contains_arg = 0;
1979 	  li_found_pc = pc;
1980 	  vr_saved_offset = SIGNED_SHORT (op);
1981 
1982 	  /* This insn by itself is not part of the prologue, unless
1983 	     if part of the pair of insns mentioned above.  So do not
1984 	     record this insn as part of the prologue yet.  */
1985 	  prev_insn_was_prologue_insn = 0;
1986 	}
1987       /* Store vector register S at (r31+r0) aligned to 16 bytes.  */
1988       /* 011111 sssss 11111 00000 00111001110 */
1989       else if ((op & 0xfc1fffff) == 0x7c1f01ce)   /* stvx Vs, R31, R0 */
1990 	{
1991 	  if (pc == (li_found_pc + 4))
1992 	    {
1993 	      vr_reg = GET_SRC_REG (op);
1994 	      /* If this is the first vector reg to be saved, or if
1995 		 it has a lower number than others previously seen,
1996 		 reupdate the frame info.  */
1997 	      if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1998 		{
1999 		  fdata->saved_vr = vr_reg;
2000 		  fdata->vr_offset = vr_saved_offset + offset;
2001 		}
2002 	      vr_saved_offset = -1;
2003 	      vr_reg = -1;
2004 	      li_found_pc = 0;
2005 	    }
2006 	}
2007       /* End AltiVec related instructions.  */
2008 
2009       /* Start BookE related instructions.  */
2010       /* Store gen register S at (r31+uimm).
2011 	 Any register less than r13 is volatile, so we don't care.  */
2012       /* 000100 sssss 11111 iiiii 01100100001 */
2013       else if (arch_info->mach == bfd_mach_ppc_e500
2014 	       && (op & 0xfc1f07ff) == 0x101f0321)    /* evstdd Rs,uimm(R31) */
2015 	{
2016 	  if ((op & 0x03e00000) >= 0x01a00000)	/* Rs >= r13 */
2017 	    {
2018 	      unsigned int imm;
2019 	      ev_reg = GET_SRC_REG (op);
2020 	      imm = (op >> 11) & 0x1f;
2021 	      ev_offset = imm * 8;
2022 	      /* If this is the first vector reg to be saved, or if
2023 		 it has a lower number than others previously seen,
2024 		 reupdate the frame info.  */
2025 	      if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2026 		{
2027 		  fdata->saved_ev = ev_reg;
2028 		  fdata->ev_offset = ev_offset + offset;
2029 		}
2030 	    }
2031 	  continue;
2032 	}
2033       /* Store gen register rS at (r1+rB).  */
2034       /* 000100 sssss 00001 bbbbb 01100100000 */
2035       else if (arch_info->mach == bfd_mach_ppc_e500
2036 	       && (op & 0xffe007ff) == 0x13e00320)     /* evstddx RS,R1,Rb */
2037 	{
2038 	  if (pc == (li_found_pc + 4))
2039 	    {
2040 	      ev_reg = GET_SRC_REG (op);
2041 	      /* If this is the first vector reg to be saved, or if
2042 		 it has a lower number than others previously seen,
2043 		 reupdate the frame info.  */
2044 	      /* We know the contents of rB from the previous instruction.  */
2045 	      if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2046 		{
2047 		  fdata->saved_ev = ev_reg;
2048 		  fdata->ev_offset = vr_saved_offset + offset;
2049 		}
2050 	      vr_saved_offset = -1;
2051 	      ev_reg = -1;
2052 	      li_found_pc = 0;
2053 	    }
2054 	  continue;
2055 	}
2056       /* Store gen register r31 at (rA+uimm).  */
2057       /* 000100 11111 aaaaa iiiii 01100100001 */
2058       else if (arch_info->mach == bfd_mach_ppc_e500
2059 	       && (op & 0xffe007ff) == 0x13e00321)   /* evstdd R31,Ra,UIMM */
2060 	{
2061 	  /* Wwe know that the source register is 31 already, but
2062 	     it can't hurt to compute it.  */
2063 	  ev_reg = GET_SRC_REG (op);
2064 	  ev_offset = ((op >> 11) & 0x1f) * 8;
2065 	  /* If this is the first vector reg to be saved, or if
2066 	     it has a lower number than others previously seen,
2067 	     reupdate the frame info.  */
2068 	  if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2069 	    {
2070 	      fdata->saved_ev = ev_reg;
2071 	      fdata->ev_offset = ev_offset + offset;
2072 	    }
2073 
2074 	  continue;
2075 	}
2076       /* Store gen register S at (r31+r0).
2077 	 Store param on stack when offset from SP bigger than 4 bytes.  */
2078       /* 000100 sssss 11111 00000 01100100000 */
2079       else if (arch_info->mach == bfd_mach_ppc_e500
2080 	       && (op & 0xfc1fffff) == 0x101f0320)     /* evstddx Rs,R31,R0 */
2081 	{
2082 	  if (pc == (li_found_pc + 4))
2083 	    {
2084 	      if ((op & 0x03e00000) >= 0x01a00000)
2085 		{
2086 		  ev_reg = GET_SRC_REG (op);
2087 		  /* If this is the first vector reg to be saved, or if
2088 		     it has a lower number than others previously seen,
2089 		     reupdate the frame info.  */
2090 		  /* We know the contents of r0 from the previous
2091 		     instruction.  */
2092 		  if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2093 		    {
2094 		      fdata->saved_ev = ev_reg;
2095 		      fdata->ev_offset = vr_saved_offset + offset;
2096 		    }
2097 		  ev_reg = -1;
2098 		}
2099 	      vr_saved_offset = -1;
2100 	      li_found_pc = 0;
2101 	      continue;
2102 	    }
2103 	}
2104       /* End BookE related instructions.  */
2105 
2106       else
2107 	{
2108 	  /* Not a recognized prologue instruction.
2109 	     Handle optimizer code motions into the prologue by continuing
2110 	     the search if we have no valid frame yet or if the return
2111 	     address is not yet saved in the frame.  Also skip instructions
2112 	     if some of the GPRs expected to be saved are not yet saved.  */
2113 	  if (fdata->frameless == 0 && fdata->nosavedpc == 0
2114 	      && fdata->saved_gpr != -1)
2115 	    {
2116 	      unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2117 
2118 	      if ((fdata->gpr_mask & all_mask) == all_mask)
2119 		break;
2120 	    }
2121 
2122 	  if (op == 0x4e800020		/* blr */
2123 	      || op == 0x4e800420)	/* bctr */
2124 	    /* Do not scan past epilogue in frameless functions or
2125 	       trampolines.  */
2126 	    break;
2127 	  if ((op & 0xf4000000) == 0x40000000) /* bxx */
2128 	    /* Never skip branches.  */
2129 	    break;
2130 
2131 	  /* Test based on opcode and mask values of
2132 	     powerpc_opcodes[svc..svcla] in opcodes/ppc-opc.c.  */
2133 	  if ((op & 0xffff0000) == 0x44000000)
2134 	    /* Never skip system calls.  */
2135 	    break;
2136 
2137 	  if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2138 	    /* Do not scan too many insns, scanning insns is expensive with
2139 	       remote targets.  */
2140 	    break;
2141 
2142 	  /* Continue scanning.  */
2143 	  prev_insn_was_prologue_insn = 0;
2144 	  continue;
2145 	}
2146     }
2147 
2148 #if 0
2149 /* I have problems with skipping over __main() that I need to address
2150  * sometime.  Previously, I used to use misc_function_vector which
2151  * didn't work as well as I wanted to be.  -MGO */
2152 
2153   /* If the first thing after skipping a prolog is a branch to a function,
2154      this might be a call to an initializer in main(), introduced by gcc2.
2155      We'd like to skip over it as well.  Fortunately, xlc does some extra
2156      work before calling a function right after a prologue, thus we can
2157      single out such gcc2 behaviour.  */
2158 
2159 
2160   if ((op & 0xfc000001) == 0x48000001)
2161     {				/* bl foo, an initializer function?  */
2162       op = read_memory_integer (pc + 4, 4, byte_order);
2163 
2164       if (op == 0x4def7b82)
2165 	{			/* cror 0xf, 0xf, 0xf (nop) */
2166 
2167 	  /* Check and see if we are in main.  If so, skip over this
2168 	     initializer function as well.  */
2169 
2170 	  tmp = find_pc_misc_function (pc);
2171 	  if (tmp >= 0
2172 	      && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2173 	    return pc + 8;
2174 	}
2175     }
2176 #endif /* 0 */
2177 
2178   if (pc == lim_pc && lr_reg >= 0)
2179     fdata->lr_register = lr_reg;
2180 
2181   fdata->offset = -fdata->offset;
2182   return last_prologue_pc;
2183 }
2184 
2185 static CORE_ADDR
2186 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2187 {
2188   struct rs6000_framedata frame;
2189   CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2190 
2191   /* See if we can determine the end of the prologue via the symbol table.
2192      If so, then return either PC, or the PC after the prologue, whichever
2193      is greater.  */
2194   if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2195     {
2196       CORE_ADDR post_prologue_pc
2197 	= skip_prologue_using_sal (gdbarch, func_addr);
2198       if (post_prologue_pc != 0)
2199 	return std::max (pc, post_prologue_pc);
2200     }
2201 
2202   /* Can't determine prologue from the symbol table, need to examine
2203      instructions.  */
2204 
2205   /* Find an upper limit on the function prologue using the debug
2206      information.  If the debug information could not be used to provide
2207      that bound, then use an arbitrary large number as the upper bound.  */
2208   limit_pc = skip_prologue_using_sal (gdbarch, pc);
2209   if (limit_pc == 0)
2210     limit_pc = pc + 100;          /* Magic.  */
2211 
2212   /* Do not allow limit_pc to be past the function end, if we know
2213      where that end is...  */
2214   if (func_end_addr && limit_pc > func_end_addr)
2215     limit_pc = func_end_addr;
2216 
2217   pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2218   return pc;
2219 }
2220 
2221 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2222    in the prologue of main().
2223 
2224    The function below examines the code pointed at by PC and checks to
2225    see if it corresponds to a call to __eabi.  If so, it returns the
2226    address of the instruction following that call.  Otherwise, it simply
2227    returns PC.  */
2228 
2229 static CORE_ADDR
2230 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2231 {
2232   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2233   gdb_byte buf[4];
2234   unsigned long op;
2235 
2236   if (target_read_memory (pc, buf, 4))
2237     return pc;
2238   op = extract_unsigned_integer (buf, 4, byte_order);
2239 
2240   if ((op & BL_MASK) == BL_INSTRUCTION)
2241     {
2242       CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2243       CORE_ADDR call_dest = pc + 4 + displ;
2244       struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2245 
2246       /* We check for ___eabi (three leading underscores) in addition
2247 	 to __eabi in case the GCC option "-fleading-underscore" was
2248 	 used to compile the program.  */
2249       if (s.minsym != NULL
2250 	  && s.minsym->linkage_name () != NULL
2251 	  && (strcmp (s.minsym->linkage_name (), "__eabi") == 0
2252 	      || strcmp (s.minsym->linkage_name (), "___eabi") == 0))
2253 	pc += 4;
2254     }
2255   return pc;
2256 }
2257 
2258 /* All the ABI's require 16 byte alignment.  */
2259 static CORE_ADDR
2260 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2261 {
2262   return (addr & -16);
2263 }
2264 
2265 /* Return whether handle_inferior_event() should proceed through code
2266    starting at PC in function NAME when stepping.
2267 
2268    The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2269    handle memory references that are too distant to fit in instructions
2270    generated by the compiler.  For example, if 'foo' in the following
2271    instruction:
2272 
2273      lwz r9,foo(r2)
2274 
2275    is greater than 32767, the linker might replace the lwz with a branch to
2276    somewhere in @FIX1 that does the load in 2 instructions and then branches
2277    back to where execution should continue.
2278 
2279    GDB should silently step over @FIX code, just like AIX dbx does.
2280    Unfortunately, the linker uses the "b" instruction for the
2281    branches, meaning that the link register doesn't get set.
2282    Therefore, GDB's usual step_over_function () mechanism won't work.
2283 
2284    Instead, use the gdbarch_skip_trampoline_code and
2285    gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2286    @FIX code.  */
2287 
2288 static int
2289 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2290 				   CORE_ADDR pc, const char *name)
2291 {
2292   return name && startswith (name, "@FIX");
2293 }
2294 
2295 /* Skip code that the user doesn't want to see when stepping:
2296 
2297    1. Indirect function calls use a piece of trampoline code to do context
2298    switching, i.e. to set the new TOC table.  Skip such code if we are on
2299    its first instruction (as when we have single-stepped to here).
2300 
2301    2. Skip shared library trampoline code (which is different from
2302    indirect function call trampolines).
2303 
2304    3. Skip bigtoc fixup code.
2305 
2306    Result is desired PC to step until, or NULL if we are not in
2307    code that should be skipped.  */
2308 
2309 static CORE_ADDR
2310 rs6000_skip_trampoline_code (frame_info_ptr frame, CORE_ADDR pc)
2311 {
2312   struct gdbarch *gdbarch = get_frame_arch (frame);
2313   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2314   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2315   unsigned int ii, op;
2316   int rel;
2317   CORE_ADDR solib_target_pc;
2318   struct bound_minimal_symbol msymbol;
2319 
2320   static unsigned trampoline_code[] =
2321   {
2322     0x800b0000,			/*     l   r0,0x0(r11)  */
2323     0x90410014,			/*    st   r2,0x14(r1)  */
2324     0x7c0903a6,			/* mtctr   r0           */
2325     0x804b0004,			/*     l   r2,0x4(r11)  */
2326     0x816b0008,			/*     l  r11,0x8(r11)  */
2327     0x4e800420,			/*  bctr                */
2328     0x4e800020,			/*    br                */
2329     0
2330   };
2331 
2332   /* Check for bigtoc fixup code.  */
2333   msymbol = lookup_minimal_symbol_by_pc (pc);
2334   if (msymbol.minsym
2335       && rs6000_in_solib_return_trampoline (gdbarch, pc,
2336 					    msymbol.minsym->linkage_name ()))
2337     {
2338       /* Double-check that the third instruction from PC is relative "b".  */
2339       op = read_memory_integer (pc + 8, 4, byte_order);
2340       if ((op & 0xfc000003) == 0x48000000)
2341 	{
2342 	  /* Extract bits 6-29 as a signed 24-bit relative word address and
2343 	     add it to the containing PC.  */
2344 	  rel = ((int)(op << 6) >> 6);
2345 	  return pc + 8 + rel;
2346 	}
2347     }
2348 
2349   /* If pc is in a shared library trampoline, return its target.  */
2350   solib_target_pc = find_solib_trampoline_target (frame, pc);
2351   if (solib_target_pc)
2352     return solib_target_pc;
2353 
2354   for (ii = 0; trampoline_code[ii]; ++ii)
2355     {
2356       op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2357       if (op != trampoline_code[ii])
2358 	return 0;
2359     }
2360   ii = get_frame_register_unsigned (frame, 11);	/* r11 holds destination
2361 						   addr.  */
2362   pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2363   return pc;
2364 }
2365 
2366 /* ISA-specific vector types.  */
2367 
2368 static struct type *
2369 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2370 {
2371   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2372 
2373   if (!tdep->ppc_builtin_type_vec64)
2374     {
2375       const struct builtin_type *bt = builtin_type (gdbarch);
2376 
2377       /* The type we're building is this: */
2378 #if 0
2379       union __gdb_builtin_type_vec64
2380 	{
2381 	  int64_t uint64;
2382 	  float v2_float[2];
2383 	  int32_t v2_int32[2];
2384 	  int16_t v4_int16[4];
2385 	  int8_t v8_int8[8];
2386 	};
2387 #endif
2388 
2389       struct type *t;
2390 
2391       t = arch_composite_type (gdbarch,
2392 			       "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2393       append_composite_type_field (t, "uint64", bt->builtin_int64);
2394       append_composite_type_field (t, "v2_float",
2395 				   init_vector_type (bt->builtin_float, 2));
2396       append_composite_type_field (t, "v2_int32",
2397 				   init_vector_type (bt->builtin_int32, 2));
2398       append_composite_type_field (t, "v4_int16",
2399 				   init_vector_type (bt->builtin_int16, 4));
2400       append_composite_type_field (t, "v8_int8",
2401 				   init_vector_type (bt->builtin_int8, 8));
2402 
2403       t->set_is_vector (true);
2404       t->set_name ("ppc_builtin_type_vec64");
2405       tdep->ppc_builtin_type_vec64 = t;
2406     }
2407 
2408   return tdep->ppc_builtin_type_vec64;
2409 }
2410 
2411 /* Vector 128 type.  */
2412 
2413 static struct type *
2414 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2415 {
2416   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2417 
2418   if (!tdep->ppc_builtin_type_vec128)
2419     {
2420       const struct builtin_type *bt = builtin_type (gdbarch);
2421 
2422       /* The type we're building is this
2423 
2424 	 type = union __ppc_builtin_type_vec128 {
2425 	     float128_t float128;
2426 	     uint128_t uint128;
2427 	     double v2_double[2];
2428 	     float v4_float[4];
2429 	     int32_t v4_int32[4];
2430 	     int16_t v8_int16[8];
2431 	     int8_t v16_int8[16];
2432 	 }
2433       */
2434 
2435       /* PPC specific type for IEEE 128-bit float field */
2436       struct type *t_float128
2437 	= arch_float_type (gdbarch, 128, "float128_t", floatformats_ieee_quad);
2438 
2439       struct type *t;
2440 
2441       t = arch_composite_type (gdbarch,
2442 			       "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2443       append_composite_type_field (t, "float128", t_float128);
2444       append_composite_type_field (t, "uint128", bt->builtin_uint128);
2445       append_composite_type_field (t, "v2_double",
2446 				   init_vector_type (bt->builtin_double, 2));
2447       append_composite_type_field (t, "v4_float",
2448 				   init_vector_type (bt->builtin_float, 4));
2449       append_composite_type_field (t, "v4_int32",
2450 				   init_vector_type (bt->builtin_int32, 4));
2451       append_composite_type_field (t, "v8_int16",
2452 				   init_vector_type (bt->builtin_int16, 8));
2453       append_composite_type_field (t, "v16_int8",
2454 				   init_vector_type (bt->builtin_int8, 16));
2455 
2456       t->set_is_vector (true);
2457       t->set_name ("ppc_builtin_type_vec128");
2458       tdep->ppc_builtin_type_vec128 = t;
2459     }
2460 
2461   return tdep->ppc_builtin_type_vec128;
2462 }
2463 
2464 /* Return the name of register number REGNO, or the empty string if it
2465    is an anonymous register.  */
2466 
2467 static const char *
2468 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2469 {
2470   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2471 
2472   /* The upper half "registers" have names in the XML description,
2473      but we present only the low GPRs and the full 64-bit registers
2474      to the user.  */
2475   if (tdep->ppc_ev0_upper_regnum >= 0
2476       && tdep->ppc_ev0_upper_regnum <= regno
2477       && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2478     return "";
2479 
2480   /* Hide the upper halves of the vs0~vs31 registers.  */
2481   if (tdep->ppc_vsr0_regnum >= 0
2482       && tdep->ppc_vsr0_upper_regnum <= regno
2483       && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2484     return "";
2485 
2486   /* Hide the upper halves of the cvs0~cvs31 registers.  */
2487   if (PPC_CVSR0_UPPER_REGNUM <= regno
2488       && regno < PPC_CVSR0_UPPER_REGNUM + ppc_num_gprs)
2489     return "";
2490 
2491   /* Check if the SPE pseudo registers are available.  */
2492   if (IS_SPE_PSEUDOREG (tdep, regno))
2493     {
2494       static const char *const spe_regnames[] = {
2495 	"ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2496 	"ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2497 	"ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2498 	"ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2499       };
2500       return spe_regnames[regno - tdep->ppc_ev0_regnum];
2501     }
2502 
2503   /* Check if the decimal128 pseudo-registers are available.  */
2504   if (IS_DFP_PSEUDOREG (tdep, regno))
2505     {
2506       static const char *const dfp128_regnames[] = {
2507 	"dl0", "dl1", "dl2", "dl3",
2508 	"dl4", "dl5", "dl6", "dl7",
2509 	"dl8", "dl9", "dl10", "dl11",
2510 	"dl12", "dl13", "dl14", "dl15"
2511       };
2512       return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2513     }
2514 
2515   /* Check if this is a vX alias for a raw vrX vector register.  */
2516   if (IS_V_ALIAS_PSEUDOREG (tdep, regno))
2517     {
2518       static const char *const vector_alias_regnames[] = {
2519 	"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
2520 	"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
2521 	"v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
2522 	"v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
2523       };
2524       return vector_alias_regnames[regno - tdep->ppc_v0_alias_regnum];
2525     }
2526 
2527   /* Check if this is a VSX pseudo-register.  */
2528   if (IS_VSX_PSEUDOREG (tdep, regno))
2529     {
2530       static const char *const vsx_regnames[] = {
2531 	"vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2532 	"vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2533 	"vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2534 	"vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2535 	"vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2536 	"vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2537 	"vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2538 	"vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2539 	"vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2540       };
2541       return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2542     }
2543 
2544   /* Check if the this is a Extended FP pseudo-register.  */
2545   if (IS_EFP_PSEUDOREG (tdep, regno))
2546     {
2547       static const char *const efpr_regnames[] = {
2548 	"f32", "f33", "f34", "f35", "f36", "f37", "f38",
2549 	"f39", "f40", "f41", "f42", "f43", "f44", "f45",
2550 	"f46", "f47", "f48", "f49", "f50", "f51",
2551 	"f52", "f53", "f54", "f55", "f56", "f57",
2552 	"f58", "f59", "f60", "f61", "f62", "f63"
2553       };
2554       return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2555     }
2556 
2557   /* Check if this is a Checkpointed DFP pseudo-register.  */
2558   if (IS_CDFP_PSEUDOREG (tdep, regno))
2559     {
2560       static const char *const cdfp128_regnames[] = {
2561 	"cdl0", "cdl1", "cdl2", "cdl3",
2562 	"cdl4", "cdl5", "cdl6", "cdl7",
2563 	"cdl8", "cdl9", "cdl10", "cdl11",
2564 	"cdl12", "cdl13", "cdl14", "cdl15"
2565       };
2566       return cdfp128_regnames[regno - tdep->ppc_cdl0_regnum];
2567     }
2568 
2569   /* Check if this is a Checkpointed VSX pseudo-register.  */
2570   if (IS_CVSX_PSEUDOREG (tdep, regno))
2571     {
2572       static const char *const cvsx_regnames[] = {
2573 	"cvs0", "cvs1", "cvs2", "cvs3", "cvs4", "cvs5", "cvs6", "cvs7",
2574 	"cvs8", "cvs9", "cvs10", "cvs11", "cvs12", "cvs13", "cvs14",
2575 	"cvs15", "cvs16", "cvs17", "cvs18", "cvs19", "cvs20", "cvs21",
2576 	"cvs22", "cvs23", "cvs24", "cvs25", "cvs26", "cvs27", "cvs28",
2577 	"cvs29", "cvs30", "cvs31", "cvs32", "cvs33", "cvs34", "cvs35",
2578 	"cvs36", "cvs37", "cvs38", "cvs39", "cvs40", "cvs41", "cvs42",
2579 	"cvs43", "cvs44", "cvs45", "cvs46", "cvs47", "cvs48", "cvs49",
2580 	"cvs50", "cvs51", "cvs52", "cvs53", "cvs54", "cvs55", "cvs56",
2581 	"cvs57", "cvs58", "cvs59", "cvs60", "cvs61", "cvs62", "cvs63"
2582       };
2583       return cvsx_regnames[regno - tdep->ppc_cvsr0_regnum];
2584     }
2585 
2586   /* Check if the this is a Checkpointed Extended FP pseudo-register.  */
2587   if (IS_CEFP_PSEUDOREG (tdep, regno))
2588     {
2589       static const char *const cefpr_regnames[] = {
2590 	"cf32", "cf33", "cf34", "cf35", "cf36", "cf37", "cf38",
2591 	"cf39", "cf40", "cf41", "cf42", "cf43", "cf44", "cf45",
2592 	"cf46", "cf47", "cf48", "cf49", "cf50", "cf51",
2593 	"cf52", "cf53", "cf54", "cf55", "cf56", "cf57",
2594 	"cf58", "cf59", "cf60", "cf61", "cf62", "cf63"
2595       };
2596       return cefpr_regnames[regno - tdep->ppc_cefpr0_regnum];
2597     }
2598 
2599   return tdesc_register_name (gdbarch, regno);
2600 }
2601 
2602 /* Return the GDB type object for the "standard" data type of data in
2603    register N.  */
2604 
2605 static struct type *
2606 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2607 {
2608   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2609 
2610   /* These are the e500 pseudo-registers.  */
2611   if (IS_SPE_PSEUDOREG (tdep, regnum))
2612     return rs6000_builtin_type_vec64 (gdbarch);
2613   else if (IS_DFP_PSEUDOREG (tdep, regnum)
2614 	   || IS_CDFP_PSEUDOREG (tdep, regnum))
2615     /* PPC decimal128 pseudo-registers.  */
2616     return builtin_type (gdbarch)->builtin_declong;
2617   else if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2618     return gdbarch_register_type (gdbarch,
2619 				  tdep->ppc_vr0_regnum
2620 				  + (regnum
2621 				     - tdep->ppc_v0_alias_regnum));
2622   else if (IS_VSX_PSEUDOREG (tdep, regnum)
2623 	   || IS_CVSX_PSEUDOREG (tdep, regnum))
2624     /* POWER7 VSX pseudo-registers.  */
2625     return rs6000_builtin_type_vec128 (gdbarch);
2626   else if (IS_EFP_PSEUDOREG (tdep, regnum)
2627 	   || IS_CEFP_PSEUDOREG (tdep, regnum))
2628     /* POWER7 Extended FP pseudo-registers.  */
2629     return builtin_type (gdbarch)->builtin_double;
2630   else
2631     internal_error (_("rs6000_pseudo_register_type: "
2632 		      "called on unexpected register '%s' (%d)"),
2633 		    gdbarch_register_name (gdbarch, regnum), regnum);
2634 }
2635 
2636 /* Check if REGNUM is a member of REGGROUP.  We only need to handle
2637    the vX aliases for the vector registers by always returning false
2638    to avoid duplicated information in "info register vector/all",
2639    since the raw vrX registers will already show in these cases.  For
2640    other pseudo-registers we use the default membership function.  */
2641 
2642 static int
2643 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2644 				   const struct reggroup *group)
2645 {
2646   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2647 
2648   if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2649     return 0;
2650   else
2651     return default_register_reggroup_p (gdbarch, regnum, group);
2652 }
2653 
2654 /* The register format for RS/6000 floating point registers is always
2655    double, we need a conversion if the memory format is float.  */
2656 
2657 static int
2658 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2659 			   struct type *type)
2660 {
2661   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2662 
2663   return (tdep->ppc_fp0_regnum >= 0
2664 	  && regnum >= tdep->ppc_fp0_regnum
2665 	  && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2666 	  && type->code () == TYPE_CODE_FLT
2667 	  && (type->length ()
2668 	      != builtin_type (gdbarch)->builtin_double->length ()));
2669 }
2670 
2671 static int
2672 rs6000_register_to_value (frame_info_ptr frame,
2673 			  int regnum,
2674 			  struct type *type,
2675 			  gdb_byte *to,
2676 			  int *optimizedp, int *unavailablep)
2677 {
2678   struct gdbarch *gdbarch = get_frame_arch (frame);
2679   gdb_byte from[PPC_MAX_REGISTER_SIZE];
2680 
2681   gdb_assert (type->code () == TYPE_CODE_FLT);
2682 
2683   if (!get_frame_register_bytes (frame, regnum, 0,
2684 				 gdb::make_array_view (from,
2685 						       register_size (gdbarch,
2686 								      regnum)),
2687 				 optimizedp, unavailablep))
2688     return 0;
2689 
2690   target_float_convert (from, builtin_type (gdbarch)->builtin_double,
2691 			to, type);
2692   *optimizedp = *unavailablep = 0;
2693   return 1;
2694 }
2695 
2696 static void
2697 rs6000_value_to_register (frame_info_ptr frame,
2698 			  int regnum,
2699 			  struct type *type,
2700 			  const gdb_byte *from)
2701 {
2702   struct gdbarch *gdbarch = get_frame_arch (frame);
2703   gdb_byte to[PPC_MAX_REGISTER_SIZE];
2704 
2705   gdb_assert (type->code () == TYPE_CODE_FLT);
2706 
2707   target_float_convert (from, type,
2708 			to, builtin_type (gdbarch)->builtin_double);
2709   put_frame_register (frame, regnum, to);
2710 }
2711 
2712  /* The type of a function that moves the value of REG between CACHE
2713     or BUF --- in either direction.  */
2714 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2715 						       int, void *);
2716 
2717 /* Move SPE vector register values between a 64-bit buffer and the two
2718    32-bit raw register halves in a regcache.  This function handles
2719    both splitting a 64-bit value into two 32-bit halves, and joining
2720    two halves into a whole 64-bit value, depending on the function
2721    passed as the MOVE argument.
2722 
2723    EV_REG must be the number of an SPE evN vector register --- a
2724    pseudoregister.  REGCACHE must be a regcache, and BUFFER must be a
2725    64-bit buffer.
2726 
2727    Call MOVE once for each 32-bit half of that register, passing
2728    REGCACHE, the number of the raw register corresponding to that
2729    half, and the address of the appropriate half of BUFFER.
2730 
2731    For example, passing 'regcache_raw_read' as the MOVE function will
2732    fill BUFFER with the full 64-bit contents of EV_REG.  Or, passing
2733    'regcache_raw_supply' will supply the contents of BUFFER to the
2734    appropriate pair of raw registers in REGCACHE.
