xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/i386-tdep.c (revision 8b657b0747480f8989760d71343d6dd33f8d4cf9)
1 /* Intel 386 target-dependent stuff.
2 
3    Copyright (C) 1988-2023 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
50 #include "x86-tdep.h"
51 #include "expop.h"
52 
53 #include "record.h"
54 #include "record-full.h"
55 #include "target-descriptions.h"
56 #include "arch/i386.h"
57 
58 #include "ax.h"
59 #include "ax-gdb.h"
60 
61 #include "stap-probe.h"
62 #include "user-regs.h"
63 #include "cli/cli-utils.h"
64 #include "expression.h"
65 #include "parser-defs.h"
66 #include <ctype.h>
67 #include <algorithm>
68 #include <unordered_set>
69 #include "producer.h"
70 #include "infcall.h"
71 #include "maint.h"
72 
73 /* Register names.  */
74 
75 static const char * const i386_register_names[] =
76 {
77   "eax",   "ecx",    "edx",   "ebx",
78   "esp",   "ebp",    "esi",   "edi",
79   "eip",   "eflags", "cs",    "ss",
80   "ds",    "es",     "fs",    "gs",
81   "st0",   "st1",    "st2",   "st3",
82   "st4",   "st5",    "st6",   "st7",
83   "fctrl", "fstat",  "ftag",  "fiseg",
84   "fioff", "foseg",  "fooff", "fop",
85   "xmm0",  "xmm1",   "xmm2",  "xmm3",
86   "xmm4",  "xmm5",   "xmm6",  "xmm7",
87   "mxcsr"
88 };
89 
90 static const char * const i386_zmm_names[] =
91 {
92   "zmm0",  "zmm1",   "zmm2",  "zmm3",
93   "zmm4",  "zmm5",   "zmm6",  "zmm7"
94 };
95 
96 static const char * const i386_zmmh_names[] =
97 {
98   "zmm0h",  "zmm1h",   "zmm2h",  "zmm3h",
99   "zmm4h",  "zmm5h",   "zmm6h",  "zmm7h"
100 };
101 
102 static const char * const i386_k_names[] =
103 {
104   "k0",  "k1",   "k2",  "k3",
105   "k4",  "k5",   "k6",  "k7"
106 };
107 
108 static const char * const i386_ymm_names[] =
109 {
110   "ymm0",  "ymm1",   "ymm2",  "ymm3",
111   "ymm4",  "ymm5",   "ymm6",  "ymm7",
112 };
113 
114 static const char * const i386_ymmh_names[] =
115 {
116   "ymm0h",  "ymm1h",   "ymm2h",  "ymm3h",
117   "ymm4h",  "ymm5h",   "ymm6h",  "ymm7h",
118 };
119 
120 static const char * const i386_mpx_names[] =
121 {
122   "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
123 };
124 
125 static const char * const i386_pkeys_names[] =
126 {
127   "pkru"
128 };
129 
130 /* Register names for MPX pseudo-registers.  */
131 
132 static const char * const i386_bnd_names[] =
133 {
134   "bnd0", "bnd1", "bnd2", "bnd3"
135 };
136 
137 /* Register names for MMX pseudo-registers.  */
138 
139 static const char * const i386_mmx_names[] =
140 {
141   "mm0", "mm1", "mm2", "mm3",
142   "mm4", "mm5", "mm6", "mm7"
143 };
144 
145 /* Register names for byte pseudo-registers.  */
146 
147 static const char * const i386_byte_names[] =
148 {
149   "al", "cl", "dl", "bl",
150   "ah", "ch", "dh", "bh"
151 };
152 
153 /* Register names for word pseudo-registers.  */
154 
155 static const char * const i386_word_names[] =
156 {
157   "ax", "cx", "dx", "bx",
158   "", "bp", "si", "di"
159 };
160 
161 /* Constant used for reading/writing pseudo registers.  In 64-bit mode, we have
162    16 lower ZMM regs that extend corresponding xmm/ymm registers.  In addition,
163    we have 16 upper ZMM regs that have to be handled differently.  */
164 
165 const int num_lower_zmm_regs = 16;
166 
167 /* MMX register?  */
168 
169 static int
170 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
171 {
172   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
173   int mm0_regnum = tdep->mm0_regnum;
174 
175   if (mm0_regnum < 0)
176     return 0;
177 
178   regnum -= mm0_regnum;
179   return regnum >= 0 && regnum < tdep->num_mmx_regs;
180 }
181 
182 /* Byte register?  */
183 
184 int
185 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
186 {
187   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
188 
189   regnum -= tdep->al_regnum;
190   return regnum >= 0 && regnum < tdep->num_byte_regs;
191 }
192 
193 /* Word register?  */
194 
195 int
196 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
197 {
198   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
199 
200   regnum -= tdep->ax_regnum;
201   return regnum >= 0 && regnum < tdep->num_word_regs;
202 }
203 
204 /* Dword register?  */
205 
206 int
207 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
208 {
209   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
210   int eax_regnum = tdep->eax_regnum;
211 
212   if (eax_regnum < 0)
213     return 0;
214 
215   regnum -= eax_regnum;
216   return regnum >= 0 && regnum < tdep->num_dword_regs;
217 }
218 
219 /* AVX512 register?  */
220 
221 int
222 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
223 {
224   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
225   int zmm0h_regnum = tdep->zmm0h_regnum;
226 
227   if (zmm0h_regnum < 0)
228     return 0;
229 
230   regnum -= zmm0h_regnum;
231   return regnum >= 0 && regnum < tdep->num_zmm_regs;
232 }
233 
234 int
235 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
236 {
237   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
238   int zmm0_regnum = tdep->zmm0_regnum;
239 
240   if (zmm0_regnum < 0)
241     return 0;
242 
243   regnum -= zmm0_regnum;
244   return regnum >= 0 && regnum < tdep->num_zmm_regs;
245 }
246 
247 int
248 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
249 {
250   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
251   int k0_regnum = tdep->k0_regnum;
252 
253   if (k0_regnum < 0)
254     return 0;
255 
256   regnum -= k0_regnum;
257   return regnum >= 0 && regnum < I387_NUM_K_REGS;
258 }
259 
260 static int
261 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
262 {
263   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
264   int ymm0h_regnum = tdep->ymm0h_regnum;
265 
266   if (ymm0h_regnum < 0)
267     return 0;
268 
269   regnum -= ymm0h_regnum;
270   return regnum >= 0 && regnum < tdep->num_ymm_regs;
271 }
272 
273 /* AVX register?  */
274 
275 int
276 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
277 {
278   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
279   int ymm0_regnum = tdep->ymm0_regnum;
280 
281   if (ymm0_regnum < 0)
282     return 0;
283 
284   regnum -= ymm0_regnum;
285   return regnum >= 0 && regnum < tdep->num_ymm_regs;
286 }
287 
288 static int
289 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
290 {
291   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
292   int ymm16h_regnum = tdep->ymm16h_regnum;
293 
294   if (ymm16h_regnum < 0)
295     return 0;
296 
297   regnum -= ymm16h_regnum;
298   return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
299 }
300 
301 int
302 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
303 {
304   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
305   int ymm16_regnum = tdep->ymm16_regnum;
306 
307   if (ymm16_regnum < 0)
308     return 0;
309 
310   regnum -= ymm16_regnum;
311   return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
312 }
313 
314 /* BND register?  */
315 
316 int
317 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
318 {
319   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
320   int bnd0_regnum = tdep->bnd0_regnum;
321 
322   if (bnd0_regnum < 0)
323     return 0;
324 
325   regnum -= bnd0_regnum;
326   return regnum >= 0 && regnum < I387_NUM_BND_REGS;
327 }
328 
329 /* SSE register?  */
330 
331 int
332 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
333 {
334   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
335   int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
336 
337   if (num_xmm_regs == 0)
338     return 0;
339 
340   regnum -= I387_XMM0_REGNUM (tdep);
341   return regnum >= 0 && regnum < num_xmm_regs;
342 }
343 
344 /* XMM_512 register?  */
345 
346 int
347 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
348 {
349   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
350   int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
351 
352   if (num_xmm_avx512_regs == 0)
353     return 0;
354 
355   regnum -= I387_XMM16_REGNUM (tdep);
356   return regnum >= 0 && regnum < num_xmm_avx512_regs;
357 }
358 
359 static int
360 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
361 {
362   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
363 
364   if (I387_NUM_XMM_REGS (tdep) == 0)
365     return 0;
366 
367   return (regnum == I387_MXCSR_REGNUM (tdep));
368 }
369 
370 /* FP register?  */
371 
372 int
373 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
374 {
375   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
376 
377   if (I387_ST0_REGNUM (tdep) < 0)
378     return 0;
379 
380   return (I387_ST0_REGNUM (tdep) <= regnum
381 	  && regnum < I387_FCTRL_REGNUM (tdep));
382 }
383 
384 int
385 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
386 {
387   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
388 
389   if (I387_ST0_REGNUM (tdep) < 0)
390     return 0;
391 
392   return (I387_FCTRL_REGNUM (tdep) <= regnum
393 	  && regnum < I387_XMM0_REGNUM (tdep));
394 }
395 
396 /* BNDr (raw) register?  */
397 
398 static int
399 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
400 {
401   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
402 
403    if (I387_BND0R_REGNUM (tdep) < 0)
404      return 0;
405 
406   regnum -= tdep->bnd0r_regnum;
407   return regnum >= 0 && regnum < I387_NUM_BND_REGS;
408 }
409 
410 /* BND control register?  */
411 
412 static int
413 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
414 {
415   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
416 
417    if (I387_BNDCFGU_REGNUM (tdep) < 0)
418      return 0;
419 
420   regnum -= I387_BNDCFGU_REGNUM (tdep);
421   return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
422 }
423 
424 /* PKRU register?  */
425 
426 bool
427 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
428 {
429   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
430   int pkru_regnum = tdep->pkru_regnum;
431 
432   if (pkru_regnum < 0)
433     return false;
434 
435   regnum -= pkru_regnum;
436   return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
437 }
438 
439 /* Return the name of register REGNUM, or the empty string if it is
440    an anonymous register.  */
441 
442 static const char *
443 i386_register_name (struct gdbarch *gdbarch, int regnum)
444 {
445   /* Hide the upper YMM registers.  */
446   if (i386_ymmh_regnum_p (gdbarch, regnum))
447     return "";
448 
449   /* Hide the upper YMM16-31 registers.  */
450   if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
451     return "";
452 
453   /* Hide the upper ZMM registers.  */
454   if (i386_zmmh_regnum_p (gdbarch, regnum))
455     return "";
456 
457   return tdesc_register_name (gdbarch, regnum);
458 }
459 
460 /* Return the name of register REGNUM.  */
461 
462 const char *
463 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
464 {
465   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
466   if (i386_bnd_regnum_p (gdbarch, regnum))
467     return i386_bnd_names[regnum - tdep->bnd0_regnum];
468   if (i386_mmx_regnum_p (gdbarch, regnum))
469     return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
470   else if (i386_ymm_regnum_p (gdbarch, regnum))
471     return i386_ymm_names[regnum - tdep->ymm0_regnum];
472   else if (i386_zmm_regnum_p (gdbarch, regnum))
473     return i386_zmm_names[regnum - tdep->zmm0_regnum];
474   else if (i386_byte_regnum_p (gdbarch, regnum))
475     return i386_byte_names[regnum - tdep->al_regnum];
476   else if (i386_word_regnum_p (gdbarch, regnum))
477     return i386_word_names[regnum - tdep->ax_regnum];
478 
479   internal_error (_("invalid regnum"));
480 }
481 
482 /* Convert a dbx register number REG to the appropriate register
483    number used by GDB.  */
484 
485 static int
486 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
487 {
488   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
489 
490   /* This implements what GCC calls the "default" register map
491      (dbx_register_map[]).  */
492 
493   if (reg >= 0 && reg <= 7)
494     {
495       /* General-purpose registers.  The debug info calls %ebp
496 	 register 4, and %esp register 5.  */
497       if (reg == 4)
498 	return 5;
499       else if (reg == 5)
500 	return 4;
501       else return reg;
502     }
503   else if (reg >= 12 && reg <= 19)
504     {
505       /* Floating-point registers.  */
506       return reg - 12 + I387_ST0_REGNUM (tdep);
507     }
508   else if (reg >= 21 && reg <= 28)
509     {
510       /* SSE registers.  */
511       int ymm0_regnum = tdep->ymm0_regnum;
512 
513       if (ymm0_regnum >= 0
514 	  && i386_xmm_regnum_p (gdbarch, reg))
515 	return reg - 21 + ymm0_regnum;
516       else
517 	return reg - 21 + I387_XMM0_REGNUM (tdep);
518     }
519   else if (reg >= 29 && reg <= 36)
520     {
521       /* MMX registers.  */
522       return reg - 29 + I387_MM0_REGNUM (tdep);
523     }
524 
525   /* This will hopefully provoke a warning.  */
526   return gdbarch_num_cooked_regs (gdbarch);
527 }
528 
529 /* Convert SVR4 DWARF register number REG to the appropriate register number
530    used by GDB.  */
531 
532 static int
533 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
534 {
535   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
536 
537   /* This implements the GCC register map that tries to be compatible
538      with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]).  */
539 
540   /* The SVR4 register numbering includes %eip and %eflags, and
541      numbers the floating point registers differently.  */
542   if (reg >= 0 && reg <= 9)
543     {
544       /* General-purpose registers.  */
545       return reg;
546     }
547   else if (reg >= 11 && reg <= 18)
548     {
549       /* Floating-point registers.  */
550       return reg - 11 + I387_ST0_REGNUM (tdep);
551     }
552   else if (reg >= 21 && reg <= 36)
553     {
554       /* The SSE and MMX registers have the same numbers as with dbx.  */
555       return i386_dbx_reg_to_regnum (gdbarch, reg);
556     }
557 
558   switch (reg)
559     {
560     case 37: return I387_FCTRL_REGNUM (tdep);
561     case 38: return I387_FSTAT_REGNUM (tdep);
562     case 39: return I387_MXCSR_REGNUM (tdep);
563     case 40: return I386_ES_REGNUM;
564     case 41: return I386_CS_REGNUM;
565     case 42: return I386_SS_REGNUM;
566     case 43: return I386_DS_REGNUM;
567     case 44: return I386_FS_REGNUM;
568     case 45: return I386_GS_REGNUM;
569     }
570 
571   return -1;
572 }
573 
574 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
575    num_regs + num_pseudo_regs for other debug formats.  */
576 
577 int
578 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
579 {
580   int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
581 
582   if (regnum == -1)
583     return gdbarch_num_cooked_regs (gdbarch);
584   return regnum;
585 }
586 
587 
588 
589 /* This is the variable that is set with "set disassembly-flavor", and
590    its legitimate values.  */
591 static const char att_flavor[] = "att";
592 static const char intel_flavor[] = "intel";
593 static const char *const valid_flavors[] =
594 {
595   att_flavor,
596   intel_flavor,
597   NULL
598 };
599 static const char *disassembly_flavor = att_flavor;
600 
601 
602 /* Use the program counter to determine the contents and size of a
603    breakpoint instruction.  Return a pointer to a string of bytes that
604    encode a breakpoint instruction, store the length of the string in
605    *LEN and optionally adjust *PC to point to the correct memory
606    location for inserting the breakpoint.
607 
608    On the i386 we have a single breakpoint that fits in a single byte
609    and can be inserted anywhere.
610 
611    This function is 64-bit safe.  */
612 
613 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
614 
615 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
616 
617 
618 /* Displaced instruction handling.  */
619 
620 /* Skip the legacy instruction prefixes in INSN.
621    Not all prefixes are valid for any particular insn
622    but we needn't care, the insn will fault if it's invalid.
623    The result is a pointer to the first opcode byte,
624    or NULL if we run off the end of the buffer.  */
625 
626 static gdb_byte *
627 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
628 {
629   gdb_byte *end = insn + max_len;
630 
631   while (insn < end)
632     {
633       switch (*insn)
634 	{
635 	case DATA_PREFIX_OPCODE:
636 	case ADDR_PREFIX_OPCODE:
637 	case CS_PREFIX_OPCODE:
638 	case DS_PREFIX_OPCODE:
639 	case ES_PREFIX_OPCODE:
640 	case FS_PREFIX_OPCODE:
641 	case GS_PREFIX_OPCODE:
642 	case SS_PREFIX_OPCODE:
643 	case LOCK_PREFIX_OPCODE:
644 	case REPE_PREFIX_OPCODE:
645 	case REPNE_PREFIX_OPCODE:
646 	  ++insn;
647 	  continue;
648 	default:
649 	  return insn;
650 	}
651     }
652 
653   return NULL;
654 }
655 
656 static int
657 i386_absolute_jmp_p (const gdb_byte *insn)
658 {
659   /* jmp far (absolute address in operand).  */
660   if (insn[0] == 0xea)
661     return 1;
662 
663   if (insn[0] == 0xff)
664     {
665       /* jump near, absolute indirect (/4).  */
666       if ((insn[1] & 0x38) == 0x20)
667 	return 1;
668 
669       /* jump far, absolute indirect (/5).  */
670       if ((insn[1] & 0x38) == 0x28)
671 	return 1;
672     }
673 
674   return 0;
675 }
676 
677 /* Return non-zero if INSN is a jump, zero otherwise.  */
678 
679 static int
680 i386_jmp_p (const gdb_byte *insn)
681 {
682   /* jump short, relative.  */
683   if (insn[0] == 0xeb)
684     return 1;
685 
686   /* jump near, relative.  */
687   if (insn[0] == 0xe9)
688     return 1;
689 
690   return i386_absolute_jmp_p (insn);
691 }
692 
693 static int
694 i386_absolute_call_p (const gdb_byte *insn)
695 {
696   /* call far, absolute.  */
697   if (insn[0] == 0x9a)
698     return 1;
699 
700   if (insn[0] == 0xff)
701     {
702       /* Call near, absolute indirect (/2).  */
703       if ((insn[1] & 0x38) == 0x10)
704 	return 1;
705 
706       /* Call far, absolute indirect (/3).  */
707       if ((insn[1] & 0x38) == 0x18)
708 	return 1;
709     }
710 
711   return 0;
712 }
713 
714 static int
715 i386_ret_p (const gdb_byte *insn)
716 {
717   switch (insn[0])
718     {
719     case 0xc2: /* ret near, pop N bytes.  */
720     case 0xc3: /* ret near */
721     case 0xca: /* ret far, pop N bytes.  */
722     case 0xcb: /* ret far */
723     case 0xcf: /* iret */
724       return 1;
725 
726     default:
727       return 0;
728     }
729 }
730 
731 static int
732 i386_call_p (const gdb_byte *insn)
733 {
734   if (i386_absolute_call_p (insn))
735     return 1;
736 
737   /* call near, relative.  */
738   if (insn[0] == 0xe8)
739     return 1;
740 
741   return 0;
742 }
743 
744 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
745    length in bytes.  Otherwise, return zero.  */
746 
747 static int
748 i386_syscall_p (const gdb_byte *insn, int *lengthp)
749 {
750   /* Is it 'int $0x80'?  */
751   if ((insn[0] == 0xcd && insn[1] == 0x80)
752       /* Or is it 'sysenter'?  */
753       || (insn[0] == 0x0f && insn[1] == 0x34)
754       /* Or is it 'syscall'?  */
755       || (insn[0] == 0x0f && insn[1] == 0x05))
756     {
757       *lengthp = 2;
758       return 1;
759     }
760 
761   return 0;
762 }
763 
764 /* The gdbarch insn_is_call method.  */
765 
766 static int
767 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
768 {
769   gdb_byte buf[I386_MAX_INSN_LEN], *insn;
770 
771   read_code (addr, buf, I386_MAX_INSN_LEN);
772   insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
773 
774   return i386_call_p (insn);
775 }
776 
777 /* The gdbarch insn_is_ret method.  */
778 
779 static int
780 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
781 {
782   gdb_byte buf[I386_MAX_INSN_LEN], *insn;
783 
784   read_code (addr, buf, I386_MAX_INSN_LEN);
785   insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
786 
787   return i386_ret_p (insn);
788 }
789 
790 /* The gdbarch insn_is_jump method.  */
791 
792 static int
793 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
794 {
795   gdb_byte buf[I386_MAX_INSN_LEN], *insn;
796 
797   read_code (addr, buf, I386_MAX_INSN_LEN);
798   insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
799 
800   return i386_jmp_p (insn);
801 }
802 
803 /* Some kernels may run one past a syscall insn, so we have to cope.  */
804 
805 displaced_step_copy_insn_closure_up
806 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
807 			       CORE_ADDR from, CORE_ADDR to,
808 			       struct regcache *regs)
809 {
810   size_t len = gdbarch_max_insn_length (gdbarch);
811   std::unique_ptr<i386_displaced_step_copy_insn_closure> closure
812     (new i386_displaced_step_copy_insn_closure (len));
813   gdb_byte *buf = closure->buf.data ();
814 
815   read_memory (from, buf, len);
816 
817   /* GDB may get control back after the insn after the syscall.
818      Presumably this is a kernel bug.
819      If this is a syscall, make sure there's a nop afterwards.  */
820   {
821     int syscall_length;
822     gdb_byte *insn;
823 
824     insn = i386_skip_prefixes (buf, len);
825     if (insn != NULL && i386_syscall_p (insn, &syscall_length))
826       insn[syscall_length] = NOP_OPCODE;
827   }
828 
829   write_memory (to, buf, len);
830 
831   displaced_debug_printf ("%s->%s: %s",
832 			  paddress (gdbarch, from), paddress (gdbarch, to),
833 			  displaced_step_dump_bytes (buf, len).c_str ());
834 
835   /* This is a work around for a problem with g++ 4.8.  */
836   return displaced_step_copy_insn_closure_up (closure.release ());
837 }
838 
839 /* Fix up the state of registers and memory after having single-stepped
840    a displaced instruction.  */
841 
842 void
843 i386_displaced_step_fixup (struct gdbarch *gdbarch,
844 			   struct displaced_step_copy_insn_closure *closure_,
845 			   CORE_ADDR from, CORE_ADDR to,
846 			   struct regcache *regs)
847 {
848   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849 
850   /* The offset we applied to the instruction's address.
851      This could well be negative (when viewed as a signed 32-bit
852      value), but ULONGEST won't reflect that, so take care when
853      applying it.  */
854   ULONGEST insn_offset = to - from;
855 
856   i386_displaced_step_copy_insn_closure *closure
857     = (i386_displaced_step_copy_insn_closure *) closure_;
858   gdb_byte *insn = closure->buf.data ();
859   /* The start of the insn, needed in case we see some prefixes.  */
860   gdb_byte *insn_start = insn;
861 
862   displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
863 			  paddress (gdbarch, from), paddress (gdbarch, to),
864 			  insn[0], insn[1]);
865 
866   /* The list of issues to contend with here is taken from
867      resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
868      Yay for Free Software!  */
869 
870   /* Relocate the %eip, if necessary.  */
871 
872   /* The instruction recognizers we use assume any leading prefixes
873      have been skipped.  */
874   {
875     /* This is the size of the buffer in closure.  */
876     size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
877     gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
878     /* If there are too many prefixes, just ignore the insn.
879        It will fault when run.  */
880     if (opcode != NULL)
881       insn = opcode;
882   }
883 
884   /* Except in the case of absolute or indirect jump or call
885      instructions, or a return instruction, the new eip is relative to
886      the displaced instruction; make it relative.  Well, signal
887      handler returns don't need relocation either, but we use the
888      value of %eip to recognize those; see below.  */
889   if (! i386_absolute_jmp_p (insn)
890       && ! i386_absolute_call_p (insn)
891       && ! i386_ret_p (insn))
892     {
893       ULONGEST orig_eip;
894       int insn_len;
895 
896       regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
897 
898       /* A signal trampoline system call changes the %eip, resuming
899 	 execution of the main program after the signal handler has
900 	 returned.  That makes them like 'return' instructions; we
901 	 shouldn't relocate %eip.
902 
903 	 But most system calls don't, and we do need to relocate %eip.
904 
905 	 Our heuristic for distinguishing these cases: if stepping
906 	 over the system call instruction left control directly after
907 	 the instruction, the we relocate --- control almost certainly
908 	 doesn't belong in the displaced copy.  Otherwise, we assume
909 	 the instruction has put control where it belongs, and leave
910 	 it unrelocated.  Goodness help us if there are PC-relative
911 	 system calls.  */
912       if (i386_syscall_p (insn, &insn_len)
913 	  && orig_eip != to + (insn - insn_start) + insn_len
914 	  /* GDB can get control back after the insn after the syscall.
915 	     Presumably this is a kernel bug.
916 	     i386_displaced_step_copy_insn ensures its a nop,
917 	     we add one to the length for it.  */
918 	  && orig_eip != to + (insn - insn_start) + insn_len + 1)
919 	displaced_debug_printf ("syscall changed %%eip; not relocating");
920       else
921 	{
922 	  ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
923 
924 	  /* If we just stepped over a breakpoint insn, we don't backup
925 	     the pc on purpose; this is to match behaviour without
926 	     stepping.  */
927 
928 	  regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
929 
930 	  displaced_debug_printf ("relocated %%eip from %s to %s",
931 				  paddress (gdbarch, orig_eip),
932 				  paddress (gdbarch, eip));
933 	}
934     }
935 
936   /* If the instruction was PUSHFL, then the TF bit will be set in the
937      pushed value, and should be cleared.  We'll leave this for later,
938      since GDB already messes up the TF flag when stepping over a
939      pushfl.  */
940 
941   /* If the instruction was a call, the return address now atop the
942      stack is the address following the copied instruction.  We need
943      to make it the address following the original instruction.  */
944   if (i386_call_p (insn))
945     {
946       ULONGEST esp;
947       ULONGEST retaddr;
948       const ULONGEST retaddr_len = 4;
949 
950       regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
951       retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
952       retaddr = (retaddr - insn_offset) & 0xffffffffUL;
953       write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
954 
955       displaced_debug_printf ("relocated return addr at %s to %s",
956 			      paddress (gdbarch, esp),
957 			      paddress (gdbarch, retaddr));
958     }
959 }
960 
961 static void
962 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
963 {
964   target_write_memory (*to, buf, len);
965   *to += len;
966 }
967 
968 static void
969 i386_relocate_instruction (struct gdbarch *gdbarch,
970 			   CORE_ADDR *to, CORE_ADDR oldloc)
971 {
972   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
973   gdb_byte buf[I386_MAX_INSN_LEN];
974   int offset = 0, rel32, newrel;
975   int insn_length;
976   gdb_byte *insn = buf;
977 
978   read_memory (oldloc, buf, I386_MAX_INSN_LEN);
979 
980   insn_length = gdb_buffered_insn_length (gdbarch, insn,
981 					  I386_MAX_INSN_LEN, oldloc);
982 
983   /* Get past the prefixes.  */
984   insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
985 
986   /* Adjust calls with 32-bit relative addresses as push/jump, with
987      the address pushed being the location where the original call in
988      the user program would return to.  */
989   if (insn[0] == 0xe8)
990     {
991       gdb_byte push_buf[16];
992       unsigned int ret_addr;
993 
994       /* Where "ret" in the original code will return to.  */
995       ret_addr = oldloc + insn_length;
996       push_buf[0] = 0x68; /* pushq $...  */
997       store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
998       /* Push the push.  */
999       append_insns (to, 5, push_buf);
1000 
1001       /* Convert the relative call to a relative jump.  */
1002       insn[0] = 0xe9;
1003 
1004       /* Adjust the destination offset.  */
1005       rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1006       newrel = (oldloc - *to) + rel32;
1007       store_signed_integer (insn + 1, 4, byte_order, newrel);
1008 
1009       displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1010 			      hex_string (rel32), paddress (gdbarch, oldloc),
1011 			      hex_string (newrel), paddress (gdbarch, *to));
1012 
1013       /* Write the adjusted jump into its displaced location.  */
1014       append_insns (to, 5, insn);
1015       return;
1016     }
1017 
1018   /* Adjust jumps with 32-bit relative addresses.  Calls are already
1019      handled above.  */
1020   if (insn[0] == 0xe9)
1021     offset = 1;
1022   /* Adjust conditional jumps.  */
1023   else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1024     offset = 2;
1025 
1026   if (offset)
1027     {
1028       rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1029       newrel = (oldloc - *to) + rel32;
1030       store_signed_integer (insn + offset, 4, byte_order, newrel);
1031       displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1032 			      hex_string (rel32), paddress (gdbarch, oldloc),
1033 			      hex_string (newrel), paddress (gdbarch, *to));
1034     }
1035 
1036   /* Write the adjusted instructions into their displaced
1037      location.  */
1038   append_insns (to, insn_length, buf);
1039 }
1040 
1041 
1042 #ifdef I386_REGNO_TO_SYMMETRY
1043 #error "The Sequent Symmetry is no longer supported."
