xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/prologue-value.c (revision 8b657b0747480f8989760d71343d6dd33f8d4cf9)
1 /* Prologue value handling for GDB.
2    Copyright (C) 2003-2023 Free Software Foundation, Inc.
3 
4    This file is part of GDB.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
18 
19 #include "defs.h"
20 #include "prologue-value.h"
21 #include "regcache.h"
22 
23 
24 /* Constructors.  */
25 
26 pv_t
27 pv_unknown (void)
28 {
29   pv_t v = { pvk_unknown, 0, 0 };
30 
31   return v;
32 }
33 
34 
35 pv_t
36 pv_constant (CORE_ADDR k)
37 {
38   pv_t v;
39 
40   v.kind = pvk_constant;
41   v.reg = -1;                   /* for debugging */
42   v.k = k;
43 
44   return v;
45 }
46 
47 
48 pv_t
49 pv_register (int reg, CORE_ADDR k)
50 {
51   pv_t v;
52 
53   v.kind = pvk_register;
54   v.reg = reg;
55   v.k = k;
56 
57   return v;
58 }
59 
60 
61 
62 /* Arithmetic operations.  */
63 
64 /* If one of *A and *B is a constant, and the other isn't, swap the
65    values as necessary to ensure that *B is the constant.  This can
66    reduce the number of cases we need to analyze in the functions
67    below.  */
68 static void
69 constant_last (pv_t *a, pv_t *b)
70 {
71   if (a->kind == pvk_constant
72       && b->kind != pvk_constant)
73     {
74       pv_t temp = *a;
75       *a = *b;
76       *b = temp;
77     }
78 }
79 
80 
81 pv_t
82 pv_add (pv_t a, pv_t b)
83 {
84   constant_last (&a, &b);
85 
86   /* We can add a constant to a register.  */
87   if (a.kind == pvk_register
88       && b.kind == pvk_constant)
89     return pv_register (a.reg, a.k + b.k);
90 
91   /* We can add a constant to another constant.  */
92   else if (a.kind == pvk_constant
93 	   && b.kind == pvk_constant)
94     return pv_constant (a.k + b.k);
95 
96   /* Anything else we don't know how to add.  We don't have a
97      representation for, say, the sum of two registers, or a multiple
98      of a register's value (adding a register to itself).  */
99   else
100     return pv_unknown ();
101 }
102 
103 
104 pv_t
105 pv_add_constant (pv_t v, CORE_ADDR k)
106 {
107   /* Rather than thinking of all the cases we can and can't handle,
108      we'll just let pv_add take care of that for us.  */
109   return pv_add (v, pv_constant (k));
110 }
111 
112 
113 pv_t
114 pv_subtract (pv_t a, pv_t b)