2735 
2736    You may need to cast away some 'const' qualifiers when passing
2737    MOVE, since this function can't tell at compile-time which of
2738    REGCACHE or BUFFER is acting as the source of the data.  If C had
2739    co-variant type qualifiers, ...  */
2740 
2741 static enum register_status
2742 e500_move_ev_register (move_ev_register_func move,
2743 		       struct regcache *regcache, int ev_reg, void *buffer)
2744 {
2745   struct gdbarch *arch = regcache->arch ();
2746   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (arch);
2747   int reg_index;
2748   gdb_byte *byte_buffer = (gdb_byte *) buffer;
2749   enum register_status status;
2750 
2751   gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2752 
2753   reg_index = ev_reg - tdep->ppc_ev0_regnum;
2754 
2755   if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2756     {
2757       status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2758 		     byte_buffer);
2759       if (status == REG_VALID)
2760 	status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2761 		       byte_buffer + 4);
2762     }
2763   else
2764     {
2765       status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2766       if (status == REG_VALID)
2767 	status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2768 		       byte_buffer + 4);
2769     }
2770 
2771   return status;
2772 }
2773 
2774 static enum register_status
2775 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2776 {
2777   regcache->raw_write (regnum, (const gdb_byte *) buffer);
2778 
2779   return REG_VALID;
2780 }
2781 
2782 static enum register_status
2783 e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2784 			   int ev_reg, gdb_byte *buffer)
2785 {
2786   struct gdbarch *arch = regcache->arch ();
2787   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2788   int reg_index;
2789   enum register_status status;
2790 
2791   gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2792 
2793   reg_index = ev_reg - tdep->ppc_ev0_regnum;
2794 
2795   if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2796     {
2797       status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2798 				   buffer);
2799       if (status == REG_VALID)
2800 	status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index,
2801 				     buffer + 4);
2802     }
2803   else
2804     {
2805       status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer);
2806       if (status == REG_VALID)
2807 	status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2808 				     buffer + 4);
2809     }
2810 
2811   return status;
2812 
2813 }
2814 
2815 static void
2816 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2817 			    int reg_nr, const gdb_byte *buffer)
2818 {
2819   e500_move_ev_register (do_regcache_raw_write, regcache,
2820 			 reg_nr, (void *) buffer);
2821 }
2822 
2823 /* Read method for DFP pseudo-registers.  */
2824 static enum register_status
2825 dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2826 			   int reg_nr, gdb_byte *buffer)
2827 {
2828   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2829   int reg_index, fp0;
2830   enum register_status status;
2831 
2832   if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2833     {
2834       reg_index = reg_nr - tdep->ppc_dl0_regnum;
2835       fp0 = PPC_F0_REGNUM;
2836     }
2837   else
2838     {
2839       gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2840 
2841       reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2842       fp0 = PPC_CF0_REGNUM;
2843     }
2844 
2845   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2846     {
2847       /* Read two FP registers to form a whole dl register.  */
2848       status = regcache->raw_read (fp0 + 2 * reg_index, buffer);
2849       if (status == REG_VALID)
2850 	status = regcache->raw_read (fp0 + 2 * reg_index + 1,
2851 				     buffer + 8);
2852     }
2853   else
2854     {
2855       status = regcache->raw_read (fp0 + 2 * reg_index + 1, buffer);
2856       if (status == REG_VALID)
2857 	status = regcache->raw_read (fp0 + 2 * reg_index, buffer + 8);
2858     }
2859 
2860   return status;
2861 }
2862 
2863 /* Write method for DFP pseudo-registers.  */
2864 static void
2865 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2866 			    int reg_nr, const gdb_byte *buffer)
2867 {
2868   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2869   int reg_index, fp0;
2870 
2871   if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2872     {
2873       reg_index = reg_nr - tdep->ppc_dl0_regnum;
2874       fp0 = PPC_F0_REGNUM;
2875     }
2876   else
2877     {
2878       gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2879 
2880       reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2881       fp0 = PPC_CF0_REGNUM;
2882     }
2883 
2884   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2885     {
2886       /* Write each half of the dl register into a separate
2887 	 FP register.  */
2888       regcache->raw_write (fp0 + 2 * reg_index, buffer);
2889       regcache->raw_write (fp0 + 2 * reg_index + 1, buffer + 8);
2890     }
2891   else
2892     {
2893       regcache->raw_write (fp0 + 2 * reg_index + 1, buffer);
2894       regcache->raw_write (fp0 + 2 * reg_index, buffer + 8);
2895     }
2896 }
2897 
2898 /* Read method for the vX aliases for the raw vrX registers.  */
2899 
2900 static enum register_status
2901 v_alias_pseudo_register_read (struct gdbarch *gdbarch,
2902 			      readable_regcache *regcache, int reg_nr,
2903 			      gdb_byte *buffer)
2904 {
2905   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2906   gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2907 
2908   return regcache->raw_read (tdep->ppc_vr0_regnum
2909 			     + (reg_nr - tdep->ppc_v0_alias_regnum),
2910 			     buffer);
2911 }
2912 
2913 /* Write method for the vX aliases for the raw vrX registers.  */
2914 
2915 static void
2916 v_alias_pseudo_register_write (struct gdbarch *gdbarch,
2917 			       struct regcache *regcache,
2918 			       int reg_nr, const gdb_byte *buffer)
2919 {
2920   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2921   gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2922 
2923   regcache->raw_write (tdep->ppc_vr0_regnum
2924 		       + (reg_nr - tdep->ppc_v0_alias_regnum), buffer);
2925 }
2926 
2927 /* Read method for POWER7 VSX pseudo-registers.  */
2928 static enum register_status
2929 vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2930 			   int reg_nr, gdb_byte *buffer)
2931 {
2932   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2933   int reg_index, vr0, fp0, vsr0_upper;
2934   enum register_status status;
2935 
2936   if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2937     {
2938       reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2939       vr0 = PPC_VR0_REGNUM;
2940       fp0 = PPC_F0_REGNUM;
2941       vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2942     }
2943   else
2944     {
2945       gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2946 
2947       reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2948       vr0 = PPC_CVR0_REGNUM;
2949       fp0 = PPC_CF0_REGNUM;
2950       vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2951     }
2952 
2953   /* Read the portion that overlaps the VMX registers.  */
2954   if (reg_index > 31)
2955     status = regcache->raw_read (vr0 + reg_index - 32, buffer);
2956   else
2957     /* Read the portion that overlaps the FPR registers.  */
2958     if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2959       {
2960 	status = regcache->raw_read (fp0 + reg_index, buffer);
2961 	if (status == REG_VALID)
2962 	  status = regcache->raw_read (vsr0_upper + reg_index,
2963 				       buffer + 8);
2964       }
2965     else
2966       {
2967 	status = regcache->raw_read (fp0 + reg_index, buffer + 8);
2968 	if (status == REG_VALID)
2969 	  status = regcache->raw_read (vsr0_upper + reg_index, buffer);
2970       }
2971 
2972   return status;
2973 }
2974 
2975 /* Write method for POWER7 VSX pseudo-registers.  */
2976 static void
2977 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2978 			    int reg_nr, const gdb_byte *buffer)
2979 {
2980   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2981   int reg_index, vr0, fp0, vsr0_upper;
2982 
2983   if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2984     {
2985       reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2986       vr0 = PPC_VR0_REGNUM;
2987       fp0 = PPC_F0_REGNUM;
2988       vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2989     }
2990   else
2991     {
2992       gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2993 
2994       reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2995       vr0 = PPC_CVR0_REGNUM;
2996       fp0 = PPC_CF0_REGNUM;
2997       vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2998     }
2999 
3000   /* Write the portion that overlaps the VMX registers.  */
3001   if (reg_index > 31)
3002     regcache->raw_write (vr0 + reg_index - 32, buffer);
3003   else
3004     /* Write the portion that overlaps the FPR registers.  */
3005     if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
3006       {
3007 	regcache->raw_write (fp0 + reg_index, buffer);
3008 	regcache->raw_write (vsr0_upper + reg_index, buffer + 8);
3009       }
3010     else
3011       {
3012 	regcache->raw_write (fp0 + reg_index, buffer + 8);
3013 	regcache->raw_write (vsr0_upper + reg_index, buffer);
3014       }
3015 }
3016 
3017 /* Read method for POWER7 Extended FP pseudo-registers.  */
3018 static enum register_status
3019 efp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
3020 			   int reg_nr, gdb_byte *buffer)
3021 {
3022   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3023   int reg_index, vr0;
3024 
3025   if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3026     {
3027       reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3028       vr0 = PPC_VR0_REGNUM;
3029     }
3030   else
3031     {
3032       gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3033 
3034       reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3035       vr0 = PPC_CVR0_REGNUM;
3036     }
3037 
3038   int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
3039 
3040   /* Read the portion that overlaps the VMX register.  */
3041   return regcache->raw_read_part (vr0 + reg_index, offset,
3042 				  register_size (gdbarch, reg_nr),
3043 				  buffer);
3044 }
3045 
3046 /* Write method for POWER7 Extended FP pseudo-registers.  */
3047 static void
3048 efp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3049 			    int reg_nr, const gdb_byte *buffer)
3050 {
3051   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3052   int reg_index, vr0;
3053   int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
3054 
3055   if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3056     {
3057       reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3058       vr0 = PPC_VR0_REGNUM;
3059     }
3060   else
3061     {
3062       gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3063 
3064       reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3065       vr0 = PPC_CVR0_REGNUM;
3066 
3067       /* The call to raw_write_part fails silently if the initial read
3068 	 of the read-update-write sequence returns an invalid status,
3069 	 so we check this manually and throw an error if needed.  */
3070       regcache->raw_update (vr0 + reg_index);
3071       if (regcache->get_register_status (vr0 + reg_index) != REG_VALID)
3072 	error (_("Cannot write to the checkpointed EFP register, "
3073 		 "the corresponding vector register is unavailable."));
3074     }
3075 
3076   /* Write the portion that overlaps the VMX register.  */
3077   regcache->raw_write_part (vr0 + reg_index, offset,
3078 			    register_size (gdbarch, reg_nr), buffer);
3079 }
3080 
3081 static enum register_status
3082 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
3083 			     readable_regcache *regcache,
3084 			     int reg_nr, gdb_byte *buffer)
3085 {
3086   struct gdbarch *regcache_arch = regcache->arch ();
3087   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3088 
3089   gdb_assert (regcache_arch == gdbarch);
3090 
3091   if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3092     return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3093   else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3094 	   || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3095     return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3096   else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3097     return v_alias_pseudo_register_read (gdbarch, regcache, reg_nr,
3098 					 buffer);
3099   else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3100 	   || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3101     return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3102   else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3103 	   || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3104     return efp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3105   else
3106     internal_error (_("rs6000_pseudo_register_read: "
3107 		    "called on unexpected register '%s' (%d)"),
3108 		    gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3109 }
3110 
3111 static void
3112 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
3113 			      struct regcache *regcache,
3114 			      int reg_nr, const gdb_byte *buffer)
3115 {
3116   struct gdbarch *regcache_arch = regcache->arch ();
3117   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3118 
3119   gdb_assert (regcache_arch == gdbarch);
3120 
3121   if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3122     e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3123   else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3124 	   || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3125     dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3126   else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3127     v_alias_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3128   else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3129 	   || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3130     vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3131   else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3132 	   || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3133     efp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3134   else
3135     internal_error (_("rs6000_pseudo_register_write: "
3136 		    "called on unexpected register '%s' (%d)"),
3137 		    gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3138 }
3139 
3140 /* Set the register mask in AX with the registers that form the DFP or
3141    checkpointed DFP pseudo-register REG_NR.  */
3142 
3143 static void
3144 dfp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3145 				struct agent_expr *ax, int reg_nr)
3146 {
3147   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3148   int reg_index, fp0;
3149 
3150   if (IS_DFP_PSEUDOREG (tdep, reg_nr))
3151     {
3152       reg_index = reg_nr - tdep->ppc_dl0_regnum;
3153       fp0 = PPC_F0_REGNUM;
3154     }
3155   else
3156     {
3157       gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
3158 
3159       reg_index = reg_nr - tdep->ppc_cdl0_regnum;
3160       fp0 = PPC_CF0_REGNUM;
3161     }
3162 
3163   ax_reg_mask (ax, fp0 + 2 * reg_index);
3164   ax_reg_mask (ax, fp0 + 2 * reg_index + 1);
3165 }
3166 
3167 /* Set the register mask in AX with the raw vector register that
3168    corresponds to its REG_NR alias.  */
3169 
3170 static void
3171 v_alias_pseudo_register_collect (struct gdbarch *gdbarch,
3172 				 struct agent_expr *ax, int reg_nr)
3173 {
3174   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3175   gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
3176 
3177   ax_reg_mask (ax, tdep->ppc_vr0_regnum
3178 	       + (reg_nr - tdep->ppc_v0_alias_regnum));
3179 }
3180 
3181 /* Set the register mask in AX with the registers that form the VSX or
3182    checkpointed VSX pseudo-register REG_NR.  */
3183 
3184 static void
3185 vsx_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3186 				struct agent_expr *ax, int reg_nr)
3187 {
3188   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3189   int reg_index, vr0, fp0, vsr0_upper;
3190 
3191   if (IS_VSX_PSEUDOREG (tdep, reg_nr))
3192     {
3193       reg_index = reg_nr - tdep->ppc_vsr0_regnum;
3194       vr0 = PPC_VR0_REGNUM;
3195       fp0 = PPC_F0_REGNUM;
3196       vsr0_upper = PPC_VSR0_UPPER_REGNUM;
3197     }
3198   else
3199     {
3200       gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
3201 
3202       reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
3203       vr0 = PPC_CVR0_REGNUM;
3204       fp0 = PPC_CF0_REGNUM;
3205       vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
3206     }
3207 
3208   if (reg_index > 31)
3209     {
3210       ax_reg_mask (ax, vr0 + reg_index - 32);
3211     }
3212   else
3213     {
3214       ax_reg_mask (ax, fp0 + reg_index);
3215       ax_reg_mask (ax, vsr0_upper + reg_index);
3216     }
3217 }
3218 
3219 /* Set the register mask in AX with the register that corresponds to
3220    the EFP or checkpointed EFP pseudo-register REG_NR.  */
3221 
3222 static void
3223 efp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3224 				struct agent_expr *ax, int reg_nr)
3225 {
3226   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3227   int reg_index, vr0;
3228 
3229   if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3230     {
3231       reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3232       vr0 = PPC_VR0_REGNUM;
3233     }
3234   else
3235     {
3236       gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3237 
3238       reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3239       vr0 = PPC_CVR0_REGNUM;
3240     }
3241 
3242   ax_reg_mask (ax, vr0 + reg_index);
3243 }
3244 
3245 static int
3246 rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3247 				   struct agent_expr *ax, int reg_nr)
3248 {
3249   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3250   if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3251     {
3252       int reg_index = reg_nr - tdep->ppc_ev0_regnum;
3253       ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
3254       ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
3255     }
3256   else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3257 	   || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3258     {
3259       dfp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3260     }
3261   else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3262     {
3263       v_alias_pseudo_register_collect (gdbarch, ax, reg_nr);
3264     }
3265   else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3266 	   || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3267     {
3268       vsx_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3269     }
3270   else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3271 	   || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3272     {
3273       efp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3274     }
3275   else
3276     internal_error (_("rs6000_pseudo_register_collect: "
3277 		    "called on unexpected register '%s' (%d)"),
3278 		    gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3279   return 0;
3280 }
3281 
3282 
3283 static void
3284 rs6000_gen_return_address (struct gdbarch *gdbarch,
3285 			   struct agent_expr *ax, struct axs_value *value,
3286 			   CORE_ADDR scope)
3287 {
3288   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3289   value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
3290   value->kind = axs_lvalue_register;
3291   value->u.reg = tdep->ppc_lr_regnum;
3292 }
3293 
3294 
3295 /* Convert a DBX STABS register number to a GDB register number.  */
3296 static int
3297 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
3298 {
3299   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3300 
3301   if (0 <= num && num <= 31)
3302     return tdep->ppc_gp0_regnum + num;
3303   else if (32 <= num && num <= 63)
3304     /* FIXME: jimb/2004-05-05: What should we do when the debug info
3305        specifies registers the architecture doesn't have?  Our
3306        callers don't check the value we return.  */
3307     return tdep->ppc_fp0_regnum + (num - 32);
3308   else if (77 <= num && num <= 108)
3309     return tdep->ppc_vr0_regnum + (num - 77);
3310   else if (1200 <= num && num < 1200 + 32)
3311     return tdep->ppc_ev0_upper_regnum + (num - 1200);
3312   else
3313     switch (num)
3314       {
3315       case 64:
3316 	return tdep->ppc_mq_regnum;
3317       case 65:
3318 	return tdep->ppc_lr_regnum;
3319       case 66:
3320 	return tdep->ppc_ctr_regnum;
3321       case 76:
3322 	return tdep->ppc_xer_regnum;
3323       case 109:
3324 	return tdep->ppc_vrsave_regnum;
3325       case 110:
3326 	return tdep->ppc_vrsave_regnum - 1; /* vscr */
3327       case 111:
3328 	return tdep->ppc_acc_regnum;
3329       case 112:
3330 	return tdep->ppc_spefscr_regnum;
3331       default:
3332 	return num;
3333       }
3334 }
3335 
3336 
3337 /* Convert a Dwarf 2 register number to a GDB register number.  */
3338 static int
3339 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
3340 {
3341   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3342 
3343   if (0 <= num && num <= 31)
3344     return tdep->ppc_gp0_regnum + num;
3345   else if (32 <= num && num <= 63)
3346     /* FIXME: jimb/2004-05-05: What should we do when the debug info
3347        specifies registers the architecture doesn't have?  Our
3348        callers don't check the value we return.  */
3349     return tdep->ppc_fp0_regnum + (num - 32);
3350   else if (1124 <= num && num < 1124 + 32)
3351     return tdep->ppc_vr0_regnum + (num - 1124);
3352   else if (1200 <= num && num < 1200 + 32)
3353     return tdep->ppc_ev0_upper_regnum + (num - 1200);
3354   else
3355     switch (num)
3356       {
3357       case 64:
3358 	return tdep->ppc_cr_regnum;
3359       case 67:
3360 	return tdep->ppc_vrsave_regnum - 1; /* vscr */
3361       case 99:
3362 	return tdep->ppc_acc_regnum;
3363       case 100:
3364 	return tdep->ppc_mq_regnum;
3365       case 101:
3366 	return tdep->ppc_xer_regnum;
3367       case 108:
3368 	return tdep->ppc_lr_regnum;
3369       case 109:
3370 	return tdep->ppc_ctr_regnum;
3371       case 356:
3372 	return tdep->ppc_vrsave_regnum;
3373       case 612:
3374 	return tdep->ppc_spefscr_regnum;
3375       }
3376 
3377   /* Unknown DWARF register number.  */
3378   return -1;
3379 }
3380 
3381 /* Translate a .eh_frame register to DWARF register, or adjust a
3382    .debug_frame register.  */
3383 
3384 static int
3385 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3386 {
3387   /* GCC releases before 3.4 use GCC internal register numbering in
3388      .debug_frame (and .debug_info, et cetera).  The numbering is
3389      different from the standard SysV numbering for everything except
3390      for GPRs and FPRs.  We can not detect this problem in most cases
3391      - to get accurate debug info for variables living in lr, ctr, v0,
3392      et cetera, use a newer version of GCC.  But we must detect
3393      one important case - lr is in column 65 in .debug_frame output,
3394      instead of 108.
3395 
3396      GCC 3.4, and the "hammer" branch, have a related problem.  They
3397      record lr register saves in .debug_frame as 108, but still record
3398      the return column as 65.  We fix that up too.
3399 
3400      We can do this because 65 is assigned to fpsr, and GCC never
3401      generates debug info referring to it.  To add support for
3402      handwritten debug info that restores fpsr, we would need to add a
3403      producer version check to this.  */
3404   if (!eh_frame_p)
3405     {
3406       if (num == 65)
3407 	return 108;
3408       else
3409 	return num;
3410     }
3411 
3412   /* .eh_frame is GCC specific.  For binary compatibility, it uses GCC
3413      internal register numbering; translate that to the standard DWARF2
3414      register numbering.  */
3415   if (0 <= num && num <= 63)	/* r0-r31,fp0-fp31 */
3416     return num;
3417   else if (68 <= num && num <= 75) /* cr0-cr8 */
3418     return num - 68 + 86;
3419   else if (77 <= num && num <= 108) /* vr0-vr31 */
3420     return num - 77 + 1124;
3421   else
3422     switch (num)
3423       {
3424       case 64: /* mq */
3425 	return 100;
3426       case 65: /* lr */
3427 	return 108;
3428       case 66: /* ctr */
3429 	return 109;
3430       case 76: /* xer */
3431 	return 101;
3432       case 109: /* vrsave */
3433 	return 356;
3434       case 110: /* vscr */
3435 	return 67;
3436       case 111: /* spe_acc */
3437 	return 99;
3438       case 112: /* spefscr */
3439 	return 612;
3440       default:
3441 	return num;
3442       }
3443 }
3444 
3445 
3446 /* Handling the various POWER/PowerPC variants.  */
3447 
3448 /* Information about a particular processor variant.  */
3449 
3450 struct ppc_variant
3451   {
3452     /* Name of this variant.  */
3453     const char *name;
3454 
3455     /* English description of the variant.  */
3456     const char *description;
3457 
3458     /* bfd_arch_info.arch corresponding to variant.  */
3459     enum bfd_architecture arch;
3460 
3461     /* bfd_arch_info.mach corresponding to variant.  */
3462     unsigned long mach;
3463 
3464     /* Target description for this variant.  */
3465     const struct target_desc **tdesc;
3466   };
3467 
3468 static struct ppc_variant variants[] =
3469 {
3470   {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3471    bfd_mach_ppc, &tdesc_powerpc_altivec32},
3472   {"power", "POWER user-level", bfd_arch_rs6000,
3473    bfd_mach_rs6k, &tdesc_rs6000},
3474   {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3475    bfd_mach_ppc_403, &tdesc_powerpc_403},
3476   {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3477    bfd_mach_ppc_405, &tdesc_powerpc_405},
3478   {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3479    bfd_mach_ppc_601, &tdesc_powerpc_601},
3480   {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3481    bfd_mach_ppc_602, &tdesc_powerpc_602},
3482   {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3483    bfd_mach_ppc_603, &tdesc_powerpc_603},
3484   {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3485    604, &tdesc_powerpc_604},
3486   {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3487    bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3488   {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3489    bfd_mach_ppc_505, &tdesc_powerpc_505},
3490   {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3491    bfd_mach_ppc_860, &tdesc_powerpc_860},
3492   {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3493    bfd_mach_ppc_750, &tdesc_powerpc_750},
3494   {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3495    bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3496   {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3497    bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3498 
3499   /* 64-bit */
3500   {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3501    bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3502   {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3503    bfd_mach_ppc_620, &tdesc_powerpc_64},
3504   {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3505    bfd_mach_ppc_630, &tdesc_powerpc_64},
3506   {"a35", "PowerPC A35", bfd_arch_powerpc,
3507    bfd_mach_ppc_a35, &tdesc_powerpc_64},
3508   {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3509    bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3510   {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3511    bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3512 
3513   /* FIXME: I haven't checked the register sets of the following.  */
3514   {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3515    bfd_mach_rs6k_rs1, &tdesc_rs6000},
3516   {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3517    bfd_mach_rs6k_rsc, &tdesc_rs6000},
3518   {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3519    bfd_mach_rs6k_rs2, &tdesc_rs6000},
3520 
3521   {0, 0, (enum bfd_architecture) 0, 0, 0}
3522 };
3523 
3524 /* Return the variant corresponding to architecture ARCH and machine number
3525    MACH.  If no such variant exists, return null.  */
3526 
3527 static const struct ppc_variant *
3528 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3529 {
3530   const struct ppc_variant *v;
3531 
3532   for (v = variants; v->name; v++)
3533     if (arch == v->arch && mach == v->mach)
3534       return v;
3535 
3536   return NULL;
3537 }
3538 
3539 
3540 
3541 struct rs6000_frame_cache
3542 {
3543   CORE_ADDR base;
3544   CORE_ADDR initial_sp;
3545   trad_frame_saved_reg *saved_regs;
3546 
3547   /* Set BASE_P to true if this frame cache is properly initialized.
3548      Otherwise set to false because some registers or memory cannot
3549      collected.  */
3550   int base_p;
3551   /* Cache PC for building unavailable frame.  */
3552   CORE_ADDR pc;
3553 };
3554 
3555 static struct rs6000_frame_cache *
3556 rs6000_frame_cache (frame_info_ptr this_frame, void **this_cache)
3557 {
3558   struct rs6000_frame_cache *cache;
3559   struct gdbarch *gdbarch = get_frame_arch (this_frame);
3560   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3561   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3562   struct rs6000_framedata fdata;
3563   int wordsize = tdep->wordsize;
3564   CORE_ADDR func = 0, pc = 0;
3565 
3566   if ((*this_cache) != NULL)
3567     return (struct rs6000_frame_cache *) (*this_cache);
3568   cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3569   (*this_cache) = cache;
3570   cache->pc = 0;
3571   cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3572 
3573   try
3574     {
3575       func = get_frame_func (this_frame);
3576       cache->pc = func;
3577       pc = get_frame_pc (this_frame);
3578       skip_prologue (gdbarch, func, pc, &fdata);
3579 
3580       /* Figure out the parent's stack pointer.  */
3581 
3582       /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3583 	 address of the current frame.  Things might be easier if the
3584 	 ->frame pointed to the outer-most address of the frame.  In
3585 	 the mean time, the address of the prev frame is used as the
3586 	 base address of this frame.  */
3587       cache->base = get_frame_register_unsigned
3588 	(this_frame, gdbarch_sp_regnum (gdbarch));
3589     }
3590   catch (const gdb_exception_error &ex)
3591     {
3592       if (ex.error != NOT_AVAILABLE_ERROR)
3593 	throw;
3594       return (struct rs6000_frame_cache *) (*this_cache);
3595     }
3596 
3597   /* If the function appears to be frameless, check a couple of likely
3598      indicators that we have simply failed to find the frame setup.
3599      Two common cases of this are missing symbols (i.e.
3600      get_frame_func returns the wrong address or 0), and assembly
3601      stubs which have a fast exit path but set up a frame on the slow
3602      path.
3603 
3604      If the LR appears to return to this function, then presume that
3605      we have an ABI compliant frame that we failed to find.  */
3606   if (fdata.frameless && fdata.lr_offset == 0)
3607     {
3608       CORE_ADDR saved_lr;
3609       int make_frame = 0;
3610 
3611       saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3612       if (func == 0 && saved_lr == pc)
3613 	make_frame = 1;
3614       else if (func != 0)
3615 	{
3616 	  CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3617 	  if (func == saved_func)
3618 	    make_frame = 1;
3619 	}
3620 
3621       if (make_frame)
3622 	{
3623 	  fdata.frameless = 0;
3624 	  fdata.lr_offset = tdep->lr_frame_offset;
3625 	}
3626     }
3627 
3628   if (!fdata.frameless)
3629     {
3630       /* Frameless really means stackless.  */
3631       ULONGEST backchain;
3632 
3633       if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3634 					     byte_order, &backchain))
3635 	cache->base = (CORE_ADDR) backchain;
3636     }
3637 
3638   cache->saved_regs[gdbarch_sp_regnum (gdbarch)].set_value (cache->base);
3639 
3640   /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3641      All fpr's from saved_fpr to fp31 are saved.  */
3642 
3643   if (fdata.saved_fpr >= 0)
3644     {
3645       int i;
3646       CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3647 
3648       /* If skip_prologue says floating-point registers were saved,
3649 	 but the current architecture has no floating-point registers,
3650 	 then that's strange.  But we have no indices to even record
3651 	 the addresses under, so we just ignore it.  */
3652       if (ppc_floating_point_unit_p (gdbarch))
3653 	for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3654 	  {
3655 	    cache->saved_regs[tdep->ppc_fp0_regnum + i].set_addr (fpr_addr);
3656 	    fpr_addr += 8;
3657 	  }
3658     }
3659 
3660   /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3661      All gpr's from saved_gpr to gpr31 are saved (except during the
3662      prologue).  */
3663 
3664   if (fdata.saved_gpr >= 0)
3665     {
3666       int i;
3667       CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3668       for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3669 	{
3670 	  if (fdata.gpr_mask & (1U << i))
3671 	    cache->saved_regs[tdep->ppc_gp0_regnum + i].set_addr (gpr_addr);
3672 	  gpr_addr += wordsize;
3673 	}
3674     }
3675 
3676   /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3677      All vr's from saved_vr to vr31 are saved.  */
3678   if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3679     {
3680       if (fdata.saved_vr >= 0)
3681 	{
3682 	  int i;
3683 	  CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3684 	  for (i = fdata.saved_vr; i < 32; i++)
3685 	    {
3686 	      cache->saved_regs[tdep->ppc_vr0_regnum + i].set_addr (vr_addr);
3687 	      vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3688 	    }
3689 	}
3690     }
3691 
3692   /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3693      All vr's from saved_ev to ev31 are saved. ?????  */
3694   if (tdep->ppc_ev0_regnum != -1)
3695     {
3696       if (fdata.saved_ev >= 0)
3697 	{
3698 	  int i;
3699 	  CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3700 	  CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3701 
3702 	  for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3703 	    {
3704 	      cache->saved_regs[tdep->ppc_ev0_regnum + i].set_addr (ev_addr);
3705 	      cache->saved_regs[tdep->ppc_gp0_regnum + i].set_addr (ev_addr
3706 								    + off);
3707 	      ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3708 	    }
3709 	}
3710     }
3711 
3712   /* If != 0, fdata.cr_offset is the offset from the frame that
3713      holds the CR.  */
3714   if (fdata.cr_offset != 0)
3715     cache->saved_regs[tdep->ppc_cr_regnum].set_addr (cache->base
3716 						     + fdata.cr_offset);
3717 
3718   /* If != 0, fdata.lr_offset is the offset from the frame that
3719      holds the LR.  */
3720   if (fdata.lr_offset != 0)
3721     cache->saved_regs[tdep->ppc_lr_regnum].set_addr (cache->base
3722 						     + fdata.lr_offset);
3723   else if (fdata.lr_register != -1)
3724     cache->saved_regs[tdep->ppc_lr_regnum].set_realreg (fdata.lr_register);
3725   /* The PC is found in the link register.  */
3726   cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3727     cache->saved_regs[tdep->ppc_lr_regnum];
3728 
3729   /* If != 0, fdata.vrsave_offset is the offset from the frame that
3730      holds the VRSAVE.  */
3731   if (fdata.vrsave_offset != 0)
3732     cache->saved_regs[tdep->ppc_vrsave_regnum].set_addr (cache->base
3733 							 + fdata.vrsave_offset);
3734 
3735   if (fdata.alloca_reg < 0)
3736     /* If no alloca register used, then fi->frame is the value of the
3737        %sp for this frame, and it is good enough.  */
3738     cache->initial_sp
3739       = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3740   else
3741     cache->initial_sp
3742       = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3743 
3744   cache->base_p = 1;
3745   return cache;
3746 }
3747 
3748 static void
3749 rs6000_frame_this_id (frame_info_ptr this_frame, void **this_cache,
3750 		      struct frame_id *this_id)
3751 {
3752   struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3753 							this_cache);
3754 
3755   if (!info->base_p)
3756     {
3757       (*this_id) = frame_id_build_unavailable_stack (info->pc);
3758       return;
3759     }
3760 
3761   /* This marks the outermost frame.  */
3762   if (info->base == 0)
3763     return;
3764 
3765   (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3766 }
3767 
3768 static struct value *
3769 rs6000_frame_prev_register (frame_info_ptr this_frame,
3770 			    void **this_cache, int regnum)
3771 {
3772   struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3773 							this_cache);
3774   return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3775 }
3776 
3777 static const struct frame_unwind rs6000_frame_unwind =
3778 {
3779   "rs6000 prologue",
3780   NORMAL_FRAME,
3781   default_frame_unwind_stop_reason,
3782   rs6000_frame_this_id,
3783   rs6000_frame_prev_register,
3784   NULL,
3785   default_frame_sniffer
3786 };
3787 
3788 /* Allocate and initialize a frame cache for an epilogue frame.
3789    SP is restored and prev-PC is stored in LR.  */
3790 
3791 static struct rs6000_frame_cache *
3792 rs6000_epilogue_frame_cache (frame_info_ptr this_frame, void **this_cache)
3793 {
3794   struct rs6000_frame_cache *cache;
3795   struct gdbarch *gdbarch = get_frame_arch (this_frame);
3796   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3797 
3798   if (*this_cache)
3799     return (struct rs6000_frame_cache *) *this_cache;
3800 
3801   cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3802   (*this_cache) = cache;
3803   cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3804 
3805   try
3806     {
3807       /* At this point the stack looks as if we just entered the
3808 	 function, and the return address is stored in LR.  */
3809       CORE_ADDR sp, lr;
3810 
3811       sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3812       lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3813 
3814       cache->base = sp;
3815       cache->initial_sp = sp;
3816 
3817       cache->saved_regs[gdbarch_pc_regnum (gdbarch)].set_value (lr);
3818     }
3819   catch (const gdb_exception_error &ex)
3820     {
3821       if (ex.error != NOT_AVAILABLE_ERROR)
3822 	throw;
3823     }
3824 
3825   return cache;
3826 }
3827 
3828 /* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3829    Return the frame ID of an epilogue frame.  */
3830 
3831 static void
3832 rs6000_epilogue_frame_this_id (frame_info_ptr this_frame,
3833 			       void **this_cache, struct frame_id *this_id)
3834 {
3835   CORE_ADDR pc;
3836   struct rs6000_frame_cache *info =
3837     rs6000_epilogue_frame_cache (this_frame, this_cache);
3838 
3839   pc = get_frame_func (this_frame);
3840   if (info->base == 0)
3841     (*this_id) = frame_id_build_unavailable_stack (pc);
3842   else
3843     (*this_id) = frame_id_build (info->base, pc);
3844 }
3845 
3846 /* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3847    Return the register value of REGNUM in previous frame.  */
3848 
3849 static struct value *
3850 rs6000_epilogue_frame_prev_register (frame_info_ptr this_frame,
3851 				     void **this_cache, int regnum)
3852 {
3853   struct rs6000_frame_cache *info =
3854     rs6000_epilogue_frame_cache (this_frame, this_cache);
3855   return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3856 }
3857 
3858 /* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3859    Check whether this an epilogue frame.  */
3860 
3861 static int
3862 rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3863 			       frame_info_ptr this_frame,
3864 			       void **this_prologue_cache)
3865 {
3866   if (frame_relative_level (this_frame) == 0)
3867     return rs6000_in_function_epilogue_frame_p (this_frame,
3868 						get_frame_arch (this_frame),
3869 						get_frame_pc (this_frame));
3870   else
3871     return 0;
3872 }
3873 
3874 /* Frame unwinder for epilogue frame.  This is required for reverse step-over
3875    a function without debug information.  */
3876 
3877 static const struct frame_unwind rs6000_epilogue_frame_unwind =
3878 {
3879   "rs6000 epilogue",
3880   NORMAL_FRAME,
3881   default_frame_unwind_stop_reason,
3882   rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3883   NULL,
3884   rs6000_epilogue_frame_sniffer
3885 };
3886 
3887 
3888 static CORE_ADDR
3889 rs6000_frame_base_address (frame_info_ptr this_frame, void **this_cache)
3890 {
3891   struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3892 							this_cache);
3893   return info->initial_sp;
3894 }
3895 
3896 static const struct frame_base rs6000_frame_base = {
3897   &rs6000_frame_unwind,
3898   rs6000_frame_base_address,
3899   rs6000_frame_base_address,
3900   rs6000_frame_base_address
3901 };
3902 
3903 static const struct frame_base *
3904 rs6000_frame_base_sniffer (frame_info_ptr this_frame)
3905 {
3906   return &rs6000_frame_base;
3907 }
3908 
3909 /* DWARF-2 frame support.  Used to handle the detection of
3910   clobbered registers during function calls.  */
3911 
3912 static void
3913 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3914 			    struct dwarf2_frame_state_reg *reg,
3915 			    frame_info_ptr this_frame)
3916 {
3917   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3918 
3919   /* PPC32 and PPC64 ABI's are the same regarding volatile and
3920      non-volatile registers.  We will use the same code for both.  */
3921 
3922   /* Call-saved GP registers.  */
3923   if ((regnum >= tdep->ppc_gp0_regnum + 14
3924       && regnum <= tdep->ppc_gp0_regnum + 31)
3925       || (regnum == tdep->ppc_gp0_regnum + 1))
3926     reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3927 
3928   /* Call-clobbered GP registers.  */
3929   if ((regnum >= tdep->ppc_gp0_regnum + 3
3930       && regnum <= tdep->ppc_gp0_regnum + 12)
3931       || (regnum == tdep->ppc_gp0_regnum))
3932     reg->how = DWARF2_FRAME_REG_UNDEFINED;
3933 
3934   /* Deal with FP registers, if supported.  */
3935   if (tdep->ppc_fp0_regnum >= 0)
3936     {
3937       /* Call-saved FP registers.  */
3938       if ((regnum >= tdep->ppc_fp0_regnum + 14
3939 	  && regnum <= tdep->ppc_fp0_regnum + 31))
3940 	reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3941 
3942       /* Call-clobbered FP registers.  */
3943       if ((regnum >= tdep->ppc_fp0_regnum
3944 	  && regnum <= tdep->ppc_fp0_regnum + 13))
3945 	reg->how = DWARF2_FRAME_REG_UNDEFINED;
3946     }
3947 
3948   /* Deal with ALTIVEC registers, if supported.  */
3949   if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3950     {
3951       /* Call-saved Altivec registers.  */
3952       if ((regnum >= tdep->ppc_vr0_regnum + 20
3953 	  && regnum <= tdep->ppc_vr0_regnum + 31)
3954 	  || regnum == tdep->ppc_vrsave_regnum)
3955 	reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3956 
3957       /* Call-clobbered Altivec registers.  */
3958       if ((regnum >= tdep->ppc_vr0_regnum
3959 	  && regnum <= tdep->ppc_vr0_regnum + 19))
3960 	reg->how = DWARF2_FRAME_REG_UNDEFINED;
3961     }
3962 
3963   /* Handle PC register and Stack Pointer correctly.  */
3964   if (regnum == gdbarch_pc_regnum (gdbarch))
3965     reg->how = DWARF2_FRAME_REG_RA;
3966   else if (regnum == gdbarch_sp_regnum (gdbarch))
3967     reg->how = DWARF2_FRAME_REG_CFA;
3968 }
3969 
3970 
3971 /* Return true if a .gnu_attributes section exists in BFD and it
3972    indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3973    section exists in BFD and it indicates that SPE extensions are in
3974    use.  Check the .gnu.attributes section first, as the binary might be
3975    compiled for SPE, but not actually using SPE instructions.  */
3976 
3977 static int
3978 bfd_uses_spe_extensions (bfd *abfd)
3979 {
3980   asection *sect;
3981   gdb_byte *contents = NULL;
3982   bfd_size_type size;
3983   gdb_byte *ptr;
3984   int success = 0;
3985 
3986   if (!abfd)
3987     return 0;
3988 
3989 #ifdef HAVE_ELF
3990   /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3991      could be using the SPE vector abi without actually using any spe
3992      bits whatsoever.  But it's close enough for now.  */
3993   int vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3994 					     Tag_GNU_Power_ABI_Vector);
3995   if (vector_abi == 3)
3996     return 1;
3997 #endif
3998 
3999   sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
4000   if (!sect)
4001     return 0;
4002 
4003   size = bfd_section_size (sect);
4004   contents = (gdb_byte *) xmalloc (size);
4005   if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
4006     {
4007       xfree (contents);
4008       return 0;
4009     }
4010 
4011   /* Parse the .PPC.EMB.apuinfo section.  The layout is as follows:
4012 
4013      struct {
4014        uint32 name_len;
4015        uint32 data_len;
4016        uint32 type;
4017        char name[name_len rounded up to 4-byte alignment];
4018        char data[data_len];
4019      };
4020 
4021      Technically, there's only supposed to be one such structure in a
4022      given apuinfo section, but the linker is not always vigilant about
4023      merging apuinfo sections from input files.  Just go ahead and parse
4024      them all, exiting early when we discover the binary uses SPE
4025      insns.
