xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/i386-tdep.c (revision e670fd5c413e99c2f6a37901bb21c537fcd322d2)
1 /* Intel 386 target-dependent stuff.
2 
3    Copyright (C) 1988-2019 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "common/x86-xstate.h"
50 #include "x86-tdep.h"
51 
52 #include "record.h"
53 #include "record-full.h"
54 #include "target-descriptions.h"
55 #include "arch/i386.h"
56 
57 #include "ax.h"
58 #include "ax-gdb.h"
59 
60 #include "stap-probe.h"
61 #include "user-regs.h"
62 #include "cli/cli-utils.h"
63 #include "expression.h"
64 #include "parser-defs.h"
65 #include <ctype.h>
66 #include <algorithm>
67 
68 /* Register names.  */
69 
70 static const char *i386_register_names[] =
71 {
72   "eax",   "ecx",    "edx",   "ebx",
73   "esp",   "ebp",    "esi",   "edi",
74   "eip",   "eflags", "cs",    "ss",
75   "ds",    "es",     "fs",    "gs",
76   "st0",   "st1",    "st2",   "st3",
77   "st4",   "st5",    "st6",   "st7",
78   "fctrl", "fstat",  "ftag",  "fiseg",
79   "fioff", "foseg",  "fooff", "fop",
80   "xmm0",  "xmm1",   "xmm2",  "xmm3",
81   "xmm4",  "xmm5",   "xmm6",  "xmm7",
82   "mxcsr"
83 };
84 
85 static const char *i386_zmm_names[] =
86 {
87   "zmm0",  "zmm1",   "zmm2",  "zmm3",
88   "zmm4",  "zmm5",   "zmm6",  "zmm7"
89 };
90 
91 static const char *i386_zmmh_names[] =
92 {
93   "zmm0h",  "zmm1h",   "zmm2h",  "zmm3h",
94   "zmm4h",  "zmm5h",   "zmm6h",  "zmm7h"
95 };
96 
97 static const char *i386_k_names[] =
98 {
99   "k0",  "k1",   "k2",  "k3",
100   "k4",  "k5",   "k6",  "k7"
101 };
102 
103 static const char *i386_ymm_names[] =
104 {
105   "ymm0",  "ymm1",   "ymm2",  "ymm3",
106   "ymm4",  "ymm5",   "ymm6",  "ymm7",
107 };
108 
109 static const char *i386_ymmh_names[] =
110 {
111   "ymm0h",  "ymm1h",   "ymm2h",  "ymm3h",
112   "ymm4h",  "ymm5h",   "ymm6h",  "ymm7h",
113 };
114 
115 static const char *i386_mpx_names[] =
116 {
117   "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
118 };
119 
120 static const char* i386_pkeys_names[] =
121 {
122   "pkru"
123 };
124 
125 /* Register names for MPX pseudo-registers.  */
126 
127 static const char *i386_bnd_names[] =
128 {
129   "bnd0", "bnd1", "bnd2", "bnd3"
130 };
131 
132 /* Register names for MMX pseudo-registers.  */
133 
134 static const char *i386_mmx_names[] =
135 {
136   "mm0", "mm1", "mm2", "mm3",
137   "mm4", "mm5", "mm6", "mm7"
138 };
139 
140 /* Register names for byte pseudo-registers.  */
141 
142 static const char *i386_byte_names[] =
143 {
144   "al", "cl", "dl", "bl",
145   "ah", "ch", "dh", "bh"
146 };
147 
148 /* Register names for word pseudo-registers.  */
149 
150 static const char *i386_word_names[] =
151 {
152   "ax", "cx", "dx", "bx",
153   "", "bp", "si", "di"
154 };
155 
156 /* Constant used for reading/writing pseudo registers.  In 64-bit mode, we have
157    16 lower ZMM regs that extend corresponding xmm/ymm registers.  In addition,
158    we have 16 upper ZMM regs that have to be handled differently.  */
159 
160 const int num_lower_zmm_regs = 16;
161 
162 /* MMX register?  */
163 
164 static int
165 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
166 {
167   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
168   int mm0_regnum = tdep->mm0_regnum;
169 
170   if (mm0_regnum < 0)
171     return 0;
172 
173   regnum -= mm0_regnum;
174   return regnum >= 0 && regnum < tdep->num_mmx_regs;
175 }
176 
177 /* Byte register?  */
178 
179 int
180 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
181 {
182   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
183 
184   regnum -= tdep->al_regnum;
185   return regnum >= 0 && regnum < tdep->num_byte_regs;
186 }
187 
188 /* Word register?  */
189 
190 int
191 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
192 {
193   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
194 
195   regnum -= tdep->ax_regnum;
196   return regnum >= 0 && regnum < tdep->num_word_regs;
197 }
198 
199 /* Dword register?  */
200 
201 int
202 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
203 {
204   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
205   int eax_regnum = tdep->eax_regnum;
206 
207   if (eax_regnum < 0)
208     return 0;
209 
210   regnum -= eax_regnum;
211   return regnum >= 0 && regnum < tdep->num_dword_regs;
212 }
213 
214 /* AVX512 register?  */
215 
216 int
217 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
218 {
219   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
220   int zmm0h_regnum = tdep->zmm0h_regnum;
221 
222   if (zmm0h_regnum < 0)
223     return 0;
224 
225   regnum -= zmm0h_regnum;
226   return regnum >= 0 && regnum < tdep->num_zmm_regs;
227 }
228 
229 int
230 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
231 {
232   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
233   int zmm0_regnum = tdep->zmm0_regnum;
234 
235   if (zmm0_regnum < 0)
236     return 0;
237 
238   regnum -= zmm0_regnum;
239   return regnum >= 0 && regnum < tdep->num_zmm_regs;
240 }
241 
242 int
243 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
244 {
245   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
246   int k0_regnum = tdep->k0_regnum;
247 
248   if (k0_regnum < 0)
249     return 0;
250 
251   regnum -= k0_regnum;
252   return regnum >= 0 && regnum < I387_NUM_K_REGS;
253 }
254 
255 static int
256 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
257 {
258   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
259   int ymm0h_regnum = tdep->ymm0h_regnum;
260 
261   if (ymm0h_regnum < 0)
262     return 0;
263 
264   regnum -= ymm0h_regnum;
265   return regnum >= 0 && regnum < tdep->num_ymm_regs;
266 }
267 
268 /* AVX register?  */
269 
270 int
271 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
272 {
273   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
274   int ymm0_regnum = tdep->ymm0_regnum;
275 
276   if (ymm0_regnum < 0)
277     return 0;
278 
279   regnum -= ymm0_regnum;
280   return regnum >= 0 && regnum < tdep->num_ymm_regs;
281 }
282 
283 static int
284 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
285 {
286   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
287   int ymm16h_regnum = tdep->ymm16h_regnum;
288 
289   if (ymm16h_regnum < 0)
290     return 0;
291 
292   regnum -= ymm16h_regnum;
293   return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
294 }
295 
296 int
297 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
298 {
299   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
300   int ymm16_regnum = tdep->ymm16_regnum;
301 
302   if (ymm16_regnum < 0)
303     return 0;
304 
305   regnum -= ymm16_regnum;
306   return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
307 }
308 
309 /* BND register?  */
310 
311 int
312 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
313 {
314   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
315   int bnd0_regnum = tdep->bnd0_regnum;
316 
317   if (bnd0_regnum < 0)
318     return 0;
319 
320   regnum -= bnd0_regnum;
321   return regnum >= 0 && regnum < I387_NUM_BND_REGS;
322 }
323 
324 /* SSE register?  */
325 
326 int
327 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
328 {
329   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
330   int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
331 
332   if (num_xmm_regs == 0)
333     return 0;
334 
335   regnum -= I387_XMM0_REGNUM (tdep);
336   return regnum >= 0 && regnum < num_xmm_regs;
337 }
338 
339 /* XMM_512 register?  */
340 
341 int
342 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
343 {
344   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
345   int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
346 
347   if (num_xmm_avx512_regs == 0)
348     return 0;
349 
350   regnum -= I387_XMM16_REGNUM (tdep);
351   return regnum >= 0 && regnum < num_xmm_avx512_regs;
352 }
353 
354 static int
355 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
356 {
357   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
358 
359   if (I387_NUM_XMM_REGS (tdep) == 0)
360     return 0;
361 
362   return (regnum == I387_MXCSR_REGNUM (tdep));
363 }
364 
365 /* FP register?  */
366 
367 int
368 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
369 {
370   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
371 
372   if (I387_ST0_REGNUM (tdep) < 0)
373     return 0;
374 
375   return (I387_ST0_REGNUM (tdep) <= regnum
376 	  && regnum < I387_FCTRL_REGNUM (tdep));
377 }
378 
379 int
380 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
381 {
382   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
383 
384   if (I387_ST0_REGNUM (tdep) < 0)
385     return 0;
386 
387   return (I387_FCTRL_REGNUM (tdep) <= regnum
388 	  && regnum < I387_XMM0_REGNUM (tdep));
389 }
390 
391 /* BNDr (raw) register?  */
392 
393 static int
394 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
395 {
396   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
397 
398    if (I387_BND0R_REGNUM (tdep) < 0)
399      return 0;
400 
401   regnum -= tdep->bnd0r_regnum;
402   return regnum >= 0 && regnum < I387_NUM_BND_REGS;
403 }
404 
405 /* BND control register?  */
406 
407 static int
408 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
409 {
410   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
411 
412    if (I387_BNDCFGU_REGNUM (tdep) < 0)
413      return 0;
414 
415   regnum -= I387_BNDCFGU_REGNUM (tdep);
416   return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
417 }
418 
419 /* PKRU register?  */
420 
421 bool
422 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
423 {
424   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
425   int pkru_regnum = tdep->pkru_regnum;
426 
427   if (pkru_regnum < 0)
428     return false;
429 
430   regnum -= pkru_regnum;
431   return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
432 }
433 
434 /* Return the name of register REGNUM, or the empty string if it is
435    an anonymous register.  */
436 
437 static const char *
438 i386_register_name (struct gdbarch *gdbarch, int regnum)
439 {
440   /* Hide the upper YMM registers.  */
441   if (i386_ymmh_regnum_p (gdbarch, regnum))
442     return "";
443 
444   /* Hide the upper YMM16-31 registers.  */
445   if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
446     return "";
447 
448   /* Hide the upper ZMM registers.  */
449   if (i386_zmmh_regnum_p (gdbarch, regnum))
450     return "";
451 
452   return tdesc_register_name (gdbarch, regnum);
453 }
454 
455 /* Return the name of register REGNUM.  */
456 
457 const char *
458 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
459 {
460   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
461   if (i386_bnd_regnum_p (gdbarch, regnum))
462     return i386_bnd_names[regnum - tdep->bnd0_regnum];
463   if (i386_mmx_regnum_p (gdbarch, regnum))
464     return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
465   else if (i386_ymm_regnum_p (gdbarch, regnum))
466     return i386_ymm_names[regnum - tdep->ymm0_regnum];
467   else if (i386_zmm_regnum_p (gdbarch, regnum))
468     return i386_zmm_names[regnum - tdep->zmm0_regnum];
469   else if (i386_byte_regnum_p (gdbarch, regnum))
470     return i386_byte_names[regnum - tdep->al_regnum];
471   else if (i386_word_regnum_p (gdbarch, regnum))
472     return i386_word_names[regnum - tdep->ax_regnum];
473 
474   internal_error (__FILE__, __LINE__, _("invalid regnum"));
475 }
476 
477 /* Convert a dbx register number REG to the appropriate register
478    number used by GDB.  */
479 
480 static int
481 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
482 {
483   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
484 
485   /* This implements what GCC calls the "default" register map
486      (dbx_register_map[]).  */
487 
488   if (reg >= 0 && reg <= 7)
489     {
490       /* General-purpose registers.  The debug info calls %ebp
491          register 4, and %esp register 5.  */
492       if (reg == 4)
493         return 5;
494       else if (reg == 5)
495         return 4;
496       else return reg;
497     }
498   else if (reg >= 12 && reg <= 19)
499     {
500       /* Floating-point registers.  */
501       return reg - 12 + I387_ST0_REGNUM (tdep);
502     }
503   else if (reg >= 21 && reg <= 28)
504     {
505       /* SSE registers.  */
506       int ymm0_regnum = tdep->ymm0_regnum;
507 
508       if (ymm0_regnum >= 0
509 	  && i386_xmm_regnum_p (gdbarch, reg))
510 	return reg - 21 + ymm0_regnum;
511       else
512 	return reg - 21 + I387_XMM0_REGNUM (tdep);
513     }
514   else if (reg >= 29 && reg <= 36)
515     {
516       /* MMX registers.  */
517       return reg - 29 + I387_MM0_REGNUM (tdep);
518     }
519 
520   /* This will hopefully provoke a warning.  */
521   return gdbarch_num_cooked_regs (gdbarch);
522 }
523 
524 /* Convert SVR4 DWARF register number REG to the appropriate register number
525    used by GDB.  */
526 
527 static int
528 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
529 {
530   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
531 
532   /* This implements the GCC register map that tries to be compatible
533      with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]).  */
534 
535   /* The SVR4 register numbering includes %eip and %eflags, and
536      numbers the floating point registers differently.  */
537   if (reg >= 0 && reg <= 9)
538     {
539       /* General-purpose registers.  */
540       return reg;
541     }
542   else if (reg >= 11 && reg <= 18)
543     {
544       /* Floating-point registers.  */
545       return reg - 11 + I387_ST0_REGNUM (tdep);
546     }
547   else if (reg >= 21 && reg <= 36)
548     {
549       /* The SSE and MMX registers have the same numbers as with dbx.  */
550       return i386_dbx_reg_to_regnum (gdbarch, reg);
551     }
552 
553   switch (reg)
554     {
555     case 37: return I387_FCTRL_REGNUM (tdep);
556     case 38: return I387_FSTAT_REGNUM (tdep);
557     case 39: return I387_MXCSR_REGNUM (tdep);
558     case 40: return I386_ES_REGNUM;
559     case 41: return I386_CS_REGNUM;
560     case 42: return I386_SS_REGNUM;
561     case 43: return I386_DS_REGNUM;
562     case 44: return I386_FS_REGNUM;
563     case 45: return I386_GS_REGNUM;
564     }
565 
566   return -1;
567 }
568 
569 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
570    num_regs + num_pseudo_regs for other debug formats.  */
571 
572 int
573 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
574 {
575   int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
576 
577   if (regnum == -1)
578     return gdbarch_num_cooked_regs (gdbarch);
579   return regnum;
580 }
581 
582 
583 
584 /* This is the variable that is set with "set disassembly-flavor", and
585    its legitimate values.  */
586 static const char att_flavor[] = "att";
587 static const char intel_flavor[] = "intel";
588 static const char *const valid_flavors[] =
589 {
590   att_flavor,
591   intel_flavor,
592   NULL
593 };
594 static const char *disassembly_flavor = att_flavor;
595 
596 
597 /* Use the program counter to determine the contents and size of a
598    breakpoint instruction.  Return a pointer to a string of bytes that
599    encode a breakpoint instruction, store the length of the string in
600    *LEN and optionally adjust *PC to point to the correct memory
601    location for inserting the breakpoint.
602 
603    On the i386 we have a single breakpoint that fits in a single byte
604    and can be inserted anywhere.
605 
606    This function is 64-bit safe.  */
607 
608 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
609 
610 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
611 
612 
613 /* Displaced instruction handling.  */
614 
615 /* Skip the legacy instruction prefixes in INSN.
616    Not all prefixes are valid for any particular insn
617    but we needn't care, the insn will fault if it's invalid.
618    The result is a pointer to the first opcode byte,
619    or NULL if we run off the end of the buffer.  */
620 
621 static gdb_byte *
622 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
623 {
624   gdb_byte *end = insn + max_len;
625 
626   while (insn < end)
627     {
628       switch (*insn)
629 	{
630 	case DATA_PREFIX_OPCODE:
631 	case ADDR_PREFIX_OPCODE:
632 	case CS_PREFIX_OPCODE:
633 	case DS_PREFIX_OPCODE:
634 	case ES_PREFIX_OPCODE:
635 	case FS_PREFIX_OPCODE:
636 	case GS_PREFIX_OPCODE:
637 	case SS_PREFIX_OPCODE:
638 	case LOCK_PREFIX_OPCODE:
639 	case REPE_PREFIX_OPCODE:
640 	case REPNE_PREFIX_OPCODE:
641 	  ++insn;
642 	  continue;
643 	default:
644 	  return insn;
645 	}
646     }
647 
648   return NULL;
649 }
650 
651 static int
652 i386_absolute_jmp_p (const gdb_byte *insn)
653 {
654   /* jmp far (absolute address in operand).  */
655   if (insn[0] == 0xea)
656     return 1;
657 
658   if (insn[0] == 0xff)
659     {
660       /* jump near, absolute indirect (/4).  */
661       if ((insn[1] & 0x38) == 0x20)
662         return 1;
663 
664       /* jump far, absolute indirect (/5).  */
665       if ((insn[1] & 0x38) == 0x28)
666         return 1;
667     }
668 
669   return 0;
670 }
671 
672 /* Return non-zero if INSN is a jump, zero otherwise.  */
673 
674 static int
675 i386_jmp_p (const gdb_byte *insn)
676 {
677   /* jump short, relative.  */
678   if (insn[0] == 0xeb)
679     return 1;
680 
681   /* jump near, relative.  */
682   if (insn[0] == 0xe9)
683     return 1;
684 
685   return i386_absolute_jmp_p (insn);
686 }
687 
688 static int
689 i386_absolute_call_p (const gdb_byte *insn)
690 {
691   /* call far, absolute.  */
692   if (insn[0] == 0x9a)
693     return 1;
694 
695   if (insn[0] == 0xff)
696     {
697       /* Call near, absolute indirect (/2).  */
698       if ((insn[1] & 0x38) == 0x10)
699         return 1;
700 
701       /* Call far, absolute indirect (/3).  */
702       if ((insn[1] & 0x38) == 0x18)
703         return 1;
704     }
705 
706   return 0;
707 }
708 
709 static int
710 i386_ret_p (const gdb_byte *insn)
711 {
712   switch (insn[0])
713     {
714     case 0xc2: /* ret near, pop N bytes.  */
715     case 0xc3: /* ret near */
716     case 0xca: /* ret far, pop N bytes.  */
717     case 0xcb: /* ret far */
718     case 0xcf: /* iret */
719       return 1;
720 
721     default:
722       return 0;
723     }
724 }
725 
726 static int
727 i386_call_p (const gdb_byte *insn)
728 {
729   if (i386_absolute_call_p (insn))
730     return 1;
731 
732   /* call near, relative.  */
733   if (insn[0] == 0xe8)
734     return 1;
735 
736   return 0;
737 }
738 
739 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
740    length in bytes.  Otherwise, return zero.  */
741 
742 static int
743 i386_syscall_p (const gdb_byte *insn, int *lengthp)
744 {
745   /* Is it 'int $0x80'?  */
746   if ((insn[0] == 0xcd && insn[1] == 0x80)
747       /* Or is it 'sysenter'?  */
748       || (insn[0] == 0x0f && insn[1] == 0x34)
749       /* Or is it 'syscall'?  */
750       || (insn[0] == 0x0f && insn[1] == 0x05))
751     {
752       *lengthp = 2;
753       return 1;
754     }
755 
756   return 0;
757 }
758 
759 /* The gdbarch insn_is_call method.  */
760 
761 static int
762 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
763 {
764   gdb_byte buf[I386_MAX_INSN_LEN], *insn;
765 
766   read_code (addr, buf, I386_MAX_INSN_LEN);
767   insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
768 
769   return i386_call_p (insn);
770 }
771 
772 /* The gdbarch insn_is_ret method.  */
773 
774 static int
775 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
776 {
777   gdb_byte buf[I386_MAX_INSN_LEN], *insn;
778 
779   read_code (addr, buf, I386_MAX_INSN_LEN);
780   insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
781 
782   return i386_ret_p (insn);
783 }
784 
785 /* The gdbarch insn_is_jump method.  */
786 
787 static int
788 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
789 {
790   gdb_byte buf[I386_MAX_INSN_LEN], *insn;
791 
792   read_code (addr, buf, I386_MAX_INSN_LEN);
793   insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
794 
795   return i386_jmp_p (insn);
796 }
797 
798 /* Some kernels may run one past a syscall insn, so we have to cope.  */
799 
800 struct displaced_step_closure *
801 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
802 			       CORE_ADDR from, CORE_ADDR to,
803 			       struct regcache *regs)
804 {
805   size_t len = gdbarch_max_insn_length (gdbarch);
806   i386_displaced_step_closure *closure = new i386_displaced_step_closure (len);
807   gdb_byte *buf = closure->buf.data ();
808 
809   read_memory (from, buf, len);
810 
811   /* GDB may get control back after the insn after the syscall.
812      Presumably this is a kernel bug.
813      If this is a syscall, make sure there's a nop afterwards.  */
814   {
815     int syscall_length;
816     gdb_byte *insn;
817 
818     insn = i386_skip_prefixes (buf, len);
819     if (insn != NULL && i386_syscall_p (insn, &syscall_length))
820       insn[syscall_length] = NOP_OPCODE;
821   }
822 
823   write_memory (to, buf, len);
824 
825   if (debug_displaced)
826     {
827       fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
828                           paddress (gdbarch, from), paddress (gdbarch, to));
829       displaced_step_dump_bytes (gdb_stdlog, buf, len);
830     }
831 
832   return closure;
833 }
834 
835 /* Fix up the state of registers and memory after having single-stepped
836    a displaced instruction.  */
837 
838 void
839 i386_displaced_step_fixup (struct gdbarch *gdbarch,
840                            struct displaced_step_closure *closure_,
841                            CORE_ADDR from, CORE_ADDR to,
842                            struct regcache *regs)
843 {
844   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
845 
846   /* The offset we applied to the instruction's address.
847      This could well be negative (when viewed as a signed 32-bit
848      value), but ULONGEST won't reflect that, so take care when
849      applying it.  */
850   ULONGEST insn_offset = to - from;
851 
852   i386_displaced_step_closure *closure
853     = (i386_displaced_step_closure *) closure_;
854   gdb_byte *insn = closure->buf.data ();
855   /* The start of the insn, needed in case we see some prefixes.  */
856   gdb_byte *insn_start = insn;
857 
858   if (debug_displaced)
859     fprintf_unfiltered (gdb_stdlog,
860                         "displaced: fixup (%s, %s), "
861                         "insn = 0x%02x 0x%02x ...\n",
862                         paddress (gdbarch, from), paddress (gdbarch, to),
863 			insn[0], insn[1]);
864 
865   /* The list of issues to contend with here is taken from
866      resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
867      Yay for Free Software!  */
868 
869   /* Relocate the %eip, if necessary.  */
870 
871   /* The instruction recognizers we use assume any leading prefixes
872      have been skipped.  */
873   {
874     /* This is the size of the buffer in closure.  */
875     size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
876     gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
877     /* If there are too many prefixes, just ignore the insn.
878        It will fault when run.  */
879     if (opcode != NULL)
880       insn = opcode;
881   }
882 
883   /* Except in the case of absolute or indirect jump or call
884      instructions, or a return instruction, the new eip is relative to
885      the displaced instruction; make it relative.  Well, signal
886      handler returns don't need relocation either, but we use the
887      value of %eip to recognize those; see below.  */
888   if (! i386_absolute_jmp_p (insn)
889       && ! i386_absolute_call_p (insn)
890       && ! i386_ret_p (insn))
891     {
892       ULONGEST orig_eip;
893       int insn_len;
894 
895       regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
896 
897       /* A signal trampoline system call changes the %eip, resuming
898          execution of the main program after the signal handler has
899          returned.  That makes them like 'return' instructions; we
900          shouldn't relocate %eip.
901 
902          But most system calls don't, and we do need to relocate %eip.
903 
904          Our heuristic for distinguishing these cases: if stepping
905          over the system call instruction left control directly after
906          the instruction, the we relocate --- control almost certainly
907          doesn't belong in the displaced copy.  Otherwise, we assume
908          the instruction has put control where it belongs, and leave
909          it unrelocated.  Goodness help us if there are PC-relative
910          system calls.  */
911       if (i386_syscall_p (insn, &insn_len)
912           && orig_eip != to + (insn - insn_start) + insn_len
913 	  /* GDB can get control back after the insn after the syscall.
914 	     Presumably this is a kernel bug.
915 	     i386_displaced_step_copy_insn ensures its a nop,
916 	     we add one to the length for it.  */
917           && orig_eip != to + (insn - insn_start) + insn_len + 1)
918         {
919           if (debug_displaced)
920             fprintf_unfiltered (gdb_stdlog,
921                                 "displaced: syscall changed %%eip; "
922                                 "not relocating\n");
923         }
924       else
925         {
926           ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
927 
928 	  /* If we just stepped over a breakpoint insn, we don't backup
929 	     the pc on purpose; this is to match behaviour without
930 	     stepping.  */
931 
932           regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
933 
934           if (debug_displaced)
935             fprintf_unfiltered (gdb_stdlog,
936                                 "displaced: "
937                                 "relocated %%eip from %s to %s\n",
938                                 paddress (gdbarch, orig_eip),
939 				paddress (gdbarch, eip));
940         }
941     }
942 
943   /* If the instruction was PUSHFL, then the TF bit will be set in the
944      pushed value, and should be cleared.  We'll leave this for later,
945      since GDB already messes up the TF flag when stepping over a
946      pushfl.  */
947 
948   /* If the instruction was a call, the return address now atop the
949      stack is the address following the copied instruction.  We need
950      to make it the address following the original instruction.  */
951   if (i386_call_p (insn))
952     {
953       ULONGEST esp;
954       ULONGEST retaddr;
955       const ULONGEST retaddr_len = 4;
956 
957       regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
958       retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
959       retaddr = (retaddr - insn_offset) & 0xffffffffUL;
960       write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
961 
962       if (debug_displaced)
963         fprintf_unfiltered (gdb_stdlog,
964                             "displaced: relocated return addr at %s to %s\n",
965                             paddress (gdbarch, esp),
966                             paddress (gdbarch, retaddr));
967     }
968 }
969 
970 static void
971 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
972 {
973   target_write_memory (*to, buf, len);
974   *to += len;
975 }
976 
977 static void
978 i386_relocate_instruction (struct gdbarch *gdbarch,
979 			   CORE_ADDR *to, CORE_ADDR oldloc)
980 {
981   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
982   gdb_byte buf[I386_MAX_INSN_LEN];
983   int offset = 0, rel32, newrel;
984   int insn_length;
985   gdb_byte *insn = buf;
986 
987   read_memory (oldloc, buf, I386_MAX_INSN_LEN);
988 
989   insn_length = gdb_buffered_insn_length (gdbarch, insn,
990 					  I386_MAX_INSN_LEN, oldloc);
991 
992   /* Get past the prefixes.  */
993   insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
994 
995   /* Adjust calls with 32-bit relative addresses as push/jump, with
996      the address pushed being the location where the original call in
997      the user program would return to.  */
998   if (insn[0] == 0xe8)
999     {
1000       gdb_byte push_buf[16];
1001       unsigned int ret_addr;
1002 
1003       /* Where "ret" in the original code will return to.  */
1004       ret_addr = oldloc + insn_length;
1005       push_buf[0] = 0x68; /* pushq $...  */
1006       store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1007       /* Push the push.  */
1008       append_insns (to, 5, push_buf);
1009 
1010       /* Convert the relative call to a relative jump.  */
1011       insn[0] = 0xe9;
1012 
1013       /* Adjust the destination offset.  */
1014       rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1015       newrel = (oldloc - *to) + rel32;
1016       store_signed_integer (insn + 1, 4, byte_order, newrel);
1017 
1018       if (debug_displaced)
1019 	fprintf_unfiltered (gdb_stdlog,
1020 			    "Adjusted insn rel32=%s at %s to"
1021 			    " rel32=%s at %s\n",
1022 			    hex_string (rel32), paddress (gdbarch, oldloc),
1023 			    hex_string (newrel), paddress (gdbarch, *to));
1024 
1025       /* Write the adjusted jump into its displaced location.  */
1026       append_insns (to, 5, insn);
1027       return;
1028     }
1029 
1030   /* Adjust jumps with 32-bit relative addresses.  Calls are already
1031      handled above.  */
1032   if (insn[0] == 0xe9)
1033     offset = 1;
1034   /* Adjust conditional jumps.  */
1035   else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1036     offset = 2;
1037 
1038   if (offset)
1039     {
1040       rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1041       newrel = (oldloc - *to) + rel32;
1042       store_signed_integer (insn + offset, 4, byte_order, newrel);
1043       if (debug_displaced)
1044 	fprintf_unfiltered (gdb_stdlog,
1045 			    "Adjusted insn rel32=%s at %s to"
1046 			    " rel32=%s at %s\n",
1047 			    hex_string (rel32), paddress (gdbarch, oldloc),
1048 			    hex_string (newrel), paddress (gdbarch, *to));
1049     }
1050 
1051   /* Write the adjusted instructions into their displaced
1052      location.  */
1053   append_insns (to, insn_length, buf);
1054 }
1055 
1056 
1057 #ifdef I386_REGNO_TO_SYMMETRY
1058 #error "The Sequent Symmetry is no longer supported."
