xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/minsyms.c (revision 8b657b0747480f8989760d71343d6dd33f8d4cf9)
1 /* GDB routines for manipulating the minimal symbol tables.
2    Copyright (C) 1992-2023 Free Software Foundation, Inc.
3    Contributed by Cygnus Support, using pieces from other GDB modules.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 
21 /* This file contains support routines for creating, manipulating, and
22    destroying minimal symbol tables.
23 
24    Minimal symbol tables are used to hold some very basic information about
25    all defined global symbols (text, data, bss, abs, etc).  The only two
26    required pieces of information are the symbol's name and the address
27    associated with that symbol.
28 
29    In many cases, even if a file was compiled with no special options for
30    debugging at all, as long as was not stripped it will contain sufficient
31    information to build useful minimal symbol tables using this structure.
32 
33    Even when a file contains enough debugging information to build a full
34    symbol table, these minimal symbols are still useful for quickly mapping
35    between names and addresses, and vice versa.  They are also sometimes used
36    to figure out what full symbol table entries need to be read in.  */
37 
38 
39 #include "defs.h"
40 #include <ctype.h>
41 #include "symtab.h"
42 #include "bfd.h"
43 #include "filenames.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "demangle.h"
47 #include "value.h"
48 #include "cp-abi.h"
49 #include "target.h"
50 #include "cp-support.h"
51 #include "language.h"
52 #include "cli/cli-utils.h"
53 #include "gdbsupport/symbol.h"
54 #include <algorithm>
55 #include "safe-ctype.h"
56 #include "gdbsupport/parallel-for.h"
57 #include "inferior.h"
58 
59 #if CXX_STD_THREAD
60 #include <mutex>
61 #endif
62 
63 /* Return true if MINSYM is a cold clone symbol.
64    Recognize f.i. these symbols (mangled/demangled):
65    - _ZL3foov.cold
66      foo() [clone .cold]
67    - _ZL9do_rpo_vnP8functionP8edge_defP11bitmap_headbb.cold.138
68      do_rpo_vn(function*, edge_def*, bitmap_head*, bool, bool)	\
69        [clone .cold.138].  */
70 
71 static bool
72 msymbol_is_cold_clone (minimal_symbol *minsym)
73 {
74   const char *name = minsym->natural_name ();
75   size_t name_len = strlen (name);
76   if (name_len < 1)
77     return false;
78 
79   const char *last = &name[name_len - 1];
80   if (*last != ']')
81     return false;
82 
83   const char *suffix = " [clone .cold";
84   size_t suffix_len = strlen (suffix);
85   const char *found = strstr (name, suffix);
86   if (found == nullptr)
87     return false;
88 
89   const char *start = &found[suffix_len];
90   if (*start == ']')
91     return true;
92 
93   if (*start != '.')
94     return false;
95 
96   const char *p;
97   for (p = start + 1; p <= last; ++p)
98     {
99       if (*p >= '0' && *p <= '9')
100 	continue;
101       break;
102     }
103 
104   if (p == last)
105     return true;
106 
107   return false;
108 }
109 
110 /* See minsyms.h.  */
111 
112 bool
113 msymbol_is_function (struct objfile *objfile, minimal_symbol *minsym,
114 		     CORE_ADDR *func_address_p)
115 {
116   CORE_ADDR msym_addr = minsym->value_address (objfile);
117 
118   switch (minsym->type ())
119     {
120     case mst_slot_got_plt:
121     case mst_data:
122     case mst_bss:
123     case mst_abs:
124     case mst_file_data:
125     case mst_file_bss:
126     case mst_data_gnu_ifunc:
127       {
128 	struct gdbarch *gdbarch = objfile->arch ();
129 	CORE_ADDR pc = gdbarch_convert_from_func_ptr_addr
130 	  (gdbarch, msym_addr, current_inferior ()->top_target ());
131 	if (pc != msym_addr)
132 	  {
133 	    if (func_address_p != NULL)
134 	      *func_address_p = pc;
135 	    return true;
136 	  }
137 	return false;
138       }
139     case mst_file_text:
140       /* Ignore function symbol that is not a function entry.  */
141       if (msymbol_is_cold_clone (minsym))
142 	return false;
143       /* fallthru */
144     default:
145       if (func_address_p != NULL)
146 	*func_address_p = msym_addr;
147       return true;
148     }
149 }
150 
151 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
152    At the end, copy them all into one newly allocated array.  */
153 
154 #define BUNCH_SIZE 127
155 
156 struct msym_bunch
157   {
158     struct msym_bunch *next;
159     struct minimal_symbol contents[BUNCH_SIZE];
160   };
161 
162 /* See minsyms.h.  */
163 
164 unsigned int
165 msymbol_hash_iw (const char *string)
166 {
167   unsigned int hash = 0;
168 
169   while (*string && *string != '(')
170     {
171       string = skip_spaces (string);
172       if (*string && *string != '(')
173 	{
174 	  hash = SYMBOL_HASH_NEXT (hash, *string);
175 	  ++string;
176 	}
177     }
178   return hash;
179 }
180 
181 /* See minsyms.h.  */
182 
183 unsigned int
184 msymbol_hash (const char *string)
185 {
186   unsigned int hash = 0;
187 
188   for (; *string; ++string)
189     hash = SYMBOL_HASH_NEXT (hash, *string);
190   return hash;
191 }
192 
193 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE.  */
194 static void
195 add_minsym_to_hash_table (struct minimal_symbol *sym,
196 			  struct minimal_symbol **table,
197 			  unsigned int hash_value)
198 {
199   if (sym->hash_next == NULL)
200     {
201       unsigned int hash = hash_value % MINIMAL_SYMBOL_HASH_SIZE;
202 
203       sym->hash_next = table[hash];
204       table[hash] = sym;
205     }
206 }
207 
208 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
209    TABLE.  */
210 static void
211 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
212 				    struct objfile *objfile,
213 				    unsigned int hash_value)
214 {
215   if (sym->demangled_hash_next == NULL)
216     {
217       objfile->per_bfd->demangled_hash_languages.set (sym->language ());
218 
219       struct minimal_symbol **table
220 	= objfile->per_bfd->msymbol_demangled_hash;
221       unsigned int hash_index = hash_value % MINIMAL_SYMBOL_HASH_SIZE;
222       sym->demangled_hash_next = table[hash_index];
223       table[hash_index] = sym;
224     }
225 }
226 
227 /* Worker object for lookup_minimal_symbol.  Stores temporary results
228    while walking the symbol tables.  */
229 
230 struct found_minimal_symbols
231 {
232   /* External symbols are best.  */
233   bound_minimal_symbol external_symbol;
234 
235   /* File-local symbols are next best.  */
236   bound_minimal_symbol file_symbol;
237 
238   /* Symbols for shared library trampolines are next best.  */
239   bound_minimal_symbol trampoline_symbol;
240 
241   /* Called when a symbol name matches.  Check if the minsym is a
242      better type than what we had already found, and record it in one
243      of the members fields if so.  Returns true if we collected the
244      real symbol, in which case we can stop searching.  */
245   bool maybe_collect (const char *sfile, objfile *objf,
246 		      minimal_symbol *msymbol);
247 };
248 
249 /* See declaration above.  */
250 
251 bool
252 found_minimal_symbols::maybe_collect (const char *sfile,
253 				      struct objfile *objfile,
254 				      minimal_symbol *msymbol)
255 {
256   switch (msymbol->type ())
257     {
258     case mst_file_text:
259     case mst_file_data:
260     case mst_file_bss:
261       if (sfile == NULL
