1 /* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger. 2 3 Copyright (C) 2001-2023 Free Software Foundation, Inc. 4 5 Contributed by Red Hat, Inc. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 #include "defs.h" 23 #include "frame.h" 24 #include "frame-unwind.h" 25 #include "frame-base.h" 26 #include "symtab.h" 27 #include "gdbtypes.h" 28 #include "gdbcmd.h" 29 #include "gdbcore.h" 30 #include "value.h" 31 #include "inferior.h" 32 #include "dis-asm.h" 33 #include "symfile.h" 34 #include "objfiles.h" 35 #include "language.h" 36 #include "arch-utils.h" 37 #include "regcache.h" 38 #include "remote.h" 39 #include "sim-regno.h" 40 #include "trad-frame.h" 41 #include "reggroups.h" 42 #include "elf-bfd.h" 43 #include "elf/mep.h" 44 #include "prologue-value.h" 45 #include "cgen/bitset.h" 46 #include "infcall.h" 47 #include "gdbarch.h" 48 49 /* Get the user's customized MeP coprocessor register names from 50 libopcodes. */ 51 #include "opcodes/mep-desc.h" 52 #include "opcodes/mep-opc.h" 53 54 55 /* The gdbarch_tdep structure. */ 56 57 /* A quick recap for GDB hackers not familiar with the whole Toshiba 58 Media Processor story: 59 60 The MeP media engine is a configureable processor: users can design 61 their own coprocessors, implement custom instructions, adjust cache 62 sizes, select optional standard facilities like add-and-saturate 63 instructions, and so on. Then, they can build custom versions of 64 the GNU toolchain to support their customized chips. The 65 MeP-Integrator program (see utils/mep) takes a GNU toolchain source 66 tree, and a config file pointing to various files provided by the 67 user describing their customizations, and edits the source tree to 68 produce a compiler that can generate their custom instructions, an 69 assembler that can assemble them and recognize their custom 70 register names, and so on. 71 72 Furthermore, the user can actually specify several of these custom 73 configurations, called 'me_modules', and get a toolchain which can 74 produce code for any of them, given a compiler/assembler switch; 75 you say something like 'gcc -mconfig=mm_max' to generate code for 76 the me_module named 'mm_max'. 77 78 GDB, in particular, needs to: 79 80 - use the coprocessor control register names provided by the user 81 in their hardware description, in expressions, 'info register' 82 output, and disassembly, 83 84 - know the number, names, and types of the coprocessor's 85 general-purpose registers, adjust the 'info all-registers' output 86 accordingly, and print error messages if the user refers to one 87 that doesn't exist 88 89 - allow access to the control bus space only when the configuration 90 actually has a control bus, and recognize which regions of the 91 control bus space are actually populated, 92 93 - disassemble using the user's provided mnemonics for their custom 94 instructions, and 95 96 - recognize whether the $hi and $lo registers are present, and 97 allow access to them only when they are actually there. 98 99 There are three sources of information about what sort of me_module 100 we're actually dealing with: 101 102 - A MeP executable file indicates which me_module it was compiled 103 for, and libopcodes has tables describing each module. So, given 104 an executable file, we can find out about the processor it was 105 compiled for. 106 107 - There are SID command-line options to select a particular 108 me_module, overriding the one specified in the ELF file. SID 109 provides GDB with a fake read-only register, 'module', which 110 indicates which me_module GDB is communicating with an instance 111 of. 112 113 - There are SID command-line options to enable or disable certain 114 optional processor features, overriding the defaults for the 115 selected me_module. The MeP $OPT register indicates which 116 options are present on the current processor. */ 117 118 119 struct mep_gdbarch_tdep : gdbarch_tdep_base 120 { 121 /* A CGEN cpu descriptor for this BFD architecture and machine. 122 123 Note: this is *not* customized for any particular me_module; the 124 MeP libopcodes machinery actually puts off module-specific 125 customization until the last minute. So this contains 126 information about all supported me_modules. */ 127 CGEN_CPU_DESC cpu_desc = nullptr; 128 129 /* The me_module index from the ELF file we used to select this 130 architecture, or CONFIG_NONE if there was none. 131 132 Note that we should prefer to use the me_module number available 133 via the 'module' register, whenever we're actually talking to a 134 real target. 135 136 In the absence of live information, we'd like to get the 137 me_module number from the ELF file. But which ELF file: the 138 executable file, the core file, ... ? The answer is, "the last 139 ELF file we used to set the current architecture". Thus, we 140 create a separate instance of the gdbarch structure for each 141 me_module value mep_gdbarch_init sees, and store the me_module 142 value from the ELF file here. */ 143 CONFIG_ATTR me_module {}; 144 }; 145 146 147 148 /* Getting me_module information from the CGEN tables. */ 149 150 151 /* Find an entry in the DESC's hardware table whose name begins with 152 PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not 153 intersect with GENERIC_ISA_MASK. If there is no matching entry, 154 return zero. */ 155 static const CGEN_HW_ENTRY * 156 find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc, 157 const char *prefix, 158 CGEN_BITSET *copro_isa_mask, 159 CGEN_BITSET *generic_isa_mask) 160 { 161 int prefix_len = strlen (prefix); 162 int i; 163 164 for (i = 0; i < desc->hw_table.num_entries; i++) 165 { 166 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i]; 167 if (strncmp (prefix, hw->name, prefix_len) == 0) 168 { 169 CGEN_BITSET *hw_isa_mask 170 = ((CGEN_BITSET *) 171 &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw))); 172 173 if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask) 174 && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask)) 175 return hw; 176 } 177 } 178 179 return 0; 180 } 181 182 183 /* Find an entry in DESC's hardware table whose type is TYPE. Return 184 zero if there is none. */ 185 static const CGEN_HW_ENTRY * 186 find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type) 187 { 188 int i; 189 190 for (i = 0; i < desc->hw_table.num_entries; i++) 191 { 192 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i]; 193 194 if (hw->type == type) 195 return hw; 196 } 197 198 return 0; 199 } 200 201 202 /* Return the CGEN hardware table entry for the coprocessor register 203 set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has 204 no such register set, return zero. If ME_MODULE is the generic 205 me_module CONFIG_NONE, return the table entry for the register set 206 whose hardware type is GENERIC_TYPE. */ 207 static const CGEN_HW_ENTRY * 208 me_module_register_set (CONFIG_ATTR me_module, 209 const char *prefix, 210 CGEN_HW_TYPE generic_type) 211 { 212 /* This is kind of tricky, because the hardware table is constructed 213 in a way that isn't very helpful. Perhaps we can fix that, but 214 here's how it works at the moment: 215 216 The configuration map, `mep_config_map', is indexed by me_module 217 number, and indicates which coprocessor and core ISAs that 218 me_module supports. The 'core_isa' mask includes all the core 219 ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs. 220 The entry for the generic me_module, CONFIG_NONE, has an empty 221 'cop_isa', and its 'core_isa' selects only the standard MeP 222 instruction set. 223 224 The CGEN CPU descriptor's hardware table, desc->hw_table, has 225 entries for all the register sets, for all me_modules. Each 226 entry has a mask indicating which ISAs use that register set. 227 So, if an me_module supports some coprocessor ISA, we can find 228 applicable register sets by scanning the hardware table for 229 register sets whose masks include (at least some of) those ISAs. 230 231 Each hardware table entry also has a name, whose prefix says 232 whether it's a general-purpose ("h-cr") or control ("h-ccr") 233 coprocessor register set. It might be nicer to have an attribute 234 indicating what sort of register set it was, that we could use 235 instead of pattern-matching on the name. 236 237 When there is no hardware table entry whose mask includes a 238 particular coprocessor ISA and whose name starts with a given 239 prefix, then that means that that coprocessor doesn't have any 240 registers of that type. In such cases, this function must return 241 a null pointer. 242 243 Coprocessor register sets' masks may or may not include the core 244 ISA for the me_module they belong to. Those generated by a2cgen 245 do, but the sample me_module included in the unconfigured tree, 246 'ccfx', does not. 247 248 There are generic coprocessor register sets, intended only for 249 use with the generic me_module. Unfortunately, their masks 250 include *all* ISAs --- even those for coprocessors that don't 251 have such register sets. This makes detecting the case where a 252 coprocessor lacks a particular register set more complicated. 253 254 So, here's the approach we take: 255 256 - For CONFIG_NONE, we return the generic coprocessor register set. 257 258 - For any other me_module, we search for a register set whose 259 mask contains any of the me_module's coprocessor ISAs, 260 specifically excluding the generic coprocessor register sets. */ 261 262 mep_gdbarch_tdep *tdep 263 = gdbarch_tdep<mep_gdbarch_tdep> (target_gdbarch ()); 264 CGEN_CPU_DESC desc = tdep->cpu_desc; 265 const CGEN_HW_ENTRY *hw; 266 267 if (me_module == CONFIG_NONE) 268 hw = find_hw_entry_by_type (desc, generic_type); 269 else 270 { 271 CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa; 272 CGEN_BITSET *core = &mep_config_map[me_module].core_isa; 273 CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa; 274 CGEN_BITSET *cop_and_core; 275 276 /* The coprocessor ISAs include the ISA for the specific core which 277 has that coprocessor. */ 278 cop_and_core = cgen_bitset_copy (cop); 279 cgen_bitset_union (cop, core, cop_and_core); 280 hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic); 281 } 282 283 return hw; 284 } 285 286 287 /* Given a hardware table entry HW representing a register set, return 288 a pointer to the keyword table with all the register names. If HW 289 is NULL, return NULL, to propagate the "no such register set" info 290 along. */ 291 static CGEN_KEYWORD * 292 register_set_keyword_table (const CGEN_HW_ENTRY *hw) 293 { 294 if (! hw) 295 return NULL; 296 297 /* Check that HW is actually a keyword table. */ 298 gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD); 299 300 /* The 'asm_data' field of a register set's hardware table entry 301 refers to a keyword table. */ 302 return (CGEN_KEYWORD *) hw->asm_data; 303 } 304 305 306 /* Given a keyword table KEYWORD and a register number REGNUM, return 307 the name of the register, or "" if KEYWORD contains no register 308 whose number is REGNUM. */ 309 static const char * 310 register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum) 311 { 312 const CGEN_KEYWORD_ENTRY *entry 313 = cgen_keyword_lookup_value (keyword_table, regnum); 314 315 if (entry) 316 { 317 char *name = entry->name; 318 319 /* The CGEN keyword entries for register names include the 320 leading $, which appears in MeP assembly as well as in GDB. 321 But we don't want to return that; GDB core code adds that 322 itself. */ 323 if (name[0] == '$') 324 name++; 325 326 return name; 327 } 328 else 329 return ""; 330 } 331 332 333 /* Masks for option bits in the OPT special-purpose register. */ 334 enum { 335 MEP_OPT_DIV = 1 << 25, /* 32-bit divide instruction option */ 336 MEP_OPT_MUL = 1 << 24, /* 32-bit multiply instruction option */ 337 MEP_OPT_BIT = 1 << 23, /* bit manipulation instruction option */ 338 MEP_OPT_SAT = 1 << 22, /* saturation instruction option */ 339 MEP_OPT_CLP = 1 << 21, /* clip instruction option */ 340 MEP_OPT_MIN = 1 << 20, /* min/max instruction option */ 341 MEP_OPT_AVE = 1 << 19, /* average instruction option */ 342 MEP_OPT_ABS = 1 << 18, /* absolute difference instruction option */ 343 MEP_OPT_LDZ = 1 << 16, /* leading zero instruction option */ 344 MEP_OPT_VL64 = 1 << 6, /* 64-bit VLIW operation mode option */ 345 MEP_OPT_VL32 = 1 << 5, /* 32-bit VLIW operation mode option */ 346 MEP_OPT_COP = 1 << 4, /* coprocessor option */ 347 MEP_OPT_DSP = 1 << 2, /* DSP option */ 348 MEP_OPT_UCI = 1 << 1, /* UCI option */ 349 MEP_OPT_DBG = 1 << 0, /* DBG function option */ 350 }; 351 352 353 /* Given the option_mask value for a particular entry in 354 mep_config_map, produce the value the processor's OPT register 355 would use to represent the same set of options. */ 356 static unsigned int 357 opt_from_option_mask (unsigned int option_mask) 358 { 359 /* A table mapping OPT register bits onto CGEN config map option 360 bits. */ 361 struct { 362 unsigned int opt_bit, option_mask_bit; 363 } bits[] = { 364 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN }, 365 { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN }, 366 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN }, 367 { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN }, 368 { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN }, 369 { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN }, 370 { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN }, 371 { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN }, 372 { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN }, 373 { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN }, 374 { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN }, 375 { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN }, 376 { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN }, 377 }; 378 379 int i; 380 unsigned int opt = 0; 381 382 for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++) 383 if (option_mask & bits[i].option_mask_bit) 384 opt |= bits[i].opt_bit; 385 386 return opt; 387 } 388 389 390 /* Return the value the $OPT register would use to represent the set 391 of options for ME_MODULE. */ 392 static unsigned int 393 me_module_opt (CONFIG_ATTR me_module) 394 { 395 return opt_from_option_mask (mep_config_map[me_module].option_mask); 396 } 397 398 399 /* Return the width of ME_MODULE's coprocessor data bus, in bits. 400 This is either 32 or 64. */ 401 static int 402 me_module_cop_data_bus_width (CONFIG_ATTR me_module) 403 { 404 if (mep_config_map[me_module].option_mask 405 & (1 << CGEN_INSN_OPTIONAL_CP64_INSN)) 406 return 64; 407 else 408 return 32; 409 } 410 411 412 /* Return true if ME_MODULE is big-endian, false otherwise. */ 413 static int 414 me_module_big_endian (CONFIG_ATTR me_module) 415 { 416 return mep_config_map[me_module].big_endian; 417 } 418 419 420 /* Return the name of ME_MODULE, or NULL if it has no name. */ 421 static const char * 422 me_module_name (CONFIG_ATTR me_module) 423 { 424 /* The default me_module has "" as its name, but it's easier for our 425 callers to test for NULL. */ 426 if (! mep_config_map[me_module].name 427 || mep_config_map[me_module].name[0] == '\0') 428 return NULL; 429 else 430 return mep_config_map[me_module].name; 431 } 432 433 /* Register set. */ 434 435 436 /* The MeP spec defines the following registers: 437 16 general purpose registers (r0-r15) 438 32 control/special registers (csr0-csr31) 439 32 coprocessor general-purpose registers (c0 -- c31) 440 64 coprocessor control registers (ccr0 -- ccr63) 441 442 For the raw registers, we assign numbers here explicitly, instead 443 of letting the enum assign them for us; the numbers are a matter of 444 external protocol, and shouldn't shift around as things are edited. 445 446 We access the control/special registers via pseudoregisters, to 447 enforce read-only portions that some registers have. 448 449 We access the coprocessor general purpose and control registers via 450 pseudoregisters, to make sure they appear in the proper order in 451 the 'info all-registers' command (which uses the register number 452 ordering), and also to allow them to be renamed and resized 453 depending on the me_module in use. 454 455 The MeP allows coprocessor general-purpose registers to be either 456 32 or 64 bits long, depending on the configuration. Since we don't 457 want the format of the 'g' packet to vary from one core to another, 458 the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the 459 types of registers to change (see the implementation of 460 register_type), so we have four banks of pseudoregisters for the 461 coprocessor gprs --- 32-bit vs. 64-bit, and integer 462 vs. floating-point --- and we show or hide them depending on the 463 configuration. */ 464 enum 465 { 466 MEP_FIRST_RAW_REGNUM = 0, 467 468 MEP_FIRST_GPR_REGNUM = 0, 469 MEP_R0_REGNUM = 0, 470 MEP_R1_REGNUM = 1, 471 MEP_R2_REGNUM = 2, 472 MEP_R3_REGNUM = 3, 473 MEP_R4_REGNUM = 4, 474 MEP_R5_REGNUM = 5, 475 MEP_R6_REGNUM = 6, 476 MEP_R7_REGNUM = 7, 477 MEP_R8_REGNUM = 8, 478 MEP_R9_REGNUM = 9, 479 MEP_R10_REGNUM = 10, 480 MEP_R11_REGNUM = 11, 481 MEP_R12_REGNUM = 12, 482 MEP_FP_REGNUM = MEP_R8_REGNUM, 483 MEP_R13_REGNUM = 13, 484 MEP_TP_REGNUM = MEP_R13_REGNUM, /* (r13) Tiny data pointer */ 485 MEP_R14_REGNUM = 14, 486 MEP_GP_REGNUM = MEP_R14_REGNUM, /* (r14) Global pointer */ 487 MEP_R15_REGNUM = 15, 488 MEP_SP_REGNUM = MEP_R15_REGNUM, /* (r15) Stack pointer */ 489 MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM, 490 491 /* The raw control registers. These are the values as received via 492 the remote protocol, directly from the target; we only let user 493 code touch the via the pseudoregisters, which enforce read-only 494 bits. */ 495 MEP_FIRST_RAW_CSR_REGNUM = 16, 496 MEP_RAW_PC_REGNUM = 16, /* Program counter */ 497 MEP_RAW_LP_REGNUM = 17, /* Link pointer */ 498 MEP_RAW_SAR_REGNUM = 18, /* Raw shift amount */ 499 MEP_RAW_CSR3_REGNUM = 19, /* csr3: reserved */ 500 MEP_RAW_RPB_REGNUM = 20, /* Raw repeat begin address */ 501 MEP_RAW_RPE_REGNUM = 21, /* Repeat end address */ 502 MEP_RAW_RPC_REGNUM = 22, /* Repeat count */ 503 MEP_RAW_HI_REGNUM = 23, /* Upper 32 bits of result of 64 bit mult/div */ 504 MEP_RAW_LO_REGNUM = 24, /* Lower 32 bits of result of 64 bit mult/div */ 505 MEP_RAW_CSR9_REGNUM = 25, /* csr3: reserved */ 506 MEP_RAW_CSR10_REGNUM = 26, /* csr3: reserved */ 507 MEP_RAW_CSR11_REGNUM = 27, /* csr3: reserved */ 508 MEP_RAW_MB0_REGNUM = 28, /* Raw modulo begin address 0 */ 509 MEP_RAW_ME0_REGNUM = 29, /* Raw modulo end address 0 */ 510 MEP_RAW_MB1_REGNUM = 30, /* Raw modulo begin address 1 */ 511 MEP_RAW_ME1_REGNUM = 31, /* Raw modulo end address 1 */ 512 MEP_RAW_PSW_REGNUM = 32, /* Raw program status word */ 513 MEP_RAW_ID_REGNUM = 33, /* Raw processor ID/revision */ 514 MEP_RAW_TMP_REGNUM = 34, /* Temporary */ 515 MEP_RAW_EPC_REGNUM = 35, /* Exception program counter */ 516 MEP_RAW_EXC_REGNUM = 36, /* Raw exception cause */ 517 MEP_RAW_CFG_REGNUM = 37, /* Raw processor configuration*/ 518 MEP_RAW_CSR22_REGNUM = 38, /* csr3: reserved */ 519 MEP_RAW_NPC_REGNUM = 39, /* Nonmaskable interrupt PC */ 520 MEP_RAW_DBG_REGNUM = 40, /* Raw debug */ 521 MEP_RAW_DEPC_REGNUM = 41, /* Debug exception PC */ 522 MEP_RAW_OPT_REGNUM = 42, /* Raw options */ 523 MEP_RAW_RCFG_REGNUM = 43, /* Raw local ram config */ 524 MEP_RAW_CCFG_REGNUM = 44, /* Raw cache config */ 525 MEP_RAW_CSR29_REGNUM = 45, /* csr3: reserved */ 526 MEP_RAW_CSR30_REGNUM = 46, /* csr3: reserved */ 527 MEP_RAW_CSR31_REGNUM = 47, /* csr3: reserved */ 528 MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM, 529 530 /* The raw coprocessor general-purpose registers. These are all 64 531 bits wide. */ 532 MEP_FIRST_RAW_CR_REGNUM = 48, 533 MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31, 534 535 MEP_FIRST_RAW_CCR_REGNUM = 80, 536 MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63, 537 538 /* The module number register. This is the index of the me_module 539 of which the current target is an instance. (This is not a real 540 MeP-specified register; it's provided by SID.) */ 541 MEP_MODULE_REGNUM, 542 543 MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM, 544 545 MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1, 546 547 /* Pseudoregisters. See mep_pseudo_register_read and 548 mep_pseudo_register_write. */ 549 MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS, 550 551 /* We have a pseudoregister for every control/special register, to 552 implement registers with read-only bits. */ 553 MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM, 554 MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */ 555 MEP_LP_REGNUM, /* Link pointer */ 556 MEP_SAR_REGNUM, /* shift amount */ 557 MEP_CSR3_REGNUM, /* csr3: reserved */ 558 MEP_RPB_REGNUM, /* repeat begin address */ 559 MEP_RPE_REGNUM, /* Repeat end address */ 560 MEP_RPC_REGNUM, /* Repeat count */ 561 MEP_HI_REGNUM, /* Upper 32 bits of the result of 64 bit mult/div */ 562 MEP_LO_REGNUM, /* Lower 32 bits of the result of 64 bit mult/div */ 563 MEP_CSR9_REGNUM, /* csr3: reserved */ 564 MEP_CSR10_REGNUM, /* csr3: reserved */ 565 MEP_CSR11_REGNUM, /* csr3: reserved */ 566 MEP_MB0_REGNUM, /* modulo begin address 0 */ 567 MEP_ME0_REGNUM, /* modulo end address 0 */ 568 MEP_MB1_REGNUM, /* modulo begin address 1 */ 569 MEP_ME1_REGNUM, /* modulo end address 1 */ 570 MEP_PSW_REGNUM, /* program status word */ 571 MEP_ID_REGNUM, /* processor ID/revision */ 572 MEP_TMP_REGNUM, /* Temporary */ 573 MEP_EPC_REGNUM, /* Exception program counter */ 574 MEP_EXC_REGNUM, /* exception cause */ 575 MEP_CFG_REGNUM, /* processor