1 /* PPC GNU/Linux native support. 2 3 Copyright (C) 1988-2023 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "frame.h" 22 #include "inferior.h" 23 #include "gdbthread.h" 24 #include "gdbcore.h" 25 #include "regcache.h" 26 #include "regset.h" 27 #include "target.h" 28 #include "linux-nat.h" 29 #include <sys/types.h> 30 #include <signal.h> 31 #include <sys/user.h> 32 #include <sys/ioctl.h> 33 #include <sys/uio.h> 34 #include "gdbsupport/gdb_wait.h" 35 #include <fcntl.h> 36 #include <sys/procfs.h> 37 #include "nat/gdb_ptrace.h" 38 #include "nat/linux-ptrace.h" 39 #include "inf-ptrace.h" 40 #include <algorithm> 41 #include <unordered_map> 42 #include <list> 43 44 /* Prototypes for supply_gregset etc. */ 45 #include "gregset.h" 46 #include "ppc-tdep.h" 47 #include "ppc-linux-tdep.h" 48 49 /* Required when using the AUXV. */ 50 #include "elf/common.h" 51 #include "auxv.h" 52 53 #include "arch/ppc-linux-common.h" 54 #include "arch/ppc-linux-tdesc.h" 55 #include "nat/ppc-linux.h" 56 #include "linux-tdep.h" 57 #include "expop.h" 58 59 /* Similarly for the hardware watchpoint support. These requests are used 60 when the PowerPC HWDEBUG ptrace interface is not available. */ 61 #ifndef PTRACE_GET_DEBUGREG 62 #define PTRACE_GET_DEBUGREG 25 63 #endif 64 #ifndef PTRACE_SET_DEBUGREG 65 #define PTRACE_SET_DEBUGREG 26 66 #endif 67 #ifndef PTRACE_GETSIGINFO 68 #define PTRACE_GETSIGINFO 0x4202 69 #endif 70 71 /* These requests are used when the PowerPC HWDEBUG ptrace interface is 72 available. It exposes the debug facilities of PowerPC processors, as well 73 as additional features of BookE processors, such as ranged breakpoints and 74 watchpoints and hardware-accelerated condition evaluation. */ 75 #ifndef PPC_PTRACE_GETHWDBGINFO 76 77 /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG 78 ptrace interface is not present in ptrace.h, so we'll have to pretty much 79 include it all here so that the code at least compiles on older systems. */ 80 #define PPC_PTRACE_GETHWDBGINFO 0x89 81 #define PPC_PTRACE_SETHWDEBUG 0x88 82 #define PPC_PTRACE_DELHWDEBUG 0x87 83 84 struct ppc_debug_info 85 { 86 uint32_t version; /* Only version 1 exists to date. */ 87 uint32_t num_instruction_bps; 88 uint32_t num_data_bps; 89 uint32_t num_condition_regs; 90 uint32_t data_bp_alignment; 91 uint32_t sizeof_condition; /* size of the DVC register. */ 92 uint64_t features; 93 }; 94 95 /* Features will have bits indicating whether there is support for: */ 96 #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1 97 #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2 98 #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4 99 #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8 100 101 struct ppc_hw_breakpoint 102 { 103 uint32_t version; /* currently, version must be 1 */ 104 uint32_t trigger_type; /* only some combinations allowed */ 105 uint32_t addr_mode; /* address match mode */ 106 uint32_t condition_mode; /* break/watchpoint condition flags */ 107 uint64_t addr; /* break/watchpoint address */ 108 uint64_t addr2; /* range end or mask */ 109 uint64_t condition_value; /* contents of the DVC register */ 110 }; 111 112 /* Trigger type. */ 113 #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1 114 #define PPC_BREAKPOINT_TRIGGER_READ 0x2 115 #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4 116 #define PPC_BREAKPOINT_TRIGGER_RW 0x6 117 118 /* Address mode. */ 119 #define PPC_BREAKPOINT_MODE_EXACT 0x0 120 #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1 121 #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2 122 #define PPC_BREAKPOINT_MODE_MASK 0x3 123 124 /* Condition mode. */ 125 #define PPC_BREAKPOINT_CONDITION_NONE 0x0 126 #define PPC_BREAKPOINT_CONDITION_AND 0x1 127 #define PPC_BREAKPOINT_CONDITION_EXACT 0x1 128 #define PPC_BREAKPOINT_CONDITION_OR 0x2 129 #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3 130 #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000 131 #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16 132 #define PPC_BREAKPOINT_CONDITION_BE(n) \ 133 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT)) 134 #endif /* PPC_PTRACE_GETHWDBGINFO */ 135 136 /* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider 137 watchpoint (up to 512 bytes). */ 138 #ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR 139 #define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10 140 #endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */ 141 142 /* Feature defined on Linux kernel v5.1: Second watchpoint support. */ 143 #ifndef PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 144 #define PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 0x20 145 #endif /* PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 */ 146 147 /* The version of the PowerPC HWDEBUG kernel interface that we will use, if 148 available. */ 149 #define PPC_DEBUG_CURRENT_VERSION 1 150 151 /* Similarly for the general-purpose (gp0 -- gp31) 152 and floating-point registers (fp0 -- fp31). */ 153 #ifndef PTRACE_GETREGS 154 #define PTRACE_GETREGS 12 155 #endif 156 #ifndef PTRACE_SETREGS 157 #define PTRACE_SETREGS 13 158 #endif 159 #ifndef PTRACE_GETFPREGS 160 #define PTRACE_GETFPREGS 14 161 #endif 162 #ifndef PTRACE_SETFPREGS 163 #define PTRACE_SETFPREGS 15 164 #endif 165 166 /* This oddity is because the Linux kernel defines elf_vrregset_t as 167 an array of 33 16 bytes long elements. I.e. it leaves out vrsave. 168 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return 169 the vrsave as an extra 4 bytes at the end. I opted for creating a 170 flat array of chars, so that it is easier to manipulate for gdb. 171 172 There are 32 vector registers 16 bytes longs, plus a VSCR register 173 which is only 4 bytes long, but is fetched as a 16 bytes 174 quantity. Up to here we have the elf_vrregset_t structure. 175 Appended to this there is space for the VRSAVE register: 4 bytes. 176 Even though this vrsave register is not included in the regset 177 typedef, it is handled by the ptrace requests. 178 179 The layout is like this (where x is the actual value of the vscr reg): */ 180 181 /* *INDENT-OFF* */ 182 /* 183 Big-Endian: 184 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.| 185 <-------> <-------><-------><-> 186 VR0 VR31 VSCR VRSAVE 187 Little-Endian: 188 |.|.|.|.|.....|.|.|.|.||X|.|.|.||.| 189 <-------> <-------><-------><-> 190 VR0 VR31 VSCR VRSAVE 191 */ 192 /* *INDENT-ON* */ 193 194 typedef char gdb_vrregset_t[PPC_LINUX_SIZEOF_VRREGSET]; 195 196 /* This is the layout of the POWER7 VSX registers and the way they overlap 197 with the existing FPR and VMX registers. 198 199 VSR doubleword 0 VSR doubleword 1 200 ---------------------------------------------------------------- 201 VSR[0] | FPR[0] | | 202 ---------------------------------------------------------------- 203 VSR[1] | FPR[1] | | 204 ---------------------------------------------------------------- 205 | ... | | 206 | ... | | 207 ---------------------------------------------------------------- 208 VSR[30] | FPR[30] | | 209 ---------------------------------------------------------------- 210 VSR[31] | FPR[31] | | 211 ---------------------------------------------------------------- 212 VSR[32] | VR[0] | 213 ---------------------------------------------------------------- 214 VSR[33] | VR[1] | 215 ---------------------------------------------------------------- 216 | ... | 217 | ... | 218 ---------------------------------------------------------------- 219 VSR[62] | VR[30] | 220 ---------------------------------------------------------------- 221 VSR[63] | VR[31] | 222 ---------------------------------------------------------------- 223 224 VSX has 64 128bit registers. The first 32 registers overlap with 225 the FP registers (doubleword 0) and hence extend them with additional 226 64 bits (doubleword 1). The other 32 regs overlap with the VMX 227 registers. */ 228 typedef char gdb_vsxregset_t[PPC_LINUX_SIZEOF_VSXREGSET]; 229 230 /* On PPC processors that support the Signal Processing Extension 231 (SPE) APU, the general-purpose registers are 64 bits long. 232 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER 233 ptrace calls only access the lower half of each register, to allow 234 them to behave the same way they do on non-SPE systems. There's a 235 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that 236 read and write the top halves of all the general-purpose registers 237 at once, along with some SPE-specific registers. 238 239 GDB itself continues to claim the general-purpose registers are 32 240 bits long. It has unnamed raw registers that hold the upper halves 241 of the gprs, and the full 64-bit SIMD views of the registers, 242 'ev0' -- 'ev31', are pseudo-registers that splice the top and 243 bottom halves together. 244 245 This is the structure filled in by PTRACE_GETEVRREGS and written to 246 the inferior's registers by PTRACE_SETEVRREGS. */ 247 struct gdb_evrregset_t 248 { 249 unsigned long evr[32]; 250 unsigned long long acc; 251 unsigned long spefscr; 252 }; 253 254 /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and 255 PTRACE_SETVSXREGS requests, for reading and writing the VSX 256 POWER7 registers 0 through 31. Zero if we've tried one of them and 257 gotten an error. Note that VSX registers 32 through 63 overlap 258 with VR registers 0 through 31. */ 259 int have_ptrace_getsetvsxregs = 1; 260 261 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and 262 PTRACE_SETVRREGS requests, for reading and writing the Altivec 263 registers. Zero if we've tried one of them and gotten an 264 error. */ 265 int have_ptrace_getvrregs = 1; 266 267 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and 268 PTRACE_SETEVRREGS requests, for reading and writing the SPE 269 registers. Zero if we've tried one of them and gotten an 270 error. */ 271 int have_ptrace_getsetevrregs = 1; 272 273 /* Non-zero if our kernel may support the PTRACE_GETREGS and 274 PTRACE_SETREGS requests, for reading and writing the 275 general-purpose registers. Zero if we've tried one of 276 them and gotten an error. */ 277 int have_ptrace_getsetregs = 1; 278 279 /* Non-zero if our kernel may support the PTRACE_GETFPREGS and 280 PTRACE_SETFPREGS requests, for reading and writing the 281 floating-pointers registers. Zero if we've tried one of 282 them and gotten an error. */ 283 int have_ptrace_getsetfpregs = 1; 284 285 /* Private arch info associated with each thread lwp_info object, used 286 for debug register handling. */ 287 288 struct arch_lwp_info 289 { 290 /* When true, indicates that the debug registers installed in the 291 thread no longer correspond to the watchpoints and breakpoints 292 requested by GDB. */ 293 bool debug_regs_stale; 294 295 /* We need a back-reference to the PTID of the thread so that we can 296 cleanup the debug register state of the thread in 297 low_delete_thread. */ 298 ptid_t lwp_ptid; 299 }; 300 301 /* Class used to detect which set of ptrace requests that 302 ppc_linux_nat_target will use to install and remove hardware 303 breakpoints and watchpoints. 304 305 The interface is only detected once, testing the ptrace calls. The 306 result can indicate that no interface is available. 307 308 The Linux kernel provides two different sets of ptrace requests to 309 handle hardware watchpoints and breakpoints for Power: 310 311 - PPC_PTRACE_GETHWDBGINFO, PPC_PTRACE_SETHWDEBUG, and 312 PPC_PTRACE_DELHWDEBUG. 313 314 Or 315 316 - PTRACE_SET_DEBUGREG and PTRACE_GET_DEBUGREG 317 318 The first set is the more flexible one and allows setting watchpoints 319 with a variable watched region length and, for BookE processors, 320 multiple types of debug registers (e.g. hardware breakpoints and 321 hardware-assisted conditions for watchpoints). The second one only 322 allows setting one debug register, a watchpoint, so we only use it if 323 the first one is not available. */ 324 325 class ppc_linux_dreg_interface 326 { 327 public: 328 329 ppc_linux_dreg_interface () 330 : m_interface (), m_hwdebug_info () 331 { 332 }; 333 334 DISABLE_COPY_AND_ASSIGN (ppc_linux_dreg_interface); 335 336 /* One and only one of these three functions returns true, indicating 337 whether the corresponding interface is the one we detected. The 338 interface must already have been detected as a precontidion. */ 339 340 bool hwdebug_p () 341 { 342 gdb_assert (detected_p ()); 343 return *m_interface == HWDEBUG; 344 } 345 346 bool debugreg_p () 347 { 348 gdb_assert (detected_p ()); 349 return *m_interface == DEBUGREG; 350 } 351 352 bool unavailable_p () 353 { 354 gdb_assert (detected_p ()); 355 return *m_interface == UNAVAILABLE; 356 } 357 358 /* Returns the debug register capabilities of the target. Should only 359 be called if the interface is HWDEBUG. */ 360 const struct ppc_debug_info &hwdebug_info () 361 { 362 gdb_assert (hwdebug_p ()); 363 364 return m_hwdebug_info; 365 } 366 367 /* Returns true if the interface has already been detected. This is 368 useful for cases when we know there is no work to be done if the 369 interface hasn't been detected yet. */ 370 bool detected_p () 371 { 372 return m_interface.has_value (); 373 } 374 375 /* Detect the available interface, if any, if it hasn't been detected 376 before, using PTID for the necessary ptrace calls. */ 377 378 void detect (const ptid_t &ptid) 379 { 380 if (m_interface.has_value ()) 381 return; 382 383 gdb_assert (ptid.lwp_p ()); 384 385 bool no_features = false; 386 387 if (ptrace (PPC_PTRACE_GETHWDBGINFO, ptid.lwp (), 0, &m_hwdebug_info) 388 >= 0) 389 { 390 /* If there are no advertised features, we don't use the 391 HWDEBUG interface and try the DEBUGREG interface instead. 