262 	  || filename_cmp (msymbol->filename, sfile) == 0)
263 	{
264 	  file_symbol.minsym = msymbol;
265 	  file_symbol.objfile = objfile;
266 	}
267       break;
268 
269     case mst_solib_trampoline:
270 
271       /* If a trampoline symbol is found, we prefer to keep
272 	 looking for the *real* symbol.  If the actual symbol
273 	 is not found, then we'll use the trampoline
274 	 entry.  */
275       if (trampoline_symbol.minsym == NULL)
276 	{
277 	  trampoline_symbol.minsym = msymbol;
278 	  trampoline_symbol.objfile = objfile;
279 	}
280       break;
281 
282     case mst_unknown:
283     default:
284       external_symbol.minsym = msymbol;
285       external_symbol.objfile = objfile;
286       /* We have the real symbol.  No use looking further.  */
287       return true;
288     }
289 
290   /* Keep looking.  */
291   return false;
292 }
293 
294 /* Walk the mangled name hash table, and pass each symbol whose name
295    matches LOOKUP_NAME according to NAMECMP to FOUND.  */
296 
297 static void
298 lookup_minimal_symbol_mangled (const char *lookup_name,
299 			       const char *sfile,
300 			       struct objfile *objfile,
301 			       struct minimal_symbol **table,
302 			       unsigned int hash,
303 			       int (*namecmp) (const char *, const char *),
304 			       found_minimal_symbols &found)
305 {
306   for (minimal_symbol *msymbol = table[hash];
307        msymbol != NULL;
308        msymbol = msymbol->hash_next)
309     {
310       const char *symbol_name = msymbol->linkage_name ();
311 
312       if (namecmp (symbol_name, lookup_name) == 0
313 	  && found.maybe_collect (sfile, objfile, msymbol))
314 	return;
315     }
316 }
317 
318 /* Walk the demangled name hash table, and pass each symbol whose name
319    matches LOOKUP_NAME according to MATCHER to FOUND.  */
320 
321 static void
322 lookup_minimal_symbol_demangled (const lookup_name_info &lookup_name,
323 				 const char *sfile,
324 				 struct objfile *objfile,
325 				 struct minimal_symbol **table,
326 				 unsigned int hash,
327 				 symbol_name_matcher_ftype *matcher,
328 				 found_minimal_symbols &found)
329 {
330   for (minimal_symbol *msymbol = table[hash];
331        msymbol != NULL;
332        msymbol = msymbol->demangled_hash_next)
333     {
334       const char *symbol_name = msymbol->search_name ();
335 
336       if (matcher (symbol_name, lookup_name, NULL)
337 	  && found.maybe_collect (sfile, objfile, msymbol))
338 	return;
339     }
340 }
341 
342 /* Look through all the current minimal symbol tables and find the
343    first minimal symbol that matches NAME.  If OBJF is non-NULL, limit
344    the search to that objfile.  If SFILE is non-NULL, the only file-scope
345    symbols considered will be from that source file (global symbols are
346    still preferred).  Returns a pointer to the minimal symbol that
347    matches, or NULL if no match is found.
348 
349    Note:  One instance where there may be duplicate minimal symbols with
350    the same name is when the symbol tables for a shared library and the
351    symbol tables for an executable contain global symbols with the same
352    names (the dynamic linker deals with the duplication).
353 
354    It's also possible to have minimal symbols with different mangled
355    names, but identical demangled names.  For example, the GNU C++ v3
356    ABI requires the generation of two (or perhaps three) copies of
357    constructor functions --- "in-charge", "not-in-charge", and
358    "allocate" copies; destructors may be duplicated as well.
359    Obviously, there must be distinct mangled names for each of these,
360    but the demangled names are all the same: S::S or S::~S.  */
361 
362 struct bound_minimal_symbol
363 lookup_minimal_symbol (const char *name, const char *sfile,
364 		       struct objfile *objf)
365 {
366   found_minimal_symbols found;
367 
368   unsigned int mangled_hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
369 
370   auto *mangled_cmp
371     = (case_sensitivity == case_sensitive_on
372        ? strcmp
373        : strcasecmp);
374 
375   if (sfile != NULL)
376     sfile = lbasename (sfile);
377 
378   lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
379 
380   for (objfile *objfile : current_program_space->objfiles ())
381     {
382       if (found.external_symbol.minsym != NULL)
383 	break;
384 
385       if (objf == NULL || objf == objfile
386 	  || objf == objfile->separate_debug_objfile_backlink)
387 	{
388 	  symbol_lookup_debug_printf ("lookup_minimal_symbol (%s, %s, %s)",
389 				      name, sfile != NULL ? sfile : "NULL",
390 				      objfile_debug_name (objfile));
391 
392 	  /* Do two passes: the first over the ordinary hash table,
393 	     and the second over the demangled hash table.  */
394 	  lookup_minimal_symbol_mangled (name, sfile, objfile,
395 					 objfile->per_bfd->msymbol_hash,
396 					 mangled_hash, mangled_cmp, found);
397 
398 	  /* If not found, try the demangled hash table.  */
399 	  if (found.external_symbol.minsym == NULL)
400 	    {
401 	      /* Once for each language in the demangled hash names
402 		 table (usually just zero or one languages).  */
403 	      for (unsigned iter = 0; iter < nr_languages; ++iter)
404 		{
405 		  if (!objfile->per_bfd->demangled_hash_languages.test (iter))
406 		    continue;
407 		  enum language lang = (enum language) iter;
408 
409 		  unsigned int hash
410 		    = (lookup_name.search_name_hash (lang)
411 		       % MINIMAL_SYMBOL_HASH_SIZE);
412 
413 		  symbol_name_matcher_ftype *match
414 		    = language_def (lang)->get_symbol_name_matcher
415 							(lookup_name);
416 		  struct minimal_symbol **msymbol_demangled_hash
417 		    = objfile->per_bfd->msymbol_demangled_hash;
418 
419 		  lookup_minimal_symbol_demangled (lookup_name, sfile, objfile,
420 						   msymbol_demangled_hash,
421 						   hash, match, found);
422 
423 		  if (found.external_symbol.minsym != NULL)
424 		    break;
425 		}
426 	    }
427 	}
428     }
429 
430   /* External symbols are best.  */
431   if (found.external_symbol.minsym != NULL)
432     {
433       if (symbol_lookup_debug)
434 	{
435 	  minimal_symbol *minsym = found.external_symbol.minsym;
436 
437 	  symbol_lookup_debug_printf
438 	    ("lookup_minimal_symbol (...) = %s (external)",
439 	     host_address_to_string (minsym));
440 	}
441       return found.external_symbol;
442     }
443 
444   /* File-local symbols are next best.  */
445   if (found.file_symbol.minsym != NULL)
446     {
447       if (symbol_lookup_debug)
448 	{
449 	  minimal_symbol *minsym = found.file_symbol.minsym;
450 
451 	  symbol_lookup_debug_printf
452 	    ("lookup_minimal_symbol (...) = %s (file-local)",
453 	     host_address_to_string (minsym));
454 	}
455       return found.file_symbol;
456     }
457 
458   /* Symbols for shared library trampolines are next best.  */
459   if (found.trampoline_symbol.minsym != NULL)
460     {
461       if (symbol_lookup_debug)
462 	{
463 	  minimal_symbol *minsym = found.trampoline_symbol.minsym;
464 
465 	  symbol_lookup_debug_printf
466 	    ("lookup_minimal_symbol (...) = %s (trampoline)",
467 	     host_address_to_string (minsym));
468 	}
469 
470       return found.trampoline_symbol;
471     }
472 
473   /* Not found.  */
474   symbol_lookup_debug_printf ("lookup_minimal_symbol (...) = NULL");
475   return {};