configuration*/ 576 MEP_CSR22_REGNUM, /* csr3: reserved */ 577 MEP_NPC_REGNUM, /* Nonmaskable interrupt PC */ 578 MEP_DBG_REGNUM, /* debug */ 579 MEP_DEPC_REGNUM, /* Debug exception PC */ 580 MEP_OPT_REGNUM, /* options */ 581 MEP_RCFG_REGNUM, /* local ram config */ 582 MEP_CCFG_REGNUM, /* cache config */ 583 MEP_CSR29_REGNUM, /* csr3: reserved */ 584 MEP_CSR30_REGNUM, /* csr3: reserved */ 585 MEP_CSR31_REGNUM, /* csr3: reserved */ 586 MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM, 587 588 /* The 32-bit integer view of the coprocessor GPR's. */ 589 MEP_FIRST_CR32_REGNUM, 590 MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31, 591 592 /* The 32-bit floating-point view of the coprocessor GPR's. */ 593 MEP_FIRST_FP_CR32_REGNUM, 594 MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31, 595 596 /* The 64-bit integer view of the coprocessor GPR's. */ 597 MEP_FIRST_CR64_REGNUM, 598 MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31, 599 600 /* The 64-bit floating-point view of the coprocessor GPR's. */ 601 MEP_FIRST_FP_CR64_REGNUM, 602 MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31, 603 604 MEP_FIRST_CCR_REGNUM, 605 MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63, 606 607 MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM, 608 609 MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM), 610 611 MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS 612 }; 613 614 615 #define IN_SET(set, n) \ 616 (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM) 617 618 #define IS_GPR_REGNUM(n) (IN_SET (GPR, (n))) 619 #define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n))) 620 #define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n))) 621 #define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n))) 622 623 #define IS_CSR_REGNUM(n) (IN_SET (CSR, (n))) 624 #define IS_CR32_REGNUM(n) (IN_SET (CR32, (n))) 625 #define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n))) 626 #define IS_CR64_REGNUM(n) (IN_SET (CR64, (n))) 627 #define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n))) 628 #define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \ 629 || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n)) 630 #define IS_CCR_REGNUM(n) (IN_SET (CCR, (n))) 631 632 #define IS_RAW_REGNUM(n) (IN_SET (RAW, (n))) 633 #define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n))) 634 635 #define NUM_REGS_IN_SET(set) \ 636 (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1) 637 638 #define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */ 639 #define MEP_PSW_SIZE (4) /* Size of the PSW register. */ 640 #define MEP_LP_SIZE (4) /* Size of the LP register. */ 641 642 643 /* Many of the control/special registers contain bits that cannot be 644 written to; some are entirely read-only. So we present them all as 645 pseudoregisters. 646 647 The following table describes the special properties of each CSR. */ 648 struct mep_csr_register 649 { 650 /* The number of this CSR's raw register. */ 651 int raw; 652 653 /* The number of this CSR's pseudoregister. */ 654 int pseudo; 655 656 /* A mask of the bits that are writeable: if a bit is set here, then 657 it can be modified; if the bit is clear, then it cannot. */ 658 LONGEST writeable_bits; 659 }; 660 661 662 /* mep_csr_registers[i] describes the i'th CSR. 663 We just list the register numbers here explicitly to help catch 664 typos. */ 665 #define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM 666 static mep_csr_register mep_csr_registers[] = { 667 { CSR(PC), 0xffffffff }, /* manual says r/o, but we can write it */ 668 { CSR(LP), 0xffffffff }, 669 { CSR(SAR), 0x0000003f }, 670 { CSR(CSR3), 0xffffffff }, 671 { CSR(RPB), 0xfffffffe }, 672 { CSR(RPE), 0xffffffff }, 673 { CSR(RPC), 0xffffffff }, 674 { CSR(HI), 0xffffffff }, 675 { CSR(LO), 0xffffffff }, 676 { CSR(CSR9), 0xffffffff }, 677 { CSR(CSR10), 0xffffffff }, 678 { CSR(CSR11), 0xffffffff }, 679 { CSR(MB0), 0x0000ffff }, 680 { CSR(ME0), 0x0000ffff }, 681 { CSR(MB1), 0x0000ffff }, 682 { CSR(ME1), 0x0000ffff }, 683 { CSR(PSW), 0x000003ff }, 684 { CSR(ID), 0x00000000 }, 685 { CSR(TMP), 0xffffffff }, 686 { CSR(EPC), 0xffffffff }, 687 { CSR(EXC), 0x000030f0 }, 688 { CSR(CFG), 0x00c0001b }, 689 { CSR(CSR22), 0xffffffff }, 690 { CSR(NPC), 0xffffffff }, 691 { CSR(DBG), 0x00000580 }, 692 { CSR(DEPC), 0xffffffff }, 693 { CSR(OPT), 0x00000000 }, 694 { CSR(RCFG), 0x00000000 }, 695 { CSR(CCFG), 0x00000000 }, 696 { CSR(CSR29), 0xffffffff }, 697 { CSR(CSR30), 0xffffffff }, 698 { CSR(CSR31), 0xffffffff }, 699 }; 700 701 702 /* If R is the number of a raw register, then mep_raw_to_pseudo[R] is 703 the number of the corresponding pseudoregister. Otherwise, 704 mep_raw_to_pseudo[R] == R. */ 705 static int mep_raw_to_pseudo[MEP_NUM_REGS]; 706 707 /* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R] 708 is the number of the underlying raw register. Otherwise 709 mep_pseudo_to_raw[R] == R. */ 710 static int mep_pseudo_to_raw[MEP_NUM_REGS]; 711 712 static void 713 mep_init_pseudoregister_maps (void) 714 { 715 int i; 716 717 /* Verify that mep_csr_registers covers all the CSRs, in order. */ 718 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR)); 719 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR)); 720 721 /* Verify that the raw and pseudo ranges have matching sizes. */ 722 gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR)); 723 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR32)); 724 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR64)); 725 gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR)); 726 727 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++) 728 { 729 struct mep_csr_register *r = &mep_csr_registers[i]; 730 731 gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i); 732 gdb_assert (r->raw == MEP_FIRST_RAW_CSR_REGNUM + i); 733 } 734 735 /* Set up the initial raw<->pseudo mappings. */ 736 for (i = 0; i < MEP_NUM_REGS; i++) 737 { 738 mep_raw_to_pseudo[i] = i; 739 mep_pseudo_to_raw[i] = i; 740 } 741 742 /* Add the CSR raw<->pseudo mappings. */ 743 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++) 744 { 745 struct mep_csr_register *r = &mep_csr_registers[i]; 746 747 mep_raw_to_pseudo[r->raw] = r->pseudo; 748 mep_pseudo_to_raw[r->pseudo] = r->raw; 749 } 750 751 /* Add the CR raw<->pseudo mappings. */ 752 for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++) 753 { 754 int raw = MEP_FIRST_RAW_CR_REGNUM + i; 755 int pseudo32 = MEP_FIRST_CR32_REGNUM + i; 756 int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i; 757 int pseudo64 = MEP_FIRST_CR64_REGNUM + i; 758 int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i; 759 760 /* Truly, the raw->pseudo mapping depends on the current module. 761 But we use the raw->pseudo mapping when we read the debugging 762 info; at that point, we don't know what module we'll actually 763 be running yet. So, we always supply the 64-bit register 764 numbers; GDB knows how to pick a smaller value out of a 765 larger register properly. */ 766 mep_raw_to_pseudo[raw] = pseudo64; 767 mep_pseudo_to_raw[pseudo32] = raw; 768 mep_pseudo_to_raw[pseudofp32] = raw; 769 mep_pseudo_to_raw[pseudo64] = raw; 770 mep_pseudo_to_raw[pseudofp64] = raw; 771 } 772 773 /* Add the CCR raw<->pseudo mappings. */ 774 for (i = 0; i < NUM_REGS_IN_SET (CCR); i++) 775 { 776 int raw = MEP_FIRST_RAW_CCR_REGNUM + i; 777 int pseudo = MEP_FIRST_CCR_REGNUM + i; 778 mep_raw_to_pseudo[raw] = pseudo; 779 mep_pseudo_to_raw[pseudo] = raw; 780 } 781 } 782 783 784 static int 785 mep_debug_reg_to_regnum (struct gdbarch *gdbarch, int debug_reg) 786 { 787 /* The debug info uses the raw register numbers. */ 788 if (debug_reg >= 0 && debug_reg < ARRAY_SIZE (mep_raw_to_pseudo)) 789 return mep_raw_to_pseudo[debug_reg]; 790 return -1; 791 } 792 793 794 /* Return the size, in bits, of the coprocessor pseudoregister 795 numbered PSEUDO. */ 796 static int 797 mep_pseudo_cr_size (int pseudo) 798 { 799 if (IS_CR32_REGNUM (pseudo) 800 || IS_FP_CR32_REGNUM (pseudo)) 801 return 32; 802 else if (IS_CR64_REGNUM (pseudo) 803 || IS_FP_CR64_REGNUM (pseudo)) 804 return 64; 805 else 806 gdb_assert_not_reached ("unexpected coprocessor pseudo register"); 807 } 808 809 810 /* If the coprocessor pseudoregister numbered PSEUDO is a 811 floating-point register, return non-zero; if it is an integer 812 register, return zero. */ 813 static int 814 mep_pseudo_cr_is_float (int pseudo) 815 { 816 return (IS_FP_CR32_REGNUM (pseudo) 817 || IS_FP_CR64_REGNUM (pseudo)); 818 } 819 820 821 /* Given a coprocessor GPR pseudoregister number, return its index 822 within that register bank. */ 823 static int 824 mep_pseudo_cr_index (int pseudo) 825 { 826 if (IS_CR32_REGNUM (pseudo)) 827 return pseudo - MEP_FIRST_CR32_REGNUM; 828 else if (IS_FP_CR32_REGNUM (pseudo)) 829 return pseudo - MEP_FIRST_FP_CR32_REGNUM; 830 else if (IS_CR64_REGNUM (pseudo)) 831 return pseudo - MEP_FIRST_CR64_REGNUM; 832 else if (IS_FP_CR64_REGNUM (pseudo)) 833 return pseudo - MEP_FIRST_FP_CR64_REGNUM; 834 else 835 gdb_assert_not_reached ("unexpected coprocessor pseudo register"); 836 } 837 838 839 /* Return the me_module index describing the current target. 840 841 If the current target has registers (e.g., simulator, remote 842 target), then this uses the value of the 'module' register, raw 843 register MEP_MODULE_REGNUM. Otherwise, this retrieves the value 844 from the ELF header's e_flags field of the current executable 845 file. */ 846 static CONFIG_ATTR 847 current_me_module (void) 848 { 849 if (target_has_registers ()) 850 { 851 ULONGEST regval; 852 regcache_cooked_read_unsigned (get_current_regcache (), 853 MEP_MODULE_REGNUM, ®val); 854 return (CONFIG_ATTR) regval; 855 } 856 else 857 { 858 mep_gdbarch_tdep *tdep 859 = gdbarch_tdep<mep_gdbarch_tdep> (target_gdbarch ()); 860 return tdep->me_module; 861 } 862 } 863 864 865 /* Return the set of options for the current target, in the form that 866 the OPT register would use. 867 868 If the current target has registers (e.g., simulator, remote 869 target), then this is the actual value of the OPT register. If the 870 current target does not have registers (e.g., an executable file), 871 then use the 'module_opt' field we computed when we build the 872 gdbarch object for this module. */ 873 static unsigned int 874 current_options (void) 875 { 876 if (target_has_registers ()) 877 { 878 ULONGEST regval; 879 regcache_cooked_read_unsigned (get_current_regcache (), 880 MEP_OPT_REGNUM, ®val); 881 return regval; 882 } 883 else 884 return me_module_opt (current_me_module ()); 885 } 886 887 888 /* Return the width of the current me_module's coprocessor data bus, 889 in bits. This is either 32 or 64. */ 890 static int 891 current_cop_data_bus_width (void) 892 { 893 return me_module_cop_data_bus_width (current_me_module ()); 894 } 895 896 897 /* Return the keyword table of coprocessor general-purpose register 898 names appropriate for the me_module we're dealing with. */ 899 static CGEN_KEYWORD * 900 current_cr_names (void) 901 { 902 const CGEN_HW_ENTRY *hw 903 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR); 904 905 return register_set_keyword_table (hw); 906 } 907 908 909 /* Return non-zero if the coprocessor general-purpose registers are 910 floating-point values, zero otherwise. */ 911 static int 912 current_cr_is_float (void) 913 { 914 const CGEN_HW_ENTRY *hw 915 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR); 916 917 return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw)); 918 } 919 920 921 /* Return the keyword table of coprocessor control register names 922 appropriate for the me_module we're dealing with. */ 923 static CGEN_KEYWORD * 924 current_ccr_names (void) 925 { 926 const CGEN_HW_ENTRY *hw 927 = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR); 928 929 return register_set_keyword_table (hw); 930 } 931 932 933 static const char * 934 mep_register_name (struct gdbarch *gdbarch, int regnr) 935 { 936 /* General-purpose registers. */ 937 static const char *gpr_names[] = { 938 "r0", "r1", "r2", "r3", /* 0 */ 939 "r4", "r5", "r6", "r7", /* 4 */ 940 "fp", "r9", "r10", "r11", /* 8 */ 941 "r12", "tp", "gp", "sp" /* 12 */ 942 }; 943 944 /* Special-purpose registers. */ 945 static const char *csr_names[] = { 946 "pc", "lp", "sar", "", /* 0 csr3: reserved */ 947 "rpb", "rpe", "rpc", "hi", /* 4 */ 948 "lo", "", "", "", /* 8 csr9-csr11: reserved */ 949 "mb0", "me0", "mb1", "me1", /* 12 */ 950 951 "psw", "id", "tmp", "epc", /* 16 */ 952 "exc", "cfg", "", "npc", /* 20 csr22: reserved */ 953 "dbg", "depc", "opt", "rcfg", /* 24 */ 954 "ccfg", "", "", "" /* 28 csr29-csr31: reserved */ 955 }; 956 957 if (IS_GPR_REGNUM (regnr)) 958 return gpr_names[regnr - MEP_R0_REGNUM]; 959 else if (IS_CSR_REGNUM (regnr)) 960 { 961 /* The 'hi' and 'lo' registers are only present on processors 962 that have the 'MUL' or 'DIV' instructions enabled. */ 963 if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM) 964 && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV)))) 965 return ""; 966 967 return csr_names[regnr - MEP_FIRST_CSR_REGNUM]; 968 } 969 else if (IS_CR_REGNUM (regnr)) 970 { 971 CGEN_KEYWORD *names; 972 int cr_size; 973 int cr_is_float; 974 975 /* Does this module have a coprocessor at all? */ 976 if (! (current_options () & MEP_OPT_COP)) 977 return ""; 978 979 names = current_cr_names (); 980 if (! names) 981 /* This module's coprocessor has no general-purpose registers. */ 982 return ""; 983 984 cr_size = current_cop_data_bus_width (); 985 if (cr_size != mep_pseudo_cr_size (regnr)) 986 /* This module's coprocessor's GPR's are of a different size. */ 987 return ""; 988 989 cr_is_float = current_cr_is_float (); 990 /* The extra ! operators ensure we get boolean equality, not 991 numeric equality. */ 992 if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr)) 993 /* This module's coprocessor's GPR's are of a different type. */ 994 return ""; 995 996 return register_name_from_keyword (names, mep_pseudo_cr_index (regnr)); 997 } 998 else if (IS_CCR_REGNUM (regnr)) 999 { 1000 /* Does this module have a coprocessor at all? */ 1001 if (! (current_options () & MEP_OPT_COP)) 1002 return ""; 1003 1004 { 1005 CGEN_KEYWORD *names = current_ccr_names (); 1006 1007 if (! names) 1008 /* This me_module's coprocessor has no control registers. */ 1009 return ""; 1010 1011 return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM); 1012 } 1013 } 1014 1015 /* It might be nice to give the 'module' register a name, but that 1016 would affect the output of 'info all-registers', which would 1017 disturb the test suites. So we leave it invisible. */ 1018 else 1019 return ""; 1020 } 1021 1022 1023 /* Custom register groups for the MeP. */ 1024 static const reggroup *mep_csr_reggroup; /* control/special */ 1025 static const reggroup *mep_cr_reggroup; /* coprocessor general-purpose */ 1026 static const reggroup *mep_ccr_reggroup; /* coprocessor control */ 1027 1028 1029 static int 1030 mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum, 1031 const struct reggroup *group) 1032 { 1033 /* Filter reserved or unused register numbers. */ 1034 { 1035 const char *name = mep_register_name (gdbarch, regnum); 1036 1037 if (! name || name[0] == '\0') 1038 return 0; 1039 } 1040 1041 /* We could separate the GPRs and the CSRs. Toshiba has approved of 1042 the existing behavior, so we'd want to run that by them. */ 1043 if (group == general_reggroup) 1044 return (IS_GPR_REGNUM (regnum) 1045 || IS_CSR_REGNUM (regnum)); 1046 1047 /* Everything is in the 'all' reggroup, except for the raw CSR's. */ 1048 else if (group == all_reggroup) 1049 return (IS_GPR_REGNUM (regnum) 1050 || IS_CSR_REGNUM (regnum) 1051 || IS_CR_REGNUM (regnum) 1052 || IS_CCR_REGNUM (regnum)); 1053 1054 /* All registers should be saved and restored, except for the raw 1055 CSR's. 1056 1057 This is probably right if the coprocessor is something like a 1058 floating-point unit, but would be wrong if the coprocessor is 1059 something that does I/O, where register accesses actually cause 1060 externally-visible actions. But I get the impression that the 1061 coprocessor isn't supposed to do things like that --- you'd use a 1062 hardware engine, perhaps. */ 1063 else if (group == save_reggroup || group == restore_reggroup) 1064 return (IS_GPR_REGNUM (regnum) 1065 || IS_CSR_REGNUM (regnum) 1066 || IS_CR_REGNUM (regnum) 1067 || IS_CCR_REGNUM (regnum)); 1068 1069 else if (group == mep_csr_reggroup) 1070 return IS_CSR_REGNUM (regnum); 1071 else if (group == mep_cr_reggroup) 1072 return IS_CR_REGNUM (regnum); 1073 else if (group == mep_ccr_reggroup) 1074 return IS_CCR_REGNUM (regnum); 1075 else 1076 return 0; 1077 } 1078 1079 1080 static struct type * 1081 mep_register_type (struct gdbarch *gdbarch, int reg_nr) 1082 { 1083 /* Coprocessor general-purpose registers may be either 32 or 64 bits 1084 long. So for them, the raw registers are always 64 bits long (to 1085 keep the 'g' packet format fixed), and the pseudoregisters vary 1086 in length. */ 1087 if (IS_RAW_CR_REGNUM (reg_nr)) 1088 return builtin_type (gdbarch)->builtin_uint64; 1089 1090 /* Since GDB doesn't allow registers to change type, we have two 1091 banks of pseudoregisters for the coprocessor general-purpose 1092 registers: one that gives a 32-bit view, and one that gives a 1093 64-bit view. We hide or show one or the other depending on the 1094 current module. */ 1095 if (IS_CR_REGNUM (reg_nr)) 1096 { 1097 int size = mep_pseudo_cr_size (reg_nr); 1098 if (size == 32) 1099 { 1100 if (mep_pseudo_cr_is_float (reg_nr)) 1101 return builtin_type (gdbarch)->builtin_float; 1102 else 1103 return builtin_type (gdbarch)->builtin_uint32; 1104 } 1105 else if (size == 64) 1106 { 1107 if (mep_pseudo_cr_is_float (reg_nr)) 1108 return builtin_type (gdbarch)->builtin_double; 1109 else 1110 return builtin_type (gdbarch)->builtin_uint64; 1111 } 1112 else 1113 gdb_assert_not_reached ("unexpected cr size"); 1114 } 1115 1116 /* All other registers are 32 bits long. */ 1117 else 1118 return builtin_type (gdbarch)->builtin_uint32; 1119 } 1120 1121 static enum register_status 1122 mep_pseudo_cr32_read (struct gdbarch *gdbarch, 1123 readable_regcache *regcache, 1124 int cookednum, 1125 gdb_byte *buf) 1126 { 1127 enum register_status status; 1128 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1129 /* Read the raw register into a 64-bit buffer, and then return the 1130 appropriate end of that buffer. */ 1131 int rawnum = mep_pseudo_to_raw[cookednum]; 1132 gdb_byte buf64[8]; 1133 1134 gdb_assert (register_type (gdbarch, rawnum)->length () == sizeof (buf64)); 1135 gdb_assert (register_type (gdbarch, cookednum)->length () == 4); 1136 status = regcache->raw_read (rawnum, buf64); 1137 if (status == REG_VALID) 1138 { 1139 /* Slow, but legible. */ 1140 store_unsigned_integer (buf, 4, byte_order, 1141 extract_unsigned_integer (buf64, 8, byte_order)); 1142 } 1143 return status; 1144 } 1145 1146 1147 static enum register_status 1148 mep_pseudo_cr64_read (struct gdbarch *gdbarch, 1149 readable_regcache *regcache, 1150 int cookednum, 1151 gdb_byte *buf) 1152 { 1153 return regcache->raw_read (mep_pseudo_to_raw[cookednum], buf); 1154 } 1155 1156 1157 static enum register_status 1158 mep_pseudo_register_read (struct gdbarch *gdbarch, 1159 readable_regcache *regcache, 1160 int cookednum, 1161 gdb_byte *buf) 1162 { 1163 if (IS_CSR_REGNUM (cookednum) 1164 || IS_CCR_REGNUM (cookednum)) 1165 return regcache->raw_read (mep_pseudo_to_raw[cookednum], buf); 1166 else if (IS_CR32_REGNUM (cookednum) 1167 || IS_FP_CR32_REGNUM (cookednum)) 1168 return mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf); 1169 else if (IS_CR64_REGNUM (cookednum) 1170 || IS_FP_CR64_REGNUM (cookednum)) 1171 return mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf); 1172 else 1173 gdb_assert_not_reached ("unexpected pseudo register"); 1174 } 1175 1176 1177 static void 1178 mep_pseudo_csr_write (struct gdbarch *gdbarch, 1179 struct regcache *regcache, 1180 int cookednum, 1181 const gdb_byte *buf) 1182 { 1183 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1184 int size = register_size (gdbarch, cookednum); 1185 struct mep_csr_register *r 1186 = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM]; 1187 1188 if (r->writeable_bits == 0) 1189 /* A completely read-only register; avoid the read-modify- 1190 write cycle, and juts ignore the entire write. */ 1191 ; 1192 else 1193 { 1194 /* A partially writeable register; do a read-modify-write cycle. */ 1195 ULONGEST old_bits; 1196 ULONGEST new_bits; 1197 ULONGEST mixed_bits; 1198 1199 regcache_raw_read_unsigned (regcache, r->raw, &old_bits); 1200 new_bits = extract_unsigned_integer (buf, size, byte_order); 1201 mixed_bits = ((r->writeable_bits & new_bits) 1202 | (~r->writeable_bits & old_bits)); 1203 regcache_raw_write_unsigned (regcache, r->raw, mixed_bits); 1204 } 1205 } 1206 1207 1208 static void 1209 mep_pseudo_cr32_write (struct gdbarch *gdbarch, 1210 struct regcache *regcache, 1211 int cookednum, 1212 const gdb_byte *buf) 1213 { 1214 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1215 /* Expand the 32-bit value into a 64-bit value, and write that to 1216 the pseudoregister. */ 1217 int rawnum = mep_pseudo_to_raw[cookednum]; 1218 gdb_byte buf64[8]; 1219 1220 gdb_assert (register_type (gdbarch, rawnum)->length () == sizeof (buf64)); 1221 gdb_assert (register_type (gdbarch, cookednum)->length () == 4); 1222 /* Slow, but legible. */ 1223 store_unsigned_integer (buf64, 8, byte_order, 1224 extract_unsigned_integer (buf, 4, byte_order)); 1225 regcache->raw_write (rawnum, buf64); 1226 } 1227 1228 1229 static void 1230 mep_pseudo_cr64_write (struct gdbarch *gdbarch, 1231 struct regcache *regcache, 1232 int cookednum, 1233 const gdb_byte *buf) 1234 { 1235 regcache->raw_write (mep_pseudo_to_raw[cookednum], buf); 1236 } 1237 1238 1239 static void 1240 mep_pseudo_register_write (struct gdbarch *gdbarch, 1241 struct regcache *regcache, 1242 int cookednum, 1243 const gdb_byte *buf) 1244 { 1245 if (IS_CSR_REGNUM (cookednum)) 1246 mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf); 1247 else if (IS_CR32_REGNUM (cookednum) 1248 || IS_FP_CR32_REGNUM (cookednum)) 1249 mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf); 1250 else if (IS_CR64_REGNUM (cookednum) 1251 || IS_FP_CR64_REGNUM (cookednum)) 1252 mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf); 1253 else if (IS_CCR_REGNUM (cookednum)) 1254 regcache->raw_write (mep_pseudo_to_raw[cookednum], buf); 1255 else 1256 gdb_assert_not_reached ("unexpected pseudo register"); 1257 } 1258 1259 1260 1261 /* Disassembly. */ 1262 1263 static int 1264 mep_gdb_print_insn (bfd_vma pc, disassemble_info * info) 1265 { 1266 struct obj_section * s = find_pc_section (pc); 1267 1268 info->arch = bfd_arch_mep; 1269 if (s) 1270 { 1271 /* The libopcodes disassembly code uses the section to find the 1272 BFD, the BFD to find the ELF header, the ELF header to find 1273 the me_module index, and the me_module index to select the 1274 right instructions to print. */ 1275 info->section = s->the_bfd_section; 1276 } 1277 1278 return print_insn_mep (pc, info); 1279 } 1280 1281 1282 /* Prologue analysis. */ 1283 1284 1285 /* The MeP has two classes of instructions: "core" instructions, which 1286 are pretty normal RISC chip stuff, and "coprocessor" instructions, 1287 which are mostly concerned with moving data in and out of 1288 coprocessor registers, and branching on coprocessor condition 1289 codes. There's space in the instruction set for custom coprocessor 1290 instructions, too. 1291 1292 Instructions can be 16 or 32 bits long; the top two bits of the 1293 first byte indicate the length. The coprocessor instructions are 1294 mixed in with the core instructions, and there's no easy way to 1295 distinguish them; you have to completely decode them to tell one 1296 from the other. 1297 1298 The MeP also supports a "VLIW" operation mode, where instructions 1299 always occur in fixed-width bundles. The bundles are either 32 1300 bits or 64 bits long, depending on a fixed configuration flag. You 1301 decode the first part of the bundle as normal; if it's a core 1302 instruction, and there's any space left in the bundle, the 1303 remainder of the bundle is a coprocessor instruction, which will 1304 execute in parallel with the core instruction. If the first part 1305 of the bundle is a coprocessor instruction, it occupies the entire 1306 bundle. 1307 1308 So, here are all the cases: 1309 1310 - 32-bit VLIW mode: 1311 Every bundle is four bytes long, and naturally aligned, and can hold 1312 one or two instructions: 1313 - 16-bit core instruction; 16-bit coprocessor instruction 1314 These execute in parallel. 1315 - 32-bit core instruction 1316 - 32-bit coprocessor instruction 1317 1318 - 64-bit VLIW mode: 1319 Every bundle is eight bytes long, and naturally aligned, and can hold 1320 one or two instructions: 1321 - 16-bit core instruction; 48-bit (!) coprocessor instruction 1322 These execute in parallel. 1323 - 32-bit core instruction; 32-bit coprocessor instruction 1324 These execute in parallel. 1325 - 64-bit coprocessor instruction 1326 1327 Now, the MeP manual doesn't define any 48- or 64-bit coprocessor 1328 instruction, so I don't really know what's up there; perhaps these 1329 are always the user-defined coprocessor instructions. */ 1330 1331 1332 /* Return non-zero if PC is in a VLIW code section, zero 1333 otherwise. */ 1334 static int 1335 mep_pc_in_vliw_section (CORE_ADDR pc) 1336 { 1337 struct obj_section *s = find_pc_section (pc); 1338 if (s) 1339 return (s->the_bfd_section->flags & SEC_MEP_VLIW); 1340 return 0; 1341 } 1342 1343 1344 /* Set *INSN to the next core instruction at PC, and return the 1345 address of the next instruction. 1346 1347 The MeP instruction encoding is endian-dependent. 16- and 32-bit 1348 instructions are encoded as one or two two-byte parts, and each 1349 part is byte-swapped independently. Thus: 1350 1351 void 1352 foo (void) 1353 { 1354 asm ("movu $1, 0x123456"); 1355 asm ("sb $1,0x5678($2)"); 1356 asm ("clip $1, 19"); 1357 } 1358 1359 compiles to this big-endian code: 1360 1361 0: d1 56 12 34 movu $1,0x123456 1362 4: c1 28 56 78 sb $1,22136($2) 1363 8: f1 01 10 98 clip $1,0x13 1364 c: 70 02 ret 1365 1366 and this little-endian code: 1367 1368 0: 56 d1 34 12 movu $1,0x123456 1369 4: 28 c1 78 56 sb $1,22136($2) 1370 8: 01 f1 98 10 clip $1,0x13 1371 c: 02 70 ret 1372 1373 Instructions are returned in *INSN in an endian-independent form: a 1374 given instruction always appears in *INSN the same way, regardless 1375 of whether the instruction stream is big-endian or little-endian. 1376 1377 *INSN's most significant 16 bits are the first (i.e., at lower 1378 addresses) 16 bit part of the instruction. Its least significant 1379 16 bits are the second (i.e., higher-addressed) 16 bit part of the 1380 instruction, or zero for a 16-bit instruction. Both 16-bit parts 1381 are fetched using the current endianness. 1382 1383 So, the *INSN values for the instruction sequence above would be 1384 the following, in either endianness: 1385 1386 0xd1561234 movu $1,0x123456 1387 0xc1285678 sb $1,22136($2) 1388 0xf1011098 clip $1,0x13 1389 0x70020000 ret 1390 1391 (In a sense, it would be more natural to return 16-bit instructions 1392 in the least significant 16 bits of *INSN, but that would be 1393 ambiguous. In order to tell whether you're looking at a 16- or a 1394 32-bit instruction, you have to consult the major opcode field --- 1395 the most significant four bits of the instruction's first 16-bit 1396 part. But if we put 16-bit instructions at the least significant 1397 end of *INSN, then you don't know where to find the major opcode 1398 field until you know if it's a 16- or a 32-bit instruction --- 1399 which is where we started.) 1400 1401 If PC points to a core / coprocessor bundle in a VLIW section, set 1402 *INSN to the core instruction, and return the address of the next 1403 bundle. This has the effect of skipping the bundled coprocessor 1404 instruction. That's okay, since coprocessor instructions aren't 1405 significant to prologue analysis --- for the time being, 1406 anyway. */ 1407 1408 static CORE_ADDR 1409 mep_get_insn (struct gdbarch *gdbarch, CORE_ADDR pc, unsigned long *insn) 1410 { 1411 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1412 int pc_in_vliw_section; 1413 int vliw_mode; 1414 int insn_len; 1415 gdb_byte buf[2]; 1416 1417 *insn = 0; 1418 1419 /* Are we in a VLIW section? */ 1420 pc_in_vliw_section = mep_pc_in_vliw_section (pc); 1421 if (pc_in_vliw_section) 1422 { 1423 /* Yes, find out which bundle size. */ 1424 vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64); 1425 1426 /* If PC is in a VLIW section, but the current core doesn't say 1427 that it supports either VLIW mode, then we don't have enough 1428 information to parse the instruction stream it contains. 1429 Since the "undifferentiated" standard core doesn't have 1430 either VLIW mode bit set, this could happen. 1431 1432 But it shouldn't be an error to (say) set a breakpoint in a 1433 VLIW section, if you know you'll never reach it. (Perhaps 1434 you have a script that sets a bunch of standard breakpoints.) 1435 1436 So we'll just return zero here, and hope for the best. */ 1437 if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64))) 1438 return 0; 1439 1440 /* If both VL32 and VL64 are set, that's bogus, too. */ 1441 if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64)) 1442 return 0; 1443 } 1444 else 1445 vliw_mode = 0; 1446 1447 read_memory (pc, buf, sizeof (buf)); 1448 *insn = extract_unsigned_integer (buf, 2, byte_order) << 16; 1449 1450 /* The major opcode --- the top four bits of the first 16-bit 1451 part --- indicates whether this instruction is 16 or 32 bits 1452 long. All 32-bit instructions have a major opcode whose top 1453 two bits are 11; all the rest are 16-bit instructions. */ 1454 if ((*insn & 0xc0000000) == 0xc0000000) 1455 { 1456 /* Fetch the second 16-bit part of the instruction. */ 1457 read_memory (pc + 2, buf, sizeof (buf)); 1458 *insn = *insn | extract_unsigned_integer (buf, 2, byte_order); 1459 } 1460 1461 /* If we're in VLIW code, then the VLIW width determines the address 1462 of the next instruction. */ 1463 if (vliw_mode) 1464 { 1465 /* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the 1466 coprocessor half of a core / copro bundle. */ 1467 if (vliw_mode == MEP_OPT_VL32) 1468 insn_len = 4; 1469 1470 /* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the 1471 coprocessor half of a core / copro bundle. */ 1472 else if (vliw_mode == MEP_OPT_VL64) 1473 insn_len = 8; 1474 1475 /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */ 1476 else 1477 gdb_assert_not_reached ("unexpected vliw mode"); 1478 } 1479 1480 /* Otherwise, the top two bits of the major opcode are (again) what 1481 we need to check. */ 1482 else if ((*insn & 0xc0000000) == 0xc0000000) 1483 insn_len = 4; 1484 else 1485 insn_len = 2; 1486 1487 return pc + insn_len; 1488 } 1489 1490 1491 /* Sign-extend the LEN-bit value N. */ 1492 #define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1))) 1493 1494 /* Return the LEN-bit field at POS from I. */ 1495 #define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1)) 1496 1497 /* Like FIELD, but sign-extend the field's value. */ 1498 #define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len))) 1499 1500 1501 /* Macros for decoding instructions. 