xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/mep-tdep.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
2 
3    Copyright (C) 2001-2016 Free Software Foundation, Inc.
4 
5    Contributed by Red Hat, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "value.h"
31 #include "inferior.h"
32 #include "dis-asm.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "language.h"
36 #include "arch-utils.h"
37 #include "regcache.h"
38 #include "remote.h"
39 #include "floatformat.h"
40 #include "sim-regno.h"
41 #include "disasm.h"
42 #include "trad-frame.h"
43 #include "reggroups.h"
44 #include "elf-bfd.h"
45 #include "elf/mep.h"
46 #include "prologue-value.h"
47 #include "cgen/bitset.h"
48 #include "infcall.h"
49 
50 /* Get the user's customized MeP coprocessor register names from
51    libopcodes.  */
52 #include "opcodes/mep-desc.h"
53 #include "opcodes/mep-opc.h"
54 
55 
56 /* The gdbarch_tdep structure.  */
57 
58 /* A quick recap for GDB hackers not familiar with the whole Toshiba
59    Media Processor story:
60 
61    The MeP media engine is a configureable processor: users can design
62    their own coprocessors, implement custom instructions, adjust cache
63    sizes, select optional standard facilities like add-and-saturate
64    instructions, and so on.  Then, they can build custom versions of
65    the GNU toolchain to support their customized chips.  The
66    MeP-Integrator program (see utils/mep) takes a GNU toolchain source
67    tree, and a config file pointing to various files provided by the
68    user describing their customizations, and edits the source tree to
69    produce a compiler that can generate their custom instructions, an
70    assembler that can assemble them and recognize their custom
71    register names, and so on.
72 
73    Furthermore, the user can actually specify several of these custom
74    configurations, called 'me_modules', and get a toolchain which can
75    produce code for any of them, given a compiler/assembler switch;
76    you say something like 'gcc -mconfig=mm_max' to generate code for
77    the me_module named 'mm_max'.
78 
79    GDB, in particular, needs to:
80 
81    - use the coprocessor control register names provided by the user
82      in their hardware description, in expressions, 'info register'
83      output, and disassembly,
84 
85    - know the number, names, and types of the coprocessor's
86      general-purpose registers, adjust the 'info all-registers' output
87      accordingly, and print error messages if the user refers to one
88      that doesn't exist
89 
90    - allow access to the control bus space only when the configuration
91      actually has a control bus, and recognize which regions of the
92      control bus space are actually populated,
93 
94    - disassemble using the user's provided mnemonics for their custom
95      instructions, and
96 
97    - recognize whether the $hi and $lo registers are present, and
98      allow access to them only when they are actually there.
99 
100    There are three sources of information about what sort of me_module
101    we're actually dealing with:
102 
103    - A MeP executable file indicates which me_module it was compiled
104      for, and libopcodes has tables describing each module.  So, given
105      an executable file, we can find out about the processor it was
106      compiled for.
107 
108    - There are SID command-line options to select a particular
109      me_module, overriding the one specified in the ELF file.  SID
110      provides GDB with a fake read-only register, 'module', which
111      indicates which me_module GDB is communicating with an instance
112      of.
113 
114    - There are SID command-line options to enable or disable certain
115      optional processor features, overriding the defaults for the
116      selected me_module.  The MeP $OPT register indicates which
117      options are present on the current processor.  */
118 
119 
120 struct gdbarch_tdep
121 {
122   /* A CGEN cpu descriptor for this BFD architecture and machine.
123 
124      Note: this is *not* customized for any particular me_module; the
125      MeP libopcodes machinery actually puts off module-specific
126      customization until the last minute.  So this contains
127      information about all supported me_modules.  */
128   CGEN_CPU_DESC cpu_desc;
129 
130   /* The me_module index from the ELF file we used to select this
131      architecture, or CONFIG_NONE if there was none.
132 
133      Note that we should prefer to use the me_module number available
134      via the 'module' register, whenever we're actually talking to a
135      real target.
136 
137      In the absence of live information, we'd like to get the
138      me_module number from the ELF file.  But which ELF file: the
139      executable file, the core file, ... ?  The answer is, "the last
140      ELF file we used to set the current architecture".  Thus, we
141      create a separate instance of the gdbarch structure for each
142      me_module value mep_gdbarch_init sees, and store the me_module
143      value from the ELF file here.  */
144   CONFIG_ATTR me_module;
145 };
146 
147 
148 
149 /* Getting me_module information from the CGEN tables.  */
150 
151 
152 /* Find an entry in the DESC's hardware table whose name begins with
153    PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
154    intersect with GENERIC_ISA_MASK.  If there is no matching entry,
155    return zero.  */
156 static const CGEN_HW_ENTRY *
157 find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
158                                  const char *prefix,
159                                  CGEN_BITSET *copro_isa_mask,
160                                  CGEN_BITSET *generic_isa_mask)
161 {
162   int prefix_len = strlen (prefix);
163   int i;
164 
165   for (i = 0; i < desc->hw_table.num_entries; i++)
166     {
167       const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
168       if (strncmp (prefix, hw->name, prefix_len) == 0)
169         {
170           CGEN_BITSET *hw_isa_mask
171             = ((CGEN_BITSET *)
172                &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
173 
174           if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
175               && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
176             return hw;
177         }
178     }
179 
180   return 0;
181 }
182 
183 
184 /* Find an entry in DESC's hardware table whose type is TYPE.  Return
185    zero if there is none.  */
186 static const CGEN_HW_ENTRY *
187 find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
188 {
189   int i;
190 
191   for (i = 0; i < desc->hw_table.num_entries; i++)
192     {
193       const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
194 
195       if (hw->type == type)
196         return hw;
197     }
198 
199   return 0;
200 }
201 
202 
203 /* Return the CGEN hardware table entry for the coprocessor register
204    set for ME_MODULE, whose name prefix is PREFIX.  If ME_MODULE has
205    no such register set, return zero.  If ME_MODULE is the generic
206    me_module CONFIG_NONE, return the table entry for the register set
207    whose hardware type is GENERIC_TYPE.  */
208 static const CGEN_HW_ENTRY *
209 me_module_register_set (CONFIG_ATTR me_module,
210                         const char *prefix,
211                         CGEN_HW_TYPE generic_type)
212 {
213   /* This is kind of tricky, because the hardware table is constructed
214      in a way that isn't very helpful.  Perhaps we can fix that, but
215      here's how it works at the moment:
216 
217      The configuration map, `mep_config_map', is indexed by me_module
218      number, and indicates which coprocessor and core ISAs that
219      me_module supports.  The 'core_isa' mask includes all the core
220      ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
221      The entry for the generic me_module, CONFIG_NONE, has an empty
222      'cop_isa', and its 'core_isa' selects only the standard MeP
223      instruction set.
224 
225      The CGEN CPU descriptor's hardware table, desc->hw_table, has
226      entries for all the register sets, for all me_modules.  Each
227      entry has a mask indicating which ISAs use that register set.
228      So, if an me_module supports some coprocessor ISA, we can find
229      applicable register sets by scanning the hardware table for
230      register sets whose masks include (at least some of) those ISAs.
231 
232      Each hardware table entry also has a name, whose prefix says
233      whether it's a general-purpose ("h-cr") or control ("h-ccr")
234      coprocessor register set.  It might be nicer to have an attribute
235      indicating what sort of register set it was, that we could use
236      instead of pattern-matching on the name.
237 
238      When there is no hardware table entry whose mask includes a
239      particular coprocessor ISA and whose name starts with a given
240      prefix, then that means that that coprocessor doesn't have any
241      registers of that type.  In such cases, this function must return
242      a null pointer.
243 
244      Coprocessor register sets' masks may or may not include the core
245      ISA for the me_module they belong to.  Those generated by a2cgen
246      do, but the sample me_module included in the unconfigured tree,
247      'ccfx', does not.
248 
249      There are generic coprocessor register sets, intended only for
250      use with the generic me_module.  Unfortunately, their masks
251      include *all* ISAs --- even those for coprocessors that don't
252      have such register sets.  This makes detecting the case where a
253      coprocessor lacks a particular register set more complicated.
254 
255      So, here's the approach we take:
256 
257      - For CONFIG_NONE, we return the generic coprocessor register set.
258 
259      - For any other me_module, we search for a register set whose
260        mask contains any of the me_module's coprocessor ISAs,
261        specifically excluding the generic coprocessor register sets.  */
262 
263   CGEN_CPU_DESC desc = gdbarch_tdep (target_gdbarch ())->cpu_desc;
264   const CGEN_HW_ENTRY *hw;
265 
266   if (me_module == CONFIG_NONE)
267     hw = find_hw_entry_by_type (desc, generic_type);
268   else
269     {
270       CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
271       CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
272       CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
273       CGEN_BITSET *cop_and_core;
274 
275       /* The coprocessor ISAs include the ISA for the specific core which
276 	 has that coprocessor.  */
277       cop_and_core = cgen_bitset_copy (cop);
278       cgen_bitset_union (cop, core, cop_and_core);
279       hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
280     }
281 
282   return hw;
283 }
284 
285 
286 /* Given a hardware table entry HW representing a register set, return
287    a pointer to the keyword table with all the register names.  If HW
288    is NULL, return NULL, to propage the "no such register set" info
289    along.  */
290 static CGEN_KEYWORD *
291 register_set_keyword_table (const CGEN_HW_ENTRY *hw)
292 {
293   if (! hw)
294     return NULL;
295 
296   /* Check that HW is actually a keyword table.  */
297   gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
298 
299   /* The 'asm_data' field of a register set's hardware table entry
300      refers to a keyword table.  */
301   return (CGEN_KEYWORD *) hw->asm_data;
302 }
303 
304 
305 /* Given a keyword table KEYWORD and a register number REGNUM, return
306    the name of the register, or "" if KEYWORD contains no register
307    whose number is REGNUM.  */
308 static char *
309 register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
310 {
311   const CGEN_KEYWORD_ENTRY *entry
312     = cgen_keyword_lookup_value (keyword_table, regnum);
313 
314   if (entry)
315     {
316       char *name = entry->name;
317 
318       /* The CGEN keyword entries for register names include the
319          leading $, which appears in MeP assembly as well as in GDB.
320          But we don't want to return that; GDB core code adds that
321          itself.  */
322       if (name[0] == '$')
323         name++;
324 
325       return name;
326     }
327   else
328     return "";
329 }
330 
331 
332 /* Masks for option bits in the OPT special-purpose register.  */
333 enum {
334   MEP_OPT_DIV = 1 << 25,        /* 32-bit divide instruction option */
335   MEP_OPT_MUL = 1 << 24,        /* 32-bit multiply instruction option */
336   MEP_OPT_BIT = 1 << 23,        /* bit manipulation instruction option */
337   MEP_OPT_SAT = 1 << 22,        /* saturation instruction option */
338   MEP_OPT_CLP = 1 << 21,        /* clip instruction option */
339   MEP_OPT_MIN = 1 << 20,        /* min/max instruction option */
340   MEP_OPT_AVE = 1 << 19,        /* average instruction option */
341   MEP_OPT_ABS = 1 << 18,        /* absolute difference instruction option */
342   MEP_OPT_LDZ = 1 << 16,        /* leading zero instruction option */
343   MEP_OPT_VL64 = 1 << 6,        /* 64-bit VLIW operation mode option */
344   MEP_OPT_VL32 = 1 << 5,        /* 32-bit VLIW operation mode option */
345   MEP_OPT_COP = 1 << 4,         /* coprocessor option */
346   MEP_OPT_DSP = 1 << 2,         /* DSP option */
347   MEP_OPT_UCI = 1 << 1,         /* UCI option */
348   MEP_OPT_DBG = 1 << 0,         /* DBG function option */
349 };
350 
351 
352 /* Given the option_mask value for a particular entry in
353    mep_config_map, produce the value the processor's OPT register
354    would use to represent the same set of options.  */
355 static unsigned int
356 opt_from_option_mask (unsigned int option_mask)
357 {
358   /* A table mapping OPT register bits onto CGEN config map option
359      bits.  */
360   struct {
361     unsigned int opt_bit, option_mask_bit;
362   } bits[] = {
363     { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
364     { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
365     { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
366     { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
367     { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
368     { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
369     { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
370     { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
371     { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
372     { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
373     { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
374     { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
375     { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
376   };
377 
378   int i;
379   unsigned int opt = 0;
380 
381   for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
382     if (option_mask & bits[i].option_mask_bit)
383       opt |= bits[i].opt_bit;
384 
385   return opt;
386 }
387 
388 
389 /* Return the value the $OPT register would use to represent the set
390    of options for ME_MODULE.  */
391 static unsigned int
392 me_module_opt (CONFIG_ATTR me_module)
393 {
394   return opt_from_option_mask (mep_config_map[me_module].option_mask);
395 }
396 
397 
398 /* Return the width of ME_MODULE's coprocessor data bus, in bits.