1059 #endif
1060 
1061 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1062    and %esp "belong" to the calling function.  Therefore these
1063    registers should be saved if they're going to be modified.  */
1064 
1065 /* The maximum number of saved registers.  This should include all
1066    registers mentioned above, and %eip.  */
1067 #define I386_NUM_SAVED_REGS	I386_NUM_GREGS
1068 
1069 struct i386_frame_cache
1070 {
1071   /* Base address.  */
1072   CORE_ADDR base;
1073   int base_p;
1074   LONGEST sp_offset;
1075   CORE_ADDR pc;
1076 
1077   /* Saved registers.  */
1078   CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1079   CORE_ADDR saved_sp;
1080   int saved_sp_reg;
1081   int pc_in_eax;
1082 
1083   /* Stack space reserved for local variables.  */
1084   long locals;
1085 };
1086 
1087 /* Allocate and initialize a frame cache.  */
1088 
1089 static struct i386_frame_cache *
1090 i386_alloc_frame_cache (void)
1091 {
1092   struct i386_frame_cache *cache;
1093   int i;
1094 
1095   cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1096 
1097   /* Base address.  */
1098   cache->base_p = 0;
1099   cache->base = 0;
1100   cache->sp_offset = -4;
1101   cache->pc = 0;
1102 
1103   /* Saved registers.  We initialize these to -1 since zero is a valid
1104      offset (that's where %ebp is supposed to be stored).  */
1105   for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1106     cache->saved_regs[i] = -1;
1107   cache->saved_sp = 0;
1108   cache->saved_sp_reg = -1;
1109   cache->pc_in_eax = 0;
1110 
1111   /* Frameless until proven otherwise.  */
1112   cache->locals = -1;
1113 
1114   return cache;
1115 }
1116 
1117 /* If the instruction at PC is a jump, return the address of its
1118    target.  Otherwise, return PC.  */
1119 
1120 static CORE_ADDR
1121 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1122 {
1123   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1124   gdb_byte op;
1125   long delta = 0;
1126   int data16 = 0;
1127 
1128   if (target_read_code (pc, &op, 1))
1129     return pc;
1130 
1131   if (op == 0x66)
1132     {
1133       data16 = 1;
1134 
1135       op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1136     }
1137 
1138   switch (op)
1139     {
1140     case 0xe9:
1141       /* Relative jump: if data16 == 0, disp32, else disp16.  */
1142       if (data16)
1143 	{
1144 	  delta = read_memory_integer (pc + 2, 2, byte_order);
1145 
1146 	  /* Include the size of the jmp instruction (including the
1147              0x66 prefix).  */
1148 	  delta += 4;
1149 	}
1150       else
1151 	{
1152 	  delta = read_memory_integer (pc + 1, 4, byte_order);
1153 
1154 	  /* Include the size of the jmp instruction.  */
1155 	  delta += 5;
1156 	}
1157       break;
1158     case 0xeb:
1159       /* Relative jump, disp8 (ignore data16).  */
1160       delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1161 
1162       delta += data16 + 2;
1163       break;
1164     }
1165 
1166   return pc + delta;
1167 }
1168 
1169 /* Check whether PC points at a prologue for a function returning a
1170    structure or union.  If so, it updates CACHE and returns the
1171    address of the first instruction after the code sequence that
1172    removes the "hidden" argument from the stack or CURRENT_PC,
1173    whichever is smaller.  Otherwise, return PC.  */
1174 
1175 static CORE_ADDR
1176 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1177 			    struct i386_frame_cache *cache)
1178 {
1179   /* Functions that return a structure or union start with:
1180 
1181         popl %eax             0x58
1182         xchgl %eax, (%esp)    0x87 0x04 0x24
1183      or xchgl %eax, 0(%esp)   0x87 0x44 0x24 0x00
1184 
1185      (the System V compiler puts out the second `xchg' instruction,
1186      and the assembler doesn't try to optimize it, so the 'sib' form
1187      gets generated).  This sequence is used to get the address of the
1188      return buffer for a function that returns a structure.  */
1189   static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1190   static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1191   gdb_byte buf[4];
1192   gdb_byte op;
1193 
1194   if (current_pc <= pc)
1195     return pc;
1196 
1197   if (target_read_code (pc, &op, 1))
1198     return pc;
1199 
1200   if (op != 0x58)		/* popl %eax */
1201     return pc;
1202 
1203   if (target_read_code (pc + 1, buf, 4))
1204     return pc;
1205 
1206   if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1207     return pc;
1208 
1209   if (current_pc == pc)
1210     {
1211       cache->sp_offset += 4;
1212       return current_pc;
1213     }
1214 
1215   if (current_pc == pc + 1)
1216     {
1217       cache->pc_in_eax = 1;
1218       return current_pc;
1219     }
1220 
1221   if (buf[1] == proto1[1])
1222     return pc + 4;
1223   else
1224     return pc + 5;
1225 }
1226 
1227 static CORE_ADDR
1228 i386_skip_probe (CORE_ADDR pc)
1229 {
1230   /* A function may start with
1231 
1232         pushl constant
1233         call _probe
1234 	addl $4, %esp
1235 
1236      followed by
1237 
1238         pushl %ebp
1239 
1240      etc.  */
1241   gdb_byte buf[8];
1242   gdb_byte op;
1243 
1244   if (target_read_code (pc, &op, 1))
1245     return pc;
1246 
1247   if (op == 0x68 || op == 0x6a)
1248     {
1249       int delta;
1250 
1251       /* Skip past the `pushl' instruction; it has either a one-byte or a
1252 	 four-byte operand, depending on the opcode.  */
1253       if (op == 0x68)
1254 	delta = 5;
1255       else
1256 	delta = 2;
1257 
1258       /* Read the following 8 bytes, which should be `call _probe' (6
1259 	 bytes) followed by `addl $4,%esp' (2 bytes).  */
1260       read_memory (pc + delta, buf, sizeof (buf));
1261       if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1262 	pc += delta + sizeof (buf);
1263     }
1264 
1265   return pc;
1266 }
1267 
1268 /* GCC 4.1 and later, can put code in the prologue to realign the
1269    stack pointer.  Check whether PC points to such code, and update
1270    CACHE accordingly.  Return the first instruction after the code
1271    sequence or CURRENT_PC, whichever is smaller.  If we don't
1272    recognize the code, return PC.  */
1273 
1274 static CORE_ADDR
1275 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1276 			  struct i386_frame_cache *cache)
1277 {
1278   /* There are 2 code sequences to re-align stack before the frame
1279      gets set up:
1280 
1281 	1. Use a caller-saved saved register:
1282 
1283 		leal  4(%esp), %reg
1284 		andl  $-XXX, %esp
1285 		pushl -4(%reg)
1286 
1287 	2. Use a callee-saved saved register:
1288 
1289 		pushl %reg
1290 		leal  8(%esp), %reg
1291 		andl  $-XXX, %esp
1292 		pushl -4(%reg)
1293 
1294      "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1295 
1296      	0x83 0xe4 0xf0			andl $-16, %esp
1297      	0x81 0xe4 0x00 0xff 0xff 0xff	andl $-256, %esp
1298    */
1299 
1300   gdb_byte buf[14];
1301   int reg;
1302   int offset, offset_and;
1303   static int regnums[8] = {
1304     I386_EAX_REGNUM,		/* %eax */
1305     I386_ECX_REGNUM,		/* %ecx */
1306     I386_EDX_REGNUM,		/* %edx */
1307     I386_EBX_REGNUM,		/* %ebx */
1308     I386_ESP_REGNUM,		/* %esp */
1309     I386_EBP_REGNUM,		/* %ebp */
1310     I386_ESI_REGNUM,		/* %esi */
1311     I386_EDI_REGNUM		/* %edi */
1312   };
1313 
1314   if (target_read_code (pc, buf, sizeof buf))
1315     return pc;
1316 
1317   /* Check caller-saved saved register.  The first instruction has
1318      to be "leal 4(%esp), %reg".  */
1319   if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1320     {
1321       /* MOD must be binary 10 and R/M must be binary 100.  */
1322       if ((buf[1] & 0xc7) != 0x44)
1323 	return pc;
1324 
1325       /* REG has register number.  */
1326       reg = (buf[1] >> 3) & 7;
1327       offset = 4;
1328     }
1329   else
1330     {
1331       /* Check callee-saved saved register.  The first instruction
1332 	 has to be "pushl %reg".  */
1333       if ((buf[0] & 0xf8) != 0x50)
1334 	return pc;
1335 
1336       /* Get register.  */
1337       reg = buf[0] & 0x7;
1338 
1339       /* The next instruction has to be "leal 8(%esp), %reg".  */
1340       if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1341 	return pc;
1342 
1343       /* MOD must be binary 10 and R/M must be binary 100.  */
1344       if ((buf[2] & 0xc7) != 0x44)
1345 	return pc;
1346 
1347       /* REG has register number.  Registers in pushl and leal have to
1348 	 be the same.  */
1349       if (reg != ((buf[2] >> 3) & 7))
1350 	return pc;
1351 
1352       offset = 5;
1353     }
1354 
1355   /* Rigister can't be %esp nor %ebp.  */
1356   if (reg == 4 || reg == 5)
1357     return pc;
1358 
1359   /* The next instruction has to be "andl $-XXX, %esp".  */
1360   if (buf[offset + 1] != 0xe4
1361       || (buf[offset] != 0x81 && buf[offset] != 0x83))
1362     return pc;
1363 
1364   offset_and = offset;
1365   offset += buf[offset] == 0x81 ? 6 : 3;
1366 
1367   /* The next instruction has to be "pushl -4(%reg)".  8bit -4 is
1368      0xfc.  REG must be binary 110 and MOD must be binary 01.  */
1369   if (buf[offset] != 0xff
1370       || buf[offset + 2] != 0xfc
1371       || (buf[offset + 1] & 0xf8) != 0x70)
1372     return pc;
1373 
1374   /* R/M has register.  Registers in leal and pushl have to be the
1375      same.  */
1376   if (reg != (buf[offset + 1] & 7))
1377     return pc;
1378 
1379   if (current_pc > pc + offset_and)
1380     cache->saved_sp_reg = regnums[reg];
1381 
1382   return std::min (pc + offset + 3, current_pc);
1383 }
1384 
1385 /* Maximum instruction length we need to handle.  */
1386 #define I386_MAX_MATCHED_INSN_LEN	6
1387 
1388 /* Instruction description.  */
1389 struct i386_insn
1390 {
1391   size_t len;
1392   gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1393   gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1394 };
1395 
1396 /* Return whether instruction at PC matches PATTERN.  */
1397 
1398 static int
1399 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1400 {
1401   gdb_byte op;
1402 
1403   if (target_read_code (pc, &op, 1))
1404     return 0;
1405 
1406   if ((op & pattern.mask[0]) == pattern.insn[0])
1407     {
1408       gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1409       int insn_matched = 1;
1410       size_t i;
1411 
1412       gdb_assert (pattern.len > 1);
1413       gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1414 
1415       if (target_read_code (pc + 1, buf, pattern.len - 1))
1416 	return 0;
1417 
1418       for (i = 1; i < pattern.len; i++)
1419 	{
1420 	  if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1421 	    insn_matched = 0;
1422 	}
1423       return insn_matched;
1424     }
1425   return 0;
1426 }
1427 
1428 /* Search for the instruction at PC in the list INSN_PATTERNS.  Return
1429    the first instruction description that matches.  Otherwise, return
1430    NULL.  */
1431 
1432 static struct i386_insn *
1433 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1434 {
1435   struct i386_insn *pattern;
1436 
1437   for (pattern = insn_patterns; pattern->len > 0; pattern++)
1438     {
1439       if (i386_match_pattern (pc, *pattern))
1440 	return pattern;
1441     }
1442 
1443   return NULL;
1444 }
1445 
1446 /* Return whether PC points inside a sequence of instructions that
1447    matches INSN_PATTERNS.  */
1448 
1449 static int
1450 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1451 {
1452   CORE_ADDR current_pc;
1453   int ix, i;
1454   struct i386_insn *insn;
1455 
1456   insn = i386_match_insn (pc, insn_patterns);
1457   if (insn == NULL)
1458     return 0;
1459 
1460   current_pc = pc;
1461   ix = insn - insn_patterns;
1462   for (i = ix - 1; i >= 0; i--)
1463     {
1464       current_pc -= insn_patterns[i].len;
1465 
1466       if (!i386_match_pattern (current_pc, insn_patterns[i]))
1467 	return 0;
1468     }
1469 
1470   current_pc = pc + insn->len;
1471   for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1472     {
1473       if (!i386_match_pattern (current_pc, *insn))
1474 	return 0;
1475 
1476       current_pc += insn->len;
1477     }
1478 
1479   return 1;
1480 }
1481 
1482 /* Some special instructions that might be migrated by GCC into the
1483    part of the prologue that sets up the new stack frame.  Because the
1484    stack frame hasn't been setup yet, no registers have been saved
1485    yet, and only the scratch registers %eax, %ecx and %edx can be
1486    touched.  */
1487 
1488 struct i386_insn i386_frame_setup_skip_insns[] =
1489 {
1490   /* Check for `movb imm8, r' and `movl imm32, r'.
1491 
1492      ??? Should we handle 16-bit operand-sizes here?  */
1493 
1494   /* `movb imm8, %al' and `movb imm8, %ah' */
1495   /* `movb imm8, %cl' and `movb imm8, %ch' */
1496   { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1497   /* `movb imm8, %dl' and `movb imm8, %dh' */
1498   { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1499   /* `movl imm32, %eax' and `movl imm32, %ecx' */
1500   { 5, { 0xb8 }, { 0xfe } },
1501   /* `movl imm32, %edx' */
1502   { 5, { 0xba }, { 0xff } },
1503 
1504   /* Check for `mov imm32, r32'.  Note that there is an alternative
1505      encoding for `mov m32, %eax'.
1506 
1507      ??? Should we handle SIB adressing here?
1508      ??? Should we handle 16-bit operand-sizes here?  */
1509 
1510   /* `movl m32, %eax' */
1511   { 5, { 0xa1 }, { 0xff } },
1512   /* `movl m32, %eax' and `mov; m32, %ecx' */
1513   { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1514   /* `movl m32, %edx' */
1515   { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1516 
1517   /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1518      Because of the symmetry, there are actually two ways to encode
1519      these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1520      opcode bytes 0x31 and 0x33 for `xorl'.  */
1521 
1522   /* `subl %eax, %eax' */
1523   { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1524   /* `subl %ecx, %ecx' */
1525   { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1526   /* `subl %edx, %edx' */
1527   { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1528   /* `xorl %eax, %eax' */
1529   { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1530   /* `xorl %ecx, %ecx' */
1531   { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1532   /* `xorl %edx, %edx' */
1533   { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1534   { 0 }
1535 };
1536 
1537 
1538 /* Check whether PC points to a no-op instruction.  */
1539 static CORE_ADDR
1540 i386_skip_noop (CORE_ADDR pc)
1541 {
1542   gdb_byte op;
1543   int check = 1;
1544 
1545   if (target_read_code (pc, &op, 1))
1546     return pc;
1547 
1548   while (check)
1549     {
1550       check = 0;
1551       /* Ignore `nop' instruction.  */
1552       if (op == 0x90)
1553 	{
1554 	  pc += 1;
1555 	  if (target_read_code (pc, &op, 1))
1556 	    return pc;
1557 	  check = 1;
1558 	}
1559       /* Ignore no-op instruction `mov %edi, %edi'.
1560 	 Microsoft system dlls often start with
1561 	 a `mov %edi,%edi' instruction.
1562 	 The 5 bytes before the function start are
1563 	 filled with `nop' instructions.
1564 	 This pattern can be used for hot-patching:
1565 	 The `mov %edi, %edi' instruction can be replaced by a
1566 	 near jump to the location of the 5 `nop' instructions
1567 	 which can be replaced by a 32-bit jump to anywhere
1568 	 in the 32-bit address space.  */
1569 
1570       else if (op == 0x8b)
1571 	{
1572 	  if (target_read_code (pc + 1, &op, 1))
1573 	    return pc;
1574 
1575 	  if (op == 0xff)
1576 	    {
1577 	      pc += 2;
1578 	      if (target_read_code (pc, &op, 1))
1579 		return pc;
1580 
1581 	      check = 1;
1582 	    }
1583 	}
1584     }
1585   return pc;
1586 }
1587 
1588 /* Check whether PC points at a code that sets up a new stack frame.
1589    If so, it updates CACHE and returns the address of the first
1590    instruction after the sequence that sets up the frame or LIMIT,
1591    whichever is smaller.  If we don't recognize the code, return PC.  */
1592 
1593 static CORE_ADDR
1594 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1595 			  CORE_ADDR pc, CORE_ADDR limit,
1596 			  struct i386_frame_cache *cache)
1597 {
1598   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1599   struct i386_insn *insn;
1600   gdb_byte op;
1601   int skip = 0;
1602 
1603   if (limit <= pc)
1604     return limit;
1605 
1606   if (target_read_code (pc, &op, 1))
1607     return pc;
1608 
1609   if (op == 0x55)		/* pushl %ebp */
1610     {
1611       /* Take into account that we've executed the `pushl %ebp' that
1612 	 starts this instruction sequence.  */
1613       cache->saved_regs[I386_EBP_REGNUM] = 0;
1614       cache->sp_offset += 4;
1615       pc++;
1616 
1617       /* If that's all, return now.  */
1618       if (limit <= pc)
1619 	return limit;
1620 
1621       /* Check for some special instructions that might be migrated by
1622 	 GCC into the prologue and skip them.  At this point in the
1623 	 prologue, code should only touch the scratch registers %eax,
1624 	 %ecx and %edx, so while the number of posibilities is sheer,
1625 	 it is limited.
1626 
1627 	 Make sure we only skip these instructions if we later see the
1628 	 `movl %esp, %ebp' that actually sets up the frame.  */
1629       while (pc + skip < limit)
1630 	{
1631 	  insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1632 	  if (insn == NULL)
1633 	    break;
1634 
1635 	  skip += insn->len;
1636 	}
1637 
1638       /* If that's all, return now.  */
1639       if (limit <= pc + skip)
1640 	return limit;
1641 
1642       if (target_read_code (pc + skip, &op, 1))
1643 	return pc + skip;
1644 
1645       /* The i386 prologue looks like
1646 
1647 	 push   %ebp
1648 	 mov    %esp,%ebp
1649 	 sub    $0x10,%esp
1650 
1651 	 and a different prologue can be generated for atom.
1652 
1653 	 push   %ebp
1654 	 lea    (%esp),%ebp
1655 	 lea    -0x10(%esp),%esp
1656 
1657 	 We handle both of them here.  */
1658 
1659       switch (op)
1660 	{
1661 	  /* Check for `movl %esp, %ebp' -- can be written in two ways.  */
1662 	case 0x8b:
1663 	  if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1664 	      != 0xec)
1665 	    return pc;
1666 	  pc += (skip + 2);
1667 	  break;
1668 	case 0x89:
1669 	  if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1670 	      != 0xe5)
1671 	    return pc;
1672 	  pc += (skip + 2);
1673 	  break;
1674 	case 0x8d: /* Check for 'lea (%ebp), %ebp'.  */
1675 	  if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1676 	      != 0x242c)
1677 	    return pc;
1678 	  pc += (skip + 3);
1679 	  break;
1680 	default:
1681 	  return pc;
1682 	}
1683 
1684       /* OK, we actually have a frame.  We just don't know how large
1685 	 it is yet.  Set its size to zero.  We'll adjust it if
1686 	 necessary.  We also now commit to skipping the special
1687 	 instructions mentioned before.  */
1688       cache->locals = 0;
1689 
1690       /* If that's all, return now.  */
1691       if (limit <= pc)
1692 	return limit;
1693 
1694       /* Check for stack adjustment
1695 
1696 	    subl $XXX, %esp
1697 	 or
1698 	    lea -XXX(%esp),%esp
1699 
1700 	 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1701 	 reg, so we don't have to worry about a data16 prefix.  */
1702       if (target_read_code (pc, &op, 1))
1703 	return pc;
1704       if (op == 0x83)
1705 	{
1706 	  /* `subl' with 8-bit immediate.  */
1707 	  if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1708 	    /* Some instruction starting with 0x83 other than `subl'.  */
1709 	    return pc;
1710 
1711 	  /* `subl' with signed 8-bit immediate (though it wouldn't
1712 	     make sense to be negative).  */
1713 	  cache->locals = read_code_integer (pc + 2, 1, byte_order);
1714 	  return pc + 3;
1715 	}
1716       else if (op == 0x81)
1717 	{
1718 	  /* Maybe it is `subl' with a 32-bit immediate.  */
1719 	  if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1720 	    /* Some instruction starting with 0x81 other than `subl'.  */
1721 	    return pc;
1722 
1723 	  /* It is `subl' with a 32-bit immediate.  */
1724 	  cache->locals = read_code_integer (pc + 2, 4, byte_order);
1725 	  return pc + 6;
1726 	}
1727       else if (op == 0x8d)
1728 	{
1729 	  /* The ModR/M byte is 0x64.  */
1730 	  if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1731 	    return pc;
1732 	  /* 'lea' with 8-bit displacement.  */
1733 	  cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1734 	  return pc + 4;
1735 	}
1736       else
1737 	{
1738 	  /* Some instruction other than `subl' nor 'lea'.  */
1739 	  return pc;
1740 	}
1741     }
1742   else if (op == 0xc8)		/* enter */
1743     {
1744       cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1745       return pc + 4;
1746     }
1747 
1748   return pc;
1749 }
1750 
1751 /* Check whether PC points at code that saves registers on the stack.
1752    If so, it updates CACHE and returns the address of the first
1753    instruction after the register saves or CURRENT_PC, whichever is
1754    smaller.  Otherwise, return PC.  */
1755 
1756 static CORE_ADDR
1757 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1758 			     struct i386_frame_cache *cache)
1759 {
1760   CORE_ADDR offset = 0;
1761   gdb_byte op;
1762   int i;
1763 
1764   if (cache->locals > 0)
1765     offset -= cache->locals;
1766   for (i = 0; i < 8 && pc < current_pc; i++)
1767     {
1768       if (target_read_code (pc, &op, 1))
1769 	return pc;
1770       if (op < 0x50 || op > 0x57)
1771 	break;
1772 
1773       offset -= 4;
1774       cache->saved_regs[op - 0x50] = offset;
1775       cache->sp_offset += 4;
1776       pc++;
1777     }
1778 
1779   return pc;
1780 }
1781 
1782 /* Do a full analysis of the prologue at PC and update CACHE
1783    accordingly.  Bail out early if CURRENT_PC is reached.  Return the
1784    address where the analysis stopped.
1785 
1786    We handle these cases:
1787 
1788    The startup sequence can be at the start of the function, or the
1789    function can start with a branch to startup code at the end.
1790 
1791    %ebp can be set up with either the 'enter' instruction, or "pushl
1792    %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1793    once used in the System V compiler).
1794 
1795    Local space is allocated just below the saved %ebp by either the
1796    'enter' instruction, or by "subl $<size>, %esp".  'enter' has a
1797    16-bit unsigned argument for space to allocate, and the 'addl'
1798    instruction could have either a signed byte, or 32-bit immediate.
1799 
1800    Next, the registers used by this function are pushed.  With the
1801    System V compiler they will always be in the order: %edi, %esi,
1802    %ebx (and sometimes a harmless bug causes it to also save but not
1803    restore %eax); however, the code below is willing to see the pushes
1804    in any order, and will handle up to 8 of them.
1805 
1806    If the setup sequence is at the end of the function, then the next
1807    instruction will be a branch back to the start.  */
1808 
1809 static CORE_ADDR
1810 i386_analyze_prologue (struct gdbarch *gdbarch,
1811 		       CORE_ADDR pc, CORE_ADDR current_pc,
1812 		       struct i386_frame_cache *cache)
1813 {
1814   pc = i386_skip_noop (pc);
1815   pc = i386_follow_jump (gdbarch, pc);
1816   pc = i386_analyze_struct_return (pc, current_pc, cache);
1817   pc = i386_skip_probe (pc);
1818   pc = i386_analyze_stack_align (pc, current_pc, cache);
1819   pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1820   return i386_analyze_register_saves (pc, current_pc, cache);
1821 }
1822 
1823 /* Return PC of first real instruction.  */
1824 
1825 static CORE_ADDR
1826 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1827 {
1828   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1829 
1830   static gdb_byte pic_pat[6] =
1831   {
1832     0xe8, 0, 0, 0, 0,		/* call 0x0 */
1833     0x5b,			/* popl %ebx */
1834   };
1835   struct i386_frame_cache cache;
1836   CORE_ADDR pc;
1837   gdb_byte op;
1838   int i;
1839   CORE_ADDR func_addr;
1840 
1841   if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1842     {
1843       CORE_ADDR post_prologue_pc
1844 	= skip_prologue_using_sal (gdbarch, func_addr);
1845       struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1846 
1847       /* Clang always emits a line note before the prologue and another
1848 	 one after.  We trust clang to emit usable line notes.  */
1849       if (post_prologue_pc
1850 	  && (cust != NULL
1851 	      && COMPUNIT_PRODUCER (cust) != NULL
1852 	      && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1853         return std::max (start_pc, post_prologue_pc);
1854     }
1855 
1856   cache.locals = -1;
1857   pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1858   if (cache.locals < 0)
1859     return start_pc;
1860 
1861   /* Found valid frame setup.  */
1862 
1863   /* The native cc on SVR4 in -K PIC mode inserts the following code
1864      to get the address of the global offset table (GOT) into register
1865      %ebx:
1866 
1867         call	0x0
1868 	popl    %ebx
1869         movl    %ebx,x(%ebp)    (optional)
1870         addl    y,%ebx
1871 
1872      This code is with the rest of the prologue (at the end of the
1873      function), so we have to skip it to get to the first real
1874      instruction at the start of the function.  */
1875 
1876   for (i = 0; i < 6; i++)
1877     {
1878       if (target_read_code (pc + i, &op, 1))
1879 	return pc;
1880 
1881       if (pic_pat[i] != op)
1882 	break;
1883     }
1884   if (i == 6)
1885     {
1886       int delta = 6;
1887 
1888       if (target_read_code (pc + delta, &op, 1))
1889 	return pc;
1890 
1891       if (op == 0x89)		/* movl %ebx, x(%ebp) */
1892 	{
1893 	  op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1894 
1895 	  if (op == 0x5d)	/* One byte offset from %ebp.  */
1896 	    delta += 3;
1897 	  else if (op == 0x9d)	/* Four byte offset from %ebp.  */
1898 	    delta += 6;
1899 	  else			/* Unexpected instruction.  */
1900 	    delta = 0;
1901 
1902           if (target_read_code (pc + delta, &op, 1))
1903 	    return pc;
1904 	}
1905 
1906       /* addl y,%ebx */
1907       if (delta > 0 && op == 0x81
1908 	  && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1909 	     == 0xc3)
1910 	{
1911 	  pc += delta + 6;
1912 	}
1913     }
1914 
1915   /* If the function starts with a branch (to startup code at the end)
1916      the last instruction should bring us back to the first
1917      instruction of the real code.  */
1918   if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1919     pc = i386_follow_jump (gdbarch, pc);
1920 
1921   return pc;
1922 }
1923 
1924 /* Check that the code pointed to by PC corresponds to a call to
1925    __main, skip it if so.  Return PC otherwise.  */
1926 
1927 CORE_ADDR
1928 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1929 {
1930   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1931   gdb_byte op;
1932 
1933   if (target_read_code (pc, &op, 1))
1934     return pc;
1935   if (op == 0xe8)
1936     {
1937       gdb_byte buf[4];
1938 
1939       if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1940  	{
1941 	  /* Make sure address is computed correctly as a 32bit
1942 	     integer even if CORE_ADDR is 64 bit wide.  */
1943  	  struct bound_minimal_symbol s;
1944  	  CORE_ADDR call_dest;
1945 
1946 	  call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1947 	  call_dest = call_dest & 0xffffffffU;
1948  	  s = lookup_minimal_symbol_by_pc (call_dest);
1949  	  if (s.minsym != NULL
1950  	      && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1951  	      && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1952  	    pc += 5;
1953  	}
1954     }
1955 
1956   return pc;
1957 }
1958 
1959 /* This function is 64-bit safe.  */
1960 
1961 static CORE_ADDR
1962 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1963 {
1964   gdb_byte buf[8];
1965 
1966   frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1967   return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1968 }
1969 
1970 
1971 /* Normal frames.  */
1972 
1973 static void
1974 i386_frame_cache_1 (struct frame_info *this_frame,
1975 		    struct i386_frame_cache *cache)
1976 {
1977   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1978   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1979   gdb_byte buf[4];
1980   int i;
1981 
1982   cache->pc = get_frame_func (this_frame);
1983 
1984   /* In principle, for normal frames, %ebp holds the frame pointer,
1985      which holds the base address for the current stack frame.
1986      However, for functions that don't need it, the frame pointer is
1987      optional.  For these "frameless" functions the frame pointer is
1988      actually the frame pointer of the calling frame.  Signal
1989      trampolines are just a special case of a "frameless" function.
1990      They (usually) share their frame pointer with the frame that was
1991      in progress when the signal occurred.  */
1992 
1993   get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1994   cache->base = extract_unsigned_integer (buf, 4, byte_order);
1995   if (cache->base == 0)
1996     {
1997       cache->base_p = 1;
1998       return;
1999     }
2000 
2001   /* For normal frames, %eip is stored at 4(%ebp).  */
2002   cache->saved_regs[I386_EIP_REGNUM] = 4;
2003 
2004   if (cache->pc != 0)
2005     i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2006 			   cache);
2007 
2008   if (cache->locals < 0)
2009     {
2010       /* We didn't find a valid frame, which means that CACHE->base
2011 	 currently holds the frame pointer for our calling frame.  If
2012 	 we're at the start of a function, or somewhere half-way its
2013 	 prologue, the function's frame probably hasn't been fully
2014 	 setup yet.  Try to reconstruct the base address for the stack
2015 	 frame by looking at the stack pointer.  For truly "frameless"
2016 	 functions this might work too.  */
2017 
2018       if (cache->saved_sp_reg != -1)
2019 	{
2020 	  /* Saved stack pointer has been saved.  */
2021 	  get_frame_register (this_frame, cache->saved_sp_reg, buf);
2022 	  cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2023 
2024 	  /* We're halfway aligning the stack.  */
2025 	  cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2026 	  cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2027 
2028 	  /* This will be added back below.  */
2029 	  cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2030 	}
2031       else if (cache->pc != 0
2032 	       || target_read_code (get_frame_pc (this_frame), buf, 1))
2033 	{
2034 	  /* We're in a known function, but did not find a frame
2035 	     setup.  Assume that the function does not use %ebp.
2036 	     Alternatively, we may have jumped to an invalid
2037 	     address; in that case there is definitely no new
2038 	     frame in %ebp.  */
2039 	  get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2040 	  cache->base = extract_unsigned_integer (buf, 4, byte_order)
2041 			+ cache->sp_offset;
2042 	}
2043       else
2044 	/* We're in an unknown function.  We could not find the start
2045 	   of the function to analyze the prologue; our best option is
2046 	   to assume a typical frame layout with the caller's %ebp
2047 	   saved.  */
2048 	cache->saved_regs[I386_EBP_REGNUM] = 0;
2049     }
2050 
2051   if (cache->saved_sp_reg != -1)
2052     {
2053       /* Saved stack pointer has been saved (but the SAVED_SP_REG
2054 	 register may be unavailable).  */
2055       if (cache->saved_sp == 0
2056 	  && deprecated_frame_register_read (this_frame,
2057 					     cache->saved_sp_reg, buf))
2058 	cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2059     }
2060   /* Now that we have the base address for the stack frame we can
2061      calculate the value of %esp in the calling frame.  */
2062   else if (cache->saved_sp == 0)
2063     cache->saved_sp = cache->base + 8;
2064 
2065   /* Adjust all the saved registers such that they contain addresses
2066      instead of offsets.  */
2067   for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2068     if (cache->saved_regs[i] != -1)
2069       cache->saved_regs[i] += cache->base;
2070 
2071   cache->base_p = 1;
2072 }
2073 
2074 static struct i386_frame_cache *
2075 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2076 {
2077   struct i386_frame_cache *cache;
2078 
2079   if (*this_cache)
2080     return (struct i386_frame_cache *) *this_cache;
2081 
2082   cache = i386_alloc_frame_cache ();
2083   *this_cache = cache;
2084 
2085   TRY
2086     {
2087       i386_frame_cache_1 (this_frame, cache);
2088     }
2089   CATCH (ex, RETURN_MASK_ERROR)
2090     {
2091       if (ex.error != NOT_AVAILABLE_ERROR)
2092 	throw_exception (ex);
2093     }
2094   END_CATCH
2095 
2096   return cache;
2097 }
2098 
2099 static void
2100 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2101 		    struct frame_id *this_id)
2102 {
2103   struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2104 
2105   if (!cache->base_p)
2106     (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2107   else if (cache->base == 0)
2108     {
2109       /* This marks the outermost frame.  */
2110     }
2111   else
2112     {
2113       /* See the end of i386_push_dummy_call.  */
2114       (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2115     }
2116 }
2117 
2118 static enum unwind_stop_reason
2119 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2120 			       void **this_cache)
2121 {
2122   struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2123 
2124   if (!cache->base_p)
2125     return UNWIND_UNAVAILABLE;
2126 
2127   /* This marks the outermost frame.  */
2128   if (cache->base == 0)
2129     return UNWIND_OUTERMOST;
2130 
2131   return UNWIND_NO_REASON;
2132 }
2133 
2134 static struct value *
2135 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2136 			  int regnum)
2137 {
2138   struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2139 
2140   gdb_assert (regnum >= 0);
2141 
2142   /* The System V ABI says that:
2143 
2144      "The flags register contains the system flags, such as the
2145      direction flag and the carry flag.  The direction flag must be
2146      set to the forward (that is, zero) direction before entry and
2147      upon exit from a function.  Other user flags have no specified
2148      role in the standard calling sequence and are not preserved."
2149 
2150      To guarantee the "upon exit" part of that statement we fake a
2151      saved flags register that has its direction flag cleared.
2152 
2153      Note that GCC doesn't seem to rely on the fact that the direction
2154      flag is cleared after a function return; it always explicitly
2155      clears the flag before operations where it matters.
2156 
2157      FIXME: kettenis/20030316: I'm not quite sure whether this is the
2158      right thing to do.  The way we fake the flags register here makes
2159      it impossible to change it.  */
2160 
2161   if (regnum == I386_EFLAGS_REGNUM)
2162     {
2163       ULONGEST val;
2164 
2165       val = get_frame_register_unsigned (this_frame, regnum);
2166       val &= ~(1 << 10);
2167       return frame_unwind_got_constant (this_frame, regnum, val);
2168     }
2169 
2170   if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2171     return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2172 
2173   if (regnum == I386_ESP_REGNUM
2174       && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2175     {
2176       /* If the SP has been saved, but we don't know where, then this
2177 	 means that SAVED_SP_REG register was found unavailable back
2178 	 when we built the cache.  */
2179       if (cache->saved_sp == 0)
2180 	return frame_unwind_got_register (this_frame, regnum,
2181 					  cache->saved_sp_reg);
2182       else
2183 	return frame_unwind_got_constant (this_frame, regnum,
2184 					  cache->saved_sp);
2185     }
2186 
2187   if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2188     return frame_unwind_got_memory (this_frame, regnum,
2189 				    cache->saved_regs[regnum]);
2190 
2191   return frame_unwind_got_register (this_frame, regnum, regnum);
2192 }
2193 
2194 static const struct frame_unwind i386_frame_unwind =
2195 {
2196   NORMAL_FRAME,
2197   i386_frame_unwind_stop_reason,
2198   i386_frame_this_id,
2199   i386_frame_prev_register,
2200   NULL,
2201   default_frame_sniffer
2202 };
2203 
2204 /* Normal frames, but in a function epilogue.  */
2205 
2206 /* Implement the stack_frame_destroyed_p gdbarch method.
2207 
2208    The epilogue is defined here as the 'ret' instruction, which will
2209    follow any instruction such as 'leave' or 'pop %ebp' that destroys
2210    the function's stack frame.  */
2211 
2212 static int
2213 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2214 {
2215   gdb_byte insn;
2216   struct compunit_symtab *cust;
2217 
2218   cust = find_pc_compunit_symtab (pc);
2219   if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2220     return 0;
2221 
2222   if (target_read_memory (pc, &insn, 1))
2223     return 0;	/* Can't read memory at pc.  */
2224 
2225   if (insn != 0xc3)	/* 'ret' instruction.  */
2226     return 0;
2227 
2228   return 1;
2229 }
2230 
2231 static int
2232 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2233 			     struct frame_info *this_frame,
2234 			     void **this_prologue_cache)
2235 {
2236   if (frame_relative_level (this_frame) == 0)
2237     return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2238 					 get_frame_pc (this_frame));
2239   else
2240     return 0;
2241 }
2242 
2243 static struct i386_frame_cache *
2244 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2245 {
2246   struct i386_frame_cache *cache;
2247   CORE_ADDR sp;
2248 
2249   if (*this_cache)
2250     return (struct i386_frame_cache *) *this_cache;
2251 
2252   cache = i386_alloc_frame_cache ();
2253   *this_cache = cache;
2254 
2255   TRY
2256     {
2257       cache->pc = get_frame_func (this_frame);
2258 
2259       /* At this point the stack looks as if we just entered the
2260 	 function, with the return address at the top of the
2261 	 stack.  */
2262       sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2263       cache->base = sp + cache->sp_offset;
2264       cache->saved_sp = cache->base + 8;
2265       cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2266 
2267       cache->base_p = 1;
2268     }
2269   CATCH (ex, RETURN_MASK_ERROR)
2270     {
2271       if (ex.error != NOT_AVAILABLE_ERROR)
2272 	throw_exception (ex);
2273     }
2274   END_CATCH
2275 
2276   return cache;
2277 }
2278 
2279 static enum unwind_stop_reason
2280 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2281 					void **this_cache)
2282 {
2283   struct i386_frame_cache *cache =
2284     i386_epilogue_frame_cache (this_frame, this_cache);
2285 
2286   if (!cache->base_p)
2287     return UNWIND_UNAVAILABLE;
2288 
2289   return UNWIND_NO_REASON;
2290 }
2291 
2292 static void
2293 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2294 			     void **this_cache,
2295 			     struct frame_id *this_id)
2296 {
2297   struct i386_frame_cache *cache =
2298     i386_epilogue_frame_cache (this_frame, this_cache);
2299 
2300   if (!cache->base_p)
2301     (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2302   else
2303     (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2304 }
2305 
2306 static struct value *
2307 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2308 				   void **this_cache, int regnum)
2309 {
2310   /* Make sure we've initialized the cache.  */
2311   i386_epilogue_frame_cache (this_frame, this_cache);
2312 
2313   return i386_frame_prev_register (this_frame, this_cache, regnum);
2314 }
2315 
2316 static const struct frame_unwind i386_epilogue_frame_unwind =
2317 {
2318   NORMAL_FRAME,
2319   i386_epilogue_frame_unwind_stop_reason,
2320   i386_epilogue_frame_this_id,
2321   i386_epilogue_frame_prev_register,
2322   NULL,
2323   i386_epilogue_frame_sniffer
2324 };
2325 
2326 
2327 /* Stack-based trampolines.  */
2328 
2329 /* These trampolines are used on cross x86 targets, when taking the
2330    address of a nested function.  When executing these trampolines,
2331    no stack frame is set up, so we are in a similar situation as in
2332    epilogues and i386_epilogue_frame_this_id can be re-used.  */
2333 
2334 /* Static chain passed in register.  */
2335 
2336 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2337 {
2338   /* `movl imm32, %eax' and `movl imm32, %ecx' */
2339   { 5, { 0xb8 }, { 0xfe } },
2340 
2341   /* `jmp imm32' */
2342   { 5, { 0xe9 }, { 0xff } },
2343 
2344   {0}
2345 };
2346 
2347 /* Static chain passed on stack (when regparm=3).  */
2348 
2349 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2350 {
2351   /* `push imm32' */
2352   { 5, { 0x68 }, { 0xff } },
2353 
2354   /* `jmp imm32' */
2355   { 5, { 0xe9 }, { 0xff } },
2356 
2357   {0}
2358 };
2359 
2360 /* Return whether PC points inside a stack trampoline.   */
2361 
2362 static int
2363 i386_in_stack_tramp_p (CORE_ADDR pc)
2364 {
2365   gdb_byte insn;
2366   const char *name;
2367 
2368   /* A stack trampoline is detected if no name is associated
2369     to the current pc and if it points inside a trampoline
2370     sequence.  */
2371 
2372   find_pc_partial_function (pc, &name, NULL, NULL);
2373   if (name)
2374     return 0;
2375 
2376   if (target_read_memory (pc, &insn, 1))
2377     return 0;
2378 
2379   if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2380       && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2381     return 0;
2382 
2383   return 1;
2384 }
2385 
2386 static int
2387 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2388 				struct frame_info *this_frame,
2389 				void **this_cache)
2390 {
2391   if (frame_relative_level (this_frame) == 0)
2392     return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2393   else
2394     return 0;
2395 }
2396 
2397 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2398 {
2399   NORMAL_FRAME,
2400   i386_epilogue_frame_unwind_stop_reason,
2401   i386_epilogue_frame_this_id,
2402   i386_epilogue_frame_prev_register,
2403   NULL,
2404   i386_stack_tramp_frame_sniffer
2405 };
2406 
2407 /* Generate a bytecode expression to get the value of the saved PC.  */
2408 
2409 static void
2410 i386_gen_return_address (struct gdbarch *gdbarch,
2411 			 struct agent_expr *ax, struct axs_value *value,
2412 			 CORE_ADDR scope)
2413 {
2414   /* The following sequence assumes the traditional use of the base
2415      register.  */
2416   ax_reg (ax, I386_EBP_REGNUM);
2417   ax_const_l (ax, 4);
2418   ax_simple (ax, aop_add);
2419   value->type = register_type (gdbarch, I386_EIP_REGNUM);
2420   value->kind = axs_lvalue_memory;
2421 }
2422 
2423 
2424 /* Signal trampolines.  */
2425 
2426 static struct i386_frame_cache *
2427 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2428 {
2429   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2430   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2431   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2432   struct i386_frame_cache *cache;
2433   CORE_ADDR addr;
2434   gdb_byte buf[4];
2435 
2436   if (*this_cache)
2437     return (struct i386_frame_cache *) *this_cache;
2438 
2439   cache = i386_alloc_frame_cache ();
2440 
2441   TRY
2442     {
2443       get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2444       cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2445 
2446       addr = tdep->sigcontext_addr (this_frame);
2447       if (tdep->sc_reg_offset)
2448 	{
2449 	  int i;
2450 
2451 	  gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2452 
2453 	  for (i = 0; i < tdep->sc_num_regs; i++)
2454 	    if (tdep->sc_reg_offset[i] != -1)
2455 	      cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2456 	}
2457       else
2458 	{
2459 	  cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2460 	  cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2461 	}
2462 
2463       cache->base_p = 1;
2464     }
2465   CATCH (ex, RETURN_MASK_ERROR)
2466     {
2467       if (ex.error != NOT_AVAILABLE_ERROR)
2468 	throw_exception (ex);
2469     }
2470   END_CATCH
2471 
2472   *this_cache = cache;
2473   return cache;
2474 }
2475 
2476 static enum unwind_stop_reason
2477 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2478 					void **this_cache)
2479 {
2480   struct i386_frame_cache *cache =
2481     i386_sigtramp_frame_cache (this_frame, this_cache);
2482 
2483   if (!cache->base_p)
2484     return UNWIND_UNAVAILABLE;
2485 
2486   return UNWIND_NO_REASON;
2487 }
2488 
2489 static void
2490 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2491 			     struct frame_id *this_id)
2492 {
2493   struct i386_frame_cache *cache =
2494     i386_sigtramp_frame_cache (this_frame, this_cache);
2495 
2496   if (!cache->base_p)
2497     (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2498   else
2499     {
2500       /* See the end of i386_push_dummy_call.  */
2501       (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2502     }
2503 }
2504 
2505 static struct value *
2506 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2507 				   void **this_cache, int regnum)
2508 {
2509   /* Make sure we've initialized the cache.  */
2510   i386_sigtramp_frame_cache (this_frame, this_cache);
2511 
2512   return i386_frame_prev_register (this_frame, this_cache, regnum);
2513 }
2514 
2515 static int
2516 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2517 			     struct frame_info *this_frame,
2518 			     void **this_prologue_cache)
2519 {
2520   struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2521 
2522   /* We shouldn't even bother if we don't have a sigcontext_addr
2523      handler.  */
2524   if (tdep->sigcontext_addr == NULL)
2525     return 0;
2526 
2527   if (tdep->sigtramp_p != NULL)
2528     {
2529       if (tdep->sigtramp_p (this_frame))
2530 	return 1;
2531     }
2532 
2533   if (tdep->sigtramp_start != 0)
2534     {
2535       CORE_ADDR pc = get_frame_pc (this_frame);
2536 
2537       gdb_assert (tdep->sigtramp_end != 0);
2538       if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2539 	return 1;
2540     }
2541 
2542   return 0;
2543 }
2544 
2545 static const struct frame_unwind i386_sigtramp_frame_unwind =
2546 {
2547   SIGTRAMP_FRAME,
2548   i386_sigtramp_frame_unwind_stop_reason,
2549   i386_sigtramp_frame_this_id,
2550   i386_sigtramp_frame_prev_register,
2551   NULL,
2552   i386_sigtramp_frame_sniffer
2553 };
2554 
2555 
2556 static CORE_ADDR
2557 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2558 {
2559   struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2560 
2561   return cache->base;
2562 }
2563 
2564 static const struct frame_base i386_frame_base =
2565 {
2566   &i386_frame_unwind,
2567   i386_frame_base_address,
2568   i386_frame_base_address,
2569   i386_frame_base_address
2570 };
2571 
2572 static struct frame_id
2573 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2574 {
2575   CORE_ADDR fp;
2576 
2577   fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2578 
2579   /* See the end of i386_push_dummy_call.  */
2580   return frame_id_build (fp + 8, get_frame_pc (this_frame));
2581 }
2582 
2583 /* _Decimal128 function return values need 16-byte alignment on the
2584    stack.  */
2585 
2586 static CORE_ADDR
2587 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2588 {
2589   return sp & -(CORE_ADDR)16;
2590 }
2591 
2592 
2593 /* Figure out where the longjmp will land.  Slurp the args out of the
2594    stack.  We expect the first arg to be a pointer to the jmp_buf
2595    structure from which we extract the address that we will land at.