4026 
4027      It's not specified in what endianness the information in this
4028      section is stored.  Assume that it's the endianness of the BFD.  */
4029   ptr = contents;
4030   while (1)
4031     {
4032       unsigned int name_len;
4033       unsigned int data_len;
4034       unsigned int type;
4035 
4036       /* If we can't read the first three fields, we're done.  */
4037       if (size < 12)
4038 	break;
4039 
4040       name_len = bfd_get_32 (abfd, ptr);
4041       name_len = (name_len + 3) & ~3U; /* Round to 4 bytes.  */
4042       data_len = bfd_get_32 (abfd, ptr + 4);
4043       type = bfd_get_32 (abfd, ptr + 8);
4044       ptr += 12;
4045 
4046       /* The name must be "APUinfo\0".  */
4047       if (name_len != 8
4048 	  && strcmp ((const char *) ptr, "APUinfo") != 0)
4049 	break;
4050       ptr += name_len;
4051 
4052       /* The type must be 2.  */
4053       if (type != 2)
4054 	break;
4055 
4056       /* The data is stored as a series of uint32.  The upper half of
4057 	 each uint32 indicates the particular APU used and the lower
4058 	 half indicates the revision of that APU.  We just care about
4059 	 the upper half.  */
4060 
4061       /* Not 4-byte quantities.  */
4062       if (data_len & 3U)
4063 	break;
4064 
4065       while (data_len)
4066 	{
4067 	  unsigned int apuinfo = bfd_get_32 (abfd, ptr);
4068 	  unsigned int apu = apuinfo >> 16;
4069 	  ptr += 4;
4070 	  data_len -= 4;
4071 
4072 	  /* The SPE APU is 0x100; the SPEFP APU is 0x101.  Accept
4073 	     either.  */
4074 	  if (apu == 0x100 || apu == 0x101)
4075 	    {
4076 	      success = 1;
4077 	      data_len = 0;
4078 	    }
4079 	}
4080 
4081       if (success)
4082 	break;
4083     }
4084 
4085   xfree (contents);
4086   return success;
4087 }
4088 
4089 /* These are macros for parsing instruction fields (I.1.6.28)  */
4090 
4091 #define PPC_FIELD(value, from, len) \
4092 	(((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
4093 #define PPC_SEXT(v, bs) \
4094 	((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
4095 	  ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
4096 	 - ((CORE_ADDR) 1 << ((bs) - 1)))
4097 #define PPC_OP6(insn)	PPC_FIELD (insn, 0, 6)
4098 #define PPC_EXTOP(insn)	PPC_FIELD (insn, 21, 10)
4099 #define PPC_RT(insn)	PPC_FIELD (insn, 6, 5)
4100 #define PPC_RS(insn)	PPC_FIELD (insn, 6, 5)
4101 #define PPC_RA(insn)	PPC_FIELD (insn, 11, 5)
4102 #define PPC_RB(insn)	PPC_FIELD (insn, 16, 5)
4103 #define PPC_NB(insn)	PPC_FIELD (insn, 16, 5)
4104 #define PPC_VRT(insn)	PPC_FIELD (insn, 6, 5)
4105 #define PPC_FRT(insn)	PPC_FIELD (insn, 6, 5)
4106 #define PPC_SPR(insn)	(PPC_FIELD (insn, 11, 5) \
4107 			| (PPC_FIELD (insn, 16, 5) << 5))
4108 #define PPC_BO(insn)	PPC_FIELD (insn, 6, 5)
4109 #define PPC_T(insn)	PPC_FIELD (insn, 6, 5)
4110 #define PPC_D(insn)	PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
4111 #define PPC_DS(insn)	PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
4112 #define PPC_DQ(insn)	PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
4113 #define PPC_BIT(insn,n)	((insn & (1 << (31 - (n)))) ? 1 : 0)
4114 #define PPC_OE(insn)	PPC_BIT (insn, 21)
4115 #define PPC_RC(insn)	PPC_BIT (insn, 31)
4116 #define PPC_Rc(insn)	PPC_BIT (insn, 21)
4117 #define PPC_LK(insn)	PPC_BIT (insn, 31)
4118 #define PPC_TX(insn)	PPC_BIT (insn, 31)
4119 #define PPC_LEV(insn)	PPC_FIELD (insn, 20, 7)
4120 
4121 #define PPC_XT(insn)	((PPC_TX (insn) << 5) | PPC_T (insn))
4122 #define PPC_XTp(insn)	((PPC_BIT (insn, 10) << 5)	\
4123 			 | PPC_FIELD (insn, 6, 4) << 1)
4124 #define PPC_XSp(insn)	((PPC_BIT (insn, 10) << 5)	\
4125 			 | PPC_FIELD (insn, 6, 4) << 1)
4126 #define PPC_XER_NB(xer)	(xer & 0x7f)
4127 
4128 /* The following macros are for the prefixed instructions.  */
4129 #define P_PPC_D(insn_prefix, insn_suffix) \
4130   PPC_SEXT (PPC_FIELD (insn_prefix, 14, 18) << 16 \
4131 	    | PPC_FIELD (insn_suffix, 16, 16), 34)
4132 #define P_PPC_TX5(insn_sufix)	PPC_BIT (insn_suffix, 5)
4133 #define P_PPC_TX15(insn_suffix) PPC_BIT (insn_suffix, 15)
4134 #define P_PPC_XT(insn_suffix)	((PPC_TX (insn_suffix) << 5) \
4135 				 | PPC_T (insn_suffix))
4136 #define P_PPC_XT5(insn_suffix) ((P_PPC_TX5 (insn_suffix) << 5) \
4137 				| PPC_T (insn_suffix))
4138 #define P_PPC_XT15(insn_suffix) \
4139   ((P_PPC_TX15 (insn_suffix) << 5) | PPC_T (insn_suffix))
4140 
4141 /* Record Vector-Scalar Registers.
4142    For VSR less than 32, it's represented by an FPR and an VSR-upper register.
4143    Otherwise, it's just a VR register.  Record them accordingly.  */
4144 
4145 static int
4146 ppc_record_vsr (struct regcache *regcache, ppc_gdbarch_tdep *tdep, int vsr)
4147 {
4148   if (vsr < 0 || vsr >= 64)
4149     return -1;
4150 
4151   if (vsr >= 32)
4152     {
4153       if (tdep->ppc_vr0_regnum >= 0)
4154 	record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
4155     }
4156   else
4157     {
4158       if (tdep->ppc_fp0_regnum >= 0)
4159 	record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
4160       if (tdep->ppc_vsr0_upper_regnum >= 0)
4161 	record_full_arch_list_add_reg (regcache,
4162 				       tdep->ppc_vsr0_upper_regnum + vsr);
4163     }
4164 
4165   return 0;
4166 }
4167 
4168 /* The ppc_record_ACC_fpscr() records the changes to the VSR registers
4169    modified by a floating point instruction.  The ENTRY argument selects which
4170    of the eight AT entries needs to be recorded.  The boolean SAVE_FPSCR
4171    argument is set to TRUE to indicate the FPSCR also needs to be recorded.
4172    The function returns 0 on success.  */
4173 
4174 static int
4175 ppc_record_ACC_fpscr (struct regcache *regcache, ppc_gdbarch_tdep *tdep,
4176 		      int entry, bool save_fpscr)
4177 {
4178   int i;
4179   if (entry < 0 || entry >= 8)
4180     return -1;
4181 
4182   /* The ACC register file consists of 8 register entries, each register
4183      entry consist of four 128-bit rows.
4184 
4185      The ACC rows map to specific VSR registers.
4186          ACC[0][0] -> VSR[0]
4187          ACC[0][1] -> VSR[1]
4188          ACC[0][2] -> VSR[2]
4189          ACC[0][3] -> VSR[3]
4190               ...
4191          ACC[7][0] -> VSR[28]
4192          ACC[7][1] -> VSR[29]
4193          ACC[7][2] -> VSR[30]
4194          ACC[7][3] -> VSR[31]
4195 
4196      NOTE:
4197      In ISA 3.1 the ACC is mapped on top of VSR[0] thru VSR[31].
4198 
4199      In the future, the ACC may be implemented as an independent register file
4200      rather than mapping on top of the VSRs.  This will then require the ACC to
4201      be assigned its own register number and the ptrace interface to be able
4202      access the ACC.  Note the ptrace interface for the ACC will also need to
4203      be implemented.  */
4204 
4205   /* ACC maps over the same VSR space as the fp registers.  */
4206   for (i = 0; i < 4; i++)
4207     {
4208       record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum
4209 				     + entry * 4 + i);
4210       record_full_arch_list_add_reg (regcache,
4211 				     tdep->ppc_vsr0_upper_regnum
4212 				     + entry * 4 + i);
4213     }
4214 
4215   if (save_fpscr)
4216     record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4217 
4218   return 0;
4219 }
4220 
4221 /* Parse and record instructions primary opcode-4 at ADDR.
4222    Return 0 if successful.  */
4223 
4224 static int
4225 ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
4226 			CORE_ADDR addr, uint32_t insn)
4227 {
4228   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
4229   int ext = PPC_FIELD (insn, 21, 11);
4230   int vra = PPC_FIELD (insn, 11, 5);
4231 
4232   switch (ext & 0x3f)
4233     {
4234     case 32:		/* Vector Multiply-High-Add Signed Halfword Saturate */
4235     case 33:		/* Vector Multiply-High-Round-Add Signed Halfword Saturate */
4236     case 39:		/* Vector Multiply-Sum Unsigned Halfword Saturate */
4237     case 41:		/* Vector Multiply-Sum Signed Halfword Saturate */
4238       record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4239       /* FALL-THROUGH */
4240     case 20:		/* Move To VSR Byte Mask Immediate opcode, b2 = 0,
4241 			   ignore bit 31 */
4242     case 21:		/* Move To VSR Byte Mask Immediate opcode, b2 = 1,
4243 			   ignore bit 31 */
4244     case 23:		/* Vector Multiply-Sum & write Carry-out Unsigned
4245 			   Doubleword */
4246     case 24:		/* Vector Extract Double Unsigned Byte to VSR
4247 			   using GPR-specified Left-Index */
4248     case 25:		/* Vector Extract Double Unsigned Byte to VSR
4249 			   using GPR-specified Right-Index */
4250     case 26:		/* Vector Extract Double Unsigned Halfword to VSR
4251 			   using GPR-specified Left-Index */
4252     case 27:		/* Vector Extract Double Unsigned Halfword to VSR
4253 			   using GPR-specified Right-Index */
4254     case 28:		/* Vector Extract Double Unsigned Word to VSR
4255 			   using GPR-specified Left-Index */
4256     case 29:		/* Vector Extract Double Unsigned Word to VSR
4257 			   using GPR-specified Right-Index */
4258     case 30:		/* Vector Extract Double Unsigned Doubleword to VSR
4259 			   using GPR-specified Left-Index */
4260     case 31:		/* Vector Extract Double Unsigned Doubleword to VSR
4261 			   using GPR-specified Right-Index */
4262     case 42:		/* Vector Select */
4263     case 43:		/* Vector Permute */
4264     case 59:		/* Vector Permute Right-indexed */
4265     case 22: 		/* Vector Shift
4266 			      Left  Double by Bit Immediate if insn[21] = 0
4267 			      Right Double by Bit Immediate if insn[21] = 1 */
4268     case 44:		/* Vector Shift Left Double by Octet Immediate */
4269     case 45:		/* Vector Permute and Exclusive-OR */
4270     case 60:		/* Vector Add Extended Unsigned Quadword Modulo */
4271     case 61:		/* Vector Add Extended & write Carry Unsigned Quadword */
4272     case 62:		/* Vector Subtract Extended Unsigned Quadword Modulo */
4273     case 63:		/* Vector Subtract Extended & write Carry Unsigned Quadword */
4274     case 34:		/* Vector Multiply-Low-Add Unsigned Halfword Modulo */
4275     case 35:		/* Vector Multiply-Sum Unsigned Doubleword Modulo */
4276     case 36:		/* Vector Multiply-Sum Unsigned Byte Modulo */
4277     case 37:		/* Vector Multiply-Sum Mixed Byte Modulo */
4278     case 38:		/* Vector Multiply-Sum Unsigned Halfword Modulo */
4279     case 40:		/* Vector Multiply-Sum Signed Halfword Modulo */
4280     case 46:		/* Vector Multiply-Add Single-Precision */
4281     case 47:		/* Vector Negative Multiply-Subtract Single-Precision */
4282       record_full_arch_list_add_reg (regcache,
4283 				     tdep->ppc_vr0_regnum + PPC_VRT (insn));
4284       return 0;
4285 
4286     case 48:		/* Multiply-Add High Doubleword */
4287     case 49:		/* Multiply-Add High Doubleword Unsigned */
4288     case 51:		/* Multiply-Add Low Doubleword */
4289       record_full_arch_list_add_reg (regcache,
4290 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
4291       return 0;
4292     }
4293 
4294   switch ((ext & 0x1ff))
4295     {
4296     case 385:
4297       if (vra != 0	/* Decimal Convert To Signed Quadword */
4298 	  && vra != 2	/* Decimal Convert From Signed Quadword */
4299 	  && vra != 4	/* Decimal Convert To Zoned */
4300 	  && vra != 5	/* Decimal Convert To National */
4301 	  && vra != 6	/* Decimal Convert From Zoned */
4302 	  && vra != 7	/* Decimal Convert From National */
4303 	  && vra != 31)	/* Decimal Set Sign */
4304 	break;
4305       /* Fall through.  */
4306 			/* 5.16 Decimal Integer Arithmetic Instructions */
4307     case 1:		/* Decimal Add Modulo */
4308     case 65:		/* Decimal Subtract Modulo */
4309 
4310     case 193:		/* Decimal Shift */
4311     case 129:		/* Decimal Unsigned Shift */
4312     case 449:		/* Decimal Shift and Round */
4313 
4314     case 257:		/* Decimal Truncate */
4315     case 321:		/* Decimal Unsigned Truncate */
4316 
4317       /* Bit-21 should be set.  */
4318       if (!PPC_BIT (insn, 21))
4319 	break;
4320 
4321       record_full_arch_list_add_reg (regcache,
4322 				     tdep->ppc_vr0_regnum + PPC_VRT (insn));
4323       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4324       return 0;
4325     }
4326 
4327   /* Bit-21 is used for RC */
4328   switch (ext & 0x3ff)
4329     {
4330     case 5:		/* Vector Rotate Left Quadword */
4331     case 69:		/* Vector Rotate Left Quadword then Mask Insert */
4332     case 325:		/* Vector Rotate Left Quadword then AND with Mask */
4333     case 6:		/* Vector Compare Equal To Unsigned Byte */
4334     case 70:		/* Vector Compare Equal To Unsigned Halfword */
4335     case 134:		/* Vector Compare Equal To Unsigned Word */
4336     case 199:		/* Vector Compare Equal To Unsigned Doubleword */
4337     case 774:		/* Vector Compare Greater Than Signed Byte */
4338     case 838:		/* Vector Compare Greater Than Signed Halfword */
4339     case 902:		/* Vector Compare Greater Than Signed Word */
4340     case 967:		/* Vector Compare Greater Than Signed Doubleword */
4341     case 903:		/* Vector Compare Greater Than Signed Quadword */
4342     case 518:		/* Vector Compare Greater Than Unsigned Byte */
4343     case 646:		/* Vector Compare Greater Than Unsigned Word */
4344     case 582:		/* Vector Compare Greater Than Unsigned Halfword */
4345     case 711:		/* Vector Compare Greater Than Unsigned Doubleword */
4346     case 647:		/* Vector Compare Greater Than Unsigned Quadword */
4347     case 966:		/* Vector Compare Bounds Single-Precision */
4348     case 198:		/* Vector Compare Equal To Single-Precision */
4349     case 454:		/* Vector Compare Greater Than or Equal To Single-Precision */
4350     case 455:		/* Vector Compare Equal Quadword */
4351     case 710:		/* Vector Compare Greater Than Single-Precision */
4352     case 7:		/* Vector Compare Not Equal Byte */
4353     case 71:		/* Vector Compare Not Equal Halfword */
4354     case 135:		/* Vector Compare Not Equal Word */
4355     case 263:		/* Vector Compare Not Equal or Zero Byte */
4356     case 327:		/* Vector Compare Not Equal or Zero Halfword */
4357     case 391:		/* Vector Compare Not Equal or Zero Word */
4358       if (PPC_Rc (insn))
4359 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4360       record_full_arch_list_add_reg (regcache,
4361 				     tdep->ppc_vr0_regnum + PPC_VRT (insn));
4362       return 0;
4363 
4364     case 13:
4365       switch (vra)    /* Bit-21 is used for RC */
4366 	{
4367 	case 0:       /* Vector String Isolate Byte Left-justified */
4368 	case 1:       /* Vector String Isolate Byte Right-justified */
4369 	case 2:       /* Vector String Isolate Halfword Left-justified */
4370 	case 3:       /* Vector String Isolate Halfword Right-justified */
4371 	  if (PPC_Rc (insn))
4372 	    record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4373 	  record_full_arch_list_add_reg (regcache,
4374 					 tdep->ppc_vr0_regnum
4375 					 + PPC_VRT (insn));
4376       return 0;
4377 	}
4378     }
4379 
4380   if (ext  == 1538)
4381     {
4382       switch (vra)
4383 	{
4384 	case 0:		/* Vector Count Leading Zero Least-Significant Bits
4385 			   Byte */
4386 	case 1:		/* Vector Count Trailing Zero Least-Significant Bits
4387 			   Byte */
4388 	  record_full_arch_list_add_reg (regcache,
4389 					 tdep->ppc_gp0_regnum + PPC_RT (insn));
4390 	  return 0;
4391 
4392 	case 6:		/* Vector Negate Word */
4393 	case 7:		/* Vector Negate Doubleword */
4394 	case 8:		/* Vector Parity Byte Word */
4395 	case 9:		/* Vector Parity Byte Doubleword */
4396 	case 10:	/* Vector Parity Byte Quadword */
4397 	case 16:	/* Vector Extend Sign Byte To Word */
4398 	case 17:	/* Vector Extend Sign Halfword To Word */
4399 	case 24:	/* Vector Extend Sign Byte To Doubleword */
4400 	case 25:	/* Vector Extend Sign Halfword To Doubleword */
4401 	case 26:	/* Vector Extend Sign Word To Doubleword */
4402 	case 27:	/* Vector Extend Sign Doubleword To Quadword */
4403 	case 28:	/* Vector Count Trailing Zeros Byte */
4404 	case 29:	/* Vector Count Trailing Zeros Halfword */
4405 	case 30:	/* Vector Count Trailing Zeros Word */
4406 	case 31:	/* Vector Count Trailing Zeros Doubleword */
4407 	  record_full_arch_list_add_reg (regcache,
4408 					 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4409 	  return 0;
4410 	}
4411     }
4412 
4413   if (ext == 1602)
4414     {
4415       switch (vra)
4416 	{
4417 	case 0: 	/* Vector Expand Byte Mask */
4418 	case 1: 	/* Vector Expand Halfword Mask */
4419 	case 2: 	/* Vector Expand Word Mask */
4420 	case 3: 	/* Vector Expand Doubleword Mask */
4421 	case 4: 	/* Vector Expand Quadword Mask */
4422 	case 16:	/* Move to VSR Byte Mask */
4423 	case 17:	/* Move to VSR Halfword Mask */
4424 	case 18:	/* Move to VSR Word Mask */
4425 	case 19:	/* Move to VSR Doubleword Mask */
4426 	case 20:	/* Move to VSR Quadword Mask */
4427 	  ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
4428 	  return 0;
4429 
4430 	case 8: 	/* Vector Extract Byte Mask */
4431 	case 9: 	/* Vector Extract Halfword Mask */
4432 	case 10: 	/* Vector Extract Word Mask */
4433 	case 11: 	/* Vector Extract Doubleword Mask */
4434 	case 12: 	/* Vector Extract Quadword Mask */
4435 
4436 	/* Ignore the MP bit in the LSB position of the vra value. */
4437 	case 24:	/* Vector Count Mask Bits Byte, MP = 0 */
4438 	case 25:	/* Vector Count Mask Bits Byte, MP = 1 */
4439 	case 26:	/* Vector Count Mask Bits Halfword, MP = 0 */
4440 	case 27:	/* Vector Count Mask Bits Halfword, MP = 1 */
4441 	case 28:	/* Vector Count Mask Bits Word, MP = 0 */
4442 	case 29:	/* Vector Count Mask Bits Word, MP = 1 */
4443 	case 30:	/* Vector Count Mask Bits Doubleword, MP = 0 */
4444 	case 31:	/* Vector Count Mask Bits Doubleword, MP = 1 */
4445 	  record_full_arch_list_add_reg (regcache,
4446 					 tdep->ppc_gp0_regnum + PPC_RT (insn));
4447 	  record_full_arch_list_add_reg (regcache,
4448 					 tdep->ppc_gp0_regnum + PPC_RT (insn));
4449 	  return 0;
4450 	}
4451     }
4452 
4453   switch (ext)
4454     {
4455 
4456     case 257:		/* Vector Compare Unsigned Quadword */
4457     case 321:		/* Vector Compare Signed Quadword */
4458       /* Comparison tests that always set CR field BF */
4459       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4460       record_full_arch_list_add_reg (regcache,
4461 				     tdep->ppc_vr0_regnum + PPC_VRT (insn));
4462       return 0;
4463 
4464     case 142:		/* Vector Pack Unsigned Halfword Unsigned Saturate */
4465     case 206:		/* Vector Pack Unsigned Word Unsigned Saturate */
4466     case 270:		/* Vector Pack Signed Halfword Unsigned Saturate */
4467     case 334:		/* Vector Pack Signed Word Unsigned Saturate */
4468     case 398:		/* Vector Pack Signed Halfword Signed Saturate */
4469     case 462:		/* Vector Pack Signed Word Signed Saturate */
4470     case 1230:		/* Vector Pack Unsigned Doubleword Unsigned Saturate */
4471     case 1358:		/* Vector Pack Signed Doubleword Unsigned Saturate */
4472     case 1486:		/* Vector Pack Signed Doubleword Signed Saturate */
4473     case 512:		/* Vector Add Unsigned Byte Saturate */
4474     case 576:		/* Vector Add Unsigned Halfword Saturate */
4475     case 640:		/* Vector Add Unsigned Word Saturate */
4476     case 768:		/* Vector Add Signed Byte Saturate */
4477     case 832:		/* Vector Add Signed Halfword Saturate */
4478     case 896:		/* Vector Add Signed Word Saturate */
4479     case 1536:		/* Vector Subtract Unsigned Byte Saturate */
4480     case 1600:		/* Vector Subtract Unsigned Halfword Saturate */
4481     case 1664:		/* Vector Subtract Unsigned Word Saturate */
4482     case 1792:		/* Vector Subtract Signed Byte Saturate */
4483     case 1856:		/* Vector Subtract Signed Halfword Saturate */
4484     case 1920:		/* Vector Subtract Signed Word Saturate */
4485 
4486     case 1544:		/* Vector Sum across Quarter Unsigned Byte Saturate */
4487     case 1800:		/* Vector Sum across Quarter Signed Byte Saturate */
4488     case 1608:		/* Vector Sum across Quarter Signed Halfword Saturate */
4489     case 1672:		/* Vector Sum across Half Signed Word Saturate */
4490     case 1928:		/* Vector Sum across Signed Word Saturate */
4491     case 970:		/* Vector Convert To Signed Fixed-Point Word Saturate */
4492     case 906:		/* Vector Convert To Unsigned Fixed-Point Word Saturate */
4493       record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4494       /* FALL-THROUGH */
4495     case 12:		/* Vector Merge High Byte */
4496     case 14:		/* Vector Pack Unsigned Halfword Unsigned Modulo */
4497     case 76:		/* Vector Merge High Halfword */
4498     case 78:		/* Vector Pack Unsigned Word Unsigned Modulo */
4499     case 140:		/* Vector Merge High Word */
4500     case 268:		/* Vector Merge Low Byte */
4501     case 332:		/* Vector Merge Low Halfword */
4502     case 396:		/* Vector Merge Low Word */
4503     case 397:		/* Vector Clear Leftmost Bytes */
4504     case 461:		/* Vector Clear Rightmost Bytes */
4505     case 526:		/* Vector Unpack High Signed Byte */
4506     case 590:		/* Vector Unpack High Signed Halfword */
4507     case 654:		/* Vector Unpack Low Signed Byte */
4508     case 718:		/* Vector Unpack Low Signed Halfword */
4509     case 782:		/* Vector Pack Pixel */
4510     case 846:		/* Vector Unpack High Pixel */
4511     case 974:		/* Vector Unpack Low Pixel */
4512     case 1102:		/* Vector Pack Unsigned Doubleword Unsigned Modulo */
4513     case 1614:		/* Vector Unpack High Signed Word */
4514     case 1676:		/* Vector Merge Odd Word */
4515     case 1742:		/* Vector Unpack Low Signed Word */
4516     case 1932:		/* Vector Merge Even Word */
4517     case 524:		/* Vector Splat Byte */
4518     case 588:		/* Vector Splat Halfword */
4519     case 652:		/* Vector Splat Word */
4520     case 780:		/* Vector Splat Immediate Signed Byte */
4521     case 844:		/* Vector Splat Immediate Signed Halfword */
4522     case 908:		/* Vector Splat Immediate Signed Word */
4523     case 261:		/* Vector Shift Left Quadword */
4524     case 452:		/* Vector Shift Left */
4525     case 517:		/* Vector Shift Right Quadword */
4526     case 708:		/* Vector Shift Right */
4527     case 773:		/* Vector Shift Right Algebraic Quadword */
4528     case 1036:		/* Vector Shift Left by Octet */
4529     case 1100:		/* Vector Shift Right by Octet */
4530     case 0:		/* Vector Add Unsigned Byte Modulo */
4531     case 64:		/* Vector Add Unsigned Halfword Modulo */
4532     case 128:		/* Vector Add Unsigned Word Modulo */
4533     case 192:		/* Vector Add Unsigned Doubleword Modulo */
4534     case 256:		/* Vector Add Unsigned Quadword Modulo */
4535     case 320:		/* Vector Add & write Carry Unsigned Quadword */
4536     case 384:		/* Vector Add and Write Carry-Out Unsigned Word */
4537     case 8:		/* Vector Multiply Odd Unsigned Byte */
4538     case 72:		/* Vector Multiply Odd Unsigned Halfword */
4539     case 136:		/* Vector Multiply Odd Unsigned Word */
4540     case 200:		/* Vector Multiply Odd Unsigned Doubleword */
4541     case 264:		/* Vector Multiply Odd Signed Byte */
4542     case 328:		/* Vector Multiply Odd Signed Halfword */
4543     case 392:		/* Vector Multiply Odd Signed Word */
4544     case 456:		/* Vector Multiply Odd Signed Doubleword */
4545     case 520:		/* Vector Multiply Even Unsigned Byte */
4546     case 584:		/* Vector Multiply Even Unsigned Halfword */
4547     case 648:		/* Vector Multiply Even Unsigned Word */
4548     case 712:		/* Vector Multiply Even Unsigned Doubleword */
4549     case 776:		/* Vector Multiply Even Signed Byte */
4550     case 840:		/* Vector Multiply Even Signed Halfword */
4551     case 904:		/* Vector Multiply Even Signed Word */
4552     case 968:		/* Vector Multiply Even Signed Doubleword */
4553     case 457:		/* Vector Multiply Low Doubleword */
4554     case 649:		/* Vector Multiply High Unsigned Word */
4555     case 713:		/* Vector Multiply High Unsigned Doubleword */
4556     case 905:		/* Vector Multiply High Signed Word */
4557     case 969:		/* Vector Multiply High Signed Doubleword */
4558     case 11:		/* Vector Divide Unsigned Quadword */
4559     case 203:		/* Vector Divide Unsigned Doubleword */
4560     case 139:		/* Vector Divide Unsigned Word */
4561     case 267:		/* Vector Divide Signed Quadword */
4562     case 459:		/* Vector Divide Signed Doubleword */
4563     case 395:		/* Vector Divide Signed Word */
4564     case 523:		/* Vector Divide Extended Unsigned Quadword */
4565     case 715:		/* Vector Divide Extended Unsigned Doubleword */
4566     case 651:		/* Vector Divide Extended Unsigned Word */
4567     case 779:		/* Vector Divide Extended Signed Quadword */
4568     case 971:		/* Vector Divide Extended Signed Doubleword */
4569     case 907:		/* Vector Divide Extended Unsigned Word */
4570     case 1547:		/* Vector Modulo Unsigned Quadword */
4571     case 1675:		/* Vector Modulo Unsigned Word */
4572     case 1739:		/* Vector Modulo Unsigned Doubleword */
4573     case 1803:		/* Vector Modulo Signed Quadword */
4574     case 1931:		/* Vector Modulo Signed Word */
4575     case 1995:		/* Vector Modulo Signed Doubleword */
4576 
4577     case 137:		/* Vector Multiply Unsigned Word Modulo */
4578     case 1024:		/* Vector Subtract Unsigned Byte Modulo */
4579     case 1088:		/* Vector Subtract Unsigned Halfword Modulo */
4580     case 1152:		/* Vector Subtract Unsigned Word Modulo */
4581     case 1216:		/* Vector Subtract Unsigned Doubleword Modulo */
4582     case 1280:		/* Vector Subtract Unsigned Quadword Modulo */
4583     case 1344:		/* Vector Subtract & write Carry Unsigned Quadword */
4584     case 1408:		/* Vector Subtract and Write Carry-Out Unsigned Word */
4585     case 1282:		/* Vector Average Signed Byte */
4586     case 1346:		/* Vector Average Signed Halfword */
4587     case 1410:		/* Vector Average Signed Word */
4588     case 1026:		/* Vector Average Unsigned Byte */
4589     case 1090:		/* Vector Average Unsigned Halfword */
4590     case 1154:		/* Vector Average Unsigned Word */
4591     case 258:		/* Vector Maximum Signed Byte */
4592     case 322:		/* Vector Maximum Signed Halfword */
4593     case 386:		/* Vector Maximum Signed Word */
4594     case 450:		/* Vector Maximum Signed Doubleword */
4595     case 2:		/* Vector Maximum Unsigned Byte */
4596     case 66:		/* Vector Maximum Unsigned Halfword */
4597     case 130:		/* Vector Maximum Unsigned Word */
4598     case 194:		/* Vector Maximum Unsigned Doubleword */
4599     case 770:		/* Vector Minimum Signed Byte */
4600     case 834:		/* Vector Minimum Signed Halfword */
4601     case 898:		/* Vector Minimum Signed Word */
4602     case 962:		/* Vector Minimum Signed Doubleword */
4603     case 514:		/* Vector Minimum Unsigned Byte */
4604     case 578:		/* Vector Minimum Unsigned Halfword */
4605     case 642:		/* Vector Minimum Unsigned Word */
4606     case 706:		/* Vector Minimum Unsigned Doubleword */
4607     case 1028:		/* Vector Logical AND */
4608     case 1668:		/* Vector Logical Equivalent */
4609     case 1092:		/* Vector Logical AND with Complement */
4610     case 1412:		/* Vector Logical NAND */
4611     case 1348:		/* Vector Logical OR with Complement */
4612     case 1156:		/* Vector Logical OR */
4613     case 1284:		/* Vector Logical NOR */
4614     case 1220:		/* Vector Logical XOR */
4615     case 4:		/* Vector Rotate Left Byte */
4616     case 132:		/* Vector Rotate Left Word VX-form */
4617     case 68:		/* Vector Rotate Left Halfword */
4618     case 196:		/* Vector Rotate Left Doubleword */
4619     case 260:		/* Vector Shift Left Byte */
4620     case 388:		/* Vector Shift Left Word */
4621     case 324:		/* Vector Shift Left Halfword */
4622     case 1476:		/* Vector Shift Left Doubleword */
4623     case 516:		/* Vector Shift Right Byte */
4624     case 644:		/* Vector Shift Right Word */
4625     case 580:		/* Vector Shift Right Halfword */
4626     case 1732:		/* Vector Shift Right Doubleword */
4627     case 772:		/* Vector Shift Right Algebraic Byte */
4628     case 900:		/* Vector Shift Right Algebraic Word */
4629     case 836:		/* Vector Shift Right Algebraic Halfword */
4630     case 964:		/* Vector Shift Right Algebraic Doubleword */
4631     case 10:		/* Vector Add Single-Precision */
4632     case 74:		/* Vector Subtract Single-Precision */
4633     case 1034:		/* Vector Maximum Single-Precision */
4634     case 1098:		/* Vector Minimum Single-Precision */
4635     case 842:		/* Vector Convert From Signed Fixed-Point Word */
4636     case 778:		/* Vector Convert From Unsigned Fixed-Point Word */
4637     case 714:		/* Vector Round to Single-Precision Integer toward -Infinity */
4638     case 522:		/* Vector Round to Single-Precision Integer Nearest */
4639     case 650:		/* Vector Round to Single-Precision Integer toward +Infinity */
4640     case 586:		/* Vector Round to Single-Precision Integer toward Zero */
4641     case 394:		/* Vector 2 Raised to the Exponent Estimate Floating-Point */
4642     case 458:		/* Vector Log Base 2 Estimate Floating-Point */
4643     case 266:		/* Vector Reciprocal Estimate Single-Precision */
4644     case 330:		/* Vector Reciprocal Square Root Estimate Single-Precision */
4645     case 1288:		/* Vector AES Cipher */
4646     case 1289:		/* Vector AES Cipher Last */
4647     case 1352:		/* Vector AES Inverse Cipher */
4648     case 1353:		/* Vector AES Inverse Cipher Last */
4649     case 1480:		/* Vector AES SubBytes */
4650     case 1730:		/* Vector SHA-512 Sigma Doubleword */
4651     case 1666:		/* Vector SHA-256 Sigma Word */
4652     case 1032:		/* Vector Polynomial Multiply-Sum Byte */
4653     case 1160:		/* Vector Polynomial Multiply-Sum Word */
4654     case 1096:		/* Vector Polynomial Multiply-Sum Halfword */
4655     case 1224:		/* Vector Polynomial Multiply-Sum Doubleword */
4656     case 1292:		/* Vector Gather Bits by Bytes by Doubleword */
4657     case 1794:		/* Vector Count Leading Zeros Byte */
4658     case 1858:		/* Vector Count Leading Zeros Halfword */
4659     case 1922:		/* Vector Count Leading Zeros Word */
4660     case 1924:		/* Vector Count Leading Zeros Doubleword under
4661 			   bit Mask*/
4662     case 1986:		/* Vector Count Leading Zeros Doubleword */
4663     case 1988:		/* Vector Count Trailing Zeros Doubleword under bit
4664 			   Mask */
4665     case 1795:		/* Vector Population Count Byte */
4666     case 1859:		/* Vector Population Count Halfword */
4667     case 1923:		/* Vector Population Count Word */
4668     case 1987:		/* Vector Population Count Doubleword */
4669     case 1356:		/* Vector Bit Permute Quadword */
4670     case 1484:		/* Vector Bit Permute Doubleword */
4671     case 513:		/* Vector Multiply-by-10 Unsigned Quadword */
4672     case 1:		/* Vector Multiply-by-10 & write Carry Unsigned
4673 			   Quadword */
4674     case 577:		/* Vector Multiply-by-10 Extended Unsigned Quadword */
4675     case 65:		/* Vector Multiply-by-10 Extended & write Carry
4676 			   Unsigned Quadword */
4677     case 1027:		/* Vector Absolute Difference Unsigned Byte */
4678     case 1091:		/* Vector Absolute Difference Unsigned Halfword */
4679     case 1155:		/* Vector Absolute Difference Unsigned Word */
4680     case 1796:		/* Vector Shift Right Variable */
4681     case 1860:		/* Vector Shift Left Variable */
4682     case 133:		/* Vector Rotate Left Word then Mask Insert */
4683     case 197:		/* Vector Rotate Left Doubleword then Mask Insert */
4684     case 389:		/* Vector Rotate Left Word then AND with Mask */
4685     case 453:		/* Vector Rotate Left Doubleword then AND with Mask */
4686     case 525:		/* Vector Extract Unsigned Byte */
4687     case 589:		/* Vector Extract Unsigned Halfword */
4688     case 653:		/* Vector Extract Unsigned Word */
4689     case 717:		/* Vector Extract Doubleword */
4690     case 15:		/* Vector Insert Byte from VSR using GPR-specified
4691 			   Left-Index */
4692     case 79:		/* Vector Insert Halfword from VSR using GPR-specified
4693 			   Left-Index */
4694     case 143:		/* Vector Insert Word from VSR using GPR-specified
4695 			   Left-Index */
4696     case 207:		/* Vector Insert Word from GPR using
4697 			   immediate-specified index */
4698     case 463:		/* Vector Insert Doubleword from GPR using
4699 			   immediate-specified index */
4700     case 271:		/* Vector Insert Byte from VSR using GPR-specified
4701 			   Right-Index */
4702     case 335:		/* Vector Insert Halfword from VSR using GPR-specified
4703 			   Right-Index */
4704     case 399:		/* Vector Insert Word from VSR using GPR-specified
4705 			   Right-Index */
4706     case 527:		/* Vector Insert Byte from GPR using GPR-specified
4707 			   Left-Index */
4708     case 591:		/* Vector Insert Halfword from GPR using GPR-specified
4709 			   Left-Index */
4710     case 655:		/* Vector Insert Word from GPR using GPR-specified
4711 			   Left-Index */
4712     case 719:		/* Vector Insert Doubleword from GPR using
4713 			    GPR-specified Left-Index */
4714     case 783:		/* Vector Insert Byte from GPR using GPR-specified
4715 			   Right-Index */
4716     case 847:		/* Vector Insert Halfword from GPR using GPR-specified
4717 			   Left-Index */
4718     case 911:		/* Vector Insert Word from GPR using GPR-specified
4719 			   Left-Index */
4720     case 975:		/* Vector Insert Doubleword from GPR using
4721 			    GPR-specified Right-Index */
4722     case 781:		/* Vector Insert Byte */
4723     case 845:		/* Vector Insert Halfword */
4724     case 909:		/* Vector Insert Word */
4725     case 973:		/* Vector Insert Doubleword */
4726     case 1357:		/* Vector Centrifuge Doubleword */
4727     case 1421:		/* Vector Parallel Bits Extract Doubleword */
4728     case 1485:		/* Vector Parallel Bits Deposit Doubleword */
4729       record_full_arch_list_add_reg (regcache,
4730 				     tdep->ppc_vr0_regnum + PPC_VRT (insn));
4731       return 0;
4732 
4733     case 1228:		/* Vector Gather every Nth Bit */
4734     case 1549:		/* Vector Extract Unsigned Byte Left-Indexed */
4735     case 1613:		/* Vector Extract Unsigned Halfword Left-Indexed */
4736     case 1677:		/* Vector Extract Unsigned Word Left-Indexed */
4737     case 1805:		/* Vector Extract Unsigned Byte Right-Indexed */
4738     case 1869:		/* Vector Extract Unsigned Halfword Right-Indexed */
4739     case 1933:		/* Vector Extract Unsigned Word Right-Indexed */
4740       record_full_arch_list_add_reg (regcache,
4741 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
4742       return 0;
4743 
4744     case 1604:		/* Move To Vector Status and Control Register */
4745       record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4746       return 0;
4747     case 1540:		/* Move From Vector Status and Control Register */
4748       record_full_arch_list_add_reg (regcache,
4749 				     tdep->ppc_vr0_regnum + PPC_VRT (insn));
4750       return 0;
4751     case 833:		/* Decimal Copy Sign */
4752       record_full_arch_list_add_reg (regcache,
4753 				     tdep->ppc_vr0_regnum + PPC_VRT (insn));
4754       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4755       return 0;
4756     }
4757 
4758   gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
4759 	      "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
4760   return -1;
4761 }
4762 
4763 /* Parse and record instructions of primary opcode 6 at ADDR.