1044 #endif
1045 
1046 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1047    and %esp "belong" to the calling function.  Therefore these
1048    registers should be saved if they're going to be modified.  */
1049 
1050 /* The maximum number of saved registers.  This should include all
1051    registers mentioned above, and %eip.  */
1052 #define I386_NUM_SAVED_REGS	I386_NUM_GREGS
1053 
1054 struct i386_frame_cache
1055 {
1056   /* Base address.  */
1057   CORE_ADDR base;
1058   int base_p;
1059   LONGEST sp_offset;
1060   CORE_ADDR pc;
1061 
1062   /* Saved registers.  */
1063   CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1064   CORE_ADDR saved_sp;
1065   int saved_sp_reg;
1066   int pc_in_eax;
1067 
1068   /* Stack space reserved for local variables.  */
1069   long locals;
1070 };
1071 
1072 /* Allocate and initialize a frame cache.  */
1073 
1074 static struct i386_frame_cache *
1075 i386_alloc_frame_cache (void)
1076 {
1077   struct i386_frame_cache *cache;
1078   int i;
1079 
1080   cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1081 
1082   /* Base address.  */
1083   cache->base_p = 0;
1084   cache->base = 0;
1085   cache->sp_offset = -4;
1086   cache->pc = 0;
1087 
1088   /* Saved registers.  We initialize these to -1 since zero is a valid
1089      offset (that's where %ebp is supposed to be stored).  */
1090   for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1091     cache->saved_regs[i] = -1;
1092   cache->saved_sp = 0;
1093   cache->saved_sp_reg = -1;
1094   cache->pc_in_eax = 0;
1095 
1096   /* Frameless until proven otherwise.  */
1097   cache->locals = -1;
1098 
1099   return cache;
1100 }
1101 
1102 /* If the instruction at PC is a jump, return the address of its
1103    target.  Otherwise, return PC.  */
1104 
1105 static CORE_ADDR
1106 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1107 {
1108   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1109   gdb_byte op;
1110   long delta = 0;
1111   int data16 = 0;
1112 
1113   if (target_read_code (pc, &op, 1))
1114     return pc;
1115 
1116   if (op == 0x66)
1117     {
1118       data16 = 1;
1119 
1120       op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1121     }
1122 
1123   switch (op)
1124     {
1125     case 0xe9:
1126       /* Relative jump: if data16 == 0, disp32, else disp16.  */
1127       if (data16)
1128 	{
1129 	  delta = read_memory_integer (pc + 2, 2, byte_order);
1130 
1131 	  /* Include the size of the jmp instruction (including the
1132 	     0x66 prefix).  */
1133 	  delta += 4;
1134 	}
1135       else
1136 	{
1137 	  delta = read_memory_integer (pc + 1, 4, byte_order);
1138 
1139 	  /* Include the size of the jmp instruction.  */
1140 	  delta += 5;
1141 	}
1142       break;
1143     case 0xeb:
1144       /* Relative jump, disp8 (ignore data16).  */
1145       delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1146 
1147       delta += data16 + 2;
1148       break;
1149     }
1150 
1151   return pc + delta;
1152 }
1153 
1154 /* Check whether PC points at a prologue for a function returning a
1155    structure or union.  If so, it updates CACHE and returns the
1156    address of the first instruction after the code sequence that
1157    removes the "hidden" argument from the stack or CURRENT_PC,
1158    whichever is smaller.  Otherwise, return PC.  */
1159 
1160 static CORE_ADDR
1161 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1162 			    struct i386_frame_cache *cache)
1163 {
1164   /* Functions that return a structure or union start with:
1165 
1166 	popl %eax             0x58
1167 	xchgl %eax, (%esp)    0x87 0x04 0x24
1168      or xchgl %eax, 0(%esp)   0x87 0x44 0x24 0x00
1169 
1170      (the System V compiler puts out the second `xchg' instruction,
1171      and the assembler doesn't try to optimize it, so the 'sib' form
1172      gets generated).  This sequence is used to get the address of the
1173      return buffer for a function that returns a structure.  */
1174   static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1175   static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1176   gdb_byte buf[4];
1177   gdb_byte op;
1178 
1179   if (current_pc <= pc)
1180     return pc;
1181 
1182   if (target_read_code (pc, &op, 1))
1183     return pc;
1184 
1185   if (op != 0x58)		/* popl %eax */
1186     return pc;
1187 
1188   if (target_read_code (pc + 1, buf, 4))
1189     return pc;
1190 
1191   if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1192     return pc;
1193 
1194   if (current_pc == pc)
1195     {
1196       cache->sp_offset += 4;
1197       return current_pc;
1198     }
1199 
1200   if (current_pc == pc + 1)
1201     {
1202       cache->pc_in_eax = 1;
1203       return current_pc;
1204     }
1205 
1206   if (buf[1] == proto1[1])
1207     return pc + 4;
1208   else
1209     return pc + 5;
1210 }
1211 
1212 static CORE_ADDR
1213 i386_skip_probe (CORE_ADDR pc)
1214 {
1215   /* A function may start with
1216 
1217 	pushl constant
1218 	call _probe
1219 	addl $4, %esp
1220 
1221      followed by
1222 
1223 	pushl %ebp
1224 
1225      etc.  */
1226   gdb_byte buf[8];
1227   gdb_byte op;
1228 
1229   if (target_read_code (pc, &op, 1))
1230     return pc;
1231 
1232   if (op == 0x68 || op == 0x6a)
1233     {
1234       int delta;
1235 
1236       /* Skip past the `pushl' instruction; it has either a one-byte or a
1237 	 four-byte operand, depending on the opcode.  */
1238       if (op == 0x68)
1239 	delta = 5;
1240       else
1241 	delta = 2;
1242 
1243       /* Read the following 8 bytes, which should be `call _probe' (6
1244 	 bytes) followed by `addl $4,%esp' (2 bytes).  */
1245       read_memory (pc + delta, buf, sizeof (buf));
1246       if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1247 	pc += delta + sizeof (buf);
1248     }
1249 
1250   return pc;
1251 }
1252 
1253 /* GCC 4.1 and later, can put code in the prologue to realign the
1254    stack pointer.  Check whether PC points to such code, and update
1255    CACHE accordingly.  Return the first instruction after the code
1256    sequence or CURRENT_PC, whichever is smaller.  If we don't
1257    recognize the code, return PC.  */
1258 
1259 static CORE_ADDR
1260 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1261 			  struct i386_frame_cache *cache)
1262 {
1263   /* There are 2 code sequences to re-align stack before the frame
1264      gets set up:
1265 
1266 	1. Use a caller-saved saved register:
1267 
1268 		leal  4(%esp), %reg
1269 		andl  $-XXX, %esp
1270 		pushl -4(%reg)
1271 
1272 	2. Use a callee-saved saved register:
1273 
1274 		pushl %reg
1275 		leal  8(%esp), %reg
1276 		andl  $-XXX, %esp
1277 		pushl -4(%reg)
1278 
1279      "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1280 
1281 	0x83 0xe4 0xf0			andl $-16, %esp
1282 	0x81 0xe4 0x00 0xff 0xff 0xff	andl $-256, %esp
1283    */
1284 
1285   gdb_byte buf[14];
1286   int reg;
1287   int offset, offset_and;
1288   static int regnums[8] = {
1289     I386_EAX_REGNUM,		/* %eax */
1290     I386_ECX_REGNUM,		/* %ecx */
1291     I386_EDX_REGNUM,		/* %edx */
1292     I386_EBX_REGNUM,		/* %ebx */
1293     I386_ESP_REGNUM,		/* %esp */
1294     I386_EBP_REGNUM,		/* %ebp */
1295     I386_ESI_REGNUM,		/* %esi */
1296     I386_EDI_REGNUM		/* %edi */
1297   };
1298 
1299   if (target_read_code (pc, buf, sizeof buf))
1300     return pc;
1301 
1302   /* Check caller-saved saved register.  The first instruction has
1303      to be "leal 4(%esp), %reg".  */
1304   if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1305     {
1306       /* MOD must be binary 10 and R/M must be binary 100.  */
1307       if ((buf[1] & 0xc7) != 0x44)
1308 	return pc;
1309 
1310       /* REG has register number.  */
1311       reg = (buf[1] >> 3) & 7;
1312       offset = 4;
1313     }
1314   else
1315     {
1316       /* Check callee-saved saved register.  The first instruction
1317 	 has to be "pushl %reg".  */
1318       if ((buf[0] & 0xf8) != 0x50)
1319 	return pc;
1320 
1321       /* Get register.  */
1322       reg = buf[0] & 0x7;
1323 
1324       /* The next instruction has to be "leal 8(%esp), %reg".  */
1325       if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1326 	return pc;
1327 
1328       /* MOD must be binary 10 and R/M must be binary 100.  */
1329       if ((buf[2] & 0xc7) != 0x44)
1330 	return pc;
1331 
1332       /* REG has register number.  Registers in pushl and leal have to
1333 	 be the same.  */
1334       if (reg != ((buf[2] >> 3) & 7))
1335 	return pc;
1336 
1337       offset = 5;
1338     }
1339 
1340   /* Rigister can't be %esp nor %ebp.  */
1341   if (reg == 4 || reg == 5)
1342     return pc;
1343 
1344   /* The next instruction has to be "andl $-XXX, %esp".  */
1345   if (buf[offset + 1] != 0xe4
1346       || (buf[offset] != 0x81 && buf[offset] != 0x83))
1347     return pc;
1348 
1349   offset_and = offset;
1350   offset += buf[offset] == 0x81 ? 6 : 3;
1351 
1352   /* The next instruction has to be "pushl -4(%reg)".  8bit -4 is
1353      0xfc.  REG must be binary 110 and MOD must be binary 01.  */
1354   if (buf[offset] != 0xff
1355       || buf[offset + 2] != 0xfc
1356       || (buf[offset + 1] & 0xf8) != 0x70)
1357     return pc;
1358 
1359   /* R/M has register.  Registers in leal and pushl have to be the
1360      same.  */
1361   if (reg != (buf[offset + 1] & 7))
1362     return pc;
1363 
1364   if (current_pc > pc + offset_and)
1365     cache->saved_sp_reg = regnums[reg];
1366 
1367   return std::min (pc + offset + 3, current_pc);
1368 }
1369 
1370 /* Maximum instruction length we need to handle.  */
1371 #define I386_MAX_MATCHED_INSN_LEN	6
1372 
1373 /* Instruction description.  */
1374 struct i386_insn
1375 {
1376   size_t len;
1377   gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1378   gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1379 };
1380 
1381 /* Return whether instruction at PC matches PATTERN.  */
1382 
1383 static int
1384 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1385 {
1386   gdb_byte op;
1387 
1388   if (target_read_code (pc, &op, 1))
1389     return 0;
1390 
1391   if ((op & pattern.mask[0]) == pattern.insn[0])
1392     {
1393       gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1394       int insn_matched = 1;
1395       size_t i;
1396 
1397       gdb_assert (pattern.len > 1);
1398       gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1399 
1400       if (target_read_code (pc + 1, buf, pattern.len - 1))
1401 	return 0;
1402 
1403       for (i = 1; i < pattern.len; i++)
1404 	{
1405 	  if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1406 	    insn_matched = 0;
1407 	}
1408       return insn_matched;
1409     }
1410   return 0;
1411 }
1412 
1413 /* Search for the instruction at PC in the list INSN_PATTERNS.  Return
1414    the first instruction description that matches.  Otherwise, return
1415    NULL.  */
1416 
1417 static struct i386_insn *
1418 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1419 {
1420   struct i386_insn *pattern;
1421 
1422   for (pattern = insn_patterns; pattern->len > 0; pattern++)
1423     {
1424       if (i386_match_pattern (pc, *pattern))
1425 	return pattern;
1426     }
1427 
1428   return NULL;
1429 }
1430 
1431 /* Return whether PC points inside a sequence of instructions that
1432    matches INSN_PATTERNS.  */
1433 
1434 static int
1435 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1436 {
1437   CORE_ADDR current_pc;
1438   int ix, i;
1439   struct i386_insn *insn;
1440 
1441   insn = i386_match_insn (pc, insn_patterns);
1442   if (insn == NULL)
1443     return 0;
1444 
1445   current_pc = pc;
1446   ix = insn - insn_patterns;
1447   for (i = ix - 1; i >= 0; i--)
1448     {
1449       current_pc -= insn_patterns[i].len;
1450 
1451       if (!i386_match_pattern (current_pc, insn_patterns[i]))
1452 	return 0;
1453     }
1454 
1455   current_pc = pc + insn->len;
1456   for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1457     {
1458       if (!i386_match_pattern (current_pc, *insn))
1459 	return 0;
1460 
1461       current_pc += insn->len;
1462     }
1463 
1464   return 1;
1465 }
1466 
1467 /* Some special instructions that might be migrated by GCC into the
1468    part of the prologue that sets up the new stack frame.  Because the
1469    stack frame hasn't been setup yet, no registers have been saved
1470    yet, and only the scratch registers %eax, %ecx and %edx can be
1471    touched.  */
1472 
1473 static i386_insn i386_frame_setup_skip_insns[] =
1474 {
1475   /* Check for `movb imm8, r' and `movl imm32, r'.
1476 
1477      ??? Should we handle 16-bit operand-sizes here?  */
1478 
1479   /* `movb imm8, %al' and `movb imm8, %ah' */
1480   /* `movb imm8, %cl' and `movb imm8, %ch' */
1481   { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1482   /* `movb imm8, %dl' and `movb imm8, %dh' */
1483   { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1484   /* `movl imm32, %eax' and `movl imm32, %ecx' */
1485   { 5, { 0xb8 }, { 0xfe } },
1486   /* `movl imm32, %edx' */
1487   { 5, { 0xba }, { 0xff } },
1488 
1489   /* Check for `mov imm32, r32'.  Note that there is an alternative
1490      encoding for `mov m32, %eax'.
1491 
1492      ??? Should we handle SIB addressing here?
1493      ??? Should we handle 16-bit operand-sizes here?  */
1494 
1495   /* `movl m32, %eax' */
1496   { 5, { 0xa1 }, { 0xff } },
1497   /* `movl m32, %eax' and `mov; m32, %ecx' */
1498   { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1499   /* `movl m32, %edx' */
1500   { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1501 
1502   /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1503      Because of the symmetry, there are actually two ways to encode
1504      these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1505      opcode bytes 0x31 and 0x33 for `xorl'.  */
1506 
1507   /* `subl %eax, %eax' */
1508   { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1509   /* `subl %ecx, %ecx' */
1510   { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1511   /* `subl %edx, %edx' */
1512   { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1513   /* `xorl %eax, %eax' */
1514   { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1515   /* `xorl %ecx, %ecx' */
1516   { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1517   /* `xorl %edx, %edx' */
1518   { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1519   { 0 }
1520 };
1521 
1522 /* Check whether PC points to an endbr32 instruction.  */
1523 static CORE_ADDR
1524 i386_skip_endbr (CORE_ADDR pc)
1525 {
1526   static const gdb_byte endbr32[] = { 0xf3, 0x0f, 0x1e, 0xfb };
1527 
1528   gdb_byte buf[sizeof (endbr32)];
1529 
1530   /* Stop there if we can't read the code */
1531   if (target_read_code (pc, buf, sizeof (endbr32)))
1532     return pc;
1533 
1534   /* If the instruction isn't an endbr32, stop */
1535   if (memcmp (buf, endbr32, sizeof (endbr32)) != 0)
1536     return pc;
1537 
1538   return pc + sizeof (endbr32);
1539 }
1540 
1541 /* Check whether PC points to a no-op instruction.  */
1542 static CORE_ADDR
1543 i386_skip_noop (CORE_ADDR pc)
1544 {
1545   gdb_byte op;
1546   int check = 1;
1547 
1548   if (target_read_code (pc, &op, 1))
1549     return pc;
1550 
1551   while (check)
1552     {
1553       check = 0;
1554       /* Ignore `nop' instruction.  */
1555       if (op == 0x90)
1556 	{
1557 	  pc += 1;
1558 	  if (target_read_code (pc, &op, 1))
1559 	    return pc;
1560 	  check = 1;
1561 	}
1562       /* Ignore no-op instruction `mov %edi, %edi'.
1563 	 Microsoft system dlls often start with
1564 	 a `mov %edi,%edi' instruction.
1565 	 The 5 bytes before the function start are
1566 	 filled with `nop' instructions.
1567 	 This pattern can be used for hot-patching:
1568 	 The `mov %edi, %edi' instruction can be replaced by a
1569 	 near jump to the location of the 5 `nop' instructions
1570 	 which can be replaced by a 32-bit jump to anywhere
1571 	 in the 32-bit address space.  */
1572 
1573       else if (op == 0x8b)
1574 	{
1575 	  if (target_read_code (pc + 1, &op, 1))
1576 	    return pc;
1577 
1578 	  if (op == 0xff)
1579 	    {
1580 	      pc += 2;
1581 	      if (target_read_code (pc, &op, 1))
1582 		return pc;
1583 
1584 	      check = 1;
1585 	    }
1586 	}
1587     }
1588   return pc;
1589 }
1590 
1591 /* Check whether PC points at a code that sets up a new stack frame.
1592    If so, it updates CACHE and returns the address of the first
1593    instruction after the sequence that sets up the frame or LIMIT,
1594    whichever is smaller.  If we don't recognize the code, return PC.  */
1595 
1596 static CORE_ADDR
1597 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1598 			  CORE_ADDR pc, CORE_ADDR limit,
1599 			  struct i386_frame_cache *cache)
1600 {
1601   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1602   struct i386_insn *insn;
1603   gdb_byte op;
1604   int skip = 0;
1605 
1606   if (limit <= pc)
1607     return limit;
1608 
1609   if (target_read_code (pc, &op, 1))
1610     return pc;
1611 
1612   if (op == 0x55)		/* pushl %ebp */
1613     {
1614       /* Take into account that we've executed the `pushl %ebp' that
1615 	 starts this instruction sequence.  */
1616       cache->saved_regs[I386_EBP_REGNUM] = 0;
1617       cache->sp_offset += 4;
1618       pc++;
1619 
1620       /* If that's all, return now.  */
1621       if (limit <= pc)
1622 	return limit;
1623 
1624       /* Check for some special instructions that might be migrated by
1625 	 GCC into the prologue and skip them.  At this point in the
1626 	 prologue, code should only touch the scratch registers %eax,
1627 	 %ecx and %edx, so while the number of possibilities is sheer,
1628 	 it is limited.
1629 
1630 	 Make sure we only skip these instructions if we later see the
1631 	 `movl %esp, %ebp' that actually sets up the frame.  */
1632       while (pc + skip < limit)
1633 	{
1634 	  insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1635 	  if (insn == NULL)
1636 	    break;
1637 
1638 	  skip += insn->len;
1639 	}
1640 
1641       /* If that's all, return now.  */
1642       if (limit <= pc + skip)
1643 	return limit;
1644 
1645       if (target_read_code (pc + skip, &op, 1))
1646 	return pc + skip;
1647 
1648       /* The i386 prologue looks like
1649 
1650 	 push   %ebp
1651 	 mov    %esp,%ebp
1652 	 sub    $0x10,%esp
1653 
1654 	 and a different prologue can be generated for atom.
1655 
1656 	 push   %ebp
1657 	 lea    (%esp),%ebp
1658 	 lea    -0x10(%esp),%esp
1659 
1660 	 We handle both of them here.  */
1661 
1662       switch (op)
1663 	{
1664 	  /* Check for `movl %esp, %ebp' -- can be written in two ways.  */
1665 	case 0x8b:
1666 	  if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1667 	      != 0xec)
1668 	    return pc;
1669 	  pc += (skip + 2);
1670 	  break;
1671 	case 0x89:
1672 	  if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1673 	      != 0xe5)
1674 	    return pc;
1675 	  pc += (skip + 2);
1676 	  break;
1677 	case 0x8d: /* Check for 'lea (%ebp), %ebp'.  */
1678 	  if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1679 	      != 0x242c)
1680 	    return pc;
1681 	  pc += (skip + 3);
1682 	  break;
1683 	default:
1684 	  return pc;
1685 	}
1686 
1687       /* OK, we actually have a frame.  We just don't know how large
1688 	 it is yet.  Set its size to zero.  We'll adjust it if
1689 	 necessary.  We also now commit to skipping the special
1690 	 instructions mentioned before.  */
1691       cache->locals = 0;
1692 
1693       /* If that's all, return now.  */
1694       if (limit <= pc)
1695 	return limit;
1696 
1697       /* Check for stack adjustment
1698 
1699 	    subl $XXX, %esp
1700 	 or
1701 	    lea -XXX(%esp),%esp
1702 
1703 	 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1704 	 reg, so we don't have to worry about a data16 prefix.  */
1705       if (target_read_code (pc, &op, 1))
1706 	return pc;
1707       if (op == 0x83)
1708 	{
1709 	  /* `subl' with 8-bit immediate.  */
1710 	  if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1711 	    /* Some instruction starting with 0x83 other than `subl'.  */
1712 	    return pc;
1713 
1714 	  /* `subl' with signed 8-bit immediate (though it wouldn't
1715 	     make sense to be negative).  */
1716 	  cache->locals = read_code_integer (pc + 2, 1, byte_order);
1717 	  return pc + 3;
1718 	}
1719       else if (op == 0x81)
1720 	{
1721 	  /* Maybe it is `subl' with a 32-bit immediate.  */
1722 	  if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1723 	    /* Some instruction starting with 0x81 other than `subl'.  */
1724 	    return pc;
1725 
1726 	  /* It is `subl' with a 32-bit immediate.  */
1727 	  cache->locals = read_code_integer (pc + 2, 4, byte_order);
1728 	  return pc + 6;
1729 	}
1730       else if (op == 0x8d)
1731 	{
1732 	  /* The ModR/M byte is 0x64.  */
1733 	  if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1734 	    return pc;
1735 	  /* 'lea' with 8-bit displacement.  */
1736 	  cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1737 	  return pc + 4;
1738 	}
1739       else
1740 	{
1741 	  /* Some instruction other than `subl' nor 'lea'.  */
1742 	  return pc;
1743 	}
1744     }
1745   else if (op == 0xc8)		/* enter */
1746     {
1747       cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1748       return pc + 4;
1749     }
1750 
1751   return pc;
1752 }
1753 
1754 /* Check whether PC points at code that saves registers on the stack.
1755    If so, it updates CACHE and returns the address of the first
1756    instruction after the register saves or CURRENT_PC, whichever is
1757    smaller.  Otherwise, return PC.  */
1758 
1759 static CORE_ADDR
1760 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1761 			     struct i386_frame_cache *cache)
1762 {
1763   CORE_ADDR offset = 0;
1764   gdb_byte op;
1765   int i;
1766 
1767   if (cache->locals > 0)
1768     offset -= cache->locals;
1769   for (i = 0; i < 8 && pc < current_pc; i++)
1770     {
1771       if (target_read_code (pc, &op, 1))
1772 	return pc;
1773       if (op < 0x50 || op > 0x57)
1774 	break;
1775 
1776       offset -= 4;
1777       cache->saved_regs[op - 0x50] = offset;
1778       cache->sp_offset += 4;
1779       pc++;
1780     }
1781 
1782   return pc;
1783 }
1784 
1785 /* Do a full analysis of the prologue at PC and update CACHE
1786    accordingly.  Bail out early if CURRENT_PC is reached.  Return the
1787    address where the analysis stopped.
1788 
1789    We handle these cases:
1790 
1791    The startup sequence can be at the start of the function, or the
1792    function can start with a branch to startup code at the end.
1793 
1794    %ebp can be set up with either the 'enter' instruction, or "pushl
1795    %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1796    once used in the System V compiler).
1797 
1798    Local space is allocated just below the saved %ebp by either the
1799    'enter' instruction, or by "subl $<size>, %esp".  'enter' has a
1800    16-bit unsigned argument for space to allocate, and the 'addl'
1801    instruction could have either a signed byte, or 32-bit immediate.
1802 
1803    Next, the registers used by this function are pushed.  With the
1804    System V compiler they will always be in the order: %edi, %esi,
1805    %ebx (and sometimes a harmless bug causes it to also save but not
1806    restore %eax); however, the code below is willing to see the pushes
1807    in any order, and will handle up to 8 of them.
1808 
1809    If the setup sequence is at the end of the function, then the next
1810    instruction will be a branch back to the start.  */
1811 
1812 static CORE_ADDR
1813 i386_analyze_prologue (struct gdbarch *gdbarch,
1814 		       CORE_ADDR pc, CORE_ADDR current_pc,
1815 		       struct i386_frame_cache *cache)
1816 {
1817   pc = i386_skip_endbr (pc);
1818   pc = i386_skip_noop (pc);
1819   pc = i386_follow_jump (gdbarch, pc);
1820   pc = i386_analyze_struct_return (pc, current_pc, cache);
1821   pc = i386_skip_probe (pc);
1822   pc = i386_analyze_stack_align (pc, current_pc, cache);
1823   pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1824   return i386_analyze_register_saves (pc, current_pc, cache);
1825 }
1826 
1827 /* Return PC of first real instruction.  */
1828 
1829 static CORE_ADDR
1830 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1831 {
1832   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1833 
1834   static gdb_byte pic_pat[6] =
1835   {
1836     0xe8, 0, 0, 0, 0,		/* call 0x0 */
1837     0x5b,			/* popl %ebx */
1838   };
1839   struct i386_frame_cache cache;
1840   CORE_ADDR pc;
1841   gdb_byte op;
1842   int i;
1843   CORE_ADDR func_addr;
1844 
1845   if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1846     {
1847       CORE_ADDR post_prologue_pc
1848 	= skip_prologue_using_sal (gdbarch, func_addr);
1849       struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1850 
1851       /* LLVM backend (Clang/Flang) always emits a line note before the
1852 	 prologue and another one after.  We trust clang and newer Intel
1853 	 compilers to emit usable line notes.  */
1854       if (post_prologue_pc
1855 	  && (cust != NULL
1856 	      && cust->producer () != NULL
1857 	      && (producer_is_llvm (cust->producer ())
1858 	      || producer_is_icc_ge_19 (cust->producer ()))))
1859         return std::max (start_pc, post_prologue_pc);
1860     }
1861 
1862   cache.locals = -1;
1863   pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1864   if (cache.locals < 0)
1865     return start_pc;
1866 
1867   /* Found valid frame setup.  */
1868 
1869   /* The native cc on SVR4 in -K PIC mode inserts the following code
1870      to get the address of the global offset table (GOT) into register
1871      %ebx:
1872 
1873 	call	0x0
1874 	popl    %ebx
1875 	movl    %ebx,x(%ebp)    (optional)
1876 	addl    y,%ebx
1877 
1878      This code is with the rest of the prologue (at the end of the
1879      function), so we have to skip it to get to the first real
1880      instruction at the start of the function.  */
1881 
1882   for (i = 0; i < 6; i++)
1883     {
1884       if (target_read_code (pc + i, &op, 1))
1885 	return pc;
1886 
1887       if (pic_pat[i] != op)
1888 	break;
1889     }
1890   if (i == 6)
1891     {
1892       int delta = 6;
1893 
1894       if (target_read_code (pc + delta, &op, 1))
1895 	return pc;
1896 
1897       if (op == 0x89)		/* movl %ebx, x(%ebp) */
1898 	{
1899 	  op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1900 
1901 	  if (op == 0x5d)	/* One byte offset from %ebp.  */
1902 	    delta += 3;
1903 	  else if (op == 0x9d)	/* Four byte offset from %ebp.  */
1904 	    delta += 6;
1905 	  else			/* Unexpected instruction.  */
1906 	    delta = 0;
1907 
1908 	  if (target_read_code (pc + delta, &op, 1))
1909 	    return pc;
1910 	}
1911 
1912       /* addl y,%ebx */
1913       if (delta > 0 && op == 0x81
1914 	  && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1915 	     == 0xc3)
1916 	{
1917 	  pc += delta + 6;
1918 	}
1919     }
1920 
1921   /* If the function starts with a branch (to startup code at the end)
1922      the last instruction should bring us back to the first
1923      instruction of the real code.  */
1924   if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1925     pc = i386_follow_jump (gdbarch, pc);
1926 
1927   return pc;
1928 }
1929 
1930 /* Check that the code pointed to by PC corresponds to a call to
1931    __main, skip it if so.  Return PC otherwise.  */
1932 
1933 CORE_ADDR
1934 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1935 {
1936   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1937   gdb_byte op;
1938 
1939   if (target_read_code (pc, &op, 1))
1940     return pc;
1941   if (op == 0xe8)
1942     {
1943       gdb_byte buf[4];
1944 
1945       if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1946 	{
1947 	  /* Make sure address is computed correctly as a 32bit
1948 	     integer even if CORE_ADDR is 64 bit wide.  */
1949 	  struct bound_minimal_symbol s;
1950 	  CORE_ADDR call_dest;
1951 
1952 	  call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1953 	  call_dest = call_dest & 0xffffffffU;
1954 	  s = lookup_minimal_symbol_by_pc (call_dest);
1955 	  if (s.minsym != NULL
1956 	      && s.minsym->linkage_name () != NULL
1957 	      && strcmp (s.minsym->linkage_name (), "__main") == 0)
1958 	    pc += 5;
1959 	}
1960     }
1961 
1962   return pc;
1963 }
1964 
1965 /* This function is 64-bit safe.  */
1966 
1967 static CORE_ADDR
1968 i386_unwind_pc (struct gdbarch *gdbarch, frame_info_ptr next_frame)
1969 {
1970   gdb_byte buf[8];
1971 
1972   frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1973   return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1974 }
1975 
1976 
1977 /* Normal frames.  */
1978 
1979 static void
1980 i386_frame_cache_1 (frame_info_ptr this_frame,
1981 		    struct i386_frame_cache *cache)
1982 {
1983   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1984   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1985   gdb_byte buf[4];
1986   int i;
1987 
1988   cache->pc = get_frame_func (this_frame);
1989 
1990   /* In principle, for normal frames, %ebp holds the frame pointer,
1991      which holds the base address for the current stack frame.
1992      However, for functions that don't need it, the frame pointer is
1993      optional.  For these "frameless" functions the frame pointer is
1994      actually the frame pointer of the calling frame.  Signal
1995      trampolines are just a special case of a "frameless" function.
1996      They (usually) share their frame pointer with the frame that was
1997      in progress when the signal occurred.  */
1998 
1999   get_frame_register (this_frame, I386_EBP_REGNUM, buf);
2000   cache->base = extract_unsigned_integer (buf, 4, byte_order);
2001   if (cache->base == 0)
2002     {
2003       cache->base_p = 1;
2004       return;
2005     }
2006 
2007   /* For normal frames, %eip is stored at 4(%ebp).  */
2008   cache->saved_regs[I386_EIP_REGNUM] = 4;
2009 
2010   if (cache->pc != 0)
2011     i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2012 			   cache);
2013 
2014   if (cache->locals < 0)
2015     {
2016       /* We didn't find a valid frame, which means that CACHE->base
2017 	 currently holds the frame pointer for our calling frame.  If
2018 	 we're at the start of a function, or somewhere half-way its
2019 	 prologue, the function's frame probably hasn't been fully
2020 	 setup yet.  Try to reconstruct the base address for the stack
2021 	 frame by looking at the stack pointer.  For truly "frameless"
2022 	 functions this might work too.  */
2023 
2024       if (cache->saved_sp_reg != -1)
2025 	{
2026 	  /* Saved stack pointer has been saved.  */
2027 	  get_frame_register (this_frame, cache->saved_sp_reg, buf);
2028 	  cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2029 
2030 	  /* We're halfway aligning the stack.  */
2031 	  cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2032 	  cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2033 
2034 	  /* This will be added back below.  */
2035 	  cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2036 	}
2037       else if (cache->pc != 0
2038 	       || target_read_code (get_frame_pc (this_frame), buf, 1))
2039 	{
2040 	  /* We're in a known function, but did not find a frame
2041 	     setup.  Assume that the function does not use %ebp.
2042 	     Alternatively, we may have jumped to an invalid
2043 	     address; in that case there is definitely no new
2044 	     frame in %ebp.  */
2045 	  get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2046 	  cache->base = extract_unsigned_integer (buf, 4, byte_order)
2047 			+ cache->sp_offset;
2048 	}
2049       else
2050 	/* We're in an unknown function.  We could not find the start
2051 	   of the function to analyze the prologue; our best option is
2052 	   to assume a typical frame layout with the caller's %ebp
2053 	   saved.  */
2054 	cache->saved_regs[I386_EBP_REGNUM] = 0;
2055     }
2056 
2057   if (cache->saved_sp_reg != -1)
2058     {
2059       /* Saved stack pointer has been saved (but the SAVED_SP_REG
2060 	 register may be unavailable).  */
2061       if (cache->saved_sp == 0
2062 	  && deprecated_frame_register_read (this_frame,
2063 					     cache->saved_sp_reg, buf))
2064 	cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2065     }
2066   /* Now that we have the base address for the stack frame we can
2067      calculate the value of %esp in the calling frame.  */
2068   else if (cache->saved_sp == 0)
2069     cache->saved_sp = cache->base + 8;
2070 
2071   /* Adjust all the saved registers such that they contain addresses
2072      instead of offsets.  */
2073   for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2074     if (cache->saved_regs[i] != -1)
2075       cache->saved_regs[i] += cache->base;
2076 
2077   cache->base_p = 1;
2078 }
2079 
2080 static struct i386_frame_cache *
2081 i386_frame_cache (frame_info_ptr this_frame, void **this_cache)
2082 {
2083   struct i386_frame_cache *cache;
2084 
2085   if (*this_cache)
2086     return (struct i386_frame_cache *) *this_cache;
2087 
2088   cache = i386_alloc_frame_cache ();
2089   *this_cache = cache;
2090 
2091   try
2092     {
2093       i386_frame_cache_1 (this_frame, cache);
2094     }
2095   catch (const gdb_exception_error &ex)
2096     {
2097       if (ex.error != NOT_AVAILABLE_ERROR)
2098 	throw;
2099     }
2100 
2101   return cache;
2102 }
2103 
2104 static void
2105 i386_frame_this_id (frame_info_ptr this_frame, void **this_cache,
2106 		    struct frame_id *this_id)
2107 {
2108   struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2109 
2110   if (!cache->base_p)
2111     (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2112   else if (cache->base == 0)
2113     {
2114       /* This marks the outermost frame.  */
2115     }
2116   else
2117     {
2118       /* See the end of i386_push_dummy_call.  */
2119       (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2120     }
2121 }
2122 
2123 static enum unwind_stop_reason
2124 i386_frame_unwind_stop_reason (frame_info_ptr this_frame,
2125 			       void **this_cache)
2126 {
2127   struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2128 
2129   if (!cache->base_p)
2130     return UNWIND_UNAVAILABLE;
2131 
2132   /* This marks the outermost frame.  */
2133   if (cache->base == 0)
2134     return UNWIND_OUTERMOST;
2135 
2136   return UNWIND_NO_REASON;
2137 }
2138 
2139 static struct value *
2140 i386_frame_prev_register (frame_info_ptr this_frame, void **this_cache,
2141 			  int regnum)
2142 {
2143   struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2144 
2145   gdb_assert (regnum >= 0);
2146 
2147   /* The System V ABI says that:
2148 
2149      "The flags register contains the system flags, such as the
2150      direction flag and the carry flag.  The direction flag must be
2151      set to the forward (that is, zero) direction before entry and
2152      upon exit from a function.  Other user flags have no specified
2153      role in the standard calling sequence and are not preserved."
2154 
2155      To guarantee the "upon exit" part of that statement we fake a
2156      saved flags register that has its direction flag cleared.
2157 
2158      Note that GCC doesn't seem to rely on the fact that the direction
2159      flag is cleared after a function return; it always explicitly
2160      clears the flag before operations where it matters.
2161 
2162      FIXME: kettenis/20030316: I'm not quite sure whether this is the
2163      right thing to do.  The way we fake the flags register here makes
2164      it impossible to change it.  */
2165 
2166   if (regnum == I386_EFLAGS_REGNUM)
2167     {
2168       ULONGEST val;
2169 
2170       val = get_frame_register_unsigned (this_frame, regnum);
2171       val &= ~(1 << 10);
2172       return frame_unwind_got_constant (this_frame, regnum, val);
2173     }
2174 
2175   if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2176     return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2177 
2178   if (regnum == I386_ESP_REGNUM
2179       && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2180     {
2181       /* If the SP has been saved, but we don't know where, then this
2182 	 means that SAVED_SP_REG register was found unavailable back
2183 	 when we built the cache.  */
2184       if (cache->saved_sp == 0)
2185 	return frame_unwind_got_register (this_frame, regnum,
2186 					  cache->saved_sp_reg);
2187       else
2188 	return frame_unwind_got_constant (this_frame, regnum,
2189 					  cache->saved_sp);
2190     }
2191 
2192   if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2193     return frame_unwind_got_memory (this_frame, regnum,
2194 				    cache->saved_regs[regnum]);
2195 
2196   return frame_unwind_got_register (this_frame, regnum, regnum);
2197 }
2198 
2199 static const struct frame_unwind i386_frame_unwind =
2200 {
2201   "i386 prologue",
2202   NORMAL_FRAME,
2203   i386_frame_unwind_stop_reason,
2204   i386_frame_this_id,
2205   i386_frame_prev_register,
2206   NULL,
2207   default_frame_sniffer
2208 };
2209 
2210 /* Normal frames, but in a function epilogue.  */
2211 
2212 /* Implement the stack_frame_destroyed_p gdbarch method.