2596    This address is copied into PC.  This routine returns non-zero on
2597    success.  */
2598 
2599 static int
2600 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2601 {
2602   gdb_byte buf[4];
2603   CORE_ADDR sp, jb_addr;
2604   struct gdbarch *gdbarch = get_frame_arch (frame);
2605   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2606   int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2607 
2608   /* If JB_PC_OFFSET is -1, we have no way to find out where the
2609      longjmp will land.  */
2610   if (jb_pc_offset == -1)
2611     return 0;
2612 
2613   get_frame_register (frame, I386_ESP_REGNUM, buf);
2614   sp = extract_unsigned_integer (buf, 4, byte_order);
2615   if (target_read_memory (sp + 4, buf, 4))
2616     return 0;
2617 
2618   jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2619   if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2620     return 0;
2621 
2622   *pc = extract_unsigned_integer (buf, 4, byte_order);
2623   return 1;
2624 }
2625 
2626 
2627 /* Check whether TYPE must be 16-byte-aligned when passed as a
2628    function argument.  16-byte vectors, _Decimal128 and structures or
2629    unions containing such types must be 16-byte-aligned; other
2630    arguments are 4-byte-aligned.  */
2631 
2632 static int
2633 i386_16_byte_align_p (struct type *type)
2634 {
2635   type = check_typedef (type);
2636   if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2637        || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2638       && TYPE_LENGTH (type) == 16)
2639     return 1;
2640   if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2641     return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2642   if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2643       || TYPE_CODE (type) == TYPE_CODE_UNION)
2644     {
2645       int i;
2646       for (i = 0; i < TYPE_NFIELDS (type); i++)
2647 	{
2648 	  if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2649 	    return 1;
2650 	}
2651     }
2652   return 0;
2653 }
2654 
2655 /* Implementation for set_gdbarch_push_dummy_code.  */
2656 
2657 static CORE_ADDR
2658 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2659 		      struct value **args, int nargs, struct type *value_type,
2660 		      CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2661 		      struct regcache *regcache)
2662 {
2663   /* Use 0xcc breakpoint - 1 byte.  */
2664   *bp_addr = sp - 1;
2665   *real_pc = funaddr;
2666 
2667   /* Keep the stack aligned.  */
2668   return sp - 16;
2669 }
2670 
2671 static CORE_ADDR
2672 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2673 		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2674 		      struct value **args, CORE_ADDR sp,
2675 		      function_call_return_method return_method,
2676 		      CORE_ADDR struct_addr)
2677 {
2678   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2679   gdb_byte buf[4];
2680   int i;
2681   int write_pass;
2682   int args_space = 0;
2683 
2684   /* BND registers can be in arbitrary values at the moment of the
2685      inferior call.  This can cause boundary violations that are not
2686      due to a real bug or even desired by the user.  The best to be done
2687      is set the BND registers to allow access to the whole memory, INIT
2688      state, before pushing the inferior call.   */
2689   i387_reset_bnd_regs (gdbarch, regcache);
2690 
2691   /* Determine the total space required for arguments and struct
2692      return address in a first pass (allowing for 16-byte-aligned
2693      arguments), then push arguments in a second pass.  */
2694 
2695   for (write_pass = 0; write_pass < 2; write_pass++)
2696     {
2697       int args_space_used = 0;
2698 
2699       if (return_method == return_method_struct)
2700 	{
2701 	  if (write_pass)
2702 	    {
2703 	      /* Push value address.  */
2704 	      store_unsigned_integer (buf, 4, byte_order, struct_addr);
2705 	      write_memory (sp, buf, 4);
2706 	      args_space_used += 4;
2707 	    }
2708 	  else
2709 	    args_space += 4;
2710 	}
2711 
2712       for (i = 0; i < nargs; i++)
2713 	{
2714 	  int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2715 
2716 	  if (write_pass)
2717 	    {
2718 	      if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2719 		args_space_used = align_up (args_space_used, 16);
2720 
2721 	      write_memory (sp + args_space_used,
2722 			    value_contents_all (args[i]), len);
2723 	      /* The System V ABI says that:
2724 
2725 	      "An argument's size is increased, if necessary, to make it a
2726 	      multiple of [32-bit] words.  This may require tail padding,
2727 	      depending on the size of the argument."
2728 
2729 	      This makes sure the stack stays word-aligned.  */
2730 	      args_space_used += align_up (len, 4);
2731 	    }
2732 	  else
2733 	    {
2734 	      if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2735 		args_space = align_up (args_space, 16);
2736 	      args_space += align_up (len, 4);
2737 	    }
2738 	}
2739 
2740       if (!write_pass)
2741 	{
2742 	  sp -= args_space;
2743 
2744 	  /* The original System V ABI only requires word alignment,
2745 	     but modern incarnations need 16-byte alignment in order
2746 	     to support SSE.  Since wasting a few bytes here isn't
2747 	     harmful we unconditionally enforce 16-byte alignment.  */
2748 	  sp &= ~0xf;
2749 	}
2750     }
2751 
2752   /* Store return address.  */
2753   sp -= 4;
2754   store_unsigned_integer (buf, 4, byte_order, bp_addr);
2755   write_memory (sp, buf, 4);
2756 
2757   /* Finally, update the stack pointer...  */
2758   store_unsigned_integer (buf, 4, byte_order, sp);
2759   regcache->cooked_write (I386_ESP_REGNUM, buf);
2760 
2761   /* ...and fake a frame pointer.  */
2762   regcache->cooked_write (I386_EBP_REGNUM, buf);
2763 
2764   /* MarkK wrote: This "+ 8" is all over the place:
2765      (i386_frame_this_id, i386_sigtramp_frame_this_id,
2766      i386_dummy_id).  It's there, since all frame unwinders for
2767      a given target have to agree (within a certain margin) on the
2768      definition of the stack address of a frame.  Otherwise frame id
2769      comparison might not work correctly.  Since DWARF2/GCC uses the
2770      stack address *before* the function call as a frame's CFA.  On
2771      the i386, when %ebp is used as a frame pointer, the offset
2772      between the contents %ebp and the CFA as defined by GCC.  */
2773   return sp + 8;
2774 }
2775 
2776 /* These registers are used for returning integers (and on some
2777    targets also for returning `struct' and `union' values when their
2778    size and alignment match an integer type).  */
2779 #define LOW_RETURN_REGNUM	I386_EAX_REGNUM /* %eax */
2780 #define HIGH_RETURN_REGNUM	I386_EDX_REGNUM /* %edx */
2781 
2782 /* Read, for architecture GDBARCH, a function return value of TYPE
2783    from REGCACHE, and copy that into VALBUF.  */
2784 
2785 static void
2786 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2787 			   struct regcache *regcache, gdb_byte *valbuf)
2788 {
2789   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2790   int len = TYPE_LENGTH (type);
2791   gdb_byte buf[I386_MAX_REGISTER_SIZE];
2792 
2793   if (TYPE_CODE (type) == TYPE_CODE_FLT)
2794     {
2795       if (tdep->st0_regnum < 0)
2796 	{
2797 	  warning (_("Cannot find floating-point return value."));
2798 	  memset (valbuf, 0, len);
2799 	  return;
2800 	}
2801 
2802       /* Floating-point return values can be found in %st(0).  Convert
2803 	 its contents to the desired type.  This is probably not
2804 	 exactly how it would happen on the target itself, but it is
2805 	 the best we can do.  */
2806       regcache->raw_read (I386_ST0_REGNUM, buf);
2807       target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2808     }
2809   else
2810     {
2811       int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2812       int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2813 
2814       if (len <= low_size)
2815 	{
2816 	  regcache->raw_read (LOW_RETURN_REGNUM, buf);
2817 	  memcpy (valbuf, buf, len);
2818 	}
2819       else if (len <= (low_size + high_size))
2820 	{
2821 	  regcache->raw_read (LOW_RETURN_REGNUM, buf);
2822 	  memcpy (valbuf, buf, low_size);
2823 	  regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2824 	  memcpy (valbuf + low_size, buf, len - low_size);
2825 	}
2826       else
2827 	internal_error (__FILE__, __LINE__,
2828 			_("Cannot extract return value of %d bytes long."),
2829 			len);
2830     }
2831 }
2832 
2833 /* Write, for architecture GDBARCH, a function return value of TYPE
2834    from VALBUF into REGCACHE.  */
2835 
2836 static void
2837 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2838 			 struct regcache *regcache, const gdb_byte *valbuf)
2839 {
2840   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2841   int len = TYPE_LENGTH (type);
2842 
2843   if (TYPE_CODE (type) == TYPE_CODE_FLT)
2844     {
2845       ULONGEST fstat;
2846       gdb_byte buf[I386_MAX_REGISTER_SIZE];
2847 
2848       if (tdep->st0_regnum < 0)
2849 	{
2850 	  warning (_("Cannot set floating-point return value."));
2851 	  return;
2852 	}
2853 
2854       /* Returning floating-point values is a bit tricky.  Apart from
2855          storing the return value in %st(0), we have to simulate the
2856          state of the FPU at function return point.  */
2857 
2858       /* Convert the value found in VALBUF to the extended
2859 	 floating-point format used by the FPU.  This is probably
2860 	 not exactly how it would happen on the target itself, but
2861 	 it is the best we can do.  */
2862       target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2863       regcache->raw_write (I386_ST0_REGNUM, buf);
2864 
2865       /* Set the top of the floating-point register stack to 7.  The
2866          actual value doesn't really matter, but 7 is what a normal
2867          function return would end up with if the program started out
2868          with a freshly initialized FPU.  */
2869       regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2870       fstat |= (7 << 11);
2871       regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2872 
2873       /* Mark %st(1) through %st(7) as empty.  Since we set the top of
2874          the floating-point register stack to 7, the appropriate value
2875          for the tag word is 0x3fff.  */
2876       regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2877     }
2878   else
2879     {
2880       int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2881       int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2882 
2883       if (len <= low_size)
2884 	regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2885       else if (len <= (low_size + high_size))
2886 	{
2887 	  regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2888 	  regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2889 				    valbuf + low_size);
2890 	}
2891       else
2892 	internal_error (__FILE__, __LINE__,
2893 			_("Cannot store return value of %d bytes long."), len);
2894     }
2895 }
2896 
2897 
2898 /* This is the variable that is set with "set struct-convention", and
2899    its legitimate values.  */
2900 static const char default_struct_convention[] = "default";
2901 static const char pcc_struct_convention[] = "pcc";
2902 static const char reg_struct_convention[] = "reg";
2903 static const char *const valid_conventions[] =
2904 {
2905   default_struct_convention,
2906   pcc_struct_convention,
2907   reg_struct_convention,
2908   NULL
2909 };
2910 static const char *struct_convention = default_struct_convention;
2911 
2912 /* Return non-zero if TYPE, which is assumed to be a structure,
2913    a union type, or an array type, should be returned in registers
2914    for architecture GDBARCH.  */
2915 
2916 static int
2917 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2918 {
2919   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2920   enum type_code code = TYPE_CODE (type);
2921   int len = TYPE_LENGTH (type);
2922 
2923   gdb_assert (code == TYPE_CODE_STRUCT
2924               || code == TYPE_CODE_UNION
2925               || code == TYPE_CODE_ARRAY);
2926 
2927   if (struct_convention == pcc_struct_convention
2928       || (struct_convention == default_struct_convention
2929 	  && tdep->struct_return == pcc_struct_return))
2930     return 0;
2931 
2932   /* Structures consisting of a single `float', `double' or 'long
2933      double' member are returned in %st(0).  */
2934   if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2935     {
2936       type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2937       if (TYPE_CODE (type) == TYPE_CODE_FLT)
2938 	return (len == 4 || len == 8 || len == 12);
2939     }
2940 
2941   return (len == 1 || len == 2 || len == 4 || len == 8);
2942 }
2943 
2944 /* Determine, for architecture GDBARCH, how a return value of TYPE
2945    should be returned.  If it is supposed to be returned in registers,
2946    and READBUF is non-zero, read the appropriate value from REGCACHE,
2947    and copy it into READBUF.  If WRITEBUF is non-zero, write the value
2948    from WRITEBUF into REGCACHE.  */
2949 
2950 static enum return_value_convention
2951 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2952 		   struct type *type, struct regcache *regcache,
2953 		   gdb_byte *readbuf, const gdb_byte *writebuf)
2954 {
2955   enum type_code code = TYPE_CODE (type);
2956 
2957   if (((code == TYPE_CODE_STRUCT
2958 	|| code == TYPE_CODE_UNION
2959 	|| code == TYPE_CODE_ARRAY)
2960        && !i386_reg_struct_return_p (gdbarch, type))
2961       /* Complex double and long double uses the struct return covention.  */
2962       || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2963       || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2964       /* 128-bit decimal float uses the struct return convention.  */
2965       || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2966     {
2967       /* The System V ABI says that:
2968 
2969 	 "A function that returns a structure or union also sets %eax
2970 	 to the value of the original address of the caller's area
2971 	 before it returns.  Thus when the caller receives control
2972 	 again, the address of the returned object resides in register
2973 	 %eax and can be used to access the object."
2974 
2975 	 So the ABI guarantees that we can always find the return
2976 	 value just after the function has returned.  */
2977 
2978       /* Note that the ABI doesn't mention functions returning arrays,
2979          which is something possible in certain languages such as Ada.
2980          In this case, the value is returned as if it was wrapped in
2981          a record, so the convention applied to records also applies
2982          to arrays.  */
2983 
2984       if (readbuf)
2985 	{
2986 	  ULONGEST addr;
2987 
2988 	  regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2989 	  read_memory (addr, readbuf, TYPE_LENGTH (type));
2990 	}
2991 
2992       return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2993     }
2994 
2995   /* This special case is for structures consisting of a single
2996      `float', `double' or 'long double' member.  These structures are
2997      returned in %st(0).  For these structures, we call ourselves
2998      recursively, changing TYPE into the type of the first member of
2999      the structure.  Since that should work for all structures that
3000      have only one member, we don't bother to check the member's type
3001      here.  */
3002   if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3003     {
3004       type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3005       return i386_return_value (gdbarch, function, type, regcache,
3006 				readbuf, writebuf);
3007     }
3008 
3009   if (readbuf)
3010     i386_extract_return_value (gdbarch, type, regcache, readbuf);
3011   if (writebuf)
3012     i386_store_return_value (gdbarch, type, regcache, writebuf);
3013 
3014   return RETURN_VALUE_REGISTER_CONVENTION;
3015 }
3016 
3017 
3018 struct type *
3019 i387_ext_type (struct gdbarch *gdbarch)
3020 {
3021   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3022 
3023   if (!tdep->i387_ext_type)
3024     {
3025       tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3026       gdb_assert (tdep->i387_ext_type != NULL);
3027     }
3028 
3029   return tdep->i387_ext_type;
3030 }
3031 
3032 /* Construct type for pseudo BND registers.  We can't use
3033    tdesc_find_type since a complement of one value has to be used
3034    to describe the upper bound.  */
3035 
3036 static struct type *
3037 i386_bnd_type (struct gdbarch *gdbarch)
3038 {
3039   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3040 
3041 
3042   if (!tdep->i386_bnd_type)
3043     {
3044       struct type *t;
3045       const struct builtin_type *bt = builtin_type (gdbarch);
3046 
3047       /* The type we're building is described bellow:  */
3048 #if 0
3049       struct __bound128
3050       {
3051 	void *lbound;
3052 	void *ubound;		/* One complement of raw ubound field.  */
3053       };
3054 #endif
3055 
3056       t = arch_composite_type (gdbarch,
3057 			       "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3058 
3059       append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3060       append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3061 
3062       TYPE_NAME (t) = "builtin_type_bound128";
3063       tdep->i386_bnd_type = t;
3064     }
3065 
3066   return tdep->i386_bnd_type;
3067 }
3068 
3069 /* Construct vector type for pseudo ZMM registers.  We can't use
3070    tdesc_find_type since ZMM isn't described in target description.  */
3071 
3072 static struct type *
3073 i386_zmm_type (struct gdbarch *gdbarch)
3074 {
3075   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3076 
3077   if (!tdep->i386_zmm_type)
3078     {
3079       const struct builtin_type *bt = builtin_type (gdbarch);
3080 
3081       /* The type we're building is this:  */
3082 #if 0
3083       union __gdb_builtin_type_vec512i
3084       {
3085 	int128_t uint128[4];
3086 	int64_t v4_int64[8];
3087 	int32_t v8_int32[16];
3088 	int16_t v16_int16[32];
3089 	int8_t v32_int8[64];
3090 	double v4_double[8];
3091 	float v8_float[16];
3092       };
3093 #endif
3094 
3095       struct type *t;
3096 
3097       t = arch_composite_type (gdbarch,
3098 			       "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3099       append_composite_type_field (t, "v16_float",
3100 				   init_vector_type (bt->builtin_float, 16));
3101       append_composite_type_field (t, "v8_double",
3102 				   init_vector_type (bt->builtin_double, 8));
3103       append_composite_type_field (t, "v64_int8",
3104 				   init_vector_type (bt->builtin_int8, 64));
3105       append_composite_type_field (t, "v32_int16",
3106 				   init_vector_type (bt->builtin_int16, 32));
3107       append_composite_type_field (t, "v16_int32",
3108 				   init_vector_type (bt->builtin_int32, 16));
3109       append_composite_type_field (t, "v8_int64",
3110 				   init_vector_type (bt->builtin_int64, 8));
3111       append_composite_type_field (t, "v4_int128",
3112 				   init_vector_type (bt->builtin_int128, 4));
3113 
3114       TYPE_VECTOR (t) = 1;
3115       TYPE_NAME (t) = "builtin_type_vec512i";
3116       tdep->i386_zmm_type = t;
3117     }
3118 
3119   return tdep->i386_zmm_type;
3120 }
3121 
3122 /* Construct vector type for pseudo YMM registers.  We can't use
3123    tdesc_find_type since YMM isn't described in target description.  */
3124 
3125 static struct type *
3126 i386_ymm_type (struct gdbarch *gdbarch)
3127 {
3128   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3129 
3130   if (!tdep->i386_ymm_type)
3131     {
3132       const struct builtin_type *bt = builtin_type (gdbarch);
3133 
3134       /* The type we're building is this: */
3135 #if 0
3136       union __gdb_builtin_type_vec256i
3137       {
3138         int128_t uint128[2];
3139         int64_t v2_int64[4];
3140         int32_t v4_int32[8];
3141         int16_t v8_int16[16];
3142         int8_t v16_int8[32];
3143         double v2_double[4];
3144         float v4_float[8];
3145       };
3146 #endif
3147 
3148       struct type *t;
3149 
3150       t = arch_composite_type (gdbarch,
3151 			       "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3152       append_composite_type_field (t, "v8_float",
3153 				   init_vector_type (bt->builtin_float, 8));
3154       append_composite_type_field (t, "v4_double",
3155 				   init_vector_type (bt->builtin_double, 4));
3156       append_composite_type_field (t, "v32_int8",
3157 				   init_vector_type (bt->builtin_int8, 32));
3158       append_composite_type_field (t, "v16_int16",
3159 				   init_vector_type (bt->builtin_int16, 16));
3160       append_composite_type_field (t, "v8_int32",
3161 				   init_vector_type (bt->builtin_int32, 8));
3162       append_composite_type_field (t, "v4_int64",
3163 				   init_vector_type (bt->builtin_int64, 4));
3164       append_composite_type_field (t, "v2_int128",
3165 				   init_vector_type (bt->builtin_int128, 2));
3166 
3167       TYPE_VECTOR (t) = 1;
3168       TYPE_NAME (t) = "builtin_type_vec256i";
3169       tdep->i386_ymm_type = t;
3170     }
3171 
3172   return tdep->i386_ymm_type;
3173 }
3174 
3175 /* Construct vector type for MMX registers.  */
3176 static struct type *
3177 i386_mmx_type (struct gdbarch *gdbarch)
3178 {
3179   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3180 
3181   if (!tdep->i386_mmx_type)
3182     {
3183       const struct builtin_type *bt = builtin_type (gdbarch);
3184 
3185       /* The type we're building is this: */
3186 #if 0
3187       union __gdb_builtin_type_vec64i
3188       {
3189         int64_t uint64;
3190         int32_t v2_int32[2];
3191         int16_t v4_int16[4];
3192         int8_t v8_int8[8];
3193       };
3194 #endif
3195 
3196       struct type *t;
3197 
3198       t = arch_composite_type (gdbarch,
3199 			       "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3200 
3201       append_composite_type_field (t, "uint64", bt->builtin_int64);
3202       append_composite_type_field (t, "v2_int32",
3203 				   init_vector_type (bt->builtin_int32, 2));
3204       append_composite_type_field (t, "v4_int16",
3205 				   init_vector_type (bt->builtin_int16, 4));
3206       append_composite_type_field (t, "v8_int8",
3207 				   init_vector_type (bt->builtin_int8, 8));
3208 
3209       TYPE_VECTOR (t) = 1;
3210       TYPE_NAME (t) = "builtin_type_vec64i";
3211       tdep->i386_mmx_type = t;
3212     }
3213 
3214   return tdep->i386_mmx_type;
3215 }
3216 
3217 /* Return the GDB type object for the "standard" data type of data in
3218    register REGNUM.  */
3219 
3220 struct type *
3221 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3222 {
3223   if (i386_bnd_regnum_p (gdbarch, regnum))
3224     return i386_bnd_type (gdbarch);
3225   if (i386_mmx_regnum_p (gdbarch, regnum))
3226     return i386_mmx_type (gdbarch);
3227   else if (i386_ymm_regnum_p (gdbarch, regnum))
3228     return i386_ymm_type (gdbarch);
3229   else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3230     return i386_ymm_type (gdbarch);
3231   else if (i386_zmm_regnum_p (gdbarch, regnum))
3232     return i386_zmm_type (gdbarch);
3233   else
3234     {
3235       const struct builtin_type *bt = builtin_type (gdbarch);
3236       if (i386_byte_regnum_p (gdbarch, regnum))
3237 	return bt->builtin_int8;
3238       else if (i386_word_regnum_p (gdbarch, regnum))
3239 	return bt->builtin_int16;
3240       else if (i386_dword_regnum_p (gdbarch, regnum))
3241 	return bt->builtin_int32;
3242       else if (i386_k_regnum_p (gdbarch, regnum))
3243 	return bt->builtin_int64;
3244     }
3245 
3246   internal_error (__FILE__, __LINE__, _("invalid regnum"));
3247 }
3248 
3249 /* Map a cooked register onto a raw register or memory.  For the i386,
3250    the MMX registers need to be mapped onto floating point registers.  */
3251 
3252 static int
3253 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3254 {
3255   struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3256   int mmxreg, fpreg;
3257   ULONGEST fstat;
3258   int tos;
3259 
3260   mmxreg = regnum - tdep->mm0_regnum;
3261   regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3262   tos = (fstat >> 11) & 0x7;
3263   fpreg = (mmxreg + tos) % 8;
3264 
3265   return (I387_ST0_REGNUM (tdep) + fpreg);
3266 }
3267 
3268 /* A helper function for us by i386_pseudo_register_read_value and
3269    amd64_pseudo_register_read_value.  It does all the work but reads
3270    the data into an already-allocated value.  */
3271 
3272 void
3273 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3274 				      readable_regcache *regcache,
3275 				      int regnum,
3276 				      struct value *result_value)
3277 {
3278   gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3279   enum register_status status;
3280   gdb_byte *buf = value_contents_raw (result_value);
3281 
3282   if (i386_mmx_regnum_p (gdbarch, regnum))
3283     {
3284       int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3285 
3286       /* Extract (always little endian).  */
3287       status = regcache->raw_read (fpnum, raw_buf);
3288       if (status != REG_VALID)
3289 	mark_value_bytes_unavailable (result_value, 0,
3290 				      TYPE_LENGTH (value_type (result_value)));
3291       else
3292 	memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3293     }
3294   else
3295     {
3296       struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3297       if (i386_bnd_regnum_p (gdbarch, regnum))
3298 	{
3299 	  regnum -= tdep->bnd0_regnum;
3300 
3301 	  /* Extract (always little endian).  Read lower 128bits.  */
3302 	  status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3303 				       raw_buf);
3304 	  if (status != REG_VALID)
3305 	    mark_value_bytes_unavailable (result_value, 0, 16);
3306 	  else
3307 	    {
3308 	      enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3309 	      LONGEST upper, lower;
3310 	      int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3311 
3312 	      lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3313 	      upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3314 	      upper = ~upper;
3315 
3316 	      memcpy (buf, &lower, size);
3317 	      memcpy (buf + size, &upper, size);
3318 	    }
3319 	}
3320       else if (i386_k_regnum_p (gdbarch, regnum))
3321 	{
3322 	  regnum -= tdep->k0_regnum;
3323 
3324 	  /* Extract (always little endian).  */
3325 	  status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3326 	  if (status != REG_VALID)
3327 	    mark_value_bytes_unavailable (result_value, 0, 8);
3328 	  else
3329 	    memcpy (buf, raw_buf, 8);
3330 	}
3331       else if (i386_zmm_regnum_p (gdbarch, regnum))
3332 	{
3333 	  regnum -= tdep->zmm0_regnum;
3334 
3335 	  if (regnum < num_lower_zmm_regs)
3336 	    {
3337 	      /* Extract (always little endian).  Read lower 128bits.  */
3338 	      status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3339 					   raw_buf);
3340 	      if (status != REG_VALID)
3341 		mark_value_bytes_unavailable (result_value, 0, 16);
3342 	      else
3343 		memcpy (buf, raw_buf, 16);
3344 
3345 	      /* Extract (always little endian).  Read upper 128bits.  */
3346 	      status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3347 					   raw_buf);
3348 	      if (status != REG_VALID)
3349 		mark_value_bytes_unavailable (result_value, 16, 16);
3350 	      else
3351 		memcpy (buf + 16, raw_buf, 16);
3352 	    }
3353 	  else
3354 	    {
3355 	      /* Extract (always little endian).  Read lower 128bits.  */
3356 	      status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3357 					   - num_lower_zmm_regs,
3358 					   raw_buf);
3359 	      if (status != REG_VALID)
3360 		mark_value_bytes_unavailable (result_value, 0, 16);
3361 	      else
3362 		memcpy (buf, raw_buf, 16);
3363 
3364 	      /* Extract (always little endian).  Read upper 128bits.  */
3365 	      status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3366 					   - num_lower_zmm_regs,
3367 					   raw_buf);
3368 	      if (status != REG_VALID)
3369 		mark_value_bytes_unavailable (result_value, 16, 16);
3370 	      else
3371 		memcpy (buf + 16, raw_buf, 16);
3372 	    }
3373 
3374 	  /* Read upper 256bits.  */
3375 	  status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3376 				       raw_buf);
3377 	  if (status != REG_VALID)
3378 	    mark_value_bytes_unavailable (result_value, 32, 32);
3379 	  else
3380 	    memcpy (buf + 32, raw_buf, 32);
3381 	}
3382       else if (i386_ymm_regnum_p (gdbarch, regnum))
3383 	{
3384 	  regnum -= tdep->ymm0_regnum;
3385 
3386 	  /* Extract (always little endian).  Read lower 128bits.  */
3387 	  status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3388 				       raw_buf);
3389 	  if (status != REG_VALID)
3390 	    mark_value_bytes_unavailable (result_value, 0, 16);
3391 	  else
3392 	    memcpy (buf, raw_buf, 16);
3393 	  /* Read upper 128bits.  */
3394 	  status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3395 				       raw_buf);
3396 	  if (status != REG_VALID)
3397 	    mark_value_bytes_unavailable (result_value, 16, 32);
3398 	  else
3399 	    memcpy (buf + 16, raw_buf, 16);
3400 	}
3401       else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3402 	{
3403 	  regnum -= tdep->ymm16_regnum;
3404 	  /* Extract (always little endian).  Read lower 128bits.  */
3405 	  status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3406 				       raw_buf);
3407 	  if (status != REG_VALID)
3408 	    mark_value_bytes_unavailable (result_value, 0, 16);
3409 	  else
3410 	    memcpy (buf, raw_buf, 16);
3411 	  /* Read upper 128bits.  */
3412 	  status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3413 				       raw_buf);
3414 	  if (status != REG_VALID)
3415 	    mark_value_bytes_unavailable (result_value, 16, 16);
3416 	  else
3417 	    memcpy (buf + 16, raw_buf, 16);
3418 	}
3419       else if (i386_word_regnum_p (gdbarch, regnum))
3420 	{
3421 	  int gpnum = regnum - tdep->ax_regnum;
3422 
3423 	  /* Extract (always little endian).  */
3424 	  status = regcache->raw_read (gpnum, raw_buf);
3425 	  if (status != REG_VALID)
3426 	    mark_value_bytes_unavailable (result_value, 0,
3427 					  TYPE_LENGTH (value_type (result_value)));
3428 	  else
3429 	    memcpy (buf, raw_buf, 2);
3430 	}
3431       else if (i386_byte_regnum_p (gdbarch, regnum))
3432 	{
3433 	  int gpnum = regnum - tdep->al_regnum;
3434 
3435 	  /* Extract (always little endian).  We read both lower and
3436 	     upper registers.  */
3437 	  status = regcache->raw_read (gpnum % 4, raw_buf);
3438 	  if (status != REG_VALID)
3439 	    mark_value_bytes_unavailable (result_value, 0,
3440 					  TYPE_LENGTH (value_type (result_value)));
3441 	  else if (gpnum >= 4)
3442 	    memcpy (buf, raw_buf + 1, 1);
3443 	  else
3444 	    memcpy (buf, raw_buf, 1);
3445 	}
3446       else
3447 	internal_error (__FILE__, __LINE__, _("invalid regnum"));
3448     }
3449 }
3450 
3451 static struct value *
3452 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3453 				 readable_regcache *regcache,
3454 				 int regnum)
3455 {
3456   struct value *result;
3457 
3458   result = allocate_value (register_type (gdbarch, regnum));
3459   VALUE_LVAL (result) = lval_register;
3460   VALUE_REGNUM (result) = regnum;
3461 
3462   i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3463 
3464   return result;
3465 }
3466 
3467 void
3468 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3469 			    int regnum, const gdb_byte *buf)
3470 {
3471   gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3472 
3473   if (i386_mmx_regnum_p (gdbarch, regnum))
3474     {
3475       int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3476 
3477       /* Read ...  */
3478       regcache->raw_read (fpnum, raw_buf);
3479       /* ... Modify ... (always little endian).  */
3480       memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3481       /* ... Write.  */
3482       regcache->raw_write (fpnum, raw_buf);
3483     }
3484   else
3485     {
3486       struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3487 
3488       if (i386_bnd_regnum_p (gdbarch, regnum))
3489 	{
3490 	  ULONGEST upper, lower;
3491 	  int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3492 	  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3493 
3494 	  /* New values from input value.  */
3495 	  regnum -= tdep->bnd0_regnum;
3496 	  lower = extract_unsigned_integer (buf, size, byte_order);
3497 	  upper = extract_unsigned_integer (buf + size, size, byte_order);
3498 
3499 	  /* Fetching register buffer.  */
3500 	  regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3501 			      raw_buf);
3502 
3503 	  upper = ~upper;
3504 
3505 	  /* Set register bits.  */
3506 	  memcpy (raw_buf, &lower, 8);
3507 	  memcpy (raw_buf + 8, &upper, 8);
3508 
3509 	  regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3510 	}
3511       else if (i386_k_regnum_p (gdbarch, regnum))
3512 	{
3513 	  regnum -= tdep->k0_regnum;
3514 
3515 	  regcache->raw_write (tdep->k0_regnum + regnum, buf);
3516 	}
3517       else if (i386_zmm_regnum_p (gdbarch, regnum))
3518 	{
3519 	  regnum -= tdep->zmm0_regnum;
3520 
3521 	  if (regnum < num_lower_zmm_regs)
3522 	    {
3523 	      /* Write lower 128bits.  */
3524 	      regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3525 	      /* Write upper 128bits.  */
3526 	      regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3527 	    }
3528 	  else
3529 	    {
3530 	      /* Write lower 128bits.  */
3531 	      regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3532 				   - num_lower_zmm_regs, buf);
3533 	      /* Write upper 128bits.  */
3534 	      regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3535 				   - num_lower_zmm_regs, buf + 16);
3536 	    }
3537 	  /* Write upper 256bits.  */
3538 	  regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3539 	}
3540       else if (i386_ymm_regnum_p (gdbarch, regnum))
3541 	{
3542 	  regnum -= tdep->ymm0_regnum;
3543 
3544 	  /* ... Write lower 128bits.  */
3545 	  regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3546 	  /* ... Write upper 128bits.  */
3547 	  regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3548 	}
3549       else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3550 	{