392 It shouldn't be necessary to do this, however, when the 393 kernel is configured without CONFIG_HW_BREAKPOINTS (selected 394 by CONFIG_PERF_EVENTS), there is a bug that causes 395 watchpoints installed with the HWDEBUG interface not to 396 trigger. When this is the case, features will be zero, 397 which we use as an indicator to fall back to the DEBUGREG 398 interface. */ 399 if (m_hwdebug_info.features != 0) 400 { 401 m_interface.emplace (HWDEBUG); 402 return; 403 } 404 else 405 no_features = true; 406 } 407 408 /* EIO indicates that the request is invalid, so we try DEBUGREG 409 next. Technically, it can also indicate other failures, but we 410 can't differentiate those. 411 412 Other errors could happen for various reasons. We could get an 413 ESRCH if the traced thread was killed by a signal. Trying to 414 detect the interface with another thread in the future would be 415 complicated, as callers would have to handle an "unknown 416 interface" case. It's also unclear if raising an exception 417 here would be safe. 418 419 Other errors, such as ENODEV, could be more permanent and cause 420 a failure for any thread. 421 422 For simplicity, with all errors other than EIO, we set the 423 interface to UNAVAILABLE and don't try DEBUGREG. If DEBUGREG 424 fails too, we'll also set the interface to UNAVAILABLE. It's 425 unlikely that trying the DEBUGREG interface with this same thread 426 would work, for errors other than EIO. This means that these 427 errors will cause hardware watchpoints and breakpoints to become 428 unavailable throughout a GDB session. */ 429 430 if (no_features || errno == EIO) 431 { 432 unsigned long wp; 433 434 if (ptrace (PTRACE_GET_DEBUGREG, ptid.lwp (), 0, &wp) >= 0) 435 { 436 m_interface.emplace (DEBUGREG); 437 return; 438 } 439 } 440 441 if (errno != EIO) 442 warning (_("Error when detecting the debug register interface. " 443 "Debug registers will be unavailable.")); 444 445 m_interface.emplace (UNAVAILABLE); 446 return; 447 } 448 449 private: 450 451 /* HWDEBUG represents the set of calls PPC_PTRACE_GETHWDBGINFO, 452 PPC_PTRACE_SETHWDEBUG and PPC_PTRACE_DELHWDEBUG. 453 454 DEBUGREG represents the set of calls PTRACE_SET_DEBUGREG and 455 PTRACE_GET_DEBUGREG. 456 457 UNAVAILABLE can indicate that the kernel doesn't support any of the 458 two sets of requests or that there was an error when we tried to 459 detect wich interface is available. */ 460 461 enum debug_reg_interface 462 { 463 UNAVAILABLE, 464 HWDEBUG, 465 DEBUGREG 466 }; 467 468 /* The interface option. Initialized if has_value () returns true. */ 469 gdb::optional<enum debug_reg_interface> m_interface; 470 471 /* The info returned by the kernel with PPC_PTRACE_GETHWDBGINFO. Only 472 valid if we determined that the interface is HWDEBUG. */ 473 struct ppc_debug_info m_hwdebug_info; 474 }; 475 476 /* Per-process information. This includes the hardware watchpoints and 477 breakpoints that GDB requested to this target. */ 478 479 struct ppc_linux_process_info 480 { 481 /* The list of hardware watchpoints and breakpoints that GDB requested 482 for this process. 483 484 Only used when the interface is HWDEBUG. */ 485 std::list<struct ppc_hw_breakpoint> requested_hw_bps; 486 487 /* The watchpoint value that GDB requested for this process. 488 489 Only used when the interface is DEBUGREG. */ 490 gdb::optional<long> requested_wp_val; 491 }; 492 493 struct ppc_linux_nat_target final : public linux_nat_target 494 { 495 /* Add our register access methods. */ 496 void fetch_registers (struct regcache *, int) override; 497 void store_registers (struct regcache *, int) override; 498 499 /* Add our breakpoint/watchpoint methods. */ 500 int can_use_hw_breakpoint (enum bptype, int, int) override; 501 502 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) 503 override; 504 505 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) 506 override; 507 508 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override; 509 510 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type, 511 struct expression *) override; 512 513 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type, 514 struct expression *) override; 515 516 int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type) 517 override; 518 519 int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type) 520 override; 521 522 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override; 523 524 bool can_accel_watchpoint_condition (CORE_ADDR, int, int, struct expression *) 525 override; 526 527 int masked_watch_num_registers (CORE_ADDR, CORE_ADDR) override; 528 529 int ranged_break_num_registers () override; 530 531 const struct target_desc *read_description () override; 532 533 int auxv_parse (const gdb_byte **readptr, 534 const gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp) 535 override; 536 537 /* Override linux_nat_target low methods. */ 538 bool low_stopped_by_watchpoint () override; 539 540 bool low_stopped_data_address (CORE_ADDR *) override; 541 542 void low_new_thread (struct lwp_info *lp) override; 543 544 void low_delete_thread (arch_lwp_info *) override; 545 546 void low_new_fork (struct lwp_info *, pid_t) override; 547 548 void low_new_clone (struct lwp_info *, pid_t) override; 549 550 void low_forget_process (pid_t pid) override; 551 552 void low_prepare_to_resume (struct lwp_info *) override; 553 554 private: 555 556 void copy_thread_dreg_state (const ptid_t &parent_ptid, 557 const ptid_t &child_ptid); 558 559 void mark_thread_stale (struct lwp_info *lp); 560 561 void mark_debug_registers_changed (pid_t pid); 562 563 void register_hw_breakpoint (pid_t pid, 564 const struct ppc_hw_breakpoint &bp); 565 566 void clear_hw_breakpoint (pid_t pid, 567 const struct ppc_hw_breakpoint &a); 568 569 void register_wp (pid_t pid, long wp_value); 570 571 void clear_wp (pid_t pid); 572 573 bool can_use_watchpoint_cond_accel (void); 574 575 void calculate_dvc (CORE_ADDR addr, int len, 576 CORE_ADDR data_value, 577 uint32_t *condition_mode, 578 uint64_t *condition_value); 579 580 int check_condition (CORE_ADDR watch_addr, 581 struct expression *cond, 582 CORE_ADDR *data_value, int *len); 583 584 int num_memory_accesses (const std::vector<value_ref_ptr> &chain); 585 586 int get_trigger_type (enum target_hw_bp_type type); 587 588 void create_watchpoint_request (struct ppc_hw_breakpoint *p, 589 CORE_ADDR addr, 590 int len, 591 enum target_hw_bp_type type, 592 struct expression *cond, 593 int insert); 594 595 bool hwdebug_point_cmp (const struct ppc_hw_breakpoint &a, 596 const struct ppc_hw_breakpoint &b); 597 598 void init_arch_lwp_info (struct lwp_info *lp); 599 600 arch_lwp_info *get_arch_lwp_info (struct lwp_info *lp); 601 602 /* The ptrace interface we'll use to install hardware watchpoints and 603 breakpoints (debug registers). */ 604 ppc_linux_dreg_interface m_dreg_interface; 605 606 /* A map from pids to structs containing info specific to each 607 process. */ 608 std::unordered_map<pid_t, ppc_linux_process_info> m_process_info; 609 610 /* Callable object to hash ptids by their lwp number. */ 611 struct ptid_hash 612 { 613 std::size_t operator() (const ptid_t &ptid) const 614 { 615 return std::hash<long>{} (ptid.lwp ()); 616 } 617 }; 618 619 /* A map from ptid_t objects to a list of pairs of slots and hardware 620 breakpoint objects. This keeps track of which hardware breakpoints 621 and watchpoints were last installed in each slot of each thread. 622 623 Only used when the interface is HWDEBUG. */ 624 std::unordered_map <ptid_t, 625 std::list<std::pair<long, ppc_hw_breakpoint>>, 626 ptid_hash> m_installed_hw_bps; 627 }; 628 629 static ppc_linux_nat_target the_ppc_linux_nat_target; 630 631 /* *INDENT-OFF* */ 632 /* registers layout, as presented by the ptrace interface: 633 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7, 634 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15, 635 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23, 636 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31, 637 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, 638 PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14, 639 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, 640 PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30, 641 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, 642 PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46, 643 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, 644 PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62, 645 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */ 646 /* *INDENT_ON * */ 647 648 static int 649 ppc_register_u_addr (struct gdbarch *gdbarch, int regno) 650 { 651 int u_addr = -1; 652 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); 653 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace 654 interface, and not the wordsize of the program's ABI. */ 655 int wordsize = sizeof (long); 656 657 /* General purpose registers occupy 1 slot each in the buffer. */ 658 if (regno >= tdep->ppc_gp0_regnum 659 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs) 660 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize); 661 662 /* Floating point regs: eight bytes each in both 32- and 64-bit 663 ptrace interfaces. Thus, two slots each in 32-bit interface, one 664 slot each in 64-bit interface. */ 665 if (tdep->ppc_fp0_regnum >= 0 666 && regno >= tdep->ppc_fp0_regnum 667 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs) 668 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8); 669 670 /* UISA special purpose registers: 1 slot each. */ 671 if (regno == gdbarch_pc_regnum (gdbarch)) 672 u_addr = PT_NIP * wordsize; 673 if (regno == tdep->ppc_lr_regnum) 674 u_addr = PT_LNK * wordsize; 675 if (regno == tdep->ppc_cr_regnum) 676 u_addr = PT_CCR * wordsize; 677 if (regno == tdep->ppc_xer_regnum) 678 u_addr = PT_XER * wordsize; 679 if (regno == tdep->ppc_ctr_regnum) 680 u_addr = PT_CTR * wordsize; 681 #ifdef PT_MQ 682 if (regno == tdep->ppc_mq_regnum) 683 u_addr = PT_MQ * wordsize; 684 #endif 685 if (regno == tdep->ppc_ps_regnum) 686 u_addr = PT_MSR * wordsize; 687 if (regno == PPC_ORIG_R3_REGNUM) 688 u_addr = PT_ORIG_R3 * wordsize; 689 if (regno == PPC_TRAP_REGNUM) 690 u_addr = PT_TRAP * wordsize; 691 if (tdep->ppc_fpscr_regnum >= 0 692 && regno == tdep->ppc_fpscr_regnum) 693 { 694 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the 695 kernel headers incorrectly contained the 32-bit definition of 696 PT_FPSCR. For the 32-bit definition, floating-point 697 registers occupy two 32-bit "slots", and the FPSCR lives in 698 the second half of such a slot-pair (hence +1). For 64-bit, 699 the FPSCR instead occupies the full 64-bit 2-word-slot and 700 hence no adjustment is necessary. Hack around this. */ 701 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1)) 702 u_addr = (48 + 32) * wordsize; 703 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit 704 slot and not just its second word. The PT_FPSCR supplied when 705 GDB is compiled as a 32-bit app doesn't reflect this. */ 706 else if (wordsize == 4 && register_size (gdbarch, regno) == 8 707 && PT_FPSCR == (48 + 2*32 + 1)) 708 u_addr = (48 + 2*32) * wordsize; 709 else 710 u_addr = PT_FPSCR * wordsize; 711 } 712 return u_addr; 713 } 714 715 /* The Linux kernel ptrace interface for POWER7 VSX registers uses the 716 registers set mechanism, as opposed to the interface for all the 717 other registers, that stores/fetches each register individually. */ 718 static void 719 fetch_vsx_registers (struct regcache *regcache, int tid, int regno) 720 { 721 int ret; 722 gdb_vsxregset_t regs; 723 const struct regset *vsxregset = ppc_linux_vsxregset (); 724 725 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); 726 if (ret < 0) 727 { 728 if (errno == EIO) 729 { 730 have_ptrace_getsetvsxregs = 0; 731 return; 732 } 733 perror_with_name (_("Unable to fetch VSX registers")); 734 } 735 736 vsxregset->supply_regset (vsxregset, regcache, regno, ®s, 737 PPC_LINUX_SIZEOF_VSXREGSET); 738 } 739 740 /* The Linux kernel ptrace interface for AltiVec registers uses the 741 registers set mechanism, as opposed to the interface for all the 742 other registers, that stores/fetches each register individually. */ 743 static void 744 fetch_altivec_registers (struct regcache *regcache, int tid, 745 int regno) 746 { 747 int ret; 748 gdb_vrregset_t regs; 749 struct gdbarch *gdbarch = regcache->arch (); 750 const struct regset *vrregset = ppc_linux_vrregset (gdbarch); 751 752 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); 753 if (ret < 0) 754 { 755 if (errno == EIO) 756 { 757 have_ptrace_getvrregs = 0; 758 return; 759 } 760 perror_with_name (_("Unable to fetch AltiVec registers")); 761 } 762 763 vrregset->supply_regset (vrregset, regcache, regno, ®s, 764 PPC_LINUX_SIZEOF_VRREGSET); 765 } 766 767 /* Fetch the top 32 bits of TID's general-purpose registers and the 768 SPE-specific registers, and place the results in EVRREGSET. If we 769 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with 770 zeros. 