2213 
2214    The epilogue is defined here as the 'ret' instruction, which will
2215    follow any instruction such as 'leave' or 'pop %ebp' that destroys
2216    the function's stack frame.  */
2217 
2218 static int
2219 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2220 {
2221   gdb_byte insn;
2222   struct compunit_symtab *cust;
2223 
2224   cust = find_pc_compunit_symtab (pc);
2225   if (cust != NULL && cust->epilogue_unwind_valid ())
2226     return 0;
2227 
2228   if (target_read_memory (pc, &insn, 1))
2229     return 0;	/* Can't read memory at pc.  */
2230 
2231   if (insn != 0xc3)	/* 'ret' instruction.  */
2232     return 0;
2233 
2234   return 1;
2235 }
2236 
2237 static int
2238 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2239 			     frame_info_ptr this_frame,
2240 			     void **this_prologue_cache)
2241 {
2242   if (frame_relative_level (this_frame) == 0)
2243     return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2244 					 get_frame_pc (this_frame));
2245   else
2246     return 0;
2247 }
2248 
2249 static struct i386_frame_cache *
2250 i386_epilogue_frame_cache (frame_info_ptr this_frame, void **this_cache)
2251 {
2252   struct i386_frame_cache *cache;
2253   CORE_ADDR sp;
2254 
2255   if (*this_cache)
2256     return (struct i386_frame_cache *) *this_cache;
2257 
2258   cache = i386_alloc_frame_cache ();
2259   *this_cache = cache;
2260 
2261   try
2262     {
2263       cache->pc = get_frame_func (this_frame);
2264 
2265       /* At this point the stack looks as if we just entered the
2266 	 function, with the return address at the top of the
2267 	 stack.  */
2268       sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2269       cache->base = sp + cache->sp_offset;
2270       cache->saved_sp = cache->base + 8;
2271       cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2272 
2273       cache->base_p = 1;
2274     }
2275   catch (const gdb_exception_error &ex)
2276     {
2277       if (ex.error != NOT_AVAILABLE_ERROR)
2278 	throw;
2279     }
2280 
2281   return cache;
2282 }
2283 
2284 static enum unwind_stop_reason
2285 i386_epilogue_frame_unwind_stop_reason (frame_info_ptr this_frame,
2286 					void **this_cache)
2287 {
2288   struct i386_frame_cache *cache =
2289     i386_epilogue_frame_cache (this_frame, this_cache);
2290 
2291   if (!cache->base_p)
2292     return UNWIND_UNAVAILABLE;
2293 
2294   return UNWIND_NO_REASON;
2295 }
2296 
2297 static void
2298 i386_epilogue_frame_this_id (frame_info_ptr this_frame,
2299 			     void **this_cache,
2300 			     struct frame_id *this_id)
2301 {
2302   struct i386_frame_cache *cache =
2303     i386_epilogue_frame_cache (this_frame, this_cache);
2304 
2305   if (!cache->base_p)
2306     (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2307   else
2308     (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2309 }
2310 
2311 static struct value *
2312 i386_epilogue_frame_prev_register (frame_info_ptr this_frame,
2313 				   void **this_cache, int regnum)
2314 {
2315   /* Make sure we've initialized the cache.  */
2316   i386_epilogue_frame_cache (this_frame, this_cache);
2317 
2318   return i386_frame_prev_register (this_frame, this_cache, regnum);
2319 }
2320 
2321 static const struct frame_unwind i386_epilogue_frame_unwind =
2322 {
2323   "i386 epilogue",
2324   NORMAL_FRAME,
2325   i386_epilogue_frame_unwind_stop_reason,
2326   i386_epilogue_frame_this_id,
2327   i386_epilogue_frame_prev_register,
2328   NULL,
2329   i386_epilogue_frame_sniffer
2330 };
2331 
2332 
2333 /* Stack-based trampolines.  */
2334 
2335 /* These trampolines are used on cross x86 targets, when taking the
2336    address of a nested function.  When executing these trampolines,
2337    no stack frame is set up, so we are in a similar situation as in
2338    epilogues and i386_epilogue_frame_this_id can be re-used.  */
2339 
2340 /* Static chain passed in register.  */
2341 
2342 static i386_insn i386_tramp_chain_in_reg_insns[] =
2343 {
2344   /* `movl imm32, %eax' and `movl imm32, %ecx' */
2345   { 5, { 0xb8 }, { 0xfe } },
2346 
2347   /* `jmp imm32' */
2348   { 5, { 0xe9 }, { 0xff } },
2349 
2350   {0}
2351 };
2352 
2353 /* Static chain passed on stack (when regparm=3).  */
2354 
2355 static i386_insn i386_tramp_chain_on_stack_insns[] =
2356 {
2357   /* `push imm32' */
2358   { 5, { 0x68 }, { 0xff } },
2359 
2360   /* `jmp imm32' */
2361   { 5, { 0xe9 }, { 0xff } },
2362 
2363   {0}
2364 };
2365 
2366 /* Return whether PC points inside a stack trampoline.   */
2367 
2368 static int
2369 i386_in_stack_tramp_p (CORE_ADDR pc)
2370 {
2371   gdb_byte insn;
2372   const char *name;
2373 
2374   /* A stack trampoline is detected if no name is associated
2375     to the current pc and if it points inside a trampoline
2376     sequence.  */
2377 
2378   find_pc_partial_function (pc, &name, NULL, NULL);
2379   if (name)
2380     return 0;
2381 
2382   if (target_read_memory (pc, &insn, 1))
2383     return 0;
2384 
2385   if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2386       && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2387     return 0;
2388 
2389   return 1;
2390 }
2391 
2392 static int
2393 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2394 				frame_info_ptr this_frame,
2395 				void **this_cache)
2396 {
2397   if (frame_relative_level (this_frame) == 0)
2398     return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2399   else
2400     return 0;
2401 }
2402 
2403 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2404 {
2405   "i386 stack tramp",
2406   NORMAL_FRAME,
2407   i386_epilogue_frame_unwind_stop_reason,
2408   i386_epilogue_frame_this_id,
2409   i386_epilogue_frame_prev_register,
2410   NULL,
2411   i386_stack_tramp_frame_sniffer
2412 };
2413 
2414 /* Generate a bytecode expression to get the value of the saved PC.  */
2415 
2416 static void
2417 i386_gen_return_address (struct gdbarch *gdbarch,
2418 			 struct agent_expr *ax, struct axs_value *value,
2419 			 CORE_ADDR scope)
2420 {
2421   /* The following sequence assumes the traditional use of the base
2422      register.  */
2423   ax_reg (ax, I386_EBP_REGNUM);
2424   ax_const_l (ax, 4);
2425   ax_simple (ax, aop_add);
2426   value->type = register_type (gdbarch, I386_EIP_REGNUM);
2427   value->kind = axs_lvalue_memory;
2428 }
2429 
2430 
2431 /* Signal trampolines.  */
2432 
2433 static struct i386_frame_cache *
2434 i386_sigtramp_frame_cache (frame_info_ptr this_frame, void **this_cache)
2435 {
2436   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2437   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2438   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2439   struct i386_frame_cache *cache;
2440   CORE_ADDR addr;
2441   gdb_byte buf[4];
2442 
2443   if (*this_cache)
2444     return (struct i386_frame_cache *) *this_cache;
2445 
2446   cache = i386_alloc_frame_cache ();
2447 
2448   try
2449     {
2450       get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2451       cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2452 
2453       addr = tdep->sigcontext_addr (this_frame);
2454       if (tdep->sc_reg_offset)
2455 	{
2456 	  int i;
2457 
2458 	  gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2459 
2460 	  for (i = 0; i < tdep->sc_num_regs; i++)
2461 	    if (tdep->sc_reg_offset[i] != -1)
2462 	      cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2463 	}
2464       else
2465 	{
2466 	  cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2467 	  cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2468 	}
2469 
2470       cache->base_p = 1;
2471     }
2472   catch (const gdb_exception_error &ex)
2473     {
2474       if (ex.error != NOT_AVAILABLE_ERROR)
2475 	throw;
2476     }
2477 
2478   *this_cache = cache;
2479   return cache;
2480 }
2481 
2482 static enum unwind_stop_reason
2483 i386_sigtramp_frame_unwind_stop_reason (frame_info_ptr this_frame,
2484 					void **this_cache)
2485 {
2486   struct i386_frame_cache *cache =
2487     i386_sigtramp_frame_cache (this_frame, this_cache);
2488 
2489   if (!cache->base_p)
2490     return UNWIND_UNAVAILABLE;
2491 
2492   return UNWIND_NO_REASON;
2493 }
2494 
2495 static void
2496 i386_sigtramp_frame_this_id (frame_info_ptr this_frame, void **this_cache,
2497 			     struct frame_id *this_id)
2498 {
2499   struct i386_frame_cache *cache =
2500     i386_sigtramp_frame_cache (this_frame, this_cache);
2501 
2502   if (!cache->base_p)
2503     (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2504   else
2505     {
2506       /* See the end of i386_push_dummy_call.  */
2507       (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2508     }
2509 }
2510 
2511 static struct value *
2512 i386_sigtramp_frame_prev_register (frame_info_ptr this_frame,
2513 				   void **this_cache, int regnum)
2514 {
2515   /* Make sure we've initialized the cache.  */
2516   i386_sigtramp_frame_cache (this_frame, this_cache);
2517 
2518   return i386_frame_prev_register (this_frame, this_cache, regnum);
2519 }
2520 
2521 static int
2522 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2523 			     frame_info_ptr this_frame,
2524 			     void **this_prologue_cache)
2525 {
2526   gdbarch *arch = get_frame_arch (this_frame);
2527   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
2528 
2529   /* We shouldn't even bother if we don't have a sigcontext_addr
2530      handler.  */
2531   if (tdep->sigcontext_addr == NULL)
2532     return 0;
2533 
2534   if (tdep->sigtramp_p != NULL)
2535     {
2536       if (tdep->sigtramp_p (this_frame))
2537 	return 1;
2538     }
2539 
2540   if (tdep->sigtramp_start != 0)
2541     {
2542       CORE_ADDR pc = get_frame_pc (this_frame);
2543 
2544       gdb_assert (tdep->sigtramp_end != 0);
2545       if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2546 	return 1;
2547     }
2548 
2549   return 0;
2550 }
2551 
2552 static const struct frame_unwind i386_sigtramp_frame_unwind =
2553 {
2554   "i386 sigtramp",
2555   SIGTRAMP_FRAME,
2556   i386_sigtramp_frame_unwind_stop_reason,
2557   i386_sigtramp_frame_this_id,
2558   i386_sigtramp_frame_prev_register,
2559   NULL,
2560   i386_sigtramp_frame_sniffer
2561 };
2562 
2563 
2564 static CORE_ADDR
2565 i386_frame_base_address (frame_info_ptr this_frame, void **this_cache)
2566 {
2567   struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2568 
2569   return cache->base;
2570 }
2571 
2572 static const struct frame_base i386_frame_base =
2573 {
2574   &i386_frame_unwind,
2575   i386_frame_base_address,
2576   i386_frame_base_address,
2577   i386_frame_base_address
2578 };
2579 
2580 static struct frame_id
2581 i386_dummy_id (struct gdbarch *gdbarch, frame_info_ptr this_frame)
2582 {
2583   CORE_ADDR fp;
2584 
2585   fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2586 
2587   /* See the end of i386_push_dummy_call.  */
2588   return frame_id_build (fp + 8, get_frame_pc (this_frame));
2589 }
2590 
2591 /* _Decimal128 function return values need 16-byte alignment on the
2592    stack.  */
2593 
2594 static CORE_ADDR
2595 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2596 {
2597   return sp & -(CORE_ADDR)16;
2598 }
2599 
2600 
2601 /* Figure out where the longjmp will land.  Slurp the args out of the
2602    stack.  We expect the first arg to be a pointer to the jmp_buf
2603    structure from which we extract the address that we will land at.
2604    This address is copied into PC.  This routine returns non-zero on
2605    success.  */
2606 
2607 static int
2608 i386_get_longjmp_target (frame_info_ptr frame, CORE_ADDR *pc)
2609 {
2610   gdb_byte buf[4];
2611   CORE_ADDR sp, jb_addr;
2612   struct gdbarch *gdbarch = get_frame_arch (frame);
2613   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2614   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2615   int jb_pc_offset = tdep->jb_pc_offset;
2616 
2617   /* If JB_PC_OFFSET is -1, we have no way to find out where the
2618      longjmp will land.  */
2619   if (jb_pc_offset == -1)
2620     return 0;
2621 
2622   get_frame_register (frame, I386_ESP_REGNUM, buf);
2623   sp = extract_unsigned_integer (buf, 4, byte_order);
2624   if (target_read_memory (sp + 4, buf, 4))
2625     return 0;
2626 
2627   jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2628   if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2629     return 0;
2630 
2631   *pc = extract_unsigned_integer (buf, 4, byte_order);
2632   return 1;
2633 }
2634 
2635 
2636 /* Check whether TYPE must be 16-byte-aligned when passed as a
2637    function argument.  16-byte vectors, _Decimal128 and structures or
2638    unions containing such types must be 16-byte-aligned; other
2639    arguments are 4-byte-aligned.  */
2640 
2641 static int
2642 i386_16_byte_align_p (struct type *type)
2643 {
2644   type = check_typedef (type);
2645   if ((type->code () == TYPE_CODE_DECFLOAT
2646        || (type->code () == TYPE_CODE_ARRAY && type->is_vector ()))
2647       && type->length () == 16)
2648     return 1;
2649   if (type->code () == TYPE_CODE_ARRAY)
2650     return i386_16_byte_align_p (type->target_type ());
2651   if (type->code () == TYPE_CODE_STRUCT
2652       || type->code () == TYPE_CODE_UNION)
2653     {
2654       int i;
2655       for (i = 0; i < type->num_fields (); i++)
2656 	{
2657 	  if (field_is_static (&type->field (i)))
2658 	    continue;
2659 	  if (i386_16_byte_align_p (type->field (i).type ()))
2660 	    return 1;
2661 	}
2662     }
2663   return 0;
2664 }
2665 
2666 /* Implementation for set_gdbarch_push_dummy_code.  */
2667 
2668 static CORE_ADDR
2669 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2670 		      struct value **args, int nargs, struct type *value_type,
2671 		      CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2672 		      struct regcache *regcache)
2673 {
2674   /* Use 0xcc breakpoint - 1 byte.  */
2675   *bp_addr = sp - 1;
2676   *real_pc = funaddr;
2677 
2678   /* Keep the stack aligned.  */
2679   return sp - 16;
2680 }
2681 
2682 /* The "push_dummy_call" gdbarch method, optionally with the thiscall
2683    calling convention.  */
2684 
2685 CORE_ADDR
2686 i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2687 			       struct regcache *regcache, CORE_ADDR bp_addr,
2688 			       int nargs, struct value **args, CORE_ADDR sp,
2689 			       function_call_return_method return_method,
2690 			       CORE_ADDR struct_addr, bool thiscall)
2691 {
2692   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2693   gdb_byte buf[4];
2694   int i;
2695   int write_pass;
2696   int args_space = 0;
2697 
2698   /* BND registers can be in arbitrary values at the moment of the
2699      inferior call.  This can cause boundary violations that are not
2700      due to a real bug or even desired by the user.  The best to be done
2701      is set the BND registers to allow access to the whole memory, INIT
2702      state, before pushing the inferior call.   */
2703   i387_reset_bnd_regs (gdbarch, regcache);
2704 
2705   /* Determine the total space required for arguments and struct
2706      return address in a first pass (allowing for 16-byte-aligned
2707      arguments), then push arguments in a second pass.  */
2708 
2709   for (write_pass = 0; write_pass < 2; write_pass++)
2710     {
2711       int args_space_used = 0;
2712 
2713       if (return_method == return_method_struct)
2714 	{
2715 	  if (write_pass)
2716 	    {
2717 	      /* Push value address.  */
2718 	      store_unsigned_integer (buf, 4, byte_order, struct_addr);
2719 	      write_memory (sp, buf, 4);
2720 	      args_space_used += 4;
2721 	    }
2722 	  else
2723 	    args_space += 4;
2724 	}
2725 
2726       for (i = thiscall ? 1 : 0; i < nargs; i++)
2727 	{
2728 	  int len = value_enclosing_type (args[i])->length ();
2729 
2730 	  if (write_pass)
2731 	    {
2732 	      if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2733 		args_space_used = align_up (args_space_used, 16);
2734 
2735 	      write_memory (sp + args_space_used,
2736 			    value_contents_all (args[i]).data (), len);
2737 	      /* The System V ABI says that:
2738 
2739 	      "An argument's size is increased, if necessary, to make it a
2740 	      multiple of [32-bit] words.  This may require tail padding,
2741 	      depending on the size of the argument."
2742 
2743 	      This makes sure the stack stays word-aligned.  */
2744 	      args_space_used += align_up (len, 4);
2745 	    }
2746 	  else
2747 	    {
2748 	      if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2749 		args_space = align_up (args_space, 16);
2750 	      args_space += align_up (len, 4);
2751 	    }
2752 	}
2753 
2754       if (!write_pass)
2755 	{
2756 	  sp -= args_space;
2757 
2758 	  /* The original System V ABI only requires word alignment,
2759 	     but modern incarnations need 16-byte alignment in order
2760 	     to support SSE.  Since wasting a few bytes here isn't
2761 	     harmful we unconditionally enforce 16-byte alignment.  */
2762 	  sp &= ~0xf;
2763 	}
2764     }
2765 
2766   /* Store return address.  */
2767   sp -= 4;
2768   store_unsigned_integer (buf, 4, byte_order, bp_addr);
2769   write_memory (sp, buf, 4);
2770 
2771   /* Finally, update the stack pointer...  */
2772   store_unsigned_integer (buf, 4, byte_order, sp);
2773   regcache->cooked_write (I386_ESP_REGNUM, buf);
2774 
2775   /* ...and fake a frame pointer.  */
2776   regcache->cooked_write (I386_EBP_REGNUM, buf);
2777 
2778   /* The 'this' pointer needs to be in ECX.  */
2779   if (thiscall)
2780     regcache->cooked_write (I386_ECX_REGNUM,
2781 			    value_contents_all (args[0]).data ());
2782 
2783   /* If the PLT is position-independent, the SYSTEM V ABI requires %ebx to be
2784      set to the address of the GOT when doing a call to a PLT address.
2785      Note that we do not try to determine whether the PLT is
2786      position-independent, we just set the register regardless.  */
2787   CORE_ADDR func_addr = find_function_addr (function, nullptr, nullptr);
2788   if (in_plt_section (func_addr))
2789     {
2790       struct objfile *objf = nullptr;
2791       asection *asect = nullptr;
2792       obj_section *osect = nullptr;
2793 
2794       /* Get object file containing func_addr.  */
2795       obj_section *func_section = find_pc_section (func_addr);
2796       if (func_section != nullptr)
2797 	objf = func_section->objfile;
2798 
2799       if (objf != nullptr)
2800 	{
2801 	  /* Get corresponding .got.plt or .got section.  */
2802 	  asect = bfd_get_section_by_name (objf->obfd.get (), ".got.plt");
2803 	  if (asect == nullptr)
2804 	    asect = bfd_get_section_by_name (objf->obfd.get (), ".got");
2805 	}
2806 
2807       if (asect != nullptr)
2808 	/* Translate asection to obj_section.  */
2809 	osect = maint_obj_section_from_bfd_section (objf->obfd.get (),
2810 						    asect, objf);
2811 
2812       if (osect != nullptr)
2813 	{
2814 	  /* Store the section address in %ebx.  */
2815 	  store_unsigned_integer (buf, 4, byte_order, osect->addr ());
2816 	  regcache->cooked_write (I386_EBX_REGNUM, buf);
2817 	}
2818       else
2819 	{
2820 	  /* If we would only do this for a position-independent PLT, it would
2821 	     make sense to issue a warning here.  */
2822 	}
2823     }
2824 
2825   /* MarkK wrote: This "+ 8" is all over the place:
2826      (i386_frame_this_id, i386_sigtramp_frame_this_id,
2827      i386_dummy_id).  It's there, since all frame unwinders for
2828      a given target have to agree (within a certain margin) on the
2829      definition of the stack address of a frame.  Otherwise frame id
2830      comparison might not work correctly.  Since DWARF2/GCC uses the
2831      stack address *before* the function call as a frame's CFA.  On
2832      the i386, when %ebp is used as a frame pointer, the offset
2833      between the contents %ebp and the CFA as defined by GCC.  */
2834   return sp + 8;
2835 }
2836 
2837 /* Implement the "push_dummy_call" gdbarch method.  */
2838 
2839 static CORE_ADDR
2840 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2841 		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2842 		      struct value **args, CORE_ADDR sp,
2843 		      function_call_return_method return_method,
2844 		      CORE_ADDR struct_addr)
2845 {
2846   return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2847 					nargs, args, sp, return_method,
2848 					struct_addr, false);
2849 }
2850 
2851 /* These registers are used for returning integers (and on some
2852    targets also for returning `struct' and `union' values when their
2853    size and alignment match an integer type).  */
2854 #define LOW_RETURN_REGNUM	I386_EAX_REGNUM /* %eax */
2855 #define HIGH_RETURN_REGNUM	I386_EDX_REGNUM /* %edx */
2856 
2857 /* Read, for architecture GDBARCH, a function return value of TYPE
2858    from REGCACHE, and copy that into VALBUF.  */
2859 
2860 static void
2861 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2862 			   struct regcache *regcache, gdb_byte *valbuf)
2863 {
2864   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2865   int len = type->length ();
2866   gdb_byte buf[I386_MAX_REGISTER_SIZE];
2867 
2868   /* _Float16 and _Float16 _Complex values are returned via xmm0.  */
2869   if (((type->code () == TYPE_CODE_FLT) && len == 2)
2870       || ((type->code () == TYPE_CODE_COMPLEX) && len == 4))
2871     {
2872 	regcache->raw_read (I387_XMM0_REGNUM (tdep), valbuf);
2873 	return;
2874     }
2875   else if (type->code () == TYPE_CODE_FLT)
2876     {
2877       if (tdep->st0_regnum < 0)
2878 	{
2879 	  warning (_("Cannot find floating-point return value."));
2880 	  memset (valbuf, 0, len);
2881 	  return;
2882 	}
2883 
2884       /* Floating-point return values can be found in %st(0).  Convert
2885 	 its contents to the desired type.  This is probably not
2886 	 exactly how it would happen on the target itself, but it is
2887 	 the best we can do.  */
2888       regcache->raw_read (I386_ST0_REGNUM, buf);
2889       target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2890     }
2891   else
2892     {
2893       int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2894       int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2895 
2896       if (len <= low_size)
2897 	{
2898 	  regcache->raw_read (LOW_RETURN_REGNUM, buf);
2899 	  memcpy (valbuf, buf, len);
2900 	}
2901       else if (len <= (low_size + high_size))
2902 	{
2903 	  regcache->raw_read (LOW_RETURN_REGNUM, buf);
2904 	  memcpy (valbuf, buf, low_size);
2905 	  regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2906 	  memcpy (valbuf + low_size, buf, len - low_size);
2907 	}
2908       else
2909 	internal_error (_("Cannot extract return value of %d bytes long."),
2910 			len);
2911     }
2912 }
2913 
2914 /* Write, for architecture GDBARCH, a function return value of TYPE
2915    from VALBUF into REGCACHE.  */
2916 
2917 static void
2918 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2919 			 struct regcache *regcache, const gdb_byte *valbuf)
2920 {
2921   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2922   int len = type->length ();
2923 
2924   if (type->code () == TYPE_CODE_FLT)
2925     {
2926       ULONGEST fstat;
2927       gdb_byte buf[I386_MAX_REGISTER_SIZE];
2928 
2929       if (tdep->st0_regnum < 0)
2930 	{
2931 	  warning (_("Cannot set floating-point return value."));
2932 	  return;
2933 	}
2934 
2935       /* Returning floating-point values is a bit tricky.  Apart from
2936 	 storing the return value in %st(0), we have to simulate the
2937 	 state of the FPU at function return point.  */
2938 
2939       /* Convert the value found in VALBUF to the extended
2940 	 floating-point format used by the FPU.  This is probably
2941 	 not exactly how it would happen on the target itself, but
2942 	 it is the best we can do.  */
2943       target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2944       regcache->raw_write (I386_ST0_REGNUM, buf);
2945 
2946       /* Set the top of the floating-point register stack to 7.  The
2947 	 actual value doesn't really matter, but 7 is what a normal
2948 	 function return would end up with if the program started out
2949 	 with a freshly initialized FPU.  */
2950       regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2951       fstat |= (7 << 11);
2952       regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2953 
2954       /* Mark %st(1) through %st(7) as empty.  Since we set the top of
2955 	 the floating-point register stack to 7, the appropriate value
2956 	 for the tag word is 0x3fff.  */
2957       regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2958     }
2959   else
2960     {
2961       int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2962       int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2963 
2964       if (len <= low_size)
2965 	regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2966       else if (len <= (low_size + high_size))
2967 	{
2968 	  regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2969 	  regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2970 				    valbuf + low_size);
2971 	}
2972       else
2973 	internal_error (_("Cannot store return value of %d bytes long."), len);
2974     }
2975 }
2976 
2977 
2978 /* This is the variable that is set with "set struct-convention", and
2979    its legitimate values.  */
2980 static const char default_struct_convention[] = "default";
2981 static const char pcc_struct_convention[] = "pcc";
2982 static const char reg_struct_convention[] = "reg";
2983 static const char *const valid_conventions[] =
2984 {
2985   default_struct_convention,
2986   pcc_struct_convention,
2987   reg_struct_convention,
2988   NULL
2989 };
2990 static const char *struct_convention = default_struct_convention;
2991 
2992 /* Return non-zero if TYPE, which is assumed to be a structure,
2993    a union type, or an array type, should be returned in registers
2994    for architecture GDBARCH.  */
2995 
2996 static int
2997 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2998 {
2999   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3000   enum type_code code = type->code ();
3001   int len = type->length ();
3002 
3003   gdb_assert (code == TYPE_CODE_STRUCT
3004 	      || code == TYPE_CODE_UNION
3005 	      || code == TYPE_CODE_ARRAY);
3006 
3007   if (struct_convention == pcc_struct_convention
3008       || (struct_convention == default_struct_convention
3009 	  && tdep->struct_return == pcc_struct_return))
3010     return 0;
3011 
3012   /* Structures consisting of a single `float', `double' or 'long
3013      double' member are returned in %st(0).  */
3014   if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3015     {
3016       type = check_typedef (type->field (0).type ());
3017       if (type->code () == TYPE_CODE_FLT)
3018 	return (len == 4 || len == 8 || len == 12);
3019     }
3020 
3021   return (len == 1 || len == 2 || len == 4 || len == 8);
3022 }
3023 
3024 /* Determine, for architecture GDBARCH, how a return value of TYPE
3025    should be returned.  If it is supposed to be returned in registers,
3026    and READBUF is non-zero, read the appropriate value from REGCACHE,
3027    and copy it into READBUF.  If WRITEBUF is non-zero, write the value
3028    from WRITEBUF into REGCACHE.  */
3029 
3030 static enum return_value_convention
3031 i386_return_value (struct gdbarch *gdbarch, struct value *function,
3032 		   struct type *type, struct regcache *regcache,
3033 		   gdb_byte *readbuf, const gdb_byte *writebuf)
3034 {
3035   enum type_code code = type->code ();
3036 
3037   if (((code == TYPE_CODE_STRUCT
3038 	|| code == TYPE_CODE_UNION
3039 	|| code == TYPE_CODE_ARRAY)
3040        && !i386_reg_struct_return_p (gdbarch, type))
3041       /* Complex double and long double uses the struct return convention.  */
3042       || (code == TYPE_CODE_COMPLEX && type->length () == 16)
3043       || (code == TYPE_CODE_COMPLEX && type->length () == 24)
3044       /* 128-bit decimal float uses the struct return convention.  */
3045       || (code == TYPE_CODE_DECFLOAT && type->length () == 16))
3046     {
3047       /* The System V ABI says that:
3048 
3049 	 "A function that returns a structure or union also sets %eax
3050 	 to the value of the original address of the caller's area
3051 	 before it returns.  Thus when the caller receives control
3052 	 again, the address of the returned object resides in register
3053 	 %eax and can be used to access the object."
3054 
3055 	 So the ABI guarantees that we can always find the return
3056 	 value just after the function has returned.  */
3057 
3058       /* Note that the ABI doesn't mention functions returning arrays,
3059 	 which is something possible in certain languages such as Ada.