4764    Return 0 if successful.  */
4765 
4766 static int
4767 ppc_process_record_op6 (struct gdbarch *gdbarch, struct regcache *regcache,
4768 			CORE_ADDR addr, uint32_t insn)
4769 {
4770   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
4771   int subtype = PPC_FIELD (insn, 28, 4);
4772   CORE_ADDR ea = 0;
4773 
4774   switch (subtype)
4775     {
4776     case 0:    /* Load VSX Vector Paired */
4777       ppc_record_vsr (regcache, tdep, PPC_XTp (insn));
4778       ppc_record_vsr (regcache, tdep, PPC_XTp (insn) + 1);
4779       return 0;
4780     case 1:    /* Store VSX Vector Paired */
4781       if (PPC_RA (insn) != 0)
4782 	regcache_raw_read_unsigned (regcache,
4783 				    tdep->ppc_gp0_regnum + PPC_RA (insn), &ea);
4784       ea += PPC_DQ (insn) << 4;
4785       record_full_arch_list_add_mem (ea, 32);
4786       return 0;
4787     }
4788   return -1;
4789 }
4790 
4791 /* Parse and record instructions of primary opcode-19 at ADDR.
4792    Return 0 if successful.  */
4793 
4794 static int
4795 ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4796 			   CORE_ADDR addr, uint32_t insn)
4797 {
4798   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
4799   int ext = PPC_EXTOP (insn);
4800 
4801   switch (ext & 0x01f)
4802     {
4803     case 2:		/* Add PC Immediate Shifted */
4804       record_full_arch_list_add_reg (regcache,
4805 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
4806       return 0;
4807     }
4808 
4809   switch (ext)
4810     {
4811     case 0:		/* Move Condition Register Field */
4812     case 33:		/* Condition Register NOR */
4813     case 129:		/* Condition Register AND with Complement */
4814     case 193:		/* Condition Register XOR */
4815     case 225:		/* Condition Register NAND */
4816     case 257:		/* Condition Register AND */
4817     case 289:		/* Condition Register Equivalent */
4818     case 417:		/* Condition Register OR with Complement */
4819     case 449:		/* Condition Register OR */
4820       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4821       return 0;
4822 
4823     case 16:		/* Branch Conditional */
4824     case 560:		/* Branch Conditional to Branch Target Address Register */
4825       if ((PPC_BO (insn) & 0x4) == 0)
4826 	record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4827       /* FALL-THROUGH */
4828     case 528:		/* Branch Conditional to Count Register */
4829       if (PPC_LK (insn))
4830 	record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4831       return 0;
4832 
4833     case 150:		/* Instruction Synchronize */
4834       /* Do nothing.  */
4835       return 0;
4836     }
4837 
4838   gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
4839 	      "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
4840   return -1;
4841 }
4842 
4843 /* Parse and record instructions of primary opcode-31 with the extended opcode
4844    177.  The argument is the word instruction (insn).  Return 0 if successful.
4845 */
4846 
4847 static int
4848 ppc_process_record_op31_177 (struct gdbarch *gdbarch,
4849 			     struct regcache *regcache,
4850 			     uint32_t insn)
4851 {
4852   int RA_opcode = PPC_RA(insn);
4853   int as = PPC_FIELD (insn, 6, 3);
4854   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
4855 
4856   switch (RA_opcode)
4857     {
4858     case 0: 		/* VSX Move From Accumulator, xxmfacc */
4859     case 1: 		/* VSX Move To Accumulator, xxmtacc */
4860     case 3: 		/* VSX Set Accumulator to Zero, xxsetaccz */
4861       ppc_record_ACC_fpscr (regcache, tdep, as, false);
4862       return 0;
4863     }
4864   return -1;
4865 }
4866 
4867 /* Parse and record instructions of primary opcode-31 at ADDR.
4868    Return 0 if successful.  */
4869 
4870 static int
4871 ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4872 			   CORE_ADDR addr, uint32_t insn)
4873 {
4874   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
4875   int ext = PPC_EXTOP (insn);
4876   int tmp, nr, nb = 0, i;
4877   CORE_ADDR at_dcsz, ea = 0;
4878   ULONGEST rb, ra, xer;
4879   int size = 0;
4880 
4881   /* These instructions have OE bit.  */
4882   switch (ext & 0x1ff)
4883     {
4884     /* These write RT and XER.  Update CR if RC is set.  */
4885     case 8:		/* Subtract from carrying */
4886     case 10:		/* Add carrying */
4887     case 136:		/* Subtract from extended */
4888     case 138:		/* Add extended */
4889     case 200:		/* Subtract from zero extended */
4890     case 202:		/* Add to zero extended */
4891     case 232:		/* Subtract from minus one extended */
4892     case 234:		/* Add to minus one extended */
4893       /* CA is always altered, but SO/OV are only altered when OE=1.
4894 	 In any case, XER is always altered.  */
4895       record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4896       if (PPC_RC (insn))
4897 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4898       record_full_arch_list_add_reg (regcache,
4899 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
4900       return 0;
4901 
4902     /* These write RT.  Update CR if RC is set and update XER if OE is set.  */
4903     case 40:		/* Subtract from */
4904     case 104:		/* Negate */
4905     case 233:		/* Multiply low doubleword */
4906     case 235:		/* Multiply low word */
4907     case 266:		/* Add */
4908     case 393:		/* Divide Doubleword Extended Unsigned */
4909     case 395:		/* Divide Word Extended Unsigned */
4910     case 425:		/* Divide Doubleword Extended */
4911     case 427:		/* Divide Word Extended */
4912     case 457:		/* Divide Doubleword Unsigned */
4913     case 459:		/* Divide Word Unsigned */
4914     case 489:		/* Divide Doubleword */
4915     case 491:		/* Divide Word */
4916       if (PPC_OE (insn))
4917 	record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4918       /* FALL-THROUGH */
4919     case 9:		/* Multiply High Doubleword Unsigned */
4920     case 11:		/* Multiply High Word Unsigned */
4921     case 73:		/* Multiply High Doubleword */
4922     case 75:		/* Multiply High Word */
4923       if (PPC_RC (insn))
4924 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4925       record_full_arch_list_add_reg (regcache,
4926 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
4927       return 0;
4928     }
4929 
4930   if ((ext & 0x1f) == 15)
4931     {
4932       /* Integer Select. bit[16:20] is used for BC.  */
4933       record_full_arch_list_add_reg (regcache,
4934 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
4935       return 0;
4936     }
4937 
4938   if ((ext & 0xff) == 170)
4939     {
4940       /* Add Extended using alternate carry bits */
4941       record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4942       record_full_arch_list_add_reg (regcache,
4943 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
4944       return 0;
4945     }
4946 
4947   switch (ext)
4948     {
4949     case 78:		/* Determine Leftmost Zero Byte */
4950       if (PPC_RC (insn))
4951 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4952       record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4953       record_full_arch_list_add_reg (regcache,
4954 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
4955       return 0;
4956 
4957     /* These only write RT.  */
4958     case 19:		/* Move from condition register */
4959 			/* Move From One Condition Register Field */
4960     case 74:		/* Add and Generate Sixes */
4961     case 74 | 0x200:	/* Add and Generate Sixes (bit-21 dont-care) */
4962     case 302:		/* Move From Branch History Rolling Buffer */
4963     case 339:		/* Move From Special Purpose Register */
4964     case 371:		/* Move From Time Base [Phased-Out]  */
4965     case 309:		/* Load Doubleword Monitored Indexed  */
4966     case 128:		/* Set Boolean */
4967     case 384:		/* Set Boolean Condition */
4968     case 416:		/* Set Boolean Condition Reverse */
4969     case 448:		/* Set Negative Boolean Condition */
4970     case 480:		/* Set Negative Boolean Condition Reverse */
4971     case 755:		/* Deliver A Random Number */
4972       record_full_arch_list_add_reg (regcache,
4973 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
4974       return 0;
4975 
4976     /* These only write to RA.  */
4977     case 51:		/* Move From VSR Doubleword */
4978     case 59:		/* Count Leading Zeros Doubleword under bit Mask */
4979     case 115:		/* Move From VSR Word and Zero */
4980     case 122:		/* Population count bytes */
4981     case 155:		/* Byte-Reverse Word */
4982     case 156:		/* Parallel Bits Deposit Doubleword */
4983     case 187:		/* Byte-Reverse Doubleword */
4984     case 188:		/* Parallel Bits Extract Doubleword */
4985     case 219:		/* Byte-Reverse Halfword */
4986     case 220:		/* Centrifuge Doubleword */
4987     case 378:		/* Population count words */
4988     case 506:		/* Population count doublewords */
4989     case 154:		/* Parity Word */
4990     case 186:		/* Parity Doubleword */
4991     case 252:		/* Bit Permute Doubleword */
4992     case 282:		/* Convert Declets To Binary Coded Decimal */
4993     case 314:		/* Convert Binary Coded Decimal To Declets */
4994     case 508:		/* Compare bytes */
4995     case 307:		/* Move From VSR Lower Doubleword */
4996     case 571:		/* Count Trailing Zeros Doubleword under bit Mask */
4997       record_full_arch_list_add_reg (regcache,
4998 				     tdep->ppc_gp0_regnum + PPC_RA (insn));
4999       return 0;
5000 
5001     /* These write CR and optional RA.  */
5002     case 792:		/* Shift Right Algebraic Word */
5003     case 794:		/* Shift Right Algebraic Doubleword */
5004     case 824:		/* Shift Right Algebraic Word Immediate */
5005     case 826:		/* Shift Right Algebraic Doubleword Immediate (413) */
5006     case 826 | 1:	/* Shift Right Algebraic Doubleword Immediate (413) */
5007       record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5008       record_full_arch_list_add_reg (regcache,
5009 				     tdep->ppc_gp0_regnum + PPC_RA (insn));
5010       /* FALL-THROUGH */
5011     case 0:		/* Compare */
5012     case 32:		/* Compare logical */
5013     case 144:		/* Move To Condition Register Fields */
5014 			/* Move To One Condition Register Field */
5015     case 192:		/* Compare Ranged Byte */
5016     case 224:		/* Compare Equal Byte */
5017     case 576:		/* Move XER to CR Extended */
5018     case 902:		/* Paste (should always fail due to single-stepping and
5019 			   the memory location might not be accessible, so
5020 			   record only CR) */
5021       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5022       return 0;
5023 
5024     /* These write to RT.  Update RA if 'update indexed.'  */
5025     case 53:		/* Load Doubleword with Update Indexed */
5026     case 119:		/* Load Byte and Zero with Update Indexed */
5027     case 311:		/* Load Halfword and Zero with Update Indexed */
5028     case 55:		/* Load Word and Zero with Update Indexed */
5029     case 375:		/* Load Halfword Algebraic with Update Indexed */
5030     case 373:		/* Load Word Algebraic with Update Indexed */
5031       record_full_arch_list_add_reg (regcache,
5032 				     tdep->ppc_gp0_regnum + PPC_RA (insn));
5033       /* FALL-THROUGH */
5034     case 21:		/* Load Doubleword Indexed */
5035     case 52:		/* Load Byte And Reserve Indexed */
5036     case 116:		/* Load Halfword And Reserve Indexed */
5037     case 20:		/* Load Word And Reserve Indexed */
5038     case 84:		/* Load Doubleword And Reserve Indexed */
5039     case 87:		/* Load Byte and Zero Indexed */
5040     case 279:		/* Load Halfword and Zero Indexed */
5041     case 23:		/* Load Word and Zero Indexed */
5042     case 343:		/* Load Halfword Algebraic Indexed */
5043     case 341:		/* Load Word Algebraic Indexed */
5044     case 790:		/* Load Halfword Byte-Reverse Indexed */
5045     case 534:		/* Load Word Byte-Reverse Indexed */
5046     case 532:		/* Load Doubleword Byte-Reverse Indexed */
5047     case 582:		/* Load Word Atomic */
5048     case 614:		/* Load Doubleword Atomic */
5049     case 265:		/* Modulo Unsigned Doubleword */
5050     case 777:		/* Modulo Signed Doubleword */
5051     case 267:		/* Modulo Unsigned Word */
5052     case 779:		/* Modulo Signed Word */
5053       record_full_arch_list_add_reg (regcache,
5054 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
5055       return 0;
5056 
5057     case 597:		/* Load String Word Immediate */
5058     case 533:		/* Load String Word Indexed */
5059       if (ext == 597)
5060 	{
5061 	nr = PPC_NB (insn);
5062 	if (nr == 0)
5063 	  nr = 32;
5064 	}
5065       else
5066 	{
5067 	  regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
5068 	  nr = PPC_XER_NB (xer);
5069 	}
5070 
5071       nr = (nr + 3) >> 2;
5072 
5073       /* If n=0, the contents of register RT are undefined.  */
5074       if (nr == 0)
5075 	nr = 1;
5076 
5077       for (i = 0; i < nr; i++)
5078 	record_full_arch_list_add_reg (regcache,
5079 				       tdep->ppc_gp0_regnum
5080 				       + ((PPC_RT (insn) + i) & 0x1f));
5081       return 0;
5082 
5083     case 276:		/* Load Quadword And Reserve Indexed */
5084       tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
5085       record_full_arch_list_add_reg (regcache, tmp);
5086       record_full_arch_list_add_reg (regcache, tmp + 1);
5087       return 0;
5088 
5089     /* These write VRT.  */
5090     case 6:		/* Load Vector for Shift Left Indexed */
5091     case 38:		/* Load Vector for Shift Right Indexed */
5092     case 7:		/* Load Vector Element Byte Indexed */
5093     case 39:		/* Load Vector Element Halfword Indexed */
5094     case 71:		/* Load Vector Element Word Indexed */
5095     case 103:		/* Load Vector Indexed */
5096     case 359:		/* Load Vector Indexed LRU */
5097       record_full_arch_list_add_reg (regcache,
5098 				     tdep->ppc_vr0_regnum + PPC_VRT (insn));
5099       return 0;
5100 
5101     /* These write FRT.  Update RA if 'update indexed.'  */
5102     case 567:		/* Load Floating-Point Single with Update Indexed */
5103     case 631:		/* Load Floating-Point Double with Update Indexed */
5104       record_full_arch_list_add_reg (regcache,
5105 				     tdep->ppc_gp0_regnum + PPC_RA (insn));
5106       /* FALL-THROUGH */
5107     case 535:		/* Load Floating-Point Single Indexed */
5108     case 599:		/* Load Floating-Point Double Indexed */
5109     case 855:		/* Load Floating-Point as Integer Word Algebraic Indexed */
5110     case 887:		/* Load Floating-Point as Integer Word and Zero Indexed */
5111       record_full_arch_list_add_reg (regcache,
5112 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
5113       return 0;
5114 
5115     case 791:		/* Load Floating-Point Double Pair Indexed */
5116       tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5117       record_full_arch_list_add_reg (regcache, tmp);
5118       record_full_arch_list_add_reg (regcache, tmp + 1);
5119       return 0;
5120 
5121     /* These write to destination register PPC_XT. */
5122     case 179:		/* Move To VSR Doubleword */
5123     case 211:		/* Move To VSR Word Algebraic */
5124     case 243:		/* Move To VSR Word and Zero */
5125     case 588:		/* Load VSX Scalar Doubleword Indexed */
5126     case 524:		/* Load VSX Scalar Single-Precision Indexed */
5127     case 76:		/* Load VSX Scalar as Integer Word Algebraic Indexed */
5128     case 12:		/* Load VSX Scalar as Integer Word and Zero Indexed */
5129     case 13:		/* Load VSX Vector Rightmost Byte Indexed */
5130     case 45:		/* Load VSX Vector Rightmost Halfword Indexed */
5131     case 77:		/* Load VSX Vector Rightmost Word Indexed */
5132     case 109:		/* Load VSX Vector Rightmost Doubleword Indexed */
5133     case 844:		/* Load VSX Vector Doubleword*2 Indexed */
5134     case 332:		/* Load VSX Vector Doubleword & Splat Indexed */
5135     case 780:		/* Load VSX Vector Word*4 Indexed */
5136     case 268:		/* Load VSX Vector Indexed */
5137     case 364:		/* Load VSX Vector Word & Splat Indexed */
5138     case 812:		/* Load VSX Vector Halfword*8 Indexed */
5139     case 876:		/* Load VSX Vector Byte*16 Indexed */
5140     case 269:		/* Load VSX Vector with Length */
5141     case 301:		/* Load VSX Vector Left-justified with Length */
5142     case 781:		/* Load VSX Scalar as Integer Byte & Zero Indexed */
5143     case 813:		/* Load VSX Scalar as Integer Halfword & Zero Indexed */
5144     case 403:		/* Move To VSR Word & Splat */
5145     case 435:		/* Move To VSR Double Doubleword */
5146       ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5147       return 0;
5148 
5149     case 333:		/* Load VSX Vector Paired Indexed */
5150       ppc_record_vsr (regcache, tdep, PPC_XTp (insn));
5151       ppc_record_vsr (regcache, tdep, PPC_XTp (insn) + 1);
5152       return 0;
5153 
5154     /* These write RA.  Update CR if RC is set.  */
5155     case 24:		/* Shift Left Word */
5156     case 26:		/* Count Leading Zeros Word */
5157     case 27:		/* Shift Left Doubleword */
5158     case 28:		/* AND */
5159     case 58:		/* Count Leading Zeros Doubleword */
5160     case 60:		/* AND with Complement */
5161     case 124:		/* NOR */
5162     case 284:		/* Equivalent */
5163     case 316:		/* XOR */
5164     case 476:		/* NAND */
5165     case 412:		/* OR with Complement */
5166     case 444:		/* OR */
5167     case 536:		/* Shift Right Word */
5168     case 539:		/* Shift Right Doubleword */
5169     case 922:		/* Extend Sign Halfword */
5170     case 954:		/* Extend Sign Byte */
5171     case 986:		/* Extend Sign Word */
5172     case 538:		/* Count Trailing Zeros Word */
5173     case 570:		/* Count Trailing Zeros Doubleword */
5174     case 890:		/* Extend-Sign Word and Shift Left Immediate (445) */
5175     case 890 | 1:	/* Extend-Sign Word and Shift Left Immediate (445) */
5176 
5177       if (ext == 444 && tdep->ppc_ppr_regnum >= 0
5178 	  && (PPC_RS (insn) == PPC_RA (insn))
5179 	  && (PPC_RA (insn) == PPC_RB (insn))
5180 	  && !PPC_RC (insn))
5181 	{
5182 	  /* or Rx,Rx,Rx alters PRI in PPR.  */
5183 	  record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
5184 	  return 0;
5185 	}
5186 
5187       if (PPC_RC (insn))
5188 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5189       record_full_arch_list_add_reg (regcache,
5190 				     tdep->ppc_gp0_regnum + PPC_RA (insn));
5191       return 0;
5192 
5193     /* Store memory.  */
5194     case 181:		/* Store Doubleword with Update Indexed */
5195     case 183:		/* Store Word with Update Indexed */
5196     case 247:		/* Store Byte with Update Indexed */
5197     case 439:		/* Store Half Word with Update Indexed */
5198     case 695:		/* Store Floating-Point Single with Update Indexed */
5199     case 759:		/* Store Floating-Point Double with Update Indexed */
5200       record_full_arch_list_add_reg (regcache,
5201 				     tdep->ppc_gp0_regnum + PPC_RA (insn));
5202       /* FALL-THROUGH */
5203     case 135:		/* Store Vector Element Byte Indexed */
5204     case 167:		/* Store Vector Element Halfword Indexed */
5205     case 199:		/* Store Vector Element Word Indexed */
5206     case 231:		/* Store Vector Indexed */
5207     case 487:		/* Store Vector Indexed LRU */
5208     case 716:		/* Store VSX Scalar Doubleword Indexed */
5209     case 140:		/* Store VSX Scalar as Integer Word Indexed */
5210     case 652:		/* Store VSX Scalar Single-Precision Indexed */
5211     case 972:		/* Store VSX Vector Doubleword*2 Indexed */
5212     case 908:		/* Store VSX Vector Word*4 Indexed */
5213     case 149:		/* Store Doubleword Indexed */
5214     case 151:		/* Store Word Indexed */
5215     case 215:		/* Store Byte Indexed */
5216     case 407:		/* Store Half Word Indexed */
5217     case 694:		/* Store Byte Conditional Indexed */
5218     case 726:		/* Store Halfword Conditional Indexed */
5219     case 150:		/* Store Word Conditional Indexed */
5220     case 214:		/* Store Doubleword Conditional Indexed */
5221     case 182:		/* Store Quadword Conditional Indexed */
5222     case 662:		/* Store Word Byte-Reverse Indexed */
5223     case 918:		/* Store Halfword Byte-Reverse Indexed */
5224     case 660:		/* Store Doubleword Byte-Reverse Indexed */
5225     case 663:		/* Store Floating-Point Single Indexed */
5226     case 727:		/* Store Floating-Point Double Indexed */
5227     case 919:		/* Store Floating-Point Double Pair Indexed */
5228     case 983:		/* Store Floating-Point as Integer Word Indexed */
5229     case 396:		/* Store VSX Vector Indexed */
5230     case 940:		/* Store VSX Vector Halfword*8 Indexed */
5231     case 1004:		/* Store VSX Vector Byte*16 Indexed */
5232     case 909:		/* Store VSX Scalar as Integer Byte Indexed */
5233     case 941:		/* Store VSX Scalar as Integer Halfword Indexed */
5234       if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
5235 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5236 
5237       ra = 0;
5238       if (PPC_RA (insn) != 0)
5239 	regcache_raw_read_unsigned (regcache,
5240 				    tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5241       regcache_raw_read_unsigned (regcache,
5242 				  tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5243       ea = ra + rb;
5244 
5245       switch (ext)
5246 	{
5247 	case 183:	/* Store Word with Update Indexed */
5248 	case 199:	/* Store Vector Element Word Indexed */
5249 	case 140:	/* Store VSX Scalar as Integer Word Indexed */
5250 	case 652:	/* Store VSX Scalar Single-Precision Indexed */
5251 	case 151:	/* Store Word Indexed */
5252 	case 150:	/* Store Word Conditional Indexed */
5253 	case 662:	/* Store Word Byte-Reverse Indexed */
5254 	case 663:	/* Store Floating-Point Single Indexed */
5255 	case 695:	/* Store Floating-Point Single with Update Indexed */
5256 	case 983:	/* Store Floating-Point as Integer Word Indexed */
5257 	  size = 4;
5258 	  break;
5259 	case 247:	/* Store Byte with Update Indexed */
5260 	case 135:	/* Store Vector Element Byte Indexed */
5261 	case 215:	/* Store Byte Indexed */
5262 	case 694:	/* Store Byte Conditional Indexed */
5263 	case 909:	/* Store VSX Scalar as Integer Byte Indexed */
5264 	  size = 1;
5265 	  break;
5266 	case 439:	/* Store Halfword with Update Indexed */
5267 	case 167:	/* Store Vector Element Halfword Indexed */
5268 	case 407:	/* Store Halfword Indexed */
5269 	case 726:	/* Store Halfword Conditional Indexed */
5270 	case 918:	/* Store Halfword Byte-Reverse Indexed */
5271 	case 941:	/* Store VSX Scalar as Integer Halfword Indexed */
5272 	  size = 2;
5273 	  break;
5274 	case 181:	/* Store Doubleword with Update Indexed */
5275 	case 716:	/* Store VSX Scalar Doubleword Indexed */
5276 	case 149:	/* Store Doubleword Indexed */
5277 	case 214:	/* Store Doubleword Conditional Indexed */
5278 	case 660:	/* Store Doubleword Byte-Reverse Indexed */
5279 	case 727:	/* Store Floating-Point Double Indexed */
5280 	case 759:	/* Store Floating-Point Double with Update Indexed */
5281 	  size = 8;
5282 	  break;
5283 	case 972:	/* Store VSX Vector Doubleword*2 Indexed */
5284 	case 908:	/* Store VSX Vector Word*4 Indexed */
5285 	case 182:	/* Store Quadword Conditional Indexed */
5286 	case 231:	/* Store Vector Indexed */
5287 	case 487:	/* Store Vector Indexed LRU */
5288 	case 919:	/* Store Floating-Point Double Pair Indexed */
5289 	case 396:	/* Store VSX Vector Indexed */
5290 	case 940:	/* Store VSX Vector Halfword*8 Indexed */
5291 	case 1004:	/* Store VSX Vector Byte*16 Indexed */
5292 	  size = 16;
5293 	  break;
5294 	default:
5295 	  gdb_assert (0);
5296 	}
5297 
5298       /* Align address for Store Vector instructions.  */
5299       switch (ext)
5300 	{
5301 	case 167:	/* Store Vector Element Halfword Indexed */
5302 	  ea = ea & ~0x1ULL;
5303 	  break;
5304 
5305 	case 199:	/* Store Vector Element Word Indexed */
5306 	  ea = ea & ~0x3ULL;
5307 	  break;
5308 
5309 	case 231:	/* Store Vector Indexed */
5310 	case 487:	/* Store Vector Indexed LRU */
5311 	  ea = ea & ~0xfULL;
5312 	  break;
5313 	}
5314 
5315       record_full_arch_list_add_mem (ea, size);
5316       return 0;
5317 
5318     case 141:		/* Store VSX Vector Rightmost Byte Indexed */
5319     case 173:		/* Store VSX Vector Rightmost Halfword Indexed */
5320     case 205:		/* Store VSX Vector Rightmost Word Indexed */
5321     case 237:		/* Store VSX Vector Rightmost Doubleword Indexed */
5322       switch(ext)
5323 	{
5324 	  case 141: nb = 1;
5325 	  break;
5326 	  case 173: nb = 2;
5327 	  break;
5328 	  case 205: nb = 4;
5329 	  break;
5330 	  case 237: nb = 8;
5331 	  break;
5332 	}
5333       ra = 0;
5334       if (PPC_RA (insn) != 0)
5335 	regcache_raw_read_unsigned (regcache,
5336 				    tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5337       regcache_raw_read_unsigned (regcache,
5338 				    tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5339       ea = ra + rb;
5340       record_full_arch_list_add_mem (ea, nb);
5341       return 0;
5342 
5343     case 397:		/* Store VSX Vector with Length */
5344     case 429:		/* Store VSX Vector Left-justified with Length */
5345       ra = 0;
5346       if (PPC_RA (insn) != 0)
5347 	regcache_raw_read_unsigned (regcache,
5348 				    tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5349       ea = ra;
5350       regcache_raw_read_unsigned (regcache,
5351 				  tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5352       /* Store up to 16 bytes.  */
5353       nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
5354       if (nb > 0)
5355 	record_full_arch_list_add_mem (ea, nb);
5356       return 0;
5357 
5358     case 461:		/* Store VSX Vector Paired Indexed */
5359       {
5360 	if (PPC_RA (insn) != 0)
5361 	  regcache_raw_read_unsigned (regcache,
5362 				      tdep->ppc_gp0_regnum
5363 				      + PPC_RA (insn), &ea);
5364 	regcache_raw_read_unsigned (regcache,
5365 				    tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5366 	ea += rb;
5367 	record_full_arch_list_add_mem (ea, 32);
5368 	return 0;
5369       }
5370 
5371     case 710:		/* Store Word Atomic */
5372     case 742:		/* Store Doubleword Atomic */
5373       ra = 0;
5374       if (PPC_RA (insn) != 0)
5375 	regcache_raw_read_unsigned (regcache,
5376 				    tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5377       ea = ra;
5378       switch (ext)
5379 	{
5380 	case 710:	/* Store Word Atomic */
5381 	  size = 8;
5382 	  break;
5383 	case 742:	/* Store Doubleword Atomic */
5384 	  size = 16;
5385 	  break;
5386 	default:
5387 	  gdb_assert (0);
5388 	}
5389       record_full_arch_list_add_mem (ea, size);
5390       return 0;
5391 
5392     case 725:		/* Store String Word Immediate */
5393       ra = 0;
5394       if (PPC_RA (insn) != 0)
5395 	regcache_raw_read_unsigned (regcache,
5396 				    tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5397       ea += ra;
5398 
5399       nb = PPC_NB (insn);
5400       if (nb == 0)
5401 	nb = 32;
5402 
5403       record_full_arch_list_add_mem (ea, nb);
5404 
5405       return 0;
5406 
5407     case 661:		/* Store String Word Indexed */
5408       ra = 0;
5409       if (PPC_RA (insn) != 0)
5410 	regcache_raw_read_unsigned (regcache,
5411 				    tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5412       ea += ra;
5413 
5414       regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
5415       nb = PPC_XER_NB (xer);
5416 
5417       if (nb != 0)
5418 	{
5419 	  regcache_raw_read_unsigned (regcache,
5420 				      tdep->ppc_gp0_regnum + PPC_RB (insn),
5421 				      &rb);
5422 	  ea += rb;
5423 	  record_full_arch_list_add_mem (ea, nb);
5424 	}
5425 
5426       return 0;
5427 
5428     case 467:		/* Move To Special Purpose Register */
5429       switch (PPC_SPR (insn))
5430 	{
5431 	case 1:			/* XER */
5432 	  record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5433 	  return 0;
5434 	case 3:			/* DSCR */
5435 	  if (tdep->ppc_dscr_regnum >= 0)
5436 	    record_full_arch_list_add_reg (regcache, tdep->ppc_dscr_regnum);
5437 	  return 0;
5438 	case 8:			/* LR */
5439 	  record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5440 	  return 0;
5441 	case 9:			/* CTR */
5442 	  record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5443 	  return 0;
5444 	case 256:		/* VRSAVE */
5445 	  record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
5446 	  return 0;
5447 	case 815:		/* TAR */
5448 	  if (tdep->ppc_tar_regnum >= 0)
5449 	    record_full_arch_list_add_reg (regcache, tdep->ppc_tar_regnum);
5450 	  return 0;
5451 	case 896:
5452 	case 898:		/* PPR */
5453 	  if (tdep->ppc_ppr_regnum >= 0)
5454 	    record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
5455 	  return 0;
5456 	}
5457 
5458       goto UNKNOWN_OP;
5459 
5460     case 147:		/* Move To Split Little Endian */
5461       record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5462       return 0;
5463 
5464     case 512:		/* Move to Condition Register from XER */
5465       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5466       record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5467       return 0;
5468 
5469     case 4:		/* Trap Word */
5470     case 68:		/* Trap Doubleword */
5471     case 430:		/* Clear BHRB */
5472     case 598:		/* Synchronize */
5473     case 62:		/* Wait for Interrupt */
5474     case 30:		/* Wait */
5475     case 22:		/* Instruction Cache Block Touch */
5476     case 854:		/* Enforce In-order Execution of I/O */
5477     case 246:		/* Data Cache Block Touch for Store */
5478     case 54:		/* Data Cache Block Store */
5479     case 86:		/* Data Cache Block Flush */
5480     case 278:		/* Data Cache Block Touch */
5481     case 758:		/* Data Cache Block Allocate */
5482     case 982:		/* Instruction Cache Block Invalidate */
5483     case 774:		/* Copy */
5484     case 838:		/* CP_Abort */
5485       return 0;
5486 
5487     case 654:		/* Transaction Begin */
5488     case 686:		/* Transaction End */
5489     case 750:		/* Transaction Suspend or Resume */
5490     case 782:		/* Transaction Abort Word Conditional */
5491     case 814:		/* Transaction Abort Doubleword Conditional */
5492     case 846:		/* Transaction Abort Word Conditional Immediate */
5493     case 878:		/* Transaction Abort Doubleword Conditional Immediate */
5494     case 910:		/* Transaction Abort */
5495       record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5496       /* FALL-THROUGH */
5497     case 718:		/* Transaction Check */
5498       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5499       return 0;
5500 
5501     case 1014:		/* Data Cache Block set to Zero */
5502       if (target_auxv_search (AT_DCACHEBSIZE, &at_dcsz) <= 0
5503 	  || at_dcsz == 0)
5504 	at_dcsz = 128; /* Assume 128-byte cache line size (POWER8)  */
5505 
5506       ra = 0;
5507       if (PPC_RA (insn) != 0)
5508 	regcache_raw_read_unsigned (regcache,
5509 				    tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5510       regcache_raw_read_unsigned (regcache,
5511 				  tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5512       ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
5513       record_full_arch_list_add_mem (ea, at_dcsz);
5514       return 0;
5515 
5516     case 177:
5517       if (ppc_process_record_op31_177 (gdbarch, regcache, insn) == 0)
5518 	return 0;
5519     }
5520 
5521 UNKNOWN_OP:
5522   gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
5523 	      "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
5524   return -1;
5525 }
5526 
5527 /* Parse and record instructions of primary opcode-59 at ADDR.