771 772 All the logic to deal with whether or not the PTRACE_GETEVRREGS and 773 PTRACE_SETEVRREGS requests are supported is isolated here, and in 774 set_spe_registers. */ 775 static void 776 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset) 777 { 778 if (have_ptrace_getsetevrregs) 779 { 780 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0) 781 return; 782 else 783 { 784 /* EIO means that the PTRACE_GETEVRREGS request isn't supported; 785 we just return zeros. */ 786 if (errno == EIO) 787 have_ptrace_getsetevrregs = 0; 788 else 789 /* Anything else needs to be reported. */ 790 perror_with_name (_("Unable to fetch SPE registers")); 791 } 792 } 793 794 memset (evrregset, 0, sizeof (*evrregset)); 795 } 796 797 /* Supply values from TID for SPE-specific raw registers: the upper 798 halves of the GPRs, the accumulator, and the spefscr. REGNO must 799 be the number of an upper half register, acc, spefscr, or -1 to 800 supply the values of all registers. */ 801 static void 802 fetch_spe_register (struct regcache *regcache, int tid, int regno) 803 { 804 struct gdbarch *gdbarch = regcache->arch (); 805 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); 806 struct gdb_evrregset_t evrregs; 807 808 gdb_assert (sizeof (evrregs.evr[0]) 809 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum)); 810 gdb_assert (sizeof (evrregs.acc) 811 == register_size (gdbarch, tdep->ppc_acc_regnum)); 812 gdb_assert (sizeof (evrregs.spefscr) 813 == register_size (gdbarch, tdep->ppc_spefscr_regnum)); 814 815 get_spe_registers (tid, &evrregs); 816 817 if (regno == -1) 818 { 819 int i; 820 821 for (i = 0; i < ppc_num_gprs; i++) 822 regcache->raw_supply (tdep->ppc_ev0_upper_regnum + i, &evrregs.evr[i]); 823 } 824 else if (tdep->ppc_ev0_upper_regnum <= regno 825 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) 826 regcache->raw_supply (regno, 827 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]); 828 829 if (regno == -1 830 || regno == tdep->ppc_acc_regnum) 831 regcache->raw_supply (tdep->ppc_acc_regnum, &evrregs.acc); 832 833 if (regno == -1 834 || regno == tdep->ppc_spefscr_regnum) 835 regcache->raw_supply (tdep->ppc_spefscr_regnum, &evrregs.spefscr); 836 } 837 838 /* Use ptrace to fetch all registers from the register set with note 839 type REGSET_ID, size REGSIZE, and layout described by REGSET, from 840 process/thread TID and supply their values to REGCACHE. If ptrace 841 returns ENODATA to indicate the regset is unavailable, mark the 842 registers as unavailable in REGCACHE. */ 843 844 static void 845 fetch_regset (struct regcache *regcache, int tid, 846 int regset_id, int regsetsize, const struct regset *regset) 847 { 848 void *buf = alloca (regsetsize); 849 struct iovec iov; 850 851 iov.iov_base = buf; 852 iov.iov_len = regsetsize; 853 854 if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) < 0) 855 { 856 if (errno == ENODATA) 857 regset->supply_regset (regset, regcache, -1, NULL, regsetsize); 858 else 859 perror_with_name (_("Couldn't get register set")); 860 } 861 else 862 regset->supply_regset (regset, regcache, -1, buf, regsetsize); 863 } 864 865 /* Use ptrace to store register REGNUM of the regset with note type 866 REGSET_ID, size REGSETSIZE, and layout described by REGSET, from 867 REGCACHE back to process/thread TID. If REGNUM is -1 all registers 868 in the set are collected and stored. */ 869 870 static void 871 store_regset (const struct regcache *regcache, int tid, int regnum, 872 int regset_id, int regsetsize, const struct regset *regset) 873 { 874 void *buf = alloca (regsetsize); 875 struct iovec iov; 876 877 iov.iov_base = buf; 878 iov.iov_len = regsetsize; 879 880 /* Make sure that the buffer that will be stored has up to date values 881 for the registers that won't be collected. */ 882 if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) < 0) 883 perror_with_name (_("Couldn't get register set")); 884 885 regset->collect_regset (regset, regcache, regnum, buf, regsetsize); 886 887 if (ptrace (PTRACE_SETREGSET, tid, regset_id, &iov) < 0) 888 perror_with_name (_("Couldn't set register set")); 889 } 890 891 /* Check whether the kernel provides a register set with number 892 REGSET_ID of size REGSETSIZE for process/thread TID. */ 893 894 static bool 895 check_regset (int tid, int regset_id, int regsetsize) 896 { 897 void *buf = alloca (regsetsize); 898 struct iovec iov; 899 900 iov.iov_base = buf; 901 iov.iov_len = regsetsize; 902 903 if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) >= 0 904 || errno == ENODATA) 905 return true; 906 else 907 return false; 908 } 909 910 static void 911 fetch_register (struct regcache *regcache, int tid, int regno) 912 { 913 struct gdbarch *gdbarch = regcache->arch (); 914 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); 915 /* This isn't really an address. But ptrace thinks of it as one. */ 916 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno); 917 int bytes_transferred; 918 gdb_byte buf[PPC_MAX_REGISTER_SIZE]; 919 920 if (altivec_register_p (gdbarch, regno)) 921 { 922 /* If this is the first time through, or if it is not the first 923 time through, and we have confirmed that there is kernel 924 support for such a ptrace request, then go and fetch the 925 register. */ 926 if (have_ptrace_getvrregs) 927 { 928 fetch_altivec_registers (regcache, tid, regno); 929 return; 930 } 931 /* If we have discovered that there is no ptrace support for 932 AltiVec registers, fall through and return zeroes, because 933 regaddr will be -1 in this case. */ 934 } 935 else if (vsx_register_p (gdbarch, regno)) 936 { 937 if (have_ptrace_getsetvsxregs) 938 { 939 fetch_vsx_registers (regcache, tid, regno); 940 return; 941 } 942 } 943 else if (spe_register_p (gdbarch, regno)) 944 { 945 fetch_spe_register (regcache, tid, regno); 946 return; 947 } 948 else if (regno == PPC_DSCR_REGNUM) 949 { 950 gdb_assert (tdep->ppc_dscr_regnum != -1); 951 952 fetch_regset (regcache, tid, NT_PPC_DSCR, 953 PPC_LINUX_SIZEOF_DSCRREGSET, 954 &ppc32_linux_dscrregset); 955 return; 956 } 957 else if (regno == PPC_PPR_REGNUM) 958 { 959 gdb_assert (tdep->ppc_ppr_regnum != -1); 960 961 fetch_regset (regcache, tid, NT_PPC_PPR, 962 PPC_LINUX_SIZEOF_PPRREGSET, 963 &ppc32_linux_pprregset); 964 return; 965 } 966 else if (regno == PPC_TAR_REGNUM) 967 { 968 gdb_assert (tdep->ppc_tar_regnum != -1); 969 970 fetch_regset (regcache, tid, NT_PPC_TAR, 971 PPC_LINUX_SIZEOF_TARREGSET, 972 &ppc32_linux_tarregset); 973 return; 974 } 975 else if (PPC_IS_EBB_REGNUM (regno)) 976 { 977 gdb_assert (tdep->have_ebb); 978 979 fetch_regset (regcache, tid, NT_PPC_EBB, 980 PPC_LINUX_SIZEOF_EBBREGSET, 981 &ppc32_linux_ebbregset); 982 return; 983 } 984 else if (PPC_IS_PMU_REGNUM (regno)) 985 { 986 gdb_assert (tdep->ppc_mmcr0_regnum != -1); 987 988 fetch_regset (regcache, tid, NT_PPC_PMU, 989 PPC_LINUX_SIZEOF_PMUREGSET, 990 &ppc32_linux_pmuregset); 991 return; 992 } 993 else if (PPC_IS_TMSPR_REGNUM (regno)) 994 { 995 gdb_assert (tdep->have_htm_spr); 996 997 fetch_regset (regcache, tid, NT_PPC_TM_SPR, 998 PPC_LINUX_SIZEOF_TM_SPRREGSET, 999 &ppc32_linux_tm_sprregset); 1000 return; 1001 } 1002 else if (PPC_IS_CKPTGP_REGNUM (regno)) 1003 { 1004 gdb_assert (tdep->have_htm_core); 1005 1006 const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch); 1007 fetch_regset (regcache, tid, NT_PPC_TM_CGPR, 1008 (tdep->wordsize == 4? 1009 PPC32_LINUX_SIZEOF_CGPRREGSET 1010 : PPC64_LINUX_SIZEOF_CGPRREGSET), 1011 cgprregset); 1012 return; 1013 } 1014 else if (PPC_IS_CKPTFP_REGNUM (regno)) 1015 { 1016 gdb_assert (tdep->have_htm_fpu); 1017 1018 fetch_regset (regcache, tid, NT_PPC_TM_CFPR, 1019 PPC_LINUX_SIZEOF_CFPRREGSET, 1020 &ppc32_linux_cfprregset); 1021 return; 1022 } 1023 else if (PPC_IS_CKPTVMX_REGNUM (regno)) 1024 { 1025 gdb_assert (tdep->have_htm_altivec); 1026 1027 const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch); 1028 fetch_regset (regcache, tid, NT_PPC_TM_CVMX, 1029 PPC_LINUX_SIZEOF_CVMXREGSET, 1030 cvmxregset); 1031 return; 1032 } 1033 else if (PPC_IS_CKPTVSX_REGNUM (regno)) 1034 { 1035 gdb_assert (tdep->have_htm_vsx); 1036 1037 fetch_regset (regcache, tid, NT_PPC_TM_CVSX, 1038 PPC_LINUX_SIZEOF_CVSXREGSET, 1039 &ppc32_linux_cvsxregset); 1040 return; 1041 } 1042 else if (regno == PPC_CPPR_REGNUM) 1043 { 1044 gdb_assert (tdep->ppc_cppr_regnum != -1); 1045 1046 fetch_regset (regcache, tid, NT_PPC_TM_CPPR, 1047 PPC_LINUX_SIZEOF_CPPRREGSET, 1048 &ppc32_linux_cpprregset); 1049 return; 1050 } 1051 else if (regno == PPC_CDSCR_REGNUM) 1052 { 1053 gdb_assert (tdep->ppc_cdscr_regnum != -1); 1054 1055 fetch_regset (regcache, tid, NT_PPC_TM_CDSCR, 1056 PPC_LINUX_SIZEOF_CDSCRREGSET, 1057 &ppc32_linux_cdscrregset); 1058 return; 1059 } 1060 else if (regno == PPC_CTAR_REGNUM) 1061 { 1062 gdb_assert (tdep->ppc_ctar_regnum != -1); 1063 1064 fetch_regset (regcache, tid, NT_PPC_TM_CTAR, 1065 PPC_LINUX_SIZEOF_CTARREGSET, 1066 &ppc32_linux_ctarregset); 1067 return; 1068 } 1069 1070 if (regaddr == -1) 1071 { 1072 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */ 1073 regcache->raw_supply (regno, buf); 1074 return; 1075 } 1076 1077 /* Read the raw register using sizeof(long) sized chunks. On a 1078 32-bit platform, 64-bit floating-point registers will require two 1079 transfers. */ 1080 for (bytes_transferred = 0; 1081 bytes_transferred < register_size (gdbarch, regno); 1082 bytes_transferred += sizeof (long)) 1083 { 1084 long l; 1085 1086 errno = 0; 1087 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0); 1088 regaddr += sizeof (long); 1089 if (errno != 0) 1090 { 1091 char message[128]; 1092 xsnprintf (message, sizeof (message), "reading register %s (#%d)", 1093 gdbarch_register_name (gdbarch, regno), regno); 1094 perror_with_name (message); 1095 } 1096 memcpy (&buf[bytes_transferred], &l, sizeof (l)); 1097 } 1098 1099 /* Now supply the register. Keep in mind that the regcache's idea 1100 of the register's size may not be a multiple of sizeof 1101 (long). */ 1102 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) 1103 { 1104 /* Little-endian values are always found at the left end of the 1105 bytes transferred. */ 1106 regcache->raw_supply (regno, buf); 1107 } 1108 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 1109 { 1110 /* Big-endian values are found at the right end of the bytes 1111 transferred. */ 1112 size_t padding = (bytes_transferred - register_size (gdbarch, regno)); 1113 regcache->raw_supply (regno, buf + padding); 1114 } 1115 else 1116 internal_error (_("fetch_register: unexpected byte order: %d"), 1117 gdbarch_byte_order (gdbarch)); 1118 } 1119 1120 /* This function actually issues the request to ptrace, telling 1121 it to get all general-purpose registers and put them into the 1122 specified regset. 1123 1124 If the ptrace request does not exist, this function returns 0 1125 and properly sets the have_ptrace_* flag. If the request fails, 1126 this function calls perror_with_name. Otherwise, if the request 1127 succeeds, then the regcache gets filled and 1 is returned. */ 1128 static int 1129 fetch_all_gp_regs (struct regcache *regcache, int tid) 1130 { 1131 gdb_gregset_t gregset; 1132 1133 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0) 1134 { 1135 if (errno == EIO) 1136 { 1137 have_ptrace_getsetregs = 0; 1138 return 0; 1139 } 1140 perror_with_name (_("Couldn't get general-purpose registers")); 1141 } 1142 1143 supply_gregset (regcache, (const gdb_gregset_t *) &gregset); 1144 1145 return 1; 1146 } 1147 1148 /* This is a wrapper for the fetch_all_gp_regs function. It is 1149 responsible for verifying if this target has the ptrace request 1150 that can be used to fetch all general-purpose registers at one 1151 shot. If it doesn't, then we should fetch them using the 1152 old-fashioned way, which is to iterate over the registers and 1153 request them one by one. */ 1154 static void 1155 fetch_gp_regs (struct regcache *regcache, int tid) 1156 { 1157 struct gdbarch *gdbarch = regcache->arch (); 1158 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); 1159 int i; 1160 1161 if (have_ptrace_getsetregs) 1162 if (fetch_all_gp_regs (regcache, tid)) 1163 return; 1164 1165 /* If we've hit this point, it doesn't really matter which 1166 architecture we are using. We just need to read the 1167 registers in the "old-fashioned way". */ 1168 for (i = 0; i < ppc_num_gprs; i++) 1169 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i); 1170 } 1171 1172 /* This function actually issues the request to ptrace, telling 1173 it to get all floating-point registers and put them into the 1174 specified regset. 