1 /* Native support code for PPC AIX, for GDB the GNU debugger. 2 3 Copyright (C) 2006-2016 Free Software Foundation, Inc. 4 5 Free Software Foundation, Inc. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 #include "defs.h" 23 #include "osabi.h" 24 #include "regcache.h" 25 #include "regset.h" 26 #include "gdbtypes.h" 27 #include "gdbcore.h" 28 #include "target.h" 29 #include "value.h" 30 #include "infcall.h" 31 #include "objfiles.h" 32 #include "breakpoint.h" 33 #include "rs6000-tdep.h" 34 #include "ppc-tdep.h" 35 #include "rs6000-aix-tdep.h" 36 #include "xcoffread.h" 37 #include "solib.h" 38 #include "solib-aix.h" 39 #include "xml-utils.h" 40 41 /* If the kernel has to deliver a signal, it pushes a sigcontext 42 structure on the stack and then calls the signal handler, passing 43 the address of the sigcontext in an argument register. Usually 44 the signal handler doesn't save this register, so we have to 45 access the sigcontext structure via an offset from the signal handler 46 frame. 47 The following constants were determined by experimentation on AIX 3.2. */ 48 #define SIG_FRAME_PC_OFFSET 96 49 #define SIG_FRAME_LR_OFFSET 108 50 #define SIG_FRAME_FP_OFFSET 284 51 52 53 /* Core file support. */ 54 55 static struct ppc_reg_offsets rs6000_aix32_reg_offsets = 56 { 57 /* General-purpose registers. */ 58 208, /* r0_offset */ 59 4, /* gpr_size */ 60 4, /* xr_size */ 61 24, /* pc_offset */ 62 28, /* ps_offset */ 63 32, /* cr_offset */ 64 36, /* lr_offset */ 65 40, /* ctr_offset */ 66 44, /* xer_offset */ 67 48, /* mq_offset */ 68 69 /* Floating-point registers. */ 70 336, /* f0_offset */ 71 56, /* fpscr_offset */ 72 4, /* fpscr_size */ 73 74 /* AltiVec registers. */ 75 -1, /* vr0_offset */ 76 -1, /* vscr_offset */ 77 -1 /* vrsave_offset */ 78 }; 79 80 static struct ppc_reg_offsets rs6000_aix64_reg_offsets = 81 { 82 /* General-purpose registers. */ 83 0, /* r0_offset */ 84 8, /* gpr_size */ 85 4, /* xr_size */ 86 264, /* pc_offset */ 87 256, /* ps_offset */ 88 288, /* cr_offset */ 89 272, /* lr_offset */ 90 280, /* ctr_offset */ 91 292, /* xer_offset */ 92 -1, /* mq_offset */ 93 94 /* Floating-point registers. */ 95 312, /* f0_offset */ 96 296, /* fpscr_offset */ 97 4, /* fpscr_size */ 98 99 /* AltiVec registers. */ 100 -1, /* vr0_offset */ 101 -1, /* vscr_offset */ 102 -1 /* vrsave_offset */ 103 }; 104 105 106 /* Supply register REGNUM in the general-purpose register set REGSET 107 from the buffer specified by GREGS and LEN to register cache 108 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ 109 110 static void 111 rs6000_aix_supply_regset (const struct regset *regset, 112 struct regcache *regcache, int regnum, 113 const void *gregs, size_t len) 114 { 115 ppc_supply_gregset (regset, regcache, regnum, gregs, len); 116 ppc_supply_fpregset (regset, regcache, regnum, gregs, len); 117 } 118 119 /* Collect register REGNUM in the general-purpose register set 120 REGSET, from register cache REGCACHE into the buffer specified by 121 GREGS and LEN. If REGNUM is -1, do this for all registers in 122 REGSET. */ 123 124 static void 125 rs6000_aix_collect_regset (const struct regset *regset, 126 const struct regcache *regcache, int regnum, 127 void *gregs, size_t len) 128 { 129 ppc_collect_gregset (regset, regcache, regnum, gregs, len); 130 ppc_collect_fpregset (regset, regcache, regnum, gregs, len); 131 } 132 133 /* AIX register set. */ 134 135 static const struct regset rs6000_aix32_regset = 136 { 137 &rs6000_aix32_reg_offsets, 138 rs6000_aix_supply_regset, 139 rs6000_aix_collect_regset, 140 }; 141 142 static const struct regset rs6000_aix64_regset = 143 { 144 &rs6000_aix64_reg_offsets, 145 rs6000_aix_supply_regset, 146 rs6000_aix_collect_regset, 147 }; 148 149 /* Iterate over core file register note sections. */ 150 151 static void 152 rs6000_aix_iterate_over_regset_sections (struct gdbarch *gdbarch, 153 iterate_over_regset_sections_cb *cb, 154 void *cb_data, 155 const struct regcache *regcache) 156 { 157 if (gdbarch_tdep (gdbarch)->wordsize == 4) 158 cb (".reg", 592, &rs6000_aix32_regset, NULL, cb_data); 159 else 160 cb (".reg", 576, &rs6000_aix64_regset, NULL, cb_data); 161 } 162 163 164 /* Pass the arguments in either registers, or in the stack. In RS/6000, 165 the first eight words of the argument list (that might be less than 166 eight parameters if some parameters occupy more than one word) are 167 passed in r3..r10 registers. Float and double parameters are 168 passed in fpr's, in addition to that. Rest of the parameters if any 169 are passed in user stack. There might be cases in which half of the 170 parameter is copied into registers, the other half is pushed into 171 stack. 