3060 	 In this case, the value is returned as if it was wrapped in
3061 	 a record, so the convention applied to records also applies
3062 	 to arrays.  */
3063 
3064       if (readbuf)
3065 	{
3066 	  ULONGEST addr;
3067 
3068 	  regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3069 	  read_memory (addr, readbuf, type->length ());
3070 	}
3071 
3072       return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3073     }
3074 
3075   /* This special case is for structures consisting of a single
3076      `float', `double' or 'long double' member.  These structures are
3077      returned in %st(0).  For these structures, we call ourselves
3078      recursively, changing TYPE into the type of the first member of
3079      the structure.  Since that should work for all structures that
3080      have only one member, we don't bother to check the member's type
3081      here.  */
3082   if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3083     {
3084       type = check_typedef (type->field (0).type ());
3085       return i386_return_value (gdbarch, function, type, regcache,
3086 				readbuf, writebuf);
3087     }
3088 
3089   if (readbuf)
3090     i386_extract_return_value (gdbarch, type, regcache, readbuf);
3091   if (writebuf)
3092     i386_store_return_value (gdbarch, type, regcache, writebuf);
3093 
3094   return RETURN_VALUE_REGISTER_CONVENTION;
3095 }
3096 
3097 
3098 struct type *
3099 i387_ext_type (struct gdbarch *gdbarch)
3100 {
3101   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3102 
3103   if (!tdep->i387_ext_type)
3104     {
3105       tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3106       gdb_assert (tdep->i387_ext_type != NULL);
3107     }
3108 
3109   return tdep->i387_ext_type;
3110 }
3111 
3112 /* Construct type for pseudo BND registers.  We can't use
3113    tdesc_find_type since a complement of one value has to be used
3114    to describe the upper bound.  */
3115 
3116 static struct type *
3117 i386_bnd_type (struct gdbarch *gdbarch)
3118 {
3119   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3120 
3121 
3122   if (!tdep->i386_bnd_type)
3123     {
3124       struct type *t;
3125       const struct builtin_type *bt = builtin_type (gdbarch);
3126 
3127       /* The type we're building is described bellow:  */
3128 #if 0
3129       struct __bound128
3130       {
3131 	void *lbound;
3132 	void *ubound;		/* One complement of raw ubound field.  */
3133       };
3134 #endif
3135 
3136       t = arch_composite_type (gdbarch,
3137 			       "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3138 
3139       append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3140       append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3141 
3142       t->set_name ("builtin_type_bound128");
3143       tdep->i386_bnd_type = t;
3144     }
3145 
3146   return tdep->i386_bnd_type;
3147 }
3148 
3149 /* Construct vector type for pseudo ZMM registers.  We can't use
3150    tdesc_find_type since ZMM isn't described in target description.  */
3151 
3152 static struct type *
3153 i386_zmm_type (struct gdbarch *gdbarch)
3154 {
3155   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3156 
3157   if (!tdep->i386_zmm_type)
3158     {
3159       const struct builtin_type *bt = builtin_type (gdbarch);
3160 
3161       /* The type we're building is this:  */
3162 #if 0
3163       union __gdb_builtin_type_vec512i
3164       {
3165 	int128_t v4_int128[4];
3166 	int64_t v8_int64[8];
3167 	int32_t v16_int32[16];
3168 	int16_t v32_int16[32];
3169 	int8_t v64_int8[64];
3170 	double v8_double[8];
3171 	float v16_float[16];
3172 	float16_t v32_half[32];
3173 	bfloat16_t v32_bfloat16[32];
3174       };
3175 #endif
3176 
3177       struct type *t;
3178 
3179       t = arch_composite_type (gdbarch,
3180 			       "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3181       append_composite_type_field (t, "v32_bfloat16",
3182 				   init_vector_type (bt->builtin_bfloat16, 32));
3183       append_composite_type_field (t, "v32_half",
3184 				   init_vector_type (bt->builtin_half, 32));
3185       append_composite_type_field (t, "v16_float",
3186 				   init_vector_type (bt->builtin_float, 16));
3187       append_composite_type_field (t, "v8_double",
3188 				   init_vector_type (bt->builtin_double, 8));
3189       append_composite_type_field (t, "v64_int8",
3190 				   init_vector_type (bt->builtin_int8, 64));
3191       append_composite_type_field (t, "v32_int16",
3192 				   init_vector_type (bt->builtin_int16, 32));
3193       append_composite_type_field (t, "v16_int32",
3194 				   init_vector_type (bt->builtin_int32, 16));
3195       append_composite_type_field (t, "v8_int64",
3196 				   init_vector_type (bt->builtin_int64, 8));
3197       append_composite_type_field (t, "v4_int128",
3198 				   init_vector_type (bt->builtin_int128, 4));
3199 
3200       t->set_is_vector (true);
3201       t->set_name ("builtin_type_vec512i");
3202       tdep->i386_zmm_type = t;
3203     }
3204 
3205   return tdep->i386_zmm_type;
3206 }
3207 
3208 /* Construct vector type for pseudo YMM registers.  We can't use
3209    tdesc_find_type since YMM isn't described in target description.  */
3210 
3211 static struct type *
3212 i386_ymm_type (struct gdbarch *gdbarch)
3213 {
3214   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3215 
3216   if (!tdep->i386_ymm_type)
3217     {
3218       const struct builtin_type *bt = builtin_type (gdbarch);
3219 
3220       /* The type we're building is this: */
3221 #if 0
3222       union __gdb_builtin_type_vec256i
3223       {
3224 	int128_t v2_int128[2];
3225 	int64_t v4_int64[4];
3226 	int32_t v8_int32[8];
3227 	int16_t v16_int16[16];
3228 	int8_t v32_int8[32];
3229 	double v4_double[4];
3230 	float v8_float[8];
3231 	float16_t v16_half[16];
3232 	bfloat16_t v16_bfloat16[16];
3233       };
3234 #endif
3235 
3236       struct type *t;
3237 
3238       t = arch_composite_type (gdbarch,
3239 			       "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3240       append_composite_type_field (t, "v16_bfloat16",
3241 				   init_vector_type (bt->builtin_bfloat16, 16));
3242       append_composite_type_field (t, "v16_half",
3243 				   init_vector_type (bt->builtin_half, 16));
3244       append_composite_type_field (t, "v8_float",
3245 				   init_vector_type (bt->builtin_float, 8));
3246       append_composite_type_field (t, "v4_double",
3247 				   init_vector_type (bt->builtin_double, 4));
3248       append_composite_type_field (t, "v32_int8",
3249 				   init_vector_type (bt->builtin_int8, 32));
3250       append_composite_type_field (t, "v16_int16",
3251 				   init_vector_type (bt->builtin_int16, 16));
3252       append_composite_type_field (t, "v8_int32",
3253 				   init_vector_type (bt->builtin_int32, 8));
3254       append_composite_type_field (t, "v4_int64",
3255 				   init_vector_type (bt->builtin_int64, 4));
3256       append_composite_type_field (t, "v2_int128",
3257 				   init_vector_type (bt->builtin_int128, 2));
3258 
3259       t->set_is_vector (true);
3260       t->set_name ("builtin_type_vec256i");
3261       tdep->i386_ymm_type = t;
3262     }
3263 
3264   return tdep->i386_ymm_type;
3265 }
3266 
3267 /* Construct vector type for MMX registers.  */
3268 static struct type *
3269 i386_mmx_type (struct gdbarch *gdbarch)
3270 {
3271   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3272 
3273   if (!tdep->i386_mmx_type)
3274     {
3275       const struct builtin_type *bt = builtin_type (gdbarch);
3276 
3277       /* The type we're building is this: */
3278 #if 0
3279       union __gdb_builtin_type_vec64i
3280       {
3281 	int64_t uint64;
3282 	int32_t v2_int32[2];
3283 	int16_t v4_int16[4];
3284 	int8_t v8_int8[8];
3285       };
3286 #endif
3287 
3288       struct type *t;
3289 
3290       t = arch_composite_type (gdbarch,
3291 			       "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3292 
3293       append_composite_type_field (t, "uint64", bt->builtin_int64);
3294       append_composite_type_field (t, "v2_int32",
3295 				   init_vector_type (bt->builtin_int32, 2));
3296       append_composite_type_field (t, "v4_int16",
3297 				   init_vector_type (bt->builtin_int16, 4));
3298       append_composite_type_field (t, "v8_int8",
3299 				   init_vector_type (bt->builtin_int8, 8));
3300 
3301       t->set_is_vector (true);
3302       t->set_name ("builtin_type_vec64i");
3303       tdep->i386_mmx_type = t;
3304     }
3305 
3306   return tdep->i386_mmx_type;
3307 }
3308 
3309 /* Return the GDB type object for the "standard" data type of data in
3310    register REGNUM.  */
3311 
3312 struct type *
3313 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3314 {
3315   if (i386_bnd_regnum_p (gdbarch, regnum))
3316     return i386_bnd_type (gdbarch);
3317   if (i386_mmx_regnum_p (gdbarch, regnum))
3318     return i386_mmx_type (gdbarch);
3319   else if (i386_ymm_regnum_p (gdbarch, regnum))
3320     return i386_ymm_type (gdbarch);
3321   else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3322     return i386_ymm_type (gdbarch);
3323   else if (i386_zmm_regnum_p (gdbarch, regnum))
3324     return i386_zmm_type (gdbarch);
3325   else
3326     {
3327       const struct builtin_type *bt = builtin_type (gdbarch);
3328       if (i386_byte_regnum_p (gdbarch, regnum))
3329 	return bt->builtin_int8;
3330       else if (i386_word_regnum_p (gdbarch, regnum))
3331 	return bt->builtin_int16;
3332       else if (i386_dword_regnum_p (gdbarch, regnum))
3333 	return bt->builtin_int32;
3334       else if (i386_k_regnum_p (gdbarch, regnum))
3335 	return bt->builtin_int64;
3336     }
3337 
3338   internal_error (_("invalid regnum"));
3339 }
3340 
3341 /* Map a cooked register onto a raw register or memory.  For the i386,
3342    the MMX registers need to be mapped onto floating point registers.  */
3343 
3344 static int
3345 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3346 {
3347   gdbarch *arch = regcache->arch ();
3348   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
3349   int mmxreg, fpreg;
3350   ULONGEST fstat;
3351   int tos;
3352 
3353   mmxreg = regnum - tdep->mm0_regnum;
3354   regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3355   tos = (fstat >> 11) & 0x7;
3356   fpreg = (mmxreg + tos) % 8;
3357 
3358   return (I387_ST0_REGNUM (tdep) + fpreg);
3359 }
3360 
3361 /* A helper function for us by i386_pseudo_register_read_value and
3362    amd64_pseudo_register_read_value.  It does all the work but reads
3363    the data into an already-allocated value.  */
3364 
3365 void
3366 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3367 				      readable_regcache *regcache,
3368 				      int regnum,
3369 				      struct value *result_value)
3370 {
3371   gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3372   enum register_status status;
3373   gdb_byte *buf = value_contents_raw (result_value).data ();
3374 
3375   if (i386_mmx_regnum_p (gdbarch, regnum))
3376     {
3377       int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3378 
3379       /* Extract (always little endian).  */
3380       status = regcache->raw_read (fpnum, raw_buf);
3381       if (status != REG_VALID)
3382 	mark_value_bytes_unavailable (result_value, 0,
3383 				      value_type (result_value)->length ());
3384       else
3385 	memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3386     }
3387   else
3388     {
3389       i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3390       if (i386_bnd_regnum_p (gdbarch, regnum))
3391 	{
3392 	  regnum -= tdep->bnd0_regnum;
3393 
3394 	  /* Extract (always little endian).  Read lower 128bits.  */
3395 	  status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3396 				       raw_buf);
3397 	  if (status != REG_VALID)
3398 	    mark_value_bytes_unavailable (result_value, 0, 16);
3399 	  else
3400 	    {
3401 	      enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3402 	      LONGEST upper, lower;
3403 	      int size = builtin_type (gdbarch)->builtin_data_ptr->length ();
3404 
3405 	      lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3406 	      upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3407 	      upper = ~upper;
3408 
3409 	      memcpy (buf, &lower, size);
3410 	      memcpy (buf + size, &upper, size);
3411 	    }
3412 	}
3413       else if (i386_k_regnum_p (gdbarch, regnum))
3414 	{
3415 	  regnum -= tdep->k0_regnum;
3416 
3417 	  /* Extract (always little endian).  */
3418 	  status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3419 	  if (status != REG_VALID)
3420 	    mark_value_bytes_unavailable (result_value, 0, 8);
3421 	  else
3422 	    memcpy (buf, raw_buf, 8);
3423 	}
3424       else if (i386_zmm_regnum_p (gdbarch, regnum))
3425 	{
3426 	  regnum -= tdep->zmm0_regnum;
3427 
3428 	  if (regnum < num_lower_zmm_regs)
3429 	    {
3430 	      /* Extract (always little endian).  Read lower 128bits.  */
3431 	      status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3432 					   raw_buf);
3433 	      if (status != REG_VALID)
3434 		mark_value_bytes_unavailable (result_value, 0, 16);
3435 	      else
3436 		memcpy (buf, raw_buf, 16);
3437 
3438 	      /* Extract (always little endian).  Read upper 128bits.  */
3439 	      status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3440 					   raw_buf);
3441 	      if (status != REG_VALID)
3442 		mark_value_bytes_unavailable (result_value, 16, 16);
3443 	      else
3444 		memcpy (buf + 16, raw_buf, 16);
3445 	    }
3446 	  else
3447 	    {
3448 	      /* Extract (always little endian).  Read lower 128bits.  */
3449 	      status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3450 					   - num_lower_zmm_regs,
3451 					   raw_buf);
3452 	      if (status != REG_VALID)
3453 		mark_value_bytes_unavailable (result_value, 0, 16);
3454 	      else
3455 		memcpy (buf, raw_buf, 16);
3456 
3457 	      /* Extract (always little endian).  Read upper 128bits.  */
3458 	      status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3459 					   - num_lower_zmm_regs,
3460 					   raw_buf);
3461 	      if (status != REG_VALID)
3462 		mark_value_bytes_unavailable (result_value, 16, 16);
3463 	      else
3464 		memcpy (buf + 16, raw_buf, 16);
3465 	    }
3466 
3467 	  /* Read upper 256bits.  */
3468 	  status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3469 				       raw_buf);
3470 	  if (status != REG_VALID)
3471 	    mark_value_bytes_unavailable (result_value, 32, 32);
3472 	  else
3473 	    memcpy (buf + 32, raw_buf, 32);
3474 	}
3475       else if (i386_ymm_regnum_p (gdbarch, regnum))
3476 	{
3477 	  regnum -= tdep->ymm0_regnum;
3478 
3479 	  /* Extract (always little endian).  Read lower 128bits.  */
3480 	  status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3481 				       raw_buf);
3482 	  if (status != REG_VALID)
3483 	    mark_value_bytes_unavailable (result_value, 0, 16);
3484 	  else
3485 	    memcpy (buf, raw_buf, 16);
3486 	  /* Read upper 128bits.  */
3487 	  status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3488 				       raw_buf);
3489 	  if (status != REG_VALID)
3490 	    mark_value_bytes_unavailable (result_value, 16, 32);
3491 	  else
3492 	    memcpy (buf + 16, raw_buf, 16);
3493 	}
3494       else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3495 	{
3496 	  regnum -= tdep->ymm16_regnum;
3497 	  /* Extract (always little endian).  Read lower 128bits.  */
3498 	  status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3499 				       raw_buf);
3500 	  if (status != REG_VALID)
3501 	    mark_value_bytes_unavailable (result_value, 0, 16);
3502 	  else
3503 	    memcpy (buf, raw_buf, 16);
3504 	  /* Read upper 128bits.  */
3505 	  status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3506 				       raw_buf);
3507 	  if (status != REG_VALID)
3508 	    mark_value_bytes_unavailable (result_value, 16, 16);
3509 	  else
3510 	    memcpy (buf + 16, raw_buf, 16);
3511 	}
3512       else if (i386_word_regnum_p (gdbarch, regnum))
3513 	{
3514 	  int gpnum = regnum - tdep->ax_regnum;
3515 
3516 	  /* Extract (always little endian).  */
3517 	  status = regcache->raw_read (gpnum, raw_buf);
3518 	  if (status != REG_VALID)
3519 	    mark_value_bytes_unavailable (result_value, 0,
3520 					  value_type (result_value)->length ());
3521 	  else
3522 	    memcpy (buf, raw_buf, 2);
3523 	}
3524       else if (i386_byte_regnum_p (gdbarch, regnum))
3525 	{
3526 	  int gpnum = regnum - tdep->al_regnum;
3527 
3528 	  /* Extract (always little endian).  We read both lower and
3529 	     upper registers.  */
3530 	  status = regcache->raw_read (gpnum % 4, raw_buf);
3531 	  if (status != REG_VALID)
3532 	    mark_value_bytes_unavailable (result_value, 0,
3533 					  value_type (result_value)->length ());
3534 	  else if (gpnum >= 4)
3535 	    memcpy (buf, raw_buf + 1, 1);
3536 	  else
3537 	    memcpy (buf, raw_buf, 1);
3538 	}
3539       else
3540 	internal_error (_("invalid regnum"));
3541     }
3542 }
3543 
3544 static struct value *
3545 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3546 				 readable_regcache *regcache,
3547 				 int regnum)
3548 {
3549   struct value *result;
3550 
3551   result = allocate_value (register_type (gdbarch, regnum));
3552   VALUE_LVAL (result) = lval_register;
3553   VALUE_REGNUM (result) = regnum;
3554 
3555   i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3556 
3557   return result;
3558 }
3559 
3560 void
3561 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3562 			    int regnum, const gdb_byte *buf)
3563 {
3564   gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3565 
3566   if (i386_mmx_regnum_p (gdbarch, regnum))
3567     {
3568       int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3569 
3570       /* Read ...  */
3571       regcache->raw_read (fpnum, raw_buf);
3572       /* ... Modify ... (always little endian).  */
3573       memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3574       /* ... Write.  */
3575       regcache->raw_write (fpnum, raw_buf);
3576     }
3577   else
3578     {
3579       i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3580 
3581       if (i386_bnd_regnum_p (gdbarch, regnum))
3582 	{
3583 	  ULONGEST upper, lower;
3584 	  int size = builtin_type (gdbarch)->builtin_data_ptr->length ();
3585 	  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3586 
3587 	  /* New values from input value.  */
3588 	  regnum -= tdep->bnd0_regnum;
3589 	  lower = extract_unsigned_integer (buf, size, byte_order);
3590 	  upper = extract_unsigned_integer (buf + size, size, byte_order);
3591 
3592 	  /* Fetching register buffer.  */
3593 	  regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3594 			      raw_buf);
3595 
3596 	  upper = ~upper;
3597 
3598 	  /* Set register bits.  */
3599 	  memcpy (raw_buf, &lower, 8);
3600 	  memcpy (raw_buf + 8, &upper, 8);
3601 
3602 	  regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3603 	}
3604       else if (i386_k_regnum_p (gdbarch, regnum))
3605 	{
3606 	  regnum -= tdep->k0_regnum;
3607 
3608 	  regcache->raw_write (tdep->k0_regnum + regnum, buf);
3609 	}
3610       else if (i386_zmm_regnum_p (gdbarch, regnum))
3611 	{
3612 	  regnum -= tdep->zmm0_regnum;
3613 
3614 	  if (regnum < num_lower_zmm_regs)
3615 	    {
3616 	      /* Write lower 128bits.  */
3617 	      regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3618 	      /* Write upper 128bits.  */
3619 	      regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3620 	    }
3621 	  else
3622 	    {
3623 	      /* Write lower 128bits.  */
3624 	      regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3625 				   - num_lower_zmm_regs, buf);
3626 	      /* Write upper 128bits.  */
3627 	      regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3628 				   - num_lower_zmm_regs, buf + 16);
3629 	    }
3630 	  /* Write upper 256bits.  */
3631 	  regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3632 	}
3633       else if (i386_ymm_regnum_p (gdbarch, regnum))
3634 	{
3635 	  regnum -= tdep->ymm0_regnum;
3636 
3637 	  /* ... Write lower 128bits.  */
3638 	  regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3639 	  /* ... Write upper 128bits.  */
3640 	  regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3641 	}
3642       else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3643 	{
3644 	  regnum -= tdep->ymm16_regnum;
3645 
3646 	  /* ... Write lower 128bits.  */
3647 	  regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3648 	  /* ... Write upper 128bits.  */
3649 	  regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3650 	}
3651       else if (i386_word_regnum_p (gdbarch, regnum))
3652 	{
3653 	  int gpnum = regnum - tdep->ax_regnum;
3654 
3655 	  /* Read ...  */
3656 	  regcache->raw_read (gpnum, raw_buf);
3657 	  /* ... Modify ... (always little endian).  */
3658 	  memcpy (raw_buf, buf, 2);
3659 	  /* ... Write.  */
3660 	  regcache->raw_write (gpnum, raw_buf);
3661 	}
3662       else if (i386_byte_regnum_p (gdbarch, regnum))
3663 	{
3664 	  int gpnum = regnum - tdep->al_regnum;
3665 
3666 	  /* Read ...  We read both lower and upper registers.  */
3667 	  regcache->raw_read (gpnum % 4, raw_buf);
3668 	  /* ... Modify ... (always little endian).  */
3669 	  if (gpnum >= 4)
3670 	    memcpy (raw_buf + 1, buf, 1);
3671 	  else
3672 	    memcpy (raw_buf, buf, 1);
3673 	  /* ... Write.  */
3674 	  regcache->raw_write (gpnum % 4, raw_buf);
3675 	}
3676       else
3677 	internal_error (_("invalid regnum"));
3678     }
3679 }
3680 
3681 /* Implement the 'ax_pseudo_register_collect' gdbarch method.  */
3682 
3683 int
3684 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3685 				 struct agent_expr *ax, int regnum)
3686 {
3687   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3688 
3689   if (i386_mmx_regnum_p (gdbarch, regnum))
3690     {
3691       /* MMX to FPU register mapping depends on current TOS.  Let's just
3692 	 not care and collect everything...  */
3693       int i;
3694 
3695       ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3696       for (i = 0; i < 8; i++)
3697 	ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3698       return 0;
3699     }
3700   else if (i386_bnd_regnum_p (gdbarch, regnum))
3701     {
3702       regnum -= tdep->bnd0_regnum;
3703       ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3704       return 0;
3705     }
3706   else if (i386_k_regnum_p (gdbarch, regnum))
3707     {
3708       regnum -= tdep->k0_regnum;
3709       ax_reg_mask (ax, tdep->k0_regnum + regnum);
3710       return 0;
3711     }
3712   else if (i386_zmm_regnum_p (gdbarch, regnum))
3713     {
3714       regnum -= tdep->zmm0_regnum;
3715       if (regnum < num_lower_zmm_regs)
3716 	{
3717 	  ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3718 	  ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3719 	}
3720       else
3721 	{
3722 	  ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3723 			   - num_lower_zmm_regs);
3724 	  ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3725 			   - num_lower_zmm_regs);
3726 	}
3727       ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3728       return 0;
3729     }
3730   else if (i386_ymm_regnum_p (gdbarch, regnum))
3731     {
3732       regnum -= tdep->ymm0_regnum;
3733       ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3734       ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3735       return 0;
3736     }
3737   else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3738     {
3739       regnum -= tdep->ymm16_regnum;
3740       ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3741       ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3742       return 0;
3743     }
3744   else if (i386_word_regnum_p (gdbarch, regnum))
3745     {
3746       int gpnum = regnum - tdep->ax_regnum;
3747 
3748       ax_reg_mask (ax, gpnum);
3749       return 0;
3750     }
3751   else if (i386_byte_regnum_p (gdbarch, regnum))
3752     {
3753       int gpnum = regnum - tdep->al_regnum;
3754 
3755       ax_reg_mask (ax, gpnum % 4);
3756       return 0;
3757     }
3758   else
3759     internal_error (_("invalid regnum"));
3760   return 1;
3761 }
3762 
3763 
3764 /* Return the register number of the register allocated by GCC after
3765    REGNUM, or -1 if there is no such register.  */
3766 
3767 static int
3768 i386_next_regnum (int regnum)
3769 {
3770   /* GCC allocates the registers in the order:
3771 
3772      %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3773 
3774      Since storing a variable in %esp doesn't make any sense we return
3775      -1 for %ebp and for %esp itself.  */
3776   static int next_regnum[] =
3777   {
3778     I386_EDX_REGNUM,		/* Slot for %eax.  */
3779     I386_EBX_REGNUM,		/* Slot for %ecx.  */
3780     I386_ECX_REGNUM,		/* Slot for %edx.  */
3781     I386_ESI_REGNUM,		/* Slot for %ebx.  */
3782     -1, -1,			/* Slots for %esp and %ebp.  */
3783     I386_EDI_REGNUM,		/* Slot for %esi.  */
3784     I386_EBP_REGNUM		/* Slot for %edi.  */
3785   };
3786 
3787   if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3788     return next_regnum[regnum];
3789 
3790   return -1;
3791 }
3792 
3793 /* Return nonzero if a value of type TYPE stored in register REGNUM
3794    needs any special handling.  */
3795 
3796 static int
3797 i386_convert_register_p (struct gdbarch *gdbarch,
3798 			 int regnum, struct type *type)
3799 {
3800   int len = type->length ();
3801 
3802   /* Values may be spread across multiple registers.  Most debugging
3803      formats aren't expressive enough to specify the locations, so
3804      some heuristics is involved.  Right now we only handle types that
3805      have a length that is a multiple of the word size, since GCC
3806      doesn't seem to put any other types into registers.  */
3807   if (len > 4 && len % 4 == 0)
3808     {
3809       int last_regnum = regnum;
3810 
3811       while (len > 4)
3812 	{
3813 	  last_regnum = i386_next_regnum (last_regnum);
3814 	  len -= 4;
3815 	}
3816 
3817       if (last_regnum != -1)
3818 	return 1;
3819     }
3820 
3821   return i387_convert_register_p (gdbarch, regnum, type);
3822 }
3823 
3824 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3825    return its contents in TO.  */
3826 
3827 static int
3828 i386_register_to_value (frame_info_ptr frame, int regnum,
3829 			struct type *type, gdb_byte *to,
3830 			int *optimizedp, int *unavailablep)
3831 {
3832   struct gdbarch *gdbarch = get_frame_arch (frame);
3833   int len = type->length ();
3834 
3835   if (i386_fp_regnum_p (gdbarch, regnum))
3836     return i387_register_to_value (frame, regnum, type, to,
3837 				   optimizedp, unavailablep);
3838 
3839   /* Read a value spread across multiple registers.  */
3840 
3841   gdb_assert (len > 4 && len % 4 == 0);
3842 
3843   while (len > 0)
3844     {
3845       gdb_assert (regnum != -1);
3846       gdb_assert (register_size (gdbarch, regnum) == 4);
3847 
3848       if (!get_frame_register_bytes (frame, regnum, 0,
3849 				     gdb::make_array_view (to,
3850 							register_size (gdbarch,
3851 								       regnum)),
3852 				     optimizedp, unavailablep))
3853 	return 0;
3854 
3855       regnum = i386_next_regnum (regnum);
3856       len -= 4;
3857       to += 4;
3858     }
3859 
3860   *optimizedp = *unavailablep = 0;
3861   return 1;
3862 }
3863 
3864 /* Write the contents FROM of a value of type TYPE into register
3865    REGNUM in frame FRAME.  */
3866 
3867 static void
3868 i386_value_to_register (frame_info_ptr frame, int regnum,
3869 			struct type *type, const gdb_byte *from)
3870 {
3871   int len = type->length ();
3872 
3873   if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3874     {
3875       i387_value_to_register (frame, regnum, type, from);
3876       return;
3877     }
3878 
3879   /* Write a value spread across multiple registers.  */
3880 
3881   gdb_assert (len > 4 && len % 4 == 0);
3882 
3883   while (len > 0)
3884     {
3885       gdb_assert (regnum != -1);
3886       gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3887 
3888       put_frame_register (frame, regnum, from);
3889       regnum = i386_next_regnum (regnum);
3890       len -= 4;
3891       from += 4;
3892     }
3893 }
3894 
3895 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3896    in the general-purpose register set REGSET to register cache
3897    REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
3898 
3899 void
3900 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3901 		     int regnum, const void *gregs, size_t len)
3902 {
3903   struct gdbarch *gdbarch = regcache->arch ();
3904   const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3905   const gdb_byte *regs = (const gdb_byte *) gregs;
3906   int i;
3907 
3908   gdb_assert (len >= tdep->sizeof_gregset);
3909 
3910   for (i = 0; i < tdep->gregset_num_regs; i++)
3911     {
3912       if ((regnum == i || regnum == -1)
3913 	  && tdep->gregset_reg_offset[i] != -1)
3914 	regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3915     }
3916 }
3917 
3918 /* Collect register REGNUM from the register cache REGCACHE and store
3919    it in the buffer specified by GREGS and LEN as described by the
3920    general-purpose register set REGSET.  If REGNUM is -1, do this for
3921    all registers in REGSET.  */
3922 
3923 static void
3924 i386_collect_gregset (const struct regset *regset,
3925 		      const struct regcache *regcache,
3926 		      int regnum, void *gregs, size_t len)
3927 {
3928   struct gdbarch *gdbarch = regcache->arch ();
3929   const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3930   gdb_byte *regs = (gdb_byte *) gregs;
3931   int i;
3932 
3933   gdb_assert (len >= tdep->sizeof_gregset);
3934 
3935   for (i = 0; i < tdep->gregset_num_regs; i++)
3936     {
3937       if ((regnum == i || regnum == -1)
3938 	  && tdep->gregset_reg_offset[i] != -1)
3939 	regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3940     }
3941 }
3942 
3943 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3944    in the floating-point register set REGSET to register cache
3945    REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
3946 
3947 static void
3948 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3949 		      int regnum, const void *fpregs, size_t len)
3950 {
3951   struct gdbarch *gdbarch = regcache->arch ();
3952   const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3953 
3954   if (len == I387_SIZEOF_FXSAVE)
3955     {
3956       i387_supply_fxsave (regcache, regnum, fpregs);
3957       return;
3958     }
3959 
3960   gdb_assert (len >= tdep->sizeof_fpregset);
3961   i387_supply_fsave (regcache, regnum, fpregs);
3962 }
3963 
3964 /* Collect register REGNUM from the register cache REGCACHE and store
3965    it in the buffer specified by FPREGS and LEN as described by the
3966    floating-point register set REGSET.  If REGNUM is -1, do this for
3967    all registers in REGSET.  */
3968 
3969 static void
3970 i386_collect_fpregset (const struct regset *regset,
3971 		       const struct regcache *regcache,
3972 		       int regnum, void *fpregs, size_t len)
3973 {
3974   struct gdbarch *gdbarch = regcache->arch ();
3975   const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3976 
3977   if (len == I387_SIZEOF_FXSAVE)
3978     {
3979       i387_collect_fxsave (regcache, regnum, fpregs);
3980       return;
3981     }
3982 
3983   gdb_assert (len >= tdep->sizeof_fpregset);
3984   i387_collect_fsave (regcache, regnum, fpregs);
3985 }
3986 
3987 /* Register set definitions.  */
3988 
3989 const struct regset i386_gregset =
3990   {
3991     NULL, i386_supply_gregset, i386_collect_gregset
3992   };
3993 
3994 const struct regset i386_fpregset =
3995   {
3996     NULL, i386_supply_fpregset, i386_collect_fpregset
3997   };
3998 
3999 /* Default iterator over core file register note sections.  */
4000 
4001 void
4002 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
4003 				   iterate_over_regset_sections_cb *cb,
4004 				   void *cb_data,
4005 				   const struct regcache *regcache)
4006 {
4007   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
4008 
4009   cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
4010       cb_data);
4011   if (tdep->sizeof_fpregset)
4012     cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
4013 	NULL, cb_data);
4014 }
4015 
4016 
4017 /* Stuff for WIN32 PE style DLL's but is pretty generic really.  */
4018 
4019 CORE_ADDR
4020 i386_pe_skip_trampoline_code (frame_info_ptr frame,
4021 			      CORE_ADDR pc, char *name)
4022 {
4023   struct gdbarch *gdbarch = get_frame_arch (frame);
4024   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4025 
4026   /* jmp *(dest) */
4027   if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
4028     {
4029       unsigned long indirect =
4030 	read_memory_unsigned_integer (pc + 2, 4, byte_order);
4031       struct minimal_symbol *indsym =
4032 	indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
4033       const char *symname = indsym ? indsym->linkage_name () : 0;
4034 
4035       if (symname)
4036 	{
4037 	  if (startswith (symname, "__imp_")
4038 	      || startswith (symname, "_imp_"))
4039 	    return name ? 1 :
4040 		   read_memory_unsigned_integer (indirect, 4, byte_order);
4041 	}
4042     }
4043   return 0;			/* Not a trampoline.  */
4044 }
4045 
4046 
4047 /* Return whether the THIS_FRAME corresponds to a sigtramp
4048    routine.  */
4049 
4050 int
4051 i386_sigtramp_p (frame_info_ptr this_frame)
4052 {
4053   CORE_ADDR pc = get_frame_pc (this_frame);
4054   const char *name;
4055 
4056   find_pc_partial_function (pc, &name, NULL, NULL);
4057   return (name && strcmp ("_sigtramp", name) == 0);
4058 }
4059 
4060 
4061 /* We have two flavours of disassembly.  The machinery on this page
4062    deals with switching between those.  */
4063 
4064 static int
4065 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
4066 {
4067   gdb_assert (disassembly_flavor == att_flavor
4068 	      || disassembly_flavor == intel_flavor);
4069 
4070   info->disassembler_options = disassembly_flavor;
4071 
4072   return default_print_insn (pc, info);
4073 }
4074 
4075 
4076 /* There are a few i386 architecture variants that differ only
4077    slightly from the generic i386 target.  For now, we don't give them
4078    their own source file, but include them here.  As a consequence,
4079    they'll always be included.  */
4080 
4081 /* System V Release 4 (SVR4).  */
4082 
4083 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4084    routine.  */
4085 
4086 static int
4087 i386_svr4_sigtramp_p (frame_info_ptr this_frame)
4088 {
4089   CORE_ADDR pc = get_frame_pc (this_frame);
4090   const char *name;
4091 
4092   /* The origin of these symbols is currently unknown.  */
4093   find_pc_partial_function (pc, &name, NULL, NULL);
4094   return (name && (strcmp ("_sigreturn", name) == 0
4095 		   || strcmp ("sigvechandler", name) == 0));
4096 }
4097 
4098 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4099    address of the associated sigcontext (ucontext) structure.  */
4100 
4101 static CORE_ADDR
4102 i386_svr4_sigcontext_addr (frame_info_ptr this_frame)
4103 {
4104   struct gdbarch *gdbarch = get_frame_arch (this_frame);
4105   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4106   gdb_byte buf[4];
4107   CORE_ADDR sp;
4108 
4109   get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4110   sp = extract_unsigned_integer (buf, 4, byte_order);
4111 
4112   return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4113 }
4114 
4115 
4116 
4117 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4118    gdbarch.h.  */
4119 
4120 int
4121 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4122 {
4123   return (*s == '$' /* Literal number.  */
4124 	  || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement.  */
4125 	  || (*s == '(' && s[1] == '%') /* Register indirection.  */
4126 	  || (*s == '%' && isalpha (s[1]))); /* Register access.  */
4127 }
4128 
4129 /* Helper function for i386_stap_parse_special_token.
4130 
4131    This function parses operands of the form `-8+3+1(%rbp)', which
4132    must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4133 
4134    Return true if the operand was parsed successfully, false
4135    otherwise.  */
4136 
4137 static expr::operation_up
4138 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4139 				       struct stap_parse_info *p)
4140 {
4141   const char *s = p->arg;
4142 
4143   if (isdigit (*s) || *s == '-' || *s == '+')
4144     {
4145       bool got_minus[3];
4146       int i;
4147       long displacements[3];
4148       const char *start;
4149       int len;
4150       char *endp;
4151 
4152       got_minus[0] = false;
4153       if (*s == '+')
4154 	++s;
4155       else if (*s == '-')
4156 	{
4157 	  ++s;
4158 	  got_minus[0] = true;
4159 	}
4160 
4161       if (!isdigit ((unsigned char) *s))
4162 	return {};
4163 
4164       displacements[0] = strtol (s, &endp, 10);
4165       s = endp;
4166 
4167       if (*s != '+' && *s != '-')
4168 	{
4169 	  /* We are not dealing with a triplet.  */
4170 	  return {};
4171 	}
4172 
4173       got_minus[1] = false;
4174       if (*s == '+')
4175 	++s;
4176       else
4177 	{
4178 	  ++s;
4179 	  got_minus[1] = true;
4180 	}
4181 
4182       if (!isdigit ((unsigned char) *s))
4183 	return {};
4184 
4185       displacements[1] = strtol (s, &endp, 10);
4186       s = endp;
4187 
4188       if (*s != '+' && *s != '-')
4189 	{
4190 	  /* We are not dealing with a triplet.  */
4191 	  return {};
4192 	}
4193 
4194       got_minus[2] = false;
4195       if (*s == '+')
4196 	++s;
4197       else
4198 	{
4199 	  ++s;
4200 	  got_minus[2] = true;
4201 	}
4202 
4203       if (!isdigit ((unsigned char) *s))
4204 	return {};
4205 
4206       displacements[2] = strtol (s, &endp, 10);
4207       s = endp;
4208 
4209       if (*s != '(' || s[1] != '%')
4210 	return {};
4211 
4212       s += 2;
4213       start = s;
4214 
4215       while (isalnum (*s))
4216 	++s;
4217 
4218       if (*s++ != ')')
4219 	return {};
4220 
4221       len = s - start - 1;
4222       std::string regname (start, len);
4223 
4224       if (user_reg_map_name_to_regnum (gdbarch, regname.c_str (), len) == -1)
4225 	error (_("Invalid register name `%s' on expression `%s'."),
4226 	       regname.c_str (), p->saved_arg);
4227 
4228       LONGEST value = 0;
4229       for (i = 0; i < 3; i++)
4230 	{
4231 	  LONGEST this_val = displacements[i];
4232 	  if (got_minus[i])
4233 	    this_val = -this_val;
4234 	  value += this_val;
4235 	}
4236 
4237       p->arg = s;
4238 
4239       using namespace expr;
4240 
4241       struct type *long_type = builtin_type (gdbarch)->builtin_long;
4242       operation_up offset
4243 	= make_operation<long_const_operation> (long_type, value);
4244 
4245       operation_up reg
4246 	= make_operation<register_operation> (std::move (regname));
4247       struct type *void_ptr = builtin_type (gdbarch)->builtin_data_ptr;
4248       reg = make_operation<unop_cast_operation> (std::move (reg), void_ptr);
4249 
4250       operation_up sum
4251 	= make_operation<add_operation> (std::move (reg), std::move (offset));
4252       struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4253       sum = make_operation<unop_cast_operation> (std::move (sum),
4254 						 arg_ptr_type);
4255       return make_operation<unop_ind_operation> (std::move (sum));
4256     }
4257 
4258   return {};
4259 }
4260 
4261 /* Helper function for i386_stap_parse_special_token.