3551 	  regnum -= tdep->ymm16_regnum;
3552 
3553 	  /* ... Write lower 128bits.  */
3554 	  regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3555 	  /* ... Write upper 128bits.  */
3556 	  regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3557 	}
3558       else if (i386_word_regnum_p (gdbarch, regnum))
3559 	{
3560 	  int gpnum = regnum - tdep->ax_regnum;
3561 
3562 	  /* Read ...  */
3563 	  regcache->raw_read (gpnum, raw_buf);
3564 	  /* ... Modify ... (always little endian).  */
3565 	  memcpy (raw_buf, buf, 2);
3566 	  /* ... Write.  */
3567 	  regcache->raw_write (gpnum, raw_buf);
3568 	}
3569       else if (i386_byte_regnum_p (gdbarch, regnum))
3570 	{
3571 	  int gpnum = regnum - tdep->al_regnum;
3572 
3573 	  /* Read ...  We read both lower and upper registers.  */
3574 	  regcache->raw_read (gpnum % 4, raw_buf);
3575 	  /* ... Modify ... (always little endian).  */
3576 	  if (gpnum >= 4)
3577 	    memcpy (raw_buf + 1, buf, 1);
3578 	  else
3579 	    memcpy (raw_buf, buf, 1);
3580 	  /* ... Write.  */
3581 	  regcache->raw_write (gpnum % 4, raw_buf);
3582 	}
3583       else
3584 	internal_error (__FILE__, __LINE__, _("invalid regnum"));
3585     }
3586 }
3587 
3588 /* Implement the 'ax_pseudo_register_collect' gdbarch method.  */
3589 
3590 int
3591 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3592 				 struct agent_expr *ax, int regnum)
3593 {
3594   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3595 
3596   if (i386_mmx_regnum_p (gdbarch, regnum))
3597     {
3598       /* MMX to FPU register mapping depends on current TOS.  Let's just
3599 	 not care and collect everything...  */
3600       int i;
3601 
3602       ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3603       for (i = 0; i < 8; i++)
3604 	ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3605       return 0;
3606     }
3607   else if (i386_bnd_regnum_p (gdbarch, regnum))
3608     {
3609       regnum -= tdep->bnd0_regnum;
3610       ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3611       return 0;
3612     }
3613   else if (i386_k_regnum_p (gdbarch, regnum))
3614     {
3615       regnum -= tdep->k0_regnum;
3616       ax_reg_mask (ax, tdep->k0_regnum + regnum);
3617       return 0;
3618     }
3619   else if (i386_zmm_regnum_p (gdbarch, regnum))
3620     {
3621       regnum -= tdep->zmm0_regnum;
3622       if (regnum < num_lower_zmm_regs)
3623 	{
3624 	  ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3625 	  ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3626 	}
3627       else
3628 	{
3629 	  ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3630 			   - num_lower_zmm_regs);
3631 	  ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3632 			   - num_lower_zmm_regs);
3633 	}
3634       ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3635       return 0;
3636     }
3637   else if (i386_ymm_regnum_p (gdbarch, regnum))
3638     {
3639       regnum -= tdep->ymm0_regnum;
3640       ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3641       ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3642       return 0;
3643     }
3644   else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3645     {
3646       regnum -= tdep->ymm16_regnum;
3647       ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3648       ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3649       return 0;
3650     }
3651   else if (i386_word_regnum_p (gdbarch, regnum))
3652     {
3653       int gpnum = regnum - tdep->ax_regnum;
3654 
3655       ax_reg_mask (ax, gpnum);
3656       return 0;
3657     }
3658   else if (i386_byte_regnum_p (gdbarch, regnum))
3659     {
3660       int gpnum = regnum - tdep->al_regnum;
3661 
3662       ax_reg_mask (ax, gpnum % 4);
3663       return 0;
3664     }
3665   else
3666     internal_error (__FILE__, __LINE__, _("invalid regnum"));
3667   return 1;
3668 }
3669 
3670 
3671 /* Return the register number of the register allocated by GCC after
3672    REGNUM, or -1 if there is no such register.  */
3673 
3674 static int
3675 i386_next_regnum (int regnum)
3676 {
3677   /* GCC allocates the registers in the order:
3678 
3679      %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3680 
3681      Since storing a variable in %esp doesn't make any sense we return
3682      -1 for %ebp and for %esp itself.  */
3683   static int next_regnum[] =
3684   {
3685     I386_EDX_REGNUM,		/* Slot for %eax.  */
3686     I386_EBX_REGNUM,		/* Slot for %ecx.  */
3687     I386_ECX_REGNUM,		/* Slot for %edx.  */
3688     I386_ESI_REGNUM,		/* Slot for %ebx.  */
3689     -1, -1,			/* Slots for %esp and %ebp.  */
3690     I386_EDI_REGNUM,		/* Slot for %esi.  */
3691     I386_EBP_REGNUM		/* Slot for %edi.  */
3692   };
3693 
3694   if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3695     return next_regnum[regnum];
3696 
3697   return -1;
3698 }
3699 
3700 /* Return nonzero if a value of type TYPE stored in register REGNUM
3701    needs any special handling.  */
3702 
3703 static int
3704 i386_convert_register_p (struct gdbarch *gdbarch,
3705 			 int regnum, struct type *type)
3706 {
3707   int len = TYPE_LENGTH (type);
3708 
3709   /* Values may be spread across multiple registers.  Most debugging
3710      formats aren't expressive enough to specify the locations, so
3711      some heuristics is involved.  Right now we only handle types that
3712      have a length that is a multiple of the word size, since GCC
3713      doesn't seem to put any other types into registers.  */
3714   if (len > 4 && len % 4 == 0)
3715     {
3716       int last_regnum = regnum;
3717 
3718       while (len > 4)
3719 	{
3720 	  last_regnum = i386_next_regnum (last_regnum);
3721 	  len -= 4;
3722 	}
3723 
3724       if (last_regnum != -1)
3725 	return 1;
3726     }
3727 
3728   return i387_convert_register_p (gdbarch, regnum, type);
3729 }
3730 
3731 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3732    return its contents in TO.  */
3733 
3734 static int
3735 i386_register_to_value (struct frame_info *frame, int regnum,
3736 			struct type *type, gdb_byte *to,
3737 			int *optimizedp, int *unavailablep)
3738 {
3739   struct gdbarch *gdbarch = get_frame_arch (frame);
3740   int len = TYPE_LENGTH (type);
3741 
3742   if (i386_fp_regnum_p (gdbarch, regnum))
3743     return i387_register_to_value (frame, regnum, type, to,
3744 				   optimizedp, unavailablep);
3745 
3746   /* Read a value spread across multiple registers.  */
3747 
3748   gdb_assert (len > 4 && len % 4 == 0);
3749 
3750   while (len > 0)
3751     {
3752       gdb_assert (regnum != -1);
3753       gdb_assert (register_size (gdbarch, regnum) == 4);
3754 
3755       if (!get_frame_register_bytes (frame, regnum, 0,
3756 				     register_size (gdbarch, regnum),
3757 				     to, optimizedp, unavailablep))
3758 	return 0;
3759 
3760       regnum = i386_next_regnum (regnum);
3761       len -= 4;
3762       to += 4;
3763     }
3764 
3765   *optimizedp = *unavailablep = 0;
3766   return 1;
3767 }
3768 
3769 /* Write the contents FROM of a value of type TYPE into register
3770    REGNUM in frame FRAME.  */
3771 
3772 static void
3773 i386_value_to_register (struct frame_info *frame, int regnum,
3774 			struct type *type, const gdb_byte *from)
3775 {
3776   int len = TYPE_LENGTH (type);
3777 
3778   if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3779     {
3780       i387_value_to_register (frame, regnum, type, from);
3781       return;
3782     }
3783 
3784   /* Write a value spread across multiple registers.  */
3785 
3786   gdb_assert (len > 4 && len % 4 == 0);
3787 
3788   while (len > 0)
3789     {
3790       gdb_assert (regnum != -1);
3791       gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3792 
3793       put_frame_register (frame, regnum, from);
3794       regnum = i386_next_regnum (regnum);
3795       len -= 4;
3796       from += 4;
3797     }
3798 }
3799 
3800 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3801    in the general-purpose register set REGSET to register cache
3802    REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
3803 
3804 void
3805 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3806 		     int regnum, const void *gregs, size_t len)
3807 {
3808   struct gdbarch *gdbarch = regcache->arch ();
3809   const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3810   const gdb_byte *regs = (const gdb_byte *) gregs;
3811   int i;
3812 
3813   gdb_assert (len >= tdep->sizeof_gregset);
3814 
3815   for (i = 0; i < tdep->gregset_num_regs; i++)
3816     {
3817       if ((regnum == i || regnum == -1)
3818 	  && tdep->gregset_reg_offset[i] != -1)
3819 	regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3820     }
3821 }
3822 
3823 /* Collect register REGNUM from the register cache REGCACHE and store
3824    it in the buffer specified by GREGS and LEN as described by the
3825    general-purpose register set REGSET.  If REGNUM is -1, do this for
3826    all registers in REGSET.  */
3827 
3828 static void
3829 i386_collect_gregset (const struct regset *regset,
3830 		      const struct regcache *regcache,
3831 		      int regnum, void *gregs, size_t len)
3832 {
3833   struct gdbarch *gdbarch = regcache->arch ();
3834   const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3835   gdb_byte *regs = (gdb_byte *) gregs;
3836   int i;
3837 
3838   gdb_assert (len >= tdep->sizeof_gregset);
3839 
3840   for (i = 0; i < tdep->gregset_num_regs; i++)
3841     {
3842       if ((regnum == i || regnum == -1)
3843 	  && tdep->gregset_reg_offset[i] != -1)
3844 	regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3845     }
3846 }
3847 
3848 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3849    in the floating-point register set REGSET to register cache
3850    REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
3851 
3852 static void
3853 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3854 		      int regnum, const void *fpregs, size_t len)
3855 {
3856   struct gdbarch *gdbarch = regcache->arch ();
3857   const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3858 
3859   if (len == I387_SIZEOF_FXSAVE)
3860     {
3861       i387_supply_fxsave (regcache, regnum, fpregs);
3862       return;
3863     }
3864 
3865   gdb_assert (len >= tdep->sizeof_fpregset);
3866   i387_supply_fsave (regcache, regnum, fpregs);
3867 }
3868 
3869 /* Collect register REGNUM from the register cache REGCACHE and store
3870    it in the buffer specified by FPREGS and LEN as described by the
3871    floating-point register set REGSET.  If REGNUM is -1, do this for
3872    all registers in REGSET.  */
3873 
3874 static void
3875 i386_collect_fpregset (const struct regset *regset,
3876 		       const struct regcache *regcache,
3877 		       int regnum, void *fpregs, size_t len)
3878 {
3879   struct gdbarch *gdbarch = regcache->arch ();
3880   const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3881 
3882   if (len == I387_SIZEOF_FXSAVE)
3883     {
3884       i387_collect_fxsave (regcache, regnum, fpregs);
3885       return;
3886     }
3887 
3888   gdb_assert (len >= tdep->sizeof_fpregset);
3889   i387_collect_fsave (regcache, regnum, fpregs);
3890 }
3891 
3892 /* Register set definitions.  */
3893 
3894 const struct regset i386_gregset =
3895   {
3896     NULL, i386_supply_gregset, i386_collect_gregset
3897   };
3898 
3899 const struct regset i386_fpregset =
3900   {
3901     NULL, i386_supply_fpregset, i386_collect_fpregset
3902   };
3903 
3904 /* Default iterator over core file register note sections.  */
3905 
3906 void
3907 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3908 				   iterate_over_regset_sections_cb *cb,
3909 				   void *cb_data,
3910 				   const struct regcache *regcache)
3911 {
3912   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3913 
3914   cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3915       cb_data);
3916   if (tdep->sizeof_fpregset)
3917     cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3918 	NULL, cb_data);
3919 }
3920 
3921 
3922 /* Stuff for WIN32 PE style DLL's but is pretty generic really.  */
3923 
3924 CORE_ADDR
3925 i386_pe_skip_trampoline_code (struct frame_info *frame,
3926 			      CORE_ADDR pc, char *name)
3927 {
3928   struct gdbarch *gdbarch = get_frame_arch (frame);
3929   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3930 
3931   /* jmp *(dest) */
3932   if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3933     {
3934       unsigned long indirect =
3935 	read_memory_unsigned_integer (pc + 2, 4, byte_order);
3936       struct minimal_symbol *indsym =
3937 	indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3938       const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3939 
3940       if (symname)
3941 	{
3942 	  if (startswith (symname, "__imp_")
3943 	      || startswith (symname, "_imp_"))
3944 	    return name ? 1 :
3945 		   read_memory_unsigned_integer (indirect, 4, byte_order);
3946 	}
3947     }
3948   return 0;			/* Not a trampoline.  */
3949 }
3950 
3951 
3952 /* Return whether the THIS_FRAME corresponds to a sigtramp
3953    routine.  */
3954 
3955 int
3956 i386_sigtramp_p (struct frame_info *this_frame)
3957 {
3958   CORE_ADDR pc = get_frame_pc (this_frame);
3959   const char *name;
3960 
3961   find_pc_partial_function (pc, &name, NULL, NULL);
3962   return (name && strcmp ("_sigtramp", name) == 0);
3963 }
3964 
3965 
3966 /* We have two flavours of disassembly.  The machinery on this page
3967    deals with switching between those.  */
3968 
3969 static int
3970 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3971 {
3972   gdb_assert (disassembly_flavor == att_flavor
3973 	      || disassembly_flavor == intel_flavor);
3974 
3975   info->disassembler_options = disassembly_flavor;
3976 
3977   return default_print_insn (pc, info);
3978 }
3979 
3980 
3981 /* There are a few i386 architecture variants that differ only
3982    slightly from the generic i386 target.  For now, we don't give them
3983    their own source file, but include them here.  As a consequence,
3984    they'll always be included.  */
3985 
3986 /* System V Release 4 (SVR4).  */
3987 
3988 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3989    routine.  */
3990 
3991 static int
3992 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3993 {
3994   CORE_ADDR pc = get_frame_pc (this_frame);
3995   const char *name;
3996 
3997   /* The origin of these symbols is currently unknown.  */
3998   find_pc_partial_function (pc, &name, NULL, NULL);
3999   return (name && (strcmp ("_sigreturn", name) == 0
4000 		   || strcmp ("sigvechandler", name) == 0));
4001 }
4002 
4003 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4004    address of the associated sigcontext (ucontext) structure.  */
4005 
4006 static CORE_ADDR
4007 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4008 {
4009   struct gdbarch *gdbarch = get_frame_arch (this_frame);
4010   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4011   gdb_byte buf[4];
4012   CORE_ADDR sp;
4013 
4014   get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4015   sp = extract_unsigned_integer (buf, 4, byte_order);
4016 
4017   return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4018 }
4019 
4020 
4021 
4022 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4023    gdbarch.h.  */
4024 
4025 int
4026 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4027 {
4028   return (*s == '$' /* Literal number.  */
4029 	  || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement.  */
4030 	  || (*s == '(' && s[1] == '%') /* Register indirection.  */
4031 	  || (*s == '%' && isalpha (s[1]))); /* Register access.  */
4032 }
4033 
4034 /* Helper function for i386_stap_parse_special_token.
4035 
4036    This function parses operands of the form `-8+3+1(%rbp)', which
4037    must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4038 
4039    Return 1 if the operand was parsed successfully, zero
4040    otherwise.  */
4041 
4042 static int
4043 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4044 				       struct stap_parse_info *p)
4045 {
4046   const char *s = p->arg;
4047 
4048   if (isdigit (*s) || *s == '-' || *s == '+')
4049     {
4050       int got_minus[3];
4051       int i;
4052       long displacements[3];
4053       const char *start;
4054       char *regname;
4055       int len;
4056       struct stoken str;
4057       char *endp;
4058 
4059       got_minus[0] = 0;
4060       if (*s == '+')
4061 	++s;
4062       else if (*s == '-')
4063 	{
4064 	  ++s;
4065 	  got_minus[0] = 1;
4066 	}
4067 
4068       if (!isdigit ((unsigned char) *s))
4069 	return 0;
4070 
4071       displacements[0] = strtol (s, &endp, 10);
4072       s = endp;
4073 
4074       if (*s != '+' && *s != '-')
4075 	{
4076 	  /* We are not dealing with a triplet.  */
4077 	  return 0;
4078 	}
4079 
4080       got_minus[1] = 0;
4081       if (*s == '+')
4082 	++s;
4083       else
4084 	{
4085 	  ++s;
4086 	  got_minus[1] = 1;
4087 	}
4088 
4089       if (!isdigit ((unsigned char) *s))
4090 	return 0;
4091 
4092       displacements[1] = strtol (s, &endp, 10);
4093       s = endp;
4094 
4095       if (*s != '+' && *s != '-')
4096 	{
4097 	  /* We are not dealing with a triplet.  */
4098 	  return 0;
4099 	}
4100 
4101       got_minus[2] = 0;
4102       if (*s == '+')
4103 	++s;
4104       else
4105 	{
4106 	  ++s;
4107 	  got_minus[2] = 1;
4108 	}
4109 
4110       if (!isdigit ((unsigned char) *s))
4111 	return 0;
4112 
4113       displacements[2] = strtol (s, &endp, 10);
4114       s = endp;
4115 
4116       if (*s != '(' || s[1] != '%')
4117 	return 0;
4118 
4119       s += 2;
4120       start = s;
4121 
4122       while (isalnum (*s))
4123 	++s;
4124 
4125       if (*s++ != ')')
4126 	return 0;
4127 
4128       len = s - start - 1;
4129       regname = (char *) alloca (len + 1);
4130 
4131       strncpy (regname, start, len);
4132       regname[len] = '\0';
4133 
4134       if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4135 	error (_("Invalid register name `%s' on expression `%s'."),
4136 	       regname, p->saved_arg);
4137 
4138       for (i = 0; i < 3; i++)
4139 	{
4140 	  write_exp_elt_opcode (&p->pstate, OP_LONG);
4141 	  write_exp_elt_type
4142 	    (&p->pstate, builtin_type (gdbarch)->builtin_long);
4143 	  write_exp_elt_longcst (&p->pstate, displacements[i]);
4144 	  write_exp_elt_opcode (&p->pstate, OP_LONG);
4145 	  if (got_minus[i])
4146 	    write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4147 	}
4148 
4149       write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4150       str.ptr = regname;
4151       str.length = len;
4152       write_exp_string (&p->pstate, str);
4153       write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4154 
4155       write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4156       write_exp_elt_type (&p->pstate,
4157 			  builtin_type (gdbarch)->builtin_data_ptr);
4158       write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4159 
4160       write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4161       write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4162       write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4163 
4164       write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4165       write_exp_elt_type (&p->pstate,
4166 			  lookup_pointer_type (p->arg_type));
4167       write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4168 
4169       write_exp_elt_opcode (&p->pstate, UNOP_IND);
4170 
4171       p->arg = s;
4172 
4173       return 1;
4174     }
4175 
4176   return 0;
4177 }
4178 
4179 /* Helper function for i386_stap_parse_special_token.
4180 
4181    This function parses operands of the form `register base +
4182    (register index * size) + offset', as represented in
4183    `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4184 
4185    Return 1 if the operand was parsed successfully, zero
4186    otherwise.  */
4187 
4188 static int
4189 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4190 					      struct stap_parse_info *p)
4191 {
4192   const char *s = p->arg;
4193 
4194   if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4195     {
4196       int offset_minus = 0;
4197       long offset = 0;
4198       int size_minus = 0;
4199       long size = 0;
4200       const char *start;
4201       char *base;
4202       int len_base;
4203       char *index;
4204       int len_index;
4205       struct stoken base_token, index_token;
4206 
4207       if (*s == '+')
4208 	++s;
4209       else if (*s == '-')
4210 	{
4211 	  ++s;
4212 	  offset_minus = 1;
4213 	}
4214 
4215       if (offset_minus && !isdigit (*s))
4216 	return 0;
4217 
4218       if (isdigit (*s))
4219 	{
4220 	  char *endp;
4221 
4222 	  offset = strtol (s, &endp, 10);
4223 	  s = endp;
4224 	}
4225 
4226       if (*s != '(' || s[1] != '%')
4227 	return 0;
4228 
4229       s += 2;
4230       start = s;
4231 
4232       while (isalnum (*s))
4233 	++s;
4234 
4235       if (*s != ',' || s[1] != '%')
4236 	return 0;
4237 
4238       len_base = s - start;
4239       base = (char *) alloca (len_base + 1);
4240       strncpy (base, start, len_base);
4241       base[len_base] = '\0';
4242 
4243       if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4244 	error (_("Invalid register name `%s' on expression `%s'."),
4245 	       base, p->saved_arg);
4246 
4247       s += 2;
4248       start = s;
4249 
4250       while (isalnum (*s))
4251 	++s;
4252 
4253       len_index = s - start;
4254       index = (char *) alloca (len_index + 1);
4255       strncpy (index, start, len_index);
4256       index[len_index] = '\0';
4257 
4258       if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4259 	error (_("Invalid register name `%s' on expression `%s'."),
4260 	       index, p->saved_arg);
4261 
4262       if (*s != ',' && *s != ')')
4263 	return 0;
4264 
4265       if (*s == ',')
4266 	{
4267 	  char *endp;
4268 
4269 	  ++s;
4270 	  if (*s == '+')
4271 	    ++s;
4272 	  else if (*s == '-')
4273 	    {
4274 	      ++s;
4275 	      size_minus = 1;
4276 	    }
4277 
4278 	  size = strtol (s, &endp, 10);
4279 	  s = endp;
4280 
4281 	  if (*s != ')')
4282 	    return 0;
4283 	}
4284 
4285       ++s;
4286 
4287       if (offset)
4288 	{
4289 	  write_exp_elt_opcode (&p->pstate, OP_LONG);
4290 	  write_exp_elt_type (&p->pstate,
4291 			      builtin_type (gdbarch)->builtin_long);
4292 	  write_exp_elt_longcst (&p->pstate, offset);
4293 	  write_exp_elt_opcode (&p->pstate, OP_LONG);
4294 	  if (offset_minus)
4295 	    write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4296 	}
4297 
4298       write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4299       base_token.ptr = base;
4300       base_token.length = len_base;
4301       write_exp_string (&p->pstate, base_token);
4302       write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4303 
4304       if (offset)
4305 	write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4306 
4307       write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4308       index_token.ptr = index;
4309       index_token.length = len_index;
4310       write_exp_string (&p->pstate, index_token);
4311       write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4312 
4313       if (size)
4314 	{
4315 	  write_exp_elt_opcode (&p->pstate, OP_LONG);
4316 	  write_exp_elt_type (&p->pstate,
4317 			      builtin_type (gdbarch)->builtin_long);
4318 	  write_exp_elt_longcst (&p->pstate, size);
4319 	  write_exp_elt_opcode (&p->pstate, OP_LONG);
4320 	  if (size_minus)
4321 	    write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4322 	  write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4323 	}
4324 
4325       write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4326 
4327       write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4328       write_exp_elt_type (&p->pstate,
4329 			  lookup_pointer_type (p->arg_type));
4330       write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4331 
4332       write_exp_elt_opcode (&p->pstate, UNOP_IND);
4333 
4334       p->arg = s;
4335 
4336       return 1;
4337     }
4338 
4339   return 0;
4340 }
4341 
4342 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4343    gdbarch.h.  */
4344 
4345 int
4346 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4347 			       struct stap_parse_info *p)
4348 {
4349   /* In order to parse special tokens, we use a state-machine that go
4350      through every known token and try to get a match.  */
4351   enum
4352     {
4353       TRIPLET,
4354       THREE_ARG_DISPLACEMENT,
4355       DONE
4356     };
4357   int current_state;
4358 
4359   current_state = TRIPLET;
4360 
4361   /* The special tokens to be parsed here are:
4362 
4363      - `register base + (register index * size) + offset', as represented
4364      in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4365 
4366      - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4367      `*(-8 + 3 - 1 + (void *) $eax)'.  */
4368 
4369   while (current_state != DONE)
4370     {
4371       switch (current_state)
4372 	{
4373 	case TRIPLET:
4374 	  if (i386_stap_parse_special_token_triplet (gdbarch, p))
4375 	    return 1;
4376 	  break;
4377 
4378 	case THREE_ARG_DISPLACEMENT:
4379 	  if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4380 	    return 1;
4381 	  break;
4382 	}
4383 
4384       /* Advancing to the next state.  */
4385       ++current_state;
4386     }
4387 
4388   return 0;
4389 }
4390 
4391 
4392 
4393 /* gdbarch gnu_triplet_regexp method.  Both arches are acceptable as GDB always
4394    also supplies -m64 or -m32 by gdbarch_gcc_target_options.  */
4395 
4396 static const char *
4397 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4398 {
4399   return "(x86_64|i.86)";
4400 }
4401 
4402 
4403 
4404 /* Implement the "in_indirect_branch_thunk" gdbarch function.  */
4405 
4406 static bool
4407 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4408 {
4409   return x86_in_indirect_branch_thunk (pc, i386_register_names,
4410 				       I386_EAX_REGNUM, I386_EIP_REGNUM);
4411 }
4412 
4413 /* Generic ELF.  */
4414 
4415 void
4416 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4417 {
4418   static const char *const stap_integer_prefixes[] = { "$", NULL };
4419   static const char *const stap_register_prefixes[] = { "%", NULL };
4420   static const char *const stap_register_indirection_prefixes[] = { "(",
4421 								    NULL };
4422   static const char *const stap_register_indirection_suffixes[] = { ")",
4423 								    NULL };
4424 
4425   /* We typically use stabs-in-ELF with the SVR4 register numbering.  */
4426   set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4427 
4428   /* Registering SystemTap handlers.  */
4429   set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4430   set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4431   set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4432 					  stap_register_indirection_prefixes);
4433   set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4434 					  stap_register_indirection_suffixes);
4435   set_gdbarch_stap_is_single_operand (gdbarch,
4436 				      i386_stap_is_single_operand);
4437   set_gdbarch_stap_parse_special_token (gdbarch,
4438 					i386_stap_parse_special_token);
4439 
4440   set_gdbarch_in_indirect_branch_thunk (gdbarch,
4441 					i386_in_indirect_branch_thunk);
4442 }
4443 
4444 /* System V Release 4 (SVR4).  */
4445 
4446 void
4447 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4448 {
4449   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4450 
4451   /* System V Release 4 uses ELF.  */
4452   i386_elf_init_abi (info, gdbarch);
4453 
4454   /* System V Release 4 has shared libraries.  */
4455   set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4456 
4457   tdep->sigtramp_p = i386_svr4_sigtramp_p;
4458   tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4459   tdep->sc_pc_offset = 36 + 14 * 4;
4460   tdep->sc_sp_offset = 36 + 17 * 4;
4461 
4462   tdep->jb_pc_offset = 20;
4463 }
4464 
4465 
4466 
4467 /* i386 register groups.  In addition to the normal groups, add "mmx"
4468    and "sse".  */
4469 
4470 static struct reggroup *i386_sse_reggroup;
4471 static struct reggroup *i386_mmx_reggroup;
4472 
4473 static void
4474 i386_init_reggroups (void)
4475 {
4476   i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4477   i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4478 }
4479 
4480 static void
4481 i386_add_reggroups (struct gdbarch *gdbarch)
4482 {
4483   reggroup_add (gdbarch, i386_sse_reggroup);
4484   reggroup_add (gdbarch, i386_mmx_reggroup);
4485   reggroup_add (gdbarch, general_reggroup);
4486   reggroup_add (gdbarch, float_reggroup);
4487   reggroup_add (gdbarch, all_reggroup);
4488   reggroup_add (gdbarch, save_reggroup);
4489   reggroup_add (gdbarch, restore_reggroup);
4490   reggroup_add (gdbarch, vector_reggroup);
4491   reggroup_add (gdbarch, system_reggroup);
4492 }
4493 
4494 int
4495 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4496 			  struct reggroup *group)
4497 {
4498   const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4499   int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4500       ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4501       bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4502       mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4503       avx512_p, avx_p, sse_p, pkru_regnum_p;
4504 
4505   /* Don't include pseudo registers, except for MMX, in any register
4506      groups.  */
4507   if (i386_byte_regnum_p (gdbarch, regnum))
4508     return 0;
4509 
4510   if (i386_word_regnum_p (gdbarch, regnum))
4511     return 0;
4512 
4513   if (i386_dword_regnum_p (gdbarch, regnum))
4514     return 0;
4515 
4516   mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4517   if (group == i386_mmx_reggroup)
4518     return mmx_regnum_p;
4519 
4520   pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4521   xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4522   xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4523   mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4524   if (group == i386_sse_reggroup)
4525     return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4526 
4527   ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4528   ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4529   zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4530 
4531   avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4532 	      == X86_XSTATE_AVX_AVX512_MASK);
4533   avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4534 	   == X86_XSTATE_AVX_MASK) && !avx512_p;
4535   sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4536 	   == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4537 
4538   if (group == vector_reggroup)
4539     return (mmx_regnum_p
4540 	    || (zmm_regnum_p && avx512_p)
4541 	    || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4542 	    || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4543 	    || mxcsr_regnum_p);
4544 
4545   fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4546 		 || i386_fpc_regnum_p (gdbarch, regnum));
4547   if (group == float_reggroup)
4548     return fp_regnum_p;
4549 
4550   /* For "info reg all", don't include upper YMM registers nor XMM
4551      registers when AVX is supported.  */
4552   ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4553   ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4554   zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4555   if (group == all_reggroup
4556       && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4557 	  || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4558 	  || ymmh_regnum_p
4559 	  || ymmh_avx512_regnum_p
4560 	  || zmmh_regnum_p))
4561     return 0;
4562 
4563   bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4564   if (group == all_reggroup
4565       && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4566     return bnd_regnum_p;
4567 
4568   bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4569   if (group == all_reggroup
4570       && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4571     return 0;
4572 
4573   mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4574   if (group == all_reggroup
4575       && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4576     return mpx_ctrl_regnum_p;
4577 
4578   if (group == general_reggroup)
4579     return (!fp_regnum_p
4580 	    && !mmx_regnum_p
4581 	    && !mxcsr_regnum_p
4582 	    && !xmm_regnum_p
4583 	    && !xmm_avx512_regnum_p
4584 	    && !ymm_regnum_p
4585 	    && !ymmh_regnum_p
4586 	    && !ymm_avx512_regnum_p
4587 	    && !ymmh_avx512_regnum_p
4588 	    && !bndr_regnum_p
4589 	    && !bnd_regnum_p
4590 	    && !mpx_ctrl_regnum_p
4591 	    && !zmm_regnum_p
4592 	    && !zmmh_regnum_p
4593 	    && !pkru_regnum_p);
4594 
4595   return default_register_reggroup_p (gdbarch, regnum, group);
4596 }
4597 
4598 
4599 /* Get the ARGIth function argument for the current function.  */
4600 
4601 static CORE_ADDR
4602 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4603 			     struct type *type)
4604 {
4605   struct gdbarch *gdbarch = get_frame_arch (frame);
4606   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4607   CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4608   return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4609 }
4610 
4611 #define PREFIX_REPZ	0x01
4612 #define PREFIX_REPNZ	0x02
4613 #define PREFIX_LOCK	0x04
4614 #define PREFIX_DATA	0x08
4615 #define PREFIX_ADDR	0x10
4616 
4617 /* operand size */
4618 enum
4619 {
4620   OT_BYTE = 0,
4621   OT_WORD,
4622   OT_LONG,
4623   OT_QUAD,
4624   OT_DQUAD,
4625 };
4626 
4627 /* i386 arith/logic operations */
4628 enum
4629 {
4630   OP_ADDL,
4631   OP_ORL,
4632   OP_ADCL,
4633   OP_SBBL,
4634   OP_ANDL,
4635   OP_SUBL,
4636   OP_XORL,
4637   OP_CMPL,
4638 };
4639 
4640 struct i386_record_s
4641 {
4642   struct gdbarch *gdbarch;
4643   struct regcache *regcache;
4644   CORE_ADDR orig_addr;
4645   CORE_ADDR addr;
4646   int aflag;
4647   int dflag;
4648   int override;
4649   uint8_t modrm;
4650   uint8_t mod, reg, rm;
4651   int ot;
4652   uint8_t rex_x;
4653   uint8_t rex_b;
4654   int rip_offset;
4655   int popl_esp_hack;
4656   const int *regmap;
4657 };
4658 
4659 /* Parse the "modrm" part of the memory address irp->addr points at.