476 }
477 
478 /* See minsyms.h.  */
479 
480 struct bound_minimal_symbol
481 lookup_bound_minimal_symbol (const char *name)
482 {
483   return lookup_minimal_symbol (name, NULL, NULL);
484 }
485 
486 /* See gdbsupport/symbol.h.  */
487 
488 int
489 find_minimal_symbol_address (const char *name, CORE_ADDR *addr,
490 			     struct objfile *objfile)
491 {
492   struct bound_minimal_symbol sym
493     = lookup_minimal_symbol (name, NULL, objfile);
494 
495   if (sym.minsym != NULL)
496     *addr = sym.value_address ();
497 
498   return sym.minsym == NULL;
499 }
500 
501 /* Get the lookup name form best suitable for linkage name
502    matching.  */
503 
504 static const char *
505 linkage_name_str (const lookup_name_info &lookup_name)
506 {
507   /* Unlike most languages (including C++), Ada uses the
508      encoded/linkage name as the search name recorded in symbols.  So
509      if debugging in Ada mode, prefer the Ada-encoded name.  This also
510      makes Ada's verbatim match syntax ("<...>") work, because
511      "lookup_name.name()" includes the "<>"s, while
512      "lookup_name.ada().lookup_name()" is the encoded name with "<>"s
513      stripped.  */
514   if (current_language->la_language == language_ada)
515     return lookup_name.ada ().lookup_name ().c_str ();
516 
517   return lookup_name.c_str ();
518 }
519 
520 /* See minsyms.h.  */
521 
522 void
523 iterate_over_minimal_symbols
524     (struct objfile *objf, const lookup_name_info &lookup_name,
525      gdb::function_view<bool (struct minimal_symbol *)> callback)
526 {
527   /* The first pass is over the ordinary hash table.  */
528     {
529       const char *name = linkage_name_str (lookup_name);
530       unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
531       auto *mangled_cmp
532 	= (case_sensitivity == case_sensitive_on
533 	   ? strcmp
534 	   : strcasecmp);
535 
536       for (minimal_symbol *iter = objf->per_bfd->msymbol_hash[hash];
537 	   iter != NULL;
538 	   iter = iter->hash_next)
539 	{
540 	  if (mangled_cmp (iter->linkage_name (), name) == 0)
541 	    if (callback (iter))
542 	      return;
543 	}
544     }
545 
546   /* The second pass is over the demangled table.  Once for each
547      language in the demangled hash names table (usually just zero or
548      one).  */
549   for (unsigned liter = 0; liter < nr_languages; ++liter)
550     {
551       if (!objf->per_bfd->demangled_hash_languages.test (liter))
552 	continue;
553 
554       enum language lang = (enum language) liter;
555       const language_defn *lang_def = language_def (lang);
556       symbol_name_matcher_ftype *name_match
557 	= lang_def->get_symbol_name_matcher (lookup_name);
558 
559       unsigned int hash
560 	= lookup_name.search_name_hash (lang) % MINIMAL_SYMBOL_HASH_SIZE;
561       for (minimal_symbol *iter = objf->per_bfd->msymbol_demangled_hash[hash];
562 	   iter != NULL;
563 	   iter = iter->demangled_hash_next)
564 	if (name_match (iter->search_name (), lookup_name, NULL))
565 	  if (callback (iter))
566 	    return;
567     }
568 }
569 
570 /* See minsyms.h.  */
571 
572 bound_minimal_symbol
573 lookup_minimal_symbol_linkage (const char *name, struct objfile *objf)
574 {
575   unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
576 
577   for (objfile *objfile : objf->separate_debug_objfiles ())
578     {
579       for (minimal_symbol *msymbol = objfile->per_bfd->msymbol_hash[hash];
580 	   msymbol != NULL;
581 	   msymbol = msymbol->hash_next)
582 	{
583 	  if (strcmp (msymbol->linkage_name (), name) == 0
584 	      && (msymbol->type () == mst_data
585 		  || msymbol->type () == mst_bss))
586 	    return {msymbol, objfile};
587 	}
588     }
589 
590   return {};
591 }
592 
593 /* See minsyms.h.  */
594 
595 struct bound_minimal_symbol
596 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
597 {
598   struct minimal_symbol *msymbol;
599   struct bound_minimal_symbol found_symbol;
600   struct bound_minimal_symbol found_file_symbol;
601 
602   unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
603 
604   for (objfile *objfile : current_program_space->objfiles ())
605     {
606       if (found_symbol.minsym != NULL)
607 	break;
608 
609       if (objf == NULL || objf == objfile
610 	  || objf == objfile->separate_debug_objfile_backlink)
611 	{
612 	  for (msymbol = objfile->per_bfd->msymbol_hash[hash];
613 	       msymbol != NULL && found_symbol.minsym == NULL;
614 	       msymbol = msymbol->hash_next)
615 	    {
616 	      if (strcmp (msymbol->linkage_name (), name) == 0 &&
617 		  (msymbol->type () == mst_text
618 		   || msymbol->type () == mst_text_gnu_ifunc
619 		   || msymbol->type () == mst_file_text))
620 		{
621 		  switch (msymbol->type ())
622 		    {
623 		    case mst_file_text:
624 		      found_file_symbol.minsym = msymbol;
625 		      found_file_symbol.objfile = objfile;
626 		      break;
627 		    default:
628 		      found_symbol.minsym = msymbol;
629 		      found_symbol.objfile = objfile;
630 		      break;
631 		    }
632 		}
633 	    }
634 	}
635     }
636   /* External symbols are best.  */
637   if (found_symbol.minsym)
638     return found_symbol;
639 
640   /* File-local symbols are next best.  */
641   return found_file_symbol;
642 }
643 
644 /* See minsyms.h.  */
645 
646 struct minimal_symbol *
647 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
648 				  struct objfile *objf)
649 {
650   struct minimal_symbol *msymbol;
651 
652   unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
653 
654   for (objfile *objfile : current_program_space->objfiles ())
655     {
656       if (objf == NULL || objf == objfile
657 	  || objf == objfile->separate_debug_objfile_backlink)
658 	{
659 	  for (msymbol = objfile->per_bfd->msymbol_hash[hash];
660 	       msymbol != NULL;
661 	       msymbol = msymbol->hash_next)
662 	    {
663 	      if (msymbol->value_address (objfile) == pc
664 		  && strcmp (msymbol->linkage_name (), name) == 0)
665 		return msymbol;
666 	    }
667 	}
668     }
669 
670   return NULL;
671 }
672 
673 /* A helper function that makes *PC section-relative.  This searches
674    the sections of OBJFILE and if *PC is in a section, it subtracts
675    the section offset and returns true.  Otherwise it returns
676    false.  */
677 
678 static int
679 frob_address (struct objfile *objfile, CORE_ADDR *pc)
680 {
681   struct obj_section *iter;
682 
683   ALL_OBJFILE_OSECTIONS (objfile, iter)
684     {
685       if (*pc >= iter->addr () && *pc < iter->endaddr ())
686 	{
687 	  *pc -= iter->offset ();
688 	  return 1;
689 	}
690     }
691 
692   return 0;
693 }
694 
695 /* Helper for lookup_minimal_symbol_by_pc_section.  Convert a
696    lookup_msym_prefer to a minimal_symbol_type.  */
697 
698 static minimal_symbol_type
699 msym_prefer_to_msym_type (lookup_msym_prefer prefer)
700 {
701   switch (prefer)
702     {
703     case lookup_msym_prefer::TEXT:
704       return mst_text;
705     case lookup_msym_prefer::TRAMPOLINE:
706       return mst_solib_trampoline;
707     case lookup_msym_prefer::GNU_IFUNC:
708       return mst_text_gnu_ifunc;
709     }
710 
711   /* Assert here instead of in a default switch case above so that
712      -Wswitch warns if a new enumerator is added.  */
713   gdb_assert_not_reached ("unhandled lookup_msym_prefer");
714 }
715 
716 /* See minsyms.h.
