1 /* Native support code for PPC AIX, for GDB the GNU debugger. 2 3 Copyright (C) 2006-2023 Free Software Foundation, Inc. 4 5 Free Software Foundation, Inc. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 #include "defs.h" 23 #include "osabi.h" 24 #include "regcache.h" 25 #include "regset.h" 26 #include "gdbtypes.h" 27 #include "gdbcore.h" 28 #include "target.h" 29 #include "value.h" 30 #include "infcall.h" 31 #include "objfiles.h" 32 #include "breakpoint.h" 33 #include "ppc-tdep.h" 34 #include "rs6000-aix-tdep.h" 35 #include "xcoffread.h" 36 #include "solib.h" 37 #include "solib-aix.h" 38 #include "target-float.h" 39 #include "gdbsupport/xml-utils.h" 40 #include "trad-frame.h" 41 #include "frame-unwind.h" 42 43 /* If the kernel has to deliver a signal, it pushes a sigcontext 44 structure on the stack and then calls the signal handler, passing 45 the address of the sigcontext in an argument register. Usually 46 the signal handler doesn't save this register, so we have to 47 access the sigcontext structure via an offset from the signal handler 48 frame. 49 The following constants were determined by experimentation on AIX 3.2. 50 51 sigcontext structure have the mstsave saved under the 52 sc_jmpbuf.jmp_context. STKMIN(minimum stack size) is 56 for 32-bit 53 processes, and iar offset under sc_jmpbuf.jmp_context is 40. 54 ie offsetof(struct sigcontext, sc_jmpbuf.jmp_context.iar). 55 so PC offset in this case is STKMIN+iar offset, which is 96. */ 56 57 #define SIG_FRAME_PC_OFFSET 96 58 #define SIG_FRAME_LR_OFFSET 108 59 /* STKMIN+grp1 offset, which is 56+228=284 */ 60 #define SIG_FRAME_FP_OFFSET 284 61 62 /* 64 bit process. 63 STKMIN64 is 112 and iar offset is 312. So 112+312=424 */ 64 #define SIG_FRAME_LR_OFFSET64 424 65 /* STKMIN64+grp1 offset. 112+56=168 */ 66 #define SIG_FRAME_FP_OFFSET64 168 67 68 /* Minimum possible text address in AIX. */ 69 #define AIX_TEXT_SEGMENT_BASE 0x10000000 70 71 static struct trad_frame_cache * 72 aix_sighandle_frame_cache (frame_info_ptr this_frame, 73 void **this_cache) 74 { 75 LONGEST backchain; 76 CORE_ADDR base, base_orig, func; 77 struct gdbarch *gdbarch = get_frame_arch (this_frame); 78 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); 79 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 80 struct trad_frame_cache *this_trad_cache; 81 82 if ((*this_cache) != NULL) 83 return (struct trad_frame_cache *) (*this_cache); 84 85 this_trad_cache = trad_frame_cache_zalloc (this_frame); 86 (*this_cache) = this_trad_cache; 87 88 base = get_frame_register_unsigned (this_frame, 89 gdbarch_sp_regnum (gdbarch)); 90 base_orig = base; 91 92 if (tdep->wordsize == 4) 93 { 94 func = read_memory_unsigned_integer (base_orig + 95 SIG_FRAME_PC_OFFSET + 8, 96 tdep->wordsize, byte_order); 97 safe_read_memory_integer (base_orig + SIG_FRAME_FP_OFFSET + 8, 98 tdep->wordsize, byte_order, &backchain); 99 base = (CORE_ADDR)backchain; 100 } 101 else 102 { 103 func = read_memory_unsigned_integer (base_orig + 104 SIG_FRAME_LR_OFFSET64, 105 tdep->wordsize, byte_order); 106 safe_read_memory_integer (base_orig + SIG_FRAME_FP_OFFSET64, 107 tdep->wordsize, byte_order, &backchain); 108 base = (CORE_ADDR)backchain; 109 } 110 111 trad_frame_set_reg_value (this_trad_cache, gdbarch_pc_regnum (gdbarch), func); 112 trad_frame_set_reg_value (this_trad_cache, gdbarch_sp_regnum (gdbarch), base); 113 114 if (tdep->wordsize == 4) 115 trad_frame_set_reg_addr (this_trad_cache, tdep->ppc_lr_regnum, 116 base_orig + 0x38 + 52 + 8); 117 else 118 trad_frame_set_reg_addr (this_trad_cache, tdep->ppc_lr_regnum, 119 base_orig + 0x70 + 320); 120 121 trad_frame_set_id (this_trad_cache, frame_id_build (base, func)); 122 trad_frame_set_this_base (this_trad_cache, base); 123 124 return this_trad_cache; 125 } 126 127 static void 128 aix_sighandle_frame_this_id (frame_info_ptr this_frame, 129 void **this_prologue_cache, 130 struct frame_id *this_id) 131 { 132 struct trad_frame_cache *this_trad_cache 133 = aix_sighandle_frame_cache (this_frame, this_prologue_cache); 134 trad_frame_get_id (this_trad_cache, this_id); 135 } 136 137 static struct value * 138 aix_sighandle_frame_prev_register (frame_info_ptr this_frame, 139 void **this_prologue_cache, int regnum) 140 { 141 struct trad_frame_cache *this_trad_cache 142 = aix_sighandle_frame_cache (this_frame, this_prologue_cache); 143 return trad_frame_get_register (this_trad_cache, this_frame, regnum); 144 } 145 146 static int 147 aix_sighandle_frame_sniffer (const struct frame_unwind *self, 148 frame_info_ptr this_frame, 149 void **this_prologue_cache) 150 { 151 CORE_ADDR pc = get_frame_pc (this_frame); 152 if (pc && pc < AIX_TEXT_SEGMENT_BASE) 153 return 1; 154 155 return 0; 156 } 157 158 /* AIX signal handler frame unwinder */ 159 