115 {
116   /* This isn't quite the same as negating B and adding it to A, since
117      we don't have a representation for the negation of anything but a
118      constant.  For example, we can't negate { pvk_register, R1, 10 },
119      but we do know that { pvk_register, R1, 10 } minus { pvk_register,
120      R1, 5 } is { pvk_constant, <ignored>, 5 }.
121 
122      This means, for example, that we could subtract two stack
123      addresses; they're both relative to the original SP.  Since the
124      frame pointer is set based on the SP, its value will be the
125      original SP plus some constant (probably zero), so we can use its
126      value just fine, too.  */
127 
128   constant_last (&a, &b);
129 
130   /* We can subtract two constants.  */
131   if (a.kind == pvk_constant
132       && b.kind == pvk_constant)
133     return pv_constant (a.k - b.k);
134 
135   /* We can subtract a constant from a register.  */
136   else if (a.kind == pvk_register
137 	   && b.kind == pvk_constant)
138     return pv_register (a.reg, a.k - b.k);
139 
140   /* We can subtract a register from itself, yielding a constant.  */
141   else if (a.kind == pvk_register
142 	   && b.kind == pvk_register
143 	   && a.reg == b.reg)
144     return pv_constant (a.k - b.k);
145 
146   /* We don't know how to subtract anything else.  */
147   else
148     return pv_unknown ();
149 }
150 
151 
152 pv_t
153 pv_logical_and (pv_t a, pv_t b)
154 {
155   constant_last (&a, &b);
156 
157   /* We can 'and' two constants.  */
158   if (a.kind == pvk_constant
159       && b.kind == pvk_constant)
160     return pv_constant (a.k & b.k);
161 
162   /* We can 'and' anything with the constant zero.  */
163   else if (b.kind == pvk_constant
164 	   && b.k == 0)
165     return pv_constant (0);
166 
167   /* We can 'and' anything with ~0.  */
168   else if (b.kind == pvk_constant
169 	   && b.k == ~ (CORE_ADDR) 0)
170     return a;
171 
172   /* We can 'and' a register with itself.  */
173   else if (a.kind == pvk_register
174 	   && b.kind == pvk_register
175 	   && a.reg == b.reg
176 	   && a.k == b.k)
177     return a;
178 
179   /* Otherwise, we don't know.  */
180   else
181     return pv_unknown ();
182 }
183 
184 
185 
186 /* Examining prologue values.  */
187 
188 int
189 pv_is_identical (pv_t a, pv_t b)
190 {
191   if (a.kind != b.kind)
192     return 0;
193 
194   switch (a.kind)
195     {
196     case pvk_unknown:
197       return 1;
198     case pvk_constant:
199       return (a.k == b.k);
200     case pvk_register:
201       return (a.reg == b.reg && a.k == b.k);
202     default:
203       gdb_assert_not_reached ("unexpected prologue value kind");
204     }
205 }
206 
207 
208 int
209 pv_is_constant (pv_t a)
210 {
211   return (a.kind == pvk_constant);
212 }
213 
214 
215 int
216 pv_is_register (pv_t a, int r)
217 {
218   return (a.kind == pvk_register
219 	  && a.reg == r);
220 }
221 
222 
223 int
224 pv_is_register_k (pv_t a, int r, CORE_ADDR k)
225 {
226   return (a.kind == pvk_register
227 	  && a.reg == r
228 	  && a.k == k);
229 }
230 
231 
232 enum pv_boolean
233 pv_is_array_ref (pv_t addr, CORE_ADDR size,
234 		 pv_t array_addr, CORE_ADDR array_len,
235 		 CORE_ADDR elt_size,
236 		 int *i)
237 {
238   /* Note that, since .k is a CORE_ADDR, and CORE_ADDR is unsigned, if
239      addr is *before* the start of the array, then this isn't going to
240      be negative...  */
241   pv_t offset = pv_subtract (addr, array_addr);
242 
243   if (offset.kind == pvk_constant)
244     {
245       /* This is a rather odd test.  We want to know if the SIZE bytes
246 	 at ADDR don't overlap the array at all, so you'd expect it to
247 	 be an || expression: "if we're completely before || we're
248 	 completely after".  But with unsigned arithmetic, things are
249 	 different: since it's a number circle, not a number line, the
250 	 right values for offset.k are actually one contiguous range.  */
251       if (offset.k <= -size
252 	  && offset.k >= array_len * elt_size)
253 	return pv_definite_no;
254       else if (offset.k % elt_size != 0
255 	       || size != elt_size)
256 	return pv_maybe;
257       else
258 	{
259 	  *i = offset.k / elt_size;
260 	  return pv_definite_yes;
261 	}
262     }
263   else
264     return pv_maybe;
265 }
266 
267 
268 
269 /* Areas.  */
270 
271 
272 /* A particular value known to be stored in an area.
273 
274    Entries form a ring, sorted by unsigned offset from the area's base
275    register's value.  Since entries can straddle the wrap-around point,
276    unsigned offsets form a circle, not a number line, so the list
277    itself is structured the same way --- there is no inherent head.