717 
718    Note that we need to look through ALL the minimal symbol tables
719    before deciding on the symbol that comes closest to the specified PC.
720    This is because objfiles can overlap, for example objfile A has .text
721    at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
722    .data at 0x40048.  */
723 
724 bound_minimal_symbol
725 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc_in, struct obj_section *section,
726 				     lookup_msym_prefer prefer,
727 				     bound_minimal_symbol *previous)
728 {
729   int lo;
730   int hi;
731   int newobj;
732   struct minimal_symbol *msymbol;
733   struct minimal_symbol *best_symbol = NULL;
734   struct objfile *best_objfile = NULL;
735   struct bound_minimal_symbol result;
736 
737   if (previous != nullptr)
738     {
739       previous->minsym = nullptr;
740       previous->objfile = nullptr;
741     }
742 
743   if (section == NULL)
744     {
745       section = find_pc_section (pc_in);
746       if (section == NULL)
747 	return {};
748     }
749 
750   minimal_symbol_type want_type = msym_prefer_to_msym_type (prefer);
751 
752   /* We can not require the symbol found to be in section, because
753      e.g. IRIX 6.5 mdebug relies on this code returning an absolute
754      symbol - but find_pc_section won't return an absolute section and
755      hence the code below would skip over absolute symbols.  We can
756      still take advantage of the call to find_pc_section, though - the
757      object file still must match.  In case we have separate debug
758      files, search both the file and its separate debug file.  There's
759      no telling which one will have the minimal symbols.  */
760 
761   gdb_assert (section != NULL);
762 
763   for (objfile *objfile : section->objfile->separate_debug_objfiles ())
764     {
765       CORE_ADDR pc = pc_in;
766 
767       /* If this objfile has a minimal symbol table, go search it
768 	 using a binary search.  */
769 
770       if (objfile->per_bfd->minimal_symbol_count > 0)
771 	{
772 	  int best_zero_sized = -1;
773 
774 	  msymbol = objfile->per_bfd->msymbols.get ();
775 	  lo = 0;
776 	  hi = objfile->per_bfd->minimal_symbol_count - 1;
777 
778 	  /* This code assumes that the minimal symbols are sorted by
779 	     ascending address values.  If the pc value is greater than or
780 	     equal to the first symbol's address, then some symbol in this
781 	     minimal symbol table is a suitable candidate for being the
782 	     "best" symbol.  This includes the last real symbol, for cases
783 	     where the pc value is larger than any address in this vector.
784 
785 	     By iterating until the address associated with the current
786 	     hi index (the endpoint of the test interval) is less than
787 	     or equal to the desired pc value, we accomplish two things:
788 	     (1) the case where the pc value is larger than any minimal
789 	     symbol address is trivially solved, (2) the address associated
790 	     with the hi index is always the one we want when the iteration
791 	     terminates.  In essence, we are iterating the test interval
792 	     down until the pc value is pushed out of it from the high end.
793 
794 	     Warning: this code is trickier than it would appear at first.  */
795 
796 	  if (frob_address (objfile, &pc)
797 	      && pc >= msymbol[lo].value_raw_address ())
798 	    {
799 	      while (msymbol[hi].value_raw_address () > pc)
800 		{
801 		  /* pc is still strictly less than highest address.  */
802 		  /* Note "new" will always be >= lo.  */
803 		  newobj = (lo + hi) / 2;
804 		  if ((msymbol[newobj].value_raw_address () >= pc)
805 		      || (lo == newobj))
806 		    {
807 		      hi = newobj;
808 		    }
809 		  else
810 		    {
811 		      lo = newobj;
812 		    }
813 		}
814 
815 	      /* If we have multiple symbols at the same address, we want
816 		 hi to point to the last one.  That way we can find the
817 		 right symbol if it has an index greater than hi.  */
818 	      while (hi < objfile->per_bfd->minimal_symbol_count - 1
819 		     && (msymbol[hi].value_raw_address ()
820 			 == msymbol[hi + 1].value_raw_address ()))
821 		hi++;
822 
823 	      /* Skip various undesirable symbols.  */
824 	      while (hi >= 0)
825 		{
826 		  /* Skip any absolute symbols.  This is apparently
827 		     what adb and dbx do, and is needed for the CM-5.