4262 
4263    This function parses operands of the form `register base +
4264    (register index * size) + offset', as represented in
4265    `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4266 
4267    Return true if the operand was parsed successfully, false
4268    otherwise.  */
4269 
4270 static expr::operation_up
4271 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4272 					      struct stap_parse_info *p)
4273 {
4274   const char *s = p->arg;
4275 
4276   if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4277     {
4278       bool offset_minus = false;
4279       long offset = 0;
4280       bool size_minus = false;
4281       long size = 0;
4282       const char *start;
4283       int len_base;
4284       int len_index;
4285 
4286       if (*s == '+')
4287 	++s;
4288       else if (*s == '-')
4289 	{
4290 	  ++s;
4291 	  offset_minus = true;
4292 	}
4293 
4294       if (offset_minus && !isdigit (*s))
4295 	return {};
4296 
4297       if (isdigit (*s))
4298 	{
4299 	  char *endp;
4300 
4301 	  offset = strtol (s, &endp, 10);
4302 	  s = endp;
4303 	}
4304 
4305       if (*s != '(' || s[1] != '%')
4306 	return {};
4307 
4308       s += 2;
4309       start = s;
4310 
4311       while (isalnum (*s))
4312 	++s;
4313 
4314       if (*s != ',' || s[1] != '%')
4315 	return {};
4316 
4317       len_base = s - start;
4318       std::string base (start, len_base);
4319 
4320       if (user_reg_map_name_to_regnum (gdbarch, base.c_str (), len_base) == -1)
4321 	error (_("Invalid register name `%s' on expression `%s'."),
4322 	       base.c_str (), p->saved_arg);
4323 
4324       s += 2;
4325       start = s;
4326 
4327       while (isalnum (*s))
4328 	++s;
4329 
4330       len_index = s - start;
4331       std::string index (start, len_index);
4332 
4333       if (user_reg_map_name_to_regnum (gdbarch, index.c_str (),
4334 				       len_index) == -1)
4335 	error (_("Invalid register name `%s' on expression `%s'."),
4336 	       index.c_str (), p->saved_arg);
4337 
4338       if (*s != ',' && *s != ')')
4339 	return {};
4340 
4341       if (*s == ',')
4342 	{
4343 	  char *endp;
4344 
4345 	  ++s;
4346 	  if (*s == '+')
4347 	    ++s;
4348 	  else if (*s == '-')
4349 	    {
4350 	      ++s;
4351 	      size_minus = true;
4352 	    }
4353 
4354 	  size = strtol (s, &endp, 10);
4355 	  s = endp;
4356 
4357 	  if (*s != ')')
4358 	    return {};
4359 	}
4360 
4361       ++s;
4362       p->arg = s;
4363 
4364       using namespace expr;
4365 
4366       struct type *long_type = builtin_type (gdbarch)->builtin_long;
4367       operation_up reg = make_operation<register_operation> (std::move (base));
4368 
4369       if (offset != 0)
4370 	{
4371 	  if (offset_minus)
4372 	    offset = -offset;
4373 	  operation_up value
4374 	    = make_operation<long_const_operation> (long_type, offset);
4375 	  reg = make_operation<add_operation> (std::move (reg),
4376 					       std::move (value));
4377 	}
4378 
4379       operation_up ind_reg
4380 	= make_operation<register_operation> (std::move (index));
4381 
4382       if (size != 0)
4383 	{
4384 	  if (size_minus)
4385 	    size = -size;
4386 	  operation_up value
4387 	    = make_operation<long_const_operation> (long_type, size);
4388 	  ind_reg = make_operation<mul_operation> (std::move (ind_reg),
4389 						   std::move (value));
4390 	}
4391 
4392       operation_up sum
4393 	= make_operation<add_operation> (std::move (reg),
4394 					 std::move (ind_reg));
4395 
4396       struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4397       sum = make_operation<unop_cast_operation> (std::move (sum),
4398 						 arg_ptr_type);
4399       return make_operation<unop_ind_operation> (std::move (sum));
4400     }
4401 
4402   return {};
4403 }
4404 
4405 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4406    gdbarch.h.  */
4407 
4408 expr::operation_up
4409 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4410 			       struct stap_parse_info *p)
4411 {
4412   /* The special tokens to be parsed here are:
4413 
4414      - `register base + (register index * size) + offset', as represented
4415      in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4416 
4417      - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4418      `*(-8 + 3 - 1 + (void *) $eax)'.  */
4419 
4420   expr::operation_up result
4421     = i386_stap_parse_special_token_triplet (gdbarch, p);
4422 
4423   if (result == nullptr)
4424     result = i386_stap_parse_special_token_three_arg_disp (gdbarch, p);
4425 
4426   return result;
4427 }
4428 
4429 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4430    gdbarch.h.  */
4431 
4432 static std::string
4433 i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4434 			   const std::string &regname, int regnum)
4435 {
4436   static const std::unordered_set<std::string> reg_assoc
4437     = { "ax", "bx", "cx", "dx",
4438 	"si", "di", "bp", "sp" };
4439 
4440   /* If we are dealing with a register whose size is less than the size
4441      specified by the "[-]N@" prefix, and it is one of the registers that
4442      we know has an extended variant available, then use the extended
4443      version of the register instead.  */
4444   if (register_size (gdbarch, regnum) < p->arg_type->length ()
4445       && reg_assoc.find (regname) != reg_assoc.end ())
4446     return "e" + regname;
4447 
4448   /* Otherwise, just use the requested register.  */
4449   return regname;
4450 }
4451 
4452 
4453 
4454 /* gdbarch gnu_triplet_regexp method.  Both arches are acceptable as GDB always
4455    also supplies -m64 or -m32 by gdbarch_gcc_target_options.  */
4456 
4457 static const char *
4458 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4459 {
4460   return "(x86_64|i.86)";
4461 }
4462 
4463 
4464 
4465 /* Implement the "in_indirect_branch_thunk" gdbarch function.  */
4466 
4467 static bool
4468 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4469 {
4470   return x86_in_indirect_branch_thunk (pc, i386_register_names,
4471 				       I386_EAX_REGNUM, I386_EIP_REGNUM);
4472 }
4473 
4474 /* Generic ELF.  */
4475 
4476 void
4477 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4478 {
4479   static const char *const stap_integer_prefixes[] = { "$", NULL };
4480   static const char *const stap_register_prefixes[] = { "%", NULL };
4481   static const char *const stap_register_indirection_prefixes[] = { "(",
4482 								    NULL };
4483   static const char *const stap_register_indirection_suffixes[] = { ")",
4484 								    NULL };
4485 
4486   /* We typically use stabs-in-ELF with the SVR4 register numbering.  */
4487   set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4488 
4489   /* Registering SystemTap handlers.  */
4490   set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4491   set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4492   set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4493 					  stap_register_indirection_prefixes);
4494   set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4495 					  stap_register_indirection_suffixes);
4496   set_gdbarch_stap_is_single_operand (gdbarch,
4497 				      i386_stap_is_single_operand);
4498   set_gdbarch_stap_parse_special_token (gdbarch,
4499 					i386_stap_parse_special_token);
4500   set_gdbarch_stap_adjust_register (gdbarch,
4501 				    i386_stap_adjust_register);
4502 
4503   set_gdbarch_in_indirect_branch_thunk (gdbarch,
4504 					i386_in_indirect_branch_thunk);
4505 }
4506 
4507 /* System V Release 4 (SVR4).  */
4508 
4509 void
4510 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4511 {
4512   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
4513 
4514   /* System V Release 4 uses ELF.  */
4515   i386_elf_init_abi (info, gdbarch);
4516 
4517   /* System V Release 4 has shared libraries.  */
4518   set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4519 
4520   tdep->sigtramp_p = i386_svr4_sigtramp_p;
4521   tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4522   tdep->sc_pc_offset = 36 + 14 * 4;
4523   tdep->sc_sp_offset = 36 + 17 * 4;
4524 
4525   tdep->jb_pc_offset = 20;
4526 }
4527 
4528 
4529 
4530 /* i386 register groups.  In addition to the normal groups, add "mmx"
4531    and "sse".  */
4532 
4533 static const reggroup *i386_sse_reggroup;
4534 static const reggroup *i386_mmx_reggroup;
4535 
4536 static void
4537 i386_init_reggroups (void)
4538 {
4539   i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4540   i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4541 }
4542 
4543 static void
4544 i386_add_reggroups (struct gdbarch *gdbarch)
4545 {
4546   reggroup_add (gdbarch, i386_sse_reggroup);
4547   reggroup_add (gdbarch, i386_mmx_reggroup);
4548 }
4549 
4550 int
4551 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4552 			  const struct reggroup *group)
4553 {
4554   const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
4555   int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4556       ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4557       bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4558       mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4559       avx512_p, avx_p, sse_p, pkru_regnum_p;
4560 
4561   /* Don't include pseudo registers, except for MMX, in any register
4562      groups.  */
4563   if (i386_byte_regnum_p (gdbarch, regnum))
4564     return 0;
4565 
4566   if (i386_word_regnum_p (gdbarch, regnum))
4567     return 0;
4568 
4569   if (i386_dword_regnum_p (gdbarch, regnum))
4570     return 0;
4571 
4572   mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4573   if (group == i386_mmx_reggroup)
4574     return mmx_regnum_p;
4575 
4576   pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4577   xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4578   xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4579   mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4580   if (group == i386_sse_reggroup)
4581     return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4582 
4583   ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4584   ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4585   zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4586 
4587   avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4588 	      == X86_XSTATE_AVX_AVX512_MASK);
4589   avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4590 	   == X86_XSTATE_AVX_MASK) && !avx512_p;
4591   sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4592 	   == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4593 
4594   if (group == vector_reggroup)
4595     return (mmx_regnum_p
4596 	    || (zmm_regnum_p && avx512_p)
4597 	    || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4598 	    || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4599 	    || mxcsr_regnum_p);
4600 
4601   fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4602 		 || i386_fpc_regnum_p (gdbarch, regnum));
4603   if (group == float_reggroup)
4604     return fp_regnum_p;
4605 
4606   /* For "info reg all", don't include upper YMM registers nor XMM
4607      registers when AVX is supported.  */
4608   ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4609   ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4610   zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4611   if (group == all_reggroup
4612       && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4613 	  || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4614 	  || ymmh_regnum_p
4615 	  || ymmh_avx512_regnum_p
4616 	  || zmmh_regnum_p))
4617     return 0;
4618 
4619   bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4620   if (group == all_reggroup
4621       && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4622     return bnd_regnum_p;
4623 
4624   bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4625   if (group == all_reggroup
4626       && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4627     return 0;
4628 
4629   mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4630   if (group == all_reggroup
4631       && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4632     return mpx_ctrl_regnum_p;
4633 
4634   if (group == general_reggroup)
4635     return (!fp_regnum_p
4636 	    && !mmx_regnum_p
4637 	    && !mxcsr_regnum_p
4638 	    && !xmm_regnum_p
4639 	    && !xmm_avx512_regnum_p
4640 	    && !ymm_regnum_p
4641 	    && !ymmh_regnum_p
4642 	    && !ymm_avx512_regnum_p
4643 	    && !ymmh_avx512_regnum_p
4644 	    && !bndr_regnum_p
4645 	    && !bnd_regnum_p
4646 	    && !mpx_ctrl_regnum_p
4647 	    && !zmm_regnum_p
4648 	    && !zmmh_regnum_p
4649 	    && !pkru_regnum_p);
4650 
4651   return default_register_reggroup_p (gdbarch, regnum, group);
4652 }
4653 
4654 
4655 /* Get the ARGIth function argument for the current function.  */
4656 
4657 static CORE_ADDR
4658 i386_fetch_pointer_argument (frame_info_ptr frame, int argi,
4659 			     struct type *type)
4660 {
4661   struct gdbarch *gdbarch = get_frame_arch (frame);
4662   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4663   CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4664   return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4665 }
4666 
4667 #define PREFIX_REPZ	0x01
4668 #define PREFIX_REPNZ	0x02
4669 #define PREFIX_LOCK	0x04
4670 #define PREFIX_DATA	0x08
4671 #define PREFIX_ADDR	0x10
4672 
4673 /* operand size */
4674 enum
4675 {
4676   OT_BYTE = 0,
4677   OT_WORD,
4678   OT_LONG,
4679   OT_QUAD,
4680   OT_DQUAD,
4681 };
4682 
4683 /* i386 arith/logic operations */
4684 enum
4685 {
4686   OP_ADDL,
4687   OP_ORL,
4688   OP_ADCL,
4689   OP_SBBL,
4690   OP_ANDL,
4691   OP_SUBL,
4692   OP_XORL,
4693   OP_CMPL,
4694 };
4695 
4696 struct i386_record_s
4697 {
4698   struct gdbarch *gdbarch;
4699   struct regcache *regcache;
4700   CORE_ADDR orig_addr;
4701   CORE_ADDR addr;
4702   int aflag;
4703   int dflag;
4704   int override;
4705   uint8_t modrm;
4706   uint8_t mod, reg, rm;
4707   int ot;
4708   uint8_t rex_x;
4709   uint8_t rex_b;
4710   int rip_offset;
4711   int popl_esp_hack;
4712   const int *regmap;
4713 };
4714 
4715 /* Parse the "modrm" part of the memory address irp->addr points at.
4716    Returns -1 if something goes wrong, 0 otherwise.  */
4717 
4718 static int
4719 i386_record_modrm (struct i386_record_s *irp)
4720 {
4721   struct gdbarch *gdbarch = irp->gdbarch;
4722 
4723   if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4724     return -1;
4725 
4726   irp->addr++;
4727   irp->mod = (irp->modrm >> 6) & 3;
4728   irp->reg = (irp->modrm >> 3) & 7;
4729   irp->rm = irp->modrm & 7;
4730 
4731   return 0;
4732 }
4733 
4734 /* Extract the memory address that the current instruction writes to,
4735    and return it in *ADDR.  Return -1 if something goes wrong.  */
4736 
4737 static int
4738 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4739 {
4740   struct gdbarch *gdbarch = irp->gdbarch;
4741   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4742   gdb_byte buf[4];
4743   ULONGEST offset64;
4744 
4745   *addr = 0;
4746   if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4747     {
4748       /* 32/64 bits */
4749       int havesib = 0;
4750       uint8_t scale = 0;
4751       uint8_t byte;
4752       uint8_t index = 0;
4753       uint8_t base = irp->rm;
4754 
4755       if (base == 4)
4756 	{
4757 	  havesib = 1;
4758 	  if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4759 	    return -1;
4760 	  irp->addr++;
4761 	  scale = (byte >> 6) & 3;
4762 	  index = ((byte >> 3) & 7) | irp->rex_x;
4763 	  base = (byte & 7);
4764 	}
4765       base |= irp->rex_b;
4766 
4767       switch (irp->mod)
4768 	{
4769 	case 0:
4770 	  if ((base & 7) == 5)
4771 	    {
4772 	      base = 0xff;
4773 	      if (record_read_memory (gdbarch, irp->addr, buf, 4))
4774 		return -1;
4775 	      irp->addr += 4;
4776 	      *addr = extract_signed_integer (buf, 4, byte_order);
4777 	      if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4778 		*addr += irp->addr + irp->rip_offset;
4779 	    }
4780 	  break;
4781 	case 1:
4782 	  if (record_read_memory (gdbarch, irp->addr, buf, 1))
4783 	    return -1;
4784 	  irp->addr++;
4785 	  *addr = (int8_t) buf[0];
4786 	  break;
4787 	case 2:
4788 	  if (record_read_memory (gdbarch, irp->addr, buf, 4))
4789 	    return -1;
4790 	  *addr = extract_signed_integer (buf, 4, byte_order);
4791 	  irp->addr += 4;
4792 	  break;
4793 	}
4794 
4795       offset64 = 0;
4796       if (base != 0xff)
4797 	{
4798 	  if (base == 4 && irp->popl_esp_hack)
4799 	    *addr += irp->popl_esp_hack;
4800 	  regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4801 				      &offset64);
4802 	}
4803       if (irp->aflag == 2)
4804 	{
4805 	  *addr += offset64;
4806 	}
4807       else
4808 	*addr = (uint32_t) (offset64 + *addr);
4809 
4810       if (havesib && (index != 4 || scale != 0))
4811 	{
4812 	  regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4813 				      &offset64);
4814 	  if (irp->aflag == 2)
4815 	    *addr += offset64 << scale;
4816 	  else
4817 	    *addr = (uint32_t) (*addr + (offset64 << scale));
4818 	}
4819 
4820       if (!irp->aflag)
4821 	{
4822 	  /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4823 	     address from 32-bit to 64-bit.  */
4824 	    *addr = (uint32_t) *addr;
4825 	}
4826     }
4827   else
4828     {
4829       /* 16 bits */
4830       switch (irp->mod)
4831 	{
4832 	case 0:
4833 	  if (irp->rm == 6)
4834 	    {
4835 	      if (record_read_memory (gdbarch, irp->addr, buf, 2))
4836 		return -1;
4837 	      irp->addr += 2;
4838 	      *addr = extract_signed_integer (buf, 2, byte_order);
4839 	      irp->rm = 0;
4840 	      goto no_rm;
4841 	    }
4842 	  break;
4843 	case 1:
4844 	  if (record_read_memory (gdbarch, irp->addr, buf, 1))
4845 	    return -1;
4846 	  irp->addr++;
4847 	  *addr = (int8_t) buf[0];
4848 	  break;
4849 	case 2:
4850 	  if (record_read_memory (gdbarch, irp->addr, buf, 2))
4851 	    return -1;
4852 	  irp->addr += 2;
4853 	  *addr = extract_signed_integer (buf, 2, byte_order);
4854 	  break;
4855 	}
4856 
4857       switch (irp->rm)
4858 	{
4859 	case 0:
4860 	  regcache_raw_read_unsigned (irp->regcache,
4861 				      irp->regmap[X86_RECORD_REBX_REGNUM],
4862 				      &offset64);
4863 	  *addr = (uint32_t) (*addr + offset64);
4864 	  regcache_raw_read_unsigned (irp->regcache,
4865 				      irp->regmap[X86_RECORD_RESI_REGNUM],
4866 				      &offset64);
4867 	  *addr = (uint32_t) (*addr + offset64);
4868 	  break;
4869 	case 1:
4870 	  regcache_raw_read_unsigned (irp->regcache,
4871 				      irp->regmap[X86_RECORD_REBX_REGNUM],
4872 				      &offset64);
4873 	  *addr = (uint32_t) (*addr + offset64);
4874 	  regcache_raw_read_unsigned (irp->regcache,
4875 				      irp->regmap[X86_RECORD_REDI_REGNUM],
4876 				      &offset64);
4877 	  *addr = (uint32_t) (*addr + offset64);
4878 	  break;
4879 	case 2:
4880 	  regcache_raw_read_unsigned (irp->regcache,
4881 				      irp->regmap[X86_RECORD_REBP_REGNUM],
4882 				      &offset64);
4883 	  *addr = (uint32_t) (*addr + offset64);
4884 	  regcache_raw_read_unsigned (irp->regcache,
4885 				      irp->regmap[X86_RECORD_RESI_REGNUM],
4886 				      &offset64);
4887 	  *addr = (uint32_t) (*addr + offset64);
4888 	  break;
4889 	case 3:
4890 	  regcache_raw_read_unsigned (irp->regcache,
4891 				      irp->regmap[X86_RECORD_REBP_REGNUM],
4892 				      &offset64);
4893 	  *addr = (uint32_t) (*addr + offset64);
4894 	  regcache_raw_read_unsigned (irp->regcache,
4895 				      irp->regmap[X86_RECORD_REDI_REGNUM],
4896 				      &offset64);
4897 	  *addr = (uint32_t) (*addr + offset64);
4898 	  break;
4899 	case 4:
4900 	  regcache_raw_read_unsigned (irp->regcache,
4901 				      irp->regmap[X86_RECORD_RESI_REGNUM],
4902 				      &offset64);
4903 	  *addr = (uint32_t) (*addr + offset64);
4904 	  break;
4905 	case 5:
4906 	  regcache_raw_read_unsigned (irp->regcache,
4907 				      irp->regmap[X86_RECORD_REDI_REGNUM],
4908 				      &offset64);
4909 	  *addr = (uint32_t) (*addr + offset64);
4910 	  break;
4911 	case 6:
4912 	  regcache_raw_read_unsigned (irp->regcache,
4913 				      irp->regmap[X86_RECORD_REBP_REGNUM],
4914 				      &offset64);
4915 	  *addr = (uint32_t) (*addr + offset64);
4916 	  break;
4917 	case 7:
4918 	  regcache_raw_read_unsigned (irp->regcache,
4919 				      irp->regmap[X86_RECORD_REBX_REGNUM],
4920 				      &offset64);
4921 	  *addr = (uint32_t) (*addr + offset64);
4922 	  break;
4923 	}
4924       *addr &= 0xffff;
4925     }
4926 
4927  no_rm:
4928   return 0;
4929 }
4930 
4931 /* Record the address and contents of the memory that will be changed
4932    by the current instruction.  Return -1 if something goes wrong, 0
4933    otherwise.  */
4934 
4935 static int
4936 i386_record_lea_modrm (struct i386_record_s *irp)
4937 {
4938   struct gdbarch *gdbarch = irp->gdbarch;
4939   uint64_t addr;
4940 
4941   if (irp->override >= 0)
4942     {
4943       if (record_full_memory_query)
4944 	{
4945 	  if (yquery (_("\
4946 Process record ignores the memory change of instruction at address %s\n\
4947 because it can't get the value of the segment register.\n\
4948 Do you want to stop the program?"),
4949 		      paddress (gdbarch, irp->orig_addr)))
4950 	    return -1;
4951 	}
4952 
4953       return 0;
4954     }
4955 
4956   if (i386_record_lea_modrm_addr (irp, &addr))
4957     return -1;
4958 
4959   if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4960     return -1;
4961 
4962   return 0;
4963 }
4964 
4965 /* Record the effects of a push operation.  Return -1 if something
4966    goes wrong, 0 otherwise.  */
4967 
4968 static int
4969 i386_record_push (struct i386_record_s *irp, int size)
4970 {
4971   ULONGEST addr;
4972 
4973   if (record_full_arch_list_add_reg (irp->regcache,
4974 				     irp->regmap[X86_RECORD_RESP_REGNUM]))
4975     return -1;
4976   regcache_raw_read_unsigned (irp->regcache,
4977 			      irp->regmap[X86_RECORD_RESP_REGNUM],
4978 			      &addr);
4979   if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4980     return -1;
4981 
4982   return 0;
4983 }
4984 
4985 
4986 /* Defines contents to record.  */
4987 #define I386_SAVE_FPU_REGS              0xfffd
4988 #define I386_SAVE_FPU_ENV               0xfffe
4989 #define I386_SAVE_FPU_ENV_REG_STACK     0xffff
4990 
4991 /* Record the values of the floating point registers which will be
4992    changed by the current instruction.  Returns -1 if something is
4993    wrong, 0 otherwise.  */
4994 
4995 static int i386_record_floats (struct gdbarch *gdbarch,
4996 			       struct i386_record_s *ir,
4997 			       uint32_t iregnum)
4998 {
4999   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
5000   int i;
5001 
5002   /* Oza: Because of floating point insn push/pop of fpu stack is going to
5003      happen.  Currently we store st0-st7 registers, but we need not store all
5004      registers all the time, in future we use ftag register and record only
5005      those who are not marked as an empty.  */
5006 
5007   if (I386_SAVE_FPU_REGS == iregnum)
5008     {
5009       for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
5010 	{
5011 	  if (record_full_arch_list_add_reg (ir->regcache, i))
5012 	    return -1;
5013 	}
5014     }
5015   else if (I386_SAVE_FPU_ENV == iregnum)
5016     {
5017       for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5018 	      {
5019 	      if (record_full_arch_list_add_reg (ir->regcache, i))
5020 		return -1;
5021 	      }
5022     }
5023   else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5024     {
5025       for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5026 	if (record_full_arch_list_add_reg (ir->regcache, i))
5027 	  return -1;
5028     }
5029   else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5030 	   (iregnum <= I387_FOP_REGNUM (tdep)))
5031     {
5032       if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5033 	return -1;
5034     }
5035   else
5036     {
5037       /* Parameter error.  */
5038       return -1;
5039     }
5040   if(I386_SAVE_FPU_ENV != iregnum)
5041     {
5042     for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5043       {
5044       if (record_full_arch_list_add_reg (ir->regcache, i))
5045 	return -1;
5046       }
5047     }
5048   return 0;
5049 }
5050 
5051 /* Parse the current instruction, and record the values of the
5052    registers and memory that will be changed by the current
5053    instruction.  Returns -1 if something goes wrong, 0 otherwise.  */
5054 
5055 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5056     record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5057 
5058 int
5059 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5060 		     CORE_ADDR input_addr)
5061 {
5062   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5063   int prefixes = 0;
5064   int regnum = 0;
5065   uint32_t opcode;
5066   uint8_t opcode8;
5067   ULONGEST addr;
5068   gdb_byte buf[I386_MAX_REGISTER_SIZE];
5069   struct i386_record_s ir;
5070   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
5071   uint8_t rex_w = -1;
5072   uint8_t rex_r = 0;
5073 
5074   memset (&ir, 0, sizeof (struct i386_record_s));
5075   ir.regcache = regcache;
5076   ir.addr = input_addr;
5077   ir.orig_addr = input_addr;
5078   ir.aflag = 1;
5079   ir.dflag = 1;
5080   ir.override = -1;
5081   ir.popl_esp_hack = 0;
5082   ir.regmap = tdep->record_regmap;
5083   ir.gdbarch = gdbarch;
5084 
5085   if (record_debug > 1)
5086     gdb_printf (gdb_stdlog, "Process record: i386_process_record "
5087 		"addr = %s\n",
5088 		paddress (gdbarch, ir.addr));
5089 
5090   /* prefixes */
5091   while (1)
5092     {
5093       if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5094 	return -1;
5095       ir.addr++;
5096       switch (opcode8)	/* Instruction prefixes */
5097 	{
5098 	case REPE_PREFIX_OPCODE:
5099 	  prefixes |= PREFIX_REPZ;
5100 	  break;
5101 	case REPNE_PREFIX_OPCODE:
5102 	  prefixes |= PREFIX_REPNZ;
5103 	  break;
5104 	case LOCK_PREFIX_OPCODE:
5105 	  prefixes |= PREFIX_LOCK;
5106 	  break;
5107 	case CS_PREFIX_OPCODE:
5108 	  ir.override = X86_RECORD_CS_REGNUM;
5109 	  break;
5110 	case SS_PREFIX_OPCODE:
5111 	  ir.override = X86_RECORD_SS_REGNUM;
5112 	  break;
5113 	case DS_PREFIX_OPCODE:
5114 	  ir.override = X86_RECORD_DS_REGNUM;
5115 	  break;
5116 	case ES_PREFIX_OPCODE:
5117 	  ir.override = X86_RECORD_ES_REGNUM;
5118 	  break;
5119 	case FS_PREFIX_OPCODE:
5120 	  ir.override = X86_RECORD_FS_REGNUM;
5121 	  break;
5122 	case GS_PREFIX_OPCODE:
5123 	  ir.override = X86_RECORD_GS_REGNUM;
5124 	  break;
5125 	case DATA_PREFIX_OPCODE:
5126 	  prefixes |= PREFIX_DATA;
5127 	  break;
5128 	case ADDR_PREFIX_OPCODE:
5129 	  prefixes |= PREFIX_ADDR;
5130 	  break;
5131 	case 0x40:	/* i386 inc %eax */
5132 	case 0x41:	/* i386 inc %ecx */
5133 	case 0x42:	/* i386 inc %edx */
5134 	case 0x43:	/* i386 inc %ebx */
5135 	case 0x44:	/* i386 inc %esp */
5136 	case 0x45:	/* i386 inc %ebp */
5137 	case 0x46:	/* i386 inc %esi */
5138 	case 0x47:	/* i386 inc %edi */
5139 	case 0x48:	/* i386 dec %eax */
5140 	case 0x49:	/* i386 dec %ecx */
5141 	case 0x4a:	/* i386 dec %edx */
5142 	case 0x4b:	/* i386 dec %ebx */
5143 	case 0x4c:	/* i386 dec %esp */
5144 	case 0x4d:	/* i386 dec %ebp */
5145 	case 0x4e:	/* i386 dec %esi */
5146 	case 0x4f:	/* i386 dec %edi */
5147 	  if (ir.regmap[X86_RECORD_R8_REGNUM])	/* 64 bit target */
5148 	    {
5149 	       /* REX */
5150 	       rex_w = (opcode8 >> 3) & 1;
5151 	       rex_r = (opcode8 & 0x4) << 1;
5152 	       ir.rex_x = (opcode8 & 0x2) << 2;
5153 	       ir.rex_b = (opcode8 & 0x1) << 3;
5154 	    }
5155 	  else					/* 32 bit target */
5156 	    goto out_prefixes;
5157 	  break;
5158 	default:
5159 	  goto out_prefixes;
5160 	  break;
5161 	}
5162     }
5163  out_prefixes:
5164   if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5165     {
5166       ir.dflag = 2;
5167     }
5168   else
5169     {
5170       if (prefixes & PREFIX_DATA)
5171 	ir.dflag ^= 1;
5172     }
5173   if (prefixes & PREFIX_ADDR)
5174     ir.aflag ^= 1;
5175   else if (ir.regmap[X86_RECORD_R8_REGNUM])
5176     ir.aflag = 2;
5177 
5178   /* Now check op code.  */
5179   opcode = (uint32_t) opcode8;
5180  reswitch:
5181   switch (opcode)
5182     {
5183     case 0x0f:
5184       if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5185 	return -1;
5186       ir.addr++;
5187       opcode = (uint32_t) opcode8 | 0x0f00;
5188       goto reswitch;
5189       break;
5190 
5191     case 0x00:    /* arith & logic */
5192     case 0x01:
5193     case 0x02:
5194     case 0x03:
5195     case 0x04:
5196     case 0x05:
5197     case 0x08:
5198     case 0x09:
5199     case 0x0a:
5200     case 0x0b:
5201     case 0x0c:
5202     case 0x0d:
5203     case 0x10:
5204     case 0x11:
5205     case 0x12:
5206     case 0x13:
5207     case 0x14:
5208     case 0x15:
5209     case 0x18:
5210     case 0x19:
5211     case 0x1a:
5212     case 0x1b:
5213     case 0x1c:
5214     case 0x1d:
5215     case 0x20:
5216     case 0x21:
5217     case 0x22:
5218     case 0x23:
5219     case 0x24:
5220     case 0x25:
5221     case 0x28:
5222     case 0x29:
5223     case 0x2a:
5224     case 0x2b:
5225     case 0x2c:
5226     case 0x2d:
5227     case 0x30:
5228     case 0x31:
5229     case 0x32:
5230     case 0x33:
5231     case 0x34:
5232     case 0x35:
5233     case 0x38:
5234     case 0x39:
5235     case 0x3a:
5236     case 0x3b:
5237     case 0x3c:
5238     case 0x3d:
5239       if (((opcode >> 3) & 7) != OP_CMPL)
5240 	{
5241 	  if ((opcode & 1) == 0)
5242 	    ir.ot = OT_BYTE;
5243 	  else
5244 	    ir.ot = ir.dflag + OT_WORD;
5245 
5246 	  switch ((opcode >> 1) & 3)
5247 	    {
5248 	    case 0:    /* OP Ev, Gv */
5249 	      if (i386_record_modrm (&ir))
5250 		return -1;
5251 	      if (ir.mod != 3)
5252 		{
5253 		  if (i386_record_lea_modrm (&ir))
5254 		    return -1;
5255 		}
5256 	      else
5257 		{
5258 		  ir.rm |= ir.rex_b;
5259 		  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5260 		    ir.rm &= 0x3;
5261 		  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5262 		}
5263 	      break;
5264 	    case 1:    /* OP Gv, Ev */
5265 	      if (i386_record_modrm (&ir))
5266 		return -1;
5267 	      ir.reg |= rex_r;
5268 	      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5269 		ir.reg &= 0x3;
5270 	      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5271 	      break;
5272 	    case 2:    /* OP A, Iv */
5273 	      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5274 	      break;
5275 	    }
5276 	}
5277       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5278       break;
5279 
5280     case 0x80:    /* GRP1 */
5281     case 0x81:
5282     case 0x82:
5283     case 0x83:
5284       if (i386_record_modrm (&ir))
5285 	return -1;
5286 
5287       if (ir.reg != OP_CMPL)
5288 	{
5289 	  if ((opcode & 1) == 0)
5290 	    ir.ot = OT_BYTE;
5291 	  else
5292 	    ir.ot = ir.dflag + OT_WORD;
5293 
5294 	  if (ir.mod != 3)
5295 	    {
5296 	      if (opcode == 0x83)
5297 		ir.rip_offset = 1;
5298 	      else
5299 		ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5300 	      if (i386_record_lea_modrm (&ir))
5301 		return -1;
5302 	    }
5303 	  else
5304 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5305 	}
5306       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5307       break;
5308 
5309     case 0x40:      /* inc */
5310     case 0x41:
5311     case 0x42:
5312     case 0x43:
5313     case 0x44:
5314     case 0x45:
5315     case 0x46:
5316     case 0x47:
5317 
5318     case 0x48:      /* dec */
5319     case 0x49:
5320     case 0x4a:
5321     case 0x4b:
5322     case 0x4c:
5323     case 0x4d:
5324     case 0x4e:
5325     case 0x4f:
5326 
5327       I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5328       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5329       break;
5330 
5331     case 0xf6:    /* GRP3 */
5332     case 0xf7:
5333       if ((opcode & 1) == 0)
5334 	ir.ot = OT_BYTE;
5335       else
5336 	ir.ot = ir.dflag + OT_WORD;
5337       if (i386_record_modrm (&ir))
5338 	return -1;
5339 
5340       if (ir.mod != 3 && ir.reg == 0)
5341 	ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5342 
5343       switch (ir.reg)
5344 	{
5345 	case 0:    /* test */
5346 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5347 	  break;
5348 	case 2:    /* not */
5349 	case 3:    /* neg */
5350 	  if (ir.mod != 3)
5351 	    {
5352 	      if (i386_record_lea_modrm (&ir))
5353 		return -1;
5354 	    }
5355 	  else
5356 	    {
5357 	      ir.rm |= ir.rex_b;
5358 	      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5359 		ir.rm &= 0x3;
5360 	      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5361 	    }
5362 	  if (ir.reg == 3)  /* neg */
5363 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5364 	  break;
5365 	case 4:    /* mul  */
5366 	case 5:    /* imul */
5367 	case 6:    /* div  */
5368 	case 7:    /* idiv */
5369 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5370 	  if (ir.ot != OT_BYTE)
5371 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5372 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5373 	  break;
5374 	default:
5375 	  ir.addr -= 2;
5376 	  opcode = opcode << 8 | ir.modrm;
5377 	  goto no_support;
5378 	  break;
5379 	}
5380       break;
5381 
5382     case 0xfe:    /* GRP4 */
5383     case 0xff:    /* GRP5 */
5384       if (i386_record_modrm (&ir))
5385 	return -1;
5386       if (ir.reg >= 2 && opcode == 0xfe)
5387 	{
5388 	  ir.addr -= 2;
5389 	  opcode = opcode << 8 | ir.modrm;
5390 	  goto no_support;
5391 	}
5392       switch (ir.reg)
5393 	{
5394 	case 0:    /* inc */
5395 	case 1:    /* dec */
5396 	  if ((opcode & 1) == 0)
5397 	    ir.ot = OT_BYTE;
5398 	  else
5399 	    ir.ot = ir.dflag + OT_WORD;
5400 	  if (ir.mod != 3)
5401 	    {
5402 	      if (i386_record_lea_modrm (&ir))
5403 		return -1;
5404 	    }
5405 	  else
5406 	    {
5407 	      ir.rm |= ir.rex_b;
5408 	      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5409 		ir.rm &= 0x3;
5410 	      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5411 	    }
5412 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5413 	  break;
5414 	case 2:    /* call */
5415 	  if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5416 	    ir.dflag = 2;
5417 	  if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5418 	    return -1;
5419 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5420 	  break;
5421 	case 3:    /* lcall */
5422 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5423 	  if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5424 	    return -1;
5425 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5426 	  break;
5427 	case 4:    /* jmp  */
5428 	case 5:    /* ljmp */
5429 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5430 	  break;
5431 	case 6:    /* push */
5432 	  if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5433 	    ir.dflag = 2;
5434 	  if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5435 	    return -1;
5436 	  break;
5437 	default:
5438 	  ir.addr -= 2;
5439 	  opcode = opcode << 8 | ir.modrm;
5440 	  goto no_support;
5441 	  break;
5442 	}
5443       break;
5444 
5445     case 0x84:    /* test */
5446     case 0x85:
5447     case 0xa8:
5448     case 0xa9:
5449       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5450       break;
5451 
5452     case 0x98:    /* CWDE/CBW */
5453       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5454       break;
5455 
5456     case 0x99:    /* CDQ/CWD */
5457       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5458       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5459       break;
5460 
5461     case 0x0faf:  /* imul */
5462     case 0x69:
5463     case 0x6b:
5464       ir.ot = ir.dflag + OT_WORD;
5465       if (i386_record_modrm (&ir))
5466 	return -1;
5467       if (opcode == 0x69)
5468 	ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5469       else if (opcode == 0x6b)
5470 	ir.rip_offset = 1;
5471       ir.reg |= rex_r;
5472       if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5473 	ir.reg &= 0x3;
5474       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5475       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5476       break;
5477 
5478     case 0x0fc0:  /* xadd */
5479     case 0x0fc1:
5480       if ((opcode & 1) == 0)
5481 	ir.ot = OT_BYTE;
5482       else
5483 	ir.ot = ir.dflag + OT_WORD;
5484       if (i386_record_modrm (&ir))
5485 	return -1;
5486       ir.reg |= rex_r;
5487       if (ir.mod == 3)
5488 	{
5489 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5490 	    ir.reg &= 0x3;
5491 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5492 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5493 	    ir.rm &= 0x3;
5494 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5495 	}
5496       else
5497 	{
5498 	  if (i386_record_lea_modrm (&ir))
5499 	    return -1;
5500 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5501 	    ir.reg &= 0x3;
5502 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5503 	}
5504       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5505       break;
5506 
5507     case 0x0fb0:  /* cmpxchg */
5508     case 0x0fb1:
5509       if ((opcode & 1) == 0)
5510 	ir.ot = OT_BYTE;
5511       else
5512 	ir.ot = ir.dflag + OT_WORD;
5513       if (i386_record_modrm (&ir))
5514 	return -1;
5515       if (ir.mod == 3)
5516 	{
5517 	  ir.reg |= rex_r;
5518 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5519 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5520 	    ir.reg &= 0x3;
5521 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5522 	}
5523       else
5524 	{
5525 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5526 	  if (i386_record_lea_modrm (&ir))
5527 	    return -1;
5528 	}
5529       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5530       break;
5531 
5532     case 0x0fc7:    /* cmpxchg8b / rdrand / rdseed */
5533       if (i386_record_modrm (&ir))
5534 	return -1;
5535       if (ir.mod == 3)
5536 	{
5537 	  /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5538 	     an extended opcode.  rdrand has bits 110 (/6) and rdseed
5539 	     has bits 111 (/7).  */
5540 	  if (ir.reg == 6 || ir.reg == 7)
5541 	    {
5542 	      /* The storage register is described by the 3 R/M bits, but the
5543 		 REX.B prefix may be used to give access to registers
5544 		 R8~R15.  In this case ir.rex_b + R/M will give us the register
5545 		 in the range R8~R15.