172 173 Stack must be aligned on 64-bit boundaries when synthesizing 174 function calls. 175 176 If the function is returning a structure, then the return address is passed 177 in r3, then the first 7 words of the parameters can be passed in registers, 178 starting from r4. */ 179 180 static CORE_ADDR 181 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 182 struct regcache *regcache, CORE_ADDR bp_addr, 183 int nargs, struct value **args, CORE_ADDR sp, 184 int struct_return, CORE_ADDR struct_addr) 185 { 186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 187 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 188 int ii; 189 int len = 0; 190 int argno; /* current argument number */ 191 int argbytes; /* current argument byte */ 192 gdb_byte tmp_buffer[50]; 193 int f_argno = 0; /* current floating point argno */ 194 int wordsize = gdbarch_tdep (gdbarch)->wordsize; 195 CORE_ADDR func_addr = find_function_addr (function, NULL); 196 197 struct value *arg = 0; 198 struct type *type; 199 200 ULONGEST saved_sp; 201 202 /* The calling convention this function implements assumes the 203 processor has floating-point registers. We shouldn't be using it 204 on PPC variants that lack them. */ 205 gdb_assert (ppc_floating_point_unit_p (gdbarch)); 206 207 /* The first eight words of ther arguments are passed in registers. 208 Copy them appropriately. */ 209 ii = 0; 210 211 /* If the function is returning a `struct', then the first word 212 (which will be passed in r3) is used for struct return address. 213 In that case we should advance one word and start from r4 214 register to copy parameters. */ 215 if (struct_return) 216 { 217 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, 218 struct_addr); 219 ii++; 220 } 221 222 /* effectively indirect call... gcc does... 223 224 return_val example( float, int); 225 226 eabi: 227 float in fp0, int in r3 228 offset of stack on overflow 8/16 229 for varargs, must go by type. 230 power open: 231 float in r3&r4, int in r5 232 offset of stack on overflow different 233 both: 234 return in r3 or f0. If no float, must study how gcc emulates floats; 235 pay attention to arg promotion. 236 User may have to cast\args to handle promotion correctly 237 since gdb won't know if prototype supplied or not. */ 238 239 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii) 240 { 241 int reg_size = register_size (gdbarch, ii + 3); 242 243 arg = args[argno]; 244 type = check_typedef (value_type (arg)); 245 len = TYPE_LENGTH (type); 246 247 if (TYPE_CODE (type) == TYPE_CODE_FLT) 248 { 249 /* Floating point arguments are passed in fpr's, as well as gpr's. 250 There are 13 fpr's reserved for passing parameters. At this point 251 there is no way we would run out of them. 252 253 Always store the floating point value using the register's 254 floating-point format. */ 255 const int fp_regnum = tdep->ppc_fp0_regnum + 1 + f_argno; 256 gdb_byte reg_val[MAX_REGISTER_SIZE]; 257 struct type *reg_type = register_type (gdbarch, fp_regnum); 258 259 gdb_assert (len <= 8); 260 261 convert_typed_floating (value_contents (arg), type, 262 reg_val, reg_type); 263 regcache_cooked_write (regcache, fp_regnum, reg_val); 264 ++f_argno; 265 } 266 267 if (len > reg_size) 268 { 269 270 /* Argument takes more than one register. */ 271 while (argbytes < len) 272 { 273 gdb_byte word[MAX_REGISTER_SIZE]; 274 memset (word, 0, reg_size); 275 memcpy (word, 276 ((char *) value_contents (arg)) + argbytes, 277 (len - argbytes) > reg_size 278 ? reg_size : len - argbytes); 279 regcache_cooked_write (regcache, 280 tdep->ppc_gp0_regnum + 3 + ii, 281 word); 282 ++ii, argbytes += reg_size; 283 284 if (ii >= 8) 285 goto ran_out_of_registers_for_arguments; 286 } 287 argbytes = 0; 288 --ii; 289 } 290 else 291 { 292 /* Argument can fit in one register. No problem. */ 293 gdb_byte word[MAX_REGISTER_SIZE]; 294 295 memset (word, 0, reg_size); 296 memcpy (word, value_contents (arg), len); 297 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word); 298 } 299 ++argno; 300 } 301 302 ran_out_of_registers_for_arguments: 303 304 regcache_cooked_read_unsigned (regcache, 305 gdbarch_sp_regnum (gdbarch), 306 &saved_sp); 307 308 /* Location for 8 parameters are always reserved. */ 309 sp -= wordsize * 8; 310 311 /* Another six words for back chain, TOC register, link register, etc. */ 312 sp -= wordsize * 6; 313 314 /* Stack pointer must be quadword aligned. */ 315 sp &= -16; 316 317 /* If there are more arguments, allocate space for them in 318 the stack, then push them starting from the ninth one. */ 319 320 if ((argno < nargs) || argbytes) 321 { 322 int space = 0, jj; 323 324 if (argbytes) 325 { 326 space += ((len - argbytes + 3) & -4); 327 jj = argno + 1; 328 } 329 else 330 jj = argno; 331 332 for (; jj < nargs; ++jj) 333 { 334 struct value *val = args[jj]; 335 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4; 336 } 337 338 /* Add location required for the rest of the parameters. */ 339 space = (space + 15) & -16; 340 sp -= space; 341 342 /* This is another instance we need to be concerned about 343 securing our stack space. If we write anything underneath %sp 344 (r1), we might conflict with the kernel who thinks he is free 345 to use this area. So, update %sp first before doing anything 346 else. */ 347 348 regcache_raw_write_signed (regcache, 349 gdbarch_sp_regnum (gdbarch), sp); 350 351 /* If the last argument copied into the registers didn't fit there 352 completely, push the rest of it into stack. */ 353 354 if (argbytes) 355 { 356 write_memory (sp + 24 + (ii * 4), 357 value_contents (arg) + argbytes, 358 len - argbytes); 359 ++argno; 360 ii += ((len - argbytes + 3) & -4) / 4; 361 } 362 363 /* Push the rest of the arguments into stack. */ 364 for (; argno < nargs; ++argno) 365 { 366 367 arg = args[argno]; 368 type = check_typedef (value_type (arg)); 369 len = TYPE_LENGTH (type); 370 371 372 /* Float types should be passed in fpr's, as well as in the 373 stack. */ 374 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13) 375 { 376 377 gdb_assert (len <= 8); 378 379 regcache_cooked_write (regcache, 380 tdep->ppc_fp0_regnum + 1 + f_argno, 381 value_contents (arg)); 382 ++f_argno; 383 } 384 385 write_memory (sp + 24 + (ii * 4), value_contents (arg), len); 386 ii += ((len + 3) & -4) / 4; 387 } 388 } 389 390 /* Set the stack pointer. According to the ABI, the SP is meant to 391 be set _before_ the corresponding stack space is used. On AIX, 392 this even applies when the target has been completely stopped! 393 Not doing this can lead to conflicts with the kernel which thinks 394 that it still has control over this not-yet-allocated stack 395 region. */ 396 regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp); 397 398 /* Set back chain properly. */ 399 store_unsigned_integer (tmp_buffer, wordsize, byte_order, saved_sp); 400 write_memory (sp, tmp_buffer, wordsize); 401 402 /* Point the inferior function call's return address at the dummy's 403 breakpoint. */ 404 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr); 405 406 /* Set the TOC register value. */ 407 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, 408 solib_aix_get_toc_value (func_addr)); 409 410 target_store_registers (regcache, -1); 411 return sp; 412 } 413 414 static enum return_value_convention 415 rs6000_return_value (struct gdbarch *gdbarch, struct value *function, 416 struct type *valtype, struct regcache *regcache, 417 gdb_byte *readbuf, const gdb_byte *writebuf) 418 { 419 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 420 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 421 422 /* The calling convention this function implements assumes the 423 processor has floating-point registers. We shouldn't be using it 424 on PowerPC variants that lack them. */ 425 gdb_assert (ppc_floating_point_unit_p (gdbarch)); 426 427 /* AltiVec extension: Functions that declare a vector data type as a 428 return value place that return value in VR2. */ 429 