399    This is either 32 or 64.  */
400 static int
401 me_module_cop_data_bus_width (CONFIG_ATTR me_module)
402 {
403   if (mep_config_map[me_module].option_mask
404       & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
405     return 64;
406   else
407     return 32;
408 }
409 
410 
411 /* Return true if ME_MODULE is big-endian, false otherwise.  */
412 static int
413 me_module_big_endian (CONFIG_ATTR me_module)
414 {
415   return mep_config_map[me_module].big_endian;
416 }
417 
418 
419 /* Return the name of ME_MODULE, or NULL if it has no name.  */
420 static const char *
421 me_module_name (CONFIG_ATTR me_module)
422 {
423   /* The default me_module has "" as its name, but it's easier for our
424      callers to test for NULL.  */
425   if (! mep_config_map[me_module].name
426       || mep_config_map[me_module].name[0] == '\0')
427     return NULL;
428   else
429     return mep_config_map[me_module].name;
430 }
431 
432 /* Register set.  */
433 
434 
435 /* The MeP spec defines the following registers:
436    16 general purpose registers (r0-r15)
437    32 control/special registers (csr0-csr31)
438    32 coprocessor general-purpose registers (c0 -- c31)
439    64 coprocessor control registers (ccr0 -- ccr63)
440 
441    For the raw registers, we assign numbers here explicitly, instead
442    of letting the enum assign them for us; the numbers are a matter of
443    external protocol, and shouldn't shift around as things are edited.
444 
445    We access the control/special registers via pseudoregisters, to
446    enforce read-only portions that some registers have.
447 
448    We access the coprocessor general purpose and control registers via
449    pseudoregisters, to make sure they appear in the proper order in
450    the 'info all-registers' command (which uses the register number
451    ordering), and also to allow them to be renamed and resized
452    depending on the me_module in use.
453 
454    The MeP allows coprocessor general-purpose registers to be either
455    32 or 64 bits long, depending on the configuration.  Since we don't
456    want the format of the 'g' packet to vary from one core to another,
457    the raw coprocessor GPRs are always 64 bits.  GDB doesn't allow the
458    types of registers to change (see the implementation of
459    register_type), so we have four banks of pseudoregisters for the
460    coprocessor gprs --- 32-bit vs. 64-bit, and integer
461    vs. floating-point --- and we show or hide them depending on the
462    configuration.  */
463 enum
464 {
465   MEP_FIRST_RAW_REGNUM = 0,
466 
467   MEP_FIRST_GPR_REGNUM = 0,
468   MEP_R0_REGNUM = 0,
469   MEP_R1_REGNUM = 1,
470   MEP_R2_REGNUM = 2,
471   MEP_R3_REGNUM = 3,
472   MEP_R4_REGNUM = 4,
473   MEP_R5_REGNUM = 5,
474   MEP_R6_REGNUM = 6,
475   MEP_R7_REGNUM = 7,
476   MEP_R8_REGNUM = 8,
477   MEP_R9_REGNUM = 9,
478   MEP_R10_REGNUM = 10,
479   MEP_R11_REGNUM = 11,
480   MEP_R12_REGNUM = 12,
481   MEP_FP_REGNUM = MEP_R8_REGNUM,
482   MEP_R13_REGNUM = 13,
483   MEP_TP_REGNUM = MEP_R13_REGNUM,	/* (r13) Tiny data pointer */
484   MEP_R14_REGNUM = 14,
485   MEP_GP_REGNUM = MEP_R14_REGNUM,	/* (r14) Global pointer */
486   MEP_R15_REGNUM = 15,
487   MEP_SP_REGNUM = MEP_R15_REGNUM,	/* (r15) Stack pointer */
488   MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
489 
490   /* The raw control registers.  These are the values as received via
491      the remote protocol, directly from the target; we only let user
492      code touch the via the pseudoregisters, which enforce read-only
493      bits.  */
494   MEP_FIRST_RAW_CSR_REGNUM = 16,
495   MEP_RAW_PC_REGNUM    = 16,    /* Program counter */
496   MEP_RAW_LP_REGNUM    = 17,    /* Link pointer */
497   MEP_RAW_SAR_REGNUM   = 18,    /* Raw shift amount */
498   MEP_RAW_CSR3_REGNUM  = 19,    /* csr3: reserved */
499   MEP_RAW_RPB_REGNUM   = 20,    /* Raw repeat begin address */
500   MEP_RAW_RPE_REGNUM   = 21,    /* Repeat end address */
501   MEP_RAW_RPC_REGNUM   = 22,    /* Repeat count */
502   MEP_RAW_HI_REGNUM    = 23, /* Upper 32 bits of result of 64 bit mult/div */
503   MEP_RAW_LO_REGNUM    = 24, /* Lower 32 bits of result of 64 bit mult/div */
504   MEP_RAW_CSR9_REGNUM  = 25,    /* csr3: reserved */
505   MEP_RAW_CSR10_REGNUM = 26,    /* csr3: reserved */
506   MEP_RAW_CSR11_REGNUM = 27,    /* csr3: reserved */
507   MEP_RAW_MB0_REGNUM   = 28,    /* Raw modulo begin address 0 */
508   MEP_RAW_ME0_REGNUM   = 29,    /* Raw modulo end address 0 */
509   MEP_RAW_MB1_REGNUM   = 30,    /* Raw modulo begin address 1 */
510   MEP_RAW_ME1_REGNUM   = 31,    /* Raw modulo end address 1 */
511   MEP_RAW_PSW_REGNUM   = 32,    /* Raw program status word */
512   MEP_RAW_ID_REGNUM    = 33,    /* Raw processor ID/revision */
513   MEP_RAW_TMP_REGNUM   = 34,    /* Temporary */
514   MEP_RAW_EPC_REGNUM   = 35,    /* Exception program counter */
515   MEP_RAW_EXC_REGNUM   = 36,    /* Raw exception cause */
516   MEP_RAW_CFG_REGNUM   = 37,    /* Raw processor configuration*/
517   MEP_RAW_CSR22_REGNUM = 38,    /* csr3: reserved */
518   MEP_RAW_NPC_REGNUM   = 39,    /* Nonmaskable interrupt PC */
519   MEP_RAW_DBG_REGNUM   = 40,    /* Raw debug */
520   MEP_RAW_DEPC_REGNUM  = 41,    /* Debug exception PC */
521   MEP_RAW_OPT_REGNUM   = 42,    /* Raw options */
522   MEP_RAW_RCFG_REGNUM  = 43,    /* Raw local ram config */
523   MEP_RAW_CCFG_REGNUM  = 44,    /* Raw cache config */
524   MEP_RAW_CSR29_REGNUM = 45,    /* csr3: reserved */
525   MEP_RAW_CSR30_REGNUM = 46,    /* csr3: reserved */
526   MEP_RAW_CSR31_REGNUM = 47,    /* csr3: reserved */
527   MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
528 
529   /* The raw coprocessor general-purpose registers.  These are all 64
530      bits wide.  */
531   MEP_FIRST_RAW_CR_REGNUM = 48,
532   MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
533 
534   MEP_FIRST_RAW_CCR_REGNUM = 80,
535   MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
536 
537   /* The module number register.  This is the index of the me_module
538      of which the current target is an instance.  (This is not a real
539      MeP-specified register; it's provided by SID.)  */
540   MEP_MODULE_REGNUM,
541 
542   MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
543 
544   MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
545 
546   /* Pseudoregisters.  See mep_pseudo_register_read and
547      mep_pseudo_register_write.  */
548   MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
549 
550   /* We have a pseudoregister for every control/special register, to
551      implement registers with read-only bits.  */
552   MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
553   MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
554   MEP_LP_REGNUM,                /* Link pointer */
555   MEP_SAR_REGNUM,               /* shift amount */
556   MEP_CSR3_REGNUM,              /* csr3: reserved */
557   MEP_RPB_REGNUM,               /* repeat begin address */
558   MEP_RPE_REGNUM,               /* Repeat end address */
559   MEP_RPC_REGNUM,               /* Repeat count */
560   MEP_HI_REGNUM,  /* Upper 32 bits of the result of 64 bit mult/div */
561   MEP_LO_REGNUM,  /* Lower 32 bits of the result of 64 bit mult/div */
562   MEP_CSR9_REGNUM,              /* csr3: reserved */
563   MEP_CSR10_REGNUM,             /* csr3: reserved */
564   MEP_CSR11_REGNUM,             /* csr3: reserved */
565   MEP_MB0_REGNUM,               /* modulo begin address 0 */
566   MEP_ME0_REGNUM,               /* modulo end address 0 */
567   MEP_MB1_REGNUM,               /* modulo begin address 1 */
568   MEP_ME1_REGNUM,               /* modulo end address 1 */
569   MEP_PSW_REGNUM,               /* program status word */
570   MEP_ID_REGNUM,                /* processor ID/revision */
571   MEP_TMP_REGNUM,               /* Temporary */
572   MEP_EPC_REGNUM,               /* Exception program counter */
573   MEP_EXC_REGNUM,               /* exception cause */
574   MEP_CFG_REGNUM,               /* processor configuration*/
575   MEP_CSR22_REGNUM,             /* csr3: reserved */
576   MEP_NPC_REGNUM,               /* Nonmaskable interrupt PC */
577   MEP_DBG_REGNUM,               /* debug */
578   MEP_DEPC_REGNUM,              /* Debug exception PC */
579   MEP_OPT_REGNUM,               /* options */
580   MEP_RCFG_REGNUM,              /* local ram config */
581   MEP_CCFG_REGNUM,              /* cache config */
582   MEP_CSR29_REGNUM,             /* csr3: reserved */
583   MEP_CSR30_REGNUM,             /* csr3: reserved */
584   MEP_CSR31_REGNUM,             /* csr3: reserved */
585   MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
586 
587   /* The 32-bit integer view of the coprocessor GPR's.  */
588   MEP_FIRST_CR32_REGNUM,
589   MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
590 
591   /* The 32-bit floating-point view of the coprocessor GPR's.  */
592   MEP_FIRST_FP_CR32_REGNUM,
593   MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
594 
595   /* The 64-bit integer view of the coprocessor GPR's.  */
596   MEP_FIRST_CR64_REGNUM,
597   MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
598 
599   /* The 64-bit floating-point view of the coprocessor GPR's.  */
600   MEP_FIRST_FP_CR64_REGNUM,
601   MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
602 
603   MEP_FIRST_CCR_REGNUM,
604   MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
605 
606   MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
607 
608   MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
609 
610   MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
611 };
612 
613 
614 #define IN_SET(set, n) \
615   (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
616 
617 #define IS_GPR_REGNUM(n)     (IN_SET (GPR,     (n)))
618 #define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
619 #define IS_RAW_CR_REGNUM(n)  (IN_SET (RAW_CR,  (n)))
620 #define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
621 
622 #define IS_CSR_REGNUM(n)     (IN_SET (CSR,     (n)))
623 #define IS_CR32_REGNUM(n)    (IN_SET (CR32,    (n)))
624 #define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
625 #define IS_CR64_REGNUM(n)    (IN_SET (CR64,    (n)))
626 #define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
627 #define IS_CR_REGNUM(n)      (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
628                               || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
629 #define IS_CCR_REGNUM(n)     (IN_SET (CCR,     (n)))
630 
631 #define IS_RAW_REGNUM(n)     (IN_SET (RAW,     (n)))
632 #define IS_PSEUDO_REGNUM(n)  (IN_SET (PSEUDO,  (n)))
633 
634 #define NUM_REGS_IN_SET(set) \
635   (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
636 
637 #define MEP_GPR_SIZE (4)        /* Size of a MeP general-purpose register.  */
638 #define MEP_PSW_SIZE (4)        /* Size of the PSW register.  */
639 #define MEP_LP_SIZE (4)         /* Size of the LP register.  */
640 
641 
642 /* Many of the control/special registers contain bits that cannot be
643    written to; some are entirely read-only.  So we present them all as
644    pseudoregisters.