828 		     There are two known possible problems: (1) on
829 		     ELF, apparently end, edata, etc. are absolute.
830 		     Not sure ignoring them here is a big deal, but if
831 		     we want to use them, the fix would go in
832 		     elfread.c.  (2) I think shared library entry
833 		     points on the NeXT are absolute.  If we want
834 		     special handling for this it probably should be
835 		     triggered by a special mst_abs_or_lib or some
836 		     such.  */
837 
838 		  if (msymbol[hi].type () == mst_abs)
839 		    {
840 		      hi--;
841 		      continue;
842 		    }
843 
844 		  /* If SECTION was specified, skip any symbol from
845 		     wrong section.  */
846 		  if (section
847 		      /* Some types of debug info, such as COFF,
848 			 don't fill the bfd_section member, so don't
849 			 throw away symbols on those platforms.  */
850 		      && msymbol[hi].obj_section (objfile) != nullptr
851 		      && (!matching_obj_sections
852 			  (msymbol[hi].obj_section (objfile),
853 			   section)))
854 		    {
855 		      hi--;
856 		      continue;
857 		    }
858 
859 		  /* If we are looking for a trampoline and this is a
860 		     text symbol, or the other way around, check the
861 		     preceding symbol too.  If they are otherwise
862 		     identical prefer that one.  */
863 		  if (hi > 0
864 		      && msymbol[hi].type () != want_type
865 		      && msymbol[hi - 1].type () == want_type
866 		      && (msymbol[hi].size () == msymbol[hi - 1].size ())
867 		      && (msymbol[hi].value_raw_address ()
868 			  == msymbol[hi - 1].value_raw_address ())
869 		      && (msymbol[hi].obj_section (objfile)
870 			  == msymbol[hi - 1].obj_section (objfile)))
871 		    {
872 		      hi--;
873 		      continue;
874 		    }
875 
876 		  /* If the minimal symbol has a zero size, save it
877 		     but keep scanning backwards looking for one with
878 		     a non-zero size.  A zero size may mean that the
879 		     symbol isn't an object or function (e.g. a
880 		     label), or it may just mean that the size was not
881 		     specified.  */
882 		  if (msymbol[hi].size () == 0)
883 		    {
884 		      if (best_zero_sized == -1)
885 			best_zero_sized = hi;
886 		      hi--;
887 		      continue;
888 		    }
889 
890 		  /* If we are past the end of the current symbol, try
891 		     the previous symbol if it has a larger overlapping
892 		     size.  This happens on i686-pc-linux-gnu with glibc;
893 		     the nocancel variants of system calls are inside
894 		     the cancellable variants, but both have sizes.  */
895 		  if (hi > 0
896 		      && msymbol[hi].size () != 0
897 		      && pc >= (msymbol[hi].value_raw_address ()
898 				+ msymbol[hi].size ())
899 		      && pc < (msymbol[hi - 1].value_raw_address ()
900 			       + msymbol[hi - 1].size ()))
901 		    {
902 		      hi--;
903 		      continue;
904 		    }
905 
906 		  /* Otherwise, this symbol must be as good as we're going
907 		     to get.  */
908 		  break;
909 		}
910 
911 	      /* If HI has a zero size, and best_zero_sized is set,
912 		 then we had two or more zero-sized symbols; prefer
913 		 the first one we found (which may have a higher
914 		 address).  Also, if we ran off the end, be sure
915 		 to back up.  */
916 	      if (best_zero_sized != -1
917 		  && (hi < 0 || msymbol[hi].size () == 0))
918 		hi = best_zero_sized;
919 
920 	      /* If the minimal symbol has a non-zero size, and this
921 		 PC appears to be outside the symbol's contents, then
922 		 refuse to use this symbol.  If we found a zero-sized
923 		 symbol with an address greater than this symbol's,
924 		 use that instead.  We assume that if symbols have
925 		 specified sizes, they do not overlap.  */
926 
927 	      if (hi >= 0
928 		  && msymbol[hi].size () != 0
929 		  && pc >= (msymbol[hi].value_raw_address ()
930 			    + msymbol[hi].size ()))
931 		{
932 		  if (best_zero_sized != -1)
933 		    hi = best_zero_sized;
934 		  else
935 		    {
936 		      /* If needed record this symbol as the closest
937 			 previous symbol.  */
938 		      if (previous != nullptr)
939 			{
940 			  if (previous->minsym == nullptr
941 			      || (msymbol[hi].value_raw_address ()
942 				  > previous->minsym->value_raw_address ()))
943 			    {
944 			      previous->minsym = &msymbol[hi];
945 			      previous->objfile = objfile;
946 			    }
947 			}
948 		      /* Go on to the next object file.  */
949 		      continue;
950 		    }
951 		}
952 
953 	      /* The minimal symbol indexed by hi now is the best one in this
954 		 objfile's minimal symbol table.  See if it is the best one
955 		 overall.  */
956 
957 	      if (hi >= 0
958 		  && ((best_symbol == NULL) ||
959 		      (best_symbol->value_raw_address () <
960 		       msymbol[hi].value_raw_address ())))
961 		{
962 		  best_symbol = &msymbol[hi];
963 		  best_objfile = objfile;
964 		}
965 	    }
966 	}
967     }
968 
969   result.minsym = best_symbol;
970   result.objfile = best_objfile;
971   return result;
972 }
973 
974 /* See minsyms.h.  */
975 
976 struct bound_minimal_symbol
977 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
978 {
979   return lookup_minimal_symbol_by_pc_section (pc, NULL);
980 }
981 
982 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver.  */
983 
984 bool
985 in_gnu_ifunc_stub (CORE_ADDR pc)
986 {
987   bound_minimal_symbol msymbol
988     = lookup_minimal_symbol_by_pc_section (pc, NULL,
989 					   lookup_msym_prefer::GNU_IFUNC);
990   return msymbol.minsym && msymbol.minsym->type () == mst_text_gnu_ifunc;
991 }
992 
993 /* See elf_gnu_ifunc_resolve_addr for its real implementation.  */
994 
995 static CORE_ADDR
996 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
997 {
998   error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
999 	   "the ELF support compiled in."),
1000 	 paddress (gdbarch, pc));
1001 }
1002 
1003 /* See elf_gnu_ifunc_resolve_name for its real implementation.  */
1004 
1005 static bool
1006 stub_gnu_ifunc_resolve_name (const char *function_name,
1007 			     CORE_ADDR *function_address_p)
1008 {
1009   error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
1010 	   "the ELF support compiled in."),
1011 	 function_name);
1012 }
1013 
1014 /* See elf_gnu_ifunc_resolver_stop for its real implementation.  */
1015 
1016 static void
1017 stub_gnu_ifunc_resolver_stop (code_breakpoint *b)
1018 {
1019   internal_error (_("elf_gnu_ifunc_resolver_stop cannot be reached."));
1020 }
1021 
1022 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation.  */
1023 
1024 static void
1025 stub_gnu_ifunc_resolver_return_stop (code_breakpoint *b)
1026 {
1027   internal_error (_("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
1028 }
1029 
1030 /* See elf_gnu_ifunc_fns for its real implementation.  */
1031 
1032 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
1033 {
1034   stub_gnu_ifunc_resolve_addr,
1035   stub_gnu_ifunc_resolve_name,
1036   stub_gnu_ifunc_resolver_stop,
1037   stub_gnu_ifunc_resolver_return_stop,
1038 };
1039 
1040 /* A placeholder for &elf_gnu_ifunc_fns.  */
1041 
1042 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
1043 
1044 
1045 
1046 /* Return leading symbol character for a BFD.  If BFD is NULL,
1047    return the leading symbol character from the main objfile.  */
1048 
1049 static int
1050 get_symbol_leading_char (bfd *abfd)
1051 {
1052   if (abfd != NULL)
1053     return bfd_get_symbol_leading_char (abfd);
1054   if (current_program_space->symfile_object_file != NULL)
1055     {