1175 1176 If the ptrace request does not exist, this function returns 0 1177 and properly sets the have_ptrace_* flag. If the request fails, 1178 this function calls perror_with_name. Otherwise, if the request 1179 succeeds, then the regcache gets filled and 1 is returned. */ 1180 static int 1181 fetch_all_fp_regs (struct regcache *regcache, int tid) 1182 { 1183 gdb_fpregset_t fpregs; 1184 1185 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0) 1186 { 1187 if (errno == EIO) 1188 { 1189 have_ptrace_getsetfpregs = 0; 1190 return 0; 1191 } 1192 perror_with_name (_("Couldn't get floating-point registers")); 1193 } 1194 1195 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs); 1196 1197 return 1; 1198 } 1199 1200 /* This is a wrapper for the fetch_all_fp_regs function. It is 1201 responsible for verifying if this target has the ptrace request 1202 that can be used to fetch all floating-point registers at one 1203 shot. If it doesn't, then we should fetch them using the 1204 old-fashioned way, which is to iterate over the registers and 1205 request them one by one. */ 1206 static void 1207 fetch_fp_regs (struct regcache *regcache, int tid) 1208 { 1209 struct gdbarch *gdbarch = regcache->arch (); 1210 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); 1211 int i; 1212 1213 if (have_ptrace_getsetfpregs) 1214 if (fetch_all_fp_regs (regcache, tid)) 1215 return; 1216 1217 /* If we've hit this point, it doesn't really matter which 1218 architecture we are using. We just need to read the 1219 registers in the "old-fashioned way". */ 1220 for (i = 0; i < ppc_num_fprs; i++) 1221 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i); 1222 } 1223 1224 static void 1225 fetch_ppc_registers (struct regcache *regcache, int tid) 1226 { 1227 struct gdbarch *gdbarch = regcache->arch (); 1228 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); 1229 1230 fetch_gp_regs (regcache, tid); 1231 if (tdep->ppc_fp0_regnum >= 0) 1232 fetch_fp_regs (regcache, tid); 1233 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch)); 1234 if (tdep->ppc_ps_regnum != -1) 1235 fetch_register (regcache, tid, tdep->ppc_ps_regnum); 1236 if (tdep->ppc_cr_regnum != -1) 1237 fetch_register (regcache, tid, tdep->ppc_cr_regnum); 1238 if (tdep->ppc_lr_regnum != -1) 1239 fetch_register (regcache, tid, tdep->ppc_lr_regnum); 1240 if (tdep->ppc_ctr_regnum != -1) 1241 fetch_register (regcache, tid, tdep->ppc_ctr_regnum); 1242 if (tdep->ppc_xer_regnum != -1) 1243 fetch_register (regcache, tid, tdep->ppc_xer_regnum); 1244 if (tdep->ppc_mq_regnum != -1) 1245 fetch_register (regcache, tid, tdep->ppc_mq_regnum); 1246 if (ppc_linux_trap_reg_p (gdbarch)) 1247 { 1248 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM); 1249 fetch_register (regcache, tid, PPC_TRAP_REGNUM); 1250 } 1251 if (tdep->ppc_fpscr_regnum != -1) 1252 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum); 1253 if (have_ptrace_getvrregs) 1254 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) 1255 fetch_altivec_registers (regcache, tid, -1); 1256 if (have_ptrace_getsetvsxregs) 1257 if (tdep->ppc_vsr0_upper_regnum != -1) 1258 fetch_vsx_registers (regcache, tid, -1); 1259 if (tdep->ppc_ev0_upper_regnum >= 0) 1260 fetch_spe_register (regcache, tid, -1); 1261 if (tdep->ppc_ppr_regnum != -1) 1262 fetch_regset (regcache, tid, NT_PPC_PPR, 1263 PPC_LINUX_SIZEOF_PPRREGSET, 1264 &ppc32_linux_pprregset); 1265 if (tdep->ppc_dscr_regnum != -1) 1266 fetch_regset (regcache, tid, NT_PPC_DSCR, 1267 PPC_LINUX_SIZEOF_DSCRREGSET, 1268 &ppc32_linux_dscrregset); 1269 if (tdep->ppc_tar_regnum != -1) 1270 fetch_regset (regcache, tid, NT_PPC_TAR, 1271 PPC_LINUX_SIZEOF_TARREGSET, 1272 &ppc32_linux_tarregset); 1273 if (tdep->have_ebb) 1274 fetch_regset (regcache, tid, NT_PPC_EBB, 1275 PPC_LINUX_SIZEOF_EBBREGSET, 1276 &ppc32_linux_ebbregset); 1277 if (tdep->ppc_mmcr0_regnum != -1) 1278 fetch_regset (regcache, tid, NT_PPC_PMU, 1279 PPC_LINUX_SIZEOF_PMUREGSET, 1280 &ppc32_linux_pmuregset); 1281 if (tdep->have_htm_spr) 1282 fetch_regset (regcache, tid, NT_PPC_TM_SPR, 1283 PPC_LINUX_SIZEOF_TM_SPRREGSET, 1284 &ppc32_linux_tm_sprregset); 1285 if (tdep->have_htm_core) 1286 { 1287 const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch); 1288 fetch_regset (regcache, tid, NT_PPC_TM_CGPR, 1289 (tdep->wordsize == 4? 1290 PPC32_LINUX_SIZEOF_CGPRREGSET 1291 : PPC64_LINUX_SIZEOF_CGPRREGSET), 1292 cgprregset); 1293 } 1294 if (tdep->have_htm_fpu) 1295 fetch_regset (regcache, tid, NT_PPC_TM_CFPR, 1296 PPC_LINUX_SIZEOF_CFPRREGSET, 1297 &ppc32_linux_cfprregset); 1298 if (tdep->have_htm_altivec) 1299 { 1300 const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch); 1301 fetch_regset (regcache, tid, NT_PPC_TM_CVMX, 1302 PPC_LINUX_SIZEOF_CVMXREGSET, 1303 cvmxregset); 1304 } 1305 if (tdep->have_htm_vsx) 1306 fetch_regset (regcache, tid, NT_PPC_TM_CVSX, 1307 PPC_LINUX_SIZEOF_CVSXREGSET, 1308 &ppc32_linux_cvsxregset); 1309 if (tdep->ppc_cppr_regnum != -1) 1310 fetch_regset (regcache, tid, NT_PPC_TM_CPPR, 1311 PPC_LINUX_SIZEOF_CPPRREGSET, 1312 &ppc32_linux_cpprregset); 1313 if (tdep->ppc_cdscr_regnum != -1) 1314 fetch_regset (regcache, tid, NT_PPC_TM_CDSCR, 1315 PPC_LINUX_SIZEOF_CDSCRREGSET, 1316 &ppc32_linux_cdscrregset); 1317 if (tdep->ppc_ctar_regnum != -1) 1318 fetch_regset (regcache, tid, NT_PPC_TM_CTAR, 1319 PPC_LINUX_SIZEOF_CTARREGSET, 1320 &ppc32_linux_ctarregset); 1321 } 1322 1323 /* Fetch registers from the child process. Fetch all registers if 1324 regno == -1, otherwise fetch all general registers or all floating 1325 point registers depending upon the value of regno. */ 1326 void 1327 ppc_linux_nat_target::fetch_registers (struct regcache *regcache, int regno) 1328 { 1329 pid_t tid = get_ptrace_pid (regcache->ptid ()); 1330 1331 if (regno == -1) 1332 fetch_ppc_registers (regcache, tid); 1333 else 1334 fetch_register (regcache, tid, regno); 1335 } 1336 1337 static void 1338 store_vsx_registers (const struct regcache *regcache, int tid, int regno) 1339 { 1340 int ret; 1341 gdb_vsxregset_t regs; 1342 const struct regset *vsxregset = ppc_linux_vsxregset (); 1343 1344 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); 1345 if (ret < 0) 1346 { 1347 if (errno == EIO) 1348 { 1349 have_ptrace_getsetvsxregs = 0; 1350 return; 1351 } 1352 perror_with_name (_("Unable to fetch VSX registers")); 1353 } 1354 1355 vsxregset->collect_regset (vsxregset, regcache, regno, ®s, 1356 PPC_LINUX_SIZEOF_VSXREGSET); 1357 1358 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, ®s); 1359 if (ret < 0) 1360 perror_with_name (_("Unable to store VSX registers")); 1361 } 1362 1363 static void 1364 store_altivec_registers (const struct regcache *regcache, int tid, 1365 int regno) 1366 { 1367 int ret; 1368 gdb_vrregset_t regs; 1369 struct gdbarch *gdbarch = regcache->arch (); 1370 const struct regset *vrregset = ppc_linux_vrregset (gdbarch); 1371 1372 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); 1373 if (ret < 0) 1374 { 1375 if (errno == EIO) 1376 { 1377 have_ptrace_getvrregs = 0; 1378 return; 1379 } 1380 perror_with_name (_("Unable to fetch AltiVec registers")); 1381 } 1382 1383 vrregset->collect_regset (vrregset, regcache, regno, ®s, 1384 PPC_LINUX_SIZEOF_VRREGSET); 1385 1386 ret = ptrace (PTRACE_SETVRREGS, tid, 0, ®s); 1387 if (ret < 0) 1388 perror_with_name (_("Unable to store AltiVec registers")); 1389 } 1390 1391 /* Assuming TID refers to an SPE process, set the top halves of TID's 1392 general-purpose registers and its SPE-specific registers to the 1393 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do 1394 nothing. 1395 1396 All the logic to deal with whether or not the PTRACE_GETEVRREGS and 1397 PTRACE_SETEVRREGS requests are supported is isolated here, and in 1398 get_spe_registers. */ 1399 static void 1400 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset) 1401 { 1402 if (have_ptrace_getsetevrregs) 1403 { 1404 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0) 1405 return; 1406 else 1407 { 1408 /* EIO means that the PTRACE_SETEVRREGS request isn't 1409 supported; we fail silently, and don't try the call 1410 again. */ 1411 if (errno == EIO) 1412 have_ptrace_getsetevrregs = 0; 1413 else 1414 /* Anything else needs to be reported. */ 1415 perror_with_name (_("Unable to set SPE registers")); 1416 } 1417 } 1418 } 1419 1420 /* Write GDB's value for the SPE-specific raw register REGNO to TID. 1421 If REGNO is -1, write the values of all the SPE-specific 1422 registers. */ 1423 static void 1424 store_spe_register (const struct regcache *regcache, int tid, int regno) 1425 { 1426 struct gdbarch *gdbarch = regcache->arch (); 1427 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); 1428 struct gdb_evrregset_t evrregs; 1429 1430 gdb_assert (sizeof (evrregs.evr[0]) 1431 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum)); 1432 gdb_assert (sizeof (evrregs.acc) 1433 == register_size (gdbarch, tdep->ppc_acc_regnum)); 1434 gdb_assert (sizeof (evrregs.spefscr) 1435 == register_size (gdbarch, tdep->ppc_spefscr_regnum)); 1436 1437 if (regno == -1) 1438 /* Since we're going to write out every register, the code below 1439 should store to every field of evrregs; if that doesn't happen, 1440 make it obvious by initializing it with suspicious values. */ 1441 memset (&evrregs, 42, sizeof (evrregs)); 1442 else 1443 /* We can only read and write the entire EVR register set at a 1444 time, so to write just a single register, we do a 1445 read-modify-write maneuver. */ 1446 get_spe_registers (tid, &evrregs); 1447 1448 if (regno == -1) 1449 { 1450 int i; 1451 1452 for (i = 0; i < ppc_num_gprs; i++) 1453 regcache->raw_collect (tdep->ppc_ev0_upper_regnum + i, 1454 &evrregs.evr[i]); 1455 } 1456 else if (tdep->ppc_ev0_upper_regnum <= regno 1457 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) 1458 regcache->raw_collect (regno, 1459 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]); 1460 1461 if (regno == -1 1462 || regno == tdep->ppc_acc_regnum) 1463 regcache->raw_collect (tdep->ppc_acc_regnum, 1464 &evrregs.acc); 1465 1466 if (regno == -1 1467 || regno == tdep->ppc_spefscr_regnum) 1468 regcache->raw_collect (tdep->ppc_spefscr_regnum, 1469 &evrregs.spefscr); 1470 1471 /* Write back the modified register set. */ 1472 set_spe_registers (tid, &evrregs); 1473 } 1474 1475 static void 1476 store_register (const struct regcache *regcache, int tid, int regno) 1477 { 1478 struct gdbarch *gdbarch = regcache->arch (); 1479 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); 1480 /* This isn't really an address. But ptrace thinks of it as one. */ 1481 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno); 1482 int i; 1483 size_t bytes_to_transfer; 1484 gdb_byte buf[PPC_MAX_REGISTER_SIZE]; 1485 1486 if (altivec_register_p (gdbarch, regno)) 1487 { 1488 store_altivec_registers (regcache, tid, regno); 1489 return; 1490 } 1491 else if (vsx_register_p (gdbarch, regno)) 1492 { 1493 store_vsx_registers (regcache, tid, regno); 1494 return; 1495 } 1496 else if (spe_register_p (gdbarch, regno)) 1497 { 1498 store_spe_register (regcache, tid, regno); 1499 return; 1500 } 1501 else if (regno == PPC_DSCR_REGNUM) 1502 { 1503 gdb_assert (tdep->ppc_dscr_regnum != -1); 1504 1505 store_regset (regcache, tid, regno, NT_PPC_DSCR, 1506 PPC_LINUX_SIZEOF_DSCRREGSET, 1507 &ppc32_linux_dscrregset); 1508 return; 1509 } 1510 else if (regno == PPC_PPR_REGNUM) 1511 { 1512 gdb_assert (tdep->ppc_ppr_regnum != -1); 1513 1514 store_regset (regcache, tid, regno, NT_PPC_PPR, 1515 PPC_LINUX_SIZEOF_PPRREGSET, 1516 &ppc32_linux_pprregset); 1517 return; 1518 } 1519 else if (regno == PPC_TAR_REGNUM) 1520 { 1521 gdb_assert (tdep->ppc_tar_regnum != -1); 1522 1523 store_regset (regcache, tid, regno, NT_PPC_TAR, 1524 PPC_LINUX_SIZEOF_TARREGSET, 1525 &ppc32_linux_tarregset); 1526 return; 1527 } 1528 else if (PPC_IS_EBB_REGNUM (regno)) 1529 { 1530 gdb_assert (tdep->have_ebb); 1531 1532 store_regset (regcache, tid, regno, NT_PPC_EBB, 1533 PPC_LINUX_SIZEOF_EBBREGSET, 1534 &ppc32_linux_ebbregset); 1535 return; 1536 } 1537 else if (PPC_IS_PMU_REGNUM (regno)) 1538 { 1539 gdb_assert (tdep->ppc_mmcr0_regnum != -1); 1540 1541 store_regset (regcache, tid, regno, NT_PPC_PMU, 1542 PPC_LINUX_SIZEOF_PMUREGSET, 1543 &ppc32_linux_pmuregset); 1544 return; 1545 } 1546 else if (PPC_IS_TMSPR_REGNUM (regno)) 1547 { 1548 gdb_assert (tdep->have_htm_spr); 1549 1550 store_regset (regcache, tid, regno, NT_PPC_TM_SPR, 1551 PPC_LINUX_SIZEOF_TM_SPRREGSET, 1552 &ppc32_linux_tm_sprregset); 1553 return; 1554 } 1555 else if (PPC_IS_CKPTGP_REGNUM (regno)) 1556 { 1557 gdb_assert (tdep->have_htm_core); 1558 1559 const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch); 1560 store_regset (regcache, tid, regno, NT_PPC_TM_CGPR, 1561 (tdep->wordsize == 4? 1562 PPC32_LINUX_SIZEOF_CGPRREGSET 1563 : PPC64_LINUX_SIZEOF_CGPRREGSET), 1564 cgprregset); 1565 return; 1566 } 1567 else if (PPC_IS_CKPTFP_REGNUM (regno)) 1568 { 1569 gdb_assert (tdep->have_htm_fpu); 1570 1571 store_regset (regcache, tid, regno, NT_PPC_TM_CFPR, 1572 PPC_LINUX_SIZEOF_CFPRREGSET, 1573 &ppc32_linux_cfprregset); 1574 return; 1575 } 1576 else if (PPC_IS_CKPTVMX_REGNUM (regno)) 1577 { 1578 gdb_assert (tdep->have_htm_altivec); 1579 1580 const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch); 1581 store_regset (regcache, tid, regno, NT_PPC_TM_CVMX, 1582 PPC_LINUX_SIZEOF_CVMXREGSET, 1583 cvmxregset); 1584 return; 1585 } 1586 else if (PPC_IS_CKPTVSX_REGNUM (regno)) 1587 { 1588 gdb_assert (tdep->have_htm_vsx); 1589 1590 store_regset (regcache, tid, regno, NT_PPC_TM_CVSX, 1591 PPC_LINUX_SIZEOF_CVSXREGSET, 1592 &ppc32_linux_cvsxregset); 1593 return; 1594 } 1595 else if (regno == PPC_CPPR_REGNUM) 1596 { 1597 gdb_assert (tdep->ppc_cppr_regnum != -1); 1598 1599 store_regset (regcache, tid, regno, NT_PPC_TM_CPPR, 1600 PPC_LINUX_SIZEOF_CPPRREGSET, 1601 &ppc32_linux_cpprregset); 1602 return; 1603 } 1604 else if (regno == PPC_CDSCR_REGNUM) 1605 { 1606 gdb_assert (tdep->ppc_cdscr_regnum != -1); 1607 1608 store_regset (regcache, tid, regno, NT_PPC_TM_CDSCR, 1609 PPC_LINUX_SIZEOF_CDSCRREGSET, 1610 &ppc32_linux_cdscrregset); 1611 return; 1612 } 1613 else if (regno == PPC_CTAR_REGNUM) 1614 { 1615 gdb_assert (tdep->ppc_ctar_regnum != -1); 1616 1617 store_regset (regcache, tid, regno, NT_PPC_TM_CTAR, 1618 PPC_LINUX_SIZEOF_CTARREGSET, 1619 &ppc32_linux_ctarregset); 1620 return; 1621 } 1622 1623 if (regaddr == -1) 1624 return; 1625 1626 /* First collect the register. Keep in mind that the regcache's 1627 idea of the register's size may not be a multiple of sizeof 1628 (long). */ 1629 memset (buf, 0, sizeof buf); 1630 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long)); 1631 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) 1632 { 1633 /* Little-endian values always sit at the left end of the buffer. */ 1634 regcache->raw_collect (regno, buf); 1635 } 1636 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 1637 { 1638 /* Big-endian values sit at the right end of the buffer. */ 1639 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno)); 1640 regcache->raw_collect (regno, buf + padding); 1641 } 1642 1643 for (i = 0; i < bytes_to_transfer; i += sizeof (long)) 1644 { 1645 long l; 1646 1647 memcpy (&l, &buf[i], sizeof (l)); 1648 errno = 0; 1649 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l); 1650 regaddr += sizeof (long); 1651 1652 if (errno == EIO 1653 && (regno == tdep->ppc_fpscr_regnum 1654 || regno == PPC_ORIG_R3_REGNUM 1655 || regno == PPC_TRAP_REGNUM)) 1656 { 1657 /* Some older kernel versions don't allow fpscr, orig_r3 1658 or trap to be written. */ 1659 continue; 1660 } 1661 1662 if (errno != 0) 1663 { 1664 char message[128]; 1665 xsnprintf (message, sizeof (message), "writing register %s (#%d)", 1666 gdbarch_register_name (gdbarch, regno), regno); 1667 perror_with_name (message); 1668 } 1669 } 1670 } 1671 1672 /* This function actually issues the request to ptrace, telling 1673 it to store all general-purpose registers present in the specified 1674 regset. 