645 
646    The following table describes the special properties of each CSR.  */
647 struct mep_csr_register
648 {
649   /* The number of this CSR's raw register.  */
650   int raw;
651 
652   /* The number of this CSR's pseudoregister.  */
653   int pseudo;
654 
655   /* A mask of the bits that are writeable: if a bit is set here, then
656      it can be modified; if the bit is clear, then it cannot.  */
657   LONGEST writeable_bits;
658 };
659 
660 
661 /* mep_csr_registers[i] describes the i'th CSR.
662    We just list the register numbers here explicitly to help catch
663    typos.  */
664 #define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
665 struct mep_csr_register mep_csr_registers[] = {
666   { CSR(PC),    0xffffffff },   /* manual says r/o, but we can write it */
667   { CSR(LP),    0xffffffff },
668   { CSR(SAR),   0x0000003f },
669   { CSR(CSR3),  0xffffffff },
670   { CSR(RPB),   0xfffffffe },
671   { CSR(RPE),   0xffffffff },
672   { CSR(RPC),   0xffffffff },
673   { CSR(HI),    0xffffffff },
674   { CSR(LO),    0xffffffff },
675   { CSR(CSR9),  0xffffffff },
676   { CSR(CSR10), 0xffffffff },
677   { CSR(CSR11), 0xffffffff },
678   { CSR(MB0),   0x0000ffff },
679   { CSR(ME0),   0x0000ffff },
680   { CSR(MB1),   0x0000ffff },
681   { CSR(ME1),   0x0000ffff },
682   { CSR(PSW),   0x000003ff },
683   { CSR(ID),    0x00000000 },
684   { CSR(TMP),   0xffffffff },
685   { CSR(EPC),   0xffffffff },
686   { CSR(EXC),   0x000030f0 },
687   { CSR(CFG),   0x00c0001b },
688   { CSR(CSR22), 0xffffffff },
689   { CSR(NPC),   0xffffffff },
690   { CSR(DBG),   0x00000580 },
691   { CSR(DEPC),  0xffffffff },
692   { CSR(OPT),   0x00000000 },
693   { CSR(RCFG),  0x00000000 },
694   { CSR(CCFG),  0x00000000 },
695   { CSR(CSR29), 0xffffffff },
696   { CSR(CSR30), 0xffffffff },
697   { CSR(CSR31), 0xffffffff },
698 };
699 
700 
701 /* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
702    the number of the corresponding pseudoregister.  Otherwise,
703    mep_raw_to_pseudo[R] == R.  */
704 static int mep_raw_to_pseudo[MEP_NUM_REGS];
705 
706 /* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
707    is the number of the underlying raw register.  Otherwise
708    mep_pseudo_to_raw[R] == R.  */
709 static int mep_pseudo_to_raw[MEP_NUM_REGS];
710 
711 static void
712 mep_init_pseudoregister_maps (void)
713 {
714   int i;
715 
716   /* Verify that mep_csr_registers covers all the CSRs, in order.  */
717   gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
718   gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
719 
720   /* Verify that the raw and pseudo ranges have matching sizes.  */
721   gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
722   gdb_assert (NUM_REGS_IN_SET (RAW_CR)  == NUM_REGS_IN_SET (CR32));
723   gdb_assert (NUM_REGS_IN_SET (RAW_CR)  == NUM_REGS_IN_SET (CR64));
724   gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
725 
726   for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
727     {
728       struct mep_csr_register *r = &mep_csr_registers[i];
729 
730       gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
731       gdb_assert (r->raw    == MEP_FIRST_RAW_CSR_REGNUM + i);
732     }
733 
734   /* Set up the initial  raw<->pseudo mappings.  */
735   for (i = 0; i < MEP_NUM_REGS; i++)
736     {
737       mep_raw_to_pseudo[i] = i;
738       mep_pseudo_to_raw[i] = i;
739     }
740 
741   /* Add the CSR raw<->pseudo mappings.  */
742   for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
743     {
744       struct mep_csr_register *r = &mep_csr_registers[i];
745 
746       mep_raw_to_pseudo[r->raw] = r->pseudo;
747       mep_pseudo_to_raw[r->pseudo] = r->raw;
748     }
749 
750   /* Add the CR raw<->pseudo mappings.  */
751   for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
752     {
753       int raw = MEP_FIRST_RAW_CR_REGNUM + i;
754       int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
755       int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
756       int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
757       int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
758 
759       /* Truly, the raw->pseudo mapping depends on the current module.
760          But we use the raw->pseudo mapping when we read the debugging
761          info; at that point, we don't know what module we'll actually
762          be running yet.  So, we always supply the 64-bit register
763          numbers; GDB knows how to pick a smaller value out of a
764          larger register properly.  */
765       mep_raw_to_pseudo[raw] = pseudo64;
766       mep_pseudo_to_raw[pseudo32] = raw;
767       mep_pseudo_to_raw[pseudofp32] = raw;
768       mep_pseudo_to_raw[pseudo64] = raw;
769       mep_pseudo_to_raw[pseudofp64] = raw;
770     }
771 
772   /* Add the CCR raw<->pseudo mappings.  */
773   for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
774     {
775       int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
776       int pseudo = MEP_FIRST_CCR_REGNUM + i;
777       mep_raw_to_pseudo[raw] = pseudo;
778       mep_pseudo_to_raw[pseudo] = raw;
779     }
780 }
781 
782 
783 static int
784 mep_debug_reg_to_regnum (struct gdbarch *gdbarch, int debug_reg)
785 {
786   /* The debug info uses the raw register numbers.  */
787   if (debug_reg >= 0 && debug_reg < ARRAY_SIZE (mep_raw_to_pseudo))
788     return mep_raw_to_pseudo[debug_reg];
789   return -1;
790 }
791 
792 
793 /* Return the size, in bits, of the coprocessor pseudoregister
794    numbered PSEUDO.  */
795 static int
796 mep_pseudo_cr_size (int pseudo)
797 {
798   if (IS_CR32_REGNUM (pseudo)
799       || IS_FP_CR32_REGNUM (pseudo))
800     return 32;
801   else if (IS_CR64_REGNUM (pseudo)
802            || IS_FP_CR64_REGNUM (pseudo))
803     return 64;
804   else
805     gdb_assert_not_reached ("unexpected coprocessor pseudo register");
806 }
807 
808 
809 /* If the coprocessor pseudoregister numbered PSEUDO is a
810    floating-point register, return non-zero; if it is an integer
811    register, return zero.  */
812 static int
813 mep_pseudo_cr_is_float (int pseudo)
814 {
815   return (IS_FP_CR32_REGNUM (pseudo)
816           || IS_FP_CR64_REGNUM (pseudo));
817 }
818 
819 
820 /* Given a coprocessor GPR pseudoregister number, return its index
821    within that register bank.  */
822 static int
823 mep_pseudo_cr_index (int pseudo)
824 {
825   if (IS_CR32_REGNUM (pseudo))
826     return pseudo - MEP_FIRST_CR32_REGNUM;
827   else if (IS_FP_CR32_REGNUM (pseudo))
828       return pseudo - MEP_FIRST_FP_CR32_REGNUM;
829   else if (IS_CR64_REGNUM (pseudo))
830       return pseudo - MEP_FIRST_CR64_REGNUM;
831   else if (IS_FP_CR64_REGNUM (pseudo))
832       return pseudo - MEP_FIRST_FP_CR64_REGNUM;
833   else
834     gdb_assert_not_reached ("unexpected coprocessor pseudo register");
835 }
836 
837 
838 /* Return the me_module index describing the current target.
839 
840    If the current target has registers (e.g., simulator, remote
841    target), then this uses the value of the 'module' register, raw
842    register MEP_MODULE_REGNUM.  Otherwise, this retrieves the value
843    from the ELF header's e_flags field of the current executable
844    file.  */
845 static CONFIG_ATTR
846 current_me_module (void)
847 {
848   if (target_has_registers)
849     {
850       ULONGEST regval;
851       regcache_cooked_read_unsigned (get_current_regcache (),
852 				     MEP_MODULE_REGNUM, &regval);
853       return (CONFIG_ATTR) regval;
854     }
855   else
856     return gdbarch_tdep (target_gdbarch ())->me_module;
857 }
858 
859 
860 /* Return the set of options for the current target, in the form that
861    the OPT register would use.