5546 
5547 		 REX.W may also be used to access 64-bit registers, but we
5548 		 already record entire registers and not just partial bits
5549 		 of them.  */
5550 	      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5551 	      /* These instructions also set conditional bits.  */
5552 	      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5553 	      break;
5554 	    }
5555 	  else
5556 	    {
5557 	      /* We don't handle this particular instruction yet.  */
5558 	      ir.addr -= 2;
5559 	      opcode = opcode << 8 | ir.modrm;
5560 	      goto no_support;
5561 	    }
5562 	}
5563       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5564       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5565       if (i386_record_lea_modrm (&ir))
5566 	return -1;
5567       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5568       break;
5569 
5570     case 0x50:    /* push */
5571     case 0x51:
5572     case 0x52:
5573     case 0x53:
5574     case 0x54:
5575     case 0x55:
5576     case 0x56:
5577     case 0x57:
5578     case 0x68:
5579     case 0x6a:
5580       if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5581 	ir.dflag = 2;
5582       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5583 	return -1;
5584       break;
5585 
5586     case 0x06:    /* push es */
5587     case 0x0e:    /* push cs */
5588     case 0x16:    /* push ss */
5589     case 0x1e:    /* push ds */
5590       if (ir.regmap[X86_RECORD_R8_REGNUM])
5591 	{
5592 	  ir.addr -= 1;
5593 	  goto no_support;
5594 	}
5595       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5596 	return -1;
5597       break;
5598 
5599     case 0x0fa0:    /* push fs */
5600     case 0x0fa8:    /* push gs */
5601       if (ir.regmap[X86_RECORD_R8_REGNUM])
5602 	{
5603 	  ir.addr -= 2;
5604 	  goto no_support;
5605 	}
5606       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5607 	return -1;
5608       break;
5609 
5610     case 0x60:    /* pusha */
5611       if (ir.regmap[X86_RECORD_R8_REGNUM])
5612 	{
5613 	  ir.addr -= 1;
5614 	  goto no_support;
5615 	}
5616       if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5617 	return -1;
5618       break;
5619 
5620     case 0x58:    /* pop */
5621     case 0x59:
5622     case 0x5a:
5623     case 0x5b:
5624     case 0x5c:
5625     case 0x5d:
5626     case 0x5e:
5627     case 0x5f:
5628       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5629       I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5630       break;
5631 
5632     case 0x61:    /* popa */
5633       if (ir.regmap[X86_RECORD_R8_REGNUM])
5634 	{
5635 	  ir.addr -= 1;
5636 	  goto no_support;
5637 	}
5638       for (regnum = X86_RECORD_REAX_REGNUM;
5639 	   regnum <= X86_RECORD_REDI_REGNUM;
5640 	   regnum++)
5641 	I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5642       break;
5643 
5644     case 0x8f:    /* pop */
5645       if (ir.regmap[X86_RECORD_R8_REGNUM])
5646 	ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5647       else
5648 	ir.ot = ir.dflag + OT_WORD;
5649       if (i386_record_modrm (&ir))
5650 	return -1;
5651       if (ir.mod == 3)
5652 	I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5653       else
5654 	{
5655 	  ir.popl_esp_hack = 1 << ir.ot;
5656 	  if (i386_record_lea_modrm (&ir))
5657 	    return -1;
5658 	}
5659       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5660       break;
5661 
5662     case 0xc8:    /* enter */
5663       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5664       if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5665 	ir.dflag = 2;
5666       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5667 	return -1;
5668       break;
5669 
5670     case 0xc9:    /* leave */
5671       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5672       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5673       break;
5674 
5675     case 0x07:    /* pop es */
5676       if (ir.regmap[X86_RECORD_R8_REGNUM])
5677 	{
5678 	  ir.addr -= 1;
5679 	  goto no_support;
5680 	}
5681       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5682       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5683       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5684       break;
5685 
5686     case 0x17:    /* pop ss */
5687       if (ir.regmap[X86_RECORD_R8_REGNUM])
5688 	{
5689 	  ir.addr -= 1;
5690 	  goto no_support;
5691 	}
5692       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5693       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5694       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5695       break;
5696 
5697     case 0x1f:    /* pop ds */
5698       if (ir.regmap[X86_RECORD_R8_REGNUM])
5699 	{
5700 	  ir.addr -= 1;
5701 	  goto no_support;
5702 	}
5703       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5704       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5705       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5706       break;
5707 
5708     case 0x0fa1:    /* pop fs */
5709       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5710       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5711       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5712       break;
5713 
5714     case 0x0fa9:    /* pop gs */
5715       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5716       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5717       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5718       break;
5719 
5720     case 0x88:    /* mov */
5721     case 0x89:
5722     case 0xc6:
5723     case 0xc7:
5724       if ((opcode & 1) == 0)
5725 	ir.ot = OT_BYTE;
5726       else
5727 	ir.ot = ir.dflag + OT_WORD;
5728 
5729       if (i386_record_modrm (&ir))
5730 	return -1;
5731 
5732       if (ir.mod != 3)
5733 	{
5734 	  if (opcode == 0xc6 || opcode == 0xc7)
5735 	    ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5736 	  if (i386_record_lea_modrm (&ir))
5737 	    return -1;
5738 	}
5739       else
5740 	{
5741 	  if (opcode == 0xc6 || opcode == 0xc7)
5742 	    ir.rm |= ir.rex_b;
5743 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5744 	    ir.rm &= 0x3;
5745 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5746 	}
5747       break;
5748 
5749     case 0x8a:    /* mov */
5750     case 0x8b:
5751       if ((opcode & 1) == 0)
5752 	ir.ot = OT_BYTE;
5753       else
5754 	ir.ot = ir.dflag + OT_WORD;
5755       if (i386_record_modrm (&ir))
5756 	return -1;
5757       ir.reg |= rex_r;
5758       if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5759 	ir.reg &= 0x3;
5760       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5761       break;
5762 
5763     case 0x8c:    /* mov seg */
5764       if (i386_record_modrm (&ir))
5765 	return -1;
5766       if (ir.reg > 5)
5767 	{
5768 	  ir.addr -= 2;
5769 	  opcode = opcode << 8 | ir.modrm;
5770 	  goto no_support;
5771 	}
5772 
5773       if (ir.mod == 3)
5774 	I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5775       else
5776 	{
5777 	  ir.ot = OT_WORD;
5778 	  if (i386_record_lea_modrm (&ir))
5779 	    return -1;
5780 	}
5781       break;
5782 
5783     case 0x8e:    /* mov seg */
5784       if (i386_record_modrm (&ir))
5785 	return -1;
5786       switch (ir.reg)
5787 	{
5788 	case 0:
5789 	  regnum = X86_RECORD_ES_REGNUM;
5790 	  break;
5791 	case 2:
5792 	  regnum = X86_RECORD_SS_REGNUM;
5793 	  break;
5794 	case 3:
5795 	  regnum = X86_RECORD_DS_REGNUM;
5796 	  break;
5797 	case 4:
5798 	  regnum = X86_RECORD_FS_REGNUM;
5799 	  break;
5800 	case 5:
5801 	  regnum = X86_RECORD_GS_REGNUM;
5802 	  break;
5803 	default:
5804 	  ir.addr -= 2;
5805 	  opcode = opcode << 8 | ir.modrm;
5806 	  goto no_support;
5807 	  break;
5808 	}
5809       I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5810       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5811       break;
5812 
5813     case 0x0fb6:    /* movzbS */
5814     case 0x0fb7:    /* movzwS */
5815     case 0x0fbe:    /* movsbS */
5816     case 0x0fbf:    /* movswS */
5817       if (i386_record_modrm (&ir))
5818 	return -1;
5819       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5820       break;
5821 
5822     case 0x8d:      /* lea */
5823       if (i386_record_modrm (&ir))
5824 	return -1;
5825       if (ir.mod == 3)
5826 	{
5827 	  ir.addr -= 2;
5828 	  opcode = opcode << 8 | ir.modrm;
5829 	  goto no_support;
5830 	}
5831       ir.ot = ir.dflag;
5832       ir.reg |= rex_r;
5833       if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5834 	ir.reg &= 0x3;
5835       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5836       break;
5837 
5838     case 0xa0:    /* mov EAX */
5839     case 0xa1:
5840 
5841     case 0xd7:    /* xlat */
5842       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5843       break;
5844 
5845     case 0xa2:    /* mov EAX */
5846     case 0xa3:
5847       if (ir.override >= 0)
5848 	{
5849 	  if (record_full_memory_query)
5850 	    {
5851 	      if (yquery (_("\
5852 Process record ignores the memory change of instruction at address %s\n\
5853 because it can't get the value of the segment register.\n\
5854 Do you want to stop the program?"),
5855 			  paddress (gdbarch, ir.orig_addr)))
5856 		return -1;
5857 	    }
5858 	}
5859       else
5860 	{
5861 	  if ((opcode & 1) == 0)
5862 	    ir.ot = OT_BYTE;
5863 	  else
5864 	    ir.ot = ir.dflag + OT_WORD;
5865 	  if (ir.aflag == 2)
5866 	    {
5867 	      if (record_read_memory (gdbarch, ir.addr, buf, 8))
5868 		return -1;
5869 	      ir.addr += 8;
5870 	      addr = extract_unsigned_integer (buf, 8, byte_order);
5871 	    }
5872 	  else if (ir.aflag)
5873 	    {
5874 	      if (record_read_memory (gdbarch, ir.addr, buf, 4))
5875 		return -1;
5876 	      ir.addr += 4;
5877 	      addr = extract_unsigned_integer (buf, 4, byte_order);
5878 	    }
5879 	  else
5880 	    {
5881 	      if (record_read_memory (gdbarch, ir.addr, buf, 2))
5882 		return -1;
5883 	      ir.addr += 2;
5884 	      addr = extract_unsigned_integer (buf, 2, byte_order);
5885 	    }
5886 	  if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5887 	    return -1;
5888 	}
5889       break;
5890 
5891     case 0xb0:    /* mov R, Ib */
5892     case 0xb1:
5893     case 0xb2:
5894     case 0xb3:
5895     case 0xb4:
5896     case 0xb5:
5897     case 0xb6:
5898     case 0xb7:
5899       I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5900 					  ? ((opcode & 0x7) | ir.rex_b)
5901 					  : ((opcode & 0x7) & 0x3));
5902       break;
5903 
5904     case 0xb8:    /* mov R, Iv */
5905     case 0xb9:
5906     case 0xba:
5907     case 0xbb:
5908     case 0xbc:
5909     case 0xbd:
5910     case 0xbe:
5911     case 0xbf:
5912       I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5913       break;
5914 
5915     case 0x91:    /* xchg R, EAX */
5916     case 0x92:
5917     case 0x93:
5918     case 0x94:
5919     case 0x95:
5920     case 0x96:
5921     case 0x97:
5922       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5923       I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5924       break;
5925 
5926     case 0x86:    /* xchg Ev, Gv */
5927     case 0x87:
5928       if ((opcode & 1) == 0)
5929 	ir.ot = OT_BYTE;
5930       else
5931 	ir.ot = ir.dflag + OT_WORD;
5932       if (i386_record_modrm (&ir))
5933 	return -1;
5934       if (ir.mod == 3)
5935 	{
5936 	  ir.rm |= ir.rex_b;
5937 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5938 	    ir.rm &= 0x3;
5939 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5940 	}
5941       else
5942 	{
5943 	  if (i386_record_lea_modrm (&ir))
5944 	    return -1;
5945 	}
5946       ir.reg |= rex_r;
5947       if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5948 	ir.reg &= 0x3;
5949       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5950       break;
5951 
5952     case 0xc4:    /* les Gv */
5953     case 0xc5:    /* lds Gv */
5954       if (ir.regmap[X86_RECORD_R8_REGNUM])
5955 	{
5956 	  ir.addr -= 1;
5957 	  goto no_support;
5958 	}
5959       /* FALLTHROUGH */
5960     case 0x0fb2:    /* lss Gv */
5961     case 0x0fb4:    /* lfs Gv */
5962     case 0x0fb5:    /* lgs Gv */
5963       if (i386_record_modrm (&ir))
5964 	return -1;
5965       if (ir.mod == 3)
5966 	{
5967 	  if (opcode > 0xff)
5968 	    ir.addr -= 3;
5969 	  else
5970 	    ir.addr -= 2;
5971 	  opcode = opcode << 8 | ir.modrm;
5972 	  goto no_support;
5973 	}
5974       switch (opcode)
5975 	{
5976 	case 0xc4:    /* les Gv */
5977 	  regnum = X86_RECORD_ES_REGNUM;
5978 	  break;
5979 	case 0xc5:    /* lds Gv */
5980 	  regnum = X86_RECORD_DS_REGNUM;
5981 	  break;
5982 	case 0x0fb2:  /* lss Gv */
5983 	  regnum = X86_RECORD_SS_REGNUM;
5984 	  break;
5985 	case 0x0fb4:  /* lfs Gv */
5986 	  regnum = X86_RECORD_FS_REGNUM;
5987 	  break;
5988 	case 0x0fb5:  /* lgs Gv */
5989 	  regnum = X86_RECORD_GS_REGNUM;
5990 	  break;
5991 	}
5992       I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5993       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5994       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5995       break;
5996 
5997     case 0xc0:    /* shifts */
5998     case 0xc1:
5999     case 0xd0:
6000     case 0xd1:
6001     case 0xd2:
6002     case 0xd3:
6003       if ((opcode & 1) == 0)
6004 	ir.ot = OT_BYTE;
6005       else
6006 	ir.ot = ir.dflag + OT_WORD;
6007       if (i386_record_modrm (&ir))
6008 	return -1;
6009       if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6010 	{
6011 	  if (i386_record_lea_modrm (&ir))
6012 	    return -1;
6013 	}
6014       else
6015 	{
6016 	  ir.rm |= ir.rex_b;
6017 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
6018 	    ir.rm &= 0x3;
6019 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
6020 	}
6021       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6022       break;
6023 
6024     case 0x0fa4:
6025     case 0x0fa5:
6026     case 0x0fac:
6027     case 0x0fad:
6028       if (i386_record_modrm (&ir))
6029 	return -1;
6030       if (ir.mod == 3)
6031 	{
6032 	  if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6033 	    return -1;
6034 	}
6035       else
6036 	{
6037 	  if (i386_record_lea_modrm (&ir))
6038 	    return -1;
6039 	}
6040       break;
6041 
6042     case 0xd8:    /* Floats.  */
6043     case 0xd9:
6044     case 0xda:
6045     case 0xdb:
6046     case 0xdc:
6047     case 0xdd:
6048     case 0xde:
6049     case 0xdf:
6050       if (i386_record_modrm (&ir))
6051 	return -1;
6052       ir.reg |= ((opcode & 7) << 3);
6053       if (ir.mod != 3)
6054 	{
6055 	  /* Memory.  */
6056 	  uint64_t addr64;
6057 
6058 	  if (i386_record_lea_modrm_addr (&ir, &addr64))
6059 	    return -1;
6060 	  switch (ir.reg)
6061 	    {
6062 	    case 0x02:
6063 	    case 0x12:
6064 	    case 0x22:
6065 	    case 0x32:
6066 	      /* For fcom, ficom nothing to do.  */
6067 	      break;
6068 	    case 0x03:
6069 	    case 0x13:
6070 	    case 0x23:
6071 	    case 0x33:
6072 	      /* For fcomp, ficomp pop FPU stack, store all.  */
6073 	      if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6074 		return -1;
6075 	      break;
6076 	    case 0x00:
6077 	    case 0x01:
6078 	    case 0x04:
6079 	    case 0x05:
6080 	    case 0x06:
6081 	    case 0x07:
6082 	    case 0x10:
6083 	    case 0x11:
6084 	    case 0x14:
6085 	    case 0x15:
6086 	    case 0x16:
6087 	    case 0x17:
6088 	    case 0x20:
6089 	    case 0x21:
6090 	    case 0x24:
6091 	    case 0x25:
6092 	    case 0x26:
6093 	    case 0x27:
6094 	    case 0x30:
6095 	    case 0x31:
6096 	    case 0x34:
6097 	    case 0x35:
6098 	    case 0x36:
6099 	    case 0x37:
6100 	      /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6101 		 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6102 		 of code,  always affects st(0) register.  */
6103 	      if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6104 		return -1;
6105 	      break;
6106 	    case 0x08:
6107 	    case 0x0a:
6108 	    case 0x0b:
6109 	    case 0x18:
6110 	    case 0x19:
6111 	    case 0x1a:
6112 	    case 0x1b:
6113 	    case 0x1d:
6114 	    case 0x28:
6115 	    case 0x29:
6116 	    case 0x2a:
6117 	    case 0x2b:
6118 	    case 0x38:
6119 	    case 0x39:
6120 	    case 0x3a:
6121 	    case 0x3b:
6122 	    case 0x3c:
6123 	    case 0x3d:
6124 	      switch (ir.reg & 7)
6125 		{
6126 		case 0:
6127 		  /* Handling fld, fild.  */
6128 		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6129 		    return -1;
6130 		  break;
6131 		case 1:
6132 		  switch (ir.reg >> 4)
6133 		    {
6134 		    case 0:
6135 		      if (record_full_arch_list_add_mem (addr64, 4))
6136 			return -1;
6137 		      break;
6138 		    case 2:
6139 		      if (record_full_arch_list_add_mem (addr64, 8))
6140 			return -1;
6141 		      break;
6142 		    case 3:
6143 		      break;
6144 		    default:
6145 		      if (record_full_arch_list_add_mem (addr64, 2))
6146 			return -1;
6147 		      break;
6148 		    }
6149 		  break;
6150 		default:
6151 		  switch (ir.reg >> 4)
6152 		    {
6153 		    case 0:
6154 		      if (record_full_arch_list_add_mem (addr64, 4))
6155 			return -1;
6156 		      if (3 == (ir.reg & 7))
6157 			{
6158 			  /* For fstp m32fp.  */
6159 			  if (i386_record_floats (gdbarch, &ir,
6160 						  I386_SAVE_FPU_REGS))
6161 			    return -1;
6162 			}
6163 		      break;
6164 		    case 1:
6165 		      if (record_full_arch_list_add_mem (addr64, 4))
6166 			return -1;
6167 		      if ((3 == (ir.reg & 7))
6168 			  || (5 == (ir.reg & 7))
6169 			  || (7 == (ir.reg & 7)))
6170 			{
6171 			  /* For fstp insn.  */
6172 			  if (i386_record_floats (gdbarch, &ir,
6173 						  I386_SAVE_FPU_REGS))
6174 			    return -1;
6175 			}
6176 		      break;
6177 		    case 2:
6178 		      if (record_full_arch_list_add_mem (addr64, 8))
6179 			return -1;
6180 		      if (3 == (ir.reg & 7))
6181 			{
6182 			  /* For fstp m64fp.  */
6183 			  if (i386_record_floats (gdbarch, &ir,
6184 						  I386_SAVE_FPU_REGS))
6185 			    return -1;
6186 			}
6187 		      break;
6188 		    case 3:
6189 		      if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6190 			{
6191 			  /* For fistp, fbld, fild, fbstp.  */
6192 			  if (i386_record_floats (gdbarch, &ir,
6193 						  I386_SAVE_FPU_REGS))
6194 			    return -1;
6195 			}
6196 		      /* Fall through */
6197 		    default:
6198 		      if (record_full_arch_list_add_mem (addr64, 2))
6199 			return -1;
6200 		      break;
6201 		    }
6202 		  break;
6203 		}
6204 	      break;
6205 	    case 0x0c:
6206 	      /* Insn fldenv.  */
6207 	      if (i386_record_floats (gdbarch, &ir,
6208 				      I386_SAVE_FPU_ENV_REG_STACK))
6209 		return -1;
6210 	      break;
6211 	    case 0x0d:
6212 	      /* Insn fldcw.  */
6213 	      if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6214 		return -1;
6215 	      break;
6216 	    case 0x2c:
6217 	      /* Insn frstor.  */
6218 	      if (i386_record_floats (gdbarch, &ir,
6219 				      I386_SAVE_FPU_ENV_REG_STACK))
6220 		return -1;
6221 	      break;
6222 	    case 0x0e:
6223 	      if (ir.dflag)
6224 		{
6225 		  if (record_full_arch_list_add_mem (addr64, 28))
6226 		    return -1;
6227 		}
6228 	      else
6229 		{
6230 		  if (record_full_arch_list_add_mem (addr64, 14))
6231 		    return -1;
6232 		}
6233 	      break;
6234 	    case 0x0f:
6235 	    case 0x2f:
6236 	      if (record_full_arch_list_add_mem (addr64, 2))
6237 		return -1;
6238 	      /* Insn fstp, fbstp.  */
6239 	      if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6240 		return -1;
6241 	      break;
6242 	    case 0x1f:
6243 	    case 0x3e:
6244 	      if (record_full_arch_list_add_mem (addr64, 10))
6245 		return -1;
6246 	      break;
6247 	    case 0x2e:
6248 	      if (ir.dflag)
6249 		{
6250 		  if (record_full_arch_list_add_mem (addr64, 28))
6251 		    return -1;
6252 		  addr64 += 28;
6253 		}
6254 	      else
6255 		{
6256 		  if (record_full_arch_list_add_mem (addr64, 14))
6257 		    return -1;
6258 		  addr64 += 14;
6259 		}
6260 	      if (record_full_arch_list_add_mem (addr64, 80))
6261 		return -1;
6262 	      /* Insn fsave.  */
6263 	      if (i386_record_floats (gdbarch, &ir,
6264 				      I386_SAVE_FPU_ENV_REG_STACK))
6265 		return -1;
6266 	      break;
6267 	    case 0x3f:
6268 	      if (record_full_arch_list_add_mem (addr64, 8))
6269 		return -1;
6270 	      /* Insn fistp.  */
6271 	      if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6272 		return -1;
6273 	      break;
6274 	    default:
6275 	      ir.addr -= 2;
6276 	      opcode = opcode << 8 | ir.modrm;
6277 	      goto no_support;
6278 	      break;
6279 	    }
6280 	}
6281       /* Opcode is an extension of modR/M byte.  */
6282       else
6283 	{
6284 	  switch (opcode)
6285 	    {
6286 	    case 0xd8:
6287 	      if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6288 		return -1;
6289 	      break;
6290 	    case 0xd9:
6291 	      if (0x0c == (ir.modrm >> 4))
6292 		{
6293 		  if ((ir.modrm & 0x0f) <= 7)
6294 		    {
6295 		      if (i386_record_floats (gdbarch, &ir,
6296 					      I386_SAVE_FPU_REGS))
6297 			return -1;
6298 		    }
6299 		  else
6300 		    {
6301 		      if (i386_record_floats (gdbarch, &ir,
6302 					      I387_ST0_REGNUM (tdep)))
6303 			return -1;
6304 		      /* If only st(0) is changing, then we have already
6305 			 recorded.  */
6306 		      if ((ir.modrm & 0x0f) - 0x08)
6307 			{
6308 			  if (i386_record_floats (gdbarch, &ir,
6309 						  I387_ST0_REGNUM (tdep) +
6310 						  ((ir.modrm & 0x0f) - 0x08)))
6311 			    return -1;
6312 			}
6313 		    }
6314 		}
6315 	      else
6316 		{
6317 		  switch (ir.modrm)
6318 		    {
6319 		    case 0xe0:
6320 		    case 0xe1:
6321 		    case 0xf0:
6322 		    case 0xf5:
6323 		    case 0xf8:
6324 		    case 0xfa:
6325 		    case 0xfc:
6326 		    case 0xfe:
6327 		    case 0xff:
6328 		      if (i386_record_floats (gdbarch, &ir,
6329 					      I387_ST0_REGNUM (tdep)))
6330 			return -1;
6331 		      break;
6332 		    case 0xf1:
6333 		    case 0xf2:
6334 		    case 0xf3:
6335 		    case 0xf4:
6336 		    case 0xf6:
6337 		    case 0xf7:
6338 		    case 0xe8:
6339 		    case 0xe9:
6340 		    case 0xea:
6341 		    case 0xeb:
6342 		    case 0xec:
6343 		    case 0xed:
6344 		    case 0xee:
6345 		    case 0xf9:
6346 		    case 0xfb:
6347 		      if (i386_record_floats (gdbarch, &ir,
6348 					      I386_SAVE_FPU_REGS))
6349 			return -1;
6350 		      break;
6351 		    case 0xfd:
6352 		      if (i386_record_floats (gdbarch, &ir,
6353 					      I387_ST0_REGNUM (tdep)))
6354 			return -1;
6355 		      if (i386_record_floats (gdbarch, &ir,
6356 					      I387_ST0_REGNUM (tdep) + 1))
6357 			return -1;
6358 		      break;
6359 		    }
6360 		}
6361 	      break;
6362 	    case 0xda:
6363 	      if (0xe9 == ir.modrm)
6364 		{
6365 		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6366 		    return -1;
6367 		}
6368 	      else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6369 		{
6370 		  if (i386_record_floats (gdbarch, &ir,
6371 					  I387_ST0_REGNUM (tdep)))
6372 		    return -1;
6373 		  if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6374 		    {
6375 		      if (i386_record_floats (gdbarch, &ir,
6376 					      I387_ST0_REGNUM (tdep) +
6377 					      (ir.modrm & 0x0f)))
6378 			return -1;
6379 		    }
6380 		  else if ((ir.modrm & 0x0f) - 0x08)
6381 		    {
6382 		      if (i386_record_floats (gdbarch, &ir,
6383 					      I387_ST0_REGNUM (tdep) +
6384 					      ((ir.modrm & 0x0f) - 0x08)))
6385 			return -1;
6386 		    }
6387 		}
6388 	      break;
6389 	    case 0xdb:
6390 	      if (0xe3 == ir.modrm)
6391 		{
6392 		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6393 		    return -1;
6394 		}
6395 	      else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6396 		{
6397 		  if (i386_record_floats (gdbarch, &ir,
6398 					  I387_ST0_REGNUM (tdep)))
6399 		    return -1;
6400 		  if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6401 		    {
6402 		      if (i386_record_floats (gdbarch, &ir,
6403 					      I387_ST0_REGNUM (tdep) +
6404 					      (ir.modrm & 0x0f)))
6405 			return -1;
6406 		    }
6407 		  else if ((ir.modrm & 0x0f) - 0x08)
6408 		    {
6409 		      if (i386_record_floats (gdbarch, &ir,
6410 					      I387_ST0_REGNUM (tdep) +
6411 					      ((ir.modrm & 0x0f) - 0x08)))
6412 			return -1;
6413 		    }
6414 		}
6415 	      break;
6416 	    case 0xdc:
6417 	      if ((0x0c == ir.modrm >> 4)
6418 		  || (0x0d == ir.modrm >> 4)
6419 		  || (0x0f == ir.modrm >> 4))
6420 		{
6421 		  if ((ir.modrm & 0x0f) <= 7)
6422 		    {
6423 		      if (i386_record_floats (gdbarch, &ir,
6424 					      I387_ST0_REGNUM (tdep) +
6425 					      (ir.modrm & 0x0f)))
6426 			return -1;
6427 		    }
6428 		  else
6429 		    {
6430 		      if (i386_record_floats (gdbarch, &ir,
6431 					      I387_ST0_REGNUM (tdep) +
6432 					      ((ir.modrm & 0x0f) - 0x08)))
6433 			return -1;
6434 		    }
6435 		}
6436 	      break;
6437 	    case 0xdd:
6438 	      if (0x0c == ir.modrm >> 4)
6439 		{
6440 		  if (i386_record_floats (gdbarch, &ir,
6441 					  I387_FTAG_REGNUM (tdep)))
6442 		    return -1;
6443 		}
6444 	      else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6445 		{
6446 		  if ((ir.modrm & 0x0f) <= 7)
6447 		    {
6448 		      if (i386_record_floats (gdbarch, &ir,
6449 					      I387_ST0_REGNUM (tdep) +
6450 					      (ir.modrm & 0x0f)))
6451 			return -1;
6452 		    }
6453 		  else
6454 		    {
6455 		      if (i386_record_floats (gdbarch, &ir,
6456 					      I386_SAVE_FPU_REGS))
6457 			return -1;
6458 		    }
6459 		}
6460 	      break;
6461 	    case 0xde:
6462 	      if ((0x0c == ir.modrm >> 4)
6463 		  || (0x0e == ir.modrm >> 4)
6464 		  || (0x0f == ir.modrm >> 4)
6465 		  || (0xd9 == ir.modrm))
6466 		{
6467 		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6468 		    return -1;
6469 		}
6470 	      break;
6471 	    case 0xdf:
6472 	      if (0xe0 == ir.modrm)
6473 		{
6474 		  if (record_full_arch_list_add_reg (ir.regcache,
6475 						     I386_EAX_REGNUM))
6476 		    return -1;
6477 		}
6478 	      else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6479 		{
6480 		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6481 		    return -1;
6482 		}
6483 	      break;
6484 	    }
6485 	}
6486       break;
6487       /* string ops */
6488     case 0xa4:    /* movsS */
6489     case 0xa5:
6490     case 0xaa:    /* stosS */
6491     case 0xab:
6492     case 0x6c:    /* insS */
6493     case 0x6d:
6494       regcache_raw_read_unsigned (ir.regcache,
6495 				  ir.regmap[X86_RECORD_RECX_REGNUM],
6496 				  &addr);
6497       if (addr)
6498 	{
6499 	  ULONGEST es, ds;
6500 
6501 	  if ((opcode & 1) == 0)
6502 	    ir.ot = OT_BYTE;
6503 	  else
6504 	    ir.ot = ir.dflag + OT_WORD;
6505 	  regcache_raw_read_unsigned (ir.regcache,
6506 				      ir.regmap[X86_RECORD_REDI_REGNUM],
6507 				      &addr);
6508 
6509 	  regcache_raw_read_unsigned (ir.regcache,
6510 				      ir.regmap[X86_RECORD_ES_REGNUM],
6511 				      &es);
6512 	  regcache_raw_read_unsigned (ir.regcache,
6513 				      ir.regmap[X86_RECORD_DS_REGNUM],
6514 				      &ds);
6515 	  if (ir.aflag && (es != ds))
6516 	    {
6517 	      /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6518 	      if (record_full_memory_query)
6519 		{
6520 		  if (yquery (_("\
6521 Process record ignores the memory change of instruction at address %s\n\