278    The entry with the lowest offset simply follows the entry with the
279    highest offset.  Entries may abut, but never overlap.  The area's
280    'entry' pointer points to an arbitrary node in the ring.  */
281 struct pv_area::area_entry
282 {
283   /* Links in the doubly-linked ring.  */
284   struct area_entry *prev, *next;
285 
286   /* Offset of this entry's address from the value of the base
287      register.  */
288   CORE_ADDR offset;
289 
290   /* The size of this entry.  Note that an entry may wrap around from
291      the end of the address space to the beginning.  */
292   CORE_ADDR size;
293 
294   /* The value stored here.  */
295   pv_t value;
296 };
297 
298 
299 /* See prologue-value.h.  */
300 
301 pv_area::pv_area (int base_reg, int addr_bit)
302   : m_base_reg (base_reg),
303     /* Remember that shift amounts equal to the type's width are
304        undefined.  */
305     m_addr_mask (((((CORE_ADDR) 1 << (addr_bit - 1)) - 1) << 1) | 1),
306     m_entry (nullptr)
307 {
308 }
309 
310 /* See prologue-value.h.  */
311 
312 void
313 pv_area::clear_entries ()
314 {
315   struct area_entry *e = m_entry;
316 
317   if (e)
318     {
319       /* This needs to be a do-while loop, in order to actually
320 	 process the node being checked for in the terminating
321 	 condition.  */
322       do
323 	{
324 	  struct area_entry *next = e->next;
325 
326 	  xfree (e);
327 	  e = next;
328 	}
329       while (e != m_entry);
330 
331       m_entry = 0;
332     }
333 }
334 
335 
336 pv_area::~pv_area ()
337 {
338   clear_entries ();
339 }
340 
341 
342 /* See prologue-value.h.  */
343 
344 bool
345 pv_area::store_would_trash (pv_t addr)
346 {
347   /* It may seem odd that pvk_constant appears here --- after all,
348      that's the case where we know the most about the address!  But
349      pv_areas are always relative to a register, and we don't know the
350      value of the register, so we can't compare entry addresses to
351      constants.  */
352   return (addr.kind == pvk_unknown
353 	  || addr.kind == pvk_constant
354 	  || (addr.kind == pvk_register && addr.reg != m_base_reg));
355 }
356 
357 
358 /* See prologue-value.h.  */
359 
360 struct pv_area::area_entry *
361 pv_area::find_entry (CORE_ADDR offset)
362 {
363   struct area_entry *e = m_entry;
364 
365   if (! e)
366     return 0;
367 
368   /* If the next entry would be better than the current one, then scan
369      forward.  Since we use '<' in this loop, it always terminates.
370 
371      Note that, even setting aside the addr_mask stuff, we must not
372      simplify this, in high school algebra fashion, to
373      (e->next->offset < e->offset), because of the way < interacts
374      with wrap-around.  We have to subtract offset from both sides to
375      make sure both things we're comparing are on the same side of the
376      discontinuity.  */
377   while (((e->next->offset - offset) & m_addr_mask)
378 	 < ((e->offset - offset) & m_addr_mask))
379     e = e->next;
380 
381   /* If the previous entry would be better than the current one, then
382      scan backwards.  */
383   while (((e->prev->offset - offset) & m_addr_mask)
384 	 < ((e->offset - offset) & m_addr_mask))
385     e = e->prev;
386 
387   /* In case there's some locality to the searches, set the area's
388      pointer to the entry we've found.  */
389   m_entry = e;
390 
391   return e;
392 }
393 
394 
395 /* See prologue-value.h.  */
396 
397 int
398 pv_area::overlaps (struct area_entry *entry, CORE_ADDR offset, CORE_ADDR size)
399 {
400   /* Think carefully about wrap-around before simplifying this.  */
401   return (((entry->offset - offset) & m_addr_mask) < size
402 	  || ((offset - entry->offset) & m_addr_mask) < entry->size);
403 }
404 
405 
406 /* See prologue-value.h.  */
407 
408 void
409 pv_area::store (pv_t addr, CORE_ADDR size, pv_t value)
410 {
411   /* Remove any (potentially) overlapping entries.  */
412   if (store_would_trash (addr))
413     clear_entries ();
414   else
415     {
416       CORE_ADDR offset = addr.k;
417       struct area_entry *e = find_entry (offset);
418 
419       /* Delete all entries that we would overlap.  */
420       while (e && overlaps (e, offset, size))
421 	{
422 	  struct area_entry *next = (e->next == e) ? 0 : e->next;
423 
424 	  e->prev->next = e->next;
425 	  e->next->prev = e->prev;
426 
427 	  xfree (e);
428 	  e = next;
429 	}
430 
431       /* Move the area's pointer to the next remaining entry.  This
432 	 will also zero the pointer if we've deleted all the entries.  */
433       m_entry = e;
434     }
435 
436   /* Now, there are no entries overlapping us, and m_entry is
437      either zero or pointing at the closest entry after us.  We can
438      just insert ourselves before that.