160 static const struct frame_unwind aix_sighandle_frame_unwind = { 161 "rs6000 aix sighandle", 162 SIGTRAMP_FRAME, 163 default_frame_unwind_stop_reason, 164 aix_sighandle_frame_this_id, 165 aix_sighandle_frame_prev_register, 166 NULL, 167 aix_sighandle_frame_sniffer 168 }; 169 170 /* Core file support. */ 171 172 static struct ppc_reg_offsets rs6000_aix32_reg_offsets = 173 { 174 /* General-purpose registers. */ 175 208, /* r0_offset */ 176 4, /* gpr_size */ 177 4, /* xr_size */ 178 24, /* pc_offset */ 179 28, /* ps_offset */ 180 32, /* cr_offset */ 181 36, /* lr_offset */ 182 40, /* ctr_offset */ 183 44, /* xer_offset */ 184 48, /* mq_offset */ 185 186 /* Floating-point registers. */ 187 336, /* f0_offset */ 188 56, /* fpscr_offset */ 189 4 /* fpscr_size */ 190 }; 191 192 static struct ppc_reg_offsets rs6000_aix64_reg_offsets = 193 { 194 /* General-purpose registers. */ 195 0, /* r0_offset */ 196 8, /* gpr_size */ 197 4, /* xr_size */ 198 264, /* pc_offset */ 199 256, /* ps_offset */ 200 288, /* cr_offset */ 201 272, /* lr_offset */ 202 280, /* ctr_offset */ 203 292, /* xer_offset */ 204 -1, /* mq_offset */ 205 206 /* Floating-point registers. */ 207 312, /* f0_offset */ 208 296, /* fpscr_offset */ 209 4 /* fpscr_size */ 210 }; 211 212 213 /* Supply register REGNUM in the general-purpose register set REGSET 214 from the buffer specified by GREGS and LEN to register cache 215 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ 216 217 static void 218 rs6000_aix_supply_regset (const struct regset *regset, 219 struct regcache *regcache, int regnum, 220 const void *gregs, size_t len) 221 { 222 ppc_supply_gregset (regset, regcache, regnum, gregs, len); 223 ppc_supply_fpregset (regset, regcache, regnum, gregs, len); 224 } 225 226 /* Collect register REGNUM in the general-purpose register set 227 REGSET, from register cache REGCACHE into the buffer specified by 228 GREGS and LEN. If REGNUM is -1, do this for all registers in 229 REGSET. */ 230 231 static void 232 rs6000_aix_collect_regset (const struct regset *regset, 233 const struct regcache *regcache, int regnum, 234 void *gregs, size_t len) 235 { 236 ppc_collect_gregset (regset, regcache, regnum, gregs, len); 237 ppc_collect_fpregset (regset, regcache, regnum, gregs, len); 238 } 239 240 /* AIX register set. */ 241 242 static const struct regset rs6000_aix32_regset = 243 { 244 &rs6000_aix32_reg_offsets, 245 rs6000_aix_supply_regset, 246 rs6000_aix_collect_regset, 247 }; 248 249 static const struct regset rs6000_aix64_regset = 250 { 251 &rs6000_aix64_reg_offsets, 252 rs6000_aix_supply_regset, 253 rs6000_aix_collect_regset, 254 }; 255 256 /* Iterate over core file register note sections. */ 257 258 static void 259 rs6000_aix_iterate_over_regset_sections (struct gdbarch *gdbarch, 260 iterate_over_regset_sections_cb *cb, 261 void *cb_data, 262 const struct regcache *regcache) 263 { 264 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); 265 if (tdep->wordsize == 4) 266 cb (".reg", 592, 592, &rs6000_aix32_regset, NULL, cb_data); 267 else 268 cb (".reg", 576, 576, &rs6000_aix64_regset, NULL, cb_data); 269 } 270 271 272 /* Pass the arguments in either registers, or in the stack. In RS/6000, 273 the first eight words of the argument list (that might be less than 274 eight parameters if some parameters occupy more than one word) are 275 passed in r3..r10 registers. Float and double parameters are 276 passed in fpr's, in addition to that. Rest of the parameters if any 277 are passed in user stack. There might be cases in which half of the 278 parameter is copied into registers, the other half is pushed into 279 stack. 280 281 Stack must be aligned on 64-bit boundaries when synthesizing 282 function calls. 283 284 If the function is returning a structure, then the return address is passed 285 in r3, then the first 7 words of the parameters can be passed in registers, 286 starting from r4. */ 287 288 static CORE_ADDR 289 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 290 struct regcache *regcache, CORE_ADDR bp_addr, 291 int nargs, struct value **args, CORE_ADDR sp, 292 function_call_return_method return_method, 293 CORE_ADDR struct_addr) 294 { 295 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); 296 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 297 int ii; 298 int len = 0; 299 int argno; /* current argument number */ 300 int argbytes; /* current argument byte */ 301 gdb_byte tmp_buffer[50]; 302 int f_argno = 0; /* current floating point argno */ 303 int wordsize = tdep->wordsize; 304 CORE_ADDR func_addr = find_function_addr (function, NULL); 305 306 struct value *arg = 0; 307 struct type *type; 308 309 ULONGEST saved_sp; 310 311 /* The calling convention this function implements assumes the 312 processor has floating-point registers. We shouldn't be using it 313 on PPC variants that lack them. */ 314 gdb_assert (ppc_floating_point_unit_p (gdbarch)); 315 316 /* The first eight words of ther arguments are passed in registers. 