862 
863    If the current target has registers (e.g., simulator, remote
864    target), then this is the actual value of the OPT register.  If the
865    current target does not have registers (e.g., an executable file),
866    then use the 'module_opt' field we computed when we build the
867    gdbarch object for this module.  */
868 static unsigned int
869 current_options (void)
870 {
871   if (target_has_registers)
872     {
873       ULONGEST regval;
874       regcache_cooked_read_unsigned (get_current_regcache (),
875 				     MEP_OPT_REGNUM, &regval);
876       return regval;
877     }
878   else
879     return me_module_opt (current_me_module ());
880 }
881 
882 
883 /* Return the width of the current me_module's coprocessor data bus,
884    in bits.  This is either 32 or 64.  */
885 static int
886 current_cop_data_bus_width (void)
887 {
888   return me_module_cop_data_bus_width (current_me_module ());
889 }
890 
891 
892 /* Return the keyword table of coprocessor general-purpose register
893    names appropriate for the me_module we're dealing with.  */
894 static CGEN_KEYWORD *
895 current_cr_names (void)
896 {
897   const CGEN_HW_ENTRY *hw
898     = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
899 
900   return register_set_keyword_table (hw);
901 }
902 
903 
904 /* Return non-zero if the coprocessor general-purpose registers are
905    floating-point values, zero otherwise.  */
906 static int
907 current_cr_is_float (void)
908 {
909   const CGEN_HW_ENTRY *hw
910     = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
911 
912   return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
913 }
914 
915 
916 /* Return the keyword table of coprocessor control register names
917    appropriate for the me_module we're dealing with.  */
918 static CGEN_KEYWORD *
919 current_ccr_names (void)
920 {
921   const CGEN_HW_ENTRY *hw
922     = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
923 
924   return register_set_keyword_table (hw);
925 }
926 
927 
928 static const char *
929 mep_register_name (struct gdbarch *gdbarch, int regnr)
930 {
931   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
932 
933   /* General-purpose registers.  */
934   static const char *gpr_names[] = {
935     "r0",   "r1",   "r2",   "r3",   /* 0 */
936     "r4",   "r5",   "r6",   "r7",   /* 4 */
937     "fp",   "r9",   "r10",  "r11",  /* 8 */
938     "r12",  "tp",   "gp",   "sp"    /* 12 */
939   };
940 
941   /* Special-purpose registers.  */
942   static const char *csr_names[] = {
943     "pc",   "lp",   "sar",  "",     /* 0  csr3: reserved */
944     "rpb",  "rpe",  "rpc",  "hi",   /* 4 */
945     "lo",   "",     "",     "",     /* 8  csr9-csr11: reserved */
946     "mb0",  "me0",  "mb1",  "me1",  /* 12 */
947 
948     "psw",  "id",   "tmp",  "epc",  /* 16 */
949     "exc",  "cfg",  "",     "npc",  /* 20  csr22: reserved */
950     "dbg",  "depc", "opt",  "rcfg", /* 24 */
951     "ccfg", "",     "",     ""      /* 28  csr29-csr31: reserved */
952   };
953 
954   if (IS_GPR_REGNUM (regnr))
955     return gpr_names[regnr - MEP_R0_REGNUM];
956   else if (IS_CSR_REGNUM (regnr))
957     {
958       /* The 'hi' and 'lo' registers are only present on processors
959          that have the 'MUL' or 'DIV' instructions enabled.  */
960       if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
961           && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
962         return "";
963 
964       return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
965     }
966   else if (IS_CR_REGNUM (regnr))
967     {
968       CGEN_KEYWORD *names;
969       int cr_size;
970       int cr_is_float;
971 
972       /* Does this module have a coprocessor at all?  */
973       if (! (current_options () & MEP_OPT_COP))
974         return "";
975 
976       names = current_cr_names ();
977       if (! names)
978         /* This module's coprocessor has no general-purpose registers.  */
979         return "";
980 
981       cr_size = current_cop_data_bus_width ();
982       if (cr_size != mep_pseudo_cr_size (regnr))
983         /* This module's coprocessor's GPR's are of a different size.  */
984         return "";
985 
986       cr_is_float = current_cr_is_float ();
987       /* The extra ! operators ensure we get boolean equality, not
988          numeric equality.  */
989       if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
990         /* This module's coprocessor's GPR's are of a different type.  */
991         return "";
992 
993       return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
994     }
995   else if (IS_CCR_REGNUM (regnr))
996     {
997       /* Does this module have a coprocessor at all?  */
998       if (! (current_options () & MEP_OPT_COP))
999         return "";
1000 
1001       {
1002         CGEN_KEYWORD *names = current_ccr_names ();
1003 
1004         if (! names)
1005           /* This me_module's coprocessor has no control registers.  */
1006           return "";
1007 
1008         return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1009       }
1010     }
1011 
1012   /* It might be nice to give the 'module' register a name, but that
1013      would affect the output of 'info all-registers', which would
1014      disturb the test suites.  So we leave it invisible.  */
1015   else
1016     return NULL;
1017 }
1018 
1019 
1020 /* Custom register groups for the MeP.  */
1021 static struct reggroup *mep_csr_reggroup; /* control/special */
1022 static struct reggroup *mep_cr_reggroup;  /* coprocessor general-purpose */
1023 static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1024 
1025 
1026 static int
1027 mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1028                          struct reggroup *group)
1029 {
1030   /* Filter reserved or unused register numbers.  */
1031   {
1032     const char *name = mep_register_name (gdbarch, regnum);
1033 
1034     if (! name || name[0] == '\0')
1035       return 0;
1036   }
1037 
1038   /* We could separate the GPRs and the CSRs.  Toshiba has approved of
1039      the existing behavior, so we'd want to run that by them.  */
1040   if (group == general_reggroup)
1041     return (IS_GPR_REGNUM (regnum)
1042             || IS_CSR_REGNUM (regnum));
1043 
1044   /* Everything is in the 'all' reggroup, except for the raw CSR's.  */
1045   else if (group == all_reggroup)
1046     return (IS_GPR_REGNUM (regnum)
1047             || IS_CSR_REGNUM (regnum)
1048             || IS_CR_REGNUM (regnum)
1049             || IS_CCR_REGNUM (regnum));
1050 
1051   /* All registers should be saved and restored, except for the raw
1052      CSR's.
1053 
1054      This is probably right if the coprocessor is something like a
1055      floating-point unit, but would be wrong if the coprocessor is
1056      something that does I/O, where register accesses actually cause
1057      externally-visible actions.  But I get the impression that the
1058      coprocessor isn't supposed to do things like that --- you'd use a
1059      hardware engine, perhaps.  */
1060   else if (group == save_reggroup || group == restore_reggroup)
1061     return (IS_GPR_REGNUM (regnum)
1062             || IS_CSR_REGNUM (regnum)
1063             || IS_CR_REGNUM (regnum)
1064             || IS_CCR_REGNUM (regnum));
1065 
1066   else if (group == mep_csr_reggroup)
1067     return IS_CSR_REGNUM (regnum);
1068   else if (group == mep_cr_reggroup)
1069     return IS_CR_REGNUM (regnum);
1070   else if (group == mep_ccr_reggroup)
1071     return IS_CCR_REGNUM (regnum);
1072   else
1073     return 0;
1074 }
1075 
1076 
1077 static struct type *
1078 mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1079 {
1080   /* Coprocessor general-purpose registers may be either 32 or 64 bits
1081      long.  So for them, the raw registers are always 64 bits long (to
1082      keep the 'g' packet format fixed), and the pseudoregisters vary
1083      in length.  */
1084   if (IS_RAW_CR_REGNUM (reg_nr))
1085     return builtin_type (gdbarch)->builtin_uint64;
1086 
1087   /* Since GDB doesn't allow registers to change type, we have two
1088      banks of pseudoregisters for the coprocessor general-purpose
1089      registers: one that gives a 32-bit view, and one that gives a
1090      64-bit view.  We hide or show one or the other depending on the
1091      current module.  */
1092   if (IS_CR_REGNUM (reg_nr))
1093     {
1094       int size = mep_pseudo_cr_size (reg_nr);
1095       if (size == 32)
1096         {
1097           if (mep_pseudo_cr_is_float (reg_nr))
1098             return builtin_type (gdbarch)->builtin_float;
1099           else
1100             return builtin_type (gdbarch)->builtin_uint32;
1101         }
1102       else if (size == 64)
1103         {
1104           if (mep_pseudo_cr_is_float (reg_nr))
1105             return builtin_type (gdbarch)->builtin_double;
1106           else
1107             return builtin_type (gdbarch)->builtin_uint64;
1108         }
1109       else
1110         gdb_assert_not_reached ("unexpected cr size");
1111     }
1112 
1113   /* All other registers are 32 bits long.  */
1114   else
1115     return builtin_type (gdbarch)->builtin_uint32;
1116 }
1117 
1118 
1119 static CORE_ADDR
1120 mep_read_pc (struct regcache *regcache)
1121 {
1122   ULONGEST pc;
1123   regcache_cooked_read_unsigned (regcache, MEP_PC_REGNUM, &pc);
1124   return pc;
1125 }
1126 
1127 static enum register_status
1128 mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1129                       struct regcache *regcache,
1130                       int cookednum,
1131                       gdb_byte *buf)
1132 {
1133   enum register_status status;
1134   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1135   /* Read the raw register into a 64-bit buffer, and then return the
1136      appropriate end of that buffer.  */
1137   int rawnum = mep_pseudo_to_raw[cookednum];
1138   gdb_byte buf64[8];
1139 
1140   gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1141   gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1142   status = regcache_raw_read (regcache, rawnum, buf64);
1143   if (status == REG_VALID)
1144     {
1145       /* Slow, but legible.  */
1146       store_unsigned_integer (buf, 4, byte_order,
1147 			      extract_unsigned_integer (buf64, 8, byte_order));
1148     }
1149   return status;
1150 }
1151 
1152 
1153 static enum register_status
1154 mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1155                       struct regcache *regcache,
1156                       int cookednum,
1157                       gdb_byte *buf)
1158 {
1159   return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1160 }
1161 
1162 
1163 static enum register_status
1164 mep_pseudo_register_read (struct gdbarch *gdbarch,
1165                           struct regcache *regcache,
1166                           int cookednum,
1167                           gdb_byte *buf)
1168 {
1169   if (IS_CSR_REGNUM (cookednum)
1170       || IS_CCR_REGNUM (cookednum))
1171     return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1172   else if (IS_CR32_REGNUM (cookednum)
1173            || IS_FP_CR32_REGNUM (cookednum))
1174     return mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1175   else if (IS_CR64_REGNUM (cookednum)
1176            || IS_FP_CR64_REGNUM (cookednum))
1177     return mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1178   else
1179     gdb_assert_not_reached ("unexpected pseudo register");
1180 }
1181 
1182 
1183 static void
1184 mep_pseudo_csr_write (struct gdbarch *gdbarch,
1185                       struct regcache *regcache,
1186                       int cookednum,
1187                       const gdb_byte *buf)
1188 {
1189   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1190   int size = register_size (gdbarch, cookednum);
1191   struct mep_csr_register *r
1192     = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1193 
1194   if (r->writeable_bits == 0)
1195     /* A completely read-only register; avoid the read-modify-
1196        write cycle, and juts ignore the entire write.  */
1197     ;
1198   else
1199     {
1200       /* A partially writeable register; do a read-modify-write cycle.  */
1201       ULONGEST old_bits;
1202       ULONGEST new_bits;
1203       ULONGEST mixed_bits;
1204 
1205       regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1206       new_bits = extract_unsigned_integer (buf, size, byte_order);
1207       mixed_bits = ((r->writeable_bits & new_bits)
1208                     | (~r->writeable_bits & old_bits));
1209       regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1210     }
1211 }
1212 
1213 
1214 static void
1215 mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1216                        struct regcache *regcache,
1217                        int cookednum,
1218                        const gdb_byte *buf)
1219 {
1220   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1221   /* Expand the 32-bit value into a 64-bit value, and write that to
1222      the pseudoregister.  */
1223   int rawnum = mep_pseudo_to_raw[cookednum];
1224   gdb_byte buf64[8];
1225 
1226   gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1227   gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1228   /* Slow, but legible.  */
1229   store_unsigned_integer (buf64, 8, byte_order,
1230 			  extract_unsigned_integer (buf, 4, byte_order));
1231   regcache_raw_write (regcache, rawnum, buf64);
1232 }
1233 
1234 
1235 static void
1236 mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1237                      struct regcache *regcache,
1238                      int cookednum,
1239                      const gdb_byte *buf)
1240 {
1241   regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1242 }
1243 
1244 
1245 static void
1246 mep_pseudo_register_write (struct gdbarch *gdbarch,
1247                            struct regcache *regcache,
1248                            int cookednum,
1249                            const gdb_byte *buf)
1250 {
1251   if (IS_CSR_REGNUM (cookednum))
1252     mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1253   else if (IS_CR32_REGNUM (cookednum)
1254            || IS_FP_CR32_REGNUM (cookednum))
1255     mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1256   else if (IS_CR64_REGNUM (cookednum)
1257            || IS_FP_CR64_REGNUM (cookednum))
1258     mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1259   else if (IS_CCR_REGNUM (cookednum))
1260     regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1261   else
1262     gdb_assert_not_reached ("unexpected pseudo register");
1263 }
1264 
1265 
1266 
1267 /* Disassembly.  */
1268 
1269 /* The mep disassembler needs to know about the section in order to
1270    work correctly.  */
1271 static int
1272 mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1273 {
1274   struct obj_section * s = find_pc_section (pc);
1275 
1276   if (s)
1277     {
1278       /* The libopcodes disassembly code uses the section to find the
1279          BFD, the BFD to find the ELF header, the ELF header to find
1280          the me_module index, and the me_module index to select the
1281          right instructions to print.  */
1282       info->section = s->the_bfd_section;
1283       info->arch = bfd_arch_mep;
1284 
1285       return print_insn_mep (pc, info);
1286     }
1287 
1288   return 0;
1289 }
1290 
1291 
1292 /* Prologue analysis.  */
1293 
1294 
1295 /* The MeP has two classes of instructions: "core" instructions, which
1296    are pretty normal RISC chip stuff, and "coprocessor" instructions,
1297    which are mostly concerned with moving data in and out of
1298    coprocessor registers, and branching on coprocessor condition
1299    codes.  There's space in the instruction set for custom coprocessor
1300    instructions, too.