6522 because it can't get the value of the segment register.\n\
6523 Do you want to stop the program?"),
6524 			      paddress (gdbarch, ir.orig_addr)))
6525 		    return -1;
6526 		}
6527 	    }
6528 	  else
6529 	    {
6530 	      if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6531 		return -1;
6532 	    }
6533 
6534 	  if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6535 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6536 	  if (opcode == 0xa4 || opcode == 0xa5)
6537 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6538 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6539 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6540 	}
6541       break;
6542 
6543     case 0xa6:    /* cmpsS */
6544     case 0xa7:
6545       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6546       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6547       if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6548 	I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6549       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6550       break;
6551 
6552     case 0xac:    /* lodsS */
6553     case 0xad:
6554       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6555       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6556       if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6557 	I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6558       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6559       break;
6560 
6561     case 0xae:    /* scasS */
6562     case 0xaf:
6563       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6564       if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6565 	I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6566       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6567       break;
6568 
6569     case 0x6e:    /* outsS */
6570     case 0x6f:
6571       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6572       if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6573 	I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6574       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6575       break;
6576 
6577     case 0xe4:    /* port I/O */
6578     case 0xe5:
6579     case 0xec:
6580     case 0xed:
6581       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6582       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6583       break;
6584 
6585     case 0xe6:
6586     case 0xe7:
6587     case 0xee:
6588     case 0xef:
6589       break;
6590 
6591       /* control */
6592     case 0xc2:    /* ret im */
6593     case 0xc3:    /* ret */
6594       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6595       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6596       break;
6597 
6598     case 0xca:    /* lret im */
6599     case 0xcb:    /* lret */
6600     case 0xcf:    /* iret */
6601       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6602       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6603       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6604       break;
6605 
6606     case 0xe8:    /* call im */
6607       if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6608 	ir.dflag = 2;
6609       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6610 	return -1;
6611       break;
6612 
6613     case 0x9a:    /* lcall im */
6614       if (ir.regmap[X86_RECORD_R8_REGNUM])
6615 	{
6616 	  ir.addr -= 1;
6617 	  goto no_support;
6618 	}
6619       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6620       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6621 	return -1;
6622       break;
6623 
6624     case 0xe9:    /* jmp im */
6625     case 0xea:    /* ljmp im */
6626     case 0xeb:    /* jmp Jb */
6627     case 0x70:    /* jcc Jb */
6628     case 0x71:
6629     case 0x72:
6630     case 0x73:
6631     case 0x74:
6632     case 0x75:
6633     case 0x76:
6634     case 0x77:
6635     case 0x78:
6636     case 0x79:
6637     case 0x7a:
6638     case 0x7b:
6639     case 0x7c:
6640     case 0x7d:
6641     case 0x7e:
6642     case 0x7f:
6643     case 0x0f80:  /* jcc Jv */
6644     case 0x0f81:
6645     case 0x0f82:
6646     case 0x0f83:
6647     case 0x0f84:
6648     case 0x0f85:
6649     case 0x0f86:
6650     case 0x0f87:
6651     case 0x0f88:
6652     case 0x0f89:
6653     case 0x0f8a:
6654     case 0x0f8b:
6655     case 0x0f8c:
6656     case 0x0f8d:
6657     case 0x0f8e:
6658     case 0x0f8f:
6659       break;
6660 
6661     case 0x0f90:  /* setcc Gv */
6662     case 0x0f91:
6663     case 0x0f92:
6664     case 0x0f93:
6665     case 0x0f94:
6666     case 0x0f95:
6667     case 0x0f96:
6668     case 0x0f97:
6669     case 0x0f98:
6670     case 0x0f99:
6671     case 0x0f9a:
6672     case 0x0f9b:
6673     case 0x0f9c:
6674     case 0x0f9d:
6675     case 0x0f9e:
6676     case 0x0f9f:
6677       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6678       ir.ot = OT_BYTE;
6679       if (i386_record_modrm (&ir))
6680 	return -1;
6681       if (ir.mod == 3)
6682 	I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6683 					    : (ir.rm & 0x3));
6684       else
6685 	{
6686 	  if (i386_record_lea_modrm (&ir))
6687 	    return -1;
6688 	}
6689       break;
6690 
6691     case 0x0f40:    /* cmov Gv, Ev */
6692     case 0x0f41:
6693     case 0x0f42:
6694     case 0x0f43:
6695     case 0x0f44:
6696     case 0x0f45:
6697     case 0x0f46:
6698     case 0x0f47:
6699     case 0x0f48:
6700     case 0x0f49:
6701     case 0x0f4a:
6702     case 0x0f4b:
6703     case 0x0f4c:
6704     case 0x0f4d:
6705     case 0x0f4e:
6706     case 0x0f4f:
6707       if (i386_record_modrm (&ir))
6708 	return -1;
6709       ir.reg |= rex_r;
6710       if (ir.dflag == OT_BYTE)
6711 	ir.reg &= 0x3;
6712       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6713       break;
6714 
6715       /* flags */
6716     case 0x9c:    /* pushf */
6717       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6718       if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6719 	ir.dflag = 2;
6720       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6721 	return -1;
6722       break;
6723 
6724     case 0x9d:    /* popf */
6725       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6726       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6727       break;
6728 
6729     case 0x9e:    /* sahf */
6730       if (ir.regmap[X86_RECORD_R8_REGNUM])
6731 	{
6732 	  ir.addr -= 1;
6733 	  goto no_support;
6734 	}
6735       /* FALLTHROUGH */
6736     case 0xf5:    /* cmc */
6737     case 0xf8:    /* clc */
6738     case 0xf9:    /* stc */
6739     case 0xfc:    /* cld */
6740     case 0xfd:    /* std */
6741       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6742       break;
6743 
6744     case 0x9f:    /* lahf */
6745       if (ir.regmap[X86_RECORD_R8_REGNUM])
6746 	{
6747 	  ir.addr -= 1;
6748 	  goto no_support;
6749 	}
6750       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6751       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6752       break;
6753 
6754       /* bit operations */
6755     case 0x0fba:    /* bt/bts/btr/btc Gv, im */
6756       ir.ot = ir.dflag + OT_WORD;
6757       if (i386_record_modrm (&ir))
6758 	return -1;
6759       if (ir.reg < 4)
6760 	{
6761 	  ir.addr -= 2;
6762 	  opcode = opcode << 8 | ir.modrm;
6763 	  goto no_support;
6764 	}
6765       if (ir.reg != 4)
6766 	{
6767 	  if (ir.mod == 3)
6768 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6769 	  else
6770 	    {
6771 	      if (i386_record_lea_modrm (&ir))
6772 		return -1;
6773 	    }
6774 	}
6775       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6776       break;
6777 
6778     case 0x0fa3:    /* bt Gv, Ev */
6779       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6780       break;
6781 
6782     case 0x0fab:    /* bts */
6783     case 0x0fb3:    /* btr */
6784     case 0x0fbb:    /* btc */
6785       ir.ot = ir.dflag + OT_WORD;
6786       if (i386_record_modrm (&ir))
6787 	return -1;
6788       if (ir.mod == 3)
6789 	I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6790       else
6791 	{
6792 	  uint64_t addr64;
6793 	  if (i386_record_lea_modrm_addr (&ir, &addr64))
6794 	    return -1;
6795 	  regcache_raw_read_unsigned (ir.regcache,
6796 				      ir.regmap[ir.reg | rex_r],
6797 				      &addr);
6798 	  switch (ir.dflag)
6799 	    {
6800 	    case 0:
6801 	      addr64 += ((int16_t) addr >> 4) << 4;
6802 	      break;
6803 	    case 1:
6804 	      addr64 += ((int32_t) addr >> 5) << 5;
6805 	      break;
6806 	    case 2:
6807 	      addr64 += ((int64_t) addr >> 6) << 6;
6808 	      break;
6809 	    }
6810 	  if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6811 	    return -1;
6812 	  if (i386_record_lea_modrm (&ir))
6813 	    return -1;
6814 	}
6815       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6816       break;
6817 
6818     case 0x0fbc:    /* bsf */
6819     case 0x0fbd:    /* bsr */
6820       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6821       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6822       break;
6823 
6824       /* bcd */
6825     case 0x27:    /* daa */
6826     case 0x2f:    /* das */
6827     case 0x37:    /* aaa */
6828     case 0x3f:    /* aas */
6829     case 0xd4:    /* aam */
6830     case 0xd5:    /* aad */
6831       if (ir.regmap[X86_RECORD_R8_REGNUM])
6832 	{
6833 	  ir.addr -= 1;
6834 	  goto no_support;
6835 	}
6836       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6837       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6838       break;
6839 
6840       /* misc */
6841     case 0x90:    /* nop */
6842       if (prefixes & PREFIX_LOCK)
6843 	{
6844 	  ir.addr -= 1;
6845 	  goto no_support;
6846 	}
6847       break;
6848 
6849     case 0x9b:    /* fwait */
6850       if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6851 	return -1;
6852       opcode = (uint32_t) opcode8;
6853       ir.addr++;
6854       goto reswitch;
6855       break;
6856 
6857       /* XXX */
6858     case 0xcc:    /* int3 */
6859       gdb_printf (gdb_stderr,
6860 		  _("Process record does not support instruction "
6861 		    "int3.\n"));
6862       ir.addr -= 1;
6863       goto no_support;
6864       break;
6865 
6866       /* XXX */
6867     case 0xcd:    /* int */
6868       {
6869 	int ret;
6870 	uint8_t interrupt;
6871 	if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6872 	  return -1;
6873 	ir.addr++;
6874 	if (interrupt != 0x80
6875 	    || tdep->i386_intx80_record == NULL)
6876 	  {
6877 	    gdb_printf (gdb_stderr,
6878 			_("Process record does not support "
6879 			  "instruction int 0x%02x.\n"),
6880 			interrupt);
6881 	    ir.addr -= 2;
6882 	    goto no_support;
6883 	  }
6884 	ret = tdep->i386_intx80_record (ir.regcache);
6885 	if (ret)
6886 	  return ret;
6887       }
6888       break;
6889 
6890       /* XXX */
6891     case 0xce:    /* into */
6892       gdb_printf (gdb_stderr,
6893 		  _("Process record does not support "
6894 		    "instruction into.\n"));
6895       ir.addr -= 1;
6896       goto no_support;
6897       break;
6898 
6899     case 0xfa:    /* cli */
6900     case 0xfb:    /* sti */
6901       break;
6902 
6903     case 0x62:    /* bound */
6904       gdb_printf (gdb_stderr,
6905 		  _("Process record does not support "
6906 		    "instruction bound.\n"));
6907       ir.addr -= 1;
6908       goto no_support;
6909       break;
6910 
6911     case 0x0fc8:    /* bswap reg */
6912     case 0x0fc9:
6913     case 0x0fca:
6914     case 0x0fcb:
6915     case 0x0fcc:
6916     case 0x0fcd:
6917     case 0x0fce:
6918     case 0x0fcf:
6919       I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6920       break;
6921 
6922     case 0xd6:    /* salc */
6923       if (ir.regmap[X86_RECORD_R8_REGNUM])
6924 	{
6925 	  ir.addr -= 1;
6926 	  goto no_support;
6927 	}
6928       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6929       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6930       break;
6931 
6932     case 0xe0:    /* loopnz */
6933     case 0xe1:    /* loopz */
6934     case 0xe2:    /* loop */
6935     case 0xe3:    /* jecxz */
6936       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6937       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6938       break;
6939 
6940     case 0x0f30:    /* wrmsr */
6941       gdb_printf (gdb_stderr,
6942 		  _("Process record does not support "
6943 		    "instruction wrmsr.\n"));
6944       ir.addr -= 2;
6945       goto no_support;
6946       break;
6947 
6948     case 0x0f32:    /* rdmsr */
6949       gdb_printf (gdb_stderr,
6950 		  _("Process record does not support "
6951 		    "instruction rdmsr.\n"));
6952       ir.addr -= 2;
6953       goto no_support;
6954       break;
6955 
6956     case 0x0f31:    /* rdtsc */
6957       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6958       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6959       break;
6960 
6961     case 0x0f34:    /* sysenter */
6962       {
6963 	int ret;
6964 	if (ir.regmap[X86_RECORD_R8_REGNUM])
6965 	  {
6966 	    ir.addr -= 2;
6967 	    goto no_support;
6968 	  }
6969 	if (tdep->i386_sysenter_record == NULL)
6970 	  {
6971 	    gdb_printf (gdb_stderr,
6972 			_("Process record does not support "
6973 			  "instruction sysenter.\n"));
6974 	    ir.addr -= 2;
6975 	    goto no_support;
6976 	  }
6977 	ret = tdep->i386_sysenter_record (ir.regcache);
6978 	if (ret)
6979 	  return ret;
6980       }
6981       break;
6982 
6983     case 0x0f35:    /* sysexit */
6984       gdb_printf (gdb_stderr,
6985 		  _("Process record does not support "
6986 		    "instruction sysexit.\n"));
6987       ir.addr -= 2;
6988       goto no_support;
6989       break;
6990 
6991     case 0x0f05:    /* syscall */
6992       {
6993 	int ret;
6994 	if (tdep->i386_syscall_record == NULL)
6995 	  {
6996 	    gdb_printf (gdb_stderr,
6997 			_("Process record does not support "
6998 			  "instruction syscall.\n"));
6999 	    ir.addr -= 2;
7000 	    goto no_support;
7001 	  }
7002 	ret = tdep->i386_syscall_record (ir.regcache);
7003 	if (ret)
7004 	  return ret;
7005       }
7006       break;
7007 
7008     case 0x0f07:    /* sysret */
7009       gdb_printf (gdb_stderr,
7010 		  _("Process record does not support "
7011 		    "instruction sysret.\n"));
7012       ir.addr -= 2;
7013       goto no_support;
7014       break;
7015 
7016     case 0x0fa2:    /* cpuid */
7017       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7018       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7019       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7020       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7021       break;
7022 
7023     case 0xf4:    /* hlt */
7024       gdb_printf (gdb_stderr,
7025 		  _("Process record does not support "
7026 		    "instruction hlt.\n"));
7027       ir.addr -= 1;
7028       goto no_support;
7029       break;
7030 
7031     case 0x0f00:
7032       if (i386_record_modrm (&ir))
7033 	return -1;
7034       switch (ir.reg)
7035 	{
7036 	case 0:  /* sldt */
7037 	case 1:  /* str  */
7038 	  if (ir.mod == 3)
7039 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7040 	  else
7041 	    {
7042 	      ir.ot = OT_WORD;
7043 	      if (i386_record_lea_modrm (&ir))
7044 		return -1;
7045 	    }
7046 	  break;
7047 	case 2:  /* lldt */
7048 	case 3:  /* ltr */
7049 	  break;
7050 	case 4:  /* verr */
7051 	case 5:  /* verw */
7052 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7053 	  break;
7054 	default:
7055 	  ir.addr -= 3;
7056 	  opcode = opcode << 8 | ir.modrm;
7057 	  goto no_support;
7058 	  break;
7059 	}
7060       break;
7061 
7062     case 0x0f01:
7063       if (i386_record_modrm (&ir))
7064 	return -1;
7065       switch (ir.reg)
7066 	{
7067 	case 0:  /* sgdt */
7068 	  {
7069 	    uint64_t addr64;
7070 
7071 	    if (ir.mod == 3)
7072 	      {
7073 		ir.addr -= 3;
7074 		opcode = opcode << 8 | ir.modrm;
7075 		goto no_support;
7076 	      }
7077 	    if (ir.override >= 0)
7078 	      {
7079 		if (record_full_memory_query)
7080 		  {
7081 		    if (yquery (_("\
7082 Process record ignores the memory change of instruction at address %s\n\
7083 because it can't get the value of the segment register.\n\
7084 Do you want to stop the program?"),
7085 				paddress (gdbarch, ir.orig_addr)))
7086 		      return -1;
7087 		  }
7088 	      }
7089 	    else
7090 	      {
7091 		if (i386_record_lea_modrm_addr (&ir, &addr64))
7092 		  return -1;
7093 		if (record_full_arch_list_add_mem (addr64, 2))
7094 		  return -1;
7095 		addr64 += 2;
7096 		if (ir.regmap[X86_RECORD_R8_REGNUM])
7097 		  {
7098 		    if (record_full_arch_list_add_mem (addr64, 8))
7099 		      return -1;
7100 		  }
7101 		else
7102 		  {
7103 		    if (record_full_arch_list_add_mem (addr64, 4))
7104 		      return -1;
7105 		  }
7106 	      }
7107 	  }
7108 	  break;
7109 	case 1:
7110 	  if (ir.mod == 3)
7111 	    {
7112 	      switch (ir.rm)
7113 		{
7114 		case 0:  /* monitor */
7115 		  break;
7116 		case 1:  /* mwait */
7117 		  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7118 		  break;
7119 		default:
7120 		  ir.addr -= 3;
7121 		  opcode = opcode << 8 | ir.modrm;
7122 		  goto no_support;
7123 		  break;
7124 		}
7125 	    }
7126 	  else
7127 	    {
7128 	      /* sidt */
7129 	      if (ir.override >= 0)
7130 		{
7131 		  if (record_full_memory_query)
7132 		    {
7133 		      if (yquery (_("\
7134 Process record ignores the memory change of instruction at address %s\n\
7135 because it can't get the value of the segment register.\n\
7136 Do you want to stop the program?"),
7137 				  paddress (gdbarch, ir.orig_addr)))
7138 			return -1;
7139 		    }
7140 		}
7141 	      else
7142 		{
7143 		  uint64_t addr64;
7144 
7145 		  if (i386_record_lea_modrm_addr (&ir, &addr64))
7146 		    return -1;
7147 		  if (record_full_arch_list_add_mem (addr64, 2))
7148 		    return -1;
7149 		  addr64 += 2;
7150 		  if (ir.regmap[X86_RECORD_R8_REGNUM])
7151 		    {
7152 		      if (record_full_arch_list_add_mem (addr64, 8))
7153 			return -1;
7154 		    }
7155 		  else
7156 		    {
7157 		      if (record_full_arch_list_add_mem (addr64, 4))
7158 			return -1;
7159 		    }
7160 		}
7161 	    }
7162 	  break;
7163 	case 2:  /* lgdt */
7164 	  if (ir.mod == 3)
7165 	    {
7166 	      /* xgetbv */
7167 	      if (ir.rm == 0)
7168 		{
7169 		  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7170 		  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7171 		  break;
7172 		}
7173 	      /* xsetbv */
7174 	      else if (ir.rm == 1)
7175 		break;
7176 	    }
7177 	  /* Fall through.  */
7178 	case 3:  /* lidt */
7179 	  if (ir.mod == 3)
7180 	    {
7181 	      ir.addr -= 3;
7182 	      opcode = opcode << 8 | ir.modrm;
7183 	      goto no_support;
7184 	    }
7185 	  break;
7186 	case 4:  /* smsw */
7187 	  if (ir.mod == 3)
7188 	    {
7189 	      if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7190 		return -1;
7191 	    }
7192 	  else
7193 	    {
7194 	      ir.ot = OT_WORD;
7195 	      if (i386_record_lea_modrm (&ir))
7196 		return -1;
7197 	    }
7198 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7199 	  break;
7200 	case 6:  /* lmsw */
7201 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7202 	  break;
7203 	case 7:  /* invlpg */
7204 	  if (ir.mod == 3)
7205 	    {
7206 	      if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7207 		I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7208 	      else
7209 		{
7210 		  ir.addr -= 3;
7211 		  opcode = opcode << 8 | ir.modrm;
7212 		  goto no_support;
7213 		}
7214 	    }
7215 	  else
7216 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7217 	  break;
7218 	default:
7219 	  ir.addr -= 3;
7220 	  opcode = opcode << 8 | ir.modrm;
7221 	  goto no_support;
7222 	  break;
7223 	}
7224       break;
7225 
7226     case 0x0f08:    /* invd */
7227     case 0x0f09:    /* wbinvd */
7228       break;
7229 
7230     case 0x63:    /* arpl */
7231       if (i386_record_modrm (&ir))
7232 	return -1;
7233       if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7234 	{
7235 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7236 					      ? (ir.reg | rex_r) : ir.rm);
7237 	}
7238       else
7239 	{
7240 	  ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7241 	  if (i386_record_lea_modrm (&ir))
7242 	    return -1;
7243 	}
7244       if (!ir.regmap[X86_RECORD_R8_REGNUM])
7245 	I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7246       break;
7247 
7248     case 0x0f02:    /* lar */
7249     case 0x0f03:    /* lsl */
7250       if (i386_record_modrm (&ir))
7251 	return -1;
7252       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7253       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7254       break;
7255 
7256     case 0x0f18:
7257       if (i386_record_modrm (&ir))
7258 	return -1;
7259       if (ir.mod == 3 && ir.reg == 3)
7260 	{
7261 	  ir.addr -= 3;
7262 	  opcode = opcode << 8 | ir.modrm;
7263 	  goto no_support;
7264 	}
7265       break;
7266 
7267     case 0x0f19:
7268     case 0x0f1a:
7269     case 0x0f1b:
7270     case 0x0f1c:
7271     case 0x0f1d:
7272     case 0x0f1e:
7273     case 0x0f1f:
7274       /* nop (multi byte) */
7275       break;
7276 
7277     case 0x0f20:    /* mov reg, crN */
7278     case 0x0f22:    /* mov crN, reg */
7279       if (i386_record_modrm (&ir))
7280 	return -1;
7281       if ((ir.modrm & 0xc0) != 0xc0)
7282 	{
7283 	  ir.addr -= 3;
7284 	  opcode = opcode << 8 | ir.modrm;
7285 	  goto no_support;
7286 	}
7287       switch (ir.reg)
7288 	{
7289 	case 0:
7290 	case 2:
7291 	case 3:
7292 	case 4:
7293 	case 8:
7294 	  if (opcode & 2)
7295 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7296 	  else
7297 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7298 	  break;
7299 	default:
7300 	  ir.addr -= 3;
7301 	  opcode = opcode << 8 | ir.modrm;
7302 	  goto no_support;
7303 	  break;
7304 	}
7305       break;
7306 
7307     case 0x0f21:    /* mov reg, drN */
7308     case 0x0f23:    /* mov drN, reg */
7309       if (i386_record_modrm (&ir))
7310 	return -1;
7311       if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7312 	  || ir.reg == 5 || ir.reg >= 8)
7313 	{
7314 	  ir.addr -= 3;
7315 	  opcode = opcode << 8 | ir.modrm;
7316 	  goto no_support;
7317 	}
7318       if (opcode & 2)
7319 	I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7320       else
7321 	I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7322       break;
7323 
7324     case 0x0f06:    /* clts */
7325       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7326       break;
7327 
7328     /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7329 
7330     case 0x0f0d:    /* 3DNow! prefetch */
7331       break;
7332 
7333     case 0x0f0e:    /* 3DNow! femms */
7334     case 0x0f77:    /* emms */
7335       if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7336 	goto no_support;
7337       record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7338       break;
7339 
7340     case 0x0f0f:    /* 3DNow! data */
7341       if (i386_record_modrm (&ir))
7342 	return -1;
7343       if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7344 	return -1;
7345       ir.addr++;
7346       switch (opcode8)
7347 	{
7348 	case 0x0c:    /* 3DNow! pi2fw */
7349 	case 0x0d:    /* 3DNow! pi2fd */
7350 	case 0x1c:    /* 3DNow! pf2iw */
7351 	case 0x1d:    /* 3DNow! pf2id */
7352 	case 0x8a:    /* 3DNow! pfnacc */
7353 	case 0x8e:    /* 3DNow! pfpnacc */
7354 	case 0x90:    /* 3DNow! pfcmpge */
7355 	case 0x94:    /* 3DNow! pfmin */
7356 	case 0x96:    /* 3DNow! pfrcp */
7357 	case 0x97:    /* 3DNow! pfrsqrt */
7358 	case 0x9a:    /* 3DNow! pfsub */
7359 	case 0x9e:    /* 3DNow! pfadd */
7360 	case 0xa0:    /* 3DNow! pfcmpgt */
7361 	case 0xa4:    /* 3DNow! pfmax */
7362 	case 0xa6:    /* 3DNow! pfrcpit1 */
7363 	case 0xa7:    /* 3DNow! pfrsqit1 */
7364 	case 0xaa:    /* 3DNow! pfsubr */
7365 	case 0xae:    /* 3DNow! pfacc */
7366 	case 0xb0:    /* 3DNow! pfcmpeq */
7367 	case 0xb4:    /* 3DNow! pfmul */
7368 	case 0xb6:    /* 3DNow! pfrcpit2 */
7369 	case 0xb7:    /* 3DNow! pmulhrw */
7370 	case 0xbb:    /* 3DNow! pswapd */
7371 	case 0xbf:    /* 3DNow! pavgusb */
7372 	  if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7373 	    goto no_support_3dnow_data;
7374 	  record_full_arch_list_add_reg (ir.regcache, ir.reg);
7375 	  break;
7376 
7377 	default:
7378 no_support_3dnow_data:
7379 	  opcode = (opcode << 8) | opcode8;
7380 	  goto no_support;
7381 	  break;
7382 	}
7383       break;
7384 
7385     case 0x0faa:    /* rsm */
7386       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7387       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7388       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7389       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7390       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7391       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7392       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7393       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7394       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7395       break;
7396 
7397     case 0x0fae:
7398       if (i386_record_modrm (&ir))
7399 	return -1;
7400       switch(ir.reg)
7401 	{
7402 	case 0:    /* fxsave */
7403 	  {
7404 	    uint64_t tmpu64;
7405 
7406 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7407 	    if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7408 	      return -1;
7409 	    if (record_full_arch_list_add_mem (tmpu64, 512))
7410 	      return -1;
7411 	  }
7412 	  break;
7413 
7414 	case 1:    /* fxrstor */
7415 	  {
7416 	    int i;
7417 
7418 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7419 
7420 	    for (i = I387_MM0_REGNUM (tdep);
7421 		 i386_mmx_regnum_p (gdbarch, i); i++)
7422 	      record_full_arch_list_add_reg (ir.regcache, i);
7423 
7424 	    for (i = I387_XMM0_REGNUM (tdep);
7425 		 i386_xmm_regnum_p (gdbarch, i); i++)
7426 	      record_full_arch_list_add_reg (ir.regcache, i);
7427 
7428 	    if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7429 	      record_full_arch_list_add_reg (ir.regcache,
7430 					     I387_MXCSR_REGNUM(tdep));
7431 
7432 	    for (i = I387_ST0_REGNUM (tdep);
7433 		 i386_fp_regnum_p (gdbarch, i); i++)
7434 	      record_full_arch_list_add_reg (ir.regcache, i);
7435 
7436 	    for (i = I387_FCTRL_REGNUM (tdep);
7437 		 i386_fpc_regnum_p (gdbarch, i); i++)
7438 	      record_full_arch_list_add_reg (ir.regcache, i);
7439 	  }
7440 	  break;
7441 
7442 	case 2:    /* ldmxcsr */
7443 	  if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7444 	    goto no_support;
7445 	  record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7446 	  break;
7447 
7448 	case 3:    /* stmxcsr */
7449 	  ir.ot = OT_LONG;
7450 	  if (i386_record_lea_modrm (&ir))
7451 	    return -1;
7452 	  break;
7453 
7454 	case 5:    /* lfence */
7455 	case 6:    /* mfence */
7456 	case 7:    /* sfence clflush */
7457 	  break;
7458 
7459 	default:
7460 	  opcode = (opcode << 8) | ir.modrm;
7461 	  goto no_support;
7462 	  break;
7463 	}
7464       break;
7465 
7466     case 0x0fc3:    /* movnti */
7467       ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7468       if (i386_record_modrm (&ir))