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype) 430 && TYPE_LENGTH (valtype) == 16) 431 { 432 if (readbuf) 433 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf); 434 if (writebuf) 435 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf); 436 437 return RETURN_VALUE_REGISTER_CONVENTION; 438 } 439 440 /* If the called subprogram returns an aggregate, there exists an 441 implicit first argument, whose value is the address of a caller- 442 allocated buffer into which the callee is assumed to store its 443 return value. All explicit parameters are appropriately 444 relabeled. */ 445 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT 446 || TYPE_CODE (valtype) == TYPE_CODE_UNION 447 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) 448 return RETURN_VALUE_STRUCT_CONVENTION; 449 450 /* Scalar floating-point values are returned in FPR1 for float or 451 double, and in FPR1:FPR2 for quadword precision. Fortran 452 complex*8 and complex*16 are returned in FPR1:FPR2, and 453 complex*32 is returned in FPR1:FPR4. */ 454 if (TYPE_CODE (valtype) == TYPE_CODE_FLT 455 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8)) 456 { 457 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum); 458 gdb_byte regval[8]; 459 460 /* FIXME: kettenis/2007-01-01: Add support for quadword 461 precision and complex. */ 462 463 if (readbuf) 464 { 465 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval); 466 convert_typed_floating (regval, regtype, readbuf, valtype); 467 } 468 if (writebuf) 469 { 470 convert_typed_floating (writebuf, valtype, regval, regtype); 471 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval); 472 } 473 474 return RETURN_VALUE_REGISTER_CONVENTION; 475 } 476 477 /* Values of the types int, long, short, pointer, and char (length 478 is less than or equal to four bytes), as well as bit values of 479 lengths less than or equal to 32 bits, must be returned right 480 justified in GPR3 with signed values sign extended and unsigned 481 values zero extended, as necessary. */ 482 if (TYPE_LENGTH (valtype) <= tdep->wordsize) 483 { 484 if (readbuf) 485 { 486 ULONGEST regval; 487 488 /* For reading we don't have to worry about sign extension. */ 489 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3, 490 ®val); 491 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order, 492 regval); 493 } 494 if (writebuf) 495 { 496 /* For writing, use unpack_long since that should handle any 497 required sign extension. */ 498 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, 499 unpack_long (valtype, writebuf)); 500 } 501 502 return RETURN_VALUE_REGISTER_CONVENTION; 503 } 504 505 /* Eight-byte non-floating-point scalar values must be returned in 506 GPR3:GPR4. */ 507 508 if (TYPE_LENGTH (valtype) == 8) 509 { 510 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT); 511 gdb_assert (tdep->wordsize == 4); 512 513 if (readbuf) 514 { 515 gdb_byte regval[8]; 516 517 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval); 518 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4, 519 regval + 4); 520 memcpy (readbuf, regval, 8); 521 } 522 if (writebuf) 523 { 524 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf); 525 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4, 526 writebuf + 4); 527 } 528 529 return RETURN_VALUE_REGISTER_CONVENTION; 530 } 531 532 return RETURN_VALUE_STRUCT_CONVENTION; 533 } 534 535 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG). 536 537 Usually a function pointer's representation is simply the address 538 of the function. On the RS/6000 however, a function pointer is 539 represented by a pointer to an OPD entry. This OPD entry contains 540 three words, the first word is the address of the function, the 541 second word is the TOC pointer (r2), and the third word is the 542 static chain value. Throughout GDB it is currently assumed that a 543 function pointer contains the address of the function, which is not 544 easy to fix. In addition, the conversion of a function address to 545 a function pointer would require allocation of an OPD entry in the 546 inferior's memory space, with all its drawbacks. To be able to 547 call C++ virtual methods in the inferior (which are called via 548 function pointers), find_function_addr uses this function to get the 549 function address from a function pointer. */ 550 551 /* Return real function address if ADDR (a function pointer) is in the data 552 space and is therefore a special function pointer. */ 553 554 static CORE_ADDR 555 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch, 556 CORE_ADDR addr, 557 struct target_ops *targ) 558 { 559 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 560 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 561 struct obj_section *s; 562 563 s = find_pc_section (addr); 564 565 /* Normally, functions live inside a section that is executable. 