1301 
1302    Instructions can be 16 or 32 bits long; the top two bits of the
1303    first byte indicate the length.  The coprocessor instructions are
1304    mixed in with the core instructions, and there's no easy way to
1305    distinguish them; you have to completely decode them to tell one
1306    from the other.
1307 
1308    The MeP also supports a "VLIW" operation mode, where instructions
1309    always occur in fixed-width bundles.  The bundles are either 32
1310    bits or 64 bits long, depending on a fixed configuration flag.  You
1311    decode the first part of the bundle as normal; if it's a core
1312    instruction, and there's any space left in the bundle, the
1313    remainder of the bundle is a coprocessor instruction, which will
1314    execute in parallel with the core instruction.  If the first part
1315    of the bundle is a coprocessor instruction, it occupies the entire
1316    bundle.
1317 
1318    So, here are all the cases:
1319 
1320    - 32-bit VLIW mode:
1321      Every bundle is four bytes long, and naturally aligned, and can hold
1322      one or two instructions:
1323      - 16-bit core instruction; 16-bit coprocessor instruction
1324        These execute in parallel.
1325      - 32-bit core instruction
1326      - 32-bit coprocessor instruction
1327 
1328    - 64-bit VLIW mode:
1329      Every bundle is eight bytes long, and naturally aligned, and can hold
1330      one or two instructions:
1331      - 16-bit core instruction; 48-bit (!) coprocessor instruction
1332        These execute in parallel.
1333      - 32-bit core instruction; 32-bit coprocessor instruction
1334        These execute in parallel.
1335      - 64-bit coprocessor instruction
1336 
1337    Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1338    instruction, so I don't really know what's up there; perhaps these
1339    are always the user-defined coprocessor instructions.  */
1340 
1341 
1342 /* Return non-zero if PC is in a VLIW code section, zero
1343    otherwise.  */
1344 static int
1345 mep_pc_in_vliw_section (CORE_ADDR pc)
1346 {
1347   struct obj_section *s = find_pc_section (pc);
1348   if (s)
1349     return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1350   return 0;
1351 }
1352 
1353 
1354 /* Set *INSN to the next core instruction at PC, and return the
1355    address of the next instruction.
1356 
1357    The MeP instruction encoding is endian-dependent.  16- and 32-bit
1358    instructions are encoded as one or two two-byte parts, and each
1359    part is byte-swapped independently.  Thus:
1360 
1361       void
1362       foo (void)
1363       {
1364         asm ("movu $1, 0x123456");
1365         asm ("sb $1,0x5678($2)");
1366         asm ("clip $1, 19");
1367       }
1368 
1369    compiles to this big-endian code:
1370 
1371        0:	d1 56 12 34 	movu $1,0x123456
1372        4:	c1 28 56 78 	sb $1,22136($2)
1373        8:	f1 01 10 98 	clip $1,0x13
1374        c:	70 02       	ret
1375 
1376    and this little-endian code:
1377 
1378        0:	56 d1 34 12 	movu $1,0x123456
1379        4:	28 c1 78 56 	sb $1,22136($2)
1380        8:	01 f1 98 10 	clip $1,0x13
1381        c:	02 70       	ret
1382 
1383    Instructions are returned in *INSN in an endian-independent form: a
1384    given instruction always appears in *INSN the same way, regardless
1385    of whether the instruction stream is big-endian or little-endian.
1386 
1387    *INSN's most significant 16 bits are the first (i.e., at lower
1388    addresses) 16 bit part of the instruction.  Its least significant
1389    16 bits are the second (i.e., higher-addressed) 16 bit part of the
1390    instruction, or zero for a 16-bit instruction.  Both 16-bit parts
1391    are fetched using the current endianness.
1392 
1393    So, the *INSN values for the instruction sequence above would be
1394    the following, in either endianness:
1395 
1396        0xd1561234       movu $1,0x123456
1397        0xc1285678 	sb $1,22136($2)
1398        0xf1011098 	clip $1,0x13
1399        0x70020000      	ret
1400 
1401    (In a sense, it would be more natural to return 16-bit instructions
1402    in the least significant 16 bits of *INSN, but that would be
1403    ambiguous.  In order to tell whether you're looking at a 16- or a
1404    32-bit instruction, you have to consult the major opcode field ---
1405    the most significant four bits of the instruction's first 16-bit
1406    part.  But if we put 16-bit instructions at the least significant
1407    end of *INSN, then you don't know where to find the major opcode
1408    field until you know if it's a 16- or a 32-bit instruction ---
1409    which is where we started.)
1410 
1411    If PC points to a core / coprocessor bundle in a VLIW section, set
1412    *INSN to the core instruction, and return the address of the next
1413    bundle.  This has the effect of skipping the bundled coprocessor
1414    instruction.  That's okay, since coprocessor instructions aren't
1415    significant to prologue analysis --- for the time being,
1416    anyway.  */
1417 
1418 static CORE_ADDR
1419 mep_get_insn (struct gdbarch *gdbarch, CORE_ADDR pc, unsigned long *insn)
1420 {
1421   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1422   int pc_in_vliw_section;
1423   int vliw_mode;
1424   int insn_len;
1425   gdb_byte buf[2];
1426 
1427   *insn = 0;
1428 
1429   /* Are we in a VLIW section?  */
1430   pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1431   if (pc_in_vliw_section)
1432     {
1433       /* Yes, find out which bundle size.  */
1434       vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1435 
1436       /* If PC is in a VLIW section, but the current core doesn't say
1437          that it supports either VLIW mode, then we don't have enough
1438          information to parse the instruction stream it contains.
1439          Since the "undifferentiated" standard core doesn't have
1440          either VLIW mode bit set, this could happen.
1441 
1442          But it shouldn't be an error to (say) set a breakpoint in a
1443          VLIW section, if you know you'll never reach it.  (Perhaps
1444          you have a script that sets a bunch of standard breakpoints.)
1445 
1446          So we'll just return zero here, and hope for the best.  */
1447       if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1448         return 0;
1449 
1450       /* If both VL32 and VL64 are set, that's bogus, too.  */
1451       if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1452         return 0;
1453     }
1454   else
1455     vliw_mode = 0;
1456 
1457   read_memory (pc, buf, sizeof (buf));
1458   *insn = extract_unsigned_integer (buf, 2, byte_order) << 16;
1459 
1460   /* The major opcode --- the top four bits of the first 16-bit
1461      part --- indicates whether this instruction is 16 or 32 bits
1462      long.  All 32-bit instructions have a major opcode whose top
1463      two bits are 11; all the rest are 16-bit instructions.  */
1464   if ((*insn & 0xc0000000) == 0xc0000000)
1465     {
1466       /* Fetch the second 16-bit part of the instruction.  */
1467       read_memory (pc + 2, buf, sizeof (buf));
1468       *insn = *insn | extract_unsigned_integer (buf, 2, byte_order);
1469     }
1470 
1471   /* If we're in VLIW code, then the VLIW width determines the address
1472      of the next instruction.  */
1473   if (vliw_mode)
1474     {
1475       /* In 32-bit VLIW code, all bundles are 32 bits long.  We ignore the
1476          coprocessor half of a core / copro bundle.  */
1477       if (vliw_mode == MEP_OPT_VL32)
1478         insn_len = 4;
1479 
1480       /* In 64-bit VLIW code, all bundles are 64 bits long.  We ignore the
1481          coprocessor half of a core / copro bundle.  */
1482       else if (vliw_mode == MEP_OPT_VL64)
1483         insn_len = 8;
1484 
1485       /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode.  */
1486       else
1487         gdb_assert_not_reached ("unexpected vliw mode");
1488     }
1489 
1490   /* Otherwise, the top two bits of the major opcode are (again) what
1491      we need to check.  */
1492   else if ((*insn & 0xc0000000) == 0xc0000000)
1493     insn_len = 4;
1494   else
1495     insn_len = 2;
1496 
1497   return pc + insn_len;
1498 }
1499 
1500 
1501 /* Sign-extend the LEN-bit value N.  */
1502 #define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1503 
1504 /* Return the LEN-bit field at POS from I.  */
1505 #define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1506 
1507 /* Like FIELD, but sign-extend the field's value.  */
1508 #define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1509 
1510 
1511 /* Macros for decoding instructions.