4660    Returns -1 if something goes wrong, 0 otherwise.  */
4661 
4662 static int
4663 i386_record_modrm (struct i386_record_s *irp)
4664 {
4665   struct gdbarch *gdbarch = irp->gdbarch;
4666 
4667   if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4668     return -1;
4669 
4670   irp->addr++;
4671   irp->mod = (irp->modrm >> 6) & 3;
4672   irp->reg = (irp->modrm >> 3) & 7;
4673   irp->rm = irp->modrm & 7;
4674 
4675   return 0;
4676 }
4677 
4678 /* Extract the memory address that the current instruction writes to,
4679    and return it in *ADDR.  Return -1 if something goes wrong.  */
4680 
4681 static int
4682 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4683 {
4684   struct gdbarch *gdbarch = irp->gdbarch;
4685   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4686   gdb_byte buf[4];
4687   ULONGEST offset64;
4688 
4689   *addr = 0;
4690   if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4691     {
4692       /* 32/64 bits */
4693       int havesib = 0;
4694       uint8_t scale = 0;
4695       uint8_t byte;
4696       uint8_t index = 0;
4697       uint8_t base = irp->rm;
4698 
4699       if (base == 4)
4700 	{
4701 	  havesib = 1;
4702 	  if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4703 	    return -1;
4704 	  irp->addr++;
4705 	  scale = (byte >> 6) & 3;
4706 	  index = ((byte >> 3) & 7) | irp->rex_x;
4707 	  base = (byte & 7);
4708 	}
4709       base |= irp->rex_b;
4710 
4711       switch (irp->mod)
4712 	{
4713 	case 0:
4714 	  if ((base & 7) == 5)
4715 	    {
4716 	      base = 0xff;
4717 	      if (record_read_memory (gdbarch, irp->addr, buf, 4))
4718 		return -1;
4719 	      irp->addr += 4;
4720 	      *addr = extract_signed_integer (buf, 4, byte_order);
4721 	      if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4722 		*addr += irp->addr + irp->rip_offset;
4723 	    }
4724 	  break;
4725 	case 1:
4726 	  if (record_read_memory (gdbarch, irp->addr, buf, 1))
4727 	    return -1;
4728 	  irp->addr++;
4729 	  *addr = (int8_t) buf[0];
4730 	  break;
4731 	case 2:
4732 	  if (record_read_memory (gdbarch, irp->addr, buf, 4))
4733 	    return -1;
4734 	  *addr = extract_signed_integer (buf, 4, byte_order);
4735 	  irp->addr += 4;
4736 	  break;
4737 	}
4738 
4739       offset64 = 0;
4740       if (base != 0xff)
4741         {
4742 	  if (base == 4 && irp->popl_esp_hack)
4743 	    *addr += irp->popl_esp_hack;
4744 	  regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4745                                       &offset64);
4746 	}
4747       if (irp->aflag == 2)
4748         {
4749 	  *addr += offset64;
4750         }
4751       else
4752         *addr = (uint32_t) (offset64 + *addr);
4753 
4754       if (havesib && (index != 4 || scale != 0))
4755 	{
4756 	  regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4757                                       &offset64);
4758 	  if (irp->aflag == 2)
4759 	    *addr += offset64 << scale;
4760 	  else
4761 	    *addr = (uint32_t) (*addr + (offset64 << scale));
4762 	}
4763 
4764       if (!irp->aflag)
4765 	{
4766 	  /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4767 	     address from 32-bit to 64-bit.  */
4768 	    *addr = (uint32_t) *addr;
4769 	}
4770     }
4771   else
4772     {
4773       /* 16 bits */
4774       switch (irp->mod)
4775 	{
4776 	case 0:
4777 	  if (irp->rm == 6)
4778 	    {
4779 	      if (record_read_memory (gdbarch, irp->addr, buf, 2))
4780 		return -1;
4781 	      irp->addr += 2;
4782 	      *addr = extract_signed_integer (buf, 2, byte_order);
4783 	      irp->rm = 0;
4784 	      goto no_rm;
4785 	    }
4786 	  break;
4787 	case 1:
4788 	  if (record_read_memory (gdbarch, irp->addr, buf, 1))
4789 	    return -1;
4790 	  irp->addr++;
4791 	  *addr = (int8_t) buf[0];
4792 	  break;
4793 	case 2:
4794 	  if (record_read_memory (gdbarch, irp->addr, buf, 2))
4795 	    return -1;
4796 	  irp->addr += 2;
4797 	  *addr = extract_signed_integer (buf, 2, byte_order);
4798 	  break;
4799 	}
4800 
4801       switch (irp->rm)
4802 	{
4803 	case 0:
4804 	  regcache_raw_read_unsigned (irp->regcache,
4805 				      irp->regmap[X86_RECORD_REBX_REGNUM],
4806                                       &offset64);
4807 	  *addr = (uint32_t) (*addr + offset64);
4808 	  regcache_raw_read_unsigned (irp->regcache,
4809 				      irp->regmap[X86_RECORD_RESI_REGNUM],
4810                                       &offset64);
4811 	  *addr = (uint32_t) (*addr + offset64);
4812 	  break;
4813 	case 1:
4814 	  regcache_raw_read_unsigned (irp->regcache,
4815 				      irp->regmap[X86_RECORD_REBX_REGNUM],
4816                                       &offset64);
4817 	  *addr = (uint32_t) (*addr + offset64);
4818 	  regcache_raw_read_unsigned (irp->regcache,
4819 				      irp->regmap[X86_RECORD_REDI_REGNUM],
4820                                       &offset64);
4821 	  *addr = (uint32_t) (*addr + offset64);
4822 	  break;
4823 	case 2:
4824 	  regcache_raw_read_unsigned (irp->regcache,
4825 				      irp->regmap[X86_RECORD_REBP_REGNUM],
4826                                       &offset64);
4827 	  *addr = (uint32_t) (*addr + offset64);
4828 	  regcache_raw_read_unsigned (irp->regcache,
4829 				      irp->regmap[X86_RECORD_RESI_REGNUM],
4830                                       &offset64);
4831 	  *addr = (uint32_t) (*addr + offset64);
4832 	  break;
4833 	case 3:
4834 	  regcache_raw_read_unsigned (irp->regcache,
4835 				      irp->regmap[X86_RECORD_REBP_REGNUM],
4836                                       &offset64);
4837 	  *addr = (uint32_t) (*addr + offset64);
4838 	  regcache_raw_read_unsigned (irp->regcache,
4839 				      irp->regmap[X86_RECORD_REDI_REGNUM],
4840                                       &offset64);
4841 	  *addr = (uint32_t) (*addr + offset64);
4842 	  break;
4843 	case 4:
4844 	  regcache_raw_read_unsigned (irp->regcache,
4845 				      irp->regmap[X86_RECORD_RESI_REGNUM],
4846                                       &offset64);
4847 	  *addr = (uint32_t) (*addr + offset64);
4848 	  break;
4849 	case 5:
4850 	  regcache_raw_read_unsigned (irp->regcache,
4851 				      irp->regmap[X86_RECORD_REDI_REGNUM],
4852                                       &offset64);
4853 	  *addr = (uint32_t) (*addr + offset64);
4854 	  break;
4855 	case 6:
4856 	  regcache_raw_read_unsigned (irp->regcache,
4857 				      irp->regmap[X86_RECORD_REBP_REGNUM],
4858                                       &offset64);
4859 	  *addr = (uint32_t) (*addr + offset64);
4860 	  break;
4861 	case 7:
4862 	  regcache_raw_read_unsigned (irp->regcache,
4863 				      irp->regmap[X86_RECORD_REBX_REGNUM],
4864                                       &offset64);
4865 	  *addr = (uint32_t) (*addr + offset64);
4866 	  break;
4867 	}
4868       *addr &= 0xffff;
4869     }
4870 
4871  no_rm:
4872   return 0;
4873 }
4874 
4875 /* Record the address and contents of the memory that will be changed
4876    by the current instruction.  Return -1 if something goes wrong, 0
4877    otherwise.  */
4878 
4879 static int
4880 i386_record_lea_modrm (struct i386_record_s *irp)
4881 {
4882   struct gdbarch *gdbarch = irp->gdbarch;
4883   uint64_t addr;
4884 
4885   if (irp->override >= 0)
4886     {
4887       if (record_full_memory_query)
4888         {
4889           if (yquery (_("\
4890 Process record ignores the memory change of instruction at address %s\n\
4891 because it can't get the value of the segment register.\n\
4892 Do you want to stop the program?"),
4893                       paddress (gdbarch, irp->orig_addr)))
4894 	    return -1;
4895         }
4896 
4897       return 0;
4898     }
4899 
4900   if (i386_record_lea_modrm_addr (irp, &addr))
4901     return -1;
4902 
4903   if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4904     return -1;
4905 
4906   return 0;
4907 }
4908 
4909 /* Record the effects of a push operation.  Return -1 if something
4910    goes wrong, 0 otherwise.  */
4911 
4912 static int
4913 i386_record_push (struct i386_record_s *irp, int size)
4914 {
4915   ULONGEST addr;
4916 
4917   if (record_full_arch_list_add_reg (irp->regcache,
4918 				     irp->regmap[X86_RECORD_RESP_REGNUM]))
4919     return -1;
4920   regcache_raw_read_unsigned (irp->regcache,
4921 			      irp->regmap[X86_RECORD_RESP_REGNUM],
4922 			      &addr);
4923   if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4924     return -1;
4925 
4926   return 0;
4927 }
4928 
4929 
4930 /* Defines contents to record.  */
4931 #define I386_SAVE_FPU_REGS              0xfffd
4932 #define I386_SAVE_FPU_ENV               0xfffe
4933 #define I386_SAVE_FPU_ENV_REG_STACK     0xffff
4934 
4935 /* Record the values of the floating point registers which will be
4936    changed by the current instruction.  Returns -1 if something is
4937    wrong, 0 otherwise.  */
4938 
4939 static int i386_record_floats (struct gdbarch *gdbarch,
4940                                struct i386_record_s *ir,
4941                                uint32_t iregnum)
4942 {
4943   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4944   int i;
4945 
4946   /* Oza: Because of floating point insn push/pop of fpu stack is going to
4947      happen.  Currently we store st0-st7 registers, but we need not store all
4948      registers all the time, in future we use ftag register and record only
4949      those who are not marked as an empty.  */
4950 
4951   if (I386_SAVE_FPU_REGS == iregnum)
4952     {
4953       for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4954         {
4955           if (record_full_arch_list_add_reg (ir->regcache, i))
4956             return -1;
4957         }
4958     }
4959   else if (I386_SAVE_FPU_ENV == iregnum)
4960     {
4961       for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4962 	      {
4963 	      if (record_full_arch_list_add_reg (ir->regcache, i))
4964 	        return -1;
4965 	      }
4966     }
4967   else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4968     {
4969       for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4970       {
4971         if (record_full_arch_list_add_reg (ir->regcache, i))
4972           return -1;
4973       }
4974     }
4975   else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4976            (iregnum <= I387_FOP_REGNUM (tdep)))
4977     {
4978       if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4979         return -1;
4980     }
4981   else
4982     {
4983       /* Parameter error.  */
4984       return -1;
4985     }
4986   if(I386_SAVE_FPU_ENV != iregnum)
4987     {
4988     for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4989       {
4990       if (record_full_arch_list_add_reg (ir->regcache, i))
4991         return -1;
4992       }
4993     }
4994   return 0;
4995 }
4996 
4997 /* Parse the current instruction, and record the values of the
4998    registers and memory that will be changed by the current
4999    instruction.  Returns -1 if something goes wrong, 0 otherwise.  */
5000 
5001 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5002     record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5003 
5004 int
5005 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5006 		     CORE_ADDR input_addr)
5007 {
5008   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5009   int prefixes = 0;
5010   int regnum = 0;
5011   uint32_t opcode;
5012   uint8_t opcode8;
5013   ULONGEST addr;
5014   gdb_byte buf[I386_MAX_REGISTER_SIZE];
5015   struct i386_record_s ir;
5016   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5017   uint8_t rex_w = -1;
5018   uint8_t rex_r = 0;
5019 
5020   memset (&ir, 0, sizeof (struct i386_record_s));
5021   ir.regcache = regcache;
5022   ir.addr = input_addr;
5023   ir.orig_addr = input_addr;
5024   ir.aflag = 1;
5025   ir.dflag = 1;
5026   ir.override = -1;
5027   ir.popl_esp_hack = 0;
5028   ir.regmap = tdep->record_regmap;
5029   ir.gdbarch = gdbarch;
5030 
5031   if (record_debug > 1)
5032     fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5033 			            "addr = %s\n",
5034 			paddress (gdbarch, ir.addr));
5035 
5036   /* prefixes */
5037   while (1)
5038     {
5039       if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5040 	return -1;
5041       ir.addr++;
5042       switch (opcode8)	/* Instruction prefixes */
5043 	{
5044 	case REPE_PREFIX_OPCODE:
5045 	  prefixes |= PREFIX_REPZ;
5046 	  break;
5047 	case REPNE_PREFIX_OPCODE:
5048 	  prefixes |= PREFIX_REPNZ;
5049 	  break;
5050 	case LOCK_PREFIX_OPCODE:
5051 	  prefixes |= PREFIX_LOCK;
5052 	  break;
5053 	case CS_PREFIX_OPCODE:
5054 	  ir.override = X86_RECORD_CS_REGNUM;
5055 	  break;
5056 	case SS_PREFIX_OPCODE:
5057 	  ir.override = X86_RECORD_SS_REGNUM;
5058 	  break;
5059 	case DS_PREFIX_OPCODE:
5060 	  ir.override = X86_RECORD_DS_REGNUM;
5061 	  break;
5062 	case ES_PREFIX_OPCODE:
5063 	  ir.override = X86_RECORD_ES_REGNUM;
5064 	  break;
5065 	case FS_PREFIX_OPCODE:
5066 	  ir.override = X86_RECORD_FS_REGNUM;
5067 	  break;
5068 	case GS_PREFIX_OPCODE:
5069 	  ir.override = X86_RECORD_GS_REGNUM;
5070 	  break;
5071 	case DATA_PREFIX_OPCODE:
5072 	  prefixes |= PREFIX_DATA;
5073 	  break;
5074 	case ADDR_PREFIX_OPCODE:
5075 	  prefixes |= PREFIX_ADDR;
5076 	  break;
5077         case 0x40:	/* i386 inc %eax */
5078         case 0x41:	/* i386 inc %ecx */
5079         case 0x42:	/* i386 inc %edx */
5080         case 0x43:	/* i386 inc %ebx */
5081         case 0x44:	/* i386 inc %esp */
5082         case 0x45:	/* i386 inc %ebp */
5083         case 0x46:	/* i386 inc %esi */
5084         case 0x47:	/* i386 inc %edi */
5085         case 0x48:	/* i386 dec %eax */
5086         case 0x49:	/* i386 dec %ecx */
5087         case 0x4a:	/* i386 dec %edx */
5088         case 0x4b:	/* i386 dec %ebx */
5089         case 0x4c:	/* i386 dec %esp */
5090         case 0x4d:	/* i386 dec %ebp */
5091         case 0x4e:	/* i386 dec %esi */
5092         case 0x4f:	/* i386 dec %edi */
5093           if (ir.regmap[X86_RECORD_R8_REGNUM])	/* 64 bit target */
5094             {
5095                /* REX */
5096                rex_w = (opcode8 >> 3) & 1;
5097                rex_r = (opcode8 & 0x4) << 1;
5098                ir.rex_x = (opcode8 & 0x2) << 2;
5099                ir.rex_b = (opcode8 & 0x1) << 3;
5100             }
5101 	  else					/* 32 bit target */
5102 	    goto out_prefixes;
5103           break;
5104 	default:
5105 	  goto out_prefixes;
5106 	  break;
5107 	}
5108     }
5109  out_prefixes:
5110   if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5111     {
5112       ir.dflag = 2;
5113     }
5114   else
5115     {
5116       if (prefixes & PREFIX_DATA)
5117         ir.dflag ^= 1;
5118     }
5119   if (prefixes & PREFIX_ADDR)
5120     ir.aflag ^= 1;
5121   else if (ir.regmap[X86_RECORD_R8_REGNUM])
5122     ir.aflag = 2;
5123 
5124   /* Now check op code.  */
5125   opcode = (uint32_t) opcode8;
5126  reswitch:
5127   switch (opcode)
5128     {
5129     case 0x0f:
5130       if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5131 	return -1;
5132       ir.addr++;
5133       opcode = (uint32_t) opcode8 | 0x0f00;
5134       goto reswitch;
5135       break;
5136 
5137     case 0x00:    /* arith & logic */
5138     case 0x01:
5139     case 0x02:
5140     case 0x03:
5141     case 0x04:
5142     case 0x05:
5143     case 0x08:
5144     case 0x09:
5145     case 0x0a:
5146     case 0x0b:
5147     case 0x0c:
5148     case 0x0d:
5149     case 0x10:
5150     case 0x11:
5151     case 0x12:
5152     case 0x13:
5153     case 0x14:
5154     case 0x15:
5155     case 0x18:
5156     case 0x19:
5157     case 0x1a:
5158     case 0x1b:
5159     case 0x1c:
5160     case 0x1d:
5161     case 0x20:
5162     case 0x21:
5163     case 0x22:
5164     case 0x23:
5165     case 0x24:
5166     case 0x25:
5167     case 0x28:
5168     case 0x29:
5169     case 0x2a:
5170     case 0x2b:
5171     case 0x2c:
5172     case 0x2d:
5173     case 0x30:
5174     case 0x31:
5175     case 0x32:
5176     case 0x33:
5177     case 0x34:
5178     case 0x35:
5179     case 0x38:
5180     case 0x39:
5181     case 0x3a:
5182     case 0x3b:
5183     case 0x3c:
5184     case 0x3d:
5185       if (((opcode >> 3) & 7) != OP_CMPL)
5186 	{
5187 	  if ((opcode & 1) == 0)
5188 	    ir.ot = OT_BYTE;
5189 	  else
5190 	    ir.ot = ir.dflag + OT_WORD;
5191 
5192 	  switch ((opcode >> 1) & 3)
5193 	    {
5194 	    case 0:    /* OP Ev, Gv */
5195 	      if (i386_record_modrm (&ir))
5196 		return -1;
5197 	      if (ir.mod != 3)
5198 		{
5199 		  if (i386_record_lea_modrm (&ir))
5200 		    return -1;
5201 		}
5202 	      else
5203 		{
5204                   ir.rm |= ir.rex_b;
5205 		  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5206 		    ir.rm &= 0x3;
5207 		  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5208 		}
5209 	      break;
5210 	    case 1:    /* OP Gv, Ev */
5211 	      if (i386_record_modrm (&ir))
5212 		return -1;
5213               ir.reg |= rex_r;
5214 	      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5215 		ir.reg &= 0x3;
5216 	      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5217 	      break;
5218 	    case 2:    /* OP A, Iv */
5219 	      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5220 	      break;
5221 	    }
5222 	}
5223       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5224       break;
5225 
5226     case 0x80:    /* GRP1 */
5227     case 0x81:
5228     case 0x82:
5229     case 0x83:
5230       if (i386_record_modrm (&ir))
5231 	return -1;
5232 
5233       if (ir.reg != OP_CMPL)
5234 	{
5235 	  if ((opcode & 1) == 0)
5236 	    ir.ot = OT_BYTE;
5237 	  else
5238 	    ir.ot = ir.dflag + OT_WORD;
5239 
5240 	  if (ir.mod != 3)
5241 	    {
5242               if (opcode == 0x83)
5243                 ir.rip_offset = 1;
5244               else
5245                 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5246 	      if (i386_record_lea_modrm (&ir))
5247 		return -1;
5248 	    }
5249 	  else
5250 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5251 	}
5252       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5253       break;
5254 
5255     case 0x40:      /* inc */
5256     case 0x41:
5257     case 0x42:
5258     case 0x43:
5259     case 0x44:
5260     case 0x45:
5261     case 0x46:
5262     case 0x47:
5263 
5264     case 0x48:      /* dec */
5265     case 0x49:
5266     case 0x4a:
5267     case 0x4b:
5268     case 0x4c:
5269     case 0x4d:
5270     case 0x4e:
5271     case 0x4f:
5272 
5273       I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5274       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5275       break;
5276 
5277     case 0xf6:    /* GRP3 */
5278     case 0xf7:
5279       if ((opcode & 1) == 0)
5280 	ir.ot = OT_BYTE;
5281       else
5282 	ir.ot = ir.dflag + OT_WORD;
5283       if (i386_record_modrm (&ir))
5284 	return -1;
5285 
5286       if (ir.mod != 3 && ir.reg == 0)
5287         ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5288 
5289       switch (ir.reg)
5290 	{
5291 	case 0:    /* test */
5292 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5293 	  break;
5294 	case 2:    /* not */
5295 	case 3:    /* neg */
5296 	  if (ir.mod != 3)
5297 	    {
5298 	      if (i386_record_lea_modrm (&ir))
5299 		return -1;
5300 	    }
5301 	  else
5302 	    {
5303               ir.rm |= ir.rex_b;
5304 	      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5305 		ir.rm &= 0x3;
5306 	      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5307 	    }
5308 	  if (ir.reg == 3)  /* neg */
5309 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5310 	  break;
5311 	case 4:    /* mul  */
5312 	case 5:    /* imul */
5313 	case 6:    /* div  */
5314 	case 7:    /* idiv */
5315 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5316 	  if (ir.ot != OT_BYTE)
5317 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5318 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5319 	  break;
5320 	default:
5321 	  ir.addr -= 2;
5322 	  opcode = opcode << 8 | ir.modrm;
5323 	  goto no_support;
5324 	  break;
5325 	}
5326       break;
5327 
5328     case 0xfe:    /* GRP4 */
5329     case 0xff:    /* GRP5 */
5330       if (i386_record_modrm (&ir))
5331 	return -1;
5332       if (ir.reg >= 2 && opcode == 0xfe)
5333 	{
5334 	  ir.addr -= 2;
5335 	  opcode = opcode << 8 | ir.modrm;
5336 	  goto no_support;
5337 	}
5338       switch (ir.reg)
5339 	{
5340 	case 0:    /* inc */
5341 	case 1:    /* dec */
5342           if ((opcode & 1) == 0)
5343 	    ir.ot = OT_BYTE;
5344           else
5345 	    ir.ot = ir.dflag + OT_WORD;
5346 	  if (ir.mod != 3)
5347 	    {
5348 	      if (i386_record_lea_modrm (&ir))
5349 		return -1;
5350 	    }
5351 	  else
5352 	    {
5353 	      ir.rm |= ir.rex_b;
5354 	      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5355 		ir.rm &= 0x3;
5356 	      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5357 	    }
5358 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5359 	  break;
5360 	case 2:    /* call */
5361           if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5362             ir.dflag = 2;
5363 	  if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5364 	    return -1;
5365 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5366 	  break;
5367 	case 3:    /* lcall */
5368 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5369 	  if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5370 	    return -1;
5371 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5372 	  break;
5373 	case 4:    /* jmp  */
5374 	case 5:    /* ljmp */
5375 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5376 	  break;
5377 	case 6:    /* push */
5378           if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5379             ir.dflag = 2;
5380 	  if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5381 	    return -1;
5382 	  break;
5383 	default:
5384 	  ir.addr -= 2;
5385 	  opcode = opcode << 8 | ir.modrm;
5386 	  goto no_support;
5387 	  break;
5388 	}
5389       break;
5390 
5391     case 0x84:    /* test */
5392     case 0x85:
5393     case 0xa8:
5394     case 0xa9:
5395       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5396       break;
5397 
5398     case 0x98:    /* CWDE/CBW */
5399       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5400       break;
5401 
5402     case 0x99:    /* CDQ/CWD */
5403       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5404       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5405       break;
5406 
5407     case 0x0faf:  /* imul */
5408     case 0x69:
5409     case 0x6b:
5410       ir.ot = ir.dflag + OT_WORD;
5411       if (i386_record_modrm (&ir))
5412 	return -1;
5413       if (opcode == 0x69)
5414         ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5415       else if (opcode == 0x6b)
5416         ir.rip_offset = 1;
5417       ir.reg |= rex_r;
5418       if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5419 	ir.reg &= 0x3;
5420       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5421       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5422       break;
5423 
5424     case 0x0fc0:  /* xadd */
5425     case 0x0fc1:
5426       if ((opcode & 1) == 0)
5427 	ir.ot = OT_BYTE;
5428       else
5429 	ir.ot = ir.dflag + OT_WORD;
5430       if (i386_record_modrm (&ir))
5431 	return -1;
5432       ir.reg |= rex_r;
5433       if (ir.mod == 3)
5434 	{
5435 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5436 	    ir.reg &= 0x3;
5437 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5438 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5439 	    ir.rm &= 0x3;
5440 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5441 	}
5442       else
5443 	{
5444 	  if (i386_record_lea_modrm (&ir))
5445 	    return -1;
5446 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5447 	    ir.reg &= 0x3;
5448 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5449 	}
5450       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5451       break;
5452 
5453     case 0x0fb0:  /* cmpxchg */
5454     case 0x0fb1:
5455       if ((opcode & 1) == 0)
5456 	ir.ot = OT_BYTE;
5457       else
5458 	ir.ot = ir.dflag + OT_WORD;
5459       if (i386_record_modrm (&ir))
5460 	return -1;
5461       if (ir.mod == 3)
5462 	{
5463           ir.reg |= rex_r;
5464 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5465 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5466 	    ir.reg &= 0x3;
5467 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5468 	}
5469       else
5470 	{
5471 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5472 	  if (i386_record_lea_modrm (&ir))
5473 	    return -1;
5474 	}
5475       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5476       break;
5477 
5478     case 0x0fc7:    /* cmpxchg8b / rdrand / rdseed */
5479       if (i386_record_modrm (&ir))
5480 	return -1;
5481       if (ir.mod == 3)
5482 	{
5483 	  /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5484 	     an extended opcode.  rdrand has bits 110 (/6) and rdseed
5485 	     has bits 111 (/7).  */
5486 	  if (ir.reg == 6 || ir.reg == 7)
5487 	    {
5488 	      /* The storage register is described by the 3 R/M bits, but the
5489 		 REX.B prefix may be used to give access to registers
5490 		 R8~R15.  In this case ir.rex_b + R/M will give us the register
5491 		 in the range R8~R15.
5492 
5493 		 REX.W may also be used to access 64-bit registers, but we
5494 		 already record entire registers and not just partial bits
5495 		 of them.  */
5496 	      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5497 	      /* These instructions also set conditional bits.  */
5498 	      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5499 	      break;
5500 	    }
5501 	  else
5502 	    {
5503 	      /* We don't handle this particular instruction yet.  */
5504 	      ir.addr -= 2;
5505 	      opcode = opcode << 8 | ir.modrm;
5506 	      goto no_support;
5507 	    }
5508 	}
5509       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5510       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5511       if (i386_record_lea_modrm (&ir))
5512 	return -1;
5513       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5514       break;
5515 
5516     case 0x50:    /* push */
5517     case 0x51:
5518     case 0x52:
5519     case 0x53:
5520     case 0x54:
5521     case 0x55:
5522     case 0x56:
5523     case 0x57:
5524     case 0x68:
5525     case 0x6a:
5526       if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5527         ir.dflag = 2;
5528       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5529 	return -1;
5530       break;
5531 
5532     case 0x06:    /* push es */
5533     case 0x0e:    /* push cs */
5534     case 0x16:    /* push ss */
5535     case 0x1e:    /* push ds */
5536       if (ir.regmap[X86_RECORD_R8_REGNUM])
5537         {
5538 	  ir.addr -= 1;
5539 	  goto no_support;
5540 	}
5541       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5542 	return -1;
5543       break;
5544 
5545     case 0x0fa0:    /* push fs */
5546     case 0x0fa8:    /* push gs */
5547       if (ir.regmap[X86_RECORD_R8_REGNUM])
5548         {
5549 	  ir.addr -= 2;
5550 	  goto no_support;
5551 	}
5552       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5553 	return -1;
5554       break;
5555 
5556     case 0x60:    /* pusha */
5557       if (ir.regmap[X86_RECORD_R8_REGNUM])
5558         {
5559 	  ir.addr -= 1;
5560 	  goto no_support;
5561 	}
5562       if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5563 	return -1;
5564       break;
5565 
5566     case 0x58:    /* pop */
5567     case 0x59:
5568     case 0x5a:
5569     case 0x5b:
5570     case 0x5c:
5571     case 0x5d:
5572     case 0x5e:
5573     case 0x5f:
5574       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5575       I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5576       break;
5577 
5578     case 0x61:    /* popa */
5579       if (ir.regmap[X86_RECORD_R8_REGNUM])
5580         {
5581 	  ir.addr -= 1;
5582 	  goto no_support;
5583 	}
5584       for (regnum = X86_RECORD_REAX_REGNUM;
5585 	   regnum <= X86_RECORD_REDI_REGNUM;
5586 	   regnum++)
5587 	I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5588       break;
5589 
5590     case 0x8f:    /* pop */
5591       if (ir.regmap[X86_RECORD_R8_REGNUM])
5592 	ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5593       else
5594         ir.ot = ir.dflag + OT_WORD;
5595       if (i386_record_modrm (&ir))
5596 	return -1;
5597       if (ir.mod == 3)
5598 	I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5599       else
5600 	{
5601           ir.popl_esp_hack = 1 << ir.ot;
5602 	  if (i386_record_lea_modrm (&ir))
5603 	    return -1;
5604 	}
5605       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5606       break;
5607 
5608     case 0xc8:    /* enter */
5609       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5610       if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5611         ir.dflag = 2;
5612       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5613 	return -1;
5614       break;
5615 
5616     case 0xc9:    /* leave */
5617       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5618       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5619       break;
5620 
5621     case 0x07:    /* pop es */
5622       if (ir.regmap[X86_RECORD_R8_REGNUM])
5623         {
5624 	  ir.addr -= 1;
5625 	  goto no_support;
5626 	}
5627       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5628       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5629       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5630       break;
5631 
5632     case 0x17:    /* pop ss */
5633       if (ir.regmap[X86_RECORD_R8_REGNUM])
5634         {
5635 	  ir.addr -= 1;
5636 	  goto no_support;
5637 	}
5638       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5639       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5640       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5641       break;
5642 
5643     case 0x1f:    /* pop ds */
5644       if (ir.regmap[X86_RECORD_R8_REGNUM])
5645         {
5646 	  ir.addr -= 1;
5647 	  goto no_support;
5648 	}
5649       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5650       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5651       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5652       break;
5653 
5654     case 0x0fa1:    /* pop fs */
5655       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5656       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5657       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5658       break;
5659 
5660     case 0x0fa9:    /* pop gs */
5661       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5662       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5663       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5664       break;
5665 
5666     case 0x88:    /* mov */
5667     case 0x89:
5668     case 0xc6:
5669     case 0xc7:
5670       if ((opcode & 1) == 0)
5671 	ir.ot = OT_BYTE;
5672       else
5673 	ir.ot = ir.dflag + OT_WORD;
5674 
5675       if (i386_record_modrm (&ir))
5676 	return -1;
5677 
5678       if (ir.mod != 3)
5679 	{
5680           if (opcode == 0xc6 || opcode == 0xc7)
5681 	    ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5682 	  if (i386_record_lea_modrm (&ir))
5683 	    return -1;
5684 	}
5685       else
5686 	{
5687           if (opcode == 0xc6 || opcode == 0xc7)
5688 	    ir.rm |= ir.rex_b;
5689 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5690 	    ir.rm &= 0x3;
5691 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5692 	}
5693       break;
5694 
5695     case 0x8a:    /* mov */
5696     case 0x8b:
5697       if ((opcode & 1) == 0)
5698 	ir.ot = OT_BYTE;
5699       else
5700 	ir.ot = ir.dflag + OT_WORD;
5701       if (i386_record_modrm (&ir))
5702 	return -1;
5703       ir.reg |= rex_r;
5704       if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5705 	ir.reg &= 0x3;
5706       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5707       break;
5708 
5709     case 0x8c:    /* mov seg */
5710       if (i386_record_modrm (&ir))
5711 	return -1;
5712       if (ir.reg > 5)
5713 	{
5714 	  ir.addr -= 2;
5715 	  opcode = opcode << 8 | ir.modrm;
5716 	  goto no_support;
5717 	}
5718 
5719       if (ir.mod == 3)
5720 	I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5721       else
5722 	{
5723 	  ir.ot = OT_WORD;
5724 	  if (i386_record_lea_modrm (&ir))
5725 	    return -1;
5726 	}
5727       break;
5728 
5729     case 0x8e:    /* mov seg */
5730       if (i386_record_modrm (&ir))
5731 	return -1;
5732       switch (ir.reg)
5733 	{
5734 	case 0:
5735 	  regnum = X86_RECORD_ES_REGNUM;
5736 	  break;
5737 	case 2:
5738 	  regnum = X86_RECORD_SS_REGNUM;
5739 	  break;
5740 	case 3:
5741 	  regnum = X86_RECORD_DS_REGNUM;
5742 	  break;
5743 	case 4:
5744 	  regnum = X86_RECORD_FS_REGNUM;
5745 	  break;
5746 	case 5:
5747 	  regnum = X86_RECORD_GS_REGNUM;
5748 	  break;
5749 	default:
5750 	  ir.addr -= 2;
5751 	  opcode = opcode << 8 | ir.modrm;
5752 	  goto no_support;
5753 	  break;
5754 	}
5755       I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5756       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5757       break;
5758 
5759     case 0x0fb6:    /* movzbS */
5760     case 0x0fb7:    /* movzwS */
5761     case 0x0fbe:    /* movsbS */
5762     case 0x0fbf:    /* movswS */
5763       if (i386_record_modrm (&ir))
5764 	return -1;
5765       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5766       break;
5767 
5768     case 0x8d:      /* lea */
5769       if (i386_record_modrm (&ir))
5770 	return -1;
5771       if (ir.mod == 3)
5772 	{
5773 	  ir.addr -= 2;
5774 	  opcode = opcode << 8 | ir.modrm;
5775 	  goto no_support;
5776 	}
5777       ir.ot = ir.dflag;
5778       ir.reg |= rex_r;
5779       if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5780 	ir.reg &= 0x3;
5781       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5782       break;
5783 
5784     case 0xa0:    /* mov EAX */
5785     case 0xa1:
5786 
5787     case 0xd7:    /* xlat */
5788       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5789       break;
5790 
5791     case 0xa2:    /* mov EAX */
5792     case 0xa3:
5793       if (ir.override >= 0)
5794         {
5795           if (record_full_memory_query)
5796             {
5797               if (yquery (_("\
5798 Process record ignores the memory change of instruction at address %s\n\
5799 because it can't get the value of the segment register.\n\
5800 Do you want to stop the program?"),
5801                           paddress (gdbarch, ir.orig_addr)))
5802                 return -1;
5803             }
5804 	}
5805       else
5806 	{
5807           if ((opcode & 1) == 0)
5808 	    ir.ot = OT_BYTE;
5809 	  else
5810 	    ir.ot = ir.dflag + OT_WORD;
5811 	  if (ir.aflag == 2)
5812 	    {
5813               if (record_read_memory (gdbarch, ir.addr, buf, 8))
5814 		return -1;
5815 	      ir.addr += 8;
5816 	      addr = extract_unsigned_integer (buf, 8, byte_order);
5817 	    }
5818           else if (ir.aflag)
5819 	    {
5820               if (record_read_memory (gdbarch, ir.addr, buf, 4))
5821 		return -1;
5822 	      ir.addr += 4;
5823               addr = extract_unsigned_integer (buf, 4, byte_order);
5824 	    }
5825           else
5826 	    {
5827               if (record_read_memory (gdbarch, ir.addr, buf, 2))
5828 		return -1;
5829 	      ir.addr += 2;
5830               addr = extract_unsigned_integer (buf, 2, byte_order);
5831 	    }
5832 	  if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5833 	    return -1;
5834         }
5835       break;
5836 
5837     case 0xb0:    /* mov R, Ib */
5838     case 0xb1:
5839     case 0xb2:
5840     case 0xb3:
5841     case 0xb4:
5842     case 0xb5:
5843     case 0xb6:
5844     case 0xb7:
5845       I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5846 					  ? ((opcode & 0x7) | ir.rex_b)
5847 					  : ((opcode & 0x7) & 0x3));
5848       break;
5849 
5850     case 0xb8:    /* mov R, Iv */
5851     case 0xb9:
5852     case 0xba:
5853     case 0xbb:
5854     case 0xbc:
5855     case 0xbd:
5856     case 0xbe:
5857     case 0xbf:
5858       I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5859       break;
5860 
5861     case 0x91:    /* xchg R, EAX */
5862     case 0x92:
5863     case 0x93:
5864     case 0x94:
5865     case 0x95:
5866     case 0x96:
5867     case 0x97:
5868       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5869       I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5870       break;
5871 
5872     case 0x86:    /* xchg Ev, Gv */
5873     case 0x87:
5874       if ((opcode & 1) == 0)
5875 	ir.ot = OT_BYTE;
5876       else
5877 	ir.ot = ir.dflag + OT_WORD;
5878       if (i386_record_modrm (&ir))
5879 	return -1;
5880       if (ir.mod == 3)
5881 	{
5882 	  ir.rm |= ir.rex_b;
5883 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5884 	    ir.rm &= 0x3;
5885 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5886 	}
5887       else
5888 	{
5889 	  if (i386_record_lea_modrm (&ir))
5890 	    return -1;
5891 	}
5892       ir.reg |= rex_r;
5893       if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5894 	ir.reg &= 0x3;