5528    Return 0 if successful.  */
5529 
5530 static int
5531 ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
5532 			 CORE_ADDR addr, uint32_t insn)
5533 {
5534   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
5535   int ext = PPC_EXTOP (insn);
5536   int at = PPC_FIELD (insn, 6, 3);
5537 
5538   /* Note the mnemonics for the pmxvf64ger* instructions were officially
5539      changed to pmdmxvf64ger*.  The old mnemonics are still supported as
5540      extended mnemonics.  */
5541 
5542   switch (ext & 0x1f)
5543     {
5544     case 18:		/* Floating Divide */
5545     case 20:		/* Floating Subtract */
5546     case 21:		/* Floating Add */
5547     case 22:		/* Floating Square Root */
5548     case 24:		/* Floating Reciprocal Estimate */
5549     case 25:		/* Floating Multiply */
5550     case 26:		/* Floating Reciprocal Square Root Estimate */
5551     case 28:		/* Floating Multiply-Subtract */
5552     case 29:		/* Floating Multiply-Add */
5553     case 30:		/* Floating Negative Multiply-Subtract */
5554     case 31:		/* Floating Negative Multiply-Add */
5555       record_full_arch_list_add_reg (regcache,
5556 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
5557       if (PPC_RC (insn))
5558 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5559       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5560 
5561       return 0;
5562     }
5563 
5564   /* MMA instructions, keep looking.  */
5565   switch (ext >> 2)    /* Additional opcode field is upper 8-bits of ext */
5566     {
5567     case 3:	/* VSX Vector 8-bit Signed/Unsigned Integer GER, xvi8ger4 */
5568     case 2:	/* VSX Vector 8-bit Signed/Unsigned Integer GER Positive
5569 		   multiply, Positive accumulate, xvi8ger4pp */
5570 
5571     case 99:	/* VSX Vector 8-bit Signed/Unsigned Integer GER with
5572 		   Saturate Positive multiply, Positive accumulate,
5573 		   xvi8ger4spp */
5574 
5575     case 35:	/* VSX Vector 4-bit Signed Integer GER, xvi4ger8 */
5576     case 34:	/* VSX Vector 4-bit Signed Integer GER Positive multiply,
5577 		   Positive accumulate, xvi4ger8pp */
5578 
5579     case 75:	/* VSX Vector 16-bit Signed Integer GER, xvi16ger2 */
5580     case 107:	/* VSX Vector 16-bit Signed Integer GER  Positive multiply,
5581 		   Positive accumulate, xvi16ger2pp */
5582 
5583     case 43:	/* VSX Vector 16-bit Signed Integer GER with Saturation,
5584 		   xvi16ger2s */
5585     case 42:	/* VSX Vector 16-bit Signed Integer GER with Saturation
5586 		   Positive multiply, Positive accumulate, xvi16ger2spp */
5587       ppc_record_ACC_fpscr (regcache, tdep, at, false);
5588       return 0;
5589 
5590     case 19:	/* VSX Vector 16-bit Floating-Point GER, xvf16ger2 */
5591     case 18:	/* VSX Vector 16-bit Floating-Point GER Positive multiply,
5592 		   Positive accumulate, xvf16ger2pp */
5593     case 146:	/* VSX Vector 16-bit Floating-Point GER Positive multiply,
5594 		   Negative accumulate, xvf16ger2pn */
5595     case 82:	/* VSX Vector 16-bit Floating-Point GER Negative multiply,
5596 		   Positive accumulate, xvf16ger2np */
5597     case 210:	/* VSX Vector 16-bit Floating-Point GER Negative multiply,
5598 		   Negative accumulate, xvf16ger2nn */
5599 
5600     case 27:	/* VSX Vector 32-bit Floating-Point GER, xvf32ger */
5601     case 26:	/* VSX Vector 32-bit Floating-Point GER Positive multiply,
5602 		   Positive accumulate, xvf32gerpp */
5603     case 154:	/* VSX Vector 32-bit Floating-Point GER Positive multiply,
5604 		   Negative accumulate, xvf32gerpn */
5605     case 90:	/* VSX Vector 32-bit Floating-Point GER Negative multiply,
5606 		   Positive accumulate, xvf32gernp */
5607     case 218:	/* VSX Vector 32-bit Floating-Point GER Negative multiply,
5608 		   Negative accumulate, xvf32gernn */
5609 
5610     case 59:	/* VSX Vector 64-bit Floating-Point GER, pmdmxvf64ger
5611 		   (pmxvf64ger)  */
5612     case 58:	/* VSX Vector 64-bit Floating-Point GER Positive multiply,
5613 		   Positive accumulate, xvf64gerpp */
5614     case 186:	/* VSX Vector 64-bit Floating-Point GER Positive multiply,
5615 		   Negative accumulate, xvf64gerpn */
5616     case 122:	/* VSX Vector 64-bit Floating-Point GER Negative multiply,
5617 		   Positive accumulate, xvf64gernp */
5618     case 250:	/* VSX Vector 64-bit Floating-Point GER Negative multiply,
5619 		   Negative accumulate, pmdmxvf64gernn (pmxvf64gernn)  */
5620 
5621     case 51:	/* VSX Vector bfloat16 GER, xvbf16ger2 */
5622     case 50:	/* VSX Vector bfloat16 GER Positive multiply,
5623 		   Positive accumulate, xvbf16ger2pp */
5624     case 178:	/* VSX Vector bfloat16 GER Positive multiply,
5625 		   Negative accumulate, xvbf16ger2pn */
5626     case 114:	/* VSX Vector bfloat16 GER Negative multiply,
5627 		   Positive accumulate, xvbf16ger2np */
5628     case 242:	/* VSX Vector bfloat16 GER Negative multiply,
5629 		   Negative accumulate, xvbf16ger2nn */
5630       ppc_record_ACC_fpscr (regcache, tdep, at, true);
5631       return 0;
5632     }
5633 
5634   switch (ext)
5635     {
5636     case 2:		/* DFP Add */
5637     case 3:		/* DFP Quantize */
5638     case 34:		/* DFP Multiply */
5639     case 35:		/* DFP Reround */
5640     case 67:		/* DFP Quantize Immediate */
5641     case 99:		/* DFP Round To FP Integer With Inexact */
5642     case 227:		/* DFP Round To FP Integer Without Inexact */
5643     case 258:		/* DFP Convert To DFP Long! */
5644     case 290:		/* DFP Convert To Fixed */
5645     case 514:		/* DFP Subtract */
5646     case 546:		/* DFP Divide */
5647     case 770:		/* DFP Round To DFP Short! */
5648     case 802:		/* DFP Convert From Fixed */
5649     case 834:		/* DFP Encode BCD To DPD */
5650       if (PPC_RC (insn))
5651 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5652       record_full_arch_list_add_reg (regcache,
5653 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
5654       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5655       return 0;
5656 
5657     case 130:		/* DFP Compare Ordered */
5658     case 162:		/* DFP Test Exponent */
5659     case 194:		/* DFP Test Data Class */
5660     case 226:		/* DFP Test Data Group */
5661     case 642:		/* DFP Compare Unordered */
5662     case 674:		/* DFP Test Significance */
5663     case 675:		/* DFP Test Significance Immediate */
5664       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5665       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5666       return 0;
5667 
5668     case 66:		/* DFP Shift Significand Left Immediate */
5669     case 98:		/* DFP Shift Significand Right Immediate */
5670     case 322:		/* DFP Decode DPD To BCD */
5671     case 354:		/* DFP Extract Biased Exponent */
5672     case 866:		/* DFP Insert Biased Exponent */
5673       record_full_arch_list_add_reg (regcache,
5674 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
5675       if (PPC_RC (insn))
5676 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5677       return 0;
5678 
5679     case 846:		/* Floating Convert From Integer Doubleword Single */
5680     case 974:		/* Floating Convert From Integer Doubleword Unsigned
5681 			   Single */
5682       record_full_arch_list_add_reg (regcache,
5683 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
5684       if (PPC_RC (insn))
5685 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5686       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5687 
5688       return 0;
5689     }
5690 
5691   gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
5692 	      "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
5693   return -1;
5694 }
5695 
5696 /* Parse and record an XX2-Form instruction with opcode 60 at ADDR.  The
5697    word instruction is an argument insn.  Return 0 if successful.  */
5698 
5699 static int
5700 ppc_process_record_op60_XX2 (struct gdbarch *gdbarch,
5701 			     struct regcache *regcache,
5702 			     CORE_ADDR addr, uint32_t insn)
5703 {
5704   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
5705   int RA_opcode = PPC_RA(insn);
5706 
5707   switch (RA_opcode)
5708     {
5709     case 2:	/* VSX Vector Test Least-Significant Bit by Byte */
5710     case 25:	/* VSX Vector round and Convert Single-Precision format
5711 		   to Half-Precision format.  Only changes the CR
5712 		   field.  */
5713       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5714       return 0;
5715     case 17:	/* VSX Vector Convert with round Single-Precision
5716 		   to bfloat16 format */
5717     case 24:	/* VSX Vector Convert Half-Precision format to
5718 		   Single-Precision format */
5719       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5720       /* Fall-through */
5721     case 0:	/* VSX Vector Extract Exponent Double-Precision */
5722     case 1:	/* VSX Vector Extract Significand Double-Precision */
5723     case 7:	/* VSX Vector Byte-Reverse Halfword */
5724     case 8:	/* VSX Vector Extract Exponent Single-Precision */
5725     case 9:	/* VSX Vector Extract Significand Single-Precision */
5726     case 15:	/* VSX Vector Byte-Reverse Word */
5727     case 16:	/* VSX Vector Convert bfloat16 to Single-Precision
5728 		   format Non-signaling */
5729     case 23:	/* VSX Vector Byte-Reverse Doubleword */
5730     case 31:	/* VSX Vector Byte-Reverse Quadword */
5731       ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5732       return 0;
5733     }
5734 
5735   return -1;
5736 }
5737 
5738 /* Parse and record instructions of primary opcode-60 at ADDR.
5739    Return 0 if successful.  */
5740 
5741 static int
5742 ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
5743 			   CORE_ADDR addr, uint32_t insn)
5744 {
5745   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
5746   int ext = PPC_EXTOP (insn);
5747 
5748   switch (ext >> 2)
5749     {
5750     case 0:		/* VSX Scalar Add Single-Precision */
5751     case 32:		/* VSX Scalar Add Double-Precision */
5752     case 24:		/* VSX Scalar Divide Single-Precision */
5753     case 56:		/* VSX Scalar Divide Double-Precision */
5754     case 176:		/* VSX Scalar Copy Sign Double-Precision */
5755     case 33:		/* VSX Scalar Multiply-Add Double-Precision */
5756     case 41:		/* ditto */
5757     case 1:		/* VSX Scalar Multiply-Add Single-Precision */
5758     case 9:		/* ditto */
5759     case 160:		/* VSX Scalar Maximum Double-Precision */
5760     case 168:		/* VSX Scalar Minimum Double-Precision */
5761     case 49:		/* VSX Scalar Multiply-Subtract Double-Precision */
5762     case 57:		/* ditto */
5763     case 17:		/* VSX Scalar Multiply-Subtract Single-Precision */
5764     case 25:		/* ditto */
5765     case 48:		/* VSX Scalar Multiply Double-Precision */
5766     case 16:		/* VSX Scalar Multiply Single-Precision */
5767     case 161:		/* VSX Scalar Negative Multiply-Add Double-Precision */
5768     case 169:		/* ditto */
5769     case 129:		/* VSX Scalar Negative Multiply-Add Single-Precision */
5770     case 137:		/* ditto */
5771     case 177:		/* VSX Scalar Negative Multiply-Subtract Double-Precision */
5772     case 185:		/* ditto */
5773     case 145:		/* VSX Scalar Negative Multiply-Subtract Single-Precision */
5774     case 153:		/* ditto */
5775     case 40:		/* VSX Scalar Subtract Double-Precision */
5776     case 8:		/* VSX Scalar Subtract Single-Precision */
5777     case 96:		/* VSX Vector Add Double-Precision */
5778     case 64:		/* VSX Vector Add Single-Precision */
5779     case 120:		/* VSX Vector Divide Double-Precision */
5780     case 88:		/* VSX Vector Divide Single-Precision */
5781     case 97:		/* VSX Vector Multiply-Add Double-Precision */
5782     case 105:		/* ditto */
5783     case 65:		/* VSX Vector Multiply-Add Single-Precision */
5784     case 73:		/* ditto */
5785     case 224:		/* VSX Vector Maximum Double-Precision */
5786     case 192:		/* VSX Vector Maximum Single-Precision */
5787     case 232:		/* VSX Vector Minimum Double-Precision */
5788     case 200:		/* VSX Vector Minimum Single-Precision */
5789     case 113:		/* VSX Vector Multiply-Subtract Double-Precision */
5790     case 121:		/* ditto */
5791     case 81:		/* VSX Vector Multiply-Subtract Single-Precision */
5792     case 89:		/* ditto */
5793     case 112:		/* VSX Vector Multiply Double-Precision */
5794     case 80:		/* VSX Vector Multiply Single-Precision */
5795     case 225:		/* VSX Vector Negative Multiply-Add Double-Precision */
5796     case 233:		/* ditto */
5797     case 193:		/* VSX Vector Negative Multiply-Add Single-Precision */
5798     case 201:		/* ditto */
5799     case 241:		/* VSX Vector Negative Multiply-Subtract Double-Precision */
5800     case 249:		/* ditto */
5801     case 209:		/* VSX Vector Negative Multiply-Subtract Single-Precision */
5802     case 217:		/* ditto */
5803     case 104:		/* VSX Vector Subtract Double-Precision */
5804     case 72:		/* VSX Vector Subtract Single-Precision */
5805     case 128:		/* VSX Scalar Maximum Type-C Double-Precision */
5806     case 136:		/* VSX Scalar Minimum Type-C Double-Precision */
5807     case 144:		/* VSX Scalar Maximum Type-J Double-Precision */
5808     case 152:		/* VSX Scalar Minimum Type-J Double-Precision */
5809     case 3:		/* VSX Scalar Compare Equal Double-Precision */
5810     case 11:		/* VSX Scalar Compare Greater Than Double-Precision */
5811     case 19:		/* VSX Scalar Compare Greater Than or Equal
5812 			   Double-Precision */
5813       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5814       /* FALL-THROUGH */
5815     case 240:		/* VSX Vector Copy Sign Double-Precision */
5816     case 208:		/* VSX Vector Copy Sign Single-Precision */
5817     case 130:		/* VSX Logical AND */
5818     case 138:		/* VSX Logical AND with Complement */
5819     case 186:		/* VSX Logical Equivalence */
5820     case 178:		/* VSX Logical NAND */
5821     case 170:		/* VSX Logical OR with Complement */
5822     case 162:		/* VSX Logical NOR */
5823     case 146:		/* VSX Logical OR */
5824     case 154:		/* VSX Logical XOR */
5825     case 18:		/* VSX Merge High Word */
5826     case 50:		/* VSX Merge Low Word */
5827     case 10:		/* VSX Permute Doubleword Immediate (DM=0) */
5828     case 10 | 0x20:	/* VSX Permute Doubleword Immediate (DM=1) */
5829     case 10 | 0x40:	/* VSX Permute Doubleword Immediate (DM=2) */
5830     case 10 | 0x60:	/* VSX Permute Doubleword Immediate (DM=3) */
5831     case 2:		/* VSX Shift Left Double by Word Immediate (SHW=0) */
5832     case 2 | 0x20:	/* VSX Shift Left Double by Word Immediate (SHW=1) */
5833     case 2 | 0x40:	/* VSX Shift Left Double by Word Immediate (SHW=2) */
5834     case 2 | 0x60:	/* VSX Shift Left Double by Word Immediate (SHW=3) */
5835     case 216:		/* VSX Vector Insert Exponent Single-Precision */
5836     case 248:		/* VSX Vector Insert Exponent Double-Precision */
5837     case 26:		/* VSX Vector Permute */
5838     case 58:		/* VSX Vector Permute Right-indexed */
5839     case 213:		/* VSX Vector Test Data Class Single-Precision (DC=0) */
5840     case 213 | 0x8:	/* VSX Vector Test Data Class Single-Precision (DC=1) */
5841     case 245:		/* VSX Vector Test Data Class Double-Precision (DC=0) */
5842     case 245 | 0x8:	/* VSX Vector Test Data Class Double-Precision (DC=1) */
5843       ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5844       return 0;
5845 
5846     case 61:		/* VSX Scalar Test for software Divide Double-Precision */
5847     case 125:		/* VSX Vector Test for software Divide Double-Precision */
5848     case 93:		/* VSX Vector Test for software Divide Single-Precision */
5849       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5850       return 0;
5851 
5852     case 35:		/* VSX Scalar Compare Unordered Double-Precision */
5853     case 43:		/* VSX Scalar Compare Ordered Double-Precision */
5854     case 59:		/* VSX Scalar Compare Exponents Double-Precision */
5855       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5856       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5857       return 0;
5858     }
5859 
5860   switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit.  */
5861     {
5862     case 99:		/* VSX Vector Compare Equal To Double-Precision */
5863     case 67:		/* VSX Vector Compare Equal To Single-Precision */
5864     case 115:		/* VSX Vector Compare Greater Than or
5865 			   Equal To Double-Precision */
5866     case 83:		/* VSX Vector Compare Greater Than or
5867 			   Equal To Single-Precision */
5868     case 107:		/* VSX Vector Compare Greater Than Double-Precision */
5869     case 75:		/* VSX Vector Compare Greater Than Single-Precision */
5870       if (PPC_Rc (insn))
5871 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5872       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5873       ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5874       return 0;
5875     }
5876 
5877   switch (ext >> 1)
5878     {
5879     case 265:		/* VSX Scalar round Double-Precision to
5880 			   Single-Precision and Convert to
5881 			   Single-Precision format */
5882     case 344:		/* VSX Scalar truncate Double-Precision to
5883 			   Integer and Convert to Signed Integer
5884 			   Doubleword format with Saturate */
5885     case 88:		/* VSX Scalar truncate Double-Precision to
5886 			   Integer and Convert to Signed Integer Word
5887 			   Format with Saturate */
5888     case 328:		/* VSX Scalar truncate Double-Precision integer
5889 			   and Convert to Unsigned Integer Doubleword
5890 			   Format with Saturate */
5891     case 72:		/* VSX Scalar truncate Double-Precision to
5892 			   Integer and Convert to Unsigned Integer Word
5893 			   Format with Saturate */
5894     case 329:		/* VSX Scalar Convert Single-Precision to
5895 			   Double-Precision format */
5896     case 376:		/* VSX Scalar Convert Signed Integer
5897 			   Doubleword to floating-point format and
5898 			   Round to Double-Precision format */
5899     case 312:		/* VSX Scalar Convert Signed Integer
5900 			   Doubleword to floating-point format and
5901 			   round to Single-Precision */
5902     case 360:		/* VSX Scalar Convert Unsigned Integer
5903 			   Doubleword to floating-point format and
5904 			   Round to Double-Precision format */
5905     case 296:		/* VSX Scalar Convert Unsigned Integer
5906 			   Doubleword to floating-point format and
5907 			   Round to Single-Precision */
5908     case 73:		/* VSX Scalar Round to Double-Precision Integer
5909 			   Using Round to Nearest Away */
5910     case 107:		/* VSX Scalar Round to Double-Precision Integer
5911 			   Exact using Current rounding mode */
5912     case 121:		/* VSX Scalar Round to Double-Precision Integer
5913 			   Using Round toward -Infinity */
5914     case 105:		/* VSX Scalar Round to Double-Precision Integer
5915 			   Using Round toward +Infinity */
5916     case 89:		/* VSX Scalar Round to Double-Precision Integer
5917 			   Using Round toward Zero */
5918     case 90:		/* VSX Scalar Reciprocal Estimate Double-Precision */
5919     case 26:		/* VSX Scalar Reciprocal Estimate Single-Precision */
5920     case 281:		/* VSX Scalar Round to Single-Precision */
5921     case 74:		/* VSX Scalar Reciprocal Square Root Estimate
5922 			   Double-Precision */
5923     case 10:		/* VSX Scalar Reciprocal Square Root Estimate
5924 			   Single-Precision */
5925     case 75:		/* VSX Scalar Square Root Double-Precision */
5926     case 11:		/* VSX Scalar Square Root Single-Precision */
5927     case 393:		/* VSX Vector round Double-Precision to
5928 			   Single-Precision and Convert to
5929 			   Single-Precision format */
5930     case 472:		/* VSX Vector truncate Double-Precision to
5931 			   Integer and Convert to Signed Integer
5932 			   Doubleword format with Saturate */
5933     case 216:		/* VSX Vector truncate Double-Precision to
5934 			   Integer and Convert to Signed Integer Word
5935 			   Format with Saturate */
5936     case 456:		/* VSX Vector truncate Double-Precision to
5937 			   Integer and Convert to Unsigned Integer
5938 			   Doubleword format with Saturate */
5939     case 200:		/* VSX Vector truncate Double-Precision to
5940 			   Integer and Convert to Unsigned Integer Word
5941 			   Format with Saturate */
5942     case 457:		/* VSX Vector Convert Single-Precision to
5943 			   Double-Precision format */
5944     case 408:		/* VSX Vector truncate Single-Precision to
5945 			   Integer and Convert to Signed Integer
5946 			   Doubleword format with Saturate */
5947     case 152:		/* VSX Vector truncate Single-Precision to
5948 			   Integer and Convert to Signed Integer Word
5949 			   Format with Saturate */
5950     case 392:		/* VSX Vector truncate Single-Precision to
5951 			   Integer and Convert to Unsigned Integer
5952 			   Doubleword format with Saturate */
5953     case 136:		/* VSX Vector truncate Single-Precision to
5954 			   Integer and Convert to Unsigned Integer Word
5955 			   Format with Saturate */
5956     case 504:		/* VSX Vector Convert and round Signed Integer
5957 			   Doubleword to Double-Precision format */
5958     case 440:		/* VSX Vector Convert and round Signed Integer
5959 			   Doubleword to Single-Precision format */
5960     case 248:		/* VSX Vector Convert Signed Integer Word to
5961 			   Double-Precision format */
5962     case 184:		/* VSX Vector Convert and round Signed Integer
5963 			   Word to Single-Precision format */
5964     case 488:		/* VSX Vector Convert and round Unsigned
5965 			   Integer Doubleword to Double-Precision format */
5966     case 424:		/* VSX Vector Convert and round Unsigned
5967 			   Integer Doubleword to Single-Precision format */
5968     case 232:		/* VSX Vector Convert and round Unsigned
5969 			   Integer Word to Double-Precision format */
5970     case 168:		/* VSX Vector Convert and round Unsigned
5971 			   Integer Word to Single-Precision format */
5972     case 201:		/* VSX Vector Round to Double-Precision
5973 			   Integer using round to Nearest Away */
5974     case 235:		/* VSX Vector Round to Double-Precision
5975 			   Integer Exact using Current rounding mode */
5976     case 249:		/* VSX Vector Round to Double-Precision
5977 			   Integer using round toward -Infinity */
5978     case 233:		/* VSX Vector Round to Double-Precision
5979 			   Integer using round toward +Infinity */
5980     case 217:		/* VSX Vector Round to Double-Precision
5981 			   Integer using round toward Zero */
5982     case 218:		/* VSX Vector Reciprocal Estimate Double-Precision */
5983     case 154:		/* VSX Vector Reciprocal Estimate Single-Precision */
5984     case 137:		/* VSX Vector Round to Single-Precision Integer
5985 			   Using Round to Nearest Away */
5986     case 171:		/* VSX Vector Round to Single-Precision Integer
5987 			   Exact Using Current rounding mode */
5988     case 185:		/* VSX Vector Round to Single-Precision Integer
5989 			   Using Round toward -Infinity */
5990     case 169:		/* VSX Vector Round to Single-Precision Integer
5991 			   Using Round toward +Infinity */
5992     case 153:		/* VSX Vector Round to Single-Precision Integer
5993 			   Using round toward Zero */
5994     case 202:		/* VSX Vector Reciprocal Square Root Estimate
5995 			   Double-Precision */
5996     case 138:		/* VSX Vector Reciprocal Square Root Estimate
5997 			   Single-Precision */
5998     case 203:		/* VSX Vector Square Root Double-Precision */
5999     case 139:		/* VSX Vector Square Root Single-Precision */
6000       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6001       /* FALL-THROUGH */
6002     case 345:		/* VSX Scalar Absolute Value Double-Precision */
6003     case 267:		/* VSX Scalar Convert Scalar Single-Precision to
6004 			   Vector Single-Precision format Non-signalling */
6005     case 331:		/* VSX Scalar Convert Single-Precision to
6006 			   Double-Precision format Non-signalling */
6007     case 361:		/* VSX Scalar Negative Absolute Value Double-Precision */
6008     case 377:		/* VSX Scalar Negate Double-Precision */
6009     case 473:		/* VSX Vector Absolute Value Double-Precision */
6010     case 409:		/* VSX Vector Absolute Value Single-Precision */
6011     case 489:		/* VSX Vector Negative Absolute Value Double-Precision */
6012     case 425:		/* VSX Vector Negative Absolute Value Single-Precision */
6013     case 505:		/* VSX Vector Negate Double-Precision */
6014     case 441:		/* VSX Vector Negate Single-Precision */
6015     case 164:		/* VSX Splat Word */
6016     case 165:		/* VSX Vector Extract Unsigned Word */
6017     case 181:		/* VSX Vector Insert Word */
6018       ppc_record_vsr (regcache, tdep, PPC_XT (insn));
6019       return 0;
6020 
6021     case 298:		/* VSX Scalar Test Data Class Single-Precision */
6022     case 362:		/* VSX Scalar Test Data Class Double-Precision */
6023       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6024       /* FALL-THROUGH */
6025     case 106:		/* VSX Scalar Test for software Square Root
6026 			   Double-Precision */
6027     case 234:		/* VSX Vector Test for software Square Root
6028 			   Double-Precision */
6029     case 170:		/* VSX Vector Test for software Square Root
6030 			   Single-Precision */
6031       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6032       return 0;
6033 
6034     case 347:
6035       switch (PPC_FIELD (insn, 11, 5))
6036 	{
6037 	case 0:		/* VSX Scalar Extract Exponent Double-Precision */
6038 	case 1:		/* VSX Scalar Extract Significand Double-Precision */
6039 	  record_full_arch_list_add_reg (regcache,
6040 					 tdep->ppc_gp0_regnum + PPC_RT (insn));
6041 	  return 0;
6042 	case 16:	/* VSX Scalar Convert Half-Precision format to
6043 			   Double-Precision format */
6044 	case 17:	/* VSX Scalar round & Convert Double-Precision format
6045 			   to Half-Precision format */
6046 	  record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6047 	  ppc_record_vsr (regcache, tdep, PPC_XT (insn));
6048 	  return 0;
6049 	}
6050       break;
6051 
6052     case 475:
6053       if (ppc_process_record_op60_XX2 (gdbarch, regcache, addr, insn) != 0)
6054 	return -1;
6055       return 0;
6056     }
6057 
6058   switch (ext)
6059     {
6060     case 360:
6061       if (PPC_FIELD (insn, 11, 2) == 0)  /* VSX Vector Splat Immediate Byte */
6062 	{
6063 	  ppc_record_vsr (regcache, tdep, PPC_XT (insn));
6064 	  return 0;
6065 	}
6066       if (PPC_FIELD (insn, 11, 5) == 31)  /* Load VSX Vector Special Value
6067 					     Quadword */
6068 	{
6069 	  ppc_record_vsr (regcache, tdep, PPC_XT (insn));
6070 	  return 0;
6071 	}
6072       break;
6073     case 916:		/* VSX Vector Generate PCV from Byte Mask */
6074     case 917:		/* VSX Vector Generate PCV from Halfword Mask */
6075     case 948:		/* VSX Vector Generate PCV from Word Mask */
6076     case 949:		/* VSX Vector Generate PCV from Doubleword Mask */
6077     case 918:		/* VSX Scalar Insert Exponent Double-Precision */
6078       ppc_record_vsr (regcache, tdep, PPC_XT (insn));
6079       return 0;
6080     }
6081 
6082   if (((ext >> 3) & 0x3) == 3)	/* VSX Select */
6083     {
6084       ppc_record_vsr (regcache, tdep, PPC_XT (insn));
6085       return 0;
6086     }
6087 
6088   gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
6089 	      "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
6090   return -1;
6091 }
6092 
6093 /* Parse and record instructions of primary opcode-61 at ADDR.