1512 
1513    Remember that 16-bit instructions are placed in bits 16..31 of i,
1514    not at the least significant end; this means that the major opcode
1515    field is always in the same place, regardless of the width of the
1516    instruction.  As a reminder of this, we show the lower 16 bits of a
1517    16-bit instruction as xxxx_xxxx_xxxx_xxxx.  */
1518 
1519 /* SB Rn,(Rm)		      0000_nnnn_mmmm_1000 */
1520 /* SH Rn,(Rm)		      0000_nnnn_mmmm_1001 */
1521 /* SW Rn,(Rm)		      0000_nnnn_mmmm_1010 */
1522 
1523 /* SW Rn,disp16(Rm)	      1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1524 #define IS_SW(i)	      (((i) & 0xf00f0000) == 0xc00a0000)
1525 /* SB Rn,disp16(Rm)	      1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1526 #define IS_SB(i)	      (((i) & 0xf00f0000) == 0xc0080000)
1527 /* SH Rn,disp16(Rm)	      1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1528 #define IS_SH(i)	      (((i) & 0xf00f0000) == 0xc0090000)
1529 #define SWBH_32_BASE(i)       (FIELD (i, 20, 4))
1530 #define SWBH_32_SOURCE(i)     (FIELD (i, 24, 4))
1531 #define SWBH_32_OFFSET(i)     (SFIELD (i, 0, 16))
1532 
1533 /* SW Rn,disp7.align4(SP)     0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1534 #define IS_SW_IMMD(i)	      (((i) & 0xf0830000) == 0x40020000)
1535 #define SW_IMMD_SOURCE(i)     (FIELD (i, 24, 4))
1536 #define SW_IMMD_OFFSET(i)     (FIELD (i, 18, 5) << 2)
1537 
1538 /* SW Rn,(Rm)                 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1539 #define IS_SW_REG(i)	      (((i) & 0xf00f0000) == 0x000a0000)
1540 #define SW_REG_SOURCE(i)      (FIELD (i, 24, 4))
1541 #define SW_REG_BASE(i)        (FIELD (i, 20, 4))
1542 
1543 /* ADD3 Rl,Rn,Rm              1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1544 #define IS_ADD3_16_REG(i)     (((i) & 0xf0000000) == 0x90000000)
1545 #define ADD3_16_REG_SRC1(i)   (FIELD (i, 20, 4))               /* n */
1546 #define ADD3_16_REG_SRC2(i)   (FIELD (i, 24, 4))               /* m */
1547 
1548 /* ADD3 Rn,Rm,imm16           1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1549 #define IS_ADD3_32(i)	      (((i) & 0xf00f0000) == 0xc0000000)
1550 #define ADD3_32_TARGET(i)     (FIELD (i, 24, 4))
1551 #define ADD3_32_SOURCE(i)     (FIELD (i, 20, 4))
1552 #define ADD3_32_OFFSET(i)     (SFIELD (i, 0, 16))
1553 
1554 /* ADD3 Rn,SP,imm7.align4     0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1555 #define IS_ADD3_16(i)  	      (((i) & 0xf0830000) == 0x40000000)
1556 #define ADD3_16_TARGET(i)     (FIELD (i, 24, 4))
1557 #define ADD3_16_OFFSET(i)     (FIELD (i, 18, 5) << 2)
1558 
1559 /* ADD Rn,imm6		      0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1560 #define IS_ADD(i) 	      (((i) & 0xf0030000) == 0x60000000)
1561 #define ADD_TARGET(i)	      (FIELD (i, 24, 4))
1562 #define ADD_OFFSET(i)         (SFIELD (i, 18, 6))
1563 
1564 /* LDC Rn,imm5		      0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1565                               imm5 = I||i[7:4] */
1566 #define IS_LDC(i)	      (((i) & 0xf00e0000) == 0x700a0000)
1567 #define LDC_IMM(i)            ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1568 #define LDC_TARGET(i)         (FIELD (i, 24, 4))
1569 
1570 /* LW Rn,disp16(Rm)           1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd  */
1571 #define IS_LW(i)              (((i) & 0xf00f0000) == 0xc00e0000)
1572 #define LW_TARGET(i)          (FIELD (i, 24, 4))
1573 #define LW_BASE(i)            (FIELD (i, 20, 4))
1574 #define LW_OFFSET(i)          (SFIELD (i, 0, 16))
1575 
1576 /* MOV Rn,Rm		      0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1577 #define IS_MOV(i)	      (((i) & 0xf00f0000) == 0x00000000)
1578 #define MOV_TARGET(i)	      (FIELD (i, 24, 4))
1579 #define MOV_SOURCE(i)	      (FIELD (i, 20, 4))
1580 
1581 /* BRA disp12.align2	      1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1582 #define IS_BRA(i)	      (((i) & 0xf0010000) == 0xb0000000)
1583 #define BRA_DISP(i)           (SFIELD (i, 17, 11) << 1)
1584 
1585 
1586 /* This structure holds the results of a prologue analysis.  */
1587 struct mep_prologue
1588 {
1589   /* The architecture for which we generated this prologue info.  */
1590   struct gdbarch *gdbarch;
1591 
1592   /* The offset from the frame base to the stack pointer --- always
1593      zero or negative.
1594 
1595      Calling this a "size" is a bit misleading, but given that the
1596      stack grows downwards, using offsets for everything keeps one
1597      from going completely sign-crazy: you never change anything's
1598      sign for an ADD instruction; always change the second operand's
1599      sign for a SUB instruction; and everything takes care of
1600      itself.  */
1601   int frame_size;
1602 
1603   /* Non-zero if this function has initialized the frame pointer from
1604      the stack pointer, zero otherwise.  */
1605   int has_frame_ptr;
1606 
1607   /* If has_frame_ptr is non-zero, this is the offset from the frame
1608      base to where the frame pointer points.  This is always zero or
1609      negative.  */
1610   int frame_ptr_offset;
1611 
1612   /* The address of the first instruction at which the frame has been
1613      set up and the arguments are where the debug info says they are
1614      --- as best as we can tell.  */
1615   CORE_ADDR prologue_end;
1616 
1617   /* reg_offset[R] is the offset from the CFA at which register R is
1618      saved, or 1 if register R has not been saved.  (Real values are
1619      always zero or negative.)  */
1620   int reg_offset[MEP_NUM_REGS];
1621 };
1622 
1623 /* Return non-zero if VALUE is an incoming argument register.  */
1624 
1625 static int
1626 is_arg_reg (pv_t value)
1627 {
1628   return (value.kind == pvk_register
1629           && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1630           && value.k == 0);
1631 }
1632 
1633 /* Return non-zero if a store of REG's current value VALUE to ADDR is
1634    probably spilling an argument register to its stack slot in STACK.
1635    Such instructions should be included in the prologue, if possible.
1636 
1637    The store is a spill if:
1638    - the value being stored is REG's original value;
1639    - the value has not already been stored somewhere in STACK; and
1640    - ADDR is a stack slot's address (e.g., relative to the original
1641      value of the SP).  */
1642 static int
1643 is_arg_spill (struct gdbarch *gdbarch, pv_t value, pv_t addr,
1644 	      struct pv_area *stack)
1645 {
1646   return (is_arg_reg (value)
1647           && pv_is_register (addr, MEP_SP_REGNUM)
1648           && ! pv_area_find_reg (stack, gdbarch, value.reg, 0));
1649 }
1650 
1651 
1652 /* Function for finding saved registers in a 'struct pv_area'; we pass
1653    this to pv_area_scan.
1654 
1655    If VALUE is a saved register, ADDR says it was saved at a constant
1656    offset from the frame base, and SIZE indicates that the whole
1657    register was saved, record its offset in RESULT_UNTYPED.  */
1658 static void
1659 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1660 {
1661   struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1662 
1663   if (value.kind == pvk_register
1664       && value.k == 0
1665       && pv_is_register (addr, MEP_SP_REGNUM)
1666       && size == register_size (result->gdbarch, value.reg))
1667     result->reg_offset[value.reg] = addr.k;
1668 }
1669 
1670 
1671 /* Analyze a prologue starting at START_PC, going no further than
1672    LIMIT_PC.  Fill in RESULT as appropriate.  */
1673 static void
1674 mep_analyze_prologue (struct gdbarch *gdbarch,
1675 		      CORE_ADDR start_pc, CORE_ADDR limit_pc,
1676                       struct mep_prologue *result)
1677 {
1678   CORE_ADDR pc;
1679   unsigned long insn;
1680   int rn;
1681   int found_lp = 0;
1682   pv_t reg[MEP_NUM_REGS];
1683   struct pv_area *stack;
1684   struct cleanup *back_to;
1685   CORE_ADDR after_last_frame_setup_insn = start_pc;
1686 
1687   memset (result, 0, sizeof (*result));
1688   result->gdbarch = gdbarch;
1689 
1690   for (rn = 0; rn < MEP_NUM_REGS; rn++)
1691     {
1692       reg[rn] = pv_register (rn, 0);
1693       result->reg_offset[rn] = 1;
1694     }
1695 
1696   stack = make_pv_area (MEP_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1697   back_to = make_cleanup_free_pv_area (stack);
1698 
1699   pc = start_pc;
1700   while (pc < limit_pc)
1701     {
1702       CORE_ADDR next_pc;
1703       pv_t pre_insn_fp, pre_insn_sp;
1704 
1705       next_pc = mep_get_insn (gdbarch, pc, &insn);
1706 
1707       /* A zero return from mep_get_insn means that either we weren't
1708          able to read the instruction from memory, or that we don't
1709          have enough information to be able to reliably decode it.  So
1710          we'll store here and hope for the best.  */
1711       if (! next_pc)
1712         break;
1713 
1714       /* Note the current values of the SP and FP, so we can tell if
1715          this instruction changed them, below.  */
1716       pre_insn_fp = reg[MEP_FP_REGNUM];
1717       pre_insn_sp = reg[MEP_SP_REGNUM];
1718 
1719       if (IS_ADD (insn))
1720         {
1721           int rn = ADD_TARGET (insn);
1722           CORE_ADDR imm6 = ADD_OFFSET (insn);
1723 
1724           reg[rn] = pv_add_constant (reg[rn], imm6);
1725         }
1726       else if (IS_ADD3_16 (insn))
1727 	{
1728           int rn = ADD3_16_TARGET (insn);
1729           int imm7 = ADD3_16_OFFSET (insn);
1730 
1731           reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1732         }
1733       else if (IS_ADD3_32 (insn))
1734 	{
1735           int rn = ADD3_32_TARGET (insn);
1736           int rm = ADD3_32_SOURCE (insn);
1737           int imm16 = ADD3_32_OFFSET (insn);
1738 
1739           reg[rn] = pv_add_constant (reg[rm], imm16);
1740 	}
1741       else if (IS_SW_REG (insn))
1742         {
1743           int rn = SW_REG_SOURCE (insn);
1744           int rm = SW_REG_BASE (insn);
1745 
1746           /* If simulating this store would require us to forget
1747              everything we know about the stack frame in the name of
1748              accuracy, it would be better to just quit now.  */
1749           if (pv_area_store_would_trash (stack, reg[rm]))
1750             break;
1751 
1752           if (is_arg_spill (gdbarch, reg[rn], reg[rm], stack))
1753             after_last_frame_setup_insn = next_pc;
1754 
1755           pv_area_store (stack, reg[rm], 4, reg[rn]);
1756         }
1757       else if (IS_SW_IMMD (insn))
1758         {
1759           int rn = SW_IMMD_SOURCE (insn);
1760           int offset = SW_IMMD_OFFSET (insn);
1761           pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1762 
1763           /* If simulating this store would require us to forget
1764              everything we know about the stack frame in the name of
1765              accuracy, it would be better to just quit now.  */
1766           if (pv_area_store_would_trash (stack, addr))
1767             break;
1768 
1769           if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1770             after_last_frame_setup_insn = next_pc;
1771 
1772           pv_area_store (stack, addr, 4, reg[rn]);
1773         }
1774       else if (IS_MOV (insn))
1775 	{
1776           int rn = MOV_TARGET (insn);
1777           int rm = MOV_SOURCE (insn);
1778 
1779           reg[rn] = reg[rm];
1780 
1781 	  if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1782 	    after_last_frame_setup_insn = next_pc;
1783 	}
1784       else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1785 	{
1786           int rn = SWBH_32_SOURCE (insn);
1787           int rm = SWBH_32_BASE (insn);
1788           int disp = SWBH_32_OFFSET (insn);
1789           int size = (IS_SB (insn) ? 1
1790                       : IS_SH (insn) ? 2
1791                       : (gdb_assert (IS_SW (insn)), 4));
1792           pv_t addr = pv_add_constant (reg[rm], disp);
1793 
1794           if (pv_area_store_would_trash (stack, addr))
1795             break;
1796 
1797           if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1798             after_last_frame_setup_insn = next_pc;
1799 
1800           pv_area_store (stack, addr, size, reg[rn]);
1801 	}
1802       else if (IS_LDC (insn))
1803 	{
1804           int rn = LDC_TARGET (insn);
1805           int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1806 
1807           reg[rn] = reg[cr];
1808 	}
1809       else if (IS_LW (insn))
1810         {
1811           int rn = LW_TARGET (insn);
1812           int rm = LW_BASE (insn);
1813           int offset = LW_OFFSET (insn);
1814           pv_t addr = pv_add_constant (reg[rm], offset);
1815 
1816           reg[rn] = pv_area_fetch (stack, addr, 4);
1817         }
1818       else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1819 	{
1820 	  /* When a loop appears as the first statement of a function
1821 	     body, gcc 4.x will use a BRA instruction to branch to the
1822 	     loop condition checking code.  This BRA instruction is
1823 	     marked as part of the prologue.  We therefore set next_pc
1824 	     to this branch target and also stop the prologue scan.