5895       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5896       break;
5897 
5898     case 0xc4:    /* les Gv */
5899     case 0xc5:    /* lds Gv */
5900       if (ir.regmap[X86_RECORD_R8_REGNUM])
5901         {
5902 	  ir.addr -= 1;
5903 	  goto no_support;
5904 	}
5905       /* FALLTHROUGH */
5906     case 0x0fb2:    /* lss Gv */
5907     case 0x0fb4:    /* lfs Gv */
5908     case 0x0fb5:    /* lgs Gv */
5909       if (i386_record_modrm (&ir))
5910 	return -1;
5911       if (ir.mod == 3)
5912 	{
5913 	  if (opcode > 0xff)
5914 	    ir.addr -= 3;
5915 	  else
5916 	    ir.addr -= 2;
5917 	  opcode = opcode << 8 | ir.modrm;
5918 	  goto no_support;
5919 	}
5920       switch (opcode)
5921 	{
5922 	case 0xc4:    /* les Gv */
5923 	  regnum = X86_RECORD_ES_REGNUM;
5924 	  break;
5925 	case 0xc5:    /* lds Gv */
5926 	  regnum = X86_RECORD_DS_REGNUM;
5927 	  break;
5928 	case 0x0fb2:  /* lss Gv */
5929 	  regnum = X86_RECORD_SS_REGNUM;
5930 	  break;
5931 	case 0x0fb4:  /* lfs Gv */
5932 	  regnum = X86_RECORD_FS_REGNUM;
5933 	  break;
5934 	case 0x0fb5:  /* lgs Gv */
5935 	  regnum = X86_RECORD_GS_REGNUM;
5936 	  break;
5937 	}
5938       I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5939       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5940       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5941       break;
5942 
5943     case 0xc0:    /* shifts */
5944     case 0xc1:
5945     case 0xd0:
5946     case 0xd1:
5947     case 0xd2:
5948     case 0xd3:
5949       if ((opcode & 1) == 0)
5950 	ir.ot = OT_BYTE;
5951       else
5952 	ir.ot = ir.dflag + OT_WORD;
5953       if (i386_record_modrm (&ir))
5954 	return -1;
5955       if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5956 	{
5957 	  if (i386_record_lea_modrm (&ir))
5958 	    return -1;
5959 	}
5960       else
5961 	{
5962 	  ir.rm |= ir.rex_b;
5963 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5964 	    ir.rm &= 0x3;
5965 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5966 	}
5967       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5968       break;
5969 
5970     case 0x0fa4:
5971     case 0x0fa5:
5972     case 0x0fac:
5973     case 0x0fad:
5974       if (i386_record_modrm (&ir))
5975 	return -1;
5976       if (ir.mod == 3)
5977 	{
5978 	  if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5979 	    return -1;
5980 	}
5981       else
5982 	{
5983 	  if (i386_record_lea_modrm (&ir))
5984 	    return -1;
5985 	}
5986       break;
5987 
5988     case 0xd8:    /* Floats.  */
5989     case 0xd9:
5990     case 0xda:
5991     case 0xdb:
5992     case 0xdc:
5993     case 0xdd:
5994     case 0xde:
5995     case 0xdf:
5996       if (i386_record_modrm (&ir))
5997 	return -1;
5998       ir.reg |= ((opcode & 7) << 3);
5999       if (ir.mod != 3)
6000 	{
6001 	  /* Memory.  */
6002 	  uint64_t addr64;
6003 
6004 	  if (i386_record_lea_modrm_addr (&ir, &addr64))
6005 	    return -1;
6006 	  switch (ir.reg)
6007 	    {
6008 	    case 0x02:
6009             case 0x12:
6010             case 0x22:
6011             case 0x32:
6012 	      /* For fcom, ficom nothing to do.  */
6013               break;
6014 	    case 0x03:
6015             case 0x13:
6016             case 0x23:
6017             case 0x33:
6018 	      /* For fcomp, ficomp pop FPU stack, store all.  */
6019               if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6020                 return -1;
6021               break;
6022             case 0x00:
6023             case 0x01:
6024 	    case 0x04:
6025 	    case 0x05:
6026 	    case 0x06:
6027 	    case 0x07:
6028 	    case 0x10:
6029 	    case 0x11:
6030 	    case 0x14:
6031 	    case 0x15:
6032 	    case 0x16:
6033 	    case 0x17:
6034 	    case 0x20:
6035 	    case 0x21:
6036 	    case 0x24:
6037 	    case 0x25:
6038 	    case 0x26:
6039 	    case 0x27:
6040 	    case 0x30:
6041 	    case 0x31:
6042 	    case 0x34:
6043 	    case 0x35:
6044 	    case 0x36:
6045 	    case 0x37:
6046               /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6047                  fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6048                  of code,  always affects st(0) register.  */
6049               if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6050                 return -1;
6051 	      break;
6052 	    case 0x08:
6053 	    case 0x0a:
6054 	    case 0x0b:
6055 	    case 0x18:
6056 	    case 0x19:
6057 	    case 0x1a:
6058 	    case 0x1b:
6059             case 0x1d:
6060 	    case 0x28:
6061 	    case 0x29:
6062 	    case 0x2a:
6063 	    case 0x2b:
6064 	    case 0x38:
6065 	    case 0x39:
6066 	    case 0x3a:
6067 	    case 0x3b:
6068             case 0x3c:
6069             case 0x3d:
6070 	      switch (ir.reg & 7)
6071 		{
6072 		case 0:
6073 		  /* Handling fld, fild.  */
6074 		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6075 		    return -1;
6076 		  break;
6077 		case 1:
6078 		  switch (ir.reg >> 4)
6079 		    {
6080 		    case 0:
6081 		      if (record_full_arch_list_add_mem (addr64, 4))
6082 			return -1;
6083 		      break;
6084 		    case 2:
6085 		      if (record_full_arch_list_add_mem (addr64, 8))
6086 			return -1;
6087 		      break;
6088 		    case 3:
6089 		      break;
6090 		    default:
6091 		      if (record_full_arch_list_add_mem (addr64, 2))
6092 			return -1;
6093 		      break;
6094 		    }
6095 		  break;
6096 		default:
6097 		  switch (ir.reg >> 4)
6098 		    {
6099 		    case 0:
6100 		      if (record_full_arch_list_add_mem (addr64, 4))
6101 			return -1;
6102 		      if (3 == (ir.reg & 7))
6103 			{
6104 			  /* For fstp m32fp.  */
6105 			  if (i386_record_floats (gdbarch, &ir,
6106 						  I386_SAVE_FPU_REGS))
6107 			    return -1;
6108 			}
6109 		      break;
6110 		    case 1:
6111 		      if (record_full_arch_list_add_mem (addr64, 4))
6112 			return -1;
6113 		      if ((3 == (ir.reg & 7))
6114 			  || (5 == (ir.reg & 7))
6115 			  || (7 == (ir.reg & 7)))
6116 			{
6117 			  /* For fstp insn.  */
6118 			  if (i386_record_floats (gdbarch, &ir,
6119 						  I386_SAVE_FPU_REGS))
6120 			    return -1;
6121 			}
6122 		      break;
6123 		    case 2:
6124 		      if (record_full_arch_list_add_mem (addr64, 8))
6125 			return -1;
6126 		      if (3 == (ir.reg & 7))
6127 			{
6128 			  /* For fstp m64fp.  */
6129 			  if (i386_record_floats (gdbarch, &ir,
6130 						  I386_SAVE_FPU_REGS))
6131 			    return -1;
6132 			}
6133 		      break;
6134 		    case 3:
6135 		      if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6136 			{
6137 			  /* For fistp, fbld, fild, fbstp.  */
6138 			  if (i386_record_floats (gdbarch, &ir,
6139 						  I386_SAVE_FPU_REGS))
6140 			    return -1;
6141 			}
6142 		      /* Fall through */
6143 		    default:
6144 		      if (record_full_arch_list_add_mem (addr64, 2))
6145 			return -1;
6146 		      break;
6147 		    }
6148 		  break;
6149 		}
6150 	      break;
6151 	    case 0x0c:
6152               /* Insn fldenv.  */
6153               if (i386_record_floats (gdbarch, &ir,
6154                                       I386_SAVE_FPU_ENV_REG_STACK))
6155                 return -1;
6156               break;
6157 	    case 0x0d:
6158               /* Insn fldcw.  */
6159               if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6160                 return -1;
6161               break;
6162 	    case 0x2c:
6163               /* Insn frstor.  */
6164               if (i386_record_floats (gdbarch, &ir,
6165                                       I386_SAVE_FPU_ENV_REG_STACK))
6166                 return -1;
6167 	      break;
6168 	    case 0x0e:
6169 	      if (ir.dflag)
6170 		{
6171 		  if (record_full_arch_list_add_mem (addr64, 28))
6172 		    return -1;
6173 		}
6174 	      else
6175 		{
6176 		  if (record_full_arch_list_add_mem (addr64, 14))
6177 		    return -1;
6178 		}
6179 	      break;
6180 	    case 0x0f:
6181 	    case 0x2f:
6182 	      if (record_full_arch_list_add_mem (addr64, 2))
6183 		return -1;
6184               /* Insn fstp, fbstp.  */
6185               if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6186                 return -1;
6187 	      break;
6188 	    case 0x1f:
6189 	    case 0x3e:
6190 	      if (record_full_arch_list_add_mem (addr64, 10))
6191 		return -1;
6192 	      break;
6193 	    case 0x2e:
6194 	      if (ir.dflag)
6195 		{
6196 		  if (record_full_arch_list_add_mem (addr64, 28))
6197 		    return -1;
6198 		  addr64 += 28;
6199 		}
6200 	      else
6201 		{
6202 		  if (record_full_arch_list_add_mem (addr64, 14))
6203 		    return -1;
6204 		  addr64 += 14;
6205 		}
6206 	      if (record_full_arch_list_add_mem (addr64, 80))
6207 		return -1;
6208 	      /* Insn fsave.  */
6209 	      if (i386_record_floats (gdbarch, &ir,
6210 				      I386_SAVE_FPU_ENV_REG_STACK))
6211 		return -1;
6212 	      break;
6213 	    case 0x3f:
6214 	      if (record_full_arch_list_add_mem (addr64, 8))
6215 		return -1;
6216 	      /* Insn fistp.  */
6217 	      if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6218 		return -1;
6219 	      break;
6220 	    default:
6221 	      ir.addr -= 2;
6222 	      opcode = opcode << 8 | ir.modrm;
6223 	      goto no_support;
6224 	      break;
6225 	    }
6226 	}
6227       /* Opcode is an extension of modR/M byte.  */
6228       else
6229         {
6230 	  switch (opcode)
6231 	    {
6232 	    case 0xd8:
6233 	      if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6234 		return -1;
6235 	      break;
6236 	    case 0xd9:
6237 	      if (0x0c == (ir.modrm >> 4))
6238 		{
6239 		  if ((ir.modrm & 0x0f) <= 7)
6240 		    {
6241 		      if (i386_record_floats (gdbarch, &ir,
6242 					      I386_SAVE_FPU_REGS))
6243 			return -1;
6244 		    }
6245                   else
6246 		    {
6247 		      if (i386_record_floats (gdbarch, &ir,
6248 					      I387_ST0_REGNUM (tdep)))
6249 			return -1;
6250 		      /* If only st(0) is changing, then we have already
6251 			 recorded.  */
6252 		      if ((ir.modrm & 0x0f) - 0x08)
6253 			{
6254 			  if (i386_record_floats (gdbarch, &ir,
6255 						  I387_ST0_REGNUM (tdep) +
6256 						  ((ir.modrm & 0x0f) - 0x08)))
6257 			    return -1;
6258 			}
6259 		    }
6260 		}
6261               else
6262                 {
6263 		  switch (ir.modrm)
6264 		    {
6265 		    case 0xe0:
6266 		    case 0xe1:
6267 		    case 0xf0:
6268 		    case 0xf5:
6269 		    case 0xf8:
6270 		    case 0xfa:
6271 		    case 0xfc:
6272 		    case 0xfe:
6273 		    case 0xff:
6274 		      if (i386_record_floats (gdbarch, &ir,
6275 					      I387_ST0_REGNUM (tdep)))
6276 			return -1;
6277 		      break;
6278 		    case 0xf1:
6279 		    case 0xf2:
6280 		    case 0xf3:
6281 		    case 0xf4:
6282 		    case 0xf6:
6283 		    case 0xf7:
6284 		    case 0xe8:
6285 		    case 0xe9:
6286 		    case 0xea:
6287 		    case 0xeb:
6288 		    case 0xec:
6289 		    case 0xed:
6290 		    case 0xee:
6291 		    case 0xf9:
6292 		    case 0xfb:
6293 		      if (i386_record_floats (gdbarch, &ir,
6294 					      I386_SAVE_FPU_REGS))
6295 			return -1;
6296 		      break;
6297 		    case 0xfd:
6298 		      if (i386_record_floats (gdbarch, &ir,
6299 					      I387_ST0_REGNUM (tdep)))
6300 			return -1;
6301 		      if (i386_record_floats (gdbarch, &ir,
6302 					      I387_ST0_REGNUM (tdep) + 1))
6303 			return -1;
6304 		      break;
6305 		    }
6306 		}
6307               break;
6308             case 0xda:
6309               if (0xe9 == ir.modrm)
6310                 {
6311 		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6312 		    return -1;
6313                 }
6314               else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6315                 {
6316 		  if (i386_record_floats (gdbarch, &ir,
6317 					  I387_ST0_REGNUM (tdep)))
6318 		    return -1;
6319 		  if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6320 		    {
6321 		      if (i386_record_floats (gdbarch, &ir,
6322 					      I387_ST0_REGNUM (tdep) +
6323 					      (ir.modrm & 0x0f)))
6324 			return -1;
6325 		    }
6326 		  else if ((ir.modrm & 0x0f) - 0x08)
6327 		    {
6328 		      if (i386_record_floats (gdbarch, &ir,
6329 					      I387_ST0_REGNUM (tdep) +
6330 					      ((ir.modrm & 0x0f) - 0x08)))
6331 			return -1;
6332 		    }
6333                 }
6334               break;
6335             case 0xdb:
6336               if (0xe3 == ir.modrm)
6337                 {
6338 		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6339 		    return -1;
6340                 }
6341               else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6342                 {
6343 		  if (i386_record_floats (gdbarch, &ir,
6344 					  I387_ST0_REGNUM (tdep)))
6345 		    return -1;
6346 		  if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6347 		    {
6348 		      if (i386_record_floats (gdbarch, &ir,
6349 					      I387_ST0_REGNUM (tdep) +
6350 					      (ir.modrm & 0x0f)))
6351 			return -1;
6352 		    }
6353 		  else if ((ir.modrm & 0x0f) - 0x08)
6354 		    {
6355 		      if (i386_record_floats (gdbarch, &ir,
6356 					      I387_ST0_REGNUM (tdep) +
6357 					      ((ir.modrm & 0x0f) - 0x08)))
6358 			return -1;
6359 		    }
6360                 }
6361               break;
6362             case 0xdc:
6363               if ((0x0c == ir.modrm >> 4)
6364 		  || (0x0d == ir.modrm >> 4)
6365 		  || (0x0f == ir.modrm >> 4))
6366                 {
6367 		  if ((ir.modrm & 0x0f) <= 7)
6368 		    {
6369 		      if (i386_record_floats (gdbarch, &ir,
6370 					      I387_ST0_REGNUM (tdep) +
6371 					      (ir.modrm & 0x0f)))
6372 			return -1;
6373 		    }
6374 		  else
6375 		    {
6376 		      if (i386_record_floats (gdbarch, &ir,
6377 					      I387_ST0_REGNUM (tdep) +
6378 					      ((ir.modrm & 0x0f) - 0x08)))
6379 			return -1;
6380 		    }
6381                 }
6382 	      break;
6383             case 0xdd:
6384               if (0x0c == ir.modrm >> 4)
6385                 {
6386                   if (i386_record_floats (gdbarch, &ir,
6387                                           I387_FTAG_REGNUM (tdep)))
6388                     return -1;
6389                 }
6390               else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6391                 {
6392                   if ((ir.modrm & 0x0f) <= 7)
6393                     {
6394 		      if (i386_record_floats (gdbarch, &ir,
6395 					      I387_ST0_REGNUM (tdep) +
6396 					      (ir.modrm & 0x0f)))
6397 			return -1;
6398                     }
6399                   else
6400                     {
6401                       if (i386_record_floats (gdbarch, &ir,
6402 					      I386_SAVE_FPU_REGS))
6403                         return -1;
6404                     }
6405                 }
6406               break;
6407             case 0xde:
6408               if ((0x0c == ir.modrm >> 4)
6409 		  || (0x0e == ir.modrm >> 4)
6410 		  || (0x0f == ir.modrm >> 4)
6411 		  || (0xd9 == ir.modrm))
6412                 {
6413 		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6414 		    return -1;
6415                 }
6416               break;
6417             case 0xdf:
6418               if (0xe0 == ir.modrm)
6419                 {
6420 		  if (record_full_arch_list_add_reg (ir.regcache,
6421 						     I386_EAX_REGNUM))
6422 		    return -1;
6423                 }
6424               else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6425                 {
6426 		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6427 		    return -1;
6428                 }
6429               break;
6430 	    }
6431 	}
6432       break;
6433       /* string ops */
6434     case 0xa4:    /* movsS */
6435     case 0xa5:
6436     case 0xaa:    /* stosS */
6437     case 0xab:
6438     case 0x6c:    /* insS */
6439     case 0x6d:
6440       regcache_raw_read_unsigned (ir.regcache,
6441                                   ir.regmap[X86_RECORD_RECX_REGNUM],
6442                                   &addr);
6443       if (addr)
6444         {
6445           ULONGEST es, ds;
6446 
6447           if ((opcode & 1) == 0)
6448 	    ir.ot = OT_BYTE;
6449           else
6450 	    ir.ot = ir.dflag + OT_WORD;
6451           regcache_raw_read_unsigned (ir.regcache,
6452                                       ir.regmap[X86_RECORD_REDI_REGNUM],
6453                                       &addr);
6454 
6455           regcache_raw_read_unsigned (ir.regcache,
6456                                       ir.regmap[X86_RECORD_ES_REGNUM],
6457                                       &es);
6458           regcache_raw_read_unsigned (ir.regcache,
6459                                       ir.regmap[X86_RECORD_DS_REGNUM],
6460                                       &ds);
6461           if (ir.aflag && (es != ds))
6462             {
6463               /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6464               if (record_full_memory_query)
6465                 {
6466                   if (yquery (_("\
6467 Process record ignores the memory change of instruction at address %s\n\
6468 because it can't get the value of the segment register.\n\
6469 Do you want to stop the program?"),
6470                               paddress (gdbarch, ir.orig_addr)))
6471                     return -1;
6472                 }
6473             }
6474           else
6475             {
6476               if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6477                 return -1;
6478             }
6479 
6480           if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6481             I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6482           if (opcode == 0xa4 || opcode == 0xa5)
6483             I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6484           I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6485           I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6486 	}
6487       break;
6488 
6489     case 0xa6:    /* cmpsS */
6490     case 0xa7:
6491       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6492       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6493       if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6494         I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6495       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6496       break;
6497 
6498     case 0xac:    /* lodsS */
6499     case 0xad:
6500       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6501       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6502       if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6503         I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6504       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6505       break;
6506 
6507     case 0xae:    /* scasS */
6508     case 0xaf:
6509       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6510       if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6511         I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6512       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6513       break;
6514 
6515     case 0x6e:    /* outsS */
6516     case 0x6f:
6517       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6518       if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6519         I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6520       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6521       break;
6522 
6523     case 0xe4:    /* port I/O */
6524     case 0xe5:
6525     case 0xec:
6526     case 0xed:
6527       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6528       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6529       break;
6530 
6531     case 0xe6:
6532     case 0xe7:
6533     case 0xee:
6534     case 0xef:
6535       break;
6536 
6537       /* control */
6538     case 0xc2:    /* ret im */
6539     case 0xc3:    /* ret */
6540       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6541       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6542       break;
6543 
6544     case 0xca:    /* lret im */
6545     case 0xcb:    /* lret */
6546     case 0xcf:    /* iret */
6547       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6548       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6549       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6550       break;
6551 
6552     case 0xe8:    /* call im */
6553       if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6554         ir.dflag = 2;
6555       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6556         return -1;
6557       break;
6558 
6559     case 0x9a:    /* lcall im */
6560       if (ir.regmap[X86_RECORD_R8_REGNUM])
6561         {
6562           ir.addr -= 1;
6563           goto no_support;
6564         }
6565       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6566       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6567         return -1;
6568       break;
6569 
6570     case 0xe9:    /* jmp im */
6571     case 0xea:    /* ljmp im */
6572     case 0xeb:    /* jmp Jb */
6573     case 0x70:    /* jcc Jb */
6574     case 0x71:
6575     case 0x72:
6576     case 0x73:
6577     case 0x74:
6578     case 0x75:
6579     case 0x76:
6580     case 0x77:
6581     case 0x78:
6582     case 0x79:
6583     case 0x7a:
6584     case 0x7b:
6585     case 0x7c:
6586     case 0x7d:
6587     case 0x7e:
6588     case 0x7f:
6589     case 0x0f80:  /* jcc Jv */
6590     case 0x0f81:
6591     case 0x0f82:
6592     case 0x0f83:
6593     case 0x0f84:
6594     case 0x0f85:
6595     case 0x0f86:
6596     case 0x0f87:
6597     case 0x0f88:
6598     case 0x0f89:
6599     case 0x0f8a:
6600     case 0x0f8b:
6601     case 0x0f8c:
6602     case 0x0f8d:
6603     case 0x0f8e:
6604     case 0x0f8f:
6605       break;
6606 
6607     case 0x0f90:  /* setcc Gv */
6608     case 0x0f91:
6609     case 0x0f92:
6610     case 0x0f93:
6611     case 0x0f94:
6612     case 0x0f95:
6613     case 0x0f96:
6614     case 0x0f97:
6615     case 0x0f98:
6616     case 0x0f99:
6617     case 0x0f9a:
6618     case 0x0f9b:
6619     case 0x0f9c:
6620     case 0x0f9d:
6621     case 0x0f9e:
6622     case 0x0f9f:
6623       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6624       ir.ot = OT_BYTE;
6625       if (i386_record_modrm (&ir))
6626 	return -1;
6627       if (ir.mod == 3)
6628         I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6629 					    : (ir.rm & 0x3));
6630       else
6631 	{
6632 	  if (i386_record_lea_modrm (&ir))
6633 	    return -1;
6634 	}
6635       break;
6636 
6637     case 0x0f40:    /* cmov Gv, Ev */
6638     case 0x0f41:
6639     case 0x0f42:
6640     case 0x0f43:
6641     case 0x0f44:
6642     case 0x0f45:
6643     case 0x0f46:
6644     case 0x0f47:
6645     case 0x0f48:
6646     case 0x0f49:
6647     case 0x0f4a:
6648     case 0x0f4b:
6649     case 0x0f4c:
6650     case 0x0f4d:
6651     case 0x0f4e:
6652     case 0x0f4f:
6653       if (i386_record_modrm (&ir))
6654 	return -1;
6655       ir.reg |= rex_r;
6656       if (ir.dflag == OT_BYTE)
6657 	ir.reg &= 0x3;
6658       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6659       break;
6660 
6661       /* flags */
6662     case 0x9c:    /* pushf */
6663       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6664       if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6665         ir.dflag = 2;
6666       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6667         return -1;
6668       break;
6669 
6670     case 0x9d:    /* popf */
6671       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6672       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6673       break;
6674 
6675     case 0x9e:    /* sahf */
6676       if (ir.regmap[X86_RECORD_R8_REGNUM])
6677         {
6678           ir.addr -= 1;
6679           goto no_support;
6680         }
6681       /* FALLTHROUGH */
6682     case 0xf5:    /* cmc */
6683     case 0xf8:    /* clc */
6684     case 0xf9:    /* stc */
6685     case 0xfc:    /* cld */
6686     case 0xfd:    /* std */
6687       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6688       break;
6689 
6690     case 0x9f:    /* lahf */
6691       if (ir.regmap[X86_RECORD_R8_REGNUM])
6692         {
6693           ir.addr -= 1;
6694           goto no_support;
6695         }
6696       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6697       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6698       break;
6699 
6700       /* bit operations */
6701     case 0x0fba:    /* bt/bts/btr/btc Gv, im */
6702       ir.ot = ir.dflag + OT_WORD;
6703       if (i386_record_modrm (&ir))
6704 	return -1;
6705       if (ir.reg < 4)
6706 	{
6707 	  ir.addr -= 2;
6708 	  opcode = opcode << 8 | ir.modrm;
6709 	  goto no_support;
6710 	}
6711       if (ir.reg != 4)
6712 	{
6713           if (ir.mod == 3)
6714             I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6715 	  else
6716 	    {
6717 	      if (i386_record_lea_modrm (&ir))
6718 		return -1;
6719 	    }
6720 	}
6721       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6722       break;
6723 
6724     case 0x0fa3:    /* bt Gv, Ev */
6725       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6726       break;
6727 
6728     case 0x0fab:    /* bts */
6729     case 0x0fb3:    /* btr */
6730     case 0x0fbb:    /* btc */
6731       ir.ot = ir.dflag + OT_WORD;
6732       if (i386_record_modrm (&ir))
6733         return -1;
6734       if (ir.mod == 3)
6735         I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6736       else
6737         {
6738           uint64_t addr64;
6739           if (i386_record_lea_modrm_addr (&ir, &addr64))
6740             return -1;
6741           regcache_raw_read_unsigned (ir.regcache,
6742                                       ir.regmap[ir.reg | rex_r],
6743                                       &addr);
6744           switch (ir.dflag)
6745             {
6746             case 0:
6747               addr64 += ((int16_t) addr >> 4) << 4;
6748               break;
6749             case 1:
6750               addr64 += ((int32_t) addr >> 5) << 5;
6751               break;
6752             case 2:
6753               addr64 += ((int64_t) addr >> 6) << 6;
6754               break;
6755             }
6756           if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6757             return -1;
6758           if (i386_record_lea_modrm (&ir))
6759             return -1;
6760         }
6761       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6762       break;
6763 
6764     case 0x0fbc:    /* bsf */
6765     case 0x0fbd:    /* bsr */
6766       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6767       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6768       break;
6769 
6770       /* bcd */
6771     case 0x27:    /* daa */
6772     case 0x2f:    /* das */
6773     case 0x37:    /* aaa */
6774     case 0x3f:    /* aas */
6775     case 0xd4:    /* aam */
6776     case 0xd5:    /* aad */
6777       if (ir.regmap[X86_RECORD_R8_REGNUM])
6778         {
6779           ir.addr -= 1;
6780           goto no_support;
6781         }
6782       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6783       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6784       break;
6785 
6786       /* misc */
6787     case 0x90:    /* nop */
6788       if (prefixes & PREFIX_LOCK)
6789 	{
6790 	  ir.addr -= 1;
6791 	  goto no_support;
6792 	}
6793       break;
6794 
6795     case 0x9b:    /* fwait */
6796       if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6797 	return -1;
6798       opcode = (uint32_t) opcode8;
6799       ir.addr++;
6800       goto reswitch;
6801       break;
6802 
6803       /* XXX */
6804     case 0xcc:    /* int3 */
6805       printf_unfiltered (_("Process record does not support instruction "
6806 			   "int3.\n"));
6807       ir.addr -= 1;
6808       goto no_support;
6809       break;
6810 
6811       /* XXX */
6812     case 0xcd:    /* int */
6813       {
6814 	int ret;
6815 	uint8_t interrupt;
6816 	if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6817 	  return -1;
6818 	ir.addr++;
6819 	if (interrupt != 0x80
6820 	    || tdep->i386_intx80_record == NULL)
6821 	  {
6822 	    printf_unfiltered (_("Process record does not support "
6823 				 "instruction int 0x%02x.\n"),
6824 			       interrupt);
6825 	    ir.addr -= 2;
6826 	    goto no_support;
6827 	  }
6828 	ret = tdep->i386_intx80_record (ir.regcache);
6829 	if (ret)
6830 	  return ret;
6831       }
6832       break;
6833 
6834       /* XXX */
6835     case 0xce:    /* into */
6836       printf_unfiltered (_("Process record does not support "
6837 			   "instruction into.\n"));
6838       ir.addr -= 1;
6839       goto no_support;
6840       break;
6841 
6842     case 0xfa:    /* cli */
6843     case 0xfb:    /* sti */
6844       break;
6845 
6846     case 0x62:    /* bound */
6847       printf_unfiltered (_("Process record does not support "
6848 			   "instruction bound.\n"));
6849       ir.addr -= 1;
6850       goto no_support;
6851       break;
6852 
6853     case 0x0fc8:    /* bswap reg */
6854     case 0x0fc9:
6855     case 0x0fca:
6856     case 0x0fcb:
6857     case 0x0fcc:
6858     case 0x0fcd:
6859     case 0x0fce:
6860     case 0x0fcf:
6861       I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6862       break;
6863 
6864     case 0xd6:    /* salc */
6865       if (ir.regmap[X86_RECORD_R8_REGNUM])
6866         {
6867           ir.addr -= 1;
6868           goto no_support;
6869         }
6870       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6871       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6872       break;
6873 
6874     case 0xe0:    /* loopnz */
6875     case 0xe1:    /* loopz */
6876     case 0xe2:    /* loop */
6877     case 0xe3:    /* jecxz */
6878       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6879       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6880       break;
6881 
6882     case 0x0f30:    /* wrmsr */
6883       printf_unfiltered (_("Process record does not support "
6884 			   "instruction wrmsr.\n"));
6885       ir.addr -= 2;
6886       goto no_support;
6887       break;
6888 
6889     case 0x0f32:    /* rdmsr */
6890       printf_unfiltered (_("Process record does not support "
6891 			   "instruction rdmsr.\n"));
6892       ir.addr -= 2;
6893       goto no_support;
6894       break;
6895 
6896     case 0x0f31:    /* rdtsc */
6897       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6898       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6899       break;
6900 
6901     case 0x0f34:    /* sysenter */
6902       {
6903 	int ret;
6904         if (ir.regmap[X86_RECORD_R8_REGNUM])
6905           {
6906             ir.addr -= 2;
6907             goto no_support;
6908           }
6909 	if (tdep->i386_sysenter_record == NULL)
6910 	  {
6911 	    printf_unfiltered (_("Process record does not support "
6912 				 "instruction sysenter.\n"));
6913 	    ir.addr -= 2;
6914 	    goto no_support;
6915 	  }
6916 	ret = tdep->i386_sysenter_record (ir.regcache);
6917 	if (ret)
6918 	  return ret;
6919       }
6920       break;
6921 
6922     case 0x0f35:    /* sysexit */
6923       printf_unfiltered (_("Process record does not support "
6924 			   "instruction sysexit.\n"));
6925       ir.addr -= 2;
6926       goto no_support;
6927       break;
6928 
6929     case 0x0f05:    /* syscall */
6930       {
6931 	int ret;
6932 	if (tdep->i386_syscall_record == NULL)
6933 	  {
6934 	    printf_unfiltered (_("Process record does not support "
6935 				 "instruction syscall.\n"));
6936 	    ir.addr -= 2;
6937 	    goto no_support;
6938 	  }
6939 	ret = tdep->i386_syscall_record (ir.regcache);
6940 	if (ret)
6941 	  return ret;
6942       }
6943       break;
6944 
6945     case 0x0f07:    /* sysret */
6946       printf_unfiltered (_("Process record does not support "
6947                            "instruction sysret.\n"));
6948       ir.addr -= 2;
6949       goto no_support;
6950       break;
6951 
6952     case 0x0fa2:    /* cpuid */
6953       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6954       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6955       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6956       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6957       break;
6958 
6959     case 0xf4:    /* hlt */
6960       printf_unfiltered (_("Process record does not support "
6961 			   "instruction hlt.\n"));
6962       ir.addr -= 1;
6963       goto no_support;
6964       break;
6965 
6966     case 0x0f00:
6967       if (i386_record_modrm (&ir))
6968 	return -1;
6969       switch (ir.reg)
6970 	{
6971 	case 0:  /* sldt */
6972 	case 1:  /* str  */
6973 	  if (ir.mod == 3)
6974             I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6975 	  else
6976 	    {
6977 	      ir.ot = OT_WORD;
6978 	      if (i386_record_lea_modrm (&ir))
6979 		return -1;
6980 	    }
6981 	  break;
6982 	case 2:  /* lldt */
6983 	case 3:  /* ltr */
6984 	  break;
6985 	case 4:  /* verr */
6986 	case 5:  /* verw */
6987           I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6988 	  break;
6989 	default:
6990 	  ir.addr -= 3;
6991 	  opcode = opcode << 8 | ir.modrm;
6992 	  goto no_support;
6993 	  break;
6994 	}
6995       break;
6996 
6997     case 0x0f01:
6998       if (i386_record_modrm (&ir))
6999 	return -1;
7000       switch (ir.reg)
7001 	{
7002 	case 0:  /* sgdt */
7003 	  {
7004 	    uint64_t addr64;
7005 
7006 	    if (ir.mod == 3)
7007 	      {
7008 		ir.addr -= 3;
7009 		opcode = opcode << 8 | ir.modrm;
7010 		goto no_support;
7011 	      }
7012 	    if (ir.override >= 0)
7013 	      {
7014                 if (record_full_memory_query)
7015                   {
7016                     if (yquery (_("\
7017 Process record ignores the memory change of instruction at address %s\n\
7018 because it can't get the value of the segment register.\n\
7019 Do you want to stop the program?"),
7020                                 paddress (gdbarch, ir.orig_addr)))
7021 		      return -1;
7022                   }
7023 	      }
7024 	    else
7025 	      {
7026 		if (i386_record_lea_modrm_addr (&ir, &addr64))
7027 		  return -1;
7028 		if (record_full_arch_list_add_mem (addr64, 2))
7029 		  return -1;
7030 		addr64 += 2;
7031                 if (ir.regmap[X86_RECORD_R8_REGNUM])
7032                   {
7033                     if (record_full_arch_list_add_mem (addr64, 8))
7034 		      return -1;
7035                   }
7036                 else
7037                   {
7038                     if (record_full_arch_list_add_mem (addr64, 4))
7039 		      return -1;
7040                   }
7041 	      }
7042 	  }
7043 	  break;
7044 	case 1:
7045 	  if (ir.mod == 3)
7046 	    {
7047 	      switch (ir.rm)
7048 		{
7049 		case 0:  /* monitor */
7050 		  break;
7051 		case 1:  /* mwait */
7052 		  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7053 		  break;
7054 		default:
7055 		  ir.addr -= 3;
7056 		  opcode = opcode << 8 | ir.modrm;
7057 		  goto no_support;
7058 		  break;
7059 		}
7060 	    }
7061 	  else
7062 	    {
7063 	      /* sidt */
7064 	      if (ir.override >= 0)
7065 		{
7066                   if (record_full_memory_query)
7067                     {
7068                       if (yquery (_("\
7069 Process record ignores the memory change of instruction at address %s\n\
7070 because it can't get the value of the segment register.\n\
7071 Do you want to stop the program?"),
7072                                   paddress (gdbarch, ir.orig_addr)))
7073                         return -1;
7074                     }
7075 		}
7076 	      else
7077 		{
7078 		  uint64_t addr64;
7079 
7080 		  if (i386_record_lea_modrm_addr (&ir, &addr64))
7081 		    return -1;
7082 		  if (record_full_arch_list_add_mem (addr64, 2))
7083 		    return -1;
7084 		  addr64 += 2;
7085                   if (ir.regmap[X86_RECORD_R8_REGNUM])
7086                     {
7087                       if (record_full_arch_list_add_mem (addr64, 8))
7088 		        return -1;
7089                     }
7090                   else
7091                     {
7092                       if (record_full_arch_list_add_mem (addr64, 4))
7093 		        return -1;
7094                     }
7095 		}
7096 	    }
7097 	  break;
7098 	case 2:  /* lgdt */
7099 	  if (ir.mod == 3)
7100 	    {
7101 	      /* xgetbv */
7102 	      if (ir.rm == 0)
7103 		{
7104 		  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7105 		  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7106 		  break;
7107 		}
7108 	      /* xsetbv */
7109 	      else if (ir.rm == 1)
7110 		break;
7111 	    }
7112 	  /* Fall through.  */
7113 	case 3:  /* lidt */
7114 	  if (ir.mod == 3)
7115 	    {
7116 	      ir.addr -= 3;
7117 	      opcode = opcode << 8 | ir.modrm;
7118 	      goto no_support;
7119 	    }
7120 	  break;
7121 	case 4:  /* smsw */
7122 	  if (ir.mod == 3)
7123 	    {
7124 	      if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7125 		return -1;
7126 	    }
7127 	  else
7128 	    {
7129 	      ir.ot = OT_WORD;
7130 	      if (i386_record_lea_modrm (&ir))
7131 		return -1;
7132 	    }
7133 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7134 	  break;
7135 	case 6:  /* lmsw */
7136 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7137 	  break;
7138 	case 7:  /* invlpg */