566 So, if ADDR points to a non-executable section, then treat it 567 as a function descriptor and return the target address iff 568 the target address itself points to a section that is executable. */ 569 if (s && (s->the_bfd_section->flags & SEC_CODE) == 0) 570 { 571 CORE_ADDR pc = 0; 572 struct obj_section *pc_section; 573 574 TRY 575 { 576 pc = read_memory_unsigned_integer (addr, tdep->wordsize, byte_order); 577 } 578 CATCH (e, RETURN_MASK_ERROR) 579 { 580 /* An error occured during reading. Probably a memory error 581 due to the section not being loaded yet. This address 582 cannot be a function descriptor. */ 583 return addr; 584 } 585 END_CATCH 586 587 pc_section = find_pc_section (pc); 588 589 if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE)) 590 return pc; 591 } 592 593 return addr; 594 } 595 596 597 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */ 598 599 static CORE_ADDR 600 branch_dest (struct frame_info *frame, int opcode, int instr, 601 CORE_ADDR pc, CORE_ADDR safety) 602 { 603 struct gdbarch *gdbarch = get_frame_arch (frame); 604 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 605 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 606 CORE_ADDR dest; 607 int immediate; 608 int absolute; 609 int ext_op; 610 611 absolute = (int) ((instr >> 1) & 1); 612 613 switch (opcode) 614 { 615 case 18: 616 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */ 617 if (absolute) 618 dest = immediate; 619 else 620 dest = pc + immediate; 621 break; 622 623 case 16: 624 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */ 625 if (absolute) 626 dest = immediate; 627 else 628 dest = pc + immediate; 629 break; 630 631 case 19: 632 ext_op = (instr >> 1) & 0x3ff; 633 634 if (ext_op == 16) /* br conditional register */ 635 { 636 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3; 637 638 /* If we are about to return from a signal handler, dest is 639 something like 0x3c90. The current frame is a signal handler 640 caller frame, upon completion of the sigreturn system call 641 execution will return to the saved PC in the frame. */ 642 if (dest < AIX_TEXT_SEGMENT_BASE) 643 dest = read_memory_unsigned_integer 644 (get_frame_base (frame) + SIG_FRAME_PC_OFFSET, 645 tdep->wordsize, byte_order); 646 } 647 648 else if (ext_op == 528) /* br cond to count reg */ 649 { 650 dest = get_frame_register_unsigned (frame, 651 tdep->ppc_ctr_regnum) & ~3; 652 653 /* If we are about to execute a system call, dest is something 654 like 0x22fc or 0x3b00. Upon completion the system call 655 will return to the address in the link register. */ 656 if (dest < AIX_TEXT_SEGMENT_BASE) 657 dest = get_frame_register_unsigned (frame, 658 tdep->ppc_lr_regnum) & ~3; 659 } 660 else 661 return -1; 662 break; 663 664 default: 665 return -1; 666 } 667 return (dest < AIX_TEXT_SEGMENT_BASE) ? safety : dest; 668 } 669 670 /* AIX does not support PT_STEP. Simulate it. */ 671 672 static int 673 rs6000_software_single_step (struct frame_info *frame) 674 { 675 struct gdbarch *gdbarch = get_frame_arch (frame); 676 struct address_space *aspace = get_frame_address_space (frame); 677 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 678 int ii, insn; 679 CORE_ADDR loc; 680 CORE_ADDR breaks[2]; 681 int opcode; 682 683 loc = get_frame_pc (frame); 684 685 insn = read_memory_integer (loc, 4, byte_order); 686 687 if (ppc_deal_with_atomic_sequence (frame)) 688 return 1; 689 690 breaks[0] = loc + PPC_INSN_SIZE; 691 opcode = insn >> 26; 692 breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]); 693 694 /* Don't put two breakpoints on the same