1502 1503 Remember that 16-bit instructions are placed in bits 16..31 of i, 1504 not at the least significant end; this means that the major opcode 1505 field is always in the same place, regardless of the width of the 1506 instruction. As a reminder of this, we show the lower 16 bits of a 1507 16-bit instruction as xxxx_xxxx_xxxx_xxxx. */ 1508 1509 /* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */ 1510 /* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */ 1511 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */ 1512 1513 /* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */ 1514 #define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000) 1515 /* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */ 1516 #define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000) 1517 /* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */ 1518 #define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000) 1519 #define SWBH_32_BASE(i) (FIELD (i, 20, 4)) 1520 #define SWBH_32_SOURCE(i) (FIELD (i, 24, 4)) 1521 #define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16)) 1522 1523 /* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */ 1524 #define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000) 1525 #define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4)) 1526 #define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2) 1527 1528 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */ 1529 #define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000) 1530 #define SW_REG_SOURCE(i) (FIELD (i, 24, 4)) 1531 #define SW_REG_BASE(i) (FIELD (i, 20, 4)) 1532 1533 /* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */ 1534 #define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000) 1535 #define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */ 1536 #define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */ 1537 1538 /* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */ 1539 #define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000) 1540 #define ADD3_32_TARGET(i) (FIELD (i, 24, 4)) 1541 #define ADD3_32_SOURCE(i) (FIELD (i, 20, 4)) 1542 #define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16)) 1543 1544 /* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */ 1545 #define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000) 1546 #define ADD3_16_TARGET(i) (FIELD (i, 24, 4)) 1547 #define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2) 1548 1549 /* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */ 1550 #define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000) 1551 #define ADD_TARGET(i) (FIELD (i, 24, 4)) 1552 #define ADD_OFFSET(i) (SFIELD (i, 18, 6)) 1553 1554 /* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx 1555 imm5 = I||i[7:4] */ 1556 #define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000) 1557 #define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4)) 1558 #define LDC_TARGET(i) (FIELD (i, 24, 4)) 1559 1560 /* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */ 1561 #define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000) 1562 #define LW_TARGET(i) (FIELD (i, 24, 4)) 1563 #define LW_BASE(i) (FIELD (i, 20, 4)) 1564 #define LW_OFFSET(i) (SFIELD (i, 0, 16)) 1565 1566 /* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */ 1567 #define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000) 1568 #define MOV_TARGET(i) (FIELD (i, 24, 4)) 1569 #define MOV_SOURCE(i) (FIELD (i, 20, 4)) 1570 1571 /* BRA disp12.align2 1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */ 1572 #define IS_BRA(i) (((i) & 0xf0010000) == 0xb0000000) 1573 #define BRA_DISP(i) (SFIELD (i, 17, 11) << 1) 1574 1575 1576 /* This structure holds the results of a prologue analysis. */ 1577 struct mep_prologue 1578 { 1579 /* The architecture for which we generated this prologue info. */ 1580 struct gdbarch *gdbarch; 1581 1582 /* The offset from the frame base to the stack pointer --- always 1583 zero or negative. 1584 1585 Calling this a "size" is a bit misleading, but given that the 1586 stack grows downwards, using offsets for everything keeps one 1587 from going completely sign-crazy: you never change anything's 1588 sign for an ADD instruction; always change the second operand's 1589 sign for a SUB instruction; and everything takes care of 1590 itself. */ 1591 int frame_size; 1592 1593 /* Non-zero if this function has initialized the frame pointer from 1594 the stack pointer, zero otherwise. */ 1595 int has_frame_ptr; 1596 1597 /* If has_frame_ptr is non-zero, this is the offset from the frame 1598 base to where the frame pointer points. This is always zero or 1599 negative. */ 1600 int frame_ptr_offset; 1601 1602 /* The address of the first instruction at which the frame has been 1603 set up and the arguments are where the debug info says they are 1604 --- as best as we can tell. */ 1605 CORE_ADDR prologue_end; 1606 1607 /* reg_offset[R] is the offset from the CFA at which register R is 1608 saved, or 1 if register R has not been saved. (Real values are 1609 always zero or negative.) */ 1610 int reg_offset[MEP_NUM_REGS]; 1611 }; 1612 1613 /* Return non-zero if VALUE is an incoming argument register. */ 1614 1615 static int 1616 is_arg_reg (pv_t value) 1617 { 1618 return (value.kind == pvk_register 1619 && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM 1620 && value.k == 0); 1621 } 1622 1623 /* Return non-zero if a store of REG's current value VALUE to ADDR is 1624 probably spilling an argument register to its stack slot in STACK. 1625 Such instructions should be included in the prologue, if possible. 1626 1627 The store is a spill if: 1628 - the value being stored is REG's original value; 1629 - the value has not already been stored somewhere in STACK; and 1630 - ADDR is a stack slot's address (e.g., relative to the original 1631 value of the SP). */ 1632 static int 1633 is_arg_spill (struct gdbarch *gdbarch, pv_t value, pv_t addr, 1634 struct pv_area *stack) 1635 { 1636 return (is_arg_reg (value) 1637 && pv_is_register (addr, MEP_SP_REGNUM) 1638 && ! stack->find_reg (gdbarch, value.reg, 0)); 1639 } 1640 1641 1642 /* Function for finding saved registers in a 'struct pv_area'; we pass 1643 this to pv_area::scan. 1644 1645 If VALUE is a saved register, ADDR says it was saved at a constant 1646 offset from the frame base, and SIZE indicates that the whole 1647 register was saved, record its offset in RESULT_UNTYPED. */ 1648 static void 1649 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value) 1650 { 1651 struct mep_prologue *result = (struct mep_prologue *) result_untyped; 1652 1653 if (value.kind == pvk_register 1654 && value.k == 0 1655 && pv_is_register (addr, MEP_SP_REGNUM) 1656 && size == register_size (result->gdbarch, value.reg)) 1657 result->reg_offset[value.reg] = addr.k; 1658 } 1659 1660 1661 /* Analyze a prologue starting at START_PC, going no further than 1662 LIMIT_PC. Fill in RESULT as appropriate. */ 1663 static void 1664 mep_analyze_prologue (struct gdbarch *gdbarch, 1665 CORE_ADDR start_pc, CORE_ADDR limit_pc, 1666 struct mep_prologue *result) 1667 { 1668 CORE_ADDR pc; 1669 unsigned long insn; 1670 pv_t reg[MEP_NUM_REGS]; 1671 CORE_ADDR after_last_frame_setup_insn = start_pc; 1672 1673 memset (result, 0, sizeof (*result)); 1674 result->gdbarch = gdbarch; 1675 1676 for (int rn = 0; rn < MEP_NUM_REGS; rn++) 1677 { 1678 reg[rn] = pv_register (rn, 0); 1679 result->reg_offset[rn] = 1; 1680 } 1681 1682 pv_area stack (MEP_SP_REGNUM, gdbarch_addr_bit (gdbarch)); 1683 1684 pc = start_pc; 1685 while (pc < limit_pc) 1686 { 1687 CORE_ADDR next_pc; 1688 pv_t pre_insn_fp, pre_insn_sp; 1689 1690 next_pc = mep_get_insn (gdbarch, pc, &insn); 1691 1692 /* A zero return from mep_get_insn means that either we weren't 1693 able to read the instruction from memory, or that we don't 1694 have enough information to be able to reliably decode it. So 1695 we'll store here and hope for the best. */ 1696 if (! next_pc) 1697 break; 1698 1699 /* Note the current values of the SP and FP, so we can tell if 1700 this instruction changed them, below. */ 1701 pre_insn_fp = reg[MEP_FP_REGNUM]; 1702 pre_insn_sp = reg[MEP_SP_REGNUM]; 1703 1704 if (IS_ADD (insn)) 1705 { 1706 int rn = ADD_TARGET (insn); 1707 CORE_ADDR imm6 = ADD_OFFSET (insn); 1708 1709 reg[rn] = pv_add_constant (reg[rn], imm6); 1710 } 1711 else if (IS_ADD3_16 (insn)) 1712 { 1713 int rn = ADD3_16_TARGET (insn); 1714 int imm7 = ADD3_16_OFFSET (insn); 1715 1716 reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7); 1717 } 1718 else if (IS_ADD3_32 (insn)) 1719 { 1720 int rn = ADD3_32_TARGET (insn); 1721 int rm = ADD3_32_SOURCE (insn); 1722 int imm16 = ADD3_32_OFFSET (insn); 1723 1724 reg[rn] = pv_add_constant (reg[rm], imm16); 1725 } 1726 else if (IS_SW_REG (insn)) 1727 { 1728 int rn = SW_REG_SOURCE (insn); 1729 int rm = SW_REG_BASE (insn); 1730 1731 /* If simulating this store would require us to forget 1732 everything we know about the stack frame in the name of 1733 accuracy, it would be better to just quit now. */ 1734 if (stack.store_would_trash (reg[rm])) 1735 break; 1736 1737 if (is_arg_spill (gdbarch, reg[rn], reg[rm], &stack)) 1738 after_last_frame_setup_insn = next_pc; 1739 1740 stack.store (reg[rm], 4, reg[rn]); 1741 } 1742 else if (IS_SW_IMMD (insn)) 1743 { 1744 int rn = SW_IMMD_SOURCE (insn); 1745 int offset = SW_IMMD_OFFSET (insn); 1746 pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset); 1747 1748 /* If simulating this store would require us to forget 1749 everything we know about the stack frame in the name of 1750 accuracy, it would be better to just quit now. */ 1751 if (stack.store_would_trash (addr)) 1752 break; 1753 1754 if (is_arg_spill (gdbarch, reg[rn], addr, &stack)) 1755 after_last_frame_setup_insn = next_pc; 1756 1757 stack.store (addr, 4, reg[rn]); 1758 } 1759 else if (IS_MOV (insn)) 1760 { 1761 int rn = MOV_TARGET (insn); 1762 int rm = MOV_SOURCE (insn); 1763 1764 reg[rn] = reg[rm]; 1765 1766 if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm])) 1767 after_last_frame_setup_insn = next_pc; 1768 } 1769 else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn)) 1770 { 1771 int rn = SWBH_32_SOURCE (insn); 1772 int rm = SWBH_32_BASE (insn); 1773 int disp = SWBH_32_OFFSET (insn); 1774 int size = (IS_SB (insn) ? 1 1775 : IS_SH (insn) ? 2 1776 : (gdb_assert (IS_SW (insn)), 4)); 1777 pv_t addr = pv_add_constant (reg[rm], disp); 1778 1779 if (stack.store_would_trash (addr)) 1780 break; 1781 1782 if (is_arg_spill (gdbarch, reg[rn], addr, &stack)) 1783 after_last_frame_setup_insn = next_pc; 1784 1785 stack.store (addr, size, reg[rn]); 1786 } 1787 else if (IS_LDC (insn)) 1788 { 1789 int rn = LDC_TARGET (insn); 1790 int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM; 1791 1792 reg[rn] = reg[cr]; 1793 } 1794 else if (IS_LW (insn)) 1795 { 1796 int rn = LW_TARGET (insn); 1797 int rm = LW_BASE (insn); 1798 int offset = LW_OFFSET (insn); 1799 pv_t addr = pv_add_constant (reg[rm], offset); 1800 1801 reg[rn] = stack.fetch (addr, 4); 1802 } 1803 else if (IS_BRA (insn) && BRA_DISP (insn) > 0) 1804 { 1805 /* When a loop appears as the first statement of a function 1806 body, gcc 4.x will use a BRA instruction to branch to the 1807 loop condition checking code. This BRA instruction is 1808 marked as part of the prologue. We therefore set next_pc 1809 to this branch target and also stop the prologue scan. 1810 The instructions at and beyond the branch target should 1811 no longer be associated with the prologue. 1812 1813 Note that we only consider forward branches here. We 1814 presume that a forward branch is being used to skip over 1815 a loop body. 1816 1817 A backwards branch is covered by the default case below. 