1056       objfile *objf = current_program_space->symfile_object_file;
1057       if (objf->obfd != NULL)
1058 	return bfd_get_symbol_leading_char (objf->obfd.get ());
1059     }
1060   return 0;
1061 }
1062 
1063 /* See minsyms.h.  */
1064 
1065 minimal_symbol_reader::minimal_symbol_reader (struct objfile *obj)
1066 : m_objfile (obj),
1067   m_msym_bunch (NULL),
1068   /* Note that presetting m_msym_bunch_index to BUNCH_SIZE causes the
1069      first call to save a minimal symbol to allocate the memory for
1070      the first bunch.  */
1071   m_msym_bunch_index (BUNCH_SIZE),
1072   m_msym_count (0)
1073 {
1074 }
1075 
1076 /* Discard the currently collected minimal symbols, if any.  If we wish
1077    to save them for later use, we must have already copied them somewhere
1078    else before calling this function.  */
1079 
1080 minimal_symbol_reader::~minimal_symbol_reader ()
1081 {
1082   struct msym_bunch *next;
1083 
1084   while (m_msym_bunch != NULL)
1085     {
1086       next = m_msym_bunch->next;
1087       xfree (m_msym_bunch);
1088       m_msym_bunch = next;
1089     }
1090 }
1091 
1092 /* See minsyms.h.  */
1093 
1094 void
1095 minimal_symbol_reader::record (const char *name, CORE_ADDR address,
1096 			       enum minimal_symbol_type ms_type)
1097 {
1098   int section;
1099 
1100   switch (ms_type)
1101     {
1102     case mst_text:
1103     case mst_text_gnu_ifunc:
1104     case mst_file_text:
1105     case mst_solib_trampoline:
1106       section = SECT_OFF_TEXT (m_objfile);
1107       break;
1108     case mst_data:
1109     case mst_data_gnu_ifunc:
1110     case mst_file_data:
1111       section = SECT_OFF_DATA (m_objfile);
1112       break;
1113     case mst_bss:
1114     case mst_file_bss:
1115       section = SECT_OFF_BSS (m_objfile);
1116       break;
1117     default:
1118       section = -1;
1119     }
1120 
1121   record_with_info (name, address, ms_type, section);
1122 }
1123 
1124 /* Convert an enumerator of type minimal_symbol_type to its string
1125    representation.  */
1126 
1127 static const char *
1128 mst_str (minimal_symbol_type t)
1129 {
1130 #define MST_TO_STR(x) case x: return #x;
1131   switch (t)
1132   {
1133     MST_TO_STR (mst_unknown);
1134     MST_TO_STR (mst_text);
1135     MST_TO_STR (mst_text_gnu_ifunc);
1136     MST_TO_STR (mst_slot_got_plt);
1137     MST_TO_STR (mst_data);
1138     MST_TO_STR (mst_bss);
1139     MST_TO_STR (mst_abs);
1140     MST_TO_STR (mst_solib_trampoline);
1141     MST_TO_STR (mst_file_text);
1142     MST_TO_STR (mst_file_data);
1143     MST_TO_STR (mst_file_bss);
1144 
1145     default:
1146       return "mst_???";
1147   }
1148 #undef MST_TO_STR
1149 }
1150 
1151 /* See minsyms.h.  */
1152 
1153 struct minimal_symbol *
1154 minimal_symbol_reader::record_full (gdb::string_view name,
1155 				    bool copy_name, CORE_ADDR address,
1156 				    enum minimal_symbol_type ms_type,
1157 				    int section)
1158 {
1159   struct msym_bunch *newobj;
1160   struct minimal_symbol *msymbol;
1161 
1162   /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
1163      the minimal symbols, because if there is also another symbol
1164      at the same address (e.g. the first function of the file),
1165      lookup_minimal_symbol_by_pc would have no way of getting the
1166      right one.  */
1167   if (ms_type == mst_file_text && name[0] == 'g'
1168       && (name == GCC_COMPILED_FLAG_SYMBOL
1169 	  || name == GCC2_COMPILED_FLAG_SYMBOL))
1170     return (NULL);
1171 
1172   /* It's safe to strip the leading char here once, since the name
1173      is also stored stripped in the minimal symbol table.  */
1174   if (name[0] == get_symbol_leading_char (m_objfile->obfd.get ()))
1175     name = name.substr (1);
1176 
1177   if (ms_type == mst_file_text && startswith (name, "__gnu_compiled"))
1178     return (NULL);
1179 
1180   symtab_create_debug_printf_v ("recording minsym:  %-21s  %18s  %4d  %.*s",
1181 				mst_str (ms_type), hex_string (address), section,
1182 				(int) name.size (), name.data ());
1183 
1184   if (m_msym_bunch_index == BUNCH_SIZE)
1185     {
1186       newobj = XCNEW (struct msym_bunch);
1187       m_msym_bunch_index = 0;
1188       newobj->next = m_msym_bunch;
1189       m_msym_bunch = newobj;
1190     }
1191   msymbol = &m_msym_bunch->contents[m_msym_bunch_index];
1192   msymbol->set_language (language_auto,
1193 			 &m_objfile->per_bfd->storage_obstack);
1194 
1195   if (copy_name)
1196     msymbol->m_name = obstack_strndup (&m_objfile->per_bfd->storage_obstack,
1197 				       name.data (), name.size ());
1198   else
1199     msymbol->m_name = name.data ();
1200 
1201   msymbol->set_value_address (address);
1202   msymbol->set_section_index (section);
1203 
1204   msymbol->set_type (ms_type);
1205 
1206   /* If we already read minimal symbols for this objfile, then don't
1207      ever allocate a new one.  */
1208   if (!m_objfile->per_bfd->minsyms_read)
1209     {
1210       m_msym_bunch_index++;
1211       m_objfile->per_bfd->n_minsyms++;
1212     }
1213   m_msym_count++;
1214   return msymbol;
1215 }
1216 
1217 /* Compare two minimal symbols by address and return true if FN1's address
1218    is less than FN2's, so that we sort into unsigned numeric order.
1219    Within groups with the same address, sort by name.  */
1220 
1221 static inline bool
1222 minimal_symbol_is_less_than (const minimal_symbol &fn1,
1223 			     const minimal_symbol &fn2)
1224 {
1225   if ((&fn1)->value_raw_address () < (&fn2)->value_raw_address ())
1226     {
1227       return true;		/* addr 1 is less than addr 2.  */
1228     }
1229   else if ((&fn1)->value_raw_address () > (&fn2)->value_raw_address ())
1230     {
1231       return false;		/* addr 1 is greater than addr 2.  */
1232     }
1233   else
1234     /* addrs are equal: sort by name */
1235     {
1236       const char *name1 = fn1.linkage_name ();
1237       const char *name2 = fn2.linkage_name ();
1238 
1239       if (name1 && name2)	/* both have names */
1240 	return strcmp (name1, name2) < 0;
1241       else if (name2)
1242 	return true;		/* fn1 has no name, so it is "less".  */
1243       else if (name1)		/* fn2 has no name, so it is "less".  */
1244 	return false;
1245       else
1246 	return false;		/* Neither has a name, so they're equal.  */
1247     }
1248 }
1249 
1250 /* Compact duplicate entries out of a minimal symbol table by walking
1251    through the table and compacting out entries with duplicate addresses
1252    and matching names.  Return the number of entries remaining.
1253 
1254    On entry, the table resides between msymbol[0] and msymbol[mcount].
1255    On exit, it resides between msymbol[0] and msymbol[result_count].
1256 
1257    When files contain multiple sources of symbol information, it is
1258    possible for the minimal symbol table to contain many duplicate entries.
1259    As an example, SVR4 systems use ELF formatted object files, which
1260    usually contain at least two different types of symbol tables (a
1261    standard ELF one and a smaller dynamic linking table), as well as
1262    DWARF debugging information for files compiled with -g.
1263 
1264    Without compacting, the minimal symbol table for gdb itself contains
1265    over a 1000 duplicates, about a third of the total table size.  Aside
1266    from the potential trap of not noticing that two successive entries
1267    identify the same location, this duplication impacts the time required
1268    to linearly scan the table, which is done in a number of places.  So we
1269    just do one linear scan here and toss out the duplicates.