6094    Return 0 if successful.  */
6095 
6096 static int
6097 ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
6098 			   CORE_ADDR addr, uint32_t insn)
6099 {
6100   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
6101   ULONGEST ea = 0;
6102   int size;
6103 
6104   switch (insn & 0x3)
6105     {
6106     case 0:		/* Store Floating-Point Double Pair */
6107     case 2:		/* Store VSX Scalar Doubleword */
6108     case 3:		/* Store VSX Scalar Single */
6109       if (PPC_RA (insn) != 0)
6110 	regcache_raw_read_unsigned (regcache,
6111 				    tdep->ppc_gp0_regnum + PPC_RA (insn),
6112 				    &ea);
6113       ea += PPC_DS (insn) << 2;
6114       switch (insn & 0x3)
6115 	{
6116 	case 0:		/* Store Floating-Point Double Pair */
6117 	  size = 16;
6118 	  break;
6119 	case 2:		/* Store VSX Scalar Doubleword */
6120 	  size = 8;
6121 	  break;
6122 	case 3:		/* Store VSX Scalar Single */
6123 	  size = 4;
6124 	  break;
6125 	default:
6126 	  gdb_assert (0);
6127 	}
6128       record_full_arch_list_add_mem (ea, size);
6129       return 0;
6130     }
6131 
6132   switch (insn & 0x7)
6133     {
6134     case 1:		/* Load VSX Vector */
6135       ppc_record_vsr (regcache, tdep, PPC_XT (insn));
6136       return 0;
6137     case 5:		/* Store VSX Vector */
6138       if (PPC_RA (insn) != 0)
6139 	regcache_raw_read_unsigned (regcache,
6140 				    tdep->ppc_gp0_regnum + PPC_RA (insn),
6141 				    &ea);
6142       ea += PPC_DQ (insn) << 4;
6143       record_full_arch_list_add_mem (ea, 16);
6144       return 0;
6145     }
6146 
6147   gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
6148 	      "at %s.\n", insn, paddress (gdbarch, addr));
6149   return -1;
6150 }
6151 
6152 /* Parse and record instructions of primary opcode-63 at ADDR.
6153    Return 0 if successful.  */
6154 
6155 static int
6156 ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
6157 			   CORE_ADDR addr, uint32_t insn)
6158 {
6159   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
6160   int ext = PPC_EXTOP (insn);
6161   int tmp;
6162 
6163   switch (ext & 0x1f)
6164     {
6165     case 18:		/* Floating Divide */
6166     case 20:		/* Floating Subtract */
6167     case 21:		/* Floating Add */
6168     case 22:		/* Floating Square Root */
6169     case 24:		/* Floating Reciprocal Estimate */
6170     case 25:		/* Floating Multiply */
6171     case 26:		/* Floating Reciprocal Square Root Estimate */
6172     case 28:		/* Floating Multiply-Subtract */
6173     case 29:		/* Floating Multiply-Add */
6174     case 30:		/* Floating Negative Multiply-Subtract */
6175     case 31:		/* Floating Negative Multiply-Add */
6176       record_full_arch_list_add_reg (regcache,
6177 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
6178       if (PPC_RC (insn))
6179 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6180       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6181       return 0;
6182 
6183     case 23:		/* Floating Select */
6184       record_full_arch_list_add_reg (regcache,
6185 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
6186       if (PPC_RC (insn))
6187 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6188       return 0;
6189     }
6190 
6191   switch (ext & 0xff)
6192     {
6193     case 5:		/* VSX Scalar Round to Quad-Precision Integer */
6194     case 37:		/* VSX Scalar Round Quad-Precision to Double-Extended
6195 			   Precision */
6196       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6197       ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6198       return 0;
6199     }
6200 
6201   switch (ext)
6202     {
6203     case 2:		/* DFP Add Quad */
6204     case 3:		/* DFP Quantize Quad */
6205     case 34:		/* DFP Multiply Quad */
6206     case 35:		/* DFP Reround Quad */
6207     case 67:		/* DFP Quantize Immediate Quad */
6208     case 99:		/* DFP Round To FP Integer With Inexact Quad */
6209     case 227:		/* DFP Round To FP Integer Without Inexact Quad */
6210     case 258:		/* DFP Convert To DFP Extended Quad */
6211     case 514:		/* DFP Subtract Quad */
6212     case 546:		/* DFP Divide Quad */
6213     case 770:		/* DFP Round To DFP Long Quad */
6214     case 802:		/* DFP Convert From Fixed Quad */
6215     case 834:		/* DFP Encode BCD To DPD Quad */
6216       if (PPC_RC (insn))
6217 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6218       tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
6219       record_full_arch_list_add_reg (regcache, tmp);
6220       record_full_arch_list_add_reg (regcache, tmp + 1);
6221       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6222       return 0;
6223 
6224     case 130:		/* DFP Compare Ordered Quad */
6225     case 162:		/* DFP Test Exponent Quad */
6226     case 194:		/* DFP Test Data Class Quad */
6227     case 226:		/* DFP Test Data Group Quad */
6228     case 642:		/* DFP Compare Unordered Quad */
6229     case 674:		/* DFP Test Significance Quad */
6230     case 675:		/* DFP Test Significance Immediate Quad */
6231       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6232       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6233       return 0;
6234 
6235     case 66:		/* DFP Shift Significand Left Immediate Quad */
6236     case 98:		/* DFP Shift Significand Right Immediate Quad */
6237     case 322:		/* DFP Decode DPD To BCD Quad */
6238     case 866:		/* DFP Insert Biased Exponent Quad */
6239       tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
6240       record_full_arch_list_add_reg (regcache, tmp);
6241       record_full_arch_list_add_reg (regcache, tmp + 1);
6242       if (PPC_RC (insn))
6243 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6244       return 0;
6245 
6246     case 290:		/* DFP Convert To Fixed Quad */
6247       record_full_arch_list_add_reg (regcache,
6248 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
6249       if (PPC_RC (insn))
6250 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6251       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6252       return 0;
6253 
6254     case 354:		/* DFP Extract Biased Exponent Quad */
6255       record_full_arch_list_add_reg (regcache,
6256 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
6257       if (PPC_RC (insn))
6258 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6259       return 0;
6260 
6261     case 12:		/* Floating Round to Single-Precision */
6262     case 14:		/* Floating Convert To Integer Word */
6263     case 15:		/* Floating Convert To Integer Word
6264 			   with round toward Zero */
6265     case 142:		/* Floating Convert To Integer Word Unsigned */
6266     case 143:		/* Floating Convert To Integer Word Unsigned
6267 			   with round toward Zero */
6268     case 392:		/* Floating Round to Integer Nearest */
6269     case 424:		/* Floating Round to Integer Toward Zero */
6270     case 456:		/* Floating Round to Integer Plus */
6271     case 488:		/* Floating Round to Integer Minus */
6272     case 814:		/* Floating Convert To Integer Doubleword */
6273     case 815:		/* Floating Convert To Integer Doubleword
6274 			   with round toward Zero */
6275     case 846:		/* Floating Convert From Integer Doubleword */
6276     case 942:		/* Floating Convert To Integer Doubleword Unsigned */
6277     case 943:		/* Floating Convert To Integer Doubleword Unsigned
6278 			   with round toward Zero */
6279     case 974:		/* Floating Convert From Integer Doubleword Unsigned */
6280       record_full_arch_list_add_reg (regcache,
6281 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
6282       if (PPC_RC (insn))
6283 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6284       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6285       return 0;
6286 
6287     case 583:
6288       switch (PPC_FIELD (insn, 11, 5))
6289 	{
6290 	  case 1:	/* Move From FPSCR & Clear Enables */
6291 	  case 20:	/* Move From FPSCR Control & set DRN */
6292 	  case 21:	/* Move From FPSCR Control & set DRN Immediate */
6293 	  case 22:	/* Move From FPSCR Control & set RN */
6294 	  case 23:	/* Move From FPSCR Control & set RN Immediate */
6295 	    record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6296 	    /* Fall through.  */
6297 	  case 0:	/* Move From FPSCR */
6298 	  case 24:	/* Move From FPSCR Lightweight */
6299 	    if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
6300 	      record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6301 	    record_full_arch_list_add_reg (regcache,
6302 					   tdep->ppc_fp0_regnum
6303 					   + PPC_FRT (insn));
6304 	    return 0;
6305 	}
6306       break;
6307 
6308     case 8:		/* Floating Copy Sign */
6309     case 40:		/* Floating Negate */
6310     case 72:		/* Floating Move Register */
6311     case 136:		/* Floating Negative Absolute Value */
6312     case 264:		/* Floating Absolute Value */
6313       record_full_arch_list_add_reg (regcache,
6314 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
6315       if (PPC_RC (insn))
6316 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6317       return 0;
6318 
6319     case 838:		/* Floating Merge Odd Word */
6320     case 966:		/* Floating Merge Even Word */
6321       record_full_arch_list_add_reg (regcache,
6322 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
6323       return 0;
6324 
6325     case 38:		/* Move To FPSCR Bit 1 */
6326     case 70:		/* Move To FPSCR Bit 0 */
6327     case 134:		/* Move To FPSCR Field Immediate */
6328     case 711:		/* Move To FPSCR Fields */
6329       if (PPC_RC (insn))
6330 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6331       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6332       return 0;
6333 
6334     case 0:		/* Floating Compare Unordered */
6335     case 32:		/* Floating Compare Ordered */
6336     case 64:		/* Move to Condition Register from FPSCR */
6337     case 132:		/* VSX Scalar Compare Ordered Quad-Precision */
6338     case 164:		/* VSX Scalar Compare Exponents Quad-Precision */
6339     case 644:		/* VSX Scalar Compare Unordered Quad-Precision */
6340     case 708:		/* VSX Scalar Test Data Class Quad-Precision */
6341       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6342       /* FALL-THROUGH */
6343     case 128:		/* Floating Test for software Divide */
6344     case 160:		/* Floating Test for software Square Root */
6345       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6346       return 0;
6347 
6348     case 4:		/* VSX Scalar Add Quad-Precision */
6349     case 36:		/* VSX Scalar Multiply Quad-Precision */
6350     case 388:		/* VSX Scalar Multiply-Add Quad-Precision */
6351     case 420:		/* VSX Scalar Multiply-Subtract Quad-Precision */
6352     case 452:		/* VSX Scalar Negative Multiply-Add Quad-Precision */
6353     case 484:		/* VSX Scalar Negative Multiply-Subtract
6354 			   Quad-Precision */
6355     case 516:		/* VSX Scalar Subtract Quad-Precision */
6356     case 548:		/* VSX Scalar Divide Quad-Precision */
6357     case 994:
6358       {
6359       switch (PPC_FIELD (insn, 11, 5))
6360 	{
6361 	case 0:	/* DFP Convert From Fixed Quadword Quad */
6362 	  record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6363 
6364 	  record_full_arch_list_add_reg (regcache,
6365 					 tdep->ppc_fp0_regnum
6366 					 + PPC_FRT (insn));
6367 	  record_full_arch_list_add_reg (regcache,
6368 					 tdep->ppc_fp0_regnum
6369 					 + PPC_FRT (insn) + 1);
6370 	  return 0;
6371 	case 1:	/* DFP Convert To Fixed Quadword Quad */
6372 	  record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6373 	  ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6374 	  return 0;
6375 	}
6376       }
6377 
6378       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6379       /* FALL-THROUGH */
6380     case 68:		/* VSX Scalar Compare Equal Quad-Precision */
6381     case 196:		/* VSX Scalar Compare Greater Than or Equal
6382 			   Quad-Precision */
6383     case 228:		/* VSX Scalar Compare Greater Than Quad-Precision */
6384     case 676:		/* VSX Scalar Maximum Type-C Quad-Precision */
6385     case 740:		/* VSX Scalar Minimum Type-C Quad-Precision */
6386       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6387       /* FALL-THROUGH */
6388     case 100:		/* VSX Scalar Copy Sign Quad-Precision */
6389     case 868:		/* VSX Scalar Insert Exponent Quad-Precision */
6390       ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6391       return 0;
6392 
6393     case 804:
6394       switch (PPC_FIELD (insn, 11, 5))
6395 	{
6396 	case 27:	/* VSX Scalar Square Root Quad-Precision */
6397 	  record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6398 	  /* FALL-THROUGH */
6399 	case 0:		/* VSX Scalar Absolute Quad-Precision */
6400 	case 2:		/* VSX Scalar Extract Exponent Quad-Precision */
6401 	case 8:		/* VSX Scalar Negative Absolute Quad-Precision */
6402 	case 16:	/* VSX Scalar Negate Quad-Precision */
6403 	case 18:	/* VSX Scalar Extract Significand Quad-Precision */
6404 	  ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6405 	  return 0;
6406 	}
6407       break;
6408 
6409     case 836:
6410       switch (PPC_FIELD (insn, 11, 5))
6411 	{
6412 	case 0:		/* VSX Scalar Convert with round to zero
6413 			   Quad-Precision to Unsigned Quadword  */
6414 	case 1:		/* VSX Scalar truncate & Convert Quad-Precision format
6415 			   to Unsigned Word format */
6416 	case 2:		/* VSX Scalar Convert Unsigned Doubleword format to
6417 			   Quad-Precision format */
6418 	case 3:		/* VSX Scalar Convert with round
6419 			   Unsigned Quadword to Quad-Precision  */
6420 	case 8:		/* VSX Scalar Convert with round to zero
6421 			   Quad-Precision to Signed Quadword  */
6422 	case 9:		/* VSX Scalar truncate & Convert Quad-Precision format
6423 			   to Signed Word format */
6424 	case 10:	/* VSX Scalar Convert Signed Doubleword format to
6425 			   Quad-Precision format */
6426 	case 11:	/* VSX Scalar Convert with round
6427 			   Signed Quadword to Quad-Precision */
6428 	case 17:	/* VSX Scalar truncate & Convert Quad-Precision format
6429 			   to Unsigned Doubleword format */
6430 	case 20:	/* VSX Scalar round & Convert Quad-Precision format to
6431 			   Double-Precision format */
6432 	case 22:	/* VSX Scalar Convert Double-Precision format to
6433 			   Quad-Precision format */
6434 	case 25:	/* VSX Scalar truncate & Convert Quad-Precision format
6435 			   to Signed Doubleword format */
6436 	  record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6437 	  ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6438 	  return 0;
6439 	}
6440     }
6441 
6442   gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
6443 	      "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
6444   return -1;
6445 }
6446 
6447 /* Record the prefixed instructions with primary opcode 32.  The arguments are
6448    the first 32-bits of the instruction (insn_prefix), and the second 32-bits
6449    of the instruction (insn_suffix).  Return 0 on success.  */
6450 
6451 static int
6452 ppc_process_record_prefix_op42 (struct gdbarch *gdbarch,
6453 				struct regcache *regcache,
6454 				uint32_t insn_prefix, uint32_t insn_suffix)
6455 {
6456   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
6457   int type = PPC_FIELD (insn_prefix, 6, 2);
6458   int ST1 = PPC_FIELD (insn_prefix, 8, 1);
6459 
6460   if (ST1 != 0)
6461     return -1;
6462 
6463   switch (type)
6464     {
6465     case 0:  /* Prefixed Load VSX Scalar Doubleword, plxsd */
6466       ppc_record_vsr (regcache, tdep, PPC_VRT (insn_suffix) + 32);
6467       break;
6468     case 2:  /* Prefixed Load Halfword Algebraic, plha */
6469       record_full_arch_list_add_reg (regcache,
6470 				     tdep->ppc_gp0_regnum
6471 				     + PPC_RT (insn_suffix));
6472       break;
6473     default:
6474       return -1;
6475     }
6476   return 0;
6477 }
6478 
6479 /* Record the prefixed XX3-Form instructions with primary opcode 59.  The
6480    arguments are the first 32-bits of the instruction (insn_prefix), and the
6481    second 32-bits of the instruction (insn_suffix).  Return 0 on success.  */
6482 
6483 static int
6484 ppc_process_record_prefix_op59_XX3 (struct gdbarch *gdbarch,
6485 				    struct regcache *regcache,
6486 				    uint32_t insn_prefix, uint32_t insn_suffix)
6487 {
6488   int opcode = PPC_FIELD (insn_suffix, 21, 8);
6489   int type = PPC_FIELD (insn_prefix, 6, 2);
6490   int ST4 = PPC_FIELD (insn_prefix, 8, 4);
6491   int at = PPC_FIELD (insn_suffix, 6, 3);
6492   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
6493 
6494   /* Note, the mnemonics for the pmxvf16ger*, pmxvf32ger*,pmxvf64ger*,
6495      pmxvi4ger8*, pmxvi8ger4* pmxvi16ger2* instructions were officially
6496      changed to pmdmxbf16ger*, pmdmxvf32ger*, pmdmxvf64ger*, pmdmxvi4ger8*,
6497      pmdmxvi8ger4*, pmdmxvi16ger* respectively.  The old mnemonics are still
6498      supported by the assembler as extended mnemonics.  The disassembler
6499      generates the new mnemonics.  */
6500   if (type == 3)
6501     {
6502       if (ST4 == 9)
6503 	switch (opcode)
6504 	  {
6505 	  case 35:	/* Prefixed Masked VSX Vector 4-bit Signed Integer GER
6506 			   MMIRR, pmdmxvi4ger8 (pmxvi4ger8) */
6507 	  case 34:	/* Prefixed Masked VSX Vector 4-bit Signed Integer GER
6508 			   MMIRR, pmdmxvi4ger8pp (pmxvi4ger8pp) */
6509 
6510 	  case 99:	/* Prefixed Masked VSX Vector 8-bit Signed/Unsigned
6511 			   Integer GER with Saturate Positive multiply,
6512 			   Positive accumulate, xvi8ger4spp */
6513 
6514 	  case 3:	/* Prefixed Masked VSX Vector 8-bit Signed/Unsigned
6515 			   Integer GER MMIRR, pmdmxvi8ger4 (pmxvi8ger4)  */
6516 	  case 2:	/* Prefixed Masked VSX Vector 8-bit Signed/Unsigned
6517 			   Integer GER Positive multiply, Positive accumulate
6518 			   MMIRR, pmdmxvi8ger4pp (pmxvi8ger4pp)  */
6519 
6520 	  case 75:	/* Prefixed Masked VSX Vector 16-bit Signed Integer
6521 			   GER MMIRR, pmdmxvi16ger2 (pmxvi16ger2)  */
6522 	  case 107:	/* Prefixed Masked VSX Vector 16-bit Signed Integer
6523 			   GER  Positive multiply, Positive accumulate,
6524 			   pmdmxvi16ger2pp (pmxvi16ger2pp)  */
6525 
6526 	  case 43:	/* Prefixed Masked VSX Vector 16-bit Signed Integer
6527 			   GER with Saturation MMIRR, pmdmxvi16ger2s
6528 			   (pmxvi16ger2s)  */
6529 	  case 42:	/* Prefixed Masked VSX Vector 16-bit Signed Integer
6530 			   GER with Saturation Positive multiply, Positive
6531 			   accumulate MMIRR, pmdmxvi16ger2spp (pmxvi16ger2spp)
6532 			*/
6533 	    ppc_record_ACC_fpscr (regcache, tdep, at, false);
6534 	    return 0;
6535 
6536 	  case 19:	/* Prefixed Masked VSX Vector 16-bit Floating-Point
6537 			   GER MMIRR, pmdmxvf16ger2 (pmxvf16ger2)  */
6538 	  case 18:	/* Prefixed Masked VSX Vector 16-bit Floating-Point
6539 			   GER Positive multiply, Positive accumulate MMIRR,
6540 			   pmdmxvf16ger2pp (pmxvf16ger2pp)  */
6541 	  case 146:	/* Prefixed Masked VSX Vector 16-bit Floating-Point
6542 			   GER Positive multiply, Negative accumulate MMIRR,
6543 			   pmdmxvf16ger2pn (pmxvf16ger2pn)  */
6544 	  case 82:	/* Prefixed Masked VSX Vector 16-bit Floating-Point
6545 			   GER Negative multiply, Positive accumulate MMIRR,
6546 			   pmdmxvf16ger2np (pmxvf16ger2np)  */
6547 	  case 210:	/* Prefixed Masked VSX Vector 16-bit Floating-Point
6548 			   GER Negative multiply, Negative accumulate MMIRR,
6549 			   pmdmxvf16ger2nn (pmxvf16ger2nn)  */
6550 
6551 	  case 27:	/* Prefixed Masked VSX Vector 32-bit Floating-Point
6552 			   GER MMIRR, pmdmxvf32ger (pmxvf32ger)  */
6553 	  case 26:	/* Prefixed Masked VSX Vector 32-bit Floating-Point
6554 			   GER Positive multiply, Positive accumulate MMIRR,
6555 			   pmdmxvf32gerpp (pmxvf32gerpp)  */
6556 	  case 154:	/* Prefixed Masked VSX Vector 32-bit Floating-Point
6557 			   GER Positive multiply, Negative accumulate MMIRR,
6558 			   pmdmxvf32gerpn (pmxvf32gerpn)  */
6559 	  case 90:	/* Prefixed Masked VSX Vector 32-bit Floating-Point
6560 			   GER Negative multiply, Positive accumulate MMIRR,
6561 			   pmdmxvf32gernp (pmxvf32gernp )*/
6562 	  case 218:	/* Prefixed Masked VSX Vector 32-bit Floating-Point
6563 			   GER Negative multiply, Negative accumulate MMIRR,
6564 			   pmdmxvf32gernn (pmxvf32gernn)  */
6565 
6566 	  case 59:	/* Prefixed Masked VSX Vector 64-bit Floating-Point
6567 			   GER MMIRR, pmdmxvf64ger (pmxvf64ger)  */
6568 	  case 58:	/* Floating-Point GER Positive multiply, Positive
6569 			   accumulate MMIRR, pmdmxvf64gerpp (pmxvf64gerpp)  */
6570 	  case 186:	/* Prefixed Masked VSX Vector 64-bit Floating-Point
6571 			   GER Positive multiply, Negative accumulate MMIRR,
6572 			   pmdmxvf64gerpn (pmxvf64gerpn)  */
6573 	  case 122:	/* Prefixed Masked VSX Vector 64-bit Floating-Point
6574 			   GER Negative multiply, Positive accumulate MMIRR,
6575 			   pmdmxvf64gernp (pmxvf64gernp)  */
6576 	  case 250:	/* Prefixed Masked VSX Vector 64-bit Floating-Point
6577 			   GER Negative multiply, Negative accumulate MMIRR,
6578 			   pmdmxvf64gernn (pmxvf64gernn)  */
6579 
6580 	  case 51:	/* Prefixed Masked VSX Vector bfloat16 GER MMIRR,
6581 			   pmdmxvbf16ger2 (pmxvbf16ger2)  */
6582 	  case 50:	/* Prefixed Masked VSX Vector bfloat16 GER Positive
6583 			   multiply, Positive accumulate MMIRR,
6584 			   pmdmxvbf16ger2pp (pmxvbf16ger2pp)  */
6585 	  case 178:	/* Prefixed Masked VSX Vector bfloat16 GER Positive
6586 			   multiply, Negative accumulate MMIRR,
6587 			   pmdmxvbf16ger2pn (pmxvbf16ger2pn)  */
6588 	  case 114:	/* Prefixed Masked VSX Vector bfloat16 GER Negative
6589 			   multiply, Positive accumulate MMIRR,
6590 			   pmdmxvbf16ger2np (pmxvbf16ger2np)  */
6591 	  case 242:	/* Prefixed Masked VSX Vector bfloat16 GER Negative
6592 			   multiply, Negative accumulate MMIRR,
6593 			   pmdmxvbf16ger2nn (pmxvbf16ger2nn)  */
6594 	    ppc_record_ACC_fpscr (regcache, tdep, at, true);
6595 	    return 0;
6596 	  }
6597     }
6598   else
6599     return -1;
6600 
6601   return 0;
6602 }
6603 
6604 /* Record the prefixed store instructions.  The arguments are the instruction
6605    address, the first 32-bits of the instruction(insn_prefix) and the following
6606    32-bits of the instruction (insn_suffix).  Return 0 on success.  */
6607 
6608 static int
6609 ppc_process_record_prefix_store (struct gdbarch *gdbarch,
6610 				 struct regcache *regcache,
6611 				 CORE_ADDR addr, uint32_t insn_prefix,
6612 				 uint32_t insn_suffix)
6613 {
6614   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
6615   ULONGEST iaddr = 0;
6616   int size;
6617   int R = PPC_BIT (insn_prefix, 11);
6618   int op6 = PPC_OP6 (insn_suffix);
6619 
6620   if (R == 0)
6621     {
6622       if (PPC_RA (insn_suffix) != 0)
6623 	regcache_raw_read_unsigned (regcache, tdep->ppc_gp0_regnum
6624 				    + PPC_RA (insn_suffix), &iaddr);
6625     }
6626   else
6627     {
6628       iaddr = addr;     /* PC relative */
6629     }
6630 
6631   switch (op6)
6632     {
6633     case 38:
6634       size =  1;    /* store byte, pstb */
6635       break;
6636     case 44:
6637       size =  2;    /* store halfword, psth */
6638       break;
6639     case 36:
6640     case 52:
6641       size =  4;    /* store word, pstw, pstfs */
6642       break;
6643     case 54:
6644     case 61:
6645       size =  8;    /* store double word, pstd, pstfd */
6646       break;
6647     case 60:
6648       size = 16;    /* store quadword, pstq */
6649       break;
6650     default: return -1;
6651     }
6652 
6653   iaddr += P_PPC_D (insn_prefix, insn_suffix);
6654   record_full_arch_list_add_mem (iaddr, size);
6655   return 0;
6656 }
6657 
6658 /* Record the prefixed instructions with primary op code 32.  The arguments
6659    are the first 32-bits of the instruction (insn_prefix) and the following
6660    32-bits of the instruction (insn_suffix).  Return 0 on success.  */
6661 
6662 static int
6663 ppc_process_record_prefix_op32 (struct gdbarch *gdbarch,
6664 				struct regcache *regcache,
6665 				uint32_t insn_prefix, uint32_t insn_suffix)
6666 {
6667   int type = PPC_FIELD (insn_prefix, 6, 2);
6668   int ST1 = PPC_FIELD (insn_prefix, 8, 1);
6669   int ST4 = PPC_FIELD (insn_prefix, 8, 4);
6670   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
6671 
6672   if (type == 1)
6673     {
6674       if (ST4 == 0)
6675 	{
6676 	  switch (PPC_FIELD (insn_suffix, 11, 3))
6677 	    {
6678 	    case 0:  	/* VSX Vector Splat Immediate Word 8RR, xxsplti32dx */
6679 	      ppc_record_vsr (regcache, tdep, P_PPC_XT15 (insn_suffix));
6680 	      return 0;
6681 	    }
6682 
6683 	  switch (PPC_FIELD (insn_suffix, 11, 4))
6684 	    {
6685 	    case 2:  	/* VSX Vector Splat Immediate Double-Precision
6686 			   8RR, xxspltidp */
6687 	    case 3:  	/* VSX Vector Splat Immediate Word 8RR, xxspltiw */
6688 	      ppc_record_vsr (regcache, tdep, P_PPC_XT15 (insn_suffix));
6689 	      return 0;
6690 	    default:
6691 	      return -1;
6692 	    }
6693 	}
6694       else
6695 	return -1;
6696 
6697     }
6698   else if (type == 2)
6699     {
6700       if (ST1 == 0)  		/* Prefixed Load Word and Zero, plwz */
6701 	record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum
6702 				       + PPC_RT (insn_suffix));
6703       else
6704 	return -1;
6705 
6706     }
6707   else
6708     return -1;
6709 
6710   return 0;
6711 }
6712 
6713 /* Record the prefixed instructions with primary op code 33.  The arguments
6714    are the first 32-bits of the instruction(insn_prefix) and the following
6715    32-bits of the instruction (insn_suffix).  Return 0 on success.  */
6716 
6717 static int
6718 ppc_process_record_prefix_op33 (struct gdbarch *gdbarch,
6719 				struct regcache *regcache,
6720 				uint32_t insn_prefix, uint32_t insn_suffix)
6721 {
6722   int type = PPC_FIELD (insn_prefix, 6, 2);
6723   int ST4 = PPC_FIELD (insn_prefix, 8, 4);
6724   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
6725 
6726   if (type == 1)
6727     {
6728       if (ST4 == 0)
6729 	switch (PPC_FIELD (insn_suffix, 26, 2))
6730 	  {
6731 	  case 0:  	/* VSX Vector Blend Variable Byte 8RR, xxblendvb */
6732 	  case 1:  	/* VSX Vector Blend Variable Halfword, xxblendvh */
6733 	  case 2:  	/* VSX Vector Blend Variable Word, xxblendvw */
6734 	  case 3:  	/* VSX Vector Blend Variable Doubleword, xxblendvd */
6735 	    ppc_record_vsr (regcache, tdep, PPC_XT (insn_suffix));
6736 	  break;
6737 	  default:
6738 	    return -1;
6739 	  }
6740       else
6741 	return -1;
6742 
6743     }
6744   else
6745     return -1;
6746 
6747   return 0;
6748 }
6749 
6750 /* Record the prefixed instructions with primary op code 34.  The arguments
6751    are the first 32-bits of the instruction(insn_prefix) and the following
6752    32-bits of the instruction (insn_suffix).  Return 0 on success.  */
6753 
6754 static int
6755 ppc_process_record_prefix_op34 (struct gdbarch *gdbarch,
6756 				struct regcache *regcache,
6757 				uint32_t insn_prefix, uint32_t insn_suffix)
6758 {
6759   int type = PPC_FIELD (insn_prefix, 6, 2);
6760   int ST1 = PPC_FIELD (insn_prefix, 8, 1);
6761   int ST4 = PPC_FIELD (insn_prefix, 8, 4);
6762   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
6763 
6764   if (type == 1)
6765     {
6766       if (ST4 == 0)
6767 	switch (PPC_FIELD (insn_suffix, 26, 2))
6768 	  {
6769 	  case 0:  	/* VSX Vector Permute Extended 8RR, xxpermx */
6770 	  case 1:  	/* VSX Vector Evaluate 8RR, xxeval */
6771 	    ppc_record_vsr (regcache, tdep, P_PPC_XT (insn_suffix));
6772 	    break;
6773 	  default:
6774 	    return -1;
6775 	  }
6776       else
6777 	return -1;
6778 
6779     }
6780   else if (type == 2)
6781     {
6782       if (ST1 == 0)  		/* Prefixed Load Word and Zero, plbz */
6783 	record_full_arch_list_add_reg (regcache,
6784 				       tdep->ppc_gp0_regnum
6785 				       + PPC_RT (insn_suffix));
6786       else
6787 	return -1;
6788 
6789     }
6790   else
6791     return -1;
6792 
6793   return 0;
6794 }
6795 
6796 /* Record the prefixed VSX store, form DS, instructions.  The arguments are the
6797    instruction address (addr), the first 32-bits of the instruction
6798    (insn_prefix) followed by the 32-bit instruction suffix (insn_suffix).