1825 	     The instructions at and beyond the branch target should
1826 	     no longer be associated with the prologue.
1827 
1828 	     Note that we only consider forward branches here.  We
1829 	     presume that a forward branch is being used to skip over
1830 	     a loop body.
1831 
1832 	     A backwards branch is covered by the default case below.
1833 	     If we were to encounter a backwards branch, that would
1834 	     most likely mean that we've scanned through a loop body.
1835 	     We definitely want to stop the prologue scan when this
1836 	     happens and that is precisely what is done by the default
1837 	     case below.  */
1838 	  next_pc = pc + BRA_DISP (insn);
1839 	  after_last_frame_setup_insn = next_pc;
1840 	  break;
1841 	}
1842       else
1843         /* We've hit some instruction we don't know how to simulate.
1844            Strictly speaking, we should set every value we're
1845            tracking to "unknown".  But we'll be optimistic, assume
1846            that we have enough information already, and stop
1847            analysis here.  */
1848         break;
1849 
1850       /* If this instruction changed the FP or decreased the SP (i.e.,
1851          allocated more stack space), then this may be a good place to
1852          declare the prologue finished.  However, there are some
1853          exceptions:
1854 
1855          - If the instruction just changed the FP back to its original
1856            value, then that's probably a restore instruction.  The
1857            prologue should definitely end before that.
1858 
1859          - If the instruction increased the value of the SP (that is,
1860            shrunk the frame), then it's probably part of a frame
1861            teardown sequence, and the prologue should end before that.  */
1862 
1863       if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1864         {
1865           if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1866             after_last_frame_setup_insn = next_pc;
1867         }
1868       else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1869         {
1870           /* The comparison of constants looks odd, there, because .k
1871              is unsigned.  All it really means is that the new value
1872              is lower than it was before the instruction.  */
1873           if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1874               && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1875               && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1876                   < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1877             after_last_frame_setup_insn = next_pc;
1878         }
1879 
1880       pc = next_pc;
1881     }
1882 
1883   /* Is the frame size (offset, really) a known constant?  */
1884   if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1885     result->frame_size = reg[MEP_SP_REGNUM].k;
1886 
1887   /* Was the frame pointer initialized?  */
1888   if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1889     {
1890       result->has_frame_ptr = 1;
1891       result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1892     }
1893 
1894   /* Record where all the registers were saved.  */
1895   pv_area_scan (stack, check_for_saved, (void *) result);
1896 
1897   result->prologue_end = after_last_frame_setup_insn;
1898 
1899   do_cleanups (back_to);
1900 }
1901 
1902 
1903 static CORE_ADDR
1904 mep_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1905 {
1906   const char *name;
1907   CORE_ADDR func_addr, func_end;
1908   struct mep_prologue p;
1909 
1910   /* Try to find the extent of the function that contains PC.  */
1911   if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1912     return pc;
1913 
1914   mep_analyze_prologue (gdbarch, pc, func_end, &p);
1915   return p.prologue_end;
1916 }
1917 
1918 
1919 
1920 /* Breakpoints.  */
1921 
1922 static const unsigned char *
1923 mep_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
1924 {
1925   static unsigned char breakpoint[] = { 0x70, 0x32 };
1926   *lenptr = sizeof (breakpoint);
1927   return breakpoint;
1928 }
1929 
1930 
1931 
1932 /* Frames and frame unwinding.  */
1933 
1934 
1935 static struct mep_prologue *
1936 mep_analyze_frame_prologue (struct frame_info *this_frame,
1937                             void **this_prologue_cache)
1938 {
1939   if (! *this_prologue_cache)
1940     {
1941       CORE_ADDR func_start, stop_addr;
1942 
1943       *this_prologue_cache
1944         = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1945 
1946       func_start = get_frame_func (this_frame);
1947       stop_addr = get_frame_pc (this_frame);
1948 
1949       /* If we couldn't find any function containing the PC, then
1950          just initialize the prologue cache, but don't do anything.  */
1951       if (! func_start)
1952         stop_addr = func_start;
1953 
1954       mep_analyze_prologue (get_frame_arch (this_frame),
1955 			    func_start, stop_addr,
1956 			    (struct mep_prologue *) *this_prologue_cache);
1957     }
1958 
1959   return (struct mep_prologue *) *this_prologue_cache;
1960 }
1961 
1962 
1963 /* Given the next frame and a prologue cache, return this frame's
1964    base.  */
1965 static CORE_ADDR
1966 mep_frame_base (struct frame_info *this_frame,
1967                 void **this_prologue_cache)
1968 {
1969   struct mep_prologue *p
1970     = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1971 
1972   /* In functions that use alloca, the distance between the stack
1973      pointer and the frame base varies dynamically, so we can't use
1974      the SP plus static information like prologue analysis to find the
1975      frame base.  However, such functions must have a frame pointer,
1976      to be able to restore the SP on exit.  So whenever we do have a
1977      frame pointer, use that to find the base.  */
1978   if (p->has_frame_ptr)
1979     {
1980       CORE_ADDR fp
1981         = get_frame_register_unsigned (this_frame, MEP_FP_REGNUM);
1982       return fp - p->frame_ptr_offset;
1983     }
1984   else
1985     {
1986       CORE_ADDR sp
1987         = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
1988       return sp - p->frame_size;
1989     }
1990 }
1991 
1992 
1993 static void
1994 mep_frame_this_id (struct frame_info *this_frame,
1995                    void **this_prologue_cache,
1996                    struct frame_id *this_id)
1997 {
1998   *this_id = frame_id_build (mep_frame_base (this_frame, this_prologue_cache),
1999                              get_frame_func (this_frame));
2000 }
2001 
2002 
2003 static struct value *
2004 mep_frame_prev_register (struct frame_info *this_frame,
2005                          void **this_prologue_cache, int regnum)
2006 {
2007   struct mep_prologue *p
2008     = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
2009 
2010   /* There are a number of complications in unwinding registers on the
2011      MeP, having to do with core functions calling VLIW functions and
2012      vice versa.
2013 
2014      The least significant bit of the link register, LP.LTOM, is the
2015      VLIW mode toggle bit: it's set if a core function called a VLIW
2016      function, or vice versa, and clear when the caller and callee
2017      were both in the same mode.
2018 
2019      So, if we're asked to unwind the PC, then we really want to
2020      unwind the LP and clear the least significant bit.  (Real return
2021      addresses are always even.)  And if we want to unwind the program
2022      status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2023 
2024      Tweaking the register values we return in this way means that the
2025      bits in BUFFERP[] are not the same as the bits you'd find at
2026      ADDRP in the inferior, so we make sure lvalp is not_lval when we
2027      do this.  */
2028   if (regnum == MEP_PC_REGNUM)
2029     {
2030       struct value *value;
2031       CORE_ADDR lp;
2032       value = mep_frame_prev_register (this_frame, this_prologue_cache,
2033 				       MEP_LP_REGNUM);
2034       lp = value_as_long (value);
2035       release_value (value);
2036       value_free (value);
2037 
2038       return frame_unwind_got_constant (this_frame, regnum, lp & ~1);
2039     }
2040   else
2041     {
2042       CORE_ADDR frame_base = mep_frame_base (this_frame, this_prologue_cache);
2043       struct value *value;
2044 
2045       /* Our caller's SP is our frame base.  */
2046       if (regnum == MEP_SP_REGNUM)
2047 	return frame_unwind_got_constant (this_frame, regnum, frame_base);
2048 
2049       /* If prologue analysis says we saved this register somewhere,
2050          return a description of the stack slot holding it.  */
2051       if (p->reg_offset[regnum] != 1)
2052 	value = frame_unwind_got_memory (this_frame, regnum,
2053 					 frame_base + p->reg_offset[regnum]);
2054 
2055       /* Otherwise, presume we haven't changed the value of this
2056          register, and get it from the next frame.  */
2057       else
2058 	value = frame_unwind_got_register (this_frame, regnum, regnum);
2059 
2060       /* If we need to toggle the operating mode, do so.  */
2061       if (regnum == MEP_PSW_REGNUM)
2062         {
2063 	  CORE_ADDR psw, lp;
2064 
2065 	  psw = value_as_long (value);
2066 	  release_value (value);
2067 	  value_free (value);
2068 
2069           /* Get the LP's value, too.  */
2070 	  value = get_frame_register_value (this_frame, MEP_LP_REGNUM);
2071 	  lp = value_as_long (value);
2072 	  release_value (value);
2073 	  value_free (value);
2074 
2075           /* If LP.LTOM is set, then toggle PSW.OM.  */
2076 	  if (lp & 0x1)
2077 	    psw ^= 0x1000;
2078 
2079 	  return frame_unwind_got_constant (this_frame, regnum, psw);
2080         }
2081 
2082       return value;
2083     }
2084 }
2085 
2086 
2087 static const struct frame_unwind mep_frame_unwind = {
2088   NORMAL_FRAME,
2089   default_frame_unwind_stop_reason,
2090   mep_frame_this_id,
2091   mep_frame_prev_register,
2092   NULL,
2093   default_frame_sniffer
2094 };
2095 
2096 
2097 /* Our general unwinding function can handle unwinding the PC.  */
2098 static CORE_ADDR
2099 mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2100 {
2101   return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2102 }
2103 
2104 
2105 /* Our general unwinding function can handle unwinding the SP.  */
2106 static CORE_ADDR
2107 mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2108 {
2109   return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2110 }
2111 
2112 
2113 
2114 /* Return values.  */
2115 
2116 
2117 static int
2118 mep_use_struct_convention (struct type *type)
2119 {
2120   return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2121 }
2122 
2123 
2124 static void
2125 mep_extract_return_value (struct gdbarch *arch,
2126                           struct type *type,
2127                           struct regcache *regcache,
2128                           gdb_byte *valbuf)
2129 {
2130   int byte_order = gdbarch_byte_order (arch);
2131 
2132   /* Values that don't occupy a full register appear at the less
2133      significant end of the value.  This is the offset to where the
2134      value starts.  */
2135   int offset;
2136 
2137   /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2138      pointed to by R0.  */
2139   gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2140 
2141   if (byte_order == BFD_ENDIAN_BIG)
2142     offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2143   else
2144     offset = 0;
2145 
2146   /* Return values that do fit in a single register are returned in R0.  */
2147   regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2148                              offset, TYPE_LENGTH (type),
2149                              valbuf);
2150 }
2151 
2152 
2153 static void
2154 mep_store_return_value (struct gdbarch *arch,
2155                         struct type *type,
2156                         struct regcache *regcache,
2157                         const gdb_byte *valbuf)
2158 {
2159   int byte_order = gdbarch_byte_order (arch);
2160 
2161   /* Values that fit in a single register go in R0.  */
2162   if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2163     {
2164       /* Values that don't occupy a full register appear at the least
2165          significant end of the value.  This is the offset to where the
2166          value starts.  */
2167       int offset;
2168 
2169       if (byte_order == BFD_ENDIAN_BIG)
2170         offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2171       else
2172         offset = 0;
2173 
2174       regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2175                                   offset, TYPE_LENGTH (type),
2176                                   valbuf);
2177     }
2178 
2179   /* Return values larger than a single register are returned in
2180      memory, pointed to by R0.  Unfortunately, we can't count on R0
2181      pointing to the return buffer, so we raise an error here.  */
2182   else
2183     error (_("\
2184 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2185 calling conventions do not provide enough information to do this.\n\
2186 Try using the 'return' command with no argument."));
2187 }
2188 
2189 static enum return_value_convention
2190 mep_return_value (struct gdbarch *gdbarch, struct value *function,
2191 		  struct type *type, struct regcache *regcache,
2192 		  gdb_byte *readbuf, const gdb_byte *writebuf)
2193 {
2194   if (mep_use_struct_convention (type))
2195     {
2196       if (readbuf)
2197 	{
2198 	  ULONGEST addr;
2199 	  /* Although the address of the struct buffer gets passed in R1, it's
2200 	     returned in R0.  Fetch R0's value and then read the memory
2201 	     at that address.  */
2202 	  regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2203 	  read_memory (addr, readbuf, TYPE_LENGTH (type));
2204 	}
2205       if (writebuf)
2206 	{
2207 	  /* Return values larger than a single register are returned in
2208 	     memory, pointed to by R0.  Unfortunately, we can't count on R0
2209 	     pointing to the return buffer, so we raise an error here.  */
2210 	  error (_("\
2211 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2212 calling conventions do not provide enough information to do this.\n\
2213 Try using the 'return' command with no argument."));
2214 	}
2215       return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2216     }
2217 
2218   if (readbuf)
2219     mep_extract_return_value (gdbarch, type, regcache, readbuf);
2220   if (writebuf)
2221     mep_store_return_value (gdbarch, type, regcache, writebuf);
2222 
2223   return RETURN_VALUE_REGISTER_CONVENTION;
2224 }
2225 
2226 
2227 /* Inferior calls.  */
2228 
2229 
2230 static CORE_ADDR
2231 mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2232 {
2233   /* Require word alignment.  */
2234   return sp & -4;
2235 }
2236 
2237 
2238 /* From "lang_spec2.txt":
2239 
2240    4.2 Calling conventions
2241 
2242    4.2.1 Core register conventions
2243 
2244    - Parameters should be evaluated from left to right, and they
2245      should be held in $1,$2,$3,$4 in order.  The fifth parameter or
2246      after should be held in the stack.  If the size is larger than 4
2247      bytes in the first four parameters, the pointer should be held in
2248      the registers instead.  If the size is larger than 4 bytes in the
2249      fifth parameter or after, the pointer should be held in the stack.