7139 	  if (ir.mod == 3)
7140 	    {
7141 	      if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7142 	        I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7143 	      else
7144 	        {
7145 	          ir.addr -= 3;
7146 	          opcode = opcode << 8 | ir.modrm;
7147 	          goto no_support;
7148 	        }
7149 	    }
7150 	  else
7151 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7152 	  break;
7153 	default:
7154 	  ir.addr -= 3;
7155 	  opcode = opcode << 8 | ir.modrm;
7156 	  goto no_support;
7157 	  break;
7158 	}
7159       break;
7160 
7161     case 0x0f08:    /* invd */
7162     case 0x0f09:    /* wbinvd */
7163       break;
7164 
7165     case 0x63:    /* arpl */
7166       if (i386_record_modrm (&ir))
7167 	return -1;
7168       if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7169         {
7170           I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7171 					      ? (ir.reg | rex_r) : ir.rm);
7172         }
7173       else
7174         {
7175           ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7176           if (i386_record_lea_modrm (&ir))
7177             return -1;
7178         }
7179       if (!ir.regmap[X86_RECORD_R8_REGNUM])
7180         I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7181       break;
7182 
7183     case 0x0f02:    /* lar */
7184     case 0x0f03:    /* lsl */
7185       if (i386_record_modrm (&ir))
7186 	return -1;
7187       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7188       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7189       break;
7190 
7191     case 0x0f18:
7192       if (i386_record_modrm (&ir))
7193 	return -1;
7194       if (ir.mod == 3 && ir.reg == 3)
7195         {
7196 	  ir.addr -= 3;
7197 	  opcode = opcode << 8 | ir.modrm;
7198 	  goto no_support;
7199 	}
7200       break;
7201 
7202     case 0x0f19:
7203     case 0x0f1a:
7204     case 0x0f1b:
7205     case 0x0f1c:
7206     case 0x0f1d:
7207     case 0x0f1e:
7208     case 0x0f1f:
7209       /* nop (multi byte) */
7210       break;
7211 
7212     case 0x0f20:    /* mov reg, crN */
7213     case 0x0f22:    /* mov crN, reg */
7214       if (i386_record_modrm (&ir))
7215 	return -1;
7216       if ((ir.modrm & 0xc0) != 0xc0)
7217 	{
7218 	  ir.addr -= 3;
7219 	  opcode = opcode << 8 | ir.modrm;
7220 	  goto no_support;
7221 	}
7222       switch (ir.reg)
7223 	{
7224 	case 0:
7225 	case 2:
7226 	case 3:
7227 	case 4:
7228 	case 8:
7229 	  if (opcode & 2)
7230 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7231 	  else
7232             I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7233 	  break;
7234 	default:
7235 	  ir.addr -= 3;
7236 	  opcode = opcode << 8 | ir.modrm;
7237 	  goto no_support;
7238 	  break;
7239 	}
7240       break;
7241 
7242     case 0x0f21:    /* mov reg, drN */
7243     case 0x0f23:    /* mov drN, reg */
7244       if (i386_record_modrm (&ir))
7245 	return -1;
7246       if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7247 	  || ir.reg == 5 || ir.reg >= 8)
7248 	{
7249 	  ir.addr -= 3;
7250 	  opcode = opcode << 8 | ir.modrm;
7251 	  goto no_support;
7252 	}
7253       if (opcode & 2)
7254         I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7255       else
7256 	I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7257       break;
7258 
7259     case 0x0f06:    /* clts */
7260       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7261       break;
7262 
7263     /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7264 
7265     case 0x0f0d:    /* 3DNow! prefetch */
7266       break;
7267 
7268     case 0x0f0e:    /* 3DNow! femms */
7269     case 0x0f77:    /* emms */
7270       if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7271         goto no_support;
7272       record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7273       break;
7274 
7275     case 0x0f0f:    /* 3DNow! data */
7276       if (i386_record_modrm (&ir))
7277 	return -1;
7278       if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7279 	return -1;
7280       ir.addr++;
7281       switch (opcode8)
7282         {
7283         case 0x0c:    /* 3DNow! pi2fw */
7284         case 0x0d:    /* 3DNow! pi2fd */
7285         case 0x1c:    /* 3DNow! pf2iw */
7286         case 0x1d:    /* 3DNow! pf2id */
7287         case 0x8a:    /* 3DNow! pfnacc */
7288         case 0x8e:    /* 3DNow! pfpnacc */
7289         case 0x90:    /* 3DNow! pfcmpge */
7290         case 0x94:    /* 3DNow! pfmin */
7291         case 0x96:    /* 3DNow! pfrcp */
7292         case 0x97:    /* 3DNow! pfrsqrt */
7293         case 0x9a:    /* 3DNow! pfsub */
7294         case 0x9e:    /* 3DNow! pfadd */
7295         case 0xa0:    /* 3DNow! pfcmpgt */
7296         case 0xa4:    /* 3DNow! pfmax */
7297         case 0xa6:    /* 3DNow! pfrcpit1 */
7298         case 0xa7:    /* 3DNow! pfrsqit1 */
7299         case 0xaa:    /* 3DNow! pfsubr */
7300         case 0xae:    /* 3DNow! pfacc */
7301         case 0xb0:    /* 3DNow! pfcmpeq */
7302         case 0xb4:    /* 3DNow! pfmul */
7303         case 0xb6:    /* 3DNow! pfrcpit2 */
7304         case 0xb7:    /* 3DNow! pmulhrw */
7305         case 0xbb:    /* 3DNow! pswapd */
7306         case 0xbf:    /* 3DNow! pavgusb */
7307           if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7308             goto no_support_3dnow_data;
7309           record_full_arch_list_add_reg (ir.regcache, ir.reg);
7310           break;
7311 
7312         default:
7313 no_support_3dnow_data:
7314           opcode = (opcode << 8) | opcode8;
7315           goto no_support;
7316           break;
7317         }
7318       break;
7319 
7320     case 0x0faa:    /* rsm */
7321       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7322       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7323       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7324       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7325       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7326       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7327       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7328       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7329       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7330       break;
7331 
7332     case 0x0fae:
7333       if (i386_record_modrm (&ir))
7334 	return -1;
7335       switch(ir.reg)
7336         {
7337         case 0:    /* fxsave */
7338           {
7339             uint64_t tmpu64;
7340 
7341             I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7342 	    if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7343 	      return -1;
7344             if (record_full_arch_list_add_mem (tmpu64, 512))
7345               return -1;
7346           }
7347           break;
7348 
7349         case 1:    /* fxrstor */
7350           {
7351             int i;
7352 
7353             I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7354 
7355             for (i = I387_MM0_REGNUM (tdep);
7356                  i386_mmx_regnum_p (gdbarch, i); i++)
7357               record_full_arch_list_add_reg (ir.regcache, i);
7358 
7359             for (i = I387_XMM0_REGNUM (tdep);
7360                  i386_xmm_regnum_p (gdbarch, i); i++)
7361               record_full_arch_list_add_reg (ir.regcache, i);
7362 
7363             if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7364               record_full_arch_list_add_reg (ir.regcache,
7365 					     I387_MXCSR_REGNUM(tdep));
7366 
7367             for (i = I387_ST0_REGNUM (tdep);
7368                  i386_fp_regnum_p (gdbarch, i); i++)
7369               record_full_arch_list_add_reg (ir.regcache, i);
7370 
7371             for (i = I387_FCTRL_REGNUM (tdep);
7372                  i386_fpc_regnum_p (gdbarch, i); i++)
7373               record_full_arch_list_add_reg (ir.regcache, i);
7374           }
7375           break;
7376 
7377         case 2:    /* ldmxcsr */
7378           if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7379             goto no_support;
7380           record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7381           break;
7382 
7383         case 3:    /* stmxcsr */
7384           ir.ot = OT_LONG;
7385           if (i386_record_lea_modrm (&ir))
7386             return -1;
7387           break;
7388 
7389         case 5:    /* lfence */
7390         case 6:    /* mfence */
7391         case 7:    /* sfence clflush */
7392           break;
7393 
7394         default:
7395           opcode = (opcode << 8) | ir.modrm;
7396           goto no_support;
7397           break;
7398         }
7399       break;
7400 
7401     case 0x0fc3:    /* movnti */
7402       ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7403       if (i386_record_modrm (&ir))
7404 	return -1;
7405       if (ir.mod == 3)
7406         goto no_support;
7407       ir.reg |= rex_r;
7408       if (i386_record_lea_modrm (&ir))
7409         return -1;
7410       break;
7411 
7412     /* Add prefix to opcode.  */
7413     case 0x0f10:
7414     case 0x0f11:
7415     case 0x0f12:
7416     case 0x0f13:
7417     case 0x0f14:
7418     case 0x0f15:
7419     case 0x0f16:
7420     case 0x0f17:
7421     case 0x0f28:
7422     case 0x0f29:
7423     case 0x0f2a:
7424     case 0x0f2b:
7425     case 0x0f2c:
7426     case 0x0f2d:
7427     case 0x0f2e:
7428     case 0x0f2f:
7429     case 0x0f38:
7430     case 0x0f39:
7431     case 0x0f3a:
7432     case 0x0f50:
7433     case 0x0f51:
7434     case 0x0f52:
7435     case 0x0f53:
7436     case 0x0f54:
7437     case 0x0f55:
7438     case 0x0f56:
7439     case 0x0f57:
7440     case 0x0f58:
7441     case 0x0f59:
7442     case 0x0f5a:
7443     case 0x0f5b:
7444     case 0x0f5c:
7445     case 0x0f5d:
7446     case 0x0f5e:
7447     case 0x0f5f:
7448     case 0x0f60:
7449     case 0x0f61:
7450     case 0x0f62:
7451     case 0x0f63:
7452     case 0x0f64:
7453     case 0x0f65:
7454     case 0x0f66:
7455     case 0x0f67:
7456     case 0x0f68:
7457     case 0x0f69:
7458     case 0x0f6a:
7459     case 0x0f6b:
7460     case 0x0f6c:
7461     case 0x0f6d:
7462     case 0x0f6e:
7463     case 0x0f6f:
7464     case 0x0f70:
7465     case 0x0f71:
7466     case 0x0f72:
7467     case 0x0f73:
7468     case 0x0f74:
7469     case 0x0f75:
7470     case 0x0f76:
7471     case 0x0f7c:
7472     case 0x0f7d:
7473     case 0x0f7e:
7474     case 0x0f7f:
7475     case 0x0fb8:
7476     case 0x0fc2:
7477     case 0x0fc4:
7478     case 0x0fc5:
7479     case 0x0fc6:
7480     case 0x0fd0:
7481     case 0x0fd1:
7482     case 0x0fd2:
7483     case 0x0fd3:
7484     case 0x0fd4:
7485     case 0x0fd5:
7486     case 0x0fd6:
7487     case 0x0fd7:
7488     case 0x0fd8:
7489     case 0x0fd9:
7490     case 0x0fda:
7491     case 0x0fdb:
7492     case 0x0fdc:
7493     case 0x0fdd:
7494     case 0x0fde:
7495     case 0x0fdf:
7496     case 0x0fe0:
7497     case 0x0fe1:
7498     case 0x0fe2:
7499     case 0x0fe3:
7500     case 0x0fe4:
7501     case 0x0fe5:
7502     case 0x0fe6:
7503     case 0x0fe7:
7504     case 0x0fe8:
7505     case 0x0fe9:
7506     case 0x0fea:
7507     case 0x0feb:
7508     case 0x0fec:
7509     case 0x0fed:
7510     case 0x0fee:
7511     case 0x0fef:
7512     case 0x0ff0:
7513     case 0x0ff1:
7514     case 0x0ff2:
7515     case 0x0ff3:
7516     case 0x0ff4:
7517     case 0x0ff5:
7518     case 0x0ff6:
7519     case 0x0ff7:
7520     case 0x0ff8:
7521     case 0x0ff9:
7522     case 0x0ffa:
7523     case 0x0ffb:
7524     case 0x0ffc:
7525     case 0x0ffd:
7526     case 0x0ffe:
7527       /* Mask out PREFIX_ADDR.  */
7528       switch ((prefixes & ~PREFIX_ADDR))
7529         {
7530         case PREFIX_REPNZ:
7531           opcode |= 0xf20000;
7532           break;
7533         case PREFIX_DATA:
7534           opcode |= 0x660000;
7535           break;
7536         case PREFIX_REPZ:
7537           opcode |= 0xf30000;
7538           break;
7539         }
7540 reswitch_prefix_add:
7541       switch (opcode)
7542         {
7543         case 0x0f38:
7544         case 0x660f38:
7545         case 0xf20f38:
7546         case 0x0f3a:
7547         case 0x660f3a:
7548           if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7549 	    return -1;
7550           ir.addr++;
7551           opcode = (uint32_t) opcode8 | opcode << 8;
7552           goto reswitch_prefix_add;
7553           break;
7554 
7555         case 0x0f10:        /* movups */
7556         case 0x660f10:      /* movupd */
7557         case 0xf30f10:      /* movss */
7558         case 0xf20f10:      /* movsd */
7559         case 0x0f12:        /* movlps */
7560         case 0x660f12:      /* movlpd */
7561         case 0xf30f12:      /* movsldup */
7562         case 0xf20f12:      /* movddup */
7563         case 0x0f14:        /* unpcklps */
7564         case 0x660f14:      /* unpcklpd */
7565         case 0x0f15:        /* unpckhps */
7566         case 0x660f15:      /* unpckhpd */
7567         case 0x0f16:        /* movhps */
7568         case 0x660f16:      /* movhpd */
7569         case 0xf30f16:      /* movshdup */
7570         case 0x0f28:        /* movaps */
7571         case 0x660f28:      /* movapd */
7572         case 0x0f2a:        /* cvtpi2ps */
7573         case 0x660f2a:      /* cvtpi2pd */
7574         case 0xf30f2a:      /* cvtsi2ss */
7575         case 0xf20f2a:      /* cvtsi2sd */
7576         case 0x0f2c:        /* cvttps2pi */
7577         case 0x660f2c:      /* cvttpd2pi */
7578         case 0x0f2d:        /* cvtps2pi */
7579         case 0x660f2d:      /* cvtpd2pi */
7580         case 0x660f3800:    /* pshufb */
7581         case 0x660f3801:    /* phaddw */
7582         case 0x660f3802:    /* phaddd */
7583         case 0x660f3803:    /* phaddsw */
7584         case 0x660f3804:    /* pmaddubsw */
7585         case 0x660f3805:    /* phsubw */
7586         case 0x660f3806:    /* phsubd */
7587         case 0x660f3807:    /* phsubsw */
7588         case 0x660f3808:    /* psignb */
7589         case 0x660f3809:    /* psignw */
7590         case 0x660f380a:    /* psignd */
7591         case 0x660f380b:    /* pmulhrsw */
7592         case 0x660f3810:    /* pblendvb */
7593         case 0x660f3814:    /* blendvps */
7594         case 0x660f3815:    /* blendvpd */
7595         case 0x660f381c:    /* pabsb */
7596         case 0x660f381d:    /* pabsw */
7597         case 0x660f381e:    /* pabsd */
7598         case 0x660f3820:    /* pmovsxbw */
7599         case 0x660f3821:    /* pmovsxbd */
7600         case 0x660f3822:    /* pmovsxbq */
7601         case 0x660f3823:    /* pmovsxwd */
7602         case 0x660f3824:    /* pmovsxwq */
7603         case 0x660f3825:    /* pmovsxdq */
7604         case 0x660f3828:    /* pmuldq */
7605         case 0x660f3829:    /* pcmpeqq */
7606         case 0x660f382a:    /* movntdqa */
7607         case 0x660f3a08:    /* roundps */
7608         case 0x660f3a09:    /* roundpd */
7609         case 0x660f3a0a:    /* roundss */
7610         case 0x660f3a0b:    /* roundsd */
7611         case 0x660f3a0c:    /* blendps */
7612         case 0x660f3a0d:    /* blendpd */
7613         case 0x660f3a0e:    /* pblendw */
7614         case 0x660f3a0f:    /* palignr */
7615         case 0x660f3a20:    /* pinsrb */
7616         case 0x660f3a21:    /* insertps */
7617         case 0x660f3a22:    /* pinsrd pinsrq */
7618         case 0x660f3a40:    /* dpps */
7619         case 0x660f3a41:    /* dppd */
7620         case 0x660f3a42:    /* mpsadbw */
7621         case 0x660f3a60:    /* pcmpestrm */
7622         case 0x660f3a61:    /* pcmpestri */
7623         case 0x660f3a62:    /* pcmpistrm */
7624         case 0x660f3a63:    /* pcmpistri */
7625         case 0x0f51:        /* sqrtps */
7626         case 0x660f51:      /* sqrtpd */
7627         case 0xf20f51:      /* sqrtsd */
7628         case 0xf30f51:      /* sqrtss */
7629         case 0x0f52:        /* rsqrtps */
7630         case 0xf30f52:      /* rsqrtss */
7631         case 0x0f53:        /* rcpps */
7632         case 0xf30f53:      /* rcpss */
7633         case 0x0f54:        /* andps */
7634         case 0x660f54:      /* andpd */
7635         case 0x0f55:        /* andnps */
7636         case 0x660f55:      /* andnpd */
7637         case 0x0f56:        /* orps */
7638         case 0x660f56:      /* orpd */
7639         case 0x0f57:        /* xorps */
7640         case 0x660f57:      /* xorpd */
7641         case 0x0f58:        /* addps */
7642         case 0x660f58:      /* addpd */
7643         case 0xf20f58:      /* addsd */
7644         case 0xf30f58:      /* addss */
7645         case 0x0f59:        /* mulps */
7646         case 0x660f59:      /* mulpd */
7647         case 0xf20f59:      /* mulsd */
7648         case 0xf30f59:      /* mulss */
7649         case 0x0f5a:        /* cvtps2pd */
7650         case 0x660f5a:      /* cvtpd2ps */
7651         case 0xf20f5a:      /* cvtsd2ss */
7652         case 0xf30f5a:      /* cvtss2sd */
7653         case 0x0f5b:        /* cvtdq2ps */
7654         case 0x660f5b:      /* cvtps2dq */
7655         case 0xf30f5b:      /* cvttps2dq */
7656         case 0x0f5c:        /* subps */
7657         case 0x660f5c:      /* subpd */
7658         case 0xf20f5c:      /* subsd */
7659         case 0xf30f5c:      /* subss */
7660         case 0x0f5d:        /* minps */
7661         case 0x660f5d:      /* minpd */
7662         case 0xf20f5d:      /* minsd */
7663         case 0xf30f5d:      /* minss */
7664         case 0x0f5e:        /* divps */
7665         case 0x660f5e:      /* divpd */
7666         case 0xf20f5e:      /* divsd */
7667         case 0xf30f5e:      /* divss */
7668         case 0x0f5f:        /* maxps */
7669         case 0x660f5f:      /* maxpd */
7670         case 0xf20f5f:      /* maxsd */
7671         case 0xf30f5f:      /* maxss */
7672         case 0x660f60:      /* punpcklbw */
7673         case 0x660f61:      /* punpcklwd */
7674         case 0x660f62:      /* punpckldq */
7675         case 0x660f63:      /* packsswb */
7676         case 0x660f64:      /* pcmpgtb */
7677         case 0x660f65:      /* pcmpgtw */
7678         case 0x660f66:      /* pcmpgtd */
7679         case 0x660f67:      /* packuswb */
7680         case 0x660f68:      /* punpckhbw */
7681         case 0x660f69:      /* punpckhwd */
7682         case 0x660f6a:      /* punpckhdq */
7683         case 0x660f6b:      /* packssdw */
7684         case 0x660f6c:      /* punpcklqdq */
7685         case 0x660f6d:      /* punpckhqdq */
7686         case 0x660f6e:      /* movd */
7687         case 0x660f6f:      /* movdqa */
7688         case 0xf30f6f:      /* movdqu */
7689         case 0x660f70:      /* pshufd */
7690         case 0xf20f70:      /* pshuflw */
7691         case 0xf30f70:      /* pshufhw */
7692         case 0x660f74:      /* pcmpeqb */
7693         case 0x660f75:      /* pcmpeqw */
7694         case 0x660f76:      /* pcmpeqd */
7695         case 0x660f7c:      /* haddpd */
7696         case 0xf20f7c:      /* haddps */
7697         case 0x660f7d:      /* hsubpd */
7698         case 0xf20f7d:      /* hsubps */
7699         case 0xf30f7e:      /* movq */
7700         case 0x0fc2:        /* cmpps */
7701         case 0x660fc2:      /* cmppd */
7702         case 0xf20fc2:      /* cmpsd */
7703         case 0xf30fc2:      /* cmpss */
7704         case 0x660fc4:      /* pinsrw */
7705         case 0x0fc6:        /* shufps */
7706         case 0x660fc6:      /* shufpd */
7707         case 0x660fd0:      /* addsubpd */
7708         case 0xf20fd0:      /* addsubps */
7709         case 0x660fd1:      /* psrlw */
7710         case 0x660fd2:      /* psrld */
7711         case 0x660fd3:      /* psrlq */
7712         case 0x660fd4:      /* paddq */
7713         case 0x660fd5:      /* pmullw */
7714         case 0xf30fd6:      /* movq2dq */
7715         case 0x660fd8:      /* psubusb */
7716         case 0x660fd9:      /* psubusw */
7717         case 0x660fda:      /* pminub */
7718         case 0x660fdb:      /* pand */
7719         case 0x660fdc:      /* paddusb */
7720         case 0x660fdd:      /* paddusw */
7721         case 0x660fde:      /* pmaxub */
7722         case 0x660fdf:      /* pandn */
7723         case 0x660fe0:      /* pavgb */
7724         case 0x660fe1:      /* psraw */
7725         case 0x660fe2:      /* psrad */
7726         case 0x660fe3:      /* pavgw */
7727         case 0x660fe4:      /* pmulhuw */
7728         case 0x660fe5:      /* pmulhw */
7729         case 0x660fe6:      /* cvttpd2dq */
7730         case 0xf20fe6:      /* cvtpd2dq */
7731         case 0xf30fe6:      /* cvtdq2pd */
7732         case 0x660fe8:      /* psubsb */
7733         case 0x660fe9:      /* psubsw */
7734         case 0x660fea:      /* pminsw */
7735         case 0x660feb:      /* por */
7736         case 0x660fec:      /* paddsb */
7737         case 0x660fed:      /* paddsw */
7738         case 0x660fee:      /* pmaxsw */
7739         case 0x660fef:      /* pxor */
7740         case 0xf20ff0:      /* lddqu */
7741         case 0x660ff1:      /* psllw */
7742         case 0x660ff2:      /* pslld */
7743         case 0x660ff3:      /* psllq */
7744         case 0x660ff4:      /* pmuludq */
7745         case 0x660ff5:      /* pmaddwd */
7746         case 0x660ff6:      /* psadbw */
7747         case 0x660ff8:      /* psubb */
7748         case 0x660ff9:      /* psubw */
7749         case 0x660ffa:      /* psubd */
7750         case 0x660ffb:      /* psubq */
7751         case 0x660ffc:      /* paddb */
7752         case 0x660ffd:      /* paddw */
7753         case 0x660ffe:      /* paddd */
7754           if (i386_record_modrm (&ir))
7755 	    return -1;
7756           ir.reg |= rex_r;
7757           if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7758             goto no_support;
7759           record_full_arch_list_add_reg (ir.regcache,
7760 					 I387_XMM0_REGNUM (tdep) + ir.reg);
7761           if ((opcode & 0xfffffffc) == 0x660f3a60)
7762             I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7763           break;
7764 
7765         case 0x0f11:        /* movups */
7766         case 0x660f11:      /* movupd */
7767         case 0xf30f11:      /* movss */
7768         case 0xf20f11:      /* movsd */
7769         case 0x0f13:        /* movlps */
7770         case 0x660f13:      /* movlpd */
7771         case 0x0f17:        /* movhps */
7772         case 0x660f17:      /* movhpd */
7773         case 0x0f29:        /* movaps */
7774         case 0x660f29:      /* movapd */
7775         case 0x660f3a14:    /* pextrb */
7776         case 0x660f3a15:    /* pextrw */
7777         case 0x660f3a16:    /* pextrd pextrq */
7778         case 0x660f3a17:    /* extractps */
7779         case 0x660f7f:      /* movdqa */
7780         case 0xf30f7f:      /* movdqu */
7781           if (i386_record_modrm (&ir))
7782 	    return -1;
7783           if (ir.mod == 3)
7784             {
7785               if (opcode == 0x0f13 || opcode == 0x660f13
7786                   || opcode == 0x0f17 || opcode == 0x660f17)
7787                 goto no_support;
7788               ir.rm |= ir.rex_b;
7789               if (!i386_xmm_regnum_p (gdbarch,
7790 				      I387_XMM0_REGNUM (tdep) + ir.rm))
7791                 goto no_support;
7792               record_full_arch_list_add_reg (ir.regcache,
7793 					     I387_XMM0_REGNUM (tdep) + ir.rm);
7794             }
7795           else
7796             {
7797               switch (opcode)
7798                 {
7799                   case 0x660f3a14:
7800                     ir.ot = OT_BYTE;
7801                     break;
7802                   case 0x660f3a15:
7803                     ir.ot = OT_WORD;
7804                     break;
7805                   case 0x660f3a16:
7806                     ir.ot = OT_LONG;
7807                     break;
7808                   case 0x660f3a17:
7809                     ir.ot = OT_QUAD;
7810                     break;
7811                   default:
7812                     ir.ot = OT_DQUAD;
7813                     break;
7814                 }
7815               if (i386_record_lea_modrm (&ir))
7816                 return -1;
7817             }
7818           break;
7819 
7820         case 0x0f2b:      /* movntps */
7821         case 0x660f2b:    /* movntpd */
7822         case 0x0fe7:      /* movntq */
7823         case 0x660fe7:    /* movntdq */
7824           if (ir.mod == 3)
7825             goto no_support;
7826           if (opcode == 0x0fe7)
7827             ir.ot = OT_QUAD;
7828           else
7829             ir.ot = OT_DQUAD;
7830           if (i386_record_lea_modrm (&ir))
7831             return -1;
7832           break;
7833 
7834         case 0xf30f2c:      /* cvttss2si */
7835         case 0xf20f2c:      /* cvttsd2si */
7836         case 0xf30f2d:      /* cvtss2si */
7837         case 0xf20f2d:      /* cvtsd2si */
7838         case 0xf20f38f0:    /* crc32 */
7839         case 0xf20f38f1:    /* crc32 */
7840         case 0x0f50:        /* movmskps */
7841         case 0x660f50:      /* movmskpd */
7842         case 0x0fc5:        /* pextrw */
7843         case 0x660fc5:      /* pextrw */
7844         case 0x0fd7:        /* pmovmskb */
7845         case 0x660fd7:      /* pmovmskb */
7846           I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7847           break;
7848 
7849         case 0x0f3800:    /* pshufb */
7850         case 0x0f3801:    /* phaddw */
7851         case 0x0f3802:    /* phaddd */
7852         case 0x0f3803:    /* phaddsw */
7853         case 0x0f3804:    /* pmaddubsw */
7854         case 0x0f3805:    /* phsubw */
7855         case 0x0f3806:    /* phsubd */
7856         case 0x0f3807:    /* phsubsw */
7857         case 0x0f3808:    /* psignb */
7858         case 0x0f3809:    /* psignw */
7859         case 0x0f380a:    /* psignd */
7860         case 0x0f380b:    /* pmulhrsw */
7861         case 0x0f381c:    /* pabsb */
7862         case 0x0f381d:    /* pabsw */
7863         case 0x0f381e:    /* pabsd */
7864         case 0x0f382b:    /* packusdw */
7865         case 0x0f3830:    /* pmovzxbw */
7866         case 0x0f3831:    /* pmovzxbd */
7867         case 0x0f3832:    /* pmovzxbq */
7868         case 0x0f3833:    /* pmovzxwd */
7869         case 0x0f3834:    /* pmovzxwq */
7870         case 0x0f3835:    /* pmovzxdq */
7871         case 0x0f3837:    /* pcmpgtq */
7872         case 0x0f3838:    /* pminsb */
7873         case 0x0f3839:    /* pminsd */
7874         case 0x0f383a:    /* pminuw */
7875         case 0x0f383b:    /* pminud */
7876         case 0x0f383c:    /* pmaxsb */
7877         case 0x0f383d:    /* pmaxsd */
7878         case 0x0f383e:    /* pmaxuw */
7879         case 0x0f383f:    /* pmaxud */
7880         case 0x0f3840:    /* pmulld */
7881         case 0x0f3841:    /* phminposuw */
7882         case 0x0f3a0f:    /* palignr */
7883         case 0x0f60:      /* punpcklbw */
7884         case 0x0f61:      /* punpcklwd */
7885         case 0x0f62:      /* punpckldq */
7886         case 0x0f63:      /* packsswb */
7887         case 0x0f64:      /* pcmpgtb */
7888         case 0x0f65:      /* pcmpgtw */
7889         case 0x0f66:      /* pcmpgtd */
7890         case 0x0f67:      /* packuswb */
7891         case 0x0f68:      /* punpckhbw */
7892         case 0x0f69:      /* punpckhwd */
7893         case 0x0f6a:      /* punpckhdq */
7894         case 0x0f6b:      /* packssdw */
7895         case 0x0f6e:      /* movd */
7896         case 0x0f6f:      /* movq */
7897         case 0x0f70:      /* pshufw */
7898         case 0x0f74:      /* pcmpeqb */
7899         case 0x0f75:      /* pcmpeqw */
7900         case 0x0f76:      /* pcmpeqd */
7901         case 0x0fc4:      /* pinsrw */
7902         case 0x0fd1:      /* psrlw */
7903         case 0x0fd2:      /* psrld */
7904         case 0x0fd3:      /* psrlq */
7905         case 0x0fd4:      /* paddq */
7906         case 0x0fd5:      /* pmullw */
7907         case 0xf20fd6:    /* movdq2q */
7908         case 0x0fd8:      /* psubusb */
7909         case 0x0fd9:      /* psubusw */
7910         case 0x0fda:      /* pminub */
7911         case 0x0fdb:      /* pand */
7912         case 0x0fdc:      /* paddusb */
7913         case 0x0fdd:      /* paddusw */
7914         case 0x0fde:      /* pmaxub */
7915         case 0x0fdf:      /* pandn */
7916         case 0x0fe0:      /* pavgb */
7917         case 0x0fe1:      /* psraw */
7918         case 0x0fe2:      /* psrad */
7919         case 0x0fe3:      /* pavgw */
7920         case 0x0fe4:      /* pmulhuw */
7921         case 0x0fe5:      /* pmulhw */
7922         case 0x0fe8:      /* psubsb */
7923         case 0x0fe9:      /* psubsw */
7924         case 0x0fea:      /* pminsw */
7925         case 0x0feb:      /* por */
7926         case 0x0fec:      /* paddsb */
7927         case 0x0fed:      /* paddsw */
7928         case 0x0fee:      /* pmaxsw */
7929         case 0x0fef:      /* pxor */
7930         case 0x0ff1:      /* psllw */
7931         case 0x0ff2:      /* pslld */
7932         case 0x0ff3:      /* psllq */
7933         case 0x0ff4:      /* pmuludq */
7934         case 0x0ff5:      /* pmaddwd */
7935         case 0x0ff6:      /* psadbw */
7936         case 0x0ff8:      /* psubb */
7937         case 0x0ff9:      /* psubw */
7938         case 0x0ffa:      /* psubd */
7939         case 0x0ffb:      /* psubq */
7940         case 0x0ffc:      /* paddb */
7941         case 0x0ffd:      /* paddw */
7942         case 0x0ffe:      /* paddd */
7943           if (i386_record_modrm (&ir))
7944 	    return -1;
7945           if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7946             goto no_support;
7947           record_full_arch_list_add_reg (ir.regcache,
7948 					 I387_MM0_REGNUM (tdep) + ir.reg);
7949           break;
7950 
7951         case 0x0f71:    /* psllw */
7952         case 0x0f72:    /* pslld */
7953         case 0x0f73:    /* psllq */
7954           if (i386_record_modrm (&ir))
7955 	    return -1;
7956           if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7957             goto no_support;
7958           record_full_arch_list_add_reg (ir.regcache,
7959 					 I387_MM0_REGNUM (tdep) + ir.rm);
7960           break;
7961 
7962         case 0x660f71:    /* psllw */
7963         case 0x660f72:    /* pslld */
7964         case 0x660f73:    /* psllq */
7965           if (i386_record_modrm (&ir))
7966 	    return -1;
7967           ir.rm |= ir.rex_b;
7968           if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7969             goto no_support;
7970           record_full_arch_list_add_reg (ir.regcache,
7971 					 I387_XMM0_REGNUM (tdep) + ir.rm);
7972           break;
7973 
7974         case 0x0f7e:      /* movd */
7975         case 0x660f7e:    /* movd */
7976           if (i386_record_modrm (&ir))
7977 	    return -1;
7978           if (ir.mod == 3)
7979             I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7980           else
7981             {
7982               if (ir.dflag == 2)
7983                 ir.ot = OT_QUAD;
7984               else
7985                 ir.ot = OT_LONG;
7986               if (i386_record_lea_modrm (&ir))
7987                 return -1;
7988             }
7989           break;
7990 
7991         case 0x0f7f:    /* movq */
7992           if (i386_record_modrm (&ir))
7993 	    return -1;
7994           if (ir.mod == 3)
7995             {
7996               if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7997                 goto no_support;
7998               record_full_arch_list_add_reg (ir.regcache,
7999 					     I387_MM0_REGNUM (tdep) + ir.rm);
8000             }
8001           else
8002             {
8003               ir.ot = OT_QUAD;
8004               if (i386_record_lea_modrm (&ir))
8005                 return -1;
8006             }
8007           break;
8008 
8009         case 0xf30fb8:    /* popcnt */
8010           if (i386_record_modrm (&ir))
8011 	    return -1;
8012           I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8013           I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8014           break;
8015 
8016         case 0x660fd6:    /* movq */
8017           if (i386_record_modrm (&ir))
8018 	    return -1;
8019           if (ir.mod == 3)
8020             {
8021               ir.rm |= ir.rex_b;
8022               if (!i386_xmm_regnum_p (gdbarch,
8023 				      I387_XMM0_REGNUM (tdep) + ir.rm))
8024                 goto no_support;
8025               record_full_arch_list_add_reg (ir.regcache,
8026 					     I387_XMM0_REGNUM (tdep) + ir.rm);
8027             }
8028           else
8029             {
8030               ir.ot = OT_QUAD;
8031               if (i386_record_lea_modrm (&ir))
8032                 return -1;
8033             }
8034           break;
8035 
8036         case 0x660f3817:    /* ptest */
8037         case 0x0f2e:        /* ucomiss */
8038         case 0x660f2e:      /* ucomisd */
8039         case 0x0f2f:        /* comiss */
8040         case 0x660f2f:      /* comisd */
8041           I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8042           break;
8043 
8044         case 0x0ff7:    /* maskmovq */
8045           regcache_raw_read_unsigned (ir.regcache,
8046                                       ir.regmap[X86_RECORD_REDI_REGNUM],
8047                                       &addr);
8048           if (record_full_arch_list_add_mem (addr, 64))
8049             return -1;
8050           break;
8051 
8052         case 0x660ff7:    /* maskmovdqu */
8053           regcache_raw_read_unsigned (ir.regcache,
8054                                       ir.regmap[X86_RECORD_REDI_REGNUM],
8055                                       &addr);
8056           if (record_full_arch_list_add_mem (addr, 128))
8057             return -1;
8058           break;
8059 
8060         default:
8061           goto no_support;
8062           break;
8063         }
8064       break;
8065 
8066     default:
8067       goto no_support;
8068       break;
8069     }
8070 
8071   /* In the future, maybe still need to deal with need_dasm.  */
8072   I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8073   if (record_full_arch_list_add_end ())
8074     return -1;
8075 
8076   return 0;
8077 
8078  no_support:
8079   printf_unfiltered (_("Process record does not support instruction 0x%02x "
8080                        "at address %s.\n"),
8081                      (unsigned int) (opcode),
8082                      paddress (gdbarch, ir.orig_addr));
8083   return -1;
8084 }
8085 
8086 static const int i386_record_regmap[] =
8087 {
8088   I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8089   I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8090   0, 0, 0, 0, 0, 0, 0, 0,
8091   I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8092   I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8093 };
8094 
8095 /* Check that the given address appears suitable for a fast
8096    tracepoint, which on x86-64 means that we need an instruction of at
8097    least 5 bytes, so that we can overwrite it with a 4-byte-offset
8098    jump and not have to worry about program jumps to an address in the
8099    middle of the tracepoint jump.  On x86, it may be possible to use
8100    4-byte jumps with a 2-byte offset to a trampoline located in the
8101    bottom 64 KiB of memory.  Returns 1 if OK, and writes a size
8102    of instruction to replace, and 0 if not, plus an explanatory
8103    string.  */
8104 
8105 static int
8106 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8107 			       std::string *msg)
8108 {
8109   int len, jumplen;
8110 
8111   /*  Ask the target for the minimum instruction length supported.  */
8112   jumplen = target_get_min_fast_tracepoint_insn_len ();
8113 
8114   if (jumplen < 0)
8115     {
8116       /* If the target does not support the get_min_fast_tracepoint_insn_len
8117 	 operation, assume that fast tracepoints will always be implemented
8118 	 using 4-byte relative jumps on both x86 and x86-64.  */
8119       jumplen = 5;
8120     }
8121   else if (jumplen == 0)
8122     {
8123       /* If the target does support get_min_fast_tracepoint_insn_len but
8124 	 returns zero, then the IPA has not loaded yet.  In this case,
8125 	 we optimistically assume that truncated 2-byte relative jumps
8126 	 will be available on x86, and compensate later if this assumption
8127 	 turns out to be incorrect.  On x86-64 architectures, 4-byte relative
8128 	 jumps will always be used.  */
8129       jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8130     }
8131 
8132   /* Check for fit.  */
8133   len = gdb_insn_length (gdbarch, addr);
8134 
8135   if (len < jumplen)
8136     {
8137       /* Return a bit of target-specific detail to add to the caller's
8138 	 generic failure message.  */
8139       if (msg)
8140 	*msg = string_printf (_("; instruction is only %d bytes long, "
8141 				"need at least %d bytes for the jump"),
8142 			      len, jumplen);
8143       return 0;
8144     }
8145   else
8146     {
8147       if (msg)
8148 	msg->clear ();
8149       return 1;
8150     }
8151 }
8152 
8153 /* Return a floating-point format for a floating-point variable of
8154    length LEN in bits.  If non-NULL, NAME is the name of its type.