317 Copy them appropriately. */ 318 ii = 0; 319 320 /* If the function is returning a `struct', then the first word 321 (which will be passed in r3) is used for struct return address. 322 In that case we should advance one word and start from r4 323 register to copy parameters. */ 324 if (return_method == return_method_struct) 325 { 326 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, 327 struct_addr); 328 ii++; 329 } 330 331 /* effectively indirect call... gcc does... 332 333 return_val example( float, int); 334 335 eabi: 336 float in fp0, int in r3 337 offset of stack on overflow 8/16 338 for varargs, must go by type. 339 power open: 340 float in r3&r4, int in r5 341 offset of stack on overflow different 342 both: 343 return in r3 or f0. If no float, must study how gcc emulates floats; 344 pay attention to arg promotion. 345 User may have to cast\args to handle promotion correctly 346 since gdb won't know if prototype supplied or not. */ 347 348 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii) 349 { 350 int reg_size = register_size (gdbarch, ii + 3); 351 352 arg = args[argno]; 353 type = check_typedef (value_type (arg)); 354 len = type->length (); 355 356 if (type->code () == TYPE_CODE_FLT) 357 { 358 /* Floating point arguments are passed in fpr's, as well as gpr's. 359 There are 13 fpr's reserved for passing parameters. At this point 360 there is no way we would run out of them. 361 362 Always store the floating point value using the register's 363 floating-point format. */ 364 const int fp_regnum = tdep->ppc_fp0_regnum + 1 + f_argno; 365 gdb_byte reg_val[PPC_MAX_REGISTER_SIZE]; 366 struct type *reg_type = register_type (gdbarch, fp_regnum); 367 368 gdb_assert (len <= 8); 369 370 target_float_convert (value_contents (arg).data (), type, reg_val, 371 reg_type); 372 regcache->cooked_write (fp_regnum, reg_val); 373 ++f_argno; 374 } 375 376 if (len > reg_size) 377 { 378 379 /* Argument takes more than one register. */ 380 while (argbytes < len) 381 { 382 gdb_byte word[PPC_MAX_REGISTER_SIZE]; 383 memset (word, 0, reg_size); 384 memcpy (word, 385 ((char *) value_contents (arg).data ()) + argbytes, 386 (len - argbytes) > reg_size 387 ? reg_size : len - argbytes); 388 regcache->cooked_write (tdep->ppc_gp0_regnum + 3 + ii, word); 389 ++ii, argbytes += reg_size; 390 391 if (ii >= 8) 392 goto ran_out_of_registers_for_arguments; 393 } 394 argbytes = 0; 395 --ii; 396 } 397 else 398 { 399 /* Argument can fit in one register. No problem. */ 400 gdb_byte word[PPC_MAX_REGISTER_SIZE]; 401 402 memset (word, 0, reg_size); 403 if (type->code () == TYPE_CODE_INT 404 || type->code () == TYPE_CODE_ENUM 405 || type->code () == TYPE_CODE_BOOL 406 || type->code () == TYPE_CODE_CHAR) 407 /* Sign or zero extend the "int" into a "word". */ 408 store_unsigned_integer (word, reg_size, byte_order, 409 unpack_long (type, value_contents (arg).data ())); 410 else 411 memcpy (word, value_contents (arg).data (), len); 412 regcache->cooked_write (tdep->ppc_gp0_regnum + 3 +ii, word); 413 } 414 ++argno; 415 } 416 417 ran_out_of_registers_for_arguments: 418 419 regcache_cooked_read_unsigned (regcache, 420 gdbarch_sp_regnum (gdbarch), 421 &saved_sp); 422 423 /* Location for 8 parameters are always reserved. */ 424 sp -= wordsize * 8; 425 426 /* Another six words for back chain, TOC register, link register, etc. */ 427 sp -= wordsize * 6; 428 429 /* Stack pointer must be quadword aligned. */ 430 sp &= -16; 431 432 /* If there are more arguments, allocate space for them in 433 the stack, then push them starting from the ninth one. */ 434 435 if ((argno < nargs) || argbytes) 436 { 437 int space = 0, jj; 438 439 if (argbytes) 440 { 441 space += ((len - argbytes + 3) & -4); 442 jj = argno + 1; 443 } 444 else 445 jj = argno; 446 447 for (; jj < nargs; ++jj) 448 { 449 struct value *val = args[jj]; 450 space += ((value_type (val)->length ()) + 3) & -4; 451 } 452 453 /* Add location required for the rest of the parameters. */ 454 space = (space + 15) & -16; 455 sp -= space; 456 457 /* This is another instance we need to be concerned about 458 securing our stack space. If we write anything underneath %sp 459 (r1), we might conflict with the kernel who thinks he is free 460 to use this area. So, update %sp first before doing anything 461 else. */ 462 463 regcache_raw_write_signed (regcache, 464 gdbarch_sp_regnum (gdbarch), sp); 465 466 /* If the last argument copied into the registers didn't fit there 467 completely, push the rest of it into stack. */ 468 469 if (argbytes) 470 { 471 write_memory (sp + 24 + (ii * 4), 472 value_contents (arg).data () + argbytes, 473 len - argbytes); 474 ++argno; 475 ii += ((len - argbytes + 3) & -4) / 4; 476 } 477 478 /* Push the rest of the arguments into stack. */ 479 for (; argno < nargs; ++argno) 480 { 481 482 arg = args[argno]; 483 type = check_typedef (value_type (arg)); 484 len = type->length (); 485 486 487 /* Float types should be passed in fpr's, as well as in the 488 stack. */ 489 if (type->code () == TYPE_CODE_FLT && f_argno < 13) 490 { 491 492 gdb_assert (len <= 8); 493 494 regcache->cooked_write (tdep->ppc_fp0_regnum + 1 + f_argno, 495 value_contents (arg).data ()); 496 ++f_argno; 497 } 498 499 write_memory (sp + 24 + (ii * 4), value_contents (arg).data (), len); 500 ii += ((len + 3) & -4) / 4; 501 } 502 } 503 504 /* Set the stack pointer. According to the ABI, the SP is meant to 505 be set _before_ the corresponding stack space is used. On AIX, 506 this even applies when the target has been completely stopped! 507 Not doing this can lead to conflicts with the kernel which thinks 508 that it still has control over this not-yet-allocated stack 509 region. */ 510 regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp); 511 512 /* Set back chain properly. */ 513 store_unsigned_integer (tmp_buffer, wordsize, byte_order, saved_sp); 514 write_memory (sp, tmp_buffer, wordsize); 515 516 /* Point the inferior function call's return address at the dummy's 517 breakpoint. */ 518 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr); 519 520 /* Set the TOC register value. */ 521 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, 522 solib_aix_get_toc_value (func_addr)); 523 524 target_store_registers (regcache, -1); 525 return sp; 526 } 527 528 static enum return_value_convention 529 rs6000_return_value (struct gdbarch *gdbarch, struct value *function, 530 struct type *valtype, struct regcache *regcache, 531 gdb_byte *readbuf, const gdb_byte *writebuf) 532 { 533 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); 534 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 535 536 /* The calling convention this function implements assumes the 537 processor has floating-point registers. We shouldn't be using it 538 on PowerPC variants that lack them. */ 539 gdb_assert (ppc_floating_point_unit_p (gdbarch)); 540 541 /* AltiVec extension: Functions that declare a vector data type as a 542 return value place that return value in VR2. */ 543 if (valtype->code () == TYPE_CODE_ARRAY && valtype->is_vector () 544 && valtype->length () == 16) 545 { 546 if (readbuf) 547 regcache->cooked_read (tdep->ppc_vr0_regnum + 2, readbuf); 548 if (writebuf) 549 regcache->cooked_write (tdep->ppc_vr0_regnum + 2, writebuf); 550 551 return RETURN_VALUE_REGISTER_CONVENTION; 552 } 553 554 /* If the called subprogram returns an aggregate, there exists an 555 implicit first argument, whose value is the address of a caller- 556 allocated buffer into which the callee is assumed to store its 557 return value. All explicit parameters are appropriately 558 relabeled. */ 559 if (valtype->code () == TYPE_CODE_STRUCT 560 || valtype->code () == TYPE_CODE_UNION 561 || valtype->code () == TYPE_CODE_ARRAY) 562 return RETURN_VALUE_STRUCT_CONVENTION; 563 564 /* Scalar floating-point values are returned in FPR1 for float or 565 double, and in FPR1:FPR2 for quadword precision. Fortran 566 complex*8 and complex*16 are returned in FPR1:FPR2, and 567 complex*32 is returned in FPR1:FPR4. */ 568 if (valtype->code () == TYPE_CODE_FLT 569 && (valtype->length () == 4 || valtype->length () == 8)) 570 { 571 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum); 572 gdb_byte regval[8]; 573 574 /* FIXME: kettenis/2007-01-01: Add support for quadword 575 precision and complex. */ 576 577 if (readbuf) 578 { 579 regcache->cooked_read (tdep->ppc_fp0_regnum + 1, regval); 580 target_float_convert (regval, regtype, readbuf, valtype); 581 } 582 if (writebuf) 583 { 584 target_float_convert (writebuf, valtype, regval, regtype); 585 regcache->cooked_write (tdep->ppc_fp0_regnum + 1, regval); 586 } 587 588 return RETURN_VALUE_REGISTER_CONVENTION; 589 } 590 591 /* Values of the types int, long, short, pointer, and char (length 592 is less than or equal to four bytes), as well as bit values of 593 lengths less than or equal to 32 bits, must be returned right 594 justified in GPR3 with signed values sign extended and unsigned 595 values zero extended, as necessary. */ 596 if (valtype->length () <= tdep->wordsize) 597 { 598 if (readbuf) 599 { 600 ULONGEST regval; 601 602 /* For reading we don't have to worry about sign extension. */ 603 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3, 604 ®val); 605 store_unsigned_integer (readbuf, valtype->length (), byte_order, 606 regval); 607 } 608 if (writebuf) 609 { 610 /* For writing, use unpack_long since that should handle any 611 required sign extension. */ 612 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, 613 unpack_long (valtype, writebuf)); 614 } 615 616 return RETURN_VALUE_REGISTER_CONVENTION; 617 } 618 619 /* Eight-byte non-floating-point scalar values must be returned in 620 GPR3:GPR4. */ 621 622 if (valtype->length () == 8) 623 { 624 gdb_assert (valtype->code () != TYPE_CODE_FLT); 625 gdb_assert (tdep->wordsize == 4); 626 627 if (readbuf) 628 { 629 gdb_byte regval[8]; 630 631 regcache->cooked_read (tdep->ppc_gp0_regnum + 3, regval); 632 regcache->cooked_read (tdep->ppc_gp0_regnum + 4, regval + 4); 633 memcpy (readbuf, regval, 8); 634 } 635 if (writebuf) 636 { 637 regcache->cooked_write (tdep->ppc_gp0_regnum + 3, writebuf); 638 regcache->cooked_write (tdep->ppc_gp0_regnum + 4, writebuf + 4); 639 } 640 641 return RETURN_VALUE_REGISTER_CONVENTION; 642 } 643 644 return RETURN_VALUE_STRUCT_CONVENTION; 645 } 646 647 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG). 648 649 Usually a function pointer's representation is simply the address 650 of the function. On the RS/6000 however, a function pointer is 651 represented by a pointer to an OPD entry. This OPD entry contains 652 three words, the first word is the address of the function, the 653 second word is the TOC pointer (r2), and the third word is the 654 static chain value. Throughout GDB it is currently assumed that a 655 function pointer contains the address of the function, which is not 656 easy to fix. In addition, the conversion of a function address to 657 a function pointer would require allocation of an OPD entry in the 658 inferior's memory space, with all its drawbacks. To be able to 659 call C++ virtual methods in the inferior (which are called via 660 function pointers), find_function_addr uses this function to get the 661 function address from a function pointer. */ 662 663 /* Return real function address if ADDR (a function pointer) is in the data 664 space and is therefore a special function pointer. */ 665 666 static CORE_ADDR 667 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch, 668 CORE_ADDR addr, 669 struct target_ops *targ) 670 { 671 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); 672 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 673 struct obj_section *s; 674 675 s = find_pc_section (addr); 676 677 /* Normally, functions live inside a section that is executable. 678 So, if ADDR points to a non-executable section, then treat it 679 as a function descriptor and return the target address iff 680 the target address itself points to a section that is executable. */ 681 if (s && (s->the_bfd_section->flags & SEC_CODE) == 0) 682 { 683 CORE_ADDR pc = 0; 684 struct obj_section *pc_section; 685 686 try 687 { 688 pc = read_memory_unsigned_integer (addr, tdep->wordsize, byte_order); 689 } 690 catch (const gdb_exception_error &e) 691 { 692 /* An error occured during reading. Probably a memory error 693 due to the section not being loaded yet. This address 694 cannot be a function descriptor. */ 695 return addr; 696 } 697 698 pc_section = find_pc_section (pc); 699 700 if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE)) 701 return pc; 702 } 703 704 return addr; 705 } 706 707 708 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */ 709 710 static CORE_ADDR 711 branch_dest (struct regcache *regcache, int opcode, int instr, 712 CORE_ADDR pc, CORE_ADDR safety) 713 { 714 struct gdbarch *gdbarch = regcache->arch (); 715 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); 716 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 717 CORE_ADDR dest; 718 int immediate; 719 int absolute; 720 int ext_op; 721 722 absolute = (int) ((instr >> 1) & 1); 723 724 switch (opcode) 725 { 726 case 18: 727 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */ 728 if (absolute) 729 dest = immediate; 730 else 731 dest = pc + immediate; 732 break; 733 734 case 16: 735 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */ 736 if (absolute) 737 dest = immediate; 738 else 739 dest = pc + immediate; 740 break; 741 742 case 19: 743 ext_op = (instr >> 1) & 0x3ff; 744 745 if (ext_op == 16) /* br conditional register */ 746 { 747 dest = regcache_raw_get_unsigned (regcache, tdep->ppc_lr_regnum) & ~3; 748 749 /* If we are about to return from a signal handler, dest is 750 something like 0x3c90. The current frame is a signal handler 751 caller frame, upon completion of the sigreturn system call 752 execution will return to the saved PC in the frame. */ 753 if (dest < AIX_TEXT_SEGMENT_BASE) 754 { 755 frame_info_ptr frame = get_current_frame (); 756 757 dest = read_memory_unsigned_integer 