1675 1676 If the ptrace request does not exist, this function returns 0 1677 and properly sets the have_ptrace_* flag. If the request fails, 1678 this function calls perror_with_name. Otherwise, if the request 1679 succeeds, then the regcache is stored and 1 is returned. */ 1680 static int 1681 store_all_gp_regs (const struct regcache *regcache, int tid, int regno) 1682 { 1683 gdb_gregset_t gregset; 1684 1685 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0) 1686 { 1687 if (errno == EIO) 1688 { 1689 have_ptrace_getsetregs = 0; 1690 return 0; 1691 } 1692 perror_with_name (_("Couldn't get general-purpose registers")); 1693 } 1694 1695 fill_gregset (regcache, &gregset, regno); 1696 1697 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0) 1698 { 1699 if (errno == EIO) 1700 { 1701 have_ptrace_getsetregs = 0; 1702 return 0; 1703 } 1704 perror_with_name (_("Couldn't set general-purpose registers")); 1705 } 1706 1707 return 1; 1708 } 1709 1710 /* This is a wrapper for the store_all_gp_regs function. It is 1711 responsible for verifying if this target has the ptrace request 1712 that can be used to store all general-purpose registers at one 1713 shot. If it doesn't, then we should store them using the 1714 old-fashioned way, which is to iterate over the registers and 1715 store them one by one. */ 1716 static void 1717 store_gp_regs (const struct regcache *regcache, int tid, int regno) 1718 { 1719 struct gdbarch *gdbarch = regcache->arch (); 1720 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); 1721 int i; 1722 1723 if (have_ptrace_getsetregs) 1724 if (store_all_gp_regs (regcache, tid, regno)) 1725 return; 1726 1727 /* If we hit this point, it doesn't really matter which 1728 architecture we are using. We just need to store the 1729 registers in the "old-fashioned way". */ 1730 for (i = 0; i < ppc_num_gprs; i++) 1731 store_register (regcache, tid, tdep->ppc_gp0_regnum + i); 1732 } 1733 1734 /* This function actually issues the request to ptrace, telling 1735 it to store all floating-point registers present in the specified 1736 regset. 1737 1738 If the ptrace request does not exist, this function returns 0 1739 and properly sets the have_ptrace_* flag. If the request fails, 1740 this function calls perror_with_name. Otherwise, if the request 1741 succeeds, then the regcache is stored and 1 is returned. */ 1742 static int 1743 store_all_fp_regs (const struct regcache *regcache, int tid, int regno) 1744 { 1745 gdb_fpregset_t fpregs; 1746 1747 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0) 1748 { 1749 if (errno == EIO) 1750 { 1751 have_ptrace_getsetfpregs = 0; 1752 return 0; 1753 } 1754 perror_with_name (_("Couldn't get floating-point registers")); 1755 } 1756 1757 fill_fpregset (regcache, &fpregs, regno); 1758 1759 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0) 1760 { 1761 if (errno == EIO) 1762 { 1763 have_ptrace_getsetfpregs = 0; 1764 return 0; 1765 } 1766 perror_with_name (_("Couldn't set floating-point registers")); 1767 } 1768 1769 return 1; 1770 } 1771 1772 /* This is a wrapper for the store_all_fp_regs function. It is 1773 responsible for verifying if this target has the ptrace request 1774 that can be used to store all floating-point registers at one 1775 shot. If it doesn't, then we should store them using the 1776 old-fashioned way, which is to iterate over the registers and 1777 store them one by one. */ 1778 static void 1779 store_fp_regs (const struct regcache *regcache, int tid, int regno) 1780 { 1781 struct gdbarch *gdbarch = regcache->arch (); 1782 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); 1783 int i; 1784 1785 if (have_ptrace_getsetfpregs) 1786 if (store_all_fp_regs (regcache, tid, regno)) 1787 return; 1788 1789 /* If we hit this point, it doesn't really matter which 1790 architecture we are using. We just need to store the 1791 registers in the "old-fashioned way". */ 1792 for (i = 0; i < ppc_num_fprs; i++) 1793 store_register (regcache, tid, tdep->ppc_fp0_regnum + i); 1794 } 1795 1796 static void 1797 store_ppc_registers (const struct regcache *regcache, int tid) 1798 { 1799 struct gdbarch *gdbarch = regcache->arch (); 1800 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); 1801 1802 store_gp_regs (regcache, tid, -1); 1803 if (tdep->ppc_fp0_regnum >= 0) 1804 store_fp_regs (regcache, tid, -1); 1805 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch)); 1806 if (tdep->ppc_ps_regnum != -1) 1807 store_register (regcache, tid, tdep->ppc_ps_regnum); 1808 if (tdep->ppc_cr_regnum != -1) 1809 store_register (regcache, tid, tdep->ppc_cr_regnum); 1810 if (tdep->ppc_lr_regnum != -1) 1811 store_register (regcache, tid, tdep->ppc_lr_regnum); 1812 if (tdep->ppc_ctr_regnum != -1) 1813 store_register (regcache, tid, tdep->ppc_ctr_regnum); 1814 if (tdep->ppc_xer_regnum != -1) 1815 store_register (regcache, tid, tdep->ppc_xer_regnum); 1816 if (tdep->ppc_mq_regnum != -1) 1817 store_register (regcache, tid, tdep->ppc_mq_regnum); 1818 if (tdep->ppc_fpscr_regnum != -1) 1819 store_register (regcache, tid, tdep->ppc_fpscr_regnum); 1820 if (ppc_linux_trap_reg_p (gdbarch)) 1821 { 1822 store_register (regcache, tid, PPC_ORIG_R3_REGNUM); 1823 store_register (regcache, tid, PPC_TRAP_REGNUM); 1824 } 1825 if (have_ptrace_getvrregs) 1826 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) 1827 store_altivec_registers (regcache, tid, -1); 1828 if (have_ptrace_getsetvsxregs) 1829 if (tdep->ppc_vsr0_upper_regnum != -1) 1830 store_vsx_registers (regcache, tid, -1); 1831 if (tdep->ppc_ev0_upper_regnum >= 0) 1832 store_spe_register (regcache, tid, -1); 1833 if (tdep->ppc_ppr_regnum != -1) 1834 store_regset (regcache, tid, -1, NT_PPC_PPR, 1835 PPC_LINUX_SIZEOF_PPRREGSET, 1836 &ppc32_linux_pprregset); 1837 if (tdep->ppc_dscr_regnum != -1) 1838 store_regset (regcache, tid, -1, NT_PPC_DSCR, 1839 PPC_LINUX_SIZEOF_DSCRREGSET, 1840 &ppc32_linux_dscrregset); 1841 if (tdep->ppc_tar_regnum != -1) 1842 store_regset (regcache, tid, -1, NT_PPC_TAR, 1843 PPC_LINUX_SIZEOF_TARREGSET, 1844 &ppc32_linux_tarregset); 1845 1846 if (tdep->ppc_mmcr0_regnum != -1) 1847 store_regset (regcache, tid, -1, NT_PPC_PMU, 1848 PPC_LINUX_SIZEOF_PMUREGSET, 1849 &ppc32_linux_pmuregset); 1850 1851 if (tdep->have_htm_spr) 1852 store_regset (regcache, tid, -1, NT_PPC_TM_SPR, 1853 PPC_LINUX_SIZEOF_TM_SPRREGSET, 1854 &ppc32_linux_tm_sprregset); 1855 1856 /* Because the EBB and checkpointed HTM registers can be 1857 unavailable, attempts to store them here would cause this 1858 function to fail most of the time, so we ignore them. */ 1859 } 1860 1861 void 1862 ppc_linux_nat_target::store_registers (struct regcache *regcache, int regno) 1863 { 1864 pid_t tid = get_ptrace_pid (regcache->ptid ()); 1865 1866 if (regno >= 0) 1867 store_register (regcache, tid, regno); 1868 else 1869 store_ppc_registers (regcache, tid); 1870 } 1871 1872 /* Functions for transferring registers between a gregset_t or fpregset_t 1873 (see sys/ucontext.h) and gdb's regcache. The word size is that used 1874 by the ptrace interface, not the current program's ABI. Eg. if a 1875 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we 1876 read or write 64-bit gregsets. This is to suit the host libthread_db. */ 1877 1878 void 1879 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp) 1880 { 1881 const struct regset *regset = ppc_linux_gregset (sizeof (long)); 1882 1883 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp)); 1884 } 1885 1886 void 1887 fill_gregset (const struct regcache *regcache, 1888 gdb_gregset_t *gregsetp, int regno) 1889 { 1890 const struct regset *regset = ppc_linux_gregset (sizeof (long)); 1891 1892 if (regno == -1) 1893 memset (gregsetp, 0, sizeof (*gregsetp)); 1894 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp)); 1895 } 1896 1897 void 1898 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp) 1899 { 1900 const struct regset *regset = ppc_linux_fpregset (); 1901 1902 ppc_supply_fpregset (regset, regcache, -1, 1903 fpregsetp, sizeof (*fpregsetp)); 1904 } 1905 1906 void 1907 fill_fpregset (const struct regcache *regcache, 1908 gdb_fpregset_t *fpregsetp, int regno) 1909 { 1910 const struct regset *regset = ppc_linux_fpregset (); 1911 1912 ppc_collect_fpregset (regset, regcache, regno, 1913 fpregsetp, sizeof (*fpregsetp)); 1914 } 1915 1916 int 1917 ppc_linux_nat_target::auxv_parse (const gdb_byte **readptr, 1918 const gdb_byte *endptr, CORE_ADDR *typep, 1919 CORE_ADDR *valp) 1920 { 1921 int tid = inferior_ptid.lwp (); 1922 if (tid == 0) 1923 tid = inferior_ptid.pid (); 1924 1925 int sizeof_auxv_field = ppc_linux_target_wordsize (tid); 1926 1927 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); 1928 const gdb_byte *ptr = *readptr; 1929 1930 if (endptr == ptr) 1931 return 0; 1932 1933 if (endptr - ptr < sizeof_auxv_field * 2) 1934 return -1; 1935 1936 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order); 1937 ptr += sizeof_auxv_field; 1938 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order); 1939 ptr += sizeof_auxv_field; 1940 1941 *readptr = ptr; 1942 return 1; 1943 } 1944 1945 const struct target_desc * 1946 ppc_linux_nat_target::read_description () 1947 { 1948 int tid = inferior_ptid.pid (); 1949 1950 if (have_ptrace_getsetevrregs) 1951 { 1952 struct gdb_evrregset_t evrregset; 1953 1954 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0) 1955 return tdesc_powerpc_e500l; 1956 1957 /* EIO means that the PTRACE_GETEVRREGS request isn't supported. 1958 Anything else needs to be reported. */ 1959 else if (errno != EIO) 1960 perror_with_name (_("Unable to fetch SPE registers")); 1961 } 1962 1963 struct ppc_linux_features features = ppc_linux_no_features; 1964 1965 features.wordsize = ppc_linux_target_wordsize (tid); 1966 1967 CORE_ADDR hwcap = linux_get_hwcap (); 1968 CORE_ADDR hwcap2 = linux_get_hwcap2 (); 1969 1970 if (have_ptrace_getsetvsxregs 1971 && (hwcap & PPC_FEATURE_HAS_VSX)) 1972 { 1973 gdb_vsxregset_t vsxregset; 1974 1975 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0) 1976 features.vsx = true; 1977 1978 /* EIO means that the PTRACE_GETVSXREGS request isn't supported. 1979 Anything else needs to be reported. */ 1980 else if (errno != EIO) 1981 perror_with_name (_("Unable to fetch VSX registers")); 1982 } 1983 1984 if (have_ptrace_getvrregs 1985 && (hwcap & PPC_FEATURE_HAS_ALTIVEC)) 1986 { 1987 gdb_vrregset_t vrregset; 1988 1989 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0) 1990 features.altivec = true; 1991 1992 /* EIO means that the PTRACE_GETVRREGS request isn't supported. 1993 Anything else needs to be reported. */ 1994 else if (errno != EIO) 1995 perror_with_name (_("Unable to fetch AltiVec registers")); 1996 } 1997 1998 features.isa205 = ppc_linux_has_isa205 (hwcap); 1999 2000 if ((hwcap2 & PPC_FEATURE2_DSCR) 2001 && check_regset (tid, NT_PPC_PPR, PPC_LINUX_SIZEOF_PPRREGSET) 2002 && check_regset (tid, NT_PPC_DSCR, PPC_LINUX_SIZEOF_DSCRREGSET)) 2003 { 2004 features.ppr_dscr = true; 2005 if ((hwcap2 & PPC_FEATURE2_ARCH_2_07) 2006 && (hwcap2 & PPC_FEATURE2_TAR) 2007 && (hwcap2 & PPC_FEATURE2_EBB) 2008 && check_regset (tid, NT_PPC_TAR, PPC_LINUX_SIZEOF_TARREGSET) 2009 && check_regset (tid, NT_PPC_EBB, PPC_LINUX_SIZEOF_EBBREGSET) 2010 && check_regset (tid, NT_PPC_PMU, PPC_LINUX_SIZEOF_PMUREGSET)) 2011 { 2012 features.isa207 = true; 2013 if ((hwcap2 & PPC_FEATURE2_HTM) 2014 && check_regset (tid, NT_PPC_TM_SPR, 2015 PPC_LINUX_SIZEOF_TM_SPRREGSET)) 2016 features.htm = true; 2017 } 2018 } 2019 2020 return ppc_linux_match_description (features); 2021 } 2022 2023 /* Routines for installing hardware watchpoints and breakpoints. When 2024 GDB requests a hardware watchpoint or breakpoint to be installed, we 2025 register the request for the pid of inferior_ptid in a map with one 2026 entry per process. We then issue a stop request to all the threads of 2027 this process, and mark a per-thread flag indicating that their debug 2028 registers should be updated. Right before they are next resumed, we 2029 remove all previously installed debug registers and install all the 2030 ones GDB requested. We then update a map with one entry per thread 2031 that keeps track of what debug registers were last installed in each 2032 thread. 