2250 
2251    - Return value of a function should be held in register $0.  If the
2252      size of return value is larger than 4 bytes, $1 should hold the
2253      pointer pointing memory that would hold the return value.  In this
2254      case, the first parameter should be held in $2, the second one in
2255      $3, and the third one in $4, and the forth parameter or after
2256      should be held in the stack.
2257 
2258    [This doesn't say so, but arguments shorter than four bytes are
2259    passed in the least significant end of a four-byte word when
2260    they're passed on the stack.]  */
2261 
2262 
2263 /* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2264    large to fit in a register, save it on the stack, and place its
2265    address in COPY[i].  SP is the initial stack pointer; return the
2266    new stack pointer.  */
2267 static CORE_ADDR
2268 push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2269                       CORE_ADDR copy[])
2270 {
2271   int i;
2272 
2273   for (i = 0; i < argc; i++)
2274     {
2275       unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2276 
2277       if (arg_len > MEP_GPR_SIZE)
2278         {
2279           /* Reserve space for the copy, and then round the SP down, to
2280              make sure it's all aligned properly.  */
2281           sp = (sp - arg_len) & -4;
2282           write_memory (sp, value_contents (argv[i]), arg_len);
2283           copy[i] = sp;
2284         }
2285     }
2286 
2287   return sp;
2288 }
2289 
2290 
2291 static CORE_ADDR
2292 mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2293                      struct regcache *regcache, CORE_ADDR bp_addr,
2294                      int argc, struct value **argv, CORE_ADDR sp,
2295                      int struct_return,
2296                      CORE_ADDR struct_addr)
2297 {
2298   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2299   CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2300   CORE_ADDR func_addr = find_function_addr (function, NULL);
2301   int i;
2302 
2303   /* The number of the next register available to hold an argument.  */
2304   int arg_reg;
2305 
2306   /* The address of the next stack slot available to hold an argument.  */
2307   CORE_ADDR arg_stack;
2308 
2309   /* The address of the end of the stack area for arguments.  This is
2310      just for error checking.  */
2311   CORE_ADDR arg_stack_end;
2312 
2313   sp = push_large_arguments (sp, argc, argv, copy);
2314 
2315   /* Reserve space for the stack arguments, if any.  */
2316   arg_stack_end = sp;
2317   if (argc + (struct_addr ? 1 : 0) > 4)
2318     sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2319 
2320   arg_reg = MEP_R1_REGNUM;
2321   arg_stack = sp;
2322 
2323   /* If we're returning a structure by value, push the pointer to the
2324      buffer as the first argument.  */
2325   if (struct_return)
2326     {
2327       regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2328       arg_reg++;
2329     }
2330 
2331   for (i = 0; i < argc; i++)
2332     {
2333       ULONGEST value;
2334 
2335       /* Arguments that fit in a GPR get expanded to fill the GPR.  */
2336       if (TYPE_LENGTH (value_type (argv[i])) <= MEP_GPR_SIZE)
2337         value = extract_unsigned_integer (value_contents (argv[i]),
2338                                           TYPE_LENGTH (value_type (argv[i])),
2339 					  byte_order);
2340 
2341       /* Arguments too large to fit in a GPR get copied to the stack,
2342          and we pass a pointer to the copy.  */
2343       else
2344         value = copy[i];
2345 
2346       /* We use $1 -- $4 for passing arguments, then use the stack.  */
2347       if (arg_reg <= MEP_R4_REGNUM)
2348         {
2349           regcache_cooked_write_unsigned (regcache, arg_reg, value);
2350           arg_reg++;
2351         }
2352       else
2353         {
2354           gdb_byte buf[MEP_GPR_SIZE];
2355           store_unsigned_integer (buf, MEP_GPR_SIZE, byte_order, value);
2356           write_memory (arg_stack, buf, MEP_GPR_SIZE);
2357           arg_stack += MEP_GPR_SIZE;
2358         }
2359     }
2360 
2361   gdb_assert (arg_stack <= arg_stack_end);
2362 
2363   /* Set the return address.  */
2364   regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2365 
2366   /* Update the stack pointer.  */
2367   regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2368 
2369   return sp;
2370 }
2371 
2372 
2373 static struct frame_id
2374 mep_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2375 {
2376   CORE_ADDR sp = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
2377   return frame_id_build (sp, get_frame_pc (this_frame));
2378 }
2379 
2380 
2381 
2382 /* Initialization.  */
2383 
2384 
2385 static struct gdbarch *
2386 mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2387 {
2388   struct gdbarch *gdbarch;
2389   struct gdbarch_tdep *tdep;
2390 
2391   /* Which me_module are we building a gdbarch object for?  */
2392   CONFIG_ATTR me_module;
2393 
2394   /* If we have a BFD in hand, figure out which me_module it was built
2395      for.  Otherwise, use the no-particular-me_module code.  */
2396   if (info.abfd)
2397     {
2398       /* The way to get the me_module code depends on the object file
2399          format.  At the moment, we only know how to handle ELF.  */
2400       if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2401 	{
2402 	  int flag = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2403 	  me_module = (CONFIG_ATTR) flag;
2404 	}
2405       else
2406         me_module = CONFIG_NONE;
2407     }
2408   else
2409     me_module = CONFIG_NONE;
2410 
2411   /* If we're setting the architecture from a file, check the
2412      endianness of the file against that of the me_module.  */
2413   if (info.abfd)
2414     {
2415       /* The negations on either side make the comparison treat all
2416          non-zero (true) values as equal.  */
2417       if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2418         {
2419           const char *module_name = me_module_name (me_module);
2420           const char *module_endianness
2421             = me_module_big_endian (me_module) ? "big" : "little";
2422           const char *file_name = bfd_get_filename (info.abfd);
2423           const char *file_endianness
2424             = bfd_big_endian (info.abfd) ? "big" : "little";
2425 
2426           fputc_unfiltered ('\n', gdb_stderr);
2427           if (module_name)
2428             warning (_("the MeP module '%s' is %s-endian, but the executable\n"
2429 		       "%s is %s-endian."),
2430                      module_name, module_endianness,
2431                      file_name, file_endianness);
2432           else
2433             warning (_("the selected MeP module is %s-endian, but the "
2434 		       "executable\n"
2435 		       "%s is %s-endian."),
2436                      module_endianness, file_name, file_endianness);
2437         }
2438     }
2439 
2440   /* Find a candidate among the list of architectures we've created
2441      already.  info->bfd_arch_info needs to match, but we also want
2442      the right me_module: the ELF header's e_flags field needs to
2443      match as well.  */
2444   for (arches = gdbarch_list_lookup_by_info (arches, &info);
2445        arches != NULL;
2446        arches = gdbarch_list_lookup_by_info (arches->next, &info))
2447     if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2448       return arches->gdbarch;
2449 
2450   tdep = XNEW (struct gdbarch_tdep);
2451   gdbarch = gdbarch_alloc (&info, tdep);
2452 
2453   /* Get a CGEN CPU descriptor for this architecture.  */
2454   {
2455     const char *mach_name = info.bfd_arch_info->printable_name;
2456     enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2457                                ? CGEN_ENDIAN_BIG
2458                                : CGEN_ENDIAN_LITTLE);
2459 
2460     tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2461                                         CGEN_CPU_OPEN_ENDIAN, endian,
2462                                         CGEN_CPU_OPEN_END);
2463   }
2464 
2465   tdep->me_module = me_module;
2466 
2467   /* Register set.  */
2468   set_gdbarch_read_pc (gdbarch, mep_read_pc);
2469   set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2470   set_gdbarch_pc_regnum (gdbarch, MEP_PC_REGNUM);
2471   set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2472   set_gdbarch_register_name (gdbarch, mep_register_name);
2473   set_gdbarch_register_type (gdbarch, mep_register_type);
2474   set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2475   set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2476   set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2477   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2478   set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2479 
2480   set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2481   reggroup_add (gdbarch, all_reggroup);
2482   reggroup_add (gdbarch, general_reggroup);
2483   reggroup_add (gdbarch, save_reggroup);
2484   reggroup_add (gdbarch, restore_reggroup);
2485   reggroup_add (gdbarch, mep_csr_reggroup);
2486   reggroup_add (gdbarch, mep_cr_reggroup);
2487   reggroup_add (gdbarch, mep_ccr_reggroup);
2488 
2489   /* Disassembly.  */
2490   set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2491 
2492   /* Breakpoints.  */
2493   set_gdbarch_breakpoint_from_pc (gdbarch, mep_breakpoint_from_pc);
2494   set_gdbarch_decr_pc_after_break (gdbarch, 0);
2495   set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2496 
2497   /* Frames and frame unwinding.  */
2498   frame_unwind_append_unwinder (gdbarch, &mep_frame_unwind);
2499   set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2500   set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2501   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2502   set_gdbarch_frame_args_skip (gdbarch, 0);
2503 
2504   /* Return values.  */
2505   set_gdbarch_return_value (gdbarch, mep_return_value);
2506 
2507   /* Inferior function calls.  */
2508   set_gdbarch_frame_align (gdbarch, mep_frame_align);
2509   set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2510   set_gdbarch_dummy_id (gdbarch, mep_dummy_id);
2511 
2512   return gdbarch;
2513 }
2514 
2515 /* Provide a prototype to silence -Wmissing-prototypes.  */
2516 extern initialize_file_ftype _initialize_mep_tdep;
2517 
2518 void
2519 _initialize_mep_tdep (void)
2520 {
2521   mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2522   mep_cr_reggroup  = reggroup_new ("cr", USER_REGGROUP);
2523   mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2524 
2525   register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2526 
2527   mep_init_pseudoregister_maps ();
2528 }
2529