1270 
1271    Since the different sources of information for each symbol may
1272    have different levels of "completeness", we may have duplicates
1273    that have one entry with type "mst_unknown" and the other with a
1274    known type.  So if the one we are leaving alone has type mst_unknown,
1275    overwrite its type with the type from the one we are compacting out.  */
1276 
1277 static int
1278 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1279 			 struct objfile *objfile)
1280 {
1281   struct minimal_symbol *copyfrom;
1282   struct minimal_symbol *copyto;
1283 
1284   if (mcount > 0)
1285     {
1286       copyfrom = copyto = msymbol;
1287       while (copyfrom < msymbol + mcount - 1)
1288 	{
1289 	  if (copyfrom->value_raw_address ()
1290 	      == (copyfrom + 1)->value_raw_address ()
1291 	      && (copyfrom->section_index ()
1292 		  == (copyfrom + 1)->section_index ())
1293 	      && strcmp (copyfrom->linkage_name (),
1294 			 (copyfrom + 1)->linkage_name ()) == 0)
1295 	    {
1296 	      if ((copyfrom + 1)->type () == mst_unknown)
1297 		(copyfrom + 1)->set_type (copyfrom->type ());
1298 
1299 	      copyfrom++;
1300 	    }
1301 	  else
1302 	    *copyto++ = *copyfrom++;
1303 	}
1304       *copyto++ = *copyfrom++;
1305       mcount = copyto - msymbol;
1306     }
1307   return (mcount);
1308 }
1309 
1310 static void
1311 clear_minimal_symbol_hash_tables (struct objfile *objfile)
1312 {
1313   for (size_t i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1314     {
1315       objfile->per_bfd->msymbol_hash[i] = 0;
1316       objfile->per_bfd->msymbol_demangled_hash[i] = 0;
1317     }
1318 }
1319 
1320 /* This struct is used to store values we compute for msymbols on the
1321    background threads but don't need to keep around long term.  */
1322 struct computed_hash_values
1323 {
1324   /* Length of the linkage_name of the symbol.  */
1325   size_t name_length;
1326   /* Hash code (using fast_hash) of the linkage_name.  */
1327   hashval_t mangled_name_hash;
1328   /* The msymbol_hash of the linkage_name.  */
1329   unsigned int minsym_hash;
1330   /* The msymbol_hash of the search_name.  */
1331   unsigned int minsym_demangled_hash;
1332 };
1333 
1334 /* Build (or rebuild) the minimal symbol hash tables.  This is necessary
1335    after compacting or sorting the table since the entries move around
1336    thus causing the internal minimal_symbol pointers to become jumbled.  */
1337 
1338 static void
1339 build_minimal_symbol_hash_tables
1340   (struct objfile *objfile,
1341    const std::vector<computed_hash_values>& hash_values)
1342 {
1343   int i;
1344   struct minimal_symbol *msym;
1345 
1346   /* (Re)insert the actual entries.  */
1347   int mcount = objfile->per_bfd->minimal_symbol_count;
1348   for ((i = 0,
1349 	msym = objfile->per_bfd->msymbols.get ());
1350        i < mcount;
1351        i++, msym++)
1352     {
1353       msym->hash_next = 0;
1354       add_minsym_to_hash_table (msym, objfile->per_bfd->msymbol_hash,
1355 				hash_values[i].minsym_hash);
1356 
1357       msym->demangled_hash_next = 0;
1358       if (msym->search_name () != msym->linkage_name ())
1359 	add_minsym_to_demangled_hash_table
1360 	  (msym, objfile, hash_values[i].minsym_demangled_hash);
1361     }
1362 }
1363 
1364 /* Add the minimal symbols in the existing bunches to the objfile's official
1365    minimal symbol table.  In most cases there is no minimal symbol table yet
1366    for this objfile, and the existing bunches are used to create one.  Once
1367    in a while (for shared libraries for example), we add symbols (e.g. common
1368    symbols) to an existing objfile.  */
1369 
1370 void
1371 minimal_symbol_reader::install ()
1372 {
1373   int mcount;
1374   struct msym_bunch *bunch;
1375   struct minimal_symbol *msymbols;
1376   int alloc_count;
1377 
1378   if (m_objfile->per_bfd->minsyms_read)
1379     return;
1380 
1381   if (m_msym_count > 0)
1382     {
1383       symtab_create_debug_printf ("installing %d minimal symbols of objfile %s",
1384 				  m_msym_count, objfile_name (m_objfile));
1385 
1386       /* Allocate enough space, into which we will gather the bunches
1387 	 of new and existing minimal symbols, sort them, and then
1388 	 compact out the duplicate entries.  Once we have a final
1389 	 table, we will give back the excess space.  */
1390 
1391       alloc_count = m_msym_count + m_objfile->per_bfd->minimal_symbol_count;
1392       gdb::unique_xmalloc_ptr<minimal_symbol>
1393 	msym_holder (XNEWVEC (minimal_symbol, alloc_count));
1394       msymbols = msym_holder.get ();
1395 
1396       /* Copy in the existing minimal symbols, if there are any.  */
1397 
1398       if (m_objfile->per_bfd->minimal_symbol_count)
1399 	memcpy (msymbols, m_objfile->per_bfd->msymbols.get (),
1400 		m_objfile->per_bfd->minimal_symbol_count
1401 		* sizeof (struct minimal_symbol));
1402 
1403       /* Walk through the list of minimal symbol bunches, adding each symbol
1404 	 to the new contiguous array of symbols.  Note that we start with the
1405 	 current, possibly partially filled bunch (thus we use the current
1406 	 msym_bunch_index for the first bunch we copy over), and thereafter
1407 	 each bunch is full.  */
1408 
1409       mcount = m_objfile->per_bfd->minimal_symbol_count;
1410 
1411       for (bunch = m_msym_bunch; bunch != NULL; bunch = bunch->next)
1412 	{
1413 	  memcpy (&msymbols[mcount], &bunch->contents[0],
1414 		  m_msym_bunch_index * sizeof (struct minimal_symbol));
1415 	  mcount += m_msym_bunch_index;
1416 	  m_msym_bunch_index = BUNCH_SIZE;
1417 	}
1418 
1419       /* Sort the minimal symbols by address.  */
1420 
1421       std::sort (msymbols, msymbols + mcount, minimal_symbol_is_less_than);
1422 
1423       /* Compact out any duplicates, and free up whatever space we are
1424 	 no longer using.  */
1425 
1426       mcount = compact_minimal_symbols (msymbols, mcount, m_objfile);
1427       msym_holder.reset (XRESIZEVEC (struct minimal_symbol,
1428 				     msym_holder.release (),
1429 				     mcount));
1430 
1431       /* Attach the minimal symbol table to the specified objfile.