2033 2034 We use this second map to remove installed registers before installing 2035 the ones requested by GDB, and to copy the debug register state after 2036 a thread clones or forks, since depending on the kernel configuration, 2037 debug registers can be inherited. */ 2038 2039 /* Check if we support and have enough resources to install a hardware 2040 watchpoint or breakpoint. See the description in target.h. */ 2041 2042 int 2043 ppc_linux_nat_target::can_use_hw_breakpoint (enum bptype type, int cnt, 2044 int ot) 2045 { 2046 int total_hw_wp, total_hw_bp; 2047 2048 m_dreg_interface.detect (inferior_ptid); 2049 2050 if (m_dreg_interface.unavailable_p ()) 2051 return 0; 2052 2053 if (m_dreg_interface.hwdebug_p ()) 2054 { 2055 /* When PowerPC HWDEBUG ptrace interface is available, the number of 2056 available hardware watchpoints and breakpoints is stored at the 2057 hwdebug_info struct. */ 2058 total_hw_bp = m_dreg_interface.hwdebug_info ().num_instruction_bps; 2059 total_hw_wp = m_dreg_interface.hwdebug_info ().num_data_bps; 2060 } 2061 else 2062 { 2063 gdb_assert (m_dreg_interface.debugreg_p ()); 2064 2065 /* With the DEBUGREG ptrace interface, we should consider having 1 2066 hardware watchpoint and no hardware breakpoints. */ 2067 total_hw_bp = 0; 2068 total_hw_wp = 1; 2069 } 2070 2071 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint 2072 || type == bp_access_watchpoint || type == bp_watchpoint) 2073 { 2074 if (total_hw_wp == 0) 2075 return 0; 2076 else if (cnt + ot > total_hw_wp) 2077 return -1; 2078 else 2079 return 1; 2080 } 2081 else if (type == bp_hardware_breakpoint) 2082 { 2083 if (total_hw_bp == 0) 2084 return 0; 2085 else if (cnt > total_hw_bp) 2086 return -1; 2087 else 2088 return 1; 2089 } 2090 2091 return 0; 2092 } 2093 2094 /* Returns 1 if we can watch LEN bytes at address ADDR, 0 otherwise. */ 2095 2096 int 2097 ppc_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len) 2098 { 2099 /* Handle sub-8-byte quantities. */ 2100 if (len <= 0) 2101 return 0; 2102 2103 m_dreg_interface.detect (inferior_ptid); 2104 2105 if (m_dreg_interface.unavailable_p ()) 2106 return 0; 2107 2108 /* The PowerPC HWDEBUG ptrace interface tells if there are alignment 2109 restrictions for watchpoints in the processors. In that case, we use that 2110 information to determine the hardcoded watchable region for 2111 watchpoints. */ 2112 if (m_dreg_interface.hwdebug_p ()) 2113 { 2114 const struct ppc_debug_info &hwdebug_info = (m_dreg_interface 2115 .hwdebug_info ()); 2116 int region_size = hwdebug_info.data_bp_alignment; 2117 int region_align = region_size; 2118 2119 /* Embedded DAC-based processors, like the PowerPC 440 have ranged 2120 watchpoints and can watch any access within an arbitrary memory 2121 region. This is useful to watch arrays and structs, for instance. It 2122 takes two hardware watchpoints though. */ 2123 if (len > 1 2124 && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE 2125 && (linux_get_hwcap () & PPC_FEATURE_BOOKE)) 2126 return 2; 2127 /* Check if the processor provides DAWR interface. */ 2128 if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR) 2129 { 2130 /* DAWR interface allows to watch up to 512 byte wide ranges. */ 2131 region_size = 512; 2132 /* DAWR interface allows to watch up to 512 byte wide ranges which 2133 can't cross a 512 byte bondary on machines that doesn't have a 2134 second DAWR (P9 or less). */ 2135 if (!(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_ARCH_31)) 2136 region_align = 512; 2137 } 2138 /* Server processors provide one hardware watchpoint and addr+len should 2139 fall in the watchable region provided by the ptrace interface. */ 2140 if (region_align 2141 && (addr + len > (addr & ~(region_align - 1)) + region_size)) 2142 return 0; 2143 } 2144 /* addr+len must fall in the 8 byte watchable region for DABR-based 2145 processors (i.e., server processors). Without the new PowerPC HWDEBUG 2146 ptrace interface, DAC-based processors (i.e., embedded processors) will 2147 use addresses aligned to 4-bytes due to the way the read/write flags are 2148 passed in the old ptrace interface. */ 2149 else 2150 { 2151 gdb_assert (m_dreg_interface.debugreg_p ()); 2152 2153 if (((linux_get_hwcap () & PPC_FEATURE_BOOKE) 2154 && (addr + len) > (addr & ~3) + 4) 2155 || (addr + len) > (addr & ~7) + 8) 2156 return 0; 2157 } 2158 2159 return 1; 2160 } 2161 2162 /* This function compares two ppc_hw_breakpoint structs 2163 field-by-field. */ 2164 2165 bool 2166 ppc_linux_nat_target::hwdebug_point_cmp (const struct ppc_hw_breakpoint &a, 2167 const struct ppc_hw_breakpoint &b) 2168 { 2169 return (a.trigger_type == b.trigger_type 2170 && a.addr_mode == b.addr_mode 2171 && a.condition_mode == b.condition_mode 2172 && a.addr == b.addr 2173 && a.addr2 == b.addr2 2174 && a.condition_value == b.condition_value); 2175 } 2176 2177 /* Return the number of registers needed for a ranged breakpoint. */ 2178 2179 int 2180 ppc_linux_nat_target::ranged_break_num_registers () 2181 { 2182 m_dreg_interface.detect (inferior_ptid); 2183 2184 return ((m_dreg_interface.hwdebug_p () 2185 && (m_dreg_interface.hwdebug_info ().features 2186 & PPC_DEBUG_FEATURE_INSN_BP_RANGE))? 2187 2 : -1); 2188 } 2189 2190 /* Register the hardware breakpoint described by BP_TGT, to be inserted 2191 when the threads of inferior_ptid are resumed. Returns 0 for success, 2192 or -1 if the HWDEBUG interface that we need for hardware breakpoints 2193 is not available. */ 2194 2195 int 2196 ppc_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch, 2197 struct bp_target_info *bp_tgt) 2198 { 2199 struct ppc_hw_breakpoint p; 2200 2201 m_dreg_interface.detect (inferior_ptid); 2202 2203 if (!m_dreg_interface.hwdebug_p ()) 2204 return -1; 2205 2206 p.version = PPC_DEBUG_CURRENT_VERSION; 2207 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE; 2208 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; 2209 p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address); 2210 p.condition_value = 0; 2211 2212 if (bp_tgt->length) 2213 { 2214 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; 2215 2216 /* The breakpoint will trigger if the address of the instruction is 2217 within the defined range, as follows: p.addr <= address < p.addr2. */ 2218 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length; 2219 } 2220 else 2221 { 2222 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT; 2223 p.addr2 = 0; 2224 } 2225 2226 register_hw_breakpoint (inferior_ptid.pid (), p); 2227 2228 return 0; 2229 } 2230 2231 /* Clear a registration for the hardware breakpoint given by type BP_TGT. 2232 It will be removed from the threads of inferior_ptid when they are 2233 next resumed. Returns 0 for success, or -1 if the HWDEBUG interface 2234 that we need for hardware breakpoints is not available. */ 2235 2236 int 2237 ppc_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch, 2238 struct bp_target_info *bp_tgt) 2239 { 2240 struct ppc_hw_breakpoint p; 2241 2242 m_dreg_interface.detect (inferior_ptid); 2243 2244 if (!m_dreg_interface.hwdebug_p ()) 2245 return -1; 2246 2247 p.version = PPC_DEBUG_CURRENT_VERSION; 2248 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE; 2249 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; 2250 p.addr = (uint64_t) bp_tgt->placed_address; 2251 p.condition_value = 0; 2252 2253 if (bp_tgt->length) 2254 { 2255 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; 2256 2257 /* The breakpoint will trigger if the address of the instruction is within 2258 the defined range, as follows: p.addr <= address < p.addr2. */ 2259 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length; 2260 } 2261 else 2262 { 2263 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT; 2264 p.addr2 = 0; 2265 } 2266 2267 clear_hw_breakpoint (inferior_ptid.pid (), p); 2268 2269 return 0; 2270 } 2271 2272 /* Return the trigger value to set in a ppc_hw_breakpoint object for a 2273 given hardware watchpoint TYPE. We assume type is not hw_execute. */ 2274 2275 int 2276 ppc_linux_nat_target::get_trigger_type (enum target_hw_bp_type type) 2277 { 2278 int t; 2279 2280 if (type == hw_read) 2281 t = PPC_BREAKPOINT_TRIGGER_READ; 2282 else if (type == hw_write) 2283 t = PPC_BREAKPOINT_TRIGGER_WRITE; 2284 else 2285 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE; 2286 2287 return t; 2288 } 2289 2290 /* Register a new masked watchpoint at ADDR using the mask MASK, to be 2291 inserted when the threads of inferior_ptid are resumed. RW may be 2292 hw_read for a read watchpoint, hw_write for a write watchpoint or 2293 hw_access for an access watchpoint. */ 2294 2295 int 2296 ppc_linux_nat_target::insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, 2297 target_hw_bp_type rw) 2298 { 2299 struct ppc_hw_breakpoint p; 2300 2301 gdb_assert (m_dreg_interface.hwdebug_p ()); 2302 2303 p.version = PPC_DEBUG_CURRENT_VERSION; 2304 p.trigger_type = get_trigger_type (rw); 2305 p.addr_mode = PPC_BREAKPOINT_MODE_MASK; 2306 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; 2307 p.addr = addr; 2308 p.addr2 = mask; 2309 p.condition_value = 0; 2310 2311 register_hw_breakpoint (inferior_ptid.pid (), p); 2312 2313 return 0; 2314 } 2315 2316 /* Clear a registration for a masked watchpoint at ADDR with the mask 2317 MASK. It will be removed from the threads of inferior_ptid when they 2318 are next resumed. RW may be hw_read for a read watchpoint, hw_write 2319 for a write watchpoint or hw_access for an access watchpoint. */ 2320 2321 int 2322 ppc_linux_nat_target::remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, 2323 target_hw_bp_type rw) 2324 { 2325 struct ppc_hw_breakpoint p; 2326 2327 gdb_assert (m_dreg_interface.hwdebug_p ()); 2328 2329 p.version = PPC_DEBUG_CURRENT_VERSION; 2330 p.trigger_type = get_trigger_type (rw); 2331 p.addr_mode = PPC_BREAKPOINT_MODE_MASK; 2332 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; 2333 p.addr = addr; 2334 p.addr2 = mask; 2335 p.condition_value = 0; 2336 2337 clear_hw_breakpoint (inferior_ptid.pid (), p); 2338 2339 return 0; 2340 } 2341 2342 /* Check whether we have at least one free DVC register for the threads 2343 of the pid of inferior_ptid. */ 2344 2345 bool 2346 ppc_linux_nat_target::can_use_watchpoint_cond_accel (void) 2347 { 2348 m_dreg_interface.detect (inferior_ptid); 2349 2350 if (!m_dreg_interface.hwdebug_p ()) 2351 return false; 2352 2353 int cnt = m_dreg_interface.hwdebug_info ().num_condition_regs; 2354 2355 if (cnt == 0) 2356 return false; 2357 2358 auto process_it = m_process_info.find (inferior_ptid.pid ()); 2359 2360 /* No breakpoints or watchpoints have been requested for this process, 2361 we have at least one free DVC register. */ 2362 if (process_it == m_process_info.end ()) 2363 return true; 2364 2365 for (const ppc_hw_breakpoint &bp : process_it->second.requested_hw_bps) 2366 if (bp.condition_mode != PPC_BREAKPOINT_CONDITION_NONE) 2367 cnt--; 2368 2369 if (cnt <= 0) 2370 return false; 2371 2372 return true; 2373 } 2374 2375 /* Calculate the enable bits and the contents of the Data Value Compare 2376 debug register present in BookE processors. 2377 2378 ADDR is the address to be watched, LEN is the length of watched data 2379 and DATA_VALUE is the value which will trigger the watchpoint. 2380 On exit, CONDITION_MODE will hold the enable bits for the DVC, and 2381 CONDITION_VALUE will hold the value which should be put in the 2382 DVC register. */ 2383 2384 void 2385 ppc_linux_nat_target::calculate_dvc (CORE_ADDR addr, int len, 2386 CORE_ADDR data_value, 2387 uint32_t *condition_mode, 2388 uint64_t *condition_value) 2389 { 2390 const struct ppc_debug_info &hwdebug_info = (m_dreg_interface. 2391 hwdebug_info ()); 2392 2393 int i, num_byte_enable, align_offset, num_bytes_off_dvc, 2394 rightmost_enabled_byte; 2395 CORE_ADDR addr_end_data, addr_end_dvc; 2396 2397 /* The DVC register compares bytes within fixed-length windows which 2398 are word-aligned, with length equal to that of the DVC register. 2399 We need to calculate where our watch region is relative to that 2400 window and enable comparison of the bytes which fall within it. */ 2401 2402 align_offset = addr % hwdebug_info.sizeof_condition; 2403 addr_end_data = addr + len; 2404 addr_end_dvc = (addr - align_offset 2405 + hwdebug_info.sizeof_condition); 2406 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)? 2407 addr_end_data - addr_end_dvc : 0; 2408 num_byte_enable = len - num_bytes_off_dvc; 2409 /* Here, bytes are numbered from right to left. */ 2410 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)? 2411 addr_end_dvc - addr_end_data : 0; 2412 2413 *condition_mode = PPC_BREAKPOINT_CONDITION_AND; 2414 for (i = 0; i < num_byte_enable; i++) 2415 *condition_mode 2416 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte); 2417 2418 /* Now we need to match the position within the DVC of the comparison 2419 value with where the watch region is relative to the window 2420 (i.e., the ALIGN_OFFSET). */ 2421 2422 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8 2423 << rightmost_enabled_byte * 8); 2424 } 2425 2426 /* Return the number of memory locations that need to be accessed to 2427 evaluate the expression which generated the given value chain. 