758 (get_frame_base (frame) + SIG_FRAME_PC_OFFSET, 759 tdep->wordsize, byte_order); 760 } 761 } 762 763 else if (ext_op == 528) /* br cond to count reg */ 764 { 765 dest = regcache_raw_get_unsigned (regcache, 766 tdep->ppc_ctr_regnum) & ~3; 767 768 /* If we are about to execute a system call, dest is something 769 like 0x22fc or 0x3b00. Upon completion the system call 770 will return to the address in the link register. */ 771 if (dest < AIX_TEXT_SEGMENT_BASE) 772 dest = regcache_raw_get_unsigned (regcache, 773 tdep->ppc_lr_regnum) & ~3; 774 } 775 else 776 return -1; 777 break; 778 779 default: 780 return -1; 781 } 782 return (dest < AIX_TEXT_SEGMENT_BASE) ? safety : dest; 783 } 784 785 /* AIX does not support PT_STEP. Simulate it. */ 786 787 static std::vector<CORE_ADDR> 788 rs6000_software_single_step (struct regcache *regcache) 789 { 790 struct gdbarch *gdbarch = regcache->arch (); 791 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 792 int ii, insn; 793 CORE_ADDR loc; 794 CORE_ADDR breaks[2]; 795 int opcode; 796 797 loc = regcache_read_pc (regcache); 798 799 insn = read_memory_integer (loc, 4, byte_order); 800 801 std::vector<CORE_ADDR> next_pcs = ppc_deal_with_atomic_sequence (regcache); 802 if (!next_pcs.empty ()) 803 return next_pcs; 804 805 breaks[0] = loc + PPC_INSN_SIZE; 806 opcode = insn >> 26; 807 breaks[1] = branch_dest (regcache, opcode, insn, loc, breaks[0]); 808 809 /* Don't put two breakpoints on the same address. */ 810 if (breaks[1] == breaks[0]) 811 breaks[1] = -1; 812 813 for (ii = 0; ii < 2; ++ii) 814 { 815 /* ignore invalid breakpoint. */ 816 if (breaks[ii] == -1) 817 continue; 818 819 next_pcs.push_back (breaks[ii]); 820 } 821 822 errno = 0; /* FIXME, don't ignore errors! */ 823 /* What errors? {read,write}_memory call error(). */ 824 return next_pcs; 825 } 826 827 /* Implement the "auto_wide_charset" gdbarch method for this platform. */ 828 829 static const char * 830 rs6000_aix_auto_wide_charset (void) 831 { 832 return "UTF-16"; 833 } 834 835 /* Implement an osabi sniffer for RS6000/AIX. 836 837 This function assumes that ABFD's flavour is XCOFF. In other words, 838 it should be registered as a sniffer for bfd_target_xcoff_flavour 839 objfiles only. A failed assertion will be raised if this condition 840 is not met. */ 841 842 static enum gdb_osabi 843 rs6000_aix_osabi_sniffer (bfd *abfd) 844 { 845 gdb_assert (bfd_get_flavour (abfd) == bfd_target_xcoff_flavour); 846 847 /* The only noticeable difference between Lynx178 XCOFF files and 848 AIX XCOFF files comes from the fact that there are no shared 849 libraries on Lynx178. On AIX, we are betting that an executable 850 linked with no shared library will never exist. */ 851 if (xcoff_get_n_import_files (abfd) <= 0) 852 return GDB_OSABI_UNKNOWN; 853 854 return GDB_OSABI_AIX; 855 } 856 857 /* A structure encoding the offset and size of a field within 858 a struct. */ 859 860 struct ldinfo_field 861 { 862 int offset; 863 int size; 864 }; 865 866 /* A structure describing the layout of all the fields of interest 867 in AIX's struct ld_info. Each field in this struct corresponds 868 to the field of the same name in struct ld_info. */ 869 870 struct ld_info_desc 871 { 872 struct ldinfo_field ldinfo_next; 873 struct ldinfo_field ldinfo_fd; 874 struct ldinfo_field ldinfo_textorg; 875 struct ldinfo_field ldinfo_textsize; 876 struct ldinfo_field ldinfo_dataorg; 877 struct ldinfo_field ldinfo_datasize; 878 struct ldinfo_field ldinfo_filename; 879 }; 880 881 /* The following data has been generated by compiling and running 882 the following program on AIX 5.3. */ 883 884 #if 0 885 #include <stddef.h> 886 #include <stdio.h> 887 #define __LDINFO_PTRACE32__ 888 #define __LDINFO_PTRACE64__ 889 #include <sys/ldr.h> 890 891 #define pinfo(type,member) \ 892 { \ 893 struct type ldi = {0}; \ 894 \ 895 printf (" {%d, %d},\t/* %s */\n", \ 896 offsetof (struct type, member), \ 897 sizeof (ldi.member), \ 898 #member); \ 899 } \ 900 while (0) 901 902 int 903 main (void) 904 { 905 printf ("static const struct ld_info_desc ld_info32_desc =\n{\n"); 906 pinfo (__ld_info32, ldinfo_next); 907 pinfo (__ld_info32, ldinfo_fd); 908 pinfo (__ld_info32, ldinfo_textorg); 909 pinfo (__ld_info32, ldinfo_textsize); 910 pinfo (__ld_info32, ldinfo_dataorg); 911 pinfo (__ld_info32, ldinfo_datasize); 912 pinfo (__ld_info32, ldinfo_filename); 913 printf ("};\n"); 914 915 printf ("\n"); 916 917 printf ("static const struct ld_info_desc ld_info64_desc =\n{\n"); 918 pinfo (__ld_info64, ldinfo_next); 919 pinfo (__ld_info64, ldinfo_fd); 920 pinfo (__ld_info64, ldinfo_textorg); 921 pinfo (__ld_info64, ldinfo_textsize); 922 pinfo (__ld_info64, ldinfo_dataorg); 923 pinfo (__ld_info64, ldinfo_datasize); 924 pinfo (__ld_info64, ldinfo_filename); 925 printf ("};\n"); 926 927 return 0; 928 } 929 #endif /* 0 */ 930 931 /* Layout of the 32bit version of struct ld_info. */ 932 933 static const struct ld_info_desc ld_info32_desc = 934 { 935 {0, 4}, /* ldinfo_next */ 936 {4, 4}, /* ldinfo_fd */ 937 {8, 4}, /* ldinfo_textorg */ 938 {12, 4}, /* ldinfo_textsize */ 939 {16, 4}, /* ldinfo_dataorg */ 940 {20, 4}, /* ldinfo_datasize */ 941 {24, 2}, /* ldinfo_filename */ 942 }; 943 944 /* Layout of the 64bit version of struct ld_info. */ 945 946 static const struct ld_info_desc ld_info64_desc = 947 { 948 {0, 4}, /* ldinfo_next */ 949 {8, 4}, /* ldinfo_fd */ 950 {16, 8}, /* ldinfo_textorg */ 951 {24, 8}, /* ldinfo_textsize */ 952 {32, 8}, /* ldinfo_dataorg */ 953 {40, 8}, /* ldinfo_datasize */ 954 {48, 2}, /* ldinfo_filename */ 955 }; 956 957 /* A structured representation of one entry read from the ld_info 958 binary data provided by the AIX loader. */ 959 960 struct ld_info 961 { 962 ULONGEST next; 963 int fd; 964 CORE_ADDR textorg; 965 ULONGEST textsize; 966 CORE_ADDR dataorg; 967 ULONGEST datasize; 968 char *filename; 969 char *member_name; 970 }; 971 972 /* Return a struct ld_info object corresponding to the entry at 973 LDI_BUF. 974 975 Note that the filename and member_name strings still point 976 to the data in LDI_BUF. So LDI_BUF must not be deallocated 977 while the struct ld_info object returned is in use. */ 978 979 static struct ld_info 980 rs6000_aix_extract_ld_info (struct gdbarch *gdbarch, 981 const gdb_byte *ldi_buf) 982 { 983 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); 984 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 985 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; 986 const struct ld_info_desc desc 987 = tdep->wordsize == 8 ? ld_info64_desc : ld_info32_desc; 988 struct ld_info info; 989 990 info.next = extract_unsigned_integer (ldi_buf + desc.ldinfo_next.offset, 991 desc.ldinfo_next.size, 992 byte_order); 993 info.fd = extract_signed_integer (ldi_buf + desc.ldinfo_fd.offset, 994 desc.ldinfo_fd.size, 995 byte_order); 996 info.textorg = extract_typed_address (ldi_buf + desc.ldinfo_textorg.offset, 997 ptr_type); 998 info.textsize 999 = extract_unsigned_integer (ldi_buf + desc.ldinfo_textsize.offset, 1000 desc.ldinfo_textsize.size, 1001 byte_order); 1002 info.dataorg = extract_typed_address (ldi_buf + desc.ldinfo_dataorg.offset, 1003 ptr_type); 1004 info.datasize 1005 = extract_unsigned_integer (ldi_buf + desc.ldinfo_datasize.offset, 1006 desc.ldinfo_datasize.size, 1007 byte_order); 1008 info.filename = (char *) ldi_buf + desc.ldinfo_filename.offset; 1009 info.member_name = info.filename + strlen (info.filename) + 1; 1010 1011 return info; 1012 } 1013 1014 /* Append to OBJSTACK an XML string description of the shared library 1015 corresponding to LDI, following the TARGET_OBJECT_LIBRARIES_AIX 1016 format. */ 1017 1018 static void 1019 rs6000_aix_shared_library_to_xml (struct ld_info *ldi, 1020 struct obstack *obstack) 1021 { 1022 obstack_grow_str (obstack, "<library name=\""); 1023 std::string p = xml_escape_text (ldi->filename); 1024 obstack_grow_str (obstack, p.c_str ()); 1025 obstack_grow_str (obstack, "\""); 1026 1027 if (ldi->member_name[0] != '\0') 1028 { 1029 obstack_grow_str (obstack, " member=\""); 1030 p = xml_escape_text (ldi->member_name); 1031 obstack_grow_str (obstack, p.c_str ()); 1032 obstack_grow_str (obstack, "\""); 1033 } 1034 1035 obstack_grow_str (obstack, " text_addr=\""); 1036 obstack_grow_str (obstack, core_addr_to_string (ldi->textorg)); 1037 obstack_grow_str (obstack, "\""); 1038 1039 obstack_grow_str (obstack, " text_size=\""); 1040 obstack_grow_str (obstack, pulongest (ldi->textsize)); 1041 obstack_grow_str (obstack, "\""); 1042 1043 obstack_grow_str (obstack, " data_addr=\""); 1044 obstack_grow_str (obstack, core_addr_to_string (ldi->dataorg)); 1045 obstack_grow_str (obstack, "\""); 1046 1047 obstack_grow_str (obstack, " data_size=\""); 1048 obstack_grow_str (obstack, pulongest (ldi->datasize)); 1049 obstack_grow_str (obstack, "\""); 1050 1051 obstack_grow_str (obstack, "></library>"); 1052 } 1053 1054 /* Convert the ld_info binary data provided by the AIX loader into 1055 an XML representation following the TARGET_OBJECT_LIBRARIES_AIX 1056 format. 1057 1058 LDI_BUF is a buffer containing the ld_info data. 1059 READBUF, OFFSET and LEN follow the same semantics as target_ops' 1060 to_xfer_partial target_ops method. 