address. */ 695 if (breaks[1] == breaks[0]) 696 breaks[1] = -1; 697 698 for (ii = 0; ii < 2; ++ii) 699 { 700 /* ignore invalid breakpoint. */ 701 if (breaks[ii] == -1) 702 continue; 703 insert_single_step_breakpoint (gdbarch, aspace, breaks[ii]); 704 } 705 706 errno = 0; /* FIXME, don't ignore errors! */ 707 /* What errors? {read,write}_memory call error(). */ 708 return 1; 709 } 710 711 /* Implement the "auto_wide_charset" gdbarch method for this platform. */ 712 713 static const char * 714 rs6000_aix_auto_wide_charset (void) 715 { 716 return "UTF-16"; 717 } 718 719 /* Implement an osabi sniffer for RS6000/AIX. 720 721 This function assumes that ABFD's flavour is XCOFF. In other words, 722 it should be registered as a sniffer for bfd_target_xcoff_flavour 723 objfiles only. A failed assertion will be raised if this condition 724 is not met. */ 725 726 static enum gdb_osabi 727 rs6000_aix_osabi_sniffer (bfd *abfd) 728 { 729 gdb_assert (bfd_get_flavour (abfd) == bfd_target_xcoff_flavour); 730 731 /* The only noticeable difference between Lynx178 XCOFF files and 732 AIX XCOFF files comes from the fact that there are no shared 733 libraries on Lynx178. On AIX, we are betting that an executable 734 linked with no shared library will never exist. */ 735 if (xcoff_get_n_import_files (abfd) <= 0) 736 return GDB_OSABI_UNKNOWN; 737 738 return GDB_OSABI_AIX; 739 } 740 741 /* A structure encoding the offset and size of a field within 742 a struct. */ 743 744 struct field_info 745 { 746 int offset; 747 int size; 748 }; 749 750 /* A structure describing the layout of all the fields of interest 751 in AIX's struct ld_info. Each field in this struct corresponds 752 to the field of the same name in struct ld_info. */ 753 754 struct ld_info_desc 755 { 756 struct field_info ldinfo_next; 757 struct field_info ldinfo_fd; 758 struct field_info ldinfo_textorg; 759 struct field_info ldinfo_textsize; 760 struct field_info ldinfo_dataorg; 761 struct field_info ldinfo_datasize; 762 struct field_info ldinfo_filename; 763 }; 764 765 /* The following data has been generated by compiling and running 766 the following program on AIX 5.3. */ 767 768 #if 0 769 #include <stddef.h> 770 #include <stdio.h> 771 #define __LDINFO_PTRACE32__ 772 #define __LDINFO_PTRACE64__ 773 #include <sys/ldr.h> 774 775 #define pinfo(type,member) \ 776 { \ 777 struct type ldi = {0}; \ 778 \ 779 printf (" {%d, %d},\t/* %s */\n", \ 780 offsetof (struct type, member), \ 781 sizeof (ldi.member), \ 782 #member); \ 783 } \ 784 while (0) 785 786 int 787 main (void) 788 { 789 printf ("static const struct ld_info_desc ld_info32_desc =\n{\n"); 790 pinfo (__ld_info32, ldinfo_next); 791 pinfo (__ld_info32, ldinfo_fd); 792 pinfo (__ld_info32, ldinfo_textorg); 793 pinfo (__ld_info32, ldinfo_textsize); 794 pinfo (__ld_info32, ldinfo_dataorg); 795 pinfo (__ld_info32, ldinfo_datasize); 796 pinfo (__ld_info32, ldinfo_filename); 797 printf ("};\n"); 798 799 printf ("\n"); 800 801 printf ("static const struct ld_info_desc ld_info64_desc =\n{\n"); 802 pinfo (__ld_info64, ldinfo_next); 803 pinfo (__ld_info64, ldinfo_fd); 804 pinfo (__ld_info64, ldinfo_textorg); 805 pinfo (__ld_info64, ldinfo_textsize); 806 pinfo (__ld_info64, ldinfo_dataorg); 807 pinfo (__ld_info64, ldinfo_datasize); 808 pinfo (__ld_info64, ldinfo_filename); 809 printf ("};\n"); 810 811 return 0; 812 } 813 #endif /* 0 */ 814 815 /* Layout of the 32bit version of struct ld_info. */ 816 817 static const struct ld_info_desc ld_info32_desc = 818 { 819 {0, 4}, /* ldinfo_next */ 820 {4, 4}, /* ldinfo_fd */ 821 {8, 4}, /* ldinfo_textorg */ 822 {12, 4}, /* ldinfo_textsize */ 823 {16, 4}, /* ldinfo_dataorg */ 824 {20, 4}, /* ldinfo_datasize */ 825 {24, 2}, /* ldinfo_filename */ 826 }; 827 828 /* Layout of the 64bit version of struct ld_info. */ 829 830 static const struct ld_info_desc ld_info64_desc = 831 { 832 {0, 4}, /* ldinfo_next */ 833 {8, 4}, /* ldinfo_fd */ 834 {16, 8}, /* ldinfo_textorg */ 835 {24, 8}, /* ldinfo_textsize */ 836 {32, 8}, /* ldinfo_dataorg */ 837 {40, 8}, /* ldinfo_datasize */ 838 {48, 2}, /* ldinfo_filename */ 839 }; 840 841 /* A structured representation of one entry read from the ld_info 842 binary data provided by the AIX loader. */ 843 