2428 Returns -1 if there's any register access involved, or if there are 2429 other kinds of values which are not acceptable in a condition 2430 expression (e.g., lval_computed or lval_internalvar). */ 2431 2432 int 2433 ppc_linux_nat_target::num_memory_accesses (const std::vector<value_ref_ptr> 2434 &chain) 2435 { 2436 int found_memory_cnt = 0; 2437 2438 /* The idea here is that evaluating an expression generates a series 2439 of values, one holding the value of every subexpression. (The 2440 expression a*b+c has five subexpressions: a, b, a*b, c, and 2441 a*b+c.) GDB's values hold almost enough information to establish 2442 the criteria given above --- they identify memory lvalues, 2443 register lvalues, computed values, etcetera. So we can evaluate 2444 the expression, and then scan the chain of values that leaves 2445 behind to determine the memory locations involved in the evaluation 2446 of an expression. 2447 2448 However, I don't think that the values returned by inferior 2449 function calls are special in any way. So this function may not 2450 notice that an expression contains an inferior function call. 2451 FIXME. */ 2452 2453 for (const value_ref_ptr &iter : chain) 2454 { 2455 struct value *v = iter.get (); 2456 2457 /* Constants and values from the history are fine. */ 2458 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0) 2459 continue; 2460 else if (VALUE_LVAL (v) == lval_memory) 2461 { 2462 /* A lazy memory lvalue is one that GDB never needed to fetch; 2463 we either just used its address (e.g., `a' in `a.b') or 2464 we never needed it at all (e.g., `a' in `a,b'). */ 2465 if (!value_lazy (v)) 2466 found_memory_cnt++; 2467 } 2468 /* Other kinds of values are not fine. */ 2469 else 2470 return -1; 2471 } 2472 2473 return found_memory_cnt; 2474 } 2475 2476 /* Verifies whether the expression COND can be implemented using the 2477 DVC (Data Value Compare) register in BookE processors. The expression 2478 must test the watch value for equality with a constant expression. 2479 If the function returns 1, DATA_VALUE will contain the constant against 2480 which the watch value should be compared and LEN will contain the size 2481 of the constant. */ 2482 2483 int 2484 ppc_linux_nat_target::check_condition (CORE_ADDR watch_addr, 2485 struct expression *cond, 2486 CORE_ADDR *data_value, int *len) 2487 { 2488 int num_accesses_left, num_accesses_right; 2489 struct value *left_val, *right_val; 2490 std::vector<value_ref_ptr> left_chain, right_chain; 2491 2492 expr::equal_operation *eqop 2493 = dynamic_cast<expr::equal_operation *> (cond->op.get ()); 2494 if (eqop == nullptr) 2495 return 0; 2496 expr::operation *lhs = eqop->get_lhs (); 2497 expr::operation *rhs = eqop->get_rhs (); 2498 2499 fetch_subexp_value (cond, lhs, &left_val, NULL, &left_chain, false); 2500 num_accesses_left = num_memory_accesses (left_chain); 2501 2502 if (left_val == NULL || num_accesses_left < 0) 2503 return 0; 2504 2505 fetch_subexp_value (cond, rhs, &right_val, NULL, &right_chain, false); 2506 num_accesses_right = num_memory_accesses (right_chain); 2507 2508 if (right_val == NULL || num_accesses_right < 0) 2509 return 0; 2510 2511 if (num_accesses_left == 1 && num_accesses_right == 0 2512 && VALUE_LVAL (left_val) == lval_memory 2513 && value_address (left_val) == watch_addr) 2514 { 2515 *data_value = value_as_long (right_val); 2516 2517 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has 2518 the same type as the memory region referenced by LEFT_VAL. */ 2519 *len = check_typedef (value_type (left_val))->length (); 2520 } 2521 else if (num_accesses_left == 0 && num_accesses_right == 1 2522 && VALUE_LVAL (right_val) == lval_memory 2523 && value_address (right_val) == watch_addr) 2524 { 2525 *data_value = value_as_long (left_val); 2526 2527 /* DATA_VALUE is the constant in LEFT_VAL, but actually has 2528 the same type as the memory region referenced by RIGHT_VAL. */ 2529 *len = check_typedef (value_type (right_val))->length (); 2530 } 2531 else 2532 return 0; 2533 2534 return 1; 2535 } 2536 2537 /* Return true if the target is capable of using hardware to evaluate the 2538 condition expression, thus only triggering the watchpoint when it is 2539 true. */ 2540 2541 bool 2542 ppc_linux_nat_target::can_accel_watchpoint_condition (CORE_ADDR addr, 2543 int len, int rw, 2544 struct expression *cond) 2545 { 2546 CORE_ADDR data_value; 2547 2548 m_dreg_interface.detect (inferior_ptid); 2549 2550 return (m_dreg_interface.hwdebug_p () 2551 && (m_dreg_interface.hwdebug_info ().num_condition_regs > 0) 2552 && check_condition (addr, cond, &data_value, &len)); 2553 } 2554 2555 /* Set up P with the parameters necessary to request a watchpoint covering 2556 LEN bytes starting at ADDR and if possible with condition expression COND 2557 evaluated by hardware. INSERT tells if we are creating a request for 2558 inserting or removing the watchpoint. */ 2559 2560 void 2561 ppc_linux_nat_target::create_watchpoint_request (struct ppc_hw_breakpoint *p, 2562 CORE_ADDR addr, int len, 2563 enum target_hw_bp_type type, 2564 struct expression *cond, 2565 int insert) 2566 { 2567 const struct ppc_debug_info &hwdebug_info = (m_dreg_interface 2568 .hwdebug_info ()); 2569 2570 if (len == 1 2571 || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE)) 2572 { 2573 int use_condition; 2574 CORE_ADDR data_value; 2575 2576 use_condition = (insert? can_use_watchpoint_cond_accel () 2577 : hwdebug_info.num_condition_regs > 0); 2578 if (cond && use_condition && check_condition (addr, cond, 2579 &data_value, &len)) 2580 calculate_dvc (addr, len, data_value, &p->condition_mode, 2581 &p->condition_value); 2582 else 2583 { 2584 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE; 2585 p->condition_value = 0; 2586 } 2587 2588 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT; 2589 p->addr2 = 0; 2590 } 2591 else 2592 { 2593 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; 2594 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE; 2595 p->condition_value = 0; 2596 2597 /* The watchpoint will trigger if the address of the memory access is 2598 within the defined range, as follows: p->addr <= address < p->addr2. 2599 2600 Note that the above sentence just documents how ptrace interprets 2601 its arguments; the watchpoint is set to watch the range defined by 2602 the user _inclusively_, as specified by the user interface. */ 2603 p->addr2 = (uint64_t) addr + len; 2604 } 2605 2606 p->version = PPC_DEBUG_CURRENT_VERSION; 2607 p->trigger_type = get_trigger_type (type); 2608 p->addr = (uint64_t) addr; 2609 } 2610 2611 /* Register a watchpoint, to be inserted when the threads of the group of 2612 inferior_ptid are next resumed. Returns 0 on success, and -1 if there 2613 is no ptrace interface available to install the watchpoint. */ 2614 2615 int 2616 ppc_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len, 2617 enum target_hw_bp_type type, 2618 struct expression *cond) 2619 { 2620 m_dreg_interface.detect (inferior_ptid); 2621 2622 if (m_dreg_interface.unavailable_p ()) 2623 return -1; 2624 2625 if (m_dreg_interface.hwdebug_p ()) 2626 { 2627 struct ppc_hw_breakpoint p; 2628 2629 create_watchpoint_request (&p, addr, len, type, cond, 1); 2630 2631 register_hw_breakpoint (inferior_ptid.pid (), p); 2632 } 2633 else 2634 { 2635 gdb_assert (m_dreg_interface.debugreg_p ()); 2636 2637 long wp_value; 2638 long read_mode, write_mode; 2639 2640 if (linux_get_hwcap () & PPC_FEATURE_BOOKE) 2641 { 2642 /* PowerPC 440 requires only the read/write flags to be passed 2643 to the kernel. */ 2644 read_mode = 1; 2645 write_mode = 2; 2646 } 2647 else 2648 { 2649 /* PowerPC 970 and other DABR-based processors are required to pass 2650 the Breakpoint Translation bit together with the flags. */ 2651 read_mode = 5; 2652 write_mode = 6; 2653 } 2654 2655 wp_value = addr & ~(read_mode | write_mode); 2656 switch (type) 2657 { 2658 case hw_read: 2659 /* Set read and translate bits. */ 2660 wp_value |= read_mode; 2661 break; 2662 case hw_write: 2663 /* Set write and translate bits. */ 2664 wp_value |= write_mode; 2665 break; 2666 case hw_access: 2667 /* Set read, write and translate bits. */ 2668 wp_value |= read_mode | write_mode; 2669 break; 2670 } 2671 2672 register_wp (inferior_ptid.pid (), wp_value); 2673 } 2674 2675 return 0; 2676 } 2677 2678 /* Clear a registration for a hardware watchpoint. It will be removed 2679 from the threads of the group of inferior_ptid when they are next 2680 resumed. */ 2681 2682 int 2683 ppc_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len, 2684 enum target_hw_bp_type type, 2685 struct expression *cond) 2686 { 2687 gdb_assert (!m_dreg_interface.unavailable_p ()); 2688 2689 if (m_dreg_interface.hwdebug_p ()) 2690 { 2691 struct ppc_hw_breakpoint p; 2692 2693 create_watchpoint_request (&p, addr, len, type, cond, 0); 2694 2695 clear_hw_breakpoint (inferior_ptid.pid (), p); 2696 } 2697 else 2698 { 2699 gdb_assert (m_dreg_interface.debugreg_p ()); 2700 2701 clear_wp (inferior_ptid.pid ()); 2702 } 2703 2704 return 0; 2705 } 2706 2707 /* Clean up the per-process info associated with PID. When using the 2708 HWDEBUG interface, we also erase the per-thread state of installed 2709 debug registers for all the threads that belong to the group of PID. 2710 2711 Usually the thread state is cleaned up by low_delete_thread. We also 2712 do it here because low_new_thread is not called for the initial LWP, 2713 so low_delete_thread won't be able to clean up this state. */ 2714 2715 void 2716 ppc_linux_nat_target::low_forget_process (pid_t pid) 2717 { 2718 if ((!m_dreg_interface.detected_p ()) 2719 || (m_dreg_interface.unavailable_p ())) 2720 return; 2721 2722 ptid_t pid_ptid (pid, 0, 0); 2723 2724 m_process_info.erase (pid); 2725 2726 if (m_dreg_interface.hwdebug_p ()) 2727 { 2728 for (auto it = m_installed_hw_bps.begin (); 2729 it != m_installed_hw_bps.end ();) 2730 { 2731 if (it->first.matches (pid_ptid)) 2732 it = m_installed_hw_bps.erase (it); 2733 else 2734 it++; 2735 } 2736 } 2737 } 2738 2739 /* Copy the per-process state associated with the pid of PARENT to the 2740 sate of CHILD_PID. GDB expects that a forked process will have the 2741 same hardware breakpoints and watchpoints as the parent. 2742 2743 If we're using the HWDEBUG interface, also copy the thread debug 2744 register state for the ptid of PARENT to the state for CHILD_PID. 2745 2746 Like for clone events, we assume the kernel will copy the debug 2747 registers from the parent thread to the child. The 2748 low_prepare_to_resume function is made to work even if it doesn't. 2749 2750 We copy the thread state here and not in low_new_thread since we don't 2751 have the pid of the parent in low_new_thread. Even if we did, 2752 low_new_thread might not be called immediately after the fork event is 2753 detected. For instance, with the checkpointing system (see 2754 linux-fork.c), the thread won't be added until GDB decides to switch 2755 to a new checkpointed process. At that point, the debug register 2756 state of the parent thread is unlikely to correspond to the state it 2757 had at the point when it forked. */ 2758 2759 void 2760 ppc_linux_nat_target::low_new_fork (struct lwp_info *parent, 2761 pid_t child_pid) 2762 { 2763 if ((!m_dreg_interface.detected_p ()) 2764 || (m_dreg_interface.unavailable_p ())) 2765 return; 2766 2767 auto process_it = m_process_info.find (parent->ptid.pid ()); 2768 2769 if (process_it != m_process_info.end ()) 2770 m_process_info[child_pid] = m_process_info[parent->ptid.pid ()]; 2771 2772 if (m_dreg_interface.hwdebug_p ()) 2773 { 2774 ptid_t child_ptid (child_pid, child_pid, 0); 2775 2776 copy_thread_dreg_state (parent->ptid, child_ptid); 2777 } 2778 } 2779 2780 /* Copy the thread debug register state from the PARENT thread to the the 2781 state for CHILD_LWP, if we're using the HWDEBUG interface. We assume 2782 the kernel copies the debug registers from one thread to another after 2783 a clone event. The low_prepare_to_resume function is made to work 2784 even if it doesn't. */ 2785 2786 void 2787 ppc_linux_nat_target::low_new_clone (struct lwp_info *parent, 2788 pid_t child_lwp) 2789 { 2790 if ((!m_dreg_interface.detected_p ()) 2791 || (m_dreg_interface.unavailable_p ())) 2792 return; 2793 2794 if (m_dreg_interface.hwdebug_p ()) 2795 { 2796 ptid_t child_ptid (parent->ptid.pid (), child_lwp, 0); 2797 2798 copy_thread_dreg_state (parent->ptid, child_ptid); 2799 } 2800 } 2801 2802 /* Initialize the arch-specific thread state for LP so that it contains 2803 the ptid for lp, so that we can use it in low_delete_thread. Mark the 2804 new thread LP as stale so that we update its debug registers before 2805 resuming it. This is not called for the initial thread. */ 2806 2807 void 2808 ppc_linux_nat_target::low_new_thread (struct lwp_info *lp) 2809 { 2810 init_arch_lwp_info (lp); 2811 2812 mark_thread_stale (lp); 2813 } 2814 2815 /* Delete the per-thread debug register stale flag. */ 2816 2817 void 2818 ppc_linux_nat_target::low_delete_thread (struct arch_lwp_info 2819 *lp_arch_info) 2820 { 2821 if (lp_arch_info != NULL) 2822 { 2823 if (m_dreg_interface.detected_p () 2824 && m_dreg_interface.hwdebug_p ()) 2825 m_installed_hw_bps.erase (lp_arch_info->lwp_ptid); 2826 2827 xfree (lp_arch_info); 2828 } 2829 } 2830 2831 /* Install or delete debug registers in thread LP so that it matches what 2832 GDB requested before it is resumed. */ 2833 2834 void 2835 ppc_linux_nat_target::low_prepare_to_resume (struct lwp_info *lp) 2836 { 2837 if ((!m_dreg_interface.detected_p ()) 2838 || (m_dreg_interface.unavailable_p ())) 2839 return; 2840 2841 /* We have to re-install or clear the debug registers if we set the 2842 stale flag. 2843 2844 In addition, some kernels configurations can disable a hardware 2845 watchpoint after it is hit. Usually, GDB will remove and re-install 2846 a hardware watchpoint when the thread stops if "breakpoint 2847 always-inserted" is off, or to single-step a watchpoint. But so 2848 that we don't rely on this behavior, if we stop due to a hardware 2849 breakpoint or watchpoint, we also refresh our debug registers. */ 2850 2851 arch_lwp_info *lp_arch_info = get_arch_lwp_info (lp); 2852 2853 bool stale_dregs = (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT 2854 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT 2855 || lp_arch_info->debug_regs_stale); 2856 2857 if (!stale_dregs) 2858 return; 2859 2860 gdb_assert (lp->ptid.lwp_p ()); 2861 2862 auto process_it = m_process_info.find (lp->ptid.pid ()); 2863 2864 if (m_dreg_interface.hwdebug_p ()) 2865 { 2866 /* First, delete any hardware watchpoint or breakpoint installed in 2867 the inferior and update the thread state. */ 2868 auto installed_it = m_installed_hw_bps.find (lp->ptid); 2869 2870 if (installed_it != m_installed_hw_bps.end ()) 2871 { 2872 auto &bp_list = installed_it->second; 2873 2874 for (auto bp_it = bp_list.begin (); bp_it != bp_list.end ();) 2875 { 2876 /* We ignore ENOENT to account for various possible kernel 2877 behaviors, e.g. the kernel might or might not copy debug 2878 registers across forks and clones, and we always copy 2879 the debug register state when fork and clone events are 2880 detected. */ 2881 if (ptrace (PPC_PTRACE_DELHWDEBUG, lp->ptid.lwp (), 0, 2882 bp_it->first) < 0) 2883 if (errno != ENOENT) 2884 perror_with_name (_("Error deleting hardware " 2885 "breakpoint or watchpoint")); 2886 2887 /* We erase the entries one at a time after successfuly 2888 removing the corresponding slot form the thread so that 2889 if we throw an exception above in a future iteration the 2890 map remains consistent. */ 2891 bp_it = bp_list.erase (bp_it); 2892 } 2893 2894 gdb_assert (bp_list.empty ()); 2895 } 2896 2897 /* Now we install all the requested hardware breakpoints and 2898 watchpoints and update the thread state. */ 2899 2900 if (process_it != m_process_info.end ()) 2901 { 2902 auto &bp_list = m_installed_hw_bps[lp->ptid]; 2903 2904 for (ppc_hw_breakpoint bp 2905 : process_it->second.requested_hw_bps) 2906 { 2907 long slot = ptrace (PPC_PTRACE_SETHWDEBUG, lp->ptid.lwp (), 2908 0, &bp); 2909 2910 if (slot < 0) 2911 perror_with_name (_("Error setting hardware " 2912 "breakpoint or watchpoint")); 2913 2914 /* Keep track of which slots we installed in this 2915 thread. */ 2916 bp_list.emplace (bp_list.begin (), slot, bp); 2917 } 2918 } 2919 } 2920 else 2921 { 2922 gdb_assert (m_dreg_interface.debugreg_p ()); 2923 2924 /* Passing 0 to PTRACE_SET_DEBUGREG will clear the watchpoint. We 2925 always clear the watchpoint instead of just overwriting it, in 2926 case there is a request for a new watchpoint, because on some 2927 older kernel versions and configurations simply overwriting the 2928 watchpoint after it was hit would not re-enable it. */ 2929 if (ptrace (PTRACE_SET_DEBUGREG, lp->ptid.lwp (), 0, 0) < 0) 2930 perror_with_name (_("Error clearing hardware watchpoint")); 2931 2932 /* GDB requested a watchpoint to be installed. */ 2933 if (process_it != m_process_info.end () 2934 && process_it->second.requested_wp_val.has_value ()) 2935 { 2936 long wp = *(process_it->second.requested_wp_val); 2937 2938 if (ptrace (PTRACE_SET_DEBUGREG, lp->ptid.lwp (), 0, wp) < 0) 2939 perror_with_name (_("Error setting hardware watchpoint")); 2940 } 2941 } 2942 2943 lp_arch_info->debug_regs_stale = false; 2944 } 2945 2946 /* Return true if INFERIOR_PTID is known to have been stopped by a 2947 hardware watchpoint, false otherwise. If true is returned, write the 2948 address that the kernel reported as causing the SIGTRAP in ADDR_P. */ 2949 2950 bool 2951 ppc_linux_nat_target::low_stopped_data_address (CORE_ADDR *addr_p) 2952 { 2953 siginfo_t siginfo; 2954 2955 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo)) 2956 return false; 2957 2958 if (siginfo.si_signo != SIGTRAP 2959 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */) 2960 return false; 2961 2962 gdb_assert (!m_dreg_interface.unavailable_p ()); 2963 2964 /* Check if this signal corresponds to a hardware breakpoint. We only 2965 need to check this if we're using the HWDEBUG interface, since the 2966 DEBUGREG interface only allows setting one hardware watchpoint. */ 2967 if (m_dreg_interface.hwdebug_p ()) 2968 { 2969 /* The index (or slot) of the *point is passed in the si_errno 2970 field. Currently, this is only the case if the kernel was 2971 configured with CONFIG_PPC_ADV_DEBUG_REGS. If not, we assume 2972 the kernel will set si_errno to a value that doesn't correspond 2973 to any real slot. */ 2974 int slot = siginfo.si_errno; 2975 2976 auto installed_it = m_installed_hw_bps.find (inferior_ptid); 2977 2978 /* We must have installed slots for the thread if it got a 2979 TRAP_HWBKPT signal. */ 2980 gdb_assert (installed_it != m_installed_hw_bps.end ()); 2981 2982 for (const auto & slot_bp_pair : installed_it->second) 2983 if (slot_bp_pair.first == slot 2984 && (slot_bp_pair.second.trigger_type 2985 == PPC_BREAKPOINT_TRIGGER_EXECUTE)) 2986 return false; 2987 } 2988 2989 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr; 2990 return true; 2991 } 2992 2993 /* Return true if INFERIOR_PTID is known to have been stopped by a 2994 hardware watchpoint, false otherwise. */ 2995 2996 bool 2997 ppc_linux_nat_target::low_stopped_by_watchpoint () 2998 { 2999 CORE_ADDR addr; 3000 return low_stopped_data_address (&addr); 3001 } 3002 3003 bool 3004 ppc_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr, 3005 CORE_ADDR start, 3006 int length) 3007 { 3008 gdb_assert (!m_dreg_interface.unavailable_p ()); 3009 3010 int mask; 3011 3012 if (m_dreg_interface.hwdebug_p () 3013 && (linux_get_hwcap () & PPC_FEATURE_BOOKE)) 3014 return start <= addr && start + length >= addr; 3015 else if (linux_get_hwcap () & PPC_FEATURE_BOOKE) 3016 mask = 3; 3017 else 3018 mask = 7; 3019 3020 addr &= ~mask; 3021 3022 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */ 3023 return start <= addr + mask && start + length - 1 >= addr; 3024 } 3025 3026 /* Return the number of registers needed for a masked hardware watchpoint. */ 3027 3028 int 3029 ppc_linux_nat_target::masked_watch_num_registers (CORE_ADDR addr, 3030 CORE_ADDR mask) 3031 { 3032 m_dreg_interface.detect (inferior_ptid); 3033 3034 if (!m_dreg_interface.hwdebug_p () 3035 || (m_dreg_interface.hwdebug_info ().features 3036 & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0) 3037 return -1; 3038 else if ((mask & 0xC0000000) != 0xC0000000) 3039 { 3040 warning (_("The given mask covers kernel address space " 3041 "and cannot be used.\n")); 3042 3043 return -2; 3044 } 3045 else 3046 return 2; 3047 } 3048 3049 /* Copy the per-thread debug register state, if any, from thread 3050 PARENT_PTID to thread CHILD_PTID, if the debug register being used is 3051 HWDEBUG. */ 3052 3053 void 3054 ppc_linux_nat_target::copy_thread_dreg_state (const ptid_t &parent_ptid, 3055 const ptid_t &child_ptid) 3056 { 3057 gdb_assert (m_dreg_interface.hwdebug_p ()); 3058 3059 auto installed_it = m_installed_hw_bps.find (parent_ptid); 3060 3061 if (installed_it != m_installed_hw_bps.end ()) 3062 m_installed_hw_bps[child_ptid] = m_installed_hw_bps[parent_ptid]; 3063 } 3064 3065 /* Mark the debug register stale flag for the new thread, if we have 3066 already detected which debug register interface we use. */ 3067 3068 void 3069 ppc_linux_nat_target::mark_thread_stale (struct lwp_info *lp) 3070 { 3071 if ((!m_dreg_interface.detected_p ()) 3072 || (m_dreg_interface.unavailable_p ())) 3073 return; 3074 3075 arch_lwp_info *lp_arch_info = get_arch_lwp_info (lp); 3076 3077 lp_arch_info->debug_regs_stale = true; 3078 } 3079 3080 /* Mark all the threads of the group of PID as stale with respect to 3081 debug registers and issue a stop request to each such thread that 3082 isn't already stopped. */ 3083 3084 void 3085 ppc_linux_nat_target::mark_debug_registers_changed (pid_t pid) 3086 { 3087 /* We do this in two passes to make sure all threads are marked even if 3088 we get an exception when stopping one of them. */ 3089 3090 iterate_over_lwps (ptid_t (pid), 3091 [this] (struct lwp_info *lp) -> int { 3092 this->mark_thread_stale (lp); 3093 return 0; 3094 }); 3095 3096 iterate_over_lwps (ptid_t (pid), 3097 [] (struct lwp_info *lp) -> int { 3098 if (!lwp_is_stopped (lp)) 3099 linux_stop_lwp (lp); 3100 return 0; 3101 }); 3102 } 3103 3104 /* Register a hardware breakpoint or watchpoint BP for the pid PID, then 3105 mark the stale flag for all threads of the group of PID, and issue a 3106 stop request for them. The breakpoint or watchpoint will be installed 3107 the next time each thread is resumed. Should only be used if the 3108 debug register interface is HWDEBUG. */ 3109 3110 void 3111 ppc_linux_nat_target::register_hw_breakpoint (pid_t pid, 3112 const struct 3113 ppc_hw_breakpoint &bp) 3114 { 3115 gdb_assert (m_dreg_interface.hwdebug_p ()); 3116 3117 m_process_info[pid].requested_hw_bps.push_back (bp); 3118 3119 mark_debug_registers_changed (pid); 3120 } 3121 3122 /* Clear a registration for a hardware breakpoint or watchpoint BP for 3123 the pid PID, then mark the stale flag for all threads of the group of 3124 PID, and issue a stop request for them. The breakpoint or watchpoint 3125 will be removed the next time each thread is resumed. Should only be 3126 used if the debug register interface is HWDEBUG. */ 3127 3128 void 3129 ppc_linux_nat_target::clear_hw_breakpoint (pid_t pid, 3130 const struct ppc_hw_breakpoint &bp) 3131 { 3132 gdb_assert (m_dreg_interface.hwdebug_p ()); 3133 3134 auto process_it = m_process_info.find (pid); 3135 3136 gdb_assert (process_it != m_process_info.end ()); 3137 3138 auto bp_it = std::find_if (process_it->second.requested_hw_bps.begin (), 3139 process_it->second.requested_hw_bps.end (), 3140 [&bp, this] 3141 (const struct ppc_hw_breakpoint &curr) 3142 { return hwdebug_point_cmp (bp, curr); } 3143 ); 3144 3145 /* If GDB is removing a watchpoint, it must have been inserted. */ 3146 gdb_assert (bp_it != process_it->second.requested_hw_bps.end ()); 3147 3148 process_it->second.requested_hw_bps.erase (bp_it); 3149 3150 mark_debug_registers_changed (pid); 3151 } 3152 3153 /* Register the hardware watchpoint value WP_VALUE for the pid PID, 3154 then mark the stale flag for all threads of the group of PID, and 3155 issue a stop request for them. The breakpoint or watchpoint will be 3156 installed the next time each thread is resumed. Should only be used 3157 if the debug register interface is DEBUGREG. */ 3158 3159 void 3160 ppc_linux_nat_target::register_wp (pid_t pid, long wp_value) 3161 { 3162 gdb_assert (m_dreg_interface.debugreg_p ()); 3163 3164 /* Our other functions should have told GDB that we only have one 3165 hardware watchpoint with this interface. */ 3166 gdb_assert (!m_process_info[pid].requested_wp_val.has_value ()); 3167 3168 m_process_info[pid].requested_wp_val.emplace (wp_value); 3169 3170 mark_debug_registers_changed (pid); 3171 } 3172 3173 /* Clear the hardware watchpoint registration for the pid PID, then mark 3174 the stale flag for all threads of the group of PID, and issue a stop 3175 request for them. The breakpoint or watchpoint will be installed the 3176 next time each thread is resumed. Should only be used if the debug 3177 register interface is DEBUGREG. */ 3178 3179 void 3180 ppc_linux_nat_target::clear_wp (pid_t pid) 3181 { 3182 gdb_assert (m_dreg_interface.debugreg_p ()); 3183 3184 auto process_it = m_process_info.find (pid); 3185 3186 gdb_assert (process_it != m_process_info.end ()); 3187 gdb_assert (process_it->second.requested_wp_val.has_value ()); 3188 3189 process_it->second.requested_wp_val.reset (); 3190 3191 mark_debug_registers_changed (pid); 3192 } 3193 3194 /* Initialize the arch-specific thread state for LWP, if it not already 3195 created. */ 3196 3197 void 3198 ppc_linux_nat_target::init_arch_lwp_info (struct lwp_info *lp) 3199 { 3200 if (lwp_arch_private_info (lp) == NULL) 3201 { 3202 lwp_set_arch_private_info (lp, XCNEW (struct arch_lwp_info)); 3203 lwp_arch_private_info (lp)->debug_regs_stale = false; 3204 lwp_arch_private_info (lp)->lwp_ptid = lp->ptid; 3205 } 3206 } 3207 3208 /* Get the arch-specific thread state for LWP, creating it if 3209 necessary. */ 3210 3211 arch_lwp_info * 3212 ppc_linux_nat_target::get_arch_lwp_info (struct lwp_info *lp) 3213 { 3214 init_arch_lwp_info (lp); 3215 3216 return lwp_arch_private_info (lp); 3217 } 3218 3219 void _initialize_ppc_linux_nat (); 3220 void 3221 _initialize_ppc_linux_nat () 3222 { 3223 linux_target = &the_ppc_linux_nat_target; 3224 3225 /* Register the target. */ 3226 add_inf_child_target (linux_target); 3227 } 3228