1818 If we were to encounter a backwards branch, that would 1819 most likely mean that we've scanned through a loop body. 1820 We definitely want to stop the prologue scan when this 1821 happens and that is precisely what is done by the default 1822 case below. */ 1823 next_pc = pc + BRA_DISP (insn); 1824 after_last_frame_setup_insn = next_pc; 1825 break; 1826 } 1827 else 1828 /* We've hit some instruction we don't know how to simulate. 1829 Strictly speaking, we should set every value we're 1830 tracking to "unknown". But we'll be optimistic, assume 1831 that we have enough information already, and stop 1832 analysis here. */ 1833 break; 1834 1835 /* If this instruction changed the FP or decreased the SP (i.e., 1836 allocated more stack space), then this may be a good place to 1837 declare the prologue finished. However, there are some 1838 exceptions: 1839 1840 - If the instruction just changed the FP back to its original 1841 value, then that's probably a restore instruction. The 1842 prologue should definitely end before that. 1843 1844 - If the instruction increased the value of the SP (that is, 1845 shrunk the frame), then it's probably part of a frame 1846 teardown sequence, and the prologue should end before that. */ 1847 1848 if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp)) 1849 { 1850 if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0)) 1851 after_last_frame_setup_insn = next_pc; 1852 } 1853 else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp)) 1854 { 1855 /* The comparison of constants looks odd, there, because .k 1856 is unsigned. All it really means is that the new value 1857 is lower than it was before the instruction. */ 1858 if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM) 1859 && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM) 1860 && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k) 1861 < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k))) 1862 after_last_frame_setup_insn = next_pc; 1863 } 1864 1865 pc = next_pc; 1866 } 1867 1868 /* Is the frame size (offset, really) a known constant? */ 1869 if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)) 1870 result->frame_size = reg[MEP_SP_REGNUM].k; 1871 1872 /* Was the frame pointer initialized? */ 1873 if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM)) 1874 { 1875 result->has_frame_ptr = 1; 1876 result->frame_ptr_offset = reg[MEP_FP_REGNUM].k; 1877 } 1878 1879 /* Record where all the registers were saved. */ 1880 stack.scan (check_for_saved, (void *) result); 1881 1882 result->prologue_end = after_last_frame_setup_insn; 1883 } 1884 1885 1886 static CORE_ADDR 1887 mep_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 1888 { 1889 const char *name; 1890 CORE_ADDR func_addr, func_end; 1891 struct mep_prologue p; 1892 1893 /* Try to find the extent of the function that contains PC. */ 1894 if (! find_pc_partial_function (pc, &name, &func_addr, &func_end)) 1895 return pc; 1896 1897 mep_analyze_prologue (gdbarch, pc, func_end, &p); 1898 return p.prologue_end; 1899 } 1900 1901 1902 1903 /* Breakpoints. */ 1904 constexpr gdb_byte mep_break_insn[] = { 0x70, 0x32 }; 1905 1906 typedef BP_MANIPULATION (mep_break_insn) mep_breakpoint; 1907 1908 1909 /* Frames and frame unwinding. */ 1910 1911 1912 static struct mep_prologue * 1913 mep_analyze_frame_prologue (frame_info_ptr this_frame, 1914 void **this_prologue_cache) 1915 { 1916 if (! *this_prologue_cache) 1917 { 1918 CORE_ADDR func_start, stop_addr; 1919 1920 *this_prologue_cache 1921 = FRAME_OBSTACK_ZALLOC (struct mep_prologue); 1922 1923 func_start = get_frame_func (this_frame); 1924 stop_addr = get_frame_pc (this_frame); 1925 1926 /* If we couldn't find any function containing the PC, then 1927 just initialize the prologue cache, but don't do anything. */ 1928 if (! func_start) 1929 stop_addr = func_start; 1930 1931 mep_analyze_prologue (get_frame_arch (this_frame), 1932 func_start, stop_addr, 1933 (struct mep_prologue *) *this_prologue_cache); 1934 } 1935 1936 return (struct mep_prologue *) *this_prologue_cache; 1937 } 1938 1939 1940 /* Given the next frame and a prologue cache, return this frame's 1941 base. */ 1942 static CORE_ADDR 1943 mep_frame_base (frame_info_ptr this_frame, 1944 void **this_prologue_cache) 1945 { 1946 struct mep_prologue *p 1947 = mep_analyze_frame_prologue (this_frame, this_prologue_cache); 1948 1949 /* In functions that use alloca, the distance between the stack 1950 pointer and the frame base varies dynamically, so we can't use 1951 the SP plus static information like prologue analysis to find the 1952 frame base. However, such functions must have a frame pointer, 1953 to be able to restore the SP on exit. So whenever we do have a 1954 frame pointer, use that to find the base. */ 1955 if (p->has_frame_ptr) 1956 { 1957 CORE_ADDR fp 1958 = get_frame_register_unsigned (this_frame, MEP_FP_REGNUM); 1959 return fp - p->frame_ptr_offset; 1960 } 1961 else 1962 { 1963 CORE_ADDR sp 1964 = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM); 1965 return sp - p->frame_size; 1966 } 1967 } 1968 1969 1970 static void 1971 mep_frame_this_id (frame_info_ptr this_frame, 1972 void **this_prologue_cache, 1973 struct frame_id *this_id) 1974 { 1975 *this_id = frame_id_build (mep_frame_base (this_frame, this_prologue_cache), 1976 get_frame_func (this_frame)); 1977 } 1978 1979 1980 static struct value * 1981 mep_frame_prev_register (frame_info_ptr this_frame, 1982 void **this_prologue_cache, int regnum) 1983 { 1984 struct mep_prologue *p 1985 = mep_analyze_frame_prologue (this_frame, this_prologue_cache); 1986 1987 /* There are a number of complications in unwinding registers on the 1988 MeP, having to do with core functions calling VLIW functions and 1989 vice versa. 1990 1991 The least significant bit of the link register, LP.LTOM, is the 1992 VLIW mode toggle bit: it's set if a core function called a VLIW 1993 function, or vice versa, and clear when the caller and callee 1994 were both in the same mode. 1995 1996 So, if we're asked to unwind the PC, then we really want to 1997 unwind the LP and clear the least significant bit. (Real return 1998 addresses are always even.) And if we want to unwind the program 1999 status word (PSW), we need to toggle PSW.OM if LP.LTOM is set. 2000 2001 Tweaking the register values we return in this way means that the 2002 bits in BUFFERP[] are not the same as the bits you'd find at 2003 ADDRP in the inferior, so we make sure lvalp is not_lval when we 2004 do this. */ 2005 if (regnum == MEP_PC_REGNUM) 2006 { 2007 struct value *value; 2008 CORE_ADDR lp; 2009 value = mep_frame_prev_register (this_frame, this_prologue_cache, 2010 MEP_LP_REGNUM); 2011 lp = value_as_long (value); 2012 release_value (value); 2013 2014 return frame_unwind_got_constant (this_frame, regnum, lp & ~1); 2015 } 2016 else 2017 { 2018 CORE_ADDR frame_base = mep_frame_base (this_frame, this_prologue_cache); 2019 struct value *value; 2020 2021 /* Our caller's SP is our frame base. */ 2022 if (regnum == MEP_SP_REGNUM) 2023 return frame_unwind_got_constant (this_frame, regnum, frame_base); 2024 2025 /* If prologue analysis says we saved this register somewhere, 2026 return a description of the stack slot holding it. */ 2027 if (p->reg_offset[regnum] != 1) 2028 value = frame_unwind_got_memory (this_frame, regnum, 2029 frame_base + p->reg_offset[regnum]); 2030 2031 /* Otherwise, presume we haven't changed the value of this 2032 register, and get it from the next frame. */ 2033 else 2034 value = frame_unwind_got_register (this_frame, regnum, regnum); 2035 2036 /* If we need to toggle the operating mode, do so. */ 2037 if (regnum == MEP_PSW_REGNUM) 2038 { 2039 CORE_ADDR psw, lp; 2040 2041 psw = value_as_long (value); 2042 release_value (value); 2043 2044 /* Get the LP's value, too. */ 2045 value = get_frame_register_value (this_frame, MEP_LP_REGNUM); 2046 lp = value_as_long (value); 2047 release_value (value); 2048 2049 /* If LP.LTOM is set, then toggle PSW.OM. */ 2050 if (lp & 0x1) 2051 psw ^= 0x1000; 2052 2053 return frame_unwind_got_constant (this_frame, regnum, psw); 2054 } 2055 2056 return value; 2057 } 2058 } 2059 2060 2061 static const struct frame_unwind mep_frame_unwind = { 2062 "mep prologue", 2063 NORMAL_FRAME, 2064 default_frame_unwind_stop_reason, 2065 mep_frame_this_id, 2066 mep_frame_prev_register, 2067 NULL, 2068 default_frame_sniffer 2069 }; 2070 2071 2072 /* Return values. */ 2073 2074 2075 static int 2076 mep_use_struct_convention (struct type *type) 2077 { 2078 return (type->length () > MEP_GPR_SIZE); 2079 } 2080 2081 2082 static void 2083 mep_extract_return_value (struct gdbarch *arch, 2084 struct type *type, 2085 struct regcache *regcache, 2086 gdb_byte *valbuf) 2087 { 2088 int byte_order = gdbarch_byte_order (arch); 2089 2090 /* Values that don't occupy a full register appear at the less 2091 significant end of the value. This is the offset to where the 2092 value starts. */ 2093 int offset; 2094 2095 /* Return values > MEP_GPR_SIZE bytes are returned in memory, 2096 pointed to by R0. */ 2097 gdb_assert (type->length () <= MEP_GPR_SIZE); 2098 2099 if (byte_order == BFD_ENDIAN_BIG) 2100 offset = MEP_GPR_SIZE - type->length (); 2101 else 2102 offset = 0; 2103 2104 /* Return values that do fit in a single register are returned in R0. */ 2105 regcache->cooked_read_part (MEP_R0_REGNUM, offset, type->length (), 2106 valbuf); 2107 } 2108 2109 2110 static void 2111 mep_store_return_value (struct gdbarch *arch, 2112 struct type *type, 2113 struct regcache *regcache, 2114 const gdb_byte *valbuf) 2115 { 2116 int byte_order = gdbarch_byte_order (arch); 2117 2118 /* Values that fit in a single register go in R0. */ 2119 if (type->length () <= MEP_GPR_SIZE) 2120 { 2121 /* Values that don't occupy a full register appear at the least 2122 significant end of the value. This is the offset to where the 2123 value starts. */ 2124 int offset; 2125 2126 if (byte_order == BFD_ENDIAN_BIG) 2127 offset = MEP_GPR_SIZE - type->length (); 2128 else 2129 offset = 0; 2130 2131 regcache->cooked_write_part (MEP_R0_REGNUM, offset, type->length (), 2132 valbuf); 2133 } 2134 2135 /* Return values larger than a single register are returned in 2136 memory, pointed to by R0. Unfortunately, we can't count on R0 2137 pointing to the return buffer, so we raise an error here. */ 2138 else 2139 error (_("\ 2140 GDB cannot set return values larger than four bytes; the Media Processor's\n\ 2141 calling conventions do not provide enough information to do this.