439 
440      But if we're storing an unknown value, don't bother --- that's
441      the default.  */
442   if (value.kind == pvk_unknown)
443     return;
444   else
445     {
446       CORE_ADDR offset = addr.k;
447       struct area_entry *e = XNEW (struct area_entry);
448 
449       e->offset = offset;
450       e->size = size;
451       e->value = value;
452 
453       if (m_entry)
454 	{
455 	  e->prev = m_entry->prev;
456 	  e->next = m_entry;
457 	  e->prev->next = e->next->prev = e;
458 	}
459       else
460 	{
461 	  e->prev = e->next = e;
462 	  m_entry = e;
463 	}
464     }
465 }
466 
467 
468 /* See prologue-value.h.  */
469 
470 pv_t
471 pv_area::fetch (pv_t addr, CORE_ADDR size)
472 {
473   /* If we have no entries, or we can't decide how ADDR relates to the
474      entries we do have, then the value is unknown.  */
475   if (! m_entry
476       || store_would_trash (addr))
477     return pv_unknown ();
478   else
479     {
480       CORE_ADDR offset = addr.k;
481       struct area_entry *e = find_entry (offset);
482 
483       /* If this entry exactly matches what we're looking for, then
484 	 we're set.  Otherwise, say it's unknown.  */
485       if (e->offset == offset && e->size == size)
486 	return e->value;
487       else
488 	return pv_unknown ();
489     }
490 }
491 
492 
493 /* See prologue-value.h.  */
494 
495 bool
496 pv_area::find_reg (struct gdbarch *gdbarch, int reg, CORE_ADDR *offset_p)
497 {
498   struct area_entry *e = m_entry;
499 
500   if (e)
501     do
502       {
503 	if (e->value.kind == pvk_register
504 	    && e->value.reg == reg
505 	    && e->value.k == 0
506 	    && e->size == register_size (gdbarch, reg))
507 	  {
508 	    if (offset_p)
509 	      *offset_p = e->offset;
510 	    return true;
511 	  }
512 
513 	e = e->next;
514       }
515     while (e != m_entry);
516 
517   return false;
518 }
519 
520 
521 /* See prologue-value.h.  */
522 
523 void
524 pv_area::scan (void (*func) (void *closure,
525 			     pv_t addr,
526 			     CORE_ADDR size,
527 			     pv_t value),
528 	       void *closure)
529 {
530   struct area_entry *e = m_entry;
531   pv_t addr;
532 
533   addr.kind = pvk_register;
534   addr.reg = m_base_reg;
535 
536   if (e)
537     do
538       {
539 	addr.k = e->offset;
540 	func (closure, addr, e->size, e->value);
541 	e = e->next;
542       }
543     while (e != m_entry);
544 }
545