1061 1062 If CLOSE_LDINFO_FD is nonzero, then this routine also closes 1063 the ldinfo_fd file descriptor. This is useful when the ldinfo 1064 data is obtained via ptrace, as ptrace opens a file descriptor 1065 for each and every entry; but we cannot use this descriptor 1066 as the consumer of the XML library list might live in a different 1067 process. */ 1068 1069 ULONGEST 1070 rs6000_aix_ld_info_to_xml (struct gdbarch *gdbarch, const gdb_byte *ldi_buf, 1071 gdb_byte *readbuf, ULONGEST offset, ULONGEST len, 1072 int close_ldinfo_fd) 1073 { 1074 struct obstack obstack; 1075 const char *buf; 1076 ULONGEST len_avail; 1077 1078 obstack_init (&obstack); 1079 obstack_grow_str (&obstack, "<library-list-aix version=\"1.0\">\n"); 1080 1081 while (1) 1082 { 1083 struct ld_info ldi = rs6000_aix_extract_ld_info (gdbarch, ldi_buf); 1084 1085 rs6000_aix_shared_library_to_xml (&ldi, &obstack); 1086 if (close_ldinfo_fd) 1087 close (ldi.fd); 1088 1089 if (!ldi.next) 1090 break; 1091 ldi_buf = ldi_buf + ldi.next; 1092 } 1093 1094 obstack_grow_str0 (&obstack, "</library-list-aix>\n"); 1095 1096 buf = (const char *) obstack_finish (&obstack); 1097 len_avail = strlen (buf); 1098 if (offset >= len_avail) 1099 len= 0; 1100 else 1101 { 1102 if (len > len_avail - offset) 1103 len = len_avail - offset; 1104 memcpy (readbuf, buf + offset, len); 1105 } 1106 1107 obstack_free (&obstack, NULL); 1108 return len; 1109 } 1110 1111 /* Implement the core_xfer_shared_libraries_aix gdbarch method. */ 1112 1113 static ULONGEST 1114 rs6000_aix_core_xfer_shared_libraries_aix (struct gdbarch *gdbarch, 1115 gdb_byte *readbuf, 1116 ULONGEST offset, 1117 ULONGEST len) 1118 { 1119 struct bfd_section *ldinfo_sec; 1120 int ldinfo_size; 1121 1122 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo"); 1123 if (ldinfo_sec == NULL) 1124 error (_("cannot find .ldinfo section from core file: %s"), 1125 bfd_errmsg (bfd_get_error ())); 1126 ldinfo_size = bfd_section_size (ldinfo_sec); 1127 1128 gdb::byte_vector ldinfo_buf (ldinfo_size); 1129 1130 if (! bfd_get_section_contents (core_bfd, ldinfo_sec, 1131 ldinfo_buf.data (), 0, ldinfo_size)) 1132 error (_("unable to read .ldinfo section from core file: %s"), 1133 bfd_errmsg (bfd_get_error ())); 1134 1135 return rs6000_aix_ld_info_to_xml (gdbarch, ldinfo_buf.data (), readbuf, 1136 offset, len, 0); 1137 } 1138 1139 static void 1140 rs6000_aix_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch) 1141 { 1142 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); 1143 1144 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */ 1145 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step); 1146 1147 /* Displaced stepping is currently not supported in combination with 1148 software single-stepping. These override the values set by 1149 rs6000_gdbarch_init. */ 1150 set_gdbarch_displaced_step_copy_insn (gdbarch, NULL); 1151 set_gdbarch_displaced_step_fixup (gdbarch, NULL); 1152 set_gdbarch_displaced_step_prepare (gdbarch, NULL); 1153 set_gdbarch_displaced_step_finish (gdbarch, NULL); 1154 1155 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call); 1156 set_gdbarch_return_value (gdbarch, rs6000_return_value); 1157 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); 1158 1159 /* Handle RS/6000 function pointers (which are really function 1160 descriptors). */ 1161 set_gdbarch_convert_from_func_ptr_addr 1162 (gdbarch, rs6000_convert_from_func_ptr_addr); 1163 1164 /* Core file support. */ 1165 set_gdbarch_iterate_over_regset_sections 1166 (gdbarch, rs6000_aix_iterate_over_regset_sections); 1167 set_gdbarch_core_xfer_shared_libraries_aix 1168 (gdbarch, rs6000_aix_core_xfer_shared_libraries_aix); 1169 1170 if (tdep->wordsize == 8) 1171 tdep->lr_frame_offset = 16; 1172 else 1173 tdep->lr_frame_offset = 8; 1174 1175 if (tdep->wordsize == 4) 1176 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of 1177 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes. 1178 Problem is, 220 isn't frame (16 byte) aligned. Round it up to 1179 224. */ 1180 set_gdbarch_frame_red_zone_size (gdbarch, 224); 1181 else 1182 set_gdbarch_frame_red_zone_size (gdbarch, 0); 1183 1184 if (tdep->wordsize == 8) 1185 set_gdbarch_wchar_bit (gdbarch, 32); 1186 else 1187 set_gdbarch_wchar_bit (gdbarch, 16); 1188 set_gdbarch_wchar_signed (gdbarch, 0); 1189 set_gdbarch_auto_wide_charset (gdbarch, rs6000_aix_auto_wide_charset); 1190 1191 set_gdbarch_so_ops (gdbarch, &solib_aix_so_ops); 1192 frame_unwind_append_unwinder (gdbarch, &aix_sighandle_frame_unwind); 1193 } 1194 1195 void _initialize_rs6000_aix_tdep (); 1196 void 1197 _initialize_rs6000_aix_tdep () 1198 { 1199 gdbarch_register_osabi_sniffer (bfd_arch_rs6000, 1200 bfd_target_xcoff_flavour, 1201 rs6000_aix_osabi_sniffer); 1202 gdbarch_register_osabi_sniffer (bfd_arch_powerpc, 1203 bfd_target_xcoff_flavour, 1204 rs6000_aix_osabi_sniffer); 1205 1206 gdbarch_register_osabi (bfd_arch_rs6000, 0, GDB_OSABI_AIX, 1207 rs6000_aix_init_osabi); 1208 gdbarch_register_osabi (bfd_arch_powerpc, 0, GDB_OSABI_AIX, 1209 rs6000_aix_init_osabi); 1210 } 1211 1212