844 struct ld_info 845 { 846 ULONGEST next; 847 int fd; 848 CORE_ADDR textorg; 849 ULONGEST textsize; 850 CORE_ADDR dataorg; 851 ULONGEST datasize; 852 char *filename; 853 char *member_name; 854 }; 855 856 /* Return a struct ld_info object corresponding to the entry at 857 LDI_BUF. 858 859 Note that the filename and member_name strings still point 860 to the data in LDI_BUF. So LDI_BUF must not be deallocated 861 while the struct ld_info object returned is in use. */ 862 863 static struct ld_info 864 rs6000_aix_extract_ld_info (struct gdbarch *gdbarch, 865 const gdb_byte *ldi_buf) 866 { 867 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 868 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 869 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; 870 const struct ld_info_desc desc 871 = tdep->wordsize == 8 ? ld_info64_desc : ld_info32_desc; 872 struct ld_info info; 873 874 info.next = extract_unsigned_integer (ldi_buf + desc.ldinfo_next.offset, 875 desc.ldinfo_next.size, 876 byte_order); 877 info.fd = extract_signed_integer (ldi_buf + desc.ldinfo_fd.offset, 878 desc.ldinfo_fd.size, 879 byte_order); 880 info.textorg = extract_typed_address (ldi_buf + desc.ldinfo_textorg.offset, 881 ptr_type); 882 info.textsize 883 = extract_unsigned_integer (ldi_buf + desc.ldinfo_textsize.offset, 884 desc.ldinfo_textsize.size, 885 byte_order); 886 info.dataorg = extract_typed_address (ldi_buf + desc.ldinfo_dataorg.offset, 887 ptr_type); 888 info.datasize 889 = extract_unsigned_integer (ldi_buf + desc.ldinfo_datasize.offset, 890 desc.ldinfo_datasize.size, 891 byte_order); 892 info.filename = (char *) ldi_buf + desc.ldinfo_filename.offset; 893 info.member_name = info.filename + strlen (info.filename) + 1; 894 895 return info; 896 } 897 898 /* Append to OBJSTACK an XML string description of the shared library 899 corresponding to LDI, following the TARGET_OBJECT_LIBRARIES_AIX 900 format. */ 901 902 static void 903 rs6000_aix_shared_library_to_xml (struct ld_info *ldi, 904 struct obstack *obstack) 905 { 906 char *p; 907 908 obstack_grow_str (obstack, "<library name=\""); 909 p = xml_escape_text (ldi->filename); 910 obstack_grow_str (obstack, p); 911 xfree (p); 912 obstack_grow_str (obstack, "\""); 913 914 if (ldi->member_name[0] != '\0') 915 { 916 obstack_grow_str (obstack, " member=\""); 917 p = xml_escape_text (ldi->member_name); 918 obstack_grow_str (obstack, p); 919 xfree (p); 920 obstack_grow_str (obstack, "\""); 921 } 922 923 obstack_grow_str (obstack, " text_addr=\""); 924 obstack_grow_str (obstack, core_addr_to_string (ldi->textorg)); 925 obstack_grow_str (obstack, "\""); 926 927 obstack_grow_str (obstack, " text_size=\""); 928 obstack_grow_str (obstack, pulongest (ldi->textsize)); 929 obstack_grow_str (obstack, "\""); 930 931 obstack_grow_str (obstack, " data_addr=\""); 932 obstack_grow_str (obstack, core_addr_to_string (ldi->dataorg)); 933 obstack_grow_str (obstack, "\""); 934 935 obstack_grow_str (obstack, " data_size=\""); 936 obstack_grow_str (obstack, pulongest (ldi->datasize)); 937 obstack_grow_str (obstack, "\""); 938 939 obstack_grow_str (obstack, "></library>"); 940 } 941 942 /* Convert the ld_info binary data provided by the AIX loader into 943 an XML representation following the TARGET_OBJECT_LIBRARIES_AIX 944 format. 945 946 LDI_BUF is a buffer containing the ld_info data. 947 READBUF, OFFSET and LEN follow the same semantics as target_ops' 948 to_xfer_partial target_ops method. 949 950 If CLOSE_LDINFO_FD is nonzero, then this routine also closes 951 the ldinfo_fd file descriptor. This is useful when the ldinfo 952 data is obtained via ptrace, as ptrace opens a file descriptor 953 for each and every entry; but we cannot use this descriptor 954 as the consumer of the XML library list might live in a different 955 process. */ 956 957 ULONGEST 958 rs6000_aix_ld_info_to_xml (struct gdbarch *gdbarch, const gdb_byte *ldi_buf, 959 gdb_byte *readbuf, ULONGEST offset, ULONGEST len, 960 int close_ldinfo_fd) 961 { 962 struct obstack obstack; 963 const char *buf; 964 ULONGEST len_avail; 965 966 obstack_init (&obstack); 967 obstack_grow_str (&obstack, "<library-list-aix version=\"1.0\">\n"); 968 969 while (1) 970 { 971 struct ld_info ldi = rs6000_aix_extract_ld_info (gdbarch, ldi_buf); 972 973 rs6000_aix_shared_library_to_xml (&ldi, &obstack); 974 if (close_ldinfo_fd) 975 close (ldi.fd); 976 977 if (!ldi.next) 978 break; 979 ldi_buf = ldi_buf + ldi.next; 980 } 981 982 obstack_grow_str0 (&obstack, "</library-list-aix>\n"); 983 984 buf = (const char *) obstack_finish (&obstack); 985 len_avail = strlen (buf); 986 if (offset >= len_avail) 987 len= 0; 988 else 989 { 990 if (len > len_avail - offset) 991 len = len_avail - offset; 992 memcpy (readbuf, buf + offset, len); 993 } 994 995 obstack_free (&obstack, NULL); 996 return len; 997 } 998 999 /* Implement the core_xfer_shared_libraries_aix gdbarch method. */ 1000 1001 static ULONGEST 1002 rs6000_aix_core_xfer_shared_libraries_aix (struct gdbarch *gdbarch, 1003 gdb_byte *readbuf, 1004 ULONGEST offset, 1005 ULONGEST len) 1006 { 1007 struct bfd_section *ldinfo_sec; 1008 int ldinfo_size; 1009 gdb_byte *ldinfo_buf; 1010 struct cleanup *cleanup; 1011 LONGEST result; 1012 1013 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo"); 1014 if (ldinfo_sec == NULL) 1015 error (_("cannot find .ldinfo section from core file: %s"), 1016 bfd_errmsg (bfd_get_error ())); 1017 ldinfo_size = bfd_get_section_size (ldinfo_sec); 1018 1019 ldinfo_buf = (gdb_byte *) xmalloc (ldinfo_size); 1020 cleanup = make_cleanup (xfree, ldinfo_buf); 1021 1022 if (! bfd_get_section_contents (core_bfd, ldinfo_sec, 1023 ldinfo_buf, 0, ldinfo_size)) 1024 error (_("unable to read .ldinfo section from core file: %s"), 1025 bfd_errmsg (bfd_get_error ())); 1026 1027 result = rs6000_aix_ld_info_to_xml (gdbarch, ldinfo_buf, readbuf, 1028 offset, len, 0); 1029 1030 do_cleanups (cleanup); 1031 return result; 1032 } 1033 1034 static void 1035 rs6000_aix_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch) 1036 { 1037 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 1038 1039 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */ 1040 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step); 1041 1042 /* Displaced stepping is currently not supported in combination with 1043 software single-stepping. */ 1044 set_gdbarch_displaced_step_copy_insn (gdbarch, NULL); 1045 set_gdbarch_displaced_step_fixup (gdbarch, NULL); 1046 set_gdbarch_displaced_step_free_closure (gdbarch, NULL); 1047 set_gdbarch_displaced_step_location (gdbarch, NULL); 1048 1049 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call); 1050 set_gdbarch_return_value (gdbarch, rs6000_return_value); 1051 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); 1052 1053 /* Handle RS/6000 function pointers (which are really function 1054 descriptors). */ 1055 set_gdbarch_convert_from_func_ptr_addr 1056 (gdbarch, rs6000_convert_from_func_ptr_addr); 1057 1058 /* Core file support. */ 1059 set_gdbarch_iterate_over_regset_sections 1060 (gdbarch, rs6000_aix_iterate_over_regset_sections); 1061 set_gdbarch_core_xfer_shared_libraries_aix 1062 (gdbarch, rs6000_aix_core_xfer_shared_libraries_aix); 1063 1064 if (tdep->wordsize == 8) 1065 tdep->lr_frame_offset = 16; 1066 else 1067 tdep->lr_frame_offset = 8; 1068 1069 if (tdep->wordsize == 4) 1070 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of 1071 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes. 1072 Problem is, 220 isn't frame (16 byte) aligned. Round it up to 1073 224. */ 1074 set_gdbarch_frame_red_zone_size (gdbarch, 224); 1075 else 1076 set_gdbarch_frame_red_zone_size (gdbarch, 0); 1077 1078 set_gdbarch_auto_wide_charset (gdbarch, rs6000_aix_auto_wide_charset); 1079 1080 set_solib_ops (gdbarch, &solib_aix_so_ops); 1081 } 1082 1083 /* Provide a prototype to silence -Wmissing-prototypes. */ 1084 extern initialize_file_ftype _initialize_rs6000_aix_tdep; 1085 1086 void 1087 _initialize_rs6000_aix_tdep (void) 1088 { 1089 gdbarch_register_osabi_sniffer (bfd_arch_rs6000, 1090 bfd_target_xcoff_flavour, 1091 rs6000_aix_osabi_sniffer); 1092 gdbarch_register_osabi_sniffer (bfd_arch_powerpc, 1093 bfd_target_xcoff_flavour, 1094 rs6000_aix_osabi_sniffer); 1095 1096 gdbarch_register_osabi (bfd_arch_rs6000, 0, GDB_OSABI_AIX, 1097 rs6000_aix_init_osabi); 1098 gdbarch_register_osabi (bfd_arch_powerpc, 0, GDB_OSABI_AIX, 1099 rs6000_aix_init_osabi); 1100 } 1101 1102