\n\ 2142 Try using the 'return' command with no argument.")); 2143 } 2144 2145 static enum return_value_convention 2146 mep_return_value (struct gdbarch *gdbarch, struct value *function, 2147 struct type *type, struct regcache *regcache, 2148 gdb_byte *readbuf, const gdb_byte *writebuf) 2149 { 2150 if (mep_use_struct_convention (type)) 2151 { 2152 if (readbuf) 2153 { 2154 ULONGEST addr; 2155 /* Although the address of the struct buffer gets passed in R1, it's 2156 returned in R0. Fetch R0's value and then read the memory 2157 at that address. */ 2158 regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr); 2159 read_memory (addr, readbuf, type->length ()); 2160 } 2161 if (writebuf) 2162 { 2163 /* Return values larger than a single register are returned in 2164 memory, pointed to by R0. Unfortunately, we can't count on R0 2165 pointing to the return buffer, so we raise an error here. */ 2166 error (_("\ 2167 GDB cannot set return values larger than four bytes; the Media Processor's\n\ 2168 calling conventions do not provide enough information to do this.\n\ 2169 Try using the 'return' command with no argument.")); 2170 } 2171 return RETURN_VALUE_ABI_RETURNS_ADDRESS; 2172 } 2173 2174 if (readbuf) 2175 mep_extract_return_value (gdbarch, type, regcache, readbuf); 2176 if (writebuf) 2177 mep_store_return_value (gdbarch, type, regcache, writebuf); 2178 2179 return RETURN_VALUE_REGISTER_CONVENTION; 2180 } 2181 2182 2183 /* Inferior calls. */ 2184 2185 2186 static CORE_ADDR 2187 mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) 2188 { 2189 /* Require word alignment. */ 2190 return sp & -4; 2191 } 2192 2193 2194 /* From "lang_spec2.txt": 2195 2196 4.2 Calling conventions 2197 2198 4.2.1 Core register conventions 2199 2200 - Parameters should be evaluated from left to right, and they 2201 should be held in $1,$2,$3,$4 in order. The fifth parameter or 2202 after should be held in the stack. If the size is larger than 4 2203 bytes in the first four parameters, the pointer should be held in 2204 the registers instead. If the size is larger than 4 bytes in the 2205 fifth parameter or after, the pointer should be held in the stack. 2206 2207 - Return value of a function should be held in register $0. If the 2208 size of return value is larger than 4 bytes, $1 should hold the 2209 pointer pointing memory that would hold the return value. In this 2210 case, the first parameter should be held in $2, the second one in 2211 $3, and the third one in $4, and the forth parameter or after 2212 should be held in the stack. 2213 2214 [This doesn't say so, but arguments shorter than four bytes are 2215 passed in the least significant end of a four-byte word when 2216 they're passed on the stack.] */ 2217 2218 2219 /* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too 2220 large to fit in a register, save it on the stack, and place its 2221 address in COPY[i]. SP is the initial stack pointer; return the 2222 new stack pointer. */ 2223 static CORE_ADDR 2224 push_large_arguments (CORE_ADDR sp, int argc, struct value **argv, 2225 CORE_ADDR copy[]) 2226 { 2227 int i; 2228 2229 for (i = 0; i < argc; i++) 2230 { 2231 unsigned arg_len = value_type (argv[i])->length (); 2232 2233 if (arg_len > MEP_GPR_SIZE) 2234 { 2235 /* Reserve space for the copy, and then round the SP down, to 2236 make sure it's all aligned properly. */ 2237 sp = (sp - arg_len) & -4; 2238 write_memory (sp, value_contents (argv[i]).data (), arg_len); 2239 copy[i] = sp; 2240 } 2241 } 2242 2243 return sp; 2244 } 2245 2246 2247 static CORE_ADDR 2248 mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 2249 struct regcache *regcache, CORE_ADDR bp_addr, 2250 int argc, struct value **argv, CORE_ADDR sp, 2251 function_call_return_method return_method, 2252 CORE_ADDR struct_addr) 2253 { 2254 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 2255 CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0])); 2256 int i; 2257 2258 /* The number of the next register available to hold an argument. */ 2259 int arg_reg; 2260 2261 /* The address of the next stack slot available to hold an argument. */ 2262 CORE_ADDR arg_stack; 2263 2264 /* The address of the end of the stack area for arguments. This is 2265 just for error checking. */ 2266 CORE_ADDR arg_stack_end; 2267 2268 sp = push_large_arguments (sp, argc, argv, copy); 2269 2270 /* Reserve space for the stack arguments, if any. */ 2271 arg_stack_end = sp; 2272 if (argc + (struct_addr ? 1 : 0) > 4) 2273 sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE; 2274 2275 arg_reg = MEP_R1_REGNUM; 2276 arg_stack = sp; 2277 2278 /* If we're returning a structure by value, push the pointer to the 2279 buffer as the first argument. */ 2280 if (return_method == return_method_struct) 2281 { 2282 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr); 2283 arg_reg++; 2284 } 2285 2286 for (i = 0; i < argc; i++) 2287 { 2288 ULONGEST value; 2289 2290 /* Arguments that fit in a GPR get expanded to fill the GPR. */ 2291 if (value_type (argv[i])->length () <= MEP_GPR_SIZE) 2292 value = extract_unsigned_integer (value_contents (argv[i]).data (), 2293 value_type (argv[i])->length (), 2294 byte_order); 2295 2296 /* Arguments too large to fit in a GPR get copied to the stack, 2297 and we pass a pointer to the copy. */ 2298 else 2299 value = copy[i]; 2300 2301 /* We use $1 -- $4 for passing arguments, then use the stack. */ 2302 if (arg_reg <= MEP_R4_REGNUM) 2303 { 2304 regcache_cooked_write_unsigned (regcache, arg_reg, value); 2305 arg_reg++; 2306 } 2307 else 2308 { 2309 gdb_byte buf[MEP_GPR_SIZE]; 2310 store_unsigned_integer (buf, MEP_GPR_SIZE, byte_order, value); 2311 write_memory (arg_stack, buf, MEP_GPR_SIZE); 2312 arg_stack += MEP_GPR_SIZE; 2313 } 2314 } 2315 2316 gdb_assert (arg_stack <= arg_stack_end); 2317 2318 /* Set the return address. */ 2319 regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr); 2320 2321 /* Update the stack pointer. */ 2322 regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp); 2323 2324 return sp; 2325 } 2326 2327 2328 /* Initialization. */ 2329 2330 2331 static struct gdbarch * 2332 mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) 2333 { 2334 struct gdbarch *gdbarch; 2335 2336 /* Which me_module are we building a gdbarch object for? */ 2337 CONFIG_ATTR me_module; 2338 2339 /* If we have a BFD in hand, figure out which me_module it was built 2340 for. Otherwise, use the no-particular-me_module code. */ 2341 if (info.abfd) 2342 { 2343 /* The way to get the me_module code depends on the object file 2344 format. At the moment, we only know how to handle ELF. */ 2345 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) 2346 { 2347 int flag = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK; 2348 me_module = (CONFIG_ATTR) flag; 2349 } 2350 else 2351 me_module = CONFIG_NONE; 2352 } 2353 else 2354 me_module = CONFIG_NONE; 2355 2356 /* If we're setting the architecture from a file, check the 2357 endianness of the file against that of the me_module. */ 2358 if (info.abfd) 2359 { 2360 /* The negations on either side make the comparison treat all 2361 non-zero (true) values as equal. */ 2362 if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module)) 2363 { 2364 const char *module_name = me_module_name (me_module); 2365 const char *module_endianness 2366 = me_module_big_endian (me_module) ? "big" : "little"; 2367 const char *file_name = bfd_get_filename (info.abfd); 2368 const char *file_endianness 2369 = bfd_big_endian (info.abfd) ? "big" : "little"; 2370 2371 gdb_putc ('\n', gdb_stderr); 2372 if (module_name) 2373 warning (_("the MeP module '%s' is %s-endian, but the executable\n" 2374 "%s is %s-endian."), 2375 module_name, module_endianness, 2376 file_name, file_endianness); 2377 else 2378 warning (_("the selected MeP module is %s-endian, but the " 2379 "executable\n" 2380 "%s is %s-endian."), 2381 module_endianness, file_name, file_endianness); 2382 } 2383 } 2384 2385 /* Find a candidate among the list of architectures we've created 2386 already. info->bfd_arch_info needs to match, but we also want 2387 the right me_module: the ELF header's e_flags field needs to 2388 match as well. */ 2389 for (arches = gdbarch_list_lookup_by_info (arches, &info); 2390 arches != NULL; 2391 arches = gdbarch_list_lookup_by_info (arches->next, &info)) 2392 { 2393 mep_gdbarch_tdep *tdep 2394 = gdbarch_tdep<mep_gdbarch_tdep> (arches->gdbarch); 2395 2396 if (tdep->me_module == me_module) 2397 return arches->gdbarch; 2398 } 2399 2400 mep_gdbarch_tdep *tdep = new mep_gdbarch_tdep; 2401 gdbarch = gdbarch_alloc (&info, tdep); 2402 2403 /* Get a CGEN CPU descriptor for this architecture. */ 2404 { 2405 const char *mach_name = info.bfd_arch_info->printable_name; 2406 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG 2407 ? CGEN_ENDIAN_BIG 2408 : CGEN_ENDIAN_LITTLE); 2409 2410 tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name, 2411 CGEN_CPU_OPEN_ENDIAN, endian, 2412 CGEN_CPU_OPEN_END); 2413 } 2414 2415 tdep->me_module = me_module; 2416 2417 /* Register set. */ 2418 set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS); 2419 set_gdbarch_pc_regnum (gdbarch, MEP_PC_REGNUM); 2420 set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM); 2421 set_gdbarch_register_name (gdbarch, mep_register_name); 2422 set_gdbarch_register_type (gdbarch, mep_register_type); 2423 set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS); 2424 set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read); 2425 set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write); 2426 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum); 2427 set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum); 2428 2429 set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p); 2430 reggroup_add (gdbarch, mep_csr_reggroup); 2431 reggroup_add (gdbarch, mep_cr_reggroup); 2432 reggroup_add (gdbarch, mep_ccr_reggroup); 2433 2434 /* Disassembly. */ 2435 set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn); 2436 2437 /* Breakpoints. */ 2438 set_gdbarch_breakpoint_kind_from_pc (gdbarch, mep_breakpoint::kind_from_pc); 2439 set_gdbarch_sw_breakpoint_from_kind (gdbarch, mep_breakpoint::bp_from_kind); 2440 set_gdbarch_decr_pc_after_break (gdbarch, 0); 2441 set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue); 2442 2443 /* Frames and frame unwinding. */ 2444 frame_unwind_append_unwinder (gdbarch, &mep_frame_unwind); 2445 set_gdbarch_inner_than (gdbarch, core_addr_lessthan); 2446 set_gdbarch_frame_args_skip (gdbarch, 0); 2447 2448 /* Return values. */ 2449 set_gdbarch_return_value (gdbarch, mep_return_value); 2450 2451 /* Inferior function calls. */ 2452 set_gdbarch_frame_align (gdbarch, mep_frame_align); 2453 set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call); 2454 2455 return gdbarch; 2456 } 2457 2458 void _initialize_mep_tdep (); 2459 void 2460 _initialize_mep_tdep () 2461 { 2462 mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP); 2463 mep_cr_reggroup = reggroup_new ("cr", USER_REGGROUP); 2464 mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP); 2465 2466 gdbarch_register (bfd_arch_mep, mep_gdbarch_init); 2467 2468 mep_init_pseudoregister_maps (); 2469 } 2470