6799    Return 0 on success.  */
6800 
6801 static int
6802 ppc_process_record_prefix_store_vsx_ds_form (struct gdbarch *gdbarch,
6803 					     struct regcache *regcache,
6804 					     CORE_ADDR addr,
6805 					     uint32_t insn_prefix,
6806 					     uint32_t insn_suffix)
6807 {
6808   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
6809   ULONGEST ea = 0;
6810   int size;
6811   int R = PPC_BIT (insn_prefix, 11);
6812   int type = PPC_FIELD (insn_prefix, 6, 2);
6813   int ST1 = PPC_FIELD (insn_prefix, 8, 1);
6814 
6815   if ((type == 0) && (ST1 == 0))
6816     {
6817       if (R == 0)
6818 	{
6819 	  if (PPC_RA (insn_suffix) != 0)
6820 	    regcache_raw_read_unsigned (regcache,
6821 					tdep->ppc_gp0_regnum
6822 					+ PPC_RA (insn_suffix),
6823 					&ea);
6824 	}
6825       else
6826 	{
6827 	  ea = addr;     /* PC relative */
6828 	}
6829 
6830       ea += P_PPC_D (insn_prefix, insn_suffix);
6831       switch (PPC_FIELD (insn_suffix, 0, 6))
6832 	{
6833 	case 46:    /* Prefixed Store VSX Scalar Doubleword, pstxsd */
6834 	  size = 8;
6835 	  break;
6836 	case 47:    /* Prefixed,Store VSX Scalar Single-Precision, pstxssp */
6837 	  size = 4;
6838 	  break;
6839 	default:
6840 	  return -1;
6841 	}
6842       record_full_arch_list_add_mem (ea, size);
6843       return 0;
6844   }
6845   else
6846     return -1;
6847 }
6848 
6849 /* Record the prefixed VSX, form D, instructions.  The arguments are the
6850    instruction address for PC-relative addresss (addr), the first 32-bits of
6851    the instruction (insn_prefix) and the following 32-bits of the instruction
6852    (insn_suffix).  Return 0 on success.  */
6853 
6854 static int
6855 ppc_process_record_prefix_vsx_d_form (struct gdbarch *gdbarch,
6856 				      struct regcache *regcache,
6857 				      CORE_ADDR addr,
6858 				      uint32_t insn_prefix,
6859 				      uint32_t insn_suffix)
6860 {
6861   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
6862   ULONGEST ea = 0;
6863   int size;
6864   int R = PPC_BIT (insn_prefix, 11);
6865   int type = PPC_FIELD (insn_prefix, 6, 2);
6866   int ST1 = PPC_FIELD (insn_prefix, 8, 1);
6867 
6868   if ((type == 0) && (ST1 == 0))
6869     {
6870       switch (PPC_FIELD (insn_suffix, 0, 5))
6871 	{
6872 	case 25:	/* Prefixed Load VSX Vector, plxv */
6873 	  ppc_record_vsr (regcache, tdep, P_PPC_XT5 (insn_prefix));
6874 	  return 0;
6875 	case 27:	/* Prefixed Store VSX Vector 8LS, pstxv */
6876 	  {
6877 	    size = 16;
6878 	    if (R == 0)
6879 	      {
6880 		if (PPC_RA (insn_suffix) != 0)
6881 		  regcache_raw_read_unsigned (regcache,
6882 					      tdep->ppc_gp0_regnum
6883 					      + PPC_RA (insn_suffix),
6884 					      &ea);
6885 	      }
6886 	    else
6887 	      {
6888 		ea = addr;     /* PC relative */
6889 	      }
6890 
6891 	    ea += P_PPC_D (insn_prefix, insn_suffix);
6892 	    record_full_arch_list_add_mem (ea, size);
6893 	    return 0;
6894 	  }
6895 	}
6896       return -1;
6897     }
6898   else
6899     return -1;
6900 }
6901 
6902 /* Parse the current instruction and record the values of the registers and
6903    memory that will be changed in current instruction to "record_arch_list".
6904    Return -1 if something wrong.  */
6905 
6906 /* This handles the recording of the various prefix instructions.  It takes
6907    the instruction address, the first 32-bits of the instruction (insn_prefix)
6908    and the following 32-bits of the instruction (insn_suffix).  Return 0 on
6909    success.  */
6910 
6911 static int
6912 ppc_process_prefix_instruction (int insn_prefix, int insn_suffix,
6913 				CORE_ADDR addr,	struct gdbarch *gdbarch,
6914 				struct regcache *regcache)
6915 {
6916   int type = PPC_FIELD (insn_prefix, 6, 2);
6917   int ST1 = PPC_FIELD (insn_prefix, 8, 1);
6918   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
6919   int op6;
6920 
6921   /* D-form has uses a 5-bit opcode in the instruction suffix */
6922   if (ppc_process_record_prefix_vsx_d_form ( gdbarch, regcache, addr,
6923 					     insn_prefix, insn_suffix) == 0)
6924     goto SUCCESS;
6925 
6926   op6 = PPC_OP6 (insn_suffix);  /* 6-bit opcode in the instruction suffix */
6927 
6928   switch (op6)
6929     {
6930     case 14:		/* Prefixed Add Immediate, paddi */
6931       if ((type == 2) && (ST1 == 0))
6932 	record_full_arch_list_add_reg (regcache,
6933 				       tdep->ppc_gp0_regnum
6934 				       + PPC_RT (insn_suffix));
6935       else
6936 	goto UNKNOWN_PREFIX_OP;
6937       break;
6938 
6939     case 32:
6940       if (ppc_process_record_prefix_op32 (gdbarch, regcache,
6941 					  insn_prefix, insn_suffix) != 0)
6942 	goto UNKNOWN_PREFIX_OP;
6943       break;
6944 
6945     case 33:
6946       if (ppc_process_record_prefix_op33 (gdbarch, regcache,
6947 					  insn_prefix, insn_suffix) != 0)
6948 	goto UNKNOWN_PREFIX_OP;
6949       break;
6950 
6951     case 34:		/* Prefixed Load Byte and Zero, plbz */
6952       if (ppc_process_record_prefix_op34 (gdbarch, regcache,
6953 					  insn_prefix, insn_suffix) != 0)
6954 	goto UNKNOWN_PREFIX_OP;
6955       break;
6956     case 40:		/* Prefixed Load Halfword and Zero, plhz */
6957       if ((type == 2) && (ST1 == 0))
6958 	record_full_arch_list_add_reg (regcache,
6959 				       tdep->ppc_gp0_regnum
6960 				       + PPC_RT (insn_suffix));
6961       else
6962 	goto UNKNOWN_PREFIX_OP;
6963       break;
6964 
6965       break;
6966 
6967     case 36:		/* Prefixed Store Word, pstw */
6968     case 38:		/* Prefixed Store Byte, pstb */
6969     case 44:		/* Prefixed Store Halfword, psth */
6970     case 52:		/* Prefixed Store Floating-Point Single, pstfs */
6971     case 54:		/* Prefixed Store Floating-Point Double, pstfd */
6972     case 60:		/* Prefixed Store Quadword, pstq */
6973     case 61:		/* Prefixed Store Doubleword, pstd */
6974       if (ppc_process_record_prefix_store (gdbarch, regcache, addr,
6975 					   insn_prefix, insn_suffix) != 0)
6976 	goto UNKNOWN_PREFIX_OP;
6977       break;
6978 
6979     case 42:
6980       if (ppc_process_record_prefix_op42 (gdbarch, regcache,
6981 					  insn_prefix, insn_suffix) != 0)
6982 	goto UNKNOWN_PREFIX_OP;
6983       break;
6984 
6985     case 43:          /* Prefixed Load VSX Scalar Single-Precision, plxssp */
6986       if ((type == 0) && (ST1 == 0))
6987 	  ppc_record_vsr (regcache, tdep, PPC_VRT (insn_suffix) + 32);
6988       else
6989 	  goto UNKNOWN_PREFIX_OP;
6990       break;
6991 
6992     case 46:
6993     case 47:
6994       if (ppc_process_record_prefix_store_vsx_ds_form (gdbarch, regcache, addr,
6995 					       insn_prefix, insn_suffix) != 0)
6996 	goto UNKNOWN_PREFIX_OP;
6997       break;
6998 
6999     case 56:		/* Prefixed Load Quadword, plq */
7000       {
7001 	if ((type == 0) && (ST1 == 0))
7002 	  {
7003 	    int tmp;
7004 	    tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn_suffix) & ~1);
7005 	    record_full_arch_list_add_reg (regcache, tmp);
7006 	    record_full_arch_list_add_reg (regcache, tmp + 1);
7007 	  }
7008 	else
7009 	  goto UNKNOWN_PREFIX_OP;
7010 	break;
7011       }
7012 
7013     case 41:		/* Prefixed Load Word Algebraic, plwa */
7014     case 57:  		/* Prefixed Load Doubleword, pld */
7015       if ((type == 0) && (ST1 == 0))
7016 	record_full_arch_list_add_reg (regcache,
7017 				       tdep->ppc_gp0_regnum
7018 				       + PPC_RT (insn_suffix));
7019       else
7020 	goto UNKNOWN_PREFIX_OP;
7021       break;
7022 
7023     case 48:		/* Prefixed Load Floating-Point Single, plfs */
7024     case 50:		/* Prefixed Load Floating-Point Double, plfd */
7025       if ((type == 2) && (ST1 == 0))
7026 	record_full_arch_list_add_reg (regcache,
7027 				       tdep->ppc_fp0_regnum
7028 				       + PPC_FRT (insn_suffix));
7029       else
7030 	goto UNKNOWN_PREFIX_OP;
7031       break;
7032 
7033     case 58:		/* Prefixed Load VSX Vector Paired, plxvp */
7034       if ((type == 0) && (ST1 == 0))
7035 	{
7036 	  ppc_record_vsr (regcache, tdep, PPC_XTp (insn_suffix));
7037 	  ppc_record_vsr (regcache, tdep, PPC_XTp (insn_suffix) + 1);
7038 	}
7039       else
7040 	goto UNKNOWN_PREFIX_OP;
7041       break;
7042 
7043     case 59:
7044       if (ppc_process_record_prefix_op59_XX3 (gdbarch, regcache, insn_prefix,
7045 					      insn_suffix) != 0)
7046 	goto UNKNOWN_PREFIX_OP;
7047       break;
7048 
7049     case 62:	    /* Prefixed Store VSX Vector Paired 8LS, pstxvp */
7050       if ((type == 0) && (ST1 == 0))
7051 	{
7052 	  int R = PPC_BIT (insn_prefix, 11);
7053 	  CORE_ADDR ea = 0;
7054 
7055 	  if (R == 0)
7056 	    {
7057 	      if (PPC_RA (insn_suffix) != 0)
7058 		regcache_raw_read_unsigned (regcache,
7059 					    tdep->ppc_gp0_regnum
7060 					    + PPC_RA (insn_suffix), &ea);
7061 	    }
7062 	  else
7063 	    {
7064 	      ea = addr;     /* PC relative */
7065 	    }
7066 
7067 	  ea += P_PPC_D (insn_prefix, insn_suffix) << 4;
7068 	  record_full_arch_list_add_mem (ea, 32);
7069 	}
7070       else
7071 	goto UNKNOWN_PREFIX_OP;
7072       break;
7073 
7074     default:
7075 UNKNOWN_PREFIX_OP:
7076       gdb_printf (gdb_stdlog,
7077 		  "Warning: Don't know how to record prefix instruction "
7078 		  "%08x %08x at %s, %d.\n",
7079 		  insn_prefix, insn_suffix, paddress (gdbarch, addr),
7080 		  op6);
7081       return -1;
7082     }
7083 
7084  SUCCESS:
7085   if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
7086     return -1;
7087 
7088   if (record_full_arch_list_add_end ())
7089     return -1;
7090   return 0;
7091 }
7092 
7093 int
7094 ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
7095 		      CORE_ADDR addr)
7096 {
7097   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
7098   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7099   uint32_t insn, insn_suffix;
7100   int op6, tmp, i;
7101 
7102   insn = read_memory_unsigned_integer (addr, 4, byte_order);
7103   op6 = PPC_OP6 (insn);
7104 
7105   switch (op6)
7106     {
7107     case 1:		/* prefixed instruction */
7108       {
7109 	/* Get the lower 32-bits of the prefixed instruction. */
7110 	insn_suffix = read_memory_unsigned_integer (addr+4, 4, byte_order);
7111 	return ppc_process_prefix_instruction (insn, insn_suffix, addr,
7112 					       gdbarch, regcache);
7113       }
7114     case 2:		/* Trap Doubleword Immediate */
7115     case 3:		/* Trap Word Immediate */
7116       /* Do nothing.  */
7117       break;
7118 
7119     case 4:             /* Vector Integer, Compare, Logical, Shift, etc.  */
7120       if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
7121 	return -1;
7122       break;
7123 
7124     case 6:             /* Vector Load and Store */
7125       if (ppc_process_record_op6 (gdbarch, regcache, addr, insn) != 0)
7126 	return -1;
7127       break;
7128 
7129     case 17:		/* System call */
7130       if (PPC_LEV (insn) != 0)
7131 	goto UNKNOWN_OP;
7132 
7133       if (tdep->ppc_syscall_record != NULL)
7134 	{
7135 	  if (tdep->ppc_syscall_record (regcache) != 0)
7136 	    return -1;
7137 	}
7138       else
7139 	{
7140 	  gdb_printf (gdb_stderr, _("no syscall record support\n"));
7141 	  return -1;
7142 	}
7143       break;
7144 
7145     case 7:		/* Multiply Low Immediate */
7146       record_full_arch_list_add_reg (regcache,
7147 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
7148       break;
7149 
7150     case 8:		/* Subtract From Immediate Carrying */
7151       record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
7152       record_full_arch_list_add_reg (regcache,
7153 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
7154       break;
7155 
7156     case 10:		/* Compare Logical Immediate  */
7157     case 11:		/* Compare Immediate */
7158       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
7159       break;
7160 
7161     case 13:		/* Add Immediate Carrying and Record */
7162       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
7163       /* FALL-THROUGH */
7164     case 12:		/* Add Immediate Carrying */
7165       record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
7166       /* FALL-THROUGH */
7167     case 14:		/* Add Immediate */
7168     case 15:		/* Add Immediate Shifted */
7169       record_full_arch_list_add_reg (regcache,
7170 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
7171       break;
7172 
7173     case 16:		/* Branch Conditional */
7174       if ((PPC_BO (insn) & 0x4) == 0)
7175 	record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
7176       /* FALL-THROUGH */
7177     case 18:		/* Branch */
7178       if (PPC_LK (insn))
7179 	record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
7180       break;
7181 
7182     case 19:
7183       if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
7184 	return -1;
7185       break;
7186 
7187     case 20:		/* Rotate Left Word Immediate then Mask Insert */
7188     case 21:		/* Rotate Left Word Immediate then AND with Mask */
7189     case 23:		/* Rotate Left Word then AND with Mask */
7190     case 30:		/* Rotate Left Doubleword Immediate then Clear Left */
7191 			/* Rotate Left Doubleword Immediate then Clear Right */
7192 			/* Rotate Left Doubleword Immediate then Clear */
7193 			/* Rotate Left Doubleword then Clear Left */
7194 			/* Rotate Left Doubleword then Clear Right */
7195 			/* Rotate Left Doubleword Immediate then Mask Insert */
7196       if (PPC_RC (insn))
7197 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
7198       record_full_arch_list_add_reg (regcache,
7199 				     tdep->ppc_gp0_regnum + PPC_RA (insn));
7200       break;
7201 
7202     case 28:		/* AND Immediate */
7203     case 29:		/* AND Immediate Shifted */
7204       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
7205       /* FALL-THROUGH */
7206     case 24:		/* OR Immediate */
7207     case 25:		/* OR Immediate Shifted */
7208     case 26:		/* XOR Immediate */
7209     case 27:		/* XOR Immediate Shifted */
7210       record_full_arch_list_add_reg (regcache,
7211 				     tdep->ppc_gp0_regnum + PPC_RA (insn));
7212       break;
7213 
7214     case 31:
7215       if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
7216 	return -1;
7217       break;
7218 
7219     case 33:		/* Load Word and Zero with Update */
7220     case 35:		/* Load Byte and Zero with Update */
7221     case 41:		/* Load Halfword and Zero with Update */
7222     case 43:		/* Load Halfword Algebraic with Update */
7223       record_full_arch_list_add_reg (regcache,
7224 				     tdep->ppc_gp0_regnum + PPC_RA (insn));
7225       /* FALL-THROUGH */
7226     case 32:		/* Load Word and Zero */
7227     case 34:		/* Load Byte and Zero */
7228     case 40:		/* Load Halfword and Zero */
7229     case 42:		/* Load Halfword Algebraic */
7230       record_full_arch_list_add_reg (regcache,
7231 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
7232       break;
7233 
7234     case 46:		/* Load Multiple Word */
7235       for (i = PPC_RT (insn); i < 32; i++)
7236 	record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
7237       break;
7238 
7239     case 56:		/* Load Quadword */
7240       tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
7241       record_full_arch_list_add_reg (regcache, tmp);
7242       record_full_arch_list_add_reg (regcache, tmp + 1);
7243       break;
7244 
7245     case 49:		/* Load Floating-Point Single with Update */
7246     case 51:		/* Load Floating-Point Double with Update */
7247       record_full_arch_list_add_reg (regcache,
7248 				     tdep->ppc_gp0_regnum + PPC_RA (insn));
7249       /* FALL-THROUGH */
7250     case 48:		/* Load Floating-Point Single */
7251     case 50:		/* Load Floating-Point Double */
7252       record_full_arch_list_add_reg (regcache,
7253 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
7254       break;
7255 
7256     case 47:		/* Store Multiple Word */
7257 	{
7258 	  ULONGEST iaddr = 0;
7259 
7260 	  if (PPC_RA (insn) != 0)
7261 	    regcache_raw_read_unsigned (regcache,
7262 					tdep->ppc_gp0_regnum + PPC_RA (insn),
7263 					&iaddr);
7264 
7265 	  iaddr += PPC_D (insn);
7266 	  record_full_arch_list_add_mem (iaddr, 4 * (32 - PPC_RS (insn)));
7267 	}
7268       break;
7269 
7270     case 37:		/* Store Word with Update */
7271     case 39:		/* Store Byte with Update */
7272     case 45:		/* Store Halfword with Update */
7273     case 53:		/* Store Floating-Point Single with Update */
7274     case 55:		/* Store Floating-Point Double with Update */
7275       record_full_arch_list_add_reg (regcache,
7276 				     tdep->ppc_gp0_regnum + PPC_RA (insn));
7277       /* FALL-THROUGH */
7278     case 36:		/* Store Word */
7279     case 38:		/* Store Byte */
7280     case 44:		/* Store Halfword */
7281     case 52:		/* Store Floating-Point Single */
7282     case 54:		/* Store Floating-Point Double */
7283 	{
7284 	  ULONGEST iaddr = 0;
7285 	  int size = -1;
7286 
7287 	  if (PPC_RA (insn) != 0)
7288 	    regcache_raw_read_unsigned (regcache,
7289 					tdep->ppc_gp0_regnum + PPC_RA (insn),
7290 					&iaddr);
7291 	  iaddr += PPC_D (insn);
7292 
7293 	  if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
7294 	    size = 4;
7295 	  else if (op6 == 54 || op6 == 55)
7296 	    size = 8;
7297 	  else if (op6 == 44 || op6 == 45)
7298 	    size = 2;
7299 	  else if (op6 == 38 || op6 == 39)
7300 	    size = 1;
7301 	  else
7302 	    gdb_assert (0);
7303 
7304 	  record_full_arch_list_add_mem (iaddr, size);
7305 	}
7306       break;
7307 
7308     case 57:
7309       switch (insn & 0x3)
7310 	{
7311 	case 0:		/* Load Floating-Point Double Pair */
7312 	  tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
7313 	  record_full_arch_list_add_reg (regcache, tmp);
7314 	  record_full_arch_list_add_reg (regcache, tmp + 1);
7315 	  break;
7316 	case 2:		/* Load VSX Scalar Doubleword */
7317 	case 3:		/* Load VSX Scalar Single */
7318 	  ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
7319 	  break;
7320 	default:
7321 	  goto UNKNOWN_OP;
7322 	}
7323       break;
7324 
7325     case 58:		/* Load Doubleword */
7326 			/* Load Doubleword with Update */
7327 			/* Load Word Algebraic */
7328       if (PPC_FIELD (insn, 30, 2) > 2)
7329 	goto UNKNOWN_OP;
7330 
7331       record_full_arch_list_add_reg (regcache,
7332 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
7333       if (PPC_BIT (insn, 31))
7334 	record_full_arch_list_add_reg (regcache,
7335 				       tdep->ppc_gp0_regnum + PPC_RA (insn));
7336       break;
7337 
7338     case 59:
7339       if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
7340 	return -1;
7341       break;
7342 
7343     case 60:
7344       if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
7345 	return -1;
7346       break;
7347 
7348     case 61:
7349       if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
7350 	return -1;
7351       break;
7352 
7353     case 62:		/* Store Doubleword */
7354 			/* Store Doubleword with Update */
7355 			/* Store Quadword with Update */
7356 	{
7357 	  ULONGEST iaddr = 0;
7358 	  int size;
7359 	  int sub2 = PPC_FIELD (insn, 30, 2);
7360 
7361 	  if (sub2 > 2)
7362 	    goto UNKNOWN_OP;
7363 
7364 	  if (PPC_RA (insn) != 0)
7365 	    regcache_raw_read_unsigned (regcache,
7366 					tdep->ppc_gp0_regnum + PPC_RA (insn),
7367 					&iaddr);
7368 
7369 	  size = (sub2 == 2) ? 16 : 8;
7370 
7371 	  iaddr += PPC_DS (insn) << 2;
7372 	  record_full_arch_list_add_mem (iaddr, size);
7373 
7374 	  if (op6 == 62 && sub2 == 1)
7375 	    record_full_arch_list_add_reg (regcache,
7376 					   tdep->ppc_gp0_regnum +
7377 					   PPC_RA (insn));
7378 
7379 	  break;
7380 	}
7381 
7382     case 63:
7383       if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
7384 	return -1;
7385       break;
7386 
7387     default:
7388 UNKNOWN_OP:
7389       gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
7390 		  "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
7391       return -1;
7392     }
7393 
7394   if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
7395     return -1;
7396   if (record_full_arch_list_add_end ())
7397     return -1;
7398   return 0;
7399 }
7400 
7401 /* Used for matching tw, twi, td and tdi instructions for POWER.  */
7402 
7403 static constexpr uint32_t TX_INSN_MASK = 0xFC0007FF;
7404 static constexpr uint32_t TW_INSN = 0x7C000008;
7405 static constexpr uint32_t TD_INSN = 0x7C000088;
7406 
7407 static constexpr uint32_t TXI_INSN_MASK = 0xFC000000;
7408 static constexpr uint32_t TWI_INSN = 0x0C000000;
7409 static constexpr uint32_t TDI_INSN = 0x08000000;
7410 
7411 static inline bool
7412 is_tw_insn (uint32_t insn)
7413 {
7414   return (insn & TX_INSN_MASK) == TW_INSN;
7415 }
7416 
7417 static inline bool
7418 is_twi_insn (uint32_t insn)
7419 {
7420   return (insn & TXI_INSN_MASK) == TWI_INSN;
7421 }
7422 
7423 static inline bool
7424 is_td_insn (uint32_t insn)
7425 {
7426   return (insn & TX_INSN_MASK) == TD_INSN;
7427 }
7428 
7429 static inline bool
7430 is_tdi_insn (uint32_t insn)
7431 {
7432   return (insn & TXI_INSN_MASK) == TDI_INSN;
7433 }
7434 
7435 /* Implementation of gdbarch_program_breakpoint_here_p for POWER.  */
7436 
7437 static bool
7438 rs6000_program_breakpoint_here_p (gdbarch *gdbarch, CORE_ADDR address)
7439 {
7440   gdb_byte target_mem[PPC_INSN_SIZE];
7441 
7442   /* Enable the automatic memory restoration from breakpoints while
7443      we read the memory.  Otherwise we may find temporary breakpoints, ones
7444      inserted by GDB, and flag them as permanent breakpoints.  */
7445   scoped_restore restore_memory
7446     = make_scoped_restore_show_memory_breakpoints (0);
7447 
7448   if (target_read_memory (address, target_mem, PPC_INSN_SIZE) == 0)
7449     {
7450       uint32_t insn = (uint32_t) extract_unsigned_integer
7451         (target_mem, PPC_INSN_SIZE, gdbarch_byte_order_for_code (gdbarch));
7452 
7453       /* Check if INSN is a TW, TWI, TD or TDI instruction.  There
7454          are multiple choices of such instructions with different registers
7455          and / or immediate values but they all cause a break. */
7456       if (is_tw_insn (insn) || is_twi_insn (insn) || is_td_insn (insn)
7457           || is_tdi_insn (insn))
7458         return true;
7459     }
7460 
7461   return false;
7462 }
7463 
7464 /* Initialize the current architecture based on INFO.  If possible, re-use an
7465    architecture from ARCHES, which is a list of architectures already created
7466    during this debugging session.
7467 
7468    Called e.g. at program startup, when reading a core file, and when reading
7469    a binary file.  */
7470 
7471 static struct gdbarch *
7472 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7473 {
7474   struct gdbarch *gdbarch;
7475   int wordsize, from_xcoff_exec, from_elf_exec;
7476   enum bfd_architecture arch;
7477   unsigned long mach;
7478   bfd abfd;
7479   enum auto_boolean soft_float_flag = powerpc_soft_float_global;
7480   int soft_float;
7481   enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO;
7482   enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
7483   enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
7484   int have_fpu = 0, have_spe = 0, have_mq = 0, have_altivec = 0;
7485   int have_dfp = 0, have_vsx = 0, have_ppr = 0, have_dscr = 0;
7486   int have_tar = 0, have_ebb = 0, have_pmu = 0, have_htm_spr = 0;
7487   int have_htm_core = 0, have_htm_fpu = 0, have_htm_altivec = 0;
7488   int have_htm_vsx = 0, have_htm_ppr = 0, have_htm_dscr = 0;
7489   int have_htm_tar = 0;
7490   int tdesc_wordsize = -1;
7491   const struct target_desc *tdesc = info.target_desc;
7492   tdesc_arch_data_up tdesc_data;
7493   int num_pseudoregs = 0;
7494   int cur_reg;
7495 
7496   from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7497     bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
7498 
7499   from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
7500     bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
7501 
7502   /* Check word size.  If INFO is from a binary file, infer it from
7503      that, else choose a likely default.  */
7504   if (from_xcoff_exec)
7505     {
7506       if (bfd_xcoff_is_xcoff64 (info.abfd))
7507 	wordsize = 8;
7508       else
7509 	wordsize = 4;
7510     }
7511   else if (from_elf_exec)
7512     {
7513       if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7514 	wordsize = 8;
7515       else
7516 	wordsize = 4;
7517     }
7518   else if (tdesc_has_registers (tdesc))
7519     wordsize = -1;
7520   else
7521     {
7522       if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
7523 	wordsize = (info.bfd_arch_info->bits_per_word
7524 		    / info.bfd_arch_info->bits_per_byte);
7525       else
7526 	wordsize = 4;
7527     }
7528 
7529   /* Get the architecture and machine from the BFD.  */
7530   arch = info.bfd_arch_info->arch;
7531   mach = info.bfd_arch_info->mach;
7532 
7533   /* For e500 executables, the apuinfo section is of help here.  Such
7534      section contains the identifier and revision number of each
7535      Application-specific Processing Unit that is present on the
7536      chip.  The content of the section is determined by the assembler
7537      which looks at each instruction and determines which unit (and
7538      which version of it) can execute it.  Grovel through the section
7539      looking for relevant e500 APUs.  */
7540 
7541   if (bfd_uses_spe_extensions (info.abfd))
7542     {
7543       arch = info.bfd_arch_info->arch;
7544       mach = bfd_mach_ppc_e500;
7545       bfd_default_set_arch_mach (&abfd, arch, mach);
7546       info.bfd_arch_info = bfd_get_arch_info (&abfd);
7547     }
7548 
7549   /* Find a default target description which describes our register
7550      layout, if we do not already have one.  */
7551   if (! tdesc_has_registers (tdesc))
7552     {
7553       const struct ppc_variant *v;
7554 
7555       /* Choose variant.  */
7556       v = find_variant_by_arch (arch, mach);
7557       if (!v)
7558 	return NULL;
7559 
7560       tdesc = *v->tdesc;
7561     }
7562 
7563   gdb_assert (tdesc_has_registers (tdesc));
7564 
7565   /* Check any target description for validity.  */
7566   if (tdesc_has_registers (tdesc))
7567     {
7568       static const char *const gprs[] = {
7569 	"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
7570 	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
7571 	"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
7572 	"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
7573       };
7574       const struct tdesc_feature *feature;
7575       int i, valid_p;
7576       static const char *const msr_names[] = { "msr", "ps" };
7577       static const char *const cr_names[] = { "cr", "cnd" };
7578       static const char *const ctr_names[] = { "ctr", "cnt" };
7579 
7580       feature = tdesc_find_feature (tdesc,
7581 				    "org.gnu.gdb.power.core");
7582       if (feature == NULL)
7583 	return NULL;
7584 
7585       tdesc_data = tdesc_data_alloc ();
7586 
7587       valid_p = 1;
7588       for (i = 0; i < ppc_num_gprs; i++)
7589 	valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7590 					    i, gprs[i]);
7591       valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7592 					  PPC_PC_REGNUM, "pc");
7593       valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7594 					  PPC_LR_REGNUM, "lr");
7595       valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7596 					  PPC_XER_REGNUM, "xer");
7597 
7598       /* Allow alternate names for these registers, to accomodate GDB's
7599 	 historic naming.  */
7600       valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
7601 						  PPC_MSR_REGNUM, msr_names);
7602       valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
7603 						  PPC_CR_REGNUM, cr_names);
7604       valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
7605 						  PPC_CTR_REGNUM, ctr_names);
7606 
7607       if (!valid_p)
7608 	return NULL;
7609 
7610       have_mq = tdesc_numbered_register (feature, tdesc_data.get (),
7611 					 PPC_MQ_REGNUM, "mq");
7612 
7613       tdesc_wordsize = tdesc_register_bitsize (feature, "pc") / 8;
7614       if (wordsize == -1)
7615 	wordsize = tdesc_wordsize;
7616 
7617       feature = tdesc_find_feature (tdesc,
7618 				    "org.gnu.gdb.power.fpu");
7619       if (feature != NULL)
7620 	{
7621 	  static const char *const fprs[] = {
7622 	    "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
7623 	    "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
7624 	    "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
7625 	    "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
7626 	  };
7627 	  valid_p = 1;
7628 	  for (i = 0; i < ppc_num_fprs; i++)
7629 	    valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7630 						PPC_F0_REGNUM + i, fprs[i]);
7631 	  valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7632 					      PPC_FPSCR_REGNUM, "fpscr");
7633 
7634 	  if (!valid_p)
7635 	    return NULL;
7636 	  have_fpu = 1;
7637 
7638 	  /* The fpscr register was expanded in isa 2.05 to 64 bits
7639 	     along with the addition of the decimal floating point
7640 	     facility.  */
7641 	  if (tdesc_register_bitsize (feature, "fpscr") > 32)
7642 	    have_dfp = 1;
7643 	}
7644       else
7645 	have_fpu = 0;
7646 
7647       feature = tdesc_find_feature (tdesc,
7648 				    "org.gnu.gdb.power.altivec");
7649       if (feature != NULL)
7650 	{
7651 	  static const char *const vector_regs[] = {
7652 	    "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
7653 	    "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
7654 	    "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
7655 	    "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
7656 	  };
7657 
7658 	  valid_p = 1;
7659 	  for (i = 0; i < ppc_num_gprs; i++)
7660 	    valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7661 						PPC_VR0_REGNUM + i,
7662 						vector_regs[i]);
7663 	  valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7664 					      PPC_VSCR_REGNUM, "vscr");
7665 	  valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7666 					      PPC_VRSAVE_REGNUM, "vrsave");
7667 
7668 	  if (have_spe || !valid_p)
7669 	    return NULL;
7670 	  have_altivec = 1;
7671 	}
7672       else
7673 	have_altivec = 0;
7674 
7675       /* Check for POWER7 VSX registers support.  */
7676       feature = tdesc_find_feature (tdesc,
7677 				    "org.gnu.gdb.power.vsx");
7678 
7679       if (feature != NULL)
7680 	{
7681 	  static const char *const vsx_regs[] = {
7682 	    "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
7683 	    "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
7684 	    "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
7685 	    "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
7686 	    "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
7687 	    "vs30h", "vs31h"
7688 	  };
7689 
7690 	  valid_p = 1;
7691 
7692 	  for (i = 0; i < ppc_num_vshrs; i++)
7693 	    valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7694 						PPC_VSR0_UPPER_REGNUM + i,
7695 						vsx_regs[i]);
7696 
7697 	  if (!valid_p || !have_fpu || !have_altivec)
7698 	    return NULL;
7699 
7700 	  have_vsx = 1;
7701 	}
7702       else
7703 	have_vsx = 0;
7704 
7705       /* On machines supporting the SPE APU, the general-purpose registers
7706 	 are 64 bits long.  There are SIMD vector instructions to treat them
7707 	 as pairs of floats, but the rest of the instruction set treats them
7708 	 as 32-bit registers, and only operates on their lower halves.
7709 
7710 	 In the GDB regcache, we treat their high and low halves as separate
7711 	 registers.  The low halves we present as the general-purpose
7712 	 registers, and then we have pseudo-registers that stitch together
7713 	 the upper and lower halves and present them as pseudo-registers.