8155    If no suitable type is found, return NULL.  */
8156 
8157 const struct floatformat **
8158 i386_floatformat_for_type (struct gdbarch *gdbarch,
8159 			   const char *name, int len)
8160 {
8161   if (len == 128 && name)
8162     if (strcmp (name, "__float128") == 0
8163 	|| strcmp (name, "_Float128") == 0
8164 	|| strcmp (name, "complex _Float128") == 0)
8165       return floatformats_ia64_quad;
8166 
8167   return default_floatformat_for_type (gdbarch, name, len);
8168 }
8169 
8170 static int
8171 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8172 		       struct tdesc_arch_data *tdesc_data)
8173 {
8174   const struct target_desc *tdesc = tdep->tdesc;
8175   const struct tdesc_feature *feature_core;
8176 
8177   const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8178 			     *feature_avx512, *feature_pkeys;
8179   int i, num_regs, valid_p;
8180 
8181   if (! tdesc_has_registers (tdesc))
8182     return 0;
8183 
8184   /* Get core registers.  */
8185   feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8186   if (feature_core == NULL)
8187     return 0;
8188 
8189   /* Get SSE registers.  */
8190   feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8191 
8192   /* Try AVX registers.  */
8193   feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8194 
8195   /* Try MPX registers.  */
8196   feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8197 
8198   /* Try AVX512 registers.  */
8199   feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8200 
8201   /* Try PKEYS  */
8202   feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8203 
8204   valid_p = 1;
8205 
8206   /* The XCR0 bits.  */
8207   if (feature_avx512)
8208     {
8209       /* AVX512 register description requires AVX register description.  */
8210       if (!feature_avx)
8211 	return 0;
8212 
8213       tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8214 
8215       /* It may have been set by OSABI initialization function.  */
8216       if (tdep->k0_regnum < 0)
8217 	{
8218 	  tdep->k_register_names = i386_k_names;
8219 	  tdep->k0_regnum = I386_K0_REGNUM;
8220 	}
8221 
8222       for (i = 0; i < I387_NUM_K_REGS; i++)
8223 	valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8224 					    tdep->k0_regnum + i,
8225 					    i386_k_names[i]);
8226 
8227       if (tdep->num_zmm_regs == 0)
8228 	{
8229 	  tdep->zmmh_register_names = i386_zmmh_names;
8230 	  tdep->num_zmm_regs = 8;
8231 	  tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8232 	}
8233 
8234       for (i = 0; i < tdep->num_zmm_regs; i++)
8235 	valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8236 					    tdep->zmm0h_regnum + i,
8237 					    tdep->zmmh_register_names[i]);
8238 
8239       for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8240 	valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8241 					    tdep->xmm16_regnum + i,
8242 					    tdep->xmm_avx512_register_names[i]);
8243 
8244       for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8245 	valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8246 					    tdep->ymm16h_regnum + i,
8247 					    tdep->ymm16h_register_names[i]);
8248     }
8249   if (feature_avx)
8250     {
8251       /* AVX register description requires SSE register description.  */
8252       if (!feature_sse)
8253 	return 0;
8254 
8255       if (!feature_avx512)
8256 	tdep->xcr0 = X86_XSTATE_AVX_MASK;
8257 
8258       /* It may have been set by OSABI initialization function.  */
8259       if (tdep->num_ymm_regs == 0)
8260 	{
8261 	  tdep->ymmh_register_names = i386_ymmh_names;
8262 	  tdep->num_ymm_regs = 8;
8263 	  tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8264 	}
8265 
8266       for (i = 0; i < tdep->num_ymm_regs; i++)
8267 	valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8268 					    tdep->ymm0h_regnum + i,
8269 					    tdep->ymmh_register_names[i]);
8270     }
8271   else if (feature_sse)
8272     tdep->xcr0 = X86_XSTATE_SSE_MASK;
8273   else
8274     {
8275       tdep->xcr0 = X86_XSTATE_X87_MASK;
8276       tdep->num_xmm_regs = 0;
8277     }
8278 
8279   num_regs = tdep->num_core_regs;
8280   for (i = 0; i < num_regs; i++)
8281     valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8282 					tdep->register_names[i]);
8283 
8284   if (feature_sse)
8285     {
8286       /* Need to include %mxcsr, so add one.  */
8287       num_regs += tdep->num_xmm_regs + 1;
8288       for (; i < num_regs; i++)
8289 	valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8290 					    tdep->register_names[i]);
8291     }
8292 
8293   if (feature_mpx)
8294     {
8295       tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8296 
8297       if (tdep->bnd0r_regnum < 0)
8298 	{
8299 	  tdep->mpx_register_names = i386_mpx_names;
8300 	  tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8301 	  tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8302 	}
8303 
8304       for (i = 0; i < I387_NUM_MPX_REGS; i++)
8305 	valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8306 	    I387_BND0R_REGNUM (tdep) + i,
8307 	    tdep->mpx_register_names[i]);
8308     }
8309 
8310   if (feature_pkeys)
8311     {
8312       tdep->xcr0 |= X86_XSTATE_PKRU;
8313       if (tdep->pkru_regnum < 0)
8314 	{
8315 	  tdep->pkeys_register_names = i386_pkeys_names;
8316 	  tdep->pkru_regnum = I386_PKRU_REGNUM;
8317 	  tdep->num_pkeys_regs = 1;
8318 	}
8319 
8320       for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8321 	valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8322 					    I387_PKRU_REGNUM (tdep) + i,
8323 					    tdep->pkeys_register_names[i]);
8324     }
8325 
8326   return valid_p;
8327 }
8328 
8329 
8330 
8331 /* Implement the type_align gdbarch function.  */
8332 
8333 static ULONGEST
8334 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8335 {
8336   type = check_typedef (type);
8337 
8338   if (gdbarch_ptr_bit (gdbarch) == 32)
8339     {
8340       if ((TYPE_CODE (type) == TYPE_CODE_INT
8341 	   || TYPE_CODE (type) == TYPE_CODE_FLT)
8342 	  && TYPE_LENGTH (type) > 4)
8343 	return 4;
8344 
8345       /* Handle x86's funny long double.  */
8346       if (TYPE_CODE (type) == TYPE_CODE_FLT
8347 	  && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8348 	return 4;
8349     }
8350 
8351   return TYPE_LENGTH (type);
8352 }
8353 
8354 
8355 /* Note: This is called for both i386 and amd64.  */
8356 
8357 static struct gdbarch *
8358 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8359 {
8360   struct gdbarch_tdep *tdep;
8361   struct gdbarch *gdbarch;
8362   struct tdesc_arch_data *tdesc_data;
8363   const struct target_desc *tdesc;
8364   int mm0_regnum;
8365   int ymm0_regnum;
8366   int bnd0_regnum;
8367   int num_bnd_cooked;
8368 
8369   /* If there is already a candidate, use it.  */
8370   arches = gdbarch_list_lookup_by_info (arches, &info);
8371   if (arches != NULL)
8372     return arches->gdbarch;
8373 
8374   /* Allocate space for the new architecture.  Assume i386 for now.  */
8375   tdep = XCNEW (struct gdbarch_tdep);
8376   gdbarch = gdbarch_alloc (&info, tdep);
8377 
8378   /* General-purpose registers.  */
8379   tdep->gregset_reg_offset = NULL;
8380   tdep->gregset_num_regs = I386_NUM_GREGS;
8381   tdep->sizeof_gregset = 0;
8382 
8383   /* Floating-point registers.  */
8384   tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8385   tdep->fpregset = &i386_fpregset;
8386 
8387   /* The default settings include the FPU registers, the MMX registers
8388      and the SSE registers.  This can be overridden for a specific ABI
8389      by adjusting the members `st0_regnum', `mm0_regnum' and
8390      `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8391      will show up in the output of "info all-registers".  */
8392 
8393   tdep->st0_regnum = I386_ST0_REGNUM;
8394 
8395   /* I386_NUM_XREGS includes %mxcsr, so substract one.  */
8396   tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8397 
8398   tdep->jb_pc_offset = -1;
8399   tdep->struct_return = pcc_struct_return;
8400   tdep->sigtramp_start = 0;
8401   tdep->sigtramp_end = 0;
8402   tdep->sigtramp_p = i386_sigtramp_p;
8403   tdep->sigcontext_addr = NULL;
8404   tdep->sc_reg_offset = NULL;
8405   tdep->sc_pc_offset = -1;
8406   tdep->sc_sp_offset = -1;
8407 
8408   tdep->xsave_xcr0_offset = -1;
8409 
8410   tdep->record_regmap = i386_record_regmap;
8411 
8412   set_gdbarch_type_align (gdbarch, i386_type_align);
8413 
8414   /* The format used for `long double' on almost all i386 targets is
8415      the i387 extended floating-point format.  In fact, of all targets
8416      in the GCC 2.95 tree, only OSF/1 does it different, and insists
8417      on having a `long double' that's not `long' at all.  */
8418   set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8419 
8420   /* Although the i387 extended floating-point has only 80 significant
8421      bits, a `long double' actually takes up 96, probably to enforce
8422      alignment.  */
8423   set_gdbarch_long_double_bit (gdbarch, 96);
8424 
8425   /* Support for floating-point data type variants.  */
8426   set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8427 
8428   /* Register numbers of various important registers.  */
8429   set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8430   set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8431   set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8432   set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8433 
8434   /* NOTE: kettenis/20040418: GCC does have two possible register
8435      numbering schemes on the i386: dbx and SVR4.  These schemes
8436      differ in how they number %ebp, %esp, %eflags, and the
8437      floating-point registers, and are implemented by the arrays
8438      dbx_register_map[] and svr4_dbx_register_map in
8439      gcc/config/i386.c.  GCC also defines a third numbering scheme in
8440      gcc/config/i386.c, which it designates as the "default" register
8441      map used in 64bit mode.  This last register numbering scheme is
8442      implemented in dbx64_register_map, and is used for AMD64; see
8443      amd64-tdep.c.
8444 
8445      Currently, each GCC i386 target always uses the same register
8446      numbering scheme across all its supported debugging formats
8447      i.e. SDB (COFF), stabs and DWARF 2.  This is because
8448      gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8449      DBX_REGISTER_NUMBER macro which is defined by each target's
8450      respective config header in a manner independent of the requested
8451      output debugging format.
8452 
8453      This does not match the arrangement below, which presumes that
8454      the SDB and stabs numbering schemes differ from the DWARF and
8455      DWARF 2 ones.  The reason for this arrangement is that it is
8456      likely to get the numbering scheme for the target's
8457      default/native debug format right.  For targets where GCC is the
8458      native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8459      targets where the native toolchain uses a different numbering
8460      scheme for a particular debug format (stabs-in-ELF on Solaris)
8461      the defaults below will have to be overridden, like
8462      i386_elf_init_abi() does.  */
8463 
8464   /* Use the dbx register numbering scheme for stabs and COFF.  */
8465   set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8466   set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8467 
8468   /* Use the SVR4 register numbering scheme for DWARF 2.  */
8469   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8470 
8471   /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8472      be in use on any of the supported i386 targets.  */
8473 
8474   set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8475 
8476   set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8477 
8478   /* Call dummy code.  */
8479   set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8480   set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8481   set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8482   set_gdbarch_frame_align (gdbarch, i386_frame_align);
8483 
8484   set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8485   set_gdbarch_register_to_value (gdbarch,  i386_register_to_value);
8486   set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8487 
8488   set_gdbarch_return_value (gdbarch, i386_return_value);
8489 
8490   set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8491 
8492   /* Stack grows downward.  */
8493   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8494 
8495   set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8496   set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8497 
8498   set_gdbarch_decr_pc_after_break (gdbarch, 1);
8499   set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8500 
8501   set_gdbarch_frame_args_skip (gdbarch, 8);
8502 
8503   set_gdbarch_print_insn (gdbarch, i386_print_insn);
8504 
8505   set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8506 
8507   set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8508 
8509   /* Add the i386 register groups.  */
8510   i386_add_reggroups (gdbarch);
8511   tdep->register_reggroup_p = i386_register_reggroup_p;
8512 
8513   /* Helper for function argument information.  */
8514   set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8515 
8516   /* Hook the function epilogue frame unwinder.  This unwinder is
8517      appended to the list first, so that it supercedes the DWARF
8518      unwinder in function epilogues (where the DWARF unwinder
8519      currently fails).  */
8520   frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8521 
8522   /* Hook in the DWARF CFI frame unwinder.  This unwinder is appended
8523      to the list before the prologue-based unwinders, so that DWARF
8524      CFI info will be used if it is available.  */
8525   dwarf2_append_unwinders (gdbarch);
8526 
8527   frame_base_set_default (gdbarch, &i386_frame_base);
8528 
8529   /* Pseudo registers may be changed by amd64_init_abi.  */
8530   set_gdbarch_pseudo_register_read_value (gdbarch,
8531 					  i386_pseudo_register_read_value);
8532   set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8533   set_gdbarch_ax_pseudo_register_collect (gdbarch,
8534 					  i386_ax_pseudo_register_collect);
8535 
8536   set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8537   set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8538 
8539   /* Override the normal target description method to make the AVX
8540      upper halves anonymous.  */
8541   set_gdbarch_register_name (gdbarch, i386_register_name);
8542 
8543   /* Even though the default ABI only includes general-purpose registers,
8544      floating-point registers and the SSE registers, we have to leave a
8545      gap for the upper AVX, MPX and AVX512 registers.  */
8546   set_gdbarch_num_regs (gdbarch, I386_PKEYS_NUM_REGS);
8547 
8548   set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8549 
8550   /* Get the x86 target description from INFO.  */
8551   tdesc = info.target_desc;
8552   if (! tdesc_has_registers (tdesc))
8553     tdesc = i386_target_description (X86_XSTATE_SSE_MASK);
8554   tdep->tdesc = tdesc;
8555 
8556   tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8557   tdep->register_names = i386_register_names;
8558 
8559   /* No upper YMM registers.  */
8560   tdep->ymmh_register_names = NULL;
8561   tdep->ymm0h_regnum = -1;
8562 
8563   /* No upper ZMM registers.  */
8564   tdep->zmmh_register_names = NULL;
8565   tdep->zmm0h_regnum = -1;
8566 
8567   /* No high XMM registers.  */
8568   tdep->xmm_avx512_register_names = NULL;
8569   tdep->xmm16_regnum = -1;
8570 
8571   /* No upper YMM16-31 registers.  */
8572   tdep->ymm16h_register_names = NULL;
8573   tdep->ymm16h_regnum = -1;
8574 
8575   tdep->num_byte_regs = 8;
8576   tdep->num_word_regs = 8;
8577   tdep->num_dword_regs = 0;
8578   tdep->num_mmx_regs = 8;
8579   tdep->num_ymm_regs = 0;
8580 
8581   /* No MPX registers.  */
8582   tdep->bnd0r_regnum = -1;
8583   tdep->bndcfgu_regnum = -1;
8584 
8585   /* No AVX512 registers.  */
8586   tdep->k0_regnum = -1;
8587   tdep->num_zmm_regs = 0;
8588   tdep->num_ymm_avx512_regs = 0;
8589   tdep->num_xmm_avx512_regs = 0;
8590 
8591   /* No PKEYS registers  */
8592   tdep->pkru_regnum = -1;
8593   tdep->num_pkeys_regs = 0;
8594 
8595   tdesc_data = tdesc_data_alloc ();
8596 
8597   set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8598 
8599   set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8600 
8601   set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8602   set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8603   set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8604 
8605   /* Hook in ABI-specific overrides, if they have been registered.
8606      Note: If INFO specifies a 64 bit arch, this is where we turn
8607      a 32-bit i386 into a 64-bit amd64.  */
8608   info.tdesc_data = tdesc_data;
8609   gdbarch_init_osabi (info, gdbarch);
8610 
8611   if (!i386_validate_tdesc_p (tdep, tdesc_data))
8612     {
8613       tdesc_data_cleanup (tdesc_data);
8614       xfree (tdep);
8615       gdbarch_free (gdbarch);
8616       return NULL;
8617     }
8618 
8619   num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8620 
8621   /* Wire in pseudo registers.  Number of pseudo registers may be
8622      changed.  */
8623   set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8624 					 + tdep->num_word_regs
8625 					 + tdep->num_dword_regs
8626 					 + tdep->num_mmx_regs
8627 					 + tdep->num_ymm_regs
8628 					 + num_bnd_cooked
8629 					 + tdep->num_ymm_avx512_regs
8630 					 + tdep->num_zmm_regs));
8631 
8632   /* Target description may be changed.  */
8633   tdesc = tdep->tdesc;
8634 
8635   tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8636 
8637   /* Override gdbarch_register_reggroup_p set in tdesc_use_registers.  */
8638   set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8639 
8640   /* Make %al the first pseudo-register.  */
8641   tdep->al_regnum = gdbarch_num_regs (gdbarch);
8642   tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8643 
8644   ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8645   if (tdep->num_dword_regs)
8646     {
8647       /* Support dword pseudo-register if it hasn't been disabled.  */
8648       tdep->eax_regnum = ymm0_regnum;
8649       ymm0_regnum += tdep->num_dword_regs;
8650     }
8651   else
8652     tdep->eax_regnum = -1;
8653 
8654   mm0_regnum = ymm0_regnum;
8655   if (tdep->num_ymm_regs)
8656     {
8657       /* Support YMM pseudo-register if it is available.  */
8658       tdep->ymm0_regnum = ymm0_regnum;
8659       mm0_regnum += tdep->num_ymm_regs;
8660     }
8661   else
8662     tdep->ymm0_regnum = -1;
8663 
8664   if (tdep->num_ymm_avx512_regs)
8665     {
8666       /* Support YMM16-31 pseudo registers if available.  */
8667       tdep->ymm16_regnum = mm0_regnum;
8668       mm0_regnum += tdep->num_ymm_avx512_regs;
8669     }
8670   else
8671     tdep->ymm16_regnum = -1;
8672 
8673   if (tdep->num_zmm_regs)
8674     {
8675       /* Support ZMM pseudo-register if it is available.  */
8676       tdep->zmm0_regnum = mm0_regnum;
8677       mm0_regnum += tdep->num_zmm_regs;
8678     }
8679   else
8680     tdep->zmm0_regnum = -1;
8681 
8682   bnd0_regnum = mm0_regnum;
8683   if (tdep->num_mmx_regs != 0)
8684     {
8685       /* Support MMX pseudo-register if MMX hasn't been disabled.  */
8686       tdep->mm0_regnum = mm0_regnum;
8687       bnd0_regnum += tdep->num_mmx_regs;
8688     }
8689   else
8690     tdep->mm0_regnum = -1;
8691 
8692   if (tdep->bnd0r_regnum > 0)
8693       tdep->bnd0_regnum = bnd0_regnum;
8694   else
8695     tdep-> bnd0_regnum = -1;
8696 
8697   /* Hook in the legacy prologue-based unwinders last (fallback).  */
8698   frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8699   frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8700   frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8701 
8702   /* If we have a register mapping, enable the generic core file
8703      support, unless it has already been enabled.  */
8704   if (tdep->gregset_reg_offset
8705       && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8706     set_gdbarch_iterate_over_regset_sections
8707       (gdbarch, i386_iterate_over_regset_sections);
8708 
8709   set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8710 					i386_fast_tracepoint_valid_at);
8711 
8712   return gdbarch;
8713 }
8714 
8715 
8716 
8717 /* Return the target description for a specified XSAVE feature mask.  */
8718 
8719 const struct target_desc *
8720 i386_target_description (uint64_t xcr0)
8721 {
8722   static target_desc *i386_tdescs \
8723     [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {};
8724   target_desc **tdesc;
8725 
8726   tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8727     [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8728     [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8729     [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8730     [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0];
8731 
8732   if (*tdesc == NULL)
8733     *tdesc = i386_create_target_description (xcr0, false);
8734 
8735   return *tdesc;
8736 }
8737 
8738 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8739 
8740 /* Find the bound directory base address.  */
8741 
8742 static unsigned long
8743 i386_mpx_bd_base (void)
8744 {
8745   struct regcache *rcache;
8746   struct gdbarch_tdep *tdep;
8747   ULONGEST ret;
8748   enum register_status regstatus;
8749 
8750   rcache = get_current_regcache ();
8751   tdep = gdbarch_tdep (rcache->arch ());
8752 
8753   regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8754 
8755   if (regstatus != REG_VALID)
8756     error (_("BNDCFGU register invalid, read status %d."), regstatus);
8757 
8758   return ret & MPX_BASE_MASK;
8759 }
8760 
8761 int
8762 i386_mpx_enabled (void)
8763 {
8764   const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8765   const struct target_desc *tdesc = tdep->tdesc;
8766 
8767   return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8768 }
8769 
8770 #define MPX_BD_MASK     0xfffffff00000ULL	/* select bits [47:20]  */
8771 #define MPX_BT_MASK     0x0000000ffff8	        /* select bits [19:3]   */
8772 #define MPX_BD_MASK_32  0xfffff000	        /* select bits [31:12]  */
8773 #define MPX_BT_MASK_32  0x00000ffc	        /* select bits [11:2]   */
8774 
8775 /* Find the bound table entry given the pointer location and the base
8776    address of the table.  */
8777 
8778 static CORE_ADDR
8779 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8780 {
8781   CORE_ADDR offset1;
8782   CORE_ADDR offset2;
8783   CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8784   CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8785   CORE_ADDR bd_entry_addr;
8786   CORE_ADDR bt_addr;
8787   CORE_ADDR bd_entry;
8788   struct gdbarch *gdbarch = get_current_arch ();
8789   struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8790 
8791 
8792   if (gdbarch_ptr_bit (gdbarch) == 64)
8793     {
8794       mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8795       bd_ptr_r_shift = 20;
8796       bd_ptr_l_shift = 3;
8797       bt_select_r_shift = 3;
8798       bt_select_l_shift = 5;
8799       bt_mask = (CORE_ADDR) MPX_BT_MASK;
8800 
8801       if ( sizeof (CORE_ADDR) == 4)
8802 	error (_("bound table examination not supported\
8803  for 64-bit process with 32-bit GDB"));
8804     }
8805   else
8806     {
8807       mpx_bd_mask = MPX_BD_MASK_32;
8808       bd_ptr_r_shift = 12;
8809       bd_ptr_l_shift = 2;
8810       bt_select_r_shift = 2;
8811       bt_select_l_shift = 4;
8812       bt_mask = MPX_BT_MASK_32;
8813     }
8814 
8815   offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8816   bd_entry_addr = bd_base + offset1;
8817   bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8818 
8819   if ((bd_entry & 0x1) == 0)
8820     error (_("Invalid bounds directory entry at %s."),
8821 	   paddress (get_current_arch (), bd_entry_addr));
8822 
8823   /* Clearing status bit.  */
8824   bd_entry--;
8825   bt_addr = bd_entry & ~bt_select_r_shift;
8826   offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8827 
8828   return bt_addr + offset2;
8829 }
8830 
8831 /* Print routine for the mpx bounds.  */
8832 
8833 static void
8834 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8835 {
8836   struct ui_out *uiout = current_uiout;
8837   LONGEST size;
8838   struct gdbarch *gdbarch = get_current_arch ();
8839   CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8840   int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8841 
8842   if (bounds_in_map == 1)
8843     {
8844       uiout->text ("Null bounds on map:");
8845       uiout->text (" pointer value = ");
8846       uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8847       uiout->text (".");
8848       uiout->text ("\n");
8849     }
8850   else
8851     {
8852       uiout->text ("{lbound = ");
8853       uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8854       uiout->text (", ubound = ");
8855 
8856       /* The upper bound is stored in 1's complement.  */
8857       uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8858       uiout->text ("}: pointer value = ");
8859       uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8860 
8861       if (gdbarch_ptr_bit (gdbarch) == 64)
8862 	size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8863       else
8864 	size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8865 
8866       /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8867 	 -1 represents in this sense full memory access, and there is no need
8868 	 one to the size.  */
8869 
8870       size = (size > -1 ? size + 1 : size);
8871       uiout->text (", size = ");
8872       uiout->field_fmt ("size", "%s", plongest (size));
8873 
8874       uiout->text (", metadata = ");
8875       uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8876       uiout->text ("\n");
8877     }
8878 }
8879 
8880 /* Implement the command "show mpx bound".  */
8881 
8882 static void
8883 i386_mpx_info_bounds (const char *args, int from_tty)
8884 {
8885   CORE_ADDR bd_base = 0;
8886   CORE_ADDR addr;
8887   CORE_ADDR bt_entry_addr = 0;
8888   CORE_ADDR bt_entry[4];
8889   int i;
8890   struct gdbarch *gdbarch = get_current_arch ();
8891   struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8892 
8893   if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8894       || !i386_mpx_enabled ())
8895     {
8896       printf_unfiltered (_("Intel Memory Protection Extensions not "
8897 			   "supported on this target.\n"));
8898       return;
8899     }
8900 
8901   if (args == NULL)
8902     {
8903       printf_unfiltered (_("Address of pointer variable expected.\n"));
8904       return;
8905     }
8906 
8907   addr = parse_and_eval_address (args);
8908 
8909   bd_base = i386_mpx_bd_base ();
8910   bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8911 
8912   memset (bt_entry, 0, sizeof (bt_entry));
8913 
8914   for (i = 0; i < 4; i++)
8915     bt_entry[i] = read_memory_typed_address (bt_entry_addr
8916 					     + i * TYPE_LENGTH (data_ptr_type),
8917 					     data_ptr_type);
8918 
8919   i386_mpx_print_bounds (bt_entry);
8920 }
8921 
8922 /* Implement the command "set mpx bound".  */
8923 
8924 static void
8925 i386_mpx_set_bounds (const char *args, int from_tty)
8926 {
8927   CORE_ADDR bd_base = 0;
8928   CORE_ADDR addr, lower, upper;
8929   CORE_ADDR bt_entry_addr = 0;
8930   CORE_ADDR bt_entry[2];
8931   const char *input = args;
8932   int i;
8933   struct gdbarch *gdbarch = get_current_arch ();
8934   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8935   struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8936 
8937   if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8938       || !i386_mpx_enabled ())
8939     error (_("Intel Memory Protection Extensions not supported\
8940  on this target."));
8941 
8942   if (args == NULL)
8943     error (_("Pointer value expected."));
8944 
8945   addr = value_as_address (parse_to_comma_and_eval (&input));
8946 
8947   if (input[0] == ',')
8948     ++input;
8949   if (input[0] == '\0')
8950     error (_("wrong number of arguments: missing lower and upper bound."));
8951   lower = value_as_address (parse_to_comma_and_eval (&input));
8952 
8953   if (input[0] == ',')
8954     ++input;
8955   if (input[0] == '\0')
8956     error (_("Wrong number of arguments; Missing upper bound."));
8957   upper = value_as_address (parse_to_comma_and_eval (&input));
8958 
8959   bd_base = i386_mpx_bd_base ();
8960   bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8961   for (i = 0; i < 2; i++)
8962     bt_entry[i] = read_memory_typed_address (bt_entry_addr
8963 					     + i * TYPE_LENGTH (data_ptr_type),
8964 					     data_ptr_type);
8965   bt_entry[0] = (uint64_t) lower;
8966   bt_entry[1] = ~(uint64_t) upper;
8967 
8968   for (i = 0; i < 2; i++)
8969     write_memory_unsigned_integer (bt_entry_addr
8970 				   + i * TYPE_LENGTH (data_ptr_type),
8971 				   TYPE_LENGTH (data_ptr_type), byte_order,
8972 				   bt_entry[i]);
8973 }
8974 
8975 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8976 
8977 /* Helper function for the CLI commands.  */
8978 
8979 static void
8980 set_mpx_cmd (const char *args, int from_tty)
8981 {
8982   help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
8983 }
8984 
8985 /* Helper function for the CLI commands.  */
8986 
8987 static void
8988 show_mpx_cmd (const char *args, int from_tty)
8989 {
8990   cmd_show_list (mpx_show_cmdlist, from_tty, "");
8991 }
8992 
8993 void
8994 _initialize_i386_tdep (void)
8995 {
8996   register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8997 
8998   /* Add the variable that controls the disassembly flavor.  */
8999   add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9000 			&disassembly_flavor, _("\
9001 Set the disassembly flavor."), _("\
9002 Show the disassembly flavor."), _("\
9003 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9004 			NULL,
9005 			NULL, /* FIXME: i18n: */
9006 			&setlist, &showlist);
9007 
9008   /* Add the variable that controls the convention for returning
9009      structs.  */
9010   add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9011 			&struct_convention, _("\
9012 Set the convention for returning small structs."), _("\
9013 Show the convention for returning small structs."), _("\
9014 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9015 is \"default\"."),
9016 			NULL,
9017 			NULL, /* FIXME: i18n: */
9018 			&setlist, &showlist);
9019 
9020   /* Add "mpx" prefix for the set commands.  */
9021 
9022   add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9023 Set Intel Memory Protection Extensions specific variables."),
9024 		  &mpx_set_cmdlist, "set mpx ",
9025 		  0 /* allow-unknown */, &setlist);
9026 
9027   /* Add "mpx" prefix for the show commands.  */
9028 
9029   add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9030 Show Intel Memory Protection Extensions specific variables."),
9031 		  &mpx_show_cmdlist, "show mpx ",
9032 		  0 /* allow-unknown */, &showlist);
9033 
9034   /* Add "bound" command for the show mpx commands list.  */
9035 
9036   add_cmd ("bound", no_class, i386_mpx_info_bounds,
9037 	   "Show the memory bounds for a given array/pointer storage\
9038  in the bound table.",
9039 	   &mpx_show_cmdlist);
9040 
9041   /* Add "bound" command for the set mpx commands list.  */
9042 
9043   add_cmd ("bound", no_class, i386_mpx_set_bounds,
9044 	   "Set the memory bounds for a given array/pointer storage\
9045  in the bound table.",
9046 	   &mpx_set_cmdlist);
9047 
9048   gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9049 			  i386_svr4_init_abi);
9050 
9051   /* Initialize the i386-specific register groups.  */
9052   i386_init_reggroups ();
9053 
9054   /* Tell remote stub that we support XML target description.  */
9055   register_remote_support_xml ("i386");
9056 
9057 #if GDB_SELF_TEST
9058   struct
9059   {
9060     const char *xml;
9061     uint64_t mask;
9062   } xml_masks[] = {
9063     { "i386/i386.xml", X86_XSTATE_SSE_MASK },
9064     { "i386/i386-mmx.xml", X86_XSTATE_X87_MASK },
9065     { "i386/i386-avx.xml", X86_XSTATE_AVX_MASK },
9066     { "i386/i386-mpx.xml", X86_XSTATE_MPX_MASK },
9067     { "i386/i386-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK },
9068     { "i386/i386-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK },
9069     { "i386/i386-avx-mpx-avx512-pku.xml",
9070       X86_XSTATE_AVX_MPX_AVX512_PKU_MASK },
9071   };
9072 
9073   for (auto &a : xml_masks)
9074     {
9075       auto tdesc = i386_target_description (a.mask);
9076 
9077       selftests::record_xml_tdesc (a.xml, tdesc);
9078     }
9079 #endif /* GDB_SELF_TEST */
9080 }
9081