1432 	 The strings themselves are also located in the storage_obstack
1433 	 of this objfile.  */
1434 
1435       if (m_objfile->per_bfd->minimal_symbol_count != 0)
1436 	clear_minimal_symbol_hash_tables (m_objfile);
1437 
1438       m_objfile->per_bfd->minimal_symbol_count = mcount;
1439       m_objfile->per_bfd->msymbols = std::move (msym_holder);
1440 
1441 #if CXX_STD_THREAD
1442       /* Mutex that is used when modifying or accessing the demangled
1443 	 hash table.  */
1444       std::mutex demangled_mutex;
1445 #endif
1446 
1447       std::vector<computed_hash_values> hash_values (mcount);
1448 
1449       msymbols = m_objfile->per_bfd->msymbols.get ();
1450       /* Arbitrarily require at least 10 elements in a thread.  */
1451       gdb::parallel_for_each (10, &msymbols[0], &msymbols[mcount],
1452 	 [&] (minimal_symbol *start, minimal_symbol *end)
1453 	 {
1454 	   for (minimal_symbol *msym = start; msym < end; ++msym)
1455 	     {
1456 	       size_t idx = msym - msymbols;
1457 	       hash_values[idx].name_length = strlen (msym->linkage_name ());
1458 	       if (!msym->name_set)
1459 		 {
1460 		   /* This will be freed later, by compute_and_set_names.  */
1461 		   gdb::unique_xmalloc_ptr<char> demangled_name
1462 		     = symbol_find_demangled_name (msym, msym->linkage_name ());
1463 		   msym->set_demangled_name
1464 		     (demangled_name.release (),
1465 		      &m_objfile->per_bfd->storage_obstack);
1466 		   msym->name_set = 1;
1467 		 }
1468 	       /* This mangled_name_hash computation has to be outside of
1469 		  the name_set check, or compute_and_set_names below will
1470 		  be called with an invalid hash value.  */
1471 	       hash_values[idx].mangled_name_hash
1472 		 = fast_hash (msym->linkage_name (),
1473 			      hash_values[idx].name_length);
1474 	       hash_values[idx].minsym_hash
1475 		 = msymbol_hash (msym->linkage_name ());
1476 	       /* We only use this hash code if the search name differs
1477 		  from the linkage name.  See the code in
1478 		  build_minimal_symbol_hash_tables.  */
1479 	       if (msym->search_name () != msym->linkage_name ())
1480 		 hash_values[idx].minsym_demangled_hash
1481 		   = search_name_hash (msym->language (), msym->search_name ());
1482 	     }
1483 	   {
1484 	     /* To limit how long we hold the lock, we only acquire it here
1485 		and not while we demangle the names above.  */
1486 #if CXX_STD_THREAD
1487 	     std::lock_guard<std::mutex> guard (demangled_mutex);
1488 #endif
1489 	     for (minimal_symbol *msym = start; msym < end; ++msym)
1490 	       {
1491 		 size_t idx = msym - msymbols;
1492 		 msym->compute_and_set_names
1493 		   (gdb::string_view (msym->linkage_name (),
1494 				      hash_values[idx].name_length),
1495 		    false,
1496 		    m_objfile->per_bfd,
1497 		    hash_values[idx].mangled_name_hash);
1498 	       }
1499 	   }
1500 	 });
1501 
1502       build_minimal_symbol_hash_tables (m_objfile, hash_values);
1503     }
1504 }
1505 
1506 /* Check if PC is in a shared library trampoline code stub.
1507    Return minimal symbol for the trampoline entry or NULL if PC is not
1508    in a trampoline code stub.  */
1509 
1510 static struct minimal_symbol *
1511 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1512 {
1513   bound_minimal_symbol msymbol
1514     = lookup_minimal_symbol_by_pc_section (pc, NULL,
1515 					   lookup_msym_prefer::TRAMPOLINE);
1516 
1517   if (msymbol.minsym != NULL
1518       && msymbol.minsym->type () == mst_solib_trampoline)
1519     return msymbol.minsym;
1520   return NULL;
1521 }
1522 
1523 /* If PC is in a shared library trampoline code stub, return the
1524    address of the `real' function belonging to the stub.
1525    Return 0 if PC is not in a trampoline code stub or if the real
1526    function is not found in the minimal symbol table.
1527 
1528    We may fail to find the right function if a function with the
1529    same name is defined in more than one shared library, but this
1530    is considered bad programming style.  We could return 0 if we find
1531    a duplicate function in case this matters someday.  */
1532 
1533 CORE_ADDR
1534 find_solib_trampoline_target (frame_info_ptr frame, CORE_ADDR pc)
1535 {
1536   struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1537 
1538   if (tsymbol != NULL)
1539     {
1540       for (objfile *objfile : current_program_space->objfiles ())
1541 	{
1542 	  for (minimal_symbol *msymbol : objfile->msymbols ())
1543 	    {
1544 	      /* Also handle minimal symbols pointing to function
1545 		 descriptors.  */
1546 	      if ((msymbol->type () == mst_text
1547 		   || msymbol->type () == mst_text_gnu_ifunc
1548 		   || msymbol->type () == mst_data
1549 		   || msymbol->type () == mst_data_gnu_ifunc)
1550 		  && strcmp (msymbol->linkage_name (),
1551 			     tsymbol->linkage_name ()) == 0)
1552 		{
1553 		  CORE_ADDR func;
1554 
1555 		  /* Ignore data symbols that are not function
1556 		     descriptors.  */
1557 		  if (msymbol_is_function (objfile, msymbol, &func))
1558 		    return func;
1559 		}
1560 	    }
1561 	}
1562     }
1563   return 0;
1564 }
1565 
1566 /* See minsyms.h.  */
1567 
1568 CORE_ADDR
1569 minimal_symbol_upper_bound (struct bound_minimal_symbol minsym)
1570 {
1571   short section;
1572   struct obj_section *obj_section;
1573   CORE_ADDR result;
1574   struct minimal_symbol *iter, *msymbol;
1575 
1576   gdb_assert (minsym.minsym != NULL);
1577 
1578   /* If the minimal symbol has a size, use it.  Otherwise use the
1579      lesser of the next minimal symbol in the same section, or the end
1580      of the section, as the end of the function.  */
1581 
1582   if (minsym.minsym->size () != 0)
1583     return minsym.value_address () + minsym.minsym->size ();
1584 
1585   /* Step over other symbols at this same address, and symbols in
1586      other sections, to find the next symbol in this section with a
1587      different address.  */
1588 
1589   struct minimal_symbol *past_the_end
1590     = (minsym.objfile->per_bfd->msymbols.get ()
1591        + minsym.objfile->per_bfd->minimal_symbol_count);
1592   msymbol = minsym.minsym;
1593   section = msymbol->section_index ();
1594   for (iter = msymbol + 1; iter != past_the_end; ++iter)
1595     {
1596       if ((iter->value_raw_address ()
1597 	   != msymbol->value_raw_address ())
1598 	  && iter->section_index () == section)
1599 	break;
1600     }
1601 
1602   obj_section = minsym.obj_section ();
1603   if (iter != past_the_end
1604       && (iter->value_address (minsym.objfile)
1605 	  < obj_section->endaddr ()))
1606     result = iter->value_address (minsym.objfile);
1607   else
1608     /* We got the start address from the last msymbol in the objfile.
1609        So the end address is the end of the section.  */
1610     result = obj_section->endaddr ();
1611 
1612   return result;
1613 }
1614