7714 
7715 	 Thus, the target description is expected to supply the upper
7716 	 halves separately.  */
7717 
7718       feature = tdesc_find_feature (tdesc,
7719 				    "org.gnu.gdb.power.spe");
7720       if (feature != NULL)
7721 	{
7722 	  static const char *const upper_spe[] = {
7723 	    "ev0h", "ev1h", "ev2h", "ev3h",
7724 	    "ev4h", "ev5h", "ev6h", "ev7h",
7725 	    "ev8h", "ev9h", "ev10h", "ev11h",
7726 	    "ev12h", "ev13h", "ev14h", "ev15h",
7727 	    "ev16h", "ev17h", "ev18h", "ev19h",
7728 	    "ev20h", "ev21h", "ev22h", "ev23h",
7729 	    "ev24h", "ev25h", "ev26h", "ev27h",
7730 	    "ev28h", "ev29h", "ev30h", "ev31h"
7731 	  };
7732 
7733 	  valid_p = 1;
7734 	  for (i = 0; i < ppc_num_gprs; i++)
7735 	    valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7736 						PPC_SPE_UPPER_GP0_REGNUM + i,
7737 						upper_spe[i]);
7738 	  valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7739 					      PPC_SPE_ACC_REGNUM, "acc");
7740 	  valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7741 					      PPC_SPE_FSCR_REGNUM, "spefscr");
7742 
7743 	  if (have_mq || have_fpu || !valid_p)
7744 	    return NULL;
7745 	  have_spe = 1;
7746 	}
7747       else
7748 	have_spe = 0;
7749 
7750       /* Program Priority Register.  */
7751       feature = tdesc_find_feature (tdesc,
7752 				    "org.gnu.gdb.power.ppr");
7753       if (feature != NULL)
7754 	{
7755 	  valid_p = 1;
7756 	  valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7757 					      PPC_PPR_REGNUM, "ppr");
7758 
7759 	  if (!valid_p)
7760 	    return NULL;
7761 	  have_ppr = 1;
7762 	}
7763       else
7764 	have_ppr = 0;
7765 
7766       /* Data Stream Control Register.  */
7767       feature = tdesc_find_feature (tdesc,
7768 				    "org.gnu.gdb.power.dscr");
7769       if (feature != NULL)
7770 	{
7771 	  valid_p = 1;
7772 	  valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7773 					      PPC_DSCR_REGNUM, "dscr");
7774 
7775 	  if (!valid_p)
7776 	    return NULL;
7777 	  have_dscr = 1;
7778 	}
7779       else
7780 	have_dscr = 0;
7781 
7782       /* Target Address Register.  */
7783       feature = tdesc_find_feature (tdesc,
7784 				    "org.gnu.gdb.power.tar");
7785       if (feature != NULL)
7786 	{
7787 	  valid_p = 1;
7788 	  valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7789 					      PPC_TAR_REGNUM, "tar");
7790 
7791 	  if (!valid_p)
7792 	    return NULL;
7793 	  have_tar = 1;
7794 	}
7795       else
7796 	have_tar = 0;
7797 
7798       /* Event-based Branching Registers.  */
7799       feature = tdesc_find_feature (tdesc,
7800 				    "org.gnu.gdb.power.ebb");
7801       if (feature != NULL)
7802 	{
7803 	  static const char *const ebb_regs[] = {
7804 	    "bescr", "ebbhr", "ebbrr"
7805 	  };
7806 
7807 	  valid_p = 1;
7808 	  for (i = 0; i < ARRAY_SIZE (ebb_regs); i++)
7809 	    valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7810 						PPC_BESCR_REGNUM + i,
7811 						ebb_regs[i]);
7812 	  if (!valid_p)
7813 	    return NULL;
7814 	  have_ebb = 1;
7815 	}
7816       else
7817 	have_ebb = 0;
7818 
7819       /* Subset of the ISA 2.07 Performance Monitor Registers provided
7820 	 by Linux.  */
7821       feature = tdesc_find_feature (tdesc,
7822 				    "org.gnu.gdb.power.linux.pmu");
7823       if (feature != NULL)
7824 	{
7825 	  valid_p = 1;
7826 
7827 	  valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7828 					      PPC_MMCR0_REGNUM,
7829 					      "mmcr0");
7830 	  valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7831 					      PPC_MMCR2_REGNUM,
7832 					      "mmcr2");
7833 	  valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7834 					      PPC_SIAR_REGNUM,
7835 					      "siar");
7836 	  valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7837 					      PPC_SDAR_REGNUM,
7838 					      "sdar");
7839 	  valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7840 					      PPC_SIER_REGNUM,
7841 					      "sier");
7842 
7843 	  if (!valid_p)
7844 	    return NULL;
7845 	  have_pmu = 1;
7846 	}
7847       else
7848 	have_pmu = 0;
7849 
7850       /* Hardware Transactional Memory Registers.  */
7851       feature = tdesc_find_feature (tdesc,
7852 				    "org.gnu.gdb.power.htm.spr");
7853       if (feature != NULL)
7854 	{
7855 	  static const char *const tm_spr_regs[] = {
7856 	    "tfhar", "texasr", "tfiar"
7857 	  };
7858 
7859 	  valid_p = 1;
7860 	  for (i = 0; i < ARRAY_SIZE (tm_spr_regs); i++)
7861 	    valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7862 						PPC_TFHAR_REGNUM + i,
7863 						tm_spr_regs[i]);
7864 	  if (!valid_p)
7865 	    return NULL;
7866 
7867 	  have_htm_spr = 1;
7868 	}
7869       else
7870 	have_htm_spr = 0;
7871 
7872       feature = tdesc_find_feature (tdesc,
7873 				    "org.gnu.gdb.power.htm.core");
7874       if (feature != NULL)
7875 	{
7876 	  static const char *const cgprs[] = {
7877 	    "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
7878 	    "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14",
7879 	    "cr15", "cr16", "cr17", "cr18", "cr19", "cr20", "cr21",
7880 	    "cr22", "cr23", "cr24", "cr25", "cr26", "cr27", "cr28",
7881 	    "cr29", "cr30", "cr31", "ccr", "cxer", "clr", "cctr"
7882 	  };
7883 
7884 	  valid_p = 1;
7885 
7886 	  for (i = 0; i < ARRAY_SIZE (cgprs); i++)
7887 	    valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7888 						PPC_CR0_REGNUM + i,
7889 						cgprs[i]);
7890 	  if (!valid_p)
7891 	    return NULL;
7892 
7893 	  have_htm_core = 1;
7894 	}
7895       else
7896 	have_htm_core = 0;
7897 
7898       feature = tdesc_find_feature (tdesc,
7899 				    "org.gnu.gdb.power.htm.fpu");
7900       if (feature != NULL)
7901 	{
7902 	  valid_p = 1;
7903 
7904 	  static const char *const cfprs[] = {
7905 	    "cf0", "cf1", "cf2", "cf3", "cf4", "cf5", "cf6", "cf7",
7906 	    "cf8", "cf9", "cf10", "cf11", "cf12", "cf13", "cf14", "cf15",
7907 	    "cf16", "cf17", "cf18", "cf19", "cf20", "cf21", "cf22",
7908 	    "cf23", "cf24", "cf25", "cf26", "cf27", "cf28", "cf29",
7909 	    "cf30", "cf31", "cfpscr"
7910 	  };
7911 
7912 	  for (i = 0; i < ARRAY_SIZE (cfprs); i++)
7913 	    valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7914 						PPC_CF0_REGNUM + i,
7915 						cfprs[i]);
7916 
7917 	  if (!valid_p)
7918 	    return NULL;
7919 	  have_htm_fpu = 1;
7920 	}
7921       else
7922 	have_htm_fpu = 0;
7923 
7924       feature = tdesc_find_feature (tdesc,
7925 				    "org.gnu.gdb.power.htm.altivec");
7926       if (feature != NULL)
7927 	{
7928 	  valid_p = 1;
7929 
7930 	  static const char *const cvmx[] = {
7931 	    "cvr0", "cvr1", "cvr2", "cvr3", "cvr4", "cvr5", "cvr6",
7932 	    "cvr7", "cvr8", "cvr9", "cvr10", "cvr11", "cvr12", "cvr13",
7933 	    "cvr14", "cvr15","cvr16", "cvr17", "cvr18", "cvr19", "cvr20",
7934 	    "cvr21", "cvr22", "cvr23", "cvr24", "cvr25", "cvr26",
7935 	    "cvr27", "cvr28", "cvr29", "cvr30", "cvr31", "cvscr",
7936 	    "cvrsave"
7937 	  };
7938 
7939 	  for (i = 0; i < ARRAY_SIZE (cvmx); i++)
7940 	    valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7941 						PPC_CVR0_REGNUM + i,
7942 						cvmx[i]);
7943 
7944 	  if (!valid_p)
7945 	    return NULL;
7946 	  have_htm_altivec = 1;
7947 	}
7948       else
7949 	have_htm_altivec = 0;
7950 
7951       feature = tdesc_find_feature (tdesc,
7952 				    "org.gnu.gdb.power.htm.vsx");
7953       if (feature != NULL)
7954 	{
7955 	  valid_p = 1;
7956 
7957 	  static const char *const cvsx[] = {
7958 	    "cvs0h", "cvs1h", "cvs2h", "cvs3h", "cvs4h", "cvs5h",
7959 	    "cvs6h", "cvs7h", "cvs8h", "cvs9h", "cvs10h", "cvs11h",
7960 	    "cvs12h", "cvs13h", "cvs14h", "cvs15h", "cvs16h", "cvs17h",
7961 	    "cvs18h", "cvs19h", "cvs20h", "cvs21h", "cvs22h", "cvs23h",
7962 	    "cvs24h", "cvs25h", "cvs26h", "cvs27h", "cvs28h", "cvs29h",
7963 	    "cvs30h", "cvs31h"
7964 	  };
7965 
7966 	  for (i = 0; i < ARRAY_SIZE (cvsx); i++)
7967 	    valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7968 						(PPC_CVSR0_UPPER_REGNUM
7969 						 + i),
7970 						cvsx[i]);
7971 
7972 	  if (!valid_p || !have_htm_fpu || !have_htm_altivec)
7973 	    return NULL;
7974 	  have_htm_vsx = 1;
7975 	}
7976       else
7977 	have_htm_vsx = 0;
7978 
7979       feature = tdesc_find_feature (tdesc,
7980 				    "org.gnu.gdb.power.htm.ppr");
7981       if (feature != NULL)
7982 	{
7983 	  valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
7984 					     PPC_CPPR_REGNUM, "cppr");
7985 
7986 	  if (!valid_p)
7987 	    return NULL;
7988 	  have_htm_ppr = 1;
7989 	}
7990       else
7991 	have_htm_ppr = 0;
7992 
7993       feature = tdesc_find_feature (tdesc,
7994 				    "org.gnu.gdb.power.htm.dscr");
7995       if (feature != NULL)
7996 	{
7997 	  valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
7998 					     PPC_CDSCR_REGNUM, "cdscr");
7999 
8000 	  if (!valid_p)
8001 	    return NULL;
8002 	  have_htm_dscr = 1;
8003 	}
8004       else
8005 	have_htm_dscr = 0;
8006 
8007       feature = tdesc_find_feature (tdesc,
8008 				    "org.gnu.gdb.power.htm.tar");
8009       if (feature != NULL)
8010 	{
8011 	  valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
8012 					     PPC_CTAR_REGNUM, "ctar");
8013 
8014 	  if (!valid_p)
8015 	    return NULL;
8016 	  have_htm_tar = 1;
8017 	}
8018       else
8019 	have_htm_tar = 0;
8020     }
8021 
8022   /* If we have a 64-bit binary on a 32-bit target, complain.  Also
8023      complain for a 32-bit binary on a 64-bit target; we do not yet
8024      support that.  For instance, the 32-bit ABI routines expect
8025      32-bit GPRs.
8026 
8027      As long as there isn't an explicit target description, we'll
8028      choose one based on the BFD architecture and get a word size
8029      matching the binary (probably powerpc:common or
8030      powerpc:common64).  So there is only trouble if a 64-bit target
8031      supplies a 64-bit description while debugging a 32-bit
8032      binary.  */
8033   if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
8034     return NULL;
8035 
8036 #ifdef HAVE_ELF
8037   if (from_elf_exec)
8038     {
8039       switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
8040 	{
8041 	case 1:
8042 	  elf_abi = POWERPC_ELF_V1;
8043 	  break;
8044 	case 2:
8045 	  elf_abi = POWERPC_ELF_V2;
8046 	  break;
8047 	default:
8048 	  break;
8049 	}
8050     }
8051 
8052   if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
8053     {
8054       switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8055 					Tag_GNU_Power_ABI_FP) & 3)
8056 	{
8057 	case 1:
8058 	  soft_float_flag = AUTO_BOOLEAN_FALSE;
8059 	  break;
8060 	case 2:
8061 	  soft_float_flag = AUTO_BOOLEAN_TRUE;
8062 	  break;
8063 	default:
8064 	  break;
8065 	}
8066     }
8067 
8068   if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec)
8069     {
8070       switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8071 					Tag_GNU_Power_ABI_FP) >> 2)
8072 	{
8073 	case 1:
8074 	  long_double_abi = POWERPC_LONG_DOUBLE_IBM128;
8075 	  break;
8076 	case 3:
8077 	  long_double_abi = POWERPC_LONG_DOUBLE_IEEE128;
8078 	  break;
8079 	default:
8080 	  break;
8081 	}
8082     }
8083 
8084   if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
8085     {
8086       switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8087 					Tag_GNU_Power_ABI_Vector))
8088 	{
8089 	case 1:
8090 	  vector_abi = POWERPC_VEC_GENERIC;
8091 	  break;
8092 	case 2:
8093 	  vector_abi = POWERPC_VEC_ALTIVEC;
8094 	  break;
8095 	case 3:
8096 	  vector_abi = POWERPC_VEC_SPE;
8097 	  break;
8098 	default:
8099 	  break;
8100 	}
8101     }
8102 #endif
8103 
8104   /* At this point, the only supported ELF-based 64-bit little-endian
8105      operating system is GNU/Linux, and this uses the ELFv2 ABI by
8106      default.  All other supported ELF-based operating systems use the
8107      ELFv1 ABI by default.  Therefore, if the ABI marker is missing,
8108      e.g. because we run a legacy binary, or have attached to a process
8109      and have not found any associated binary file, set the default
8110      according to this heuristic.  */
8111   if (elf_abi == POWERPC_ELF_AUTO)
8112     {
8113       if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
8114 	elf_abi = POWERPC_ELF_V2;
8115       else
8116 	elf_abi = POWERPC_ELF_V1;
8117     }
8118 
8119   if (soft_float_flag == AUTO_BOOLEAN_TRUE)
8120     soft_float = 1;
8121   else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
8122     soft_float = 0;
8123   else
8124     soft_float = !have_fpu;
8125 
8126   /* If we have a hard float binary or setting but no floating point
8127      registers, downgrade to soft float anyway.  We're still somewhat
8128      useful in this scenario.  */
8129   if (!soft_float && !have_fpu)
8130     soft_float = 1;
8131 
8132   /* Similarly for vector registers.  */
8133   if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
8134     vector_abi = POWERPC_VEC_GENERIC;
8135 
8136   if (vector_abi == POWERPC_VEC_SPE && !have_spe)
8137     vector_abi = POWERPC_VEC_GENERIC;
8138 
8139   if (vector_abi == POWERPC_VEC_AUTO)
8140     {
8141       if (have_altivec)
8142 	vector_abi = POWERPC_VEC_ALTIVEC;
8143       else if (have_spe)
8144 	vector_abi = POWERPC_VEC_SPE;
8145       else
8146 	vector_abi = POWERPC_VEC_GENERIC;
8147     }
8148 
8149   /* Do not limit the vector ABI based on available hardware, since we
8150      do not yet know what hardware we'll decide we have.  Yuck!  FIXME!  */
8151 
8152   /* Find a candidate among extant architectures.  */
8153   for (arches = gdbarch_list_lookup_by_info (arches, &info);
8154        arches != NULL;
8155        arches = gdbarch_list_lookup_by_info (arches->next, &info))
8156     {
8157       /* Word size in the various PowerPC bfd_arch_info structs isn't
8158 	 meaningful, because 64-bit CPUs can run in 32-bit mode.  So, perform
8159 	 separate word size check.  */
8160       ppc_gdbarch_tdep *tdep
8161 	= gdbarch_tdep<ppc_gdbarch_tdep> (arches->gdbarch);
8162       if (tdep && tdep->elf_abi != elf_abi)
8163 	continue;
8164       if (tdep && tdep->soft_float != soft_float)
8165 	continue;
8166       if (tdep && tdep->long_double_abi != long_double_abi)
8167 	continue;
8168       if (tdep && tdep->vector_abi != vector_abi)
8169 	continue;
8170       if (tdep && tdep->wordsize == wordsize)
8171 	return arches->gdbarch;
8172     }
8173 
8174   /* None found, create a new architecture from INFO, whose bfd_arch_info
8175      validity depends on the source:
8176        - executable		useless
8177        - rs6000_host_arch()	good
8178        - core file		good
8179        - "set arch"		trust blindly
8180        - GDB startup		useless but harmless */
8181 
8182   ppc_gdbarch_tdep *tdep = new ppc_gdbarch_tdep;
8183   tdep->wordsize = wordsize;
8184   tdep->elf_abi = elf_abi;
8185   tdep->soft_float = soft_float;
8186   tdep->long_double_abi = long_double_abi;
8187   tdep->vector_abi = vector_abi;
8188 
8189   gdbarch = gdbarch_alloc (&info, tdep);
8190 
8191   tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
8192   tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
8193   tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
8194   tdep->ppc_cr_regnum = PPC_CR_REGNUM;
8195   tdep->ppc_lr_regnum = PPC_LR_REGNUM;
8196   tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
8197   tdep->ppc_xer_regnum = PPC_XER_REGNUM;
8198   tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
8199 
8200   tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
8201   tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
8202   tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
8203   tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
8204   tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
8205   tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
8206   tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
8207   tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
8208   tdep->ppc_ppr_regnum = have_ppr ? PPC_PPR_REGNUM : -1;
8209   tdep->ppc_dscr_regnum = have_dscr ? PPC_DSCR_REGNUM : -1;
8210   tdep->ppc_tar_regnum = have_tar ? PPC_TAR_REGNUM : -1;
8211   tdep->have_ebb = have_ebb;
8212 
8213   /* If additional pmu registers are added, care must be taken when
8214      setting new fields in the tdep below, to maintain compatibility
8215      with features that only provide some of the registers.  Currently
8216      gdb access to the pmu registers is only supported in linux, and
8217      linux only provides a subset of the pmu registers defined in the
8218      architecture.  */
8219 
8220   tdep->ppc_mmcr0_regnum = have_pmu ? PPC_MMCR0_REGNUM : -1;
8221   tdep->ppc_mmcr2_regnum = have_pmu ? PPC_MMCR2_REGNUM : -1;
8222   tdep->ppc_siar_regnum = have_pmu ? PPC_SIAR_REGNUM : -1;
8223   tdep->ppc_sdar_regnum = have_pmu ? PPC_SDAR_REGNUM : -1;
8224   tdep->ppc_sier_regnum = have_pmu ? PPC_SIER_REGNUM : -1;
8225 
8226   tdep->have_htm_spr = have_htm_spr;
8227   tdep->have_htm_core = have_htm_core;
8228   tdep->have_htm_fpu = have_htm_fpu;
8229   tdep->have_htm_altivec = have_htm_altivec;
8230   tdep->have_htm_vsx = have_htm_vsx;
8231   tdep->ppc_cppr_regnum = have_htm_ppr ? PPC_CPPR_REGNUM : -1;
8232   tdep->ppc_cdscr_regnum = have_htm_dscr ? PPC_CDSCR_REGNUM : -1;
8233   tdep->ppc_ctar_regnum = have_htm_tar ? PPC_CTAR_REGNUM : -1;
8234 
8235   set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
8236   set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
8237   set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
8238   set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
8239 
8240   /* The XML specification for PowerPC sensibly calls the MSR "msr".
8241      GDB traditionally called it "ps", though, so let GDB add an
8242      alias.  */
8243   set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
8244 
8245   if (wordsize == 8)
8246     {
8247       set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
8248       set_gdbarch_get_return_buf_addr (gdbarch,
8249 				       ppc64_sysv_get_return_buf_addr);
8250     }
8251   else
8252     set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
8253 
8254   /* Set lr_frame_offset.  */
8255   if (wordsize == 8)
8256     tdep->lr_frame_offset = 16;
8257   else
8258     tdep->lr_frame_offset = 4;
8259 
8260   if (have_spe || have_dfp || have_altivec
8261       || have_vsx || have_htm_fpu || have_htm_vsx)
8262     {
8263       set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
8264       set_gdbarch_pseudo_register_write (gdbarch,
8265 					 rs6000_pseudo_register_write);
8266       set_gdbarch_ax_pseudo_register_collect (gdbarch,
8267 	      rs6000_ax_pseudo_register_collect);
8268     }
8269 
8270   set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
8271 
8272   set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8273 
8274   set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
8275 
8276   if (have_spe)
8277     num_pseudoregs += 32;
8278   if (have_dfp)
8279     num_pseudoregs += 16;
8280   if (have_altivec)
8281     num_pseudoregs += 32;
8282   if (have_vsx)
8283     /* Include both VSX and Extended FP registers.  */
8284     num_pseudoregs += 96;
8285   if (have_htm_fpu)
8286     num_pseudoregs += 16;
8287   /* Include both checkpointed VSX and EFP registers.  */
8288   if (have_htm_vsx)
8289     num_pseudoregs += 64 + 32;
8290 
8291   set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
8292 
8293   set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
8294   set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
8295   set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
8296   set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
8297   set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
8298   set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
8299   set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
8300   set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
8301   set_gdbarch_char_signed (gdbarch, 0);
8302 
8303   set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8304   if (wordsize == 8)
8305     /* PPC64 SYSV.  */
8306     set_gdbarch_frame_red_zone_size (gdbarch, 288);
8307 
8308   set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
8309   set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
8310   set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
8311 
8312   set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
8313   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
8314 
8315   if (wordsize == 4)
8316     set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8317   else if (wordsize == 8)
8318     set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
8319 
8320   set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
8321   set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
8322   set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
8323 
8324   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8325 
8326   set_gdbarch_breakpoint_kind_from_pc (gdbarch,
8327 				       rs6000_breakpoint::kind_from_pc);
8328   set_gdbarch_sw_breakpoint_from_kind (gdbarch,
8329 				       rs6000_breakpoint::bp_from_kind);
8330   set_gdbarch_program_breakpoint_here_p (gdbarch,
8331                                          rs6000_program_breakpoint_here_p);
8332 
8333   /* The value of symbols of type N_SO and N_FUN maybe null when
8334      it shouldn't be.  */
8335   set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
8336 
8337   /* Handles single stepping of atomic sequences.  */
8338   set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
8339 
8340   /* Not sure on this.  FIXMEmgo */
8341   set_gdbarch_frame_args_skip (gdbarch, 8);
8342 
8343   /* Helpers for function argument information.  */
8344   set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
8345 
8346   /* Trampoline.  */
8347   set_gdbarch_in_solib_return_trampoline
8348     (gdbarch, rs6000_in_solib_return_trampoline);
8349   set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
8350 
8351   /* Hook in the DWARF CFI frame unwinder.  */
8352   dwarf2_append_unwinders (gdbarch);
8353   dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
8354 
8355   /* Frame handling.  */
8356   dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
8357 
8358   /* Setup displaced stepping.  */
8359   set_gdbarch_displaced_step_copy_insn (gdbarch,
8360 					ppc_displaced_step_copy_insn);
8361   set_gdbarch_displaced_step_hw_singlestep (gdbarch,
8362 					    ppc_displaced_step_hw_singlestep);
8363   set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
8364   set_gdbarch_displaced_step_prepare (gdbarch, ppc_displaced_step_prepare);
8365   set_gdbarch_displaced_step_finish (gdbarch, ppc_displaced_step_finish);
8366   set_gdbarch_displaced_step_restore_all_in_ptid
8367     (gdbarch, ppc_displaced_step_restore_all_in_ptid);
8368 
8369   set_gdbarch_max_insn_length (gdbarch, 2 * PPC_INSN_SIZE);
8370 
8371   /* Hook in ABI-specific overrides, if they have been registered.  */
8372   info.target_desc = tdesc;
8373   info.tdesc_data = tdesc_data.get ();
8374   gdbarch_init_osabi (info, gdbarch);
8375 
8376   switch (info.osabi)
8377     {
8378     case GDB_OSABI_LINUX:
8379     case GDB_OSABI_NETBSD:
8380     case GDB_OSABI_UNKNOWN:
8381       frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
8382       frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
8383       frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
8384       break;
8385     default:
8386       set_gdbarch_believe_pcc_promotion (gdbarch, 1);
8387 
8388       frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
8389       frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
8390       frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
8391     }
8392 
8393   set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
8394   set_tdesc_pseudo_register_reggroup_p (gdbarch,
8395 					rs6000_pseudo_register_reggroup_p);
8396   tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
8397 
8398   /* Override the normal target description method to make the SPE upper
8399      halves anonymous.  */
8400   set_gdbarch_register_name (gdbarch, rs6000_register_name);
8401 
8402   /* Choose register numbers for all supported pseudo-registers.  */
8403   tdep->ppc_ev0_regnum = -1;
8404   tdep->ppc_dl0_regnum = -1;
8405   tdep->ppc_v0_alias_regnum = -1;
8406   tdep->ppc_vsr0_regnum = -1;
8407   tdep->ppc_efpr0_regnum = -1;
8408   tdep->ppc_cdl0_regnum = -1;
8409   tdep->ppc_cvsr0_regnum = -1;
8410   tdep->ppc_cefpr0_regnum = -1;
8411 
8412   cur_reg = gdbarch_num_regs (gdbarch);
8413 
8414   if (have_spe)
8415     {
8416       tdep->ppc_ev0_regnum = cur_reg;
8417       cur_reg += 32;
8418     }
8419   if (have_dfp)
8420     {
8421       tdep->ppc_dl0_regnum = cur_reg;
8422       cur_reg += 16;
8423     }
8424   if (have_altivec)
8425     {
8426       tdep->ppc_v0_alias_regnum = cur_reg;
8427       cur_reg += 32;
8428     }
8429   if (have_vsx)
8430     {
8431       tdep->ppc_vsr0_regnum = cur_reg;
8432       cur_reg += 64;
8433       tdep->ppc_efpr0_regnum = cur_reg;
8434       cur_reg += 32;
8435     }
8436   if (have_htm_fpu)
8437     {
8438       tdep->ppc_cdl0_regnum = cur_reg;
8439       cur_reg += 16;
8440     }
8441   if (have_htm_vsx)
8442     {
8443       tdep->ppc_cvsr0_regnum = cur_reg;
8444       cur_reg += 64;
8445       tdep->ppc_cefpr0_regnum = cur_reg;
8446       cur_reg += 32;
8447     }
8448 
8449   gdb_assert (gdbarch_num_cooked_regs (gdbarch) == cur_reg);
8450 
8451   /* Register the ravenscar_arch_ops.  */
8452   if (mach == bfd_mach_ppc_e500)
8453     register_e500_ravenscar_ops (gdbarch);
8454   else
8455     register_ppc_ravenscar_ops (gdbarch);
8456 
8457   set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
8458   set_gdbarch_valid_disassembler_options (gdbarch,
8459 					  disassembler_options_powerpc ());
8460 
8461   return gdbarch;
8462 }
8463 
8464 static void
8465 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
8466 {
8467   ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
8468 
8469   if (tdep == NULL)
8470     return;
8471 
8472   /* FIXME: Dump gdbarch_tdep.  */
8473 }
8474 
8475 static void
8476 powerpc_set_soft_float (const char *args, int from_tty,
8477 			struct cmd_list_element *c)
8478 {
8479   struct gdbarch_info info;
8480 
8481   /* Update the architecture.  */
8482   if (!gdbarch_update_p (info))
8483     internal_error (_("could not update architecture"));
8484 }
8485 
8486 static void
8487 powerpc_set_vector_abi (const char *args, int from_tty,
8488 			struct cmd_list_element *c)
8489 {
8490   int vector_abi;
8491 
8492   for (vector_abi = POWERPC_VEC_AUTO;
8493        vector_abi != POWERPC_VEC_LAST;
8494        vector_abi++)
8495     if (strcmp (powerpc_vector_abi_string,
8496 		powerpc_vector_strings[vector_abi]) == 0)
8497       {
8498 	powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
8499 	break;
8500       }
8501 
8502   if (vector_abi == POWERPC_VEC_LAST)
8503     internal_error (_("Invalid vector ABI accepted: %s."),
8504 		    powerpc_vector_abi_string);
8505 
8506   /* Update the architecture.  */
8507   gdbarch_info info;
8508   if (!gdbarch_update_p (info))
8509     internal_error (_("could not update architecture"));
8510 }
8511 
8512 /* Show the current setting of the exact watchpoints flag.  */
8513 
8514 static void
8515 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
8516 				struct cmd_list_element *c,
8517 				const char *value)
8518 {
8519   gdb_printf (file, _("Use of exact watchpoints is %s.\n"), value);
8520 }
8521 
8522 /* Read a PPC instruction from memory.  */
8523 
8524 static unsigned int
8525 read_insn (frame_info_ptr frame, CORE_ADDR pc)
8526 {
8527   struct gdbarch *gdbarch = get_frame_arch (frame);
8528   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8529 
8530   return read_memory_unsigned_integer (pc, 4, byte_order);
8531 }
8532 
8533 /* Return non-zero if the instructions at PC match the series
8534    described in PATTERN, or zero otherwise.  PATTERN is an array of
8535    'struct ppc_insn_pattern' objects, terminated by an entry whose
8536    mask is zero.
8537 
8538    When the match is successful, fill INSNS[i] with what PATTERN[i]
8539    matched.  If PATTERN[i] is optional, and the instruction wasn't
8540    present, set INSNS[i] to 0 (which is not a valid PPC instruction).
8541    INSNS should have as many elements as PATTERN, minus the terminator.
8542    Note that, if PATTERN contains optional instructions which aren't
8543    present in memory, then INSNS will have holes, so INSNS[i] isn't
8544    necessarily the i'th instruction in memory.  */
8545 
8546 int
8547 ppc_insns_match_pattern (frame_info_ptr frame, CORE_ADDR pc,
8548 			 const struct ppc_insn_pattern *pattern,
8549 			 unsigned int *insns)
8550 {
8551   int i;
8552   unsigned int insn;
8553 
8554   for (i = 0, insn = 0; pattern[i].mask; i++)
8555     {
8556       if (insn == 0)
8557 	insn = read_insn (frame, pc);
8558       insns[i] = 0;
8559       if ((insn & pattern[i].mask) == pattern[i].data)
8560 	{
8561 	  insns[i] = insn;
8562 	  pc += 4;
8563 	  insn = 0;
8564 	}
8565       else if (!pattern[i].optional)
8566 	return 0;
8567     }
8568 
8569   return 1;
8570 }
8571 
8572 /* Return the 'd' field of the d-form instruction INSN, properly
8573    sign-extended.  */
8574 
8575 CORE_ADDR
8576 ppc_insn_d_field (unsigned int insn)
8577 {
8578   return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
8579 }
8580 
8581 /* Return the 'ds' field of the ds-form instruction INSN, with the two
8582    zero bits concatenated at the right, and properly
8583    sign-extended.  */
8584 
8585 CORE_ADDR
8586 ppc_insn_ds_field (unsigned int insn)
8587 {
8588   return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
8589 }
8590 
8591 CORE_ADDR
8592 ppc_insn_prefix_dform (unsigned int insn1, unsigned int insn2)
8593 {
8594   /* result is 34-bits  */
8595   return (CORE_ADDR) ((((insn1 & 0x3ffff) ^ 0x20000) - 0x20000) << 16)
8596     | (CORE_ADDR)(insn2 & 0xffff);
8597 }
8598 
8599 /* Initialization code.  */
8600 
8601 void _initialize_rs6000_tdep ();
8602 void
8603 _initialize_rs6000_tdep ()
8604 {
8605   gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
8606   gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
8607 
8608   /* Initialize the standard target descriptions.  */
8609   initialize_tdesc_powerpc_32 ();
8610   initialize_tdesc_powerpc_altivec32 ();
8611   initialize_tdesc_powerpc_vsx32 ();
8612   initialize_tdesc_powerpc_403 ();
8613   initialize_tdesc_powerpc_403gc ();
8614   initialize_tdesc_powerpc_405 ();
8615   initialize_tdesc_powerpc_505 ();
8616   initialize_tdesc_powerpc_601 ();
8617   initialize_tdesc_powerpc_602 ();
8618   initialize_tdesc_powerpc_603 ();
8619   initialize_tdesc_powerpc_604 ();
8620   initialize_tdesc_powerpc_64 ();
8621   initialize_tdesc_powerpc_altivec64 ();
8622   initialize_tdesc_powerpc_vsx64 ();
8623   initialize_tdesc_powerpc_7400 ();
8624   initialize_tdesc_powerpc_750 ();
8625   initialize_tdesc_powerpc_860 ();
8626   initialize_tdesc_powerpc_e500 ();
8627   initialize_tdesc_rs6000 ();
8628 
8629   /* Add root prefix command for all "set powerpc"/"show powerpc"
8630      commands.  */
8631   add_setshow_prefix_cmd ("powerpc", no_class,
8632 			  _("Various PowerPC-specific commands."),
8633 			  _("Various PowerPC-specific commands."),
8634 			  &setpowerpccmdlist, &showpowerpccmdlist,
8635 			  &setlist, &showlist);
8636 
8637   /* Add a command to allow the user to force the ABI.  */
8638   add_setshow_auto_boolean_cmd ("soft-float", class_support,
8639 				&powerpc_soft_float_global,
8640 				_("Set whether to use a soft-float ABI."),
8641 				_("Show whether to use a soft-float ABI."),
8642 				NULL,
8643 				powerpc_set_soft_float, NULL,
8644 				&setpowerpccmdlist, &showpowerpccmdlist);
8645 
8646   add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
8647 			&powerpc_vector_abi_string,
8648 			_("Set the vector ABI."),
8649 			_("Show the vector ABI."),
8650 			NULL, powerpc_set_vector_abi, NULL,
8651 			&setpowerpccmdlist, &showpowerpccmdlist);
8652 
8653   add_setshow_boolean_cmd ("exact-watchpoints", class_support,
8654 			   &target_exact_watchpoints,
8655 			   _("\
8656 Set whether to use just one debug register for watchpoints on scalars."),
8657 			   _("\
8658 Show whether to use just one debug register for watchpoints on scalars."),
8659 			   _("\
8660 If true, GDB will use only one debug register when watching a variable of\n\
8661 scalar type, thus assuming that the variable is accessed through the address\n\
8662 of its first byte."),
8663 			   NULL, show_powerpc_exact_watchpoints,
8664 			   &setpowerpccmdlist, &showpowerpccmdlist);
8665 }
8666