7469 	return -1;
7470       if (ir.mod == 3)
7471 	goto no_support;
7472       ir.reg |= rex_r;
7473       if (i386_record_lea_modrm (&ir))
7474 	return -1;
7475       break;
7476 
7477     /* Add prefix to opcode.  */
7478     case 0x0f10:
7479     case 0x0f11:
7480     case 0x0f12:
7481     case 0x0f13:
7482     case 0x0f14:
7483     case 0x0f15:
7484     case 0x0f16:
7485     case 0x0f17:
7486     case 0x0f28:
7487     case 0x0f29:
7488     case 0x0f2a:
7489     case 0x0f2b:
7490     case 0x0f2c:
7491     case 0x0f2d:
7492     case 0x0f2e:
7493     case 0x0f2f:
7494     case 0x0f38:
7495     case 0x0f39:
7496     case 0x0f3a:
7497     case 0x0f50:
7498     case 0x0f51:
7499     case 0x0f52:
7500     case 0x0f53:
7501     case 0x0f54:
7502     case 0x0f55:
7503     case 0x0f56:
7504     case 0x0f57:
7505     case 0x0f58:
7506     case 0x0f59:
7507     case 0x0f5a:
7508     case 0x0f5b:
7509     case 0x0f5c:
7510     case 0x0f5d:
7511     case 0x0f5e:
7512     case 0x0f5f:
7513     case 0x0f60:
7514     case 0x0f61:
7515     case 0x0f62:
7516     case 0x0f63:
7517     case 0x0f64:
7518     case 0x0f65:
7519     case 0x0f66:
7520     case 0x0f67:
7521     case 0x0f68:
7522     case 0x0f69:
7523     case 0x0f6a:
7524     case 0x0f6b:
7525     case 0x0f6c:
7526     case 0x0f6d:
7527     case 0x0f6e:
7528     case 0x0f6f:
7529     case 0x0f70:
7530     case 0x0f71:
7531     case 0x0f72:
7532     case 0x0f73:
7533     case 0x0f74:
7534     case 0x0f75:
7535     case 0x0f76:
7536     case 0x0f7c:
7537     case 0x0f7d:
7538     case 0x0f7e:
7539     case 0x0f7f:
7540     case 0x0fb8:
7541     case 0x0fc2:
7542     case 0x0fc4:
7543     case 0x0fc5:
7544     case 0x0fc6:
7545     case 0x0fd0:
7546     case 0x0fd1:
7547     case 0x0fd2:
7548     case 0x0fd3:
7549     case 0x0fd4:
7550     case 0x0fd5:
7551     case 0x0fd6:
7552     case 0x0fd7:
7553     case 0x0fd8:
7554     case 0x0fd9:
7555     case 0x0fda:
7556     case 0x0fdb:
7557     case 0x0fdc:
7558     case 0x0fdd:
7559     case 0x0fde:
7560     case 0x0fdf:
7561     case 0x0fe0:
7562     case 0x0fe1:
7563     case 0x0fe2:
7564     case 0x0fe3:
7565     case 0x0fe4:
7566     case 0x0fe5:
7567     case 0x0fe6:
7568     case 0x0fe7:
7569     case 0x0fe8:
7570     case 0x0fe9:
7571     case 0x0fea:
7572     case 0x0feb:
7573     case 0x0fec:
7574     case 0x0fed:
7575     case 0x0fee:
7576     case 0x0fef:
7577     case 0x0ff0:
7578     case 0x0ff1:
7579     case 0x0ff2:
7580     case 0x0ff3:
7581     case 0x0ff4:
7582     case 0x0ff5:
7583     case 0x0ff6:
7584     case 0x0ff7:
7585     case 0x0ff8:
7586     case 0x0ff9:
7587     case 0x0ffa:
7588     case 0x0ffb:
7589     case 0x0ffc:
7590     case 0x0ffd:
7591     case 0x0ffe:
7592       /* Mask out PREFIX_ADDR.  */
7593       switch ((prefixes & ~PREFIX_ADDR))
7594 	{
7595 	case PREFIX_REPNZ:
7596 	  opcode |= 0xf20000;
7597 	  break;
7598 	case PREFIX_DATA:
7599 	  opcode |= 0x660000;
7600 	  break;
7601 	case PREFIX_REPZ:
7602 	  opcode |= 0xf30000;
7603 	  break;
7604 	}
7605 reswitch_prefix_add:
7606       switch (opcode)
7607 	{
7608 	case 0x0f38:
7609 	case 0x660f38:
7610 	case 0xf20f38:
7611 	case 0x0f3a:
7612 	case 0x660f3a:
7613 	  if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7614 	    return -1;
7615 	  ir.addr++;
7616 	  opcode = (uint32_t) opcode8 | opcode << 8;
7617 	  goto reswitch_prefix_add;
7618 	  break;
7619 
7620 	case 0x0f10:        /* movups */
7621 	case 0x660f10:      /* movupd */
7622 	case 0xf30f10:      /* movss */
7623 	case 0xf20f10:      /* movsd */
7624 	case 0x0f12:        /* movlps */
7625 	case 0x660f12:      /* movlpd */
7626 	case 0xf30f12:      /* movsldup */
7627 	case 0xf20f12:      /* movddup */
7628 	case 0x0f14:        /* unpcklps */
7629 	case 0x660f14:      /* unpcklpd */
7630 	case 0x0f15:        /* unpckhps */
7631 	case 0x660f15:      /* unpckhpd */
7632 	case 0x0f16:        /* movhps */
7633 	case 0x660f16:      /* movhpd */
7634 	case 0xf30f16:      /* movshdup */
7635 	case 0x0f28:        /* movaps */
7636 	case 0x660f28:      /* movapd */
7637 	case 0x0f2a:        /* cvtpi2ps */
7638 	case 0x660f2a:      /* cvtpi2pd */
7639 	case 0xf30f2a:      /* cvtsi2ss */
7640 	case 0xf20f2a:      /* cvtsi2sd */
7641 	case 0x0f2c:        /* cvttps2pi */
7642 	case 0x660f2c:      /* cvttpd2pi */
7643 	case 0x0f2d:        /* cvtps2pi */
7644 	case 0x660f2d:      /* cvtpd2pi */
7645 	case 0x660f3800:    /* pshufb */
7646 	case 0x660f3801:    /* phaddw */
7647 	case 0x660f3802:    /* phaddd */
7648 	case 0x660f3803:    /* phaddsw */
7649 	case 0x660f3804:    /* pmaddubsw */
7650 	case 0x660f3805:    /* phsubw */
7651 	case 0x660f3806:    /* phsubd */
7652 	case 0x660f3807:    /* phsubsw */
7653 	case 0x660f3808:    /* psignb */
7654 	case 0x660f3809:    /* psignw */
7655 	case 0x660f380a:    /* psignd */
7656 	case 0x660f380b:    /* pmulhrsw */
7657 	case 0x660f3810:    /* pblendvb */
7658 	case 0x660f3814:    /* blendvps */
7659 	case 0x660f3815:    /* blendvpd */
7660 	case 0x660f381c:    /* pabsb */
7661 	case 0x660f381d:    /* pabsw */
7662 	case 0x660f381e:    /* pabsd */
7663 	case 0x660f3820:    /* pmovsxbw */
7664 	case 0x660f3821:    /* pmovsxbd */
7665 	case 0x660f3822:    /* pmovsxbq */
7666 	case 0x660f3823:    /* pmovsxwd */
7667 	case 0x660f3824:    /* pmovsxwq */
7668 	case 0x660f3825:    /* pmovsxdq */
7669 	case 0x660f3828:    /* pmuldq */
7670 	case 0x660f3829:    /* pcmpeqq */
7671 	case 0x660f382a:    /* movntdqa */
7672 	case 0x660f3a08:    /* roundps */
7673 	case 0x660f3a09:    /* roundpd */
7674 	case 0x660f3a0a:    /* roundss */
7675 	case 0x660f3a0b:    /* roundsd */
7676 	case 0x660f3a0c:    /* blendps */
7677 	case 0x660f3a0d:    /* blendpd */
7678 	case 0x660f3a0e:    /* pblendw */
7679 	case 0x660f3a0f:    /* palignr */
7680 	case 0x660f3a20:    /* pinsrb */
7681 	case 0x660f3a21:    /* insertps */
7682 	case 0x660f3a22:    /* pinsrd pinsrq */
7683 	case 0x660f3a40:    /* dpps */
7684 	case 0x660f3a41:    /* dppd */
7685 	case 0x660f3a42:    /* mpsadbw */
7686 	case 0x660f3a60:    /* pcmpestrm */
7687 	case 0x660f3a61:    /* pcmpestri */
7688 	case 0x660f3a62:    /* pcmpistrm */
7689 	case 0x660f3a63:    /* pcmpistri */
7690 	case 0x0f51:        /* sqrtps */
7691 	case 0x660f51:      /* sqrtpd */
7692 	case 0xf20f51:      /* sqrtsd */
7693 	case 0xf30f51:      /* sqrtss */
7694 	case 0x0f52:        /* rsqrtps */
7695 	case 0xf30f52:      /* rsqrtss */
7696 	case 0x0f53:        /* rcpps */
7697 	case 0xf30f53:      /* rcpss */
7698 	case 0x0f54:        /* andps */
7699 	case 0x660f54:      /* andpd */
7700 	case 0x0f55:        /* andnps */
7701 	case 0x660f55:      /* andnpd */
7702 	case 0x0f56:        /* orps */
7703 	case 0x660f56:      /* orpd */
7704 	case 0x0f57:        /* xorps */
7705 	case 0x660f57:      /* xorpd */
7706 	case 0x0f58:        /* addps */
7707 	case 0x660f58:      /* addpd */
7708 	case 0xf20f58:      /* addsd */
7709 	case 0xf30f58:      /* addss */
7710 	case 0x0f59:        /* mulps */
7711 	case 0x660f59:      /* mulpd */
7712 	case 0xf20f59:      /* mulsd */
7713 	case 0xf30f59:      /* mulss */
7714 	case 0x0f5a:        /* cvtps2pd */
7715 	case 0x660f5a:      /* cvtpd2ps */
7716 	case 0xf20f5a:      /* cvtsd2ss */
7717 	case 0xf30f5a:      /* cvtss2sd */
7718 	case 0x0f5b:        /* cvtdq2ps */
7719 	case 0x660f5b:      /* cvtps2dq */
7720 	case 0xf30f5b:      /* cvttps2dq */
7721 	case 0x0f5c:        /* subps */
7722 	case 0x660f5c:      /* subpd */
7723 	case 0xf20f5c:      /* subsd */
7724 	case 0xf30f5c:      /* subss */
7725 	case 0x0f5d:        /* minps */
7726 	case 0x660f5d:      /* minpd */
7727 	case 0xf20f5d:      /* minsd */
7728 	case 0xf30f5d:      /* minss */
7729 	case 0x0f5e:        /* divps */
7730 	case 0x660f5e:      /* divpd */
7731 	case 0xf20f5e:      /* divsd */
7732 	case 0xf30f5e:      /* divss */
7733 	case 0x0f5f:        /* maxps */
7734 	case 0x660f5f:      /* maxpd */
7735 	case 0xf20f5f:      /* maxsd */
7736 	case 0xf30f5f:      /* maxss */
7737 	case 0x660f60:      /* punpcklbw */
7738 	case 0x660f61:      /* punpcklwd */
7739 	case 0x660f62:      /* punpckldq */
7740 	case 0x660f63:      /* packsswb */
7741 	case 0x660f64:      /* pcmpgtb */
7742 	case 0x660f65:      /* pcmpgtw */
7743 	case 0x660f66:      /* pcmpgtd */
7744 	case 0x660f67:      /* packuswb */
7745 	case 0x660f68:      /* punpckhbw */
7746 	case 0x660f69:      /* punpckhwd */
7747 	case 0x660f6a:      /* punpckhdq */
7748 	case 0x660f6b:      /* packssdw */
7749 	case 0x660f6c:      /* punpcklqdq */
7750 	case 0x660f6d:      /* punpckhqdq */
7751 	case 0x660f6e:      /* movd */
7752 	case 0x660f6f:      /* movdqa */
7753 	case 0xf30f6f:      /* movdqu */
7754 	case 0x660f70:      /* pshufd */
7755 	case 0xf20f70:      /* pshuflw */
7756 	case 0xf30f70:      /* pshufhw */
7757 	case 0x660f74:      /* pcmpeqb */
7758 	case 0x660f75:      /* pcmpeqw */
7759 	case 0x660f76:      /* pcmpeqd */
7760 	case 0x660f7c:      /* haddpd */
7761 	case 0xf20f7c:      /* haddps */
7762 	case 0x660f7d:      /* hsubpd */
7763 	case 0xf20f7d:      /* hsubps */
7764 	case 0xf30f7e:      /* movq */
7765 	case 0x0fc2:        /* cmpps */
7766 	case 0x660fc2:      /* cmppd */
7767 	case 0xf20fc2:      /* cmpsd */
7768 	case 0xf30fc2:      /* cmpss */
7769 	case 0x660fc4:      /* pinsrw */
7770 	case 0x0fc6:        /* shufps */
7771 	case 0x660fc6:      /* shufpd */
7772 	case 0x660fd0:      /* addsubpd */
7773 	case 0xf20fd0:      /* addsubps */
7774 	case 0x660fd1:      /* psrlw */
7775 	case 0x660fd2:      /* psrld */
7776 	case 0x660fd3:      /* psrlq */
7777 	case 0x660fd4:      /* paddq */
7778 	case 0x660fd5:      /* pmullw */
7779 	case 0xf30fd6:      /* movq2dq */
7780 	case 0x660fd8:      /* psubusb */
7781 	case 0x660fd9:      /* psubusw */
7782 	case 0x660fda:      /* pminub */
7783 	case 0x660fdb:      /* pand */
7784 	case 0x660fdc:      /* paddusb */
7785 	case 0x660fdd:      /* paddusw */
7786 	case 0x660fde:      /* pmaxub */
7787 	case 0x660fdf:      /* pandn */
7788 	case 0x660fe0:      /* pavgb */
7789 	case 0x660fe1:      /* psraw */
7790 	case 0x660fe2:      /* psrad */
7791 	case 0x660fe3:      /* pavgw */
7792 	case 0x660fe4:      /* pmulhuw */
7793 	case 0x660fe5:      /* pmulhw */
7794 	case 0x660fe6:      /* cvttpd2dq */
7795 	case 0xf20fe6:      /* cvtpd2dq */
7796 	case 0xf30fe6:      /* cvtdq2pd */
7797 	case 0x660fe8:      /* psubsb */
7798 	case 0x660fe9:      /* psubsw */
7799 	case 0x660fea:      /* pminsw */
7800 	case 0x660feb:      /* por */
7801 	case 0x660fec:      /* paddsb */
7802 	case 0x660fed:      /* paddsw */
7803 	case 0x660fee:      /* pmaxsw */
7804 	case 0x660fef:      /* pxor */
7805 	case 0xf20ff0:      /* lddqu */
7806 	case 0x660ff1:      /* psllw */
7807 	case 0x660ff2:      /* pslld */
7808 	case 0x660ff3:      /* psllq */
7809 	case 0x660ff4:      /* pmuludq */
7810 	case 0x660ff5:      /* pmaddwd */
7811 	case 0x660ff6:      /* psadbw */
7812 	case 0x660ff8:      /* psubb */
7813 	case 0x660ff9:      /* psubw */
7814 	case 0x660ffa:      /* psubd */
7815 	case 0x660ffb:      /* psubq */
7816 	case 0x660ffc:      /* paddb */
7817 	case 0x660ffd:      /* paddw */
7818 	case 0x660ffe:      /* paddd */
7819 	  if (i386_record_modrm (&ir))
7820 	    return -1;
7821 	  ir.reg |= rex_r;
7822 	  if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7823 	    goto no_support;
7824 	  record_full_arch_list_add_reg (ir.regcache,
7825 					 I387_XMM0_REGNUM (tdep) + ir.reg);
7826 	  if ((opcode & 0xfffffffc) == 0x660f3a60)
7827 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7828 	  break;
7829 
7830 	case 0x0f11:        /* movups */
7831 	case 0x660f11:      /* movupd */
7832 	case 0xf30f11:      /* movss */
7833 	case 0xf20f11:      /* movsd */
7834 	case 0x0f13:        /* movlps */
7835 	case 0x660f13:      /* movlpd */
7836 	case 0x0f17:        /* movhps */
7837 	case 0x660f17:      /* movhpd */
7838 	case 0x0f29:        /* movaps */
7839 	case 0x660f29:      /* movapd */
7840 	case 0x660f3a14:    /* pextrb */
7841 	case 0x660f3a15:    /* pextrw */
7842 	case 0x660f3a16:    /* pextrd pextrq */
7843 	case 0x660f3a17:    /* extractps */
7844 	case 0x660f7f:      /* movdqa */
7845 	case 0xf30f7f:      /* movdqu */
7846 	  if (i386_record_modrm (&ir))
7847 	    return -1;
7848 	  if (ir.mod == 3)
7849 	    {
7850 	      if (opcode == 0x0f13 || opcode == 0x660f13
7851 		  || opcode == 0x0f17 || opcode == 0x660f17)
7852 		goto no_support;
7853 	      ir.rm |= ir.rex_b;
7854 	      if (!i386_xmm_regnum_p (gdbarch,
7855 				      I387_XMM0_REGNUM (tdep) + ir.rm))
7856 		goto no_support;
7857 	      record_full_arch_list_add_reg (ir.regcache,
7858 					     I387_XMM0_REGNUM (tdep) + ir.rm);
7859 	    }
7860 	  else
7861 	    {
7862 	      switch (opcode)
7863 		{
7864 		  case 0x660f3a14:
7865 		    ir.ot = OT_BYTE;
7866 		    break;
7867 		  case 0x660f3a15:
7868 		    ir.ot = OT_WORD;
7869 		    break;
7870 		  case 0x660f3a16:
7871 		    ir.ot = OT_LONG;
7872 		    break;
7873 		  case 0x660f3a17:
7874 		    ir.ot = OT_QUAD;
7875 		    break;
7876 		  default:
7877 		    ir.ot = OT_DQUAD;
7878 		    break;
7879 		}
7880 	      if (i386_record_lea_modrm (&ir))
7881 		return -1;
7882 	    }
7883 	  break;
7884 
7885 	case 0x0f2b:      /* movntps */
7886 	case 0x660f2b:    /* movntpd */
7887 	case 0x0fe7:      /* movntq */
7888 	case 0x660fe7:    /* movntdq */
7889 	  if (ir.mod == 3)
7890 	    goto no_support;
7891 	  if (opcode == 0x0fe7)
7892 	    ir.ot = OT_QUAD;
7893 	  else
7894 	    ir.ot = OT_DQUAD;
7895 	  if (i386_record_lea_modrm (&ir))
7896 	    return -1;
7897 	  break;
7898 
7899 	case 0xf30f2c:      /* cvttss2si */
7900 	case 0xf20f2c:      /* cvttsd2si */
7901 	case 0xf30f2d:      /* cvtss2si */
7902 	case 0xf20f2d:      /* cvtsd2si */
7903 	case 0xf20f38f0:    /* crc32 */
7904 	case 0xf20f38f1:    /* crc32 */
7905 	case 0x0f50:        /* movmskps */
7906 	case 0x660f50:      /* movmskpd */
7907 	case 0x0fc5:        /* pextrw */
7908 	case 0x660fc5:      /* pextrw */
7909 	case 0x0fd7:        /* pmovmskb */
7910 	case 0x660fd7:      /* pmovmskb */
7911 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7912 	  break;
7913 
7914 	case 0x0f3800:    /* pshufb */
7915 	case 0x0f3801:    /* phaddw */
7916 	case 0x0f3802:    /* phaddd */
7917 	case 0x0f3803:    /* phaddsw */
7918 	case 0x0f3804:    /* pmaddubsw */
7919 	case 0x0f3805:    /* phsubw */
7920 	case 0x0f3806:    /* phsubd */
7921 	case 0x0f3807:    /* phsubsw */
7922 	case 0x0f3808:    /* psignb */
7923 	case 0x0f3809:    /* psignw */
7924 	case 0x0f380a:    /* psignd */
7925 	case 0x0f380b:    /* pmulhrsw */
7926 	case 0x0f381c:    /* pabsb */
7927 	case 0x0f381d:    /* pabsw */
7928 	case 0x0f381e:    /* pabsd */
7929 	case 0x0f382b:    /* packusdw */
7930 	case 0x0f3830:    /* pmovzxbw */
7931 	case 0x0f3831:    /* pmovzxbd */
7932 	case 0x0f3832:    /* pmovzxbq */
7933 	case 0x0f3833:    /* pmovzxwd */
7934 	case 0x0f3834:    /* pmovzxwq */
7935 	case 0x0f3835:    /* pmovzxdq */
7936 	case 0x0f3837:    /* pcmpgtq */
7937 	case 0x0f3838:    /* pminsb */
7938 	case 0x0f3839:    /* pminsd */
7939 	case 0x0f383a:    /* pminuw */
7940 	case 0x0f383b:    /* pminud */
7941 	case 0x0f383c:    /* pmaxsb */
7942 	case 0x0f383d:    /* pmaxsd */
7943 	case 0x0f383e:    /* pmaxuw */
7944 	case 0x0f383f:    /* pmaxud */
7945 	case 0x0f3840:    /* pmulld */
7946 	case 0x0f3841:    /* phminposuw */
7947 	case 0x0f3a0f:    /* palignr */
7948 	case 0x0f60:      /* punpcklbw */
7949 	case 0x0f61:      /* punpcklwd */
7950 	case 0x0f62:      /* punpckldq */
7951 	case 0x0f63:      /* packsswb */
7952 	case 0x0f64:      /* pcmpgtb */
7953 	case 0x0f65:      /* pcmpgtw */
7954 	case 0x0f66:      /* pcmpgtd */
7955 	case 0x0f67:      /* packuswb */
7956 	case 0x0f68:      /* punpckhbw */
7957 	case 0x0f69:      /* punpckhwd */
7958 	case 0x0f6a:      /* punpckhdq */
7959 	case 0x0f6b:      /* packssdw */
7960 	case 0x0f6e:      /* movd */
7961 	case 0x0f6f:      /* movq */
7962 	case 0x0f70:      /* pshufw */
7963 	case 0x0f74:      /* pcmpeqb */
7964 	case 0x0f75:      /* pcmpeqw */
7965 	case 0x0f76:      /* pcmpeqd */
7966 	case 0x0fc4:      /* pinsrw */
7967 	case 0x0fd1:      /* psrlw */
7968 	case 0x0fd2:      /* psrld */
7969 	case 0x0fd3:      /* psrlq */
7970 	case 0x0fd4:      /* paddq */
7971 	case 0x0fd5:      /* pmullw */
7972 	case 0xf20fd6:    /* movdq2q */
7973 	case 0x0fd8:      /* psubusb */
7974 	case 0x0fd9:      /* psubusw */
7975 	case 0x0fda:      /* pminub */
7976 	case 0x0fdb:      /* pand */
7977 	case 0x0fdc:      /* paddusb */
7978 	case 0x0fdd:      /* paddusw */
7979 	case 0x0fde:      /* pmaxub */
7980 	case 0x0fdf:      /* pandn */
7981 	case 0x0fe0:      /* pavgb */
7982 	case 0x0fe1:      /* psraw */
7983 	case 0x0fe2:      /* psrad */
7984 	case 0x0fe3:      /* pavgw */
7985 	case 0x0fe4:      /* pmulhuw */
7986 	case 0x0fe5:      /* pmulhw */
7987 	case 0x0fe8:      /* psubsb */
7988 	case 0x0fe9:      /* psubsw */
7989 	case 0x0fea:      /* pminsw */
7990 	case 0x0feb:      /* por */
7991 	case 0x0fec:      /* paddsb */
7992 	case 0x0fed:      /* paddsw */
7993 	case 0x0fee:      /* pmaxsw */
7994 	case 0x0fef:      /* pxor */
7995 	case 0x0ff1:      /* psllw */
7996 	case 0x0ff2:      /* pslld */
7997 	case 0x0ff3:      /* psllq */
7998 	case 0x0ff4:      /* pmuludq */
7999 	case 0x0ff5:      /* pmaddwd */
8000 	case 0x0ff6:      /* psadbw */
8001 	case 0x0ff8:      /* psubb */
8002 	case 0x0ff9:      /* psubw */
8003 	case 0x0ffa:      /* psubd */
8004 	case 0x0ffb:      /* psubq */
8005 	case 0x0ffc:      /* paddb */
8006 	case 0x0ffd:      /* paddw */
8007 	case 0x0ffe:      /* paddd */
8008 	  if (i386_record_modrm (&ir))
8009 	    return -1;
8010 	  if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
8011 	    goto no_support;
8012 	  record_full_arch_list_add_reg (ir.regcache,
8013 					 I387_MM0_REGNUM (tdep) + ir.reg);
8014 	  break;
8015 
8016 	case 0x0f71:    /* psllw */
8017 	case 0x0f72:    /* pslld */
8018 	case 0x0f73:    /* psllq */
8019 	  if (i386_record_modrm (&ir))
8020 	    return -1;
8021 	  if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8022 	    goto no_support;
8023 	  record_full_arch_list_add_reg (ir.regcache,
8024 					 I387_MM0_REGNUM (tdep) + ir.rm);
8025 	  break;
8026 
8027 	case 0x660f71:    /* psllw */
8028 	case 0x660f72:    /* pslld */
8029 	case 0x660f73:    /* psllq */
8030 	  if (i386_record_modrm (&ir))
8031 	    return -1;
8032 	  ir.rm |= ir.rex_b;
8033 	  if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
8034 	    goto no_support;
8035 	  record_full_arch_list_add_reg (ir.regcache,
8036 					 I387_XMM0_REGNUM (tdep) + ir.rm);
8037 	  break;
8038 
8039 	case 0x0f7e:      /* movd */
8040 	case 0x660f7e:    /* movd */
8041 	  if (i386_record_modrm (&ir))
8042 	    return -1;
8043 	  if (ir.mod == 3)
8044 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8045 	  else
8046 	    {
8047 	      if (ir.dflag == 2)
8048 		ir.ot = OT_QUAD;
8049 	      else
8050 		ir.ot = OT_LONG;
8051 	      if (i386_record_lea_modrm (&ir))
8052 		return -1;
8053 	    }
8054 	  break;
8055 
8056 	case 0x0f7f:    /* movq */
8057 	  if (i386_record_modrm (&ir))
8058 	    return -1;
8059 	  if (ir.mod == 3)
8060 	    {
8061 	      if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8062 		goto no_support;
8063 	      record_full_arch_list_add_reg (ir.regcache,
8064 					     I387_MM0_REGNUM (tdep) + ir.rm);
8065 	    }
8066 	  else
8067 	    {
8068 	      ir.ot = OT_QUAD;
8069 	      if (i386_record_lea_modrm (&ir))
8070 		return -1;
8071 	    }
8072 	  break;
8073 
8074 	case 0xf30fb8:    /* popcnt */
8075 	  if (i386_record_modrm (&ir))
8076 	    return -1;
8077 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8078 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8079 	  break;
8080 
8081 	case 0x660fd6:    /* movq */
8082 	  if (i386_record_modrm (&ir))
8083 	    return -1;
8084 	  if (ir.mod == 3)
8085 	    {
8086 	      ir.rm |= ir.rex_b;
8087 	      if (!i386_xmm_regnum_p (gdbarch,
8088 				      I387_XMM0_REGNUM (tdep) + ir.rm))
8089 		goto no_support;
8090 	      record_full_arch_list_add_reg (ir.regcache,
8091 					     I387_XMM0_REGNUM (tdep) + ir.rm);
8092 	    }
8093 	  else
8094 	    {
8095 	      ir.ot = OT_QUAD;
8096 	      if (i386_record_lea_modrm (&ir))
8097 		return -1;
8098 	    }
8099 	  break;
8100 
8101 	case 0x660f3817:    /* ptest */
8102 	case 0x0f2e:        /* ucomiss */
8103 	case 0x660f2e:      /* ucomisd */
8104 	case 0x0f2f:        /* comiss */
8105 	case 0x660f2f:      /* comisd */
8106 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8107 	  break;
8108 
8109 	case 0x0ff7:    /* maskmovq */
8110 	  regcache_raw_read_unsigned (ir.regcache,
8111 				      ir.regmap[X86_RECORD_REDI_REGNUM],
8112 				      &addr);
8113 	  if (record_full_arch_list_add_mem (addr, 64))
8114 	    return -1;
8115 	  break;
8116 
8117 	case 0x660ff7:    /* maskmovdqu */
8118 	  regcache_raw_read_unsigned (ir.regcache,
8119 				      ir.regmap[X86_RECORD_REDI_REGNUM],
8120 				      &addr);
8121 	  if (record_full_arch_list_add_mem (addr, 128))
8122 	    return -1;
8123 	  break;
8124 
8125 	default:
8126 	  goto no_support;
8127 	  break;
8128 	}
8129       break;
8130 
8131     default:
8132       goto no_support;
8133       break;
8134     }
8135 
8136   /* In the future, maybe still need to deal with need_dasm.  */
8137   I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8138   if (record_full_arch_list_add_end ())
8139     return -1;
8140 
8141   return 0;
8142 
8143  no_support:
8144   gdb_printf (gdb_stderr,
8145 	      _("Process record does not support instruction 0x%02x "
8146 		"at address %s.\n"),
8147 	      (unsigned int) (opcode),
8148 	      paddress (gdbarch, ir.orig_addr));
8149   return -1;
8150 }
8151 
8152 static const int i386_record_regmap[] =
8153 {
8154   I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8155   I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8156   0, 0, 0, 0, 0, 0, 0, 0,
8157   I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8158   I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8159 };
8160 
8161 /* Check that the given address appears suitable for a fast
8162    tracepoint, which on x86-64 means that we need an instruction of at
8163    least 5 bytes, so that we can overwrite it with a 4-byte-offset
8164    jump and not have to worry about program jumps to an address in the
8165    middle of the tracepoint jump.  On x86, it may be possible to use
8166    4-byte jumps with a 2-byte offset to a trampoline located in the
8167    bottom 64 KiB of memory.  Returns 1 if OK, and writes a size
8168    of instruction to replace, and 0 if not, plus an explanatory
8169    string.  */
8170 
8171 static int
8172 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8173 			       std::string *msg)
8174 {
8175   int len, jumplen;
8176 
8177   /*  Ask the target for the minimum instruction length supported.  */
8178   jumplen = target_get_min_fast_tracepoint_insn_len ();
8179 
8180   if (jumplen < 0)
8181     {
8182       /* If the target does not support the get_min_fast_tracepoint_insn_len
8183 	 operation, assume that fast tracepoints will always be implemented
8184 	 using 4-byte relative jumps on both x86 and x86-64.  */
8185       jumplen = 5;
8186     }
8187   else if (jumplen == 0)
8188     {
8189       /* If the target does support get_min_fast_tracepoint_insn_len but
8190 	 returns zero, then the IPA has not loaded yet.  In this case,
8191 	 we optimistically assume that truncated 2-byte relative jumps
8192 	 will be available on x86, and compensate later if this assumption
8193 	 turns out to be incorrect.  On x86-64 architectures, 4-byte relative
8194 	 jumps will always be used.  */
8195       jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8196     }
8197 
8198   /* Check for fit.  */
8199   len = gdb_insn_length (gdbarch, addr);
8200 
8201   if (len < jumplen)
8202     {
8203       /* Return a bit of target-specific detail to add to the caller's
8204 	 generic failure message.  */
8205       if (msg)
8206 	*msg = string_printf (_("; instruction is only %d bytes long, "
8207 				"need at least %d bytes for the jump"),
8208 			      len, jumplen);
8209       return 0;
8210     }
8211   else
8212     {
8213       if (msg)
8214 	msg->clear ();
8215       return 1;
8216     }
8217 }
8218 
8219 /* Return a floating-point format for a floating-point variable of
8220    length LEN in bits.  If non-NULL, NAME is the name of its type.
8221    If no suitable type is found, return NULL.  */
8222 
8223 static const struct floatformat **
8224 i386_floatformat_for_type (struct gdbarch *gdbarch,
8225 			   const char *name, int len)
8226 {
8227   if (len == 128 && name)
8228     if (strcmp (name, "__float128") == 0
8229 	|| strcmp (name, "_Float128") == 0
8230 	|| strcmp (name, "complex _Float128") == 0
8231 	|| strcmp (name, "complex(kind=16)") == 0
8232 	|| strcmp (name, "complex*32") == 0
8233 	|| strcmp (name, "COMPLEX*32") == 0
8234 	|| strcmp (name, "quad complex") == 0
8235 	|| strcmp (name, "real(kind=16)") == 0
8236 	|| strcmp (name, "real*16") == 0
8237 	|| strcmp (name, "REAL*16") == 0)
8238       return floatformats_ieee_quad;
8239 
8240   return default_floatformat_for_type (gdbarch, name, len);
8241 }
8242 
8243 static int
8244 i386_validate_tdesc_p (i386_gdbarch_tdep *tdep,
8245 		       struct tdesc_arch_data *tdesc_data)
8246 {
8247   const struct target_desc *tdesc = tdep->tdesc;
8248   const struct tdesc_feature *feature_core;
8249 
8250   const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8251 			     *feature_avx512, *feature_pkeys, *feature_segments;
8252   int i, num_regs, valid_p;
8253 
8254   if (! tdesc_has_registers (tdesc))
8255     return 0;
8256 
8257   /* Get core registers.  */
8258   feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8259   if (feature_core == NULL)
8260     return 0;
8261 
8262   /* Get SSE registers.  */
8263   feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8264 
8265   /* Try AVX registers.  */
8266   feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8267 
8268   /* Try MPX registers.  */
8269   feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8270 
8271   /* Try AVX512 registers.  */
8272   feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8273 
8274   /* Try segment base registers.  */
8275   feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8276 
8277   /* Try PKEYS  */
8278   feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8279 
8280   valid_p = 1;
8281 
8282   /* The XCR0 bits.  */
8283   if (feature_avx512)
8284     {
8285       /* AVX512 register description requires AVX register description.  */
8286       if (!feature_avx)
8287 	return 0;
8288 
8289       tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8290 
8291       /* It may have been set by OSABI initialization function.  */
8292       if (tdep->k0_regnum < 0)
8293 	{
8294 	  tdep->k_register_names = i386_k_names;
8295 	  tdep->k0_regnum = I386_K0_REGNUM;
8296 	}
8297 
8298       for (i = 0; i < I387_NUM_K_REGS; i++)
8299 	valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8300 					    tdep->k0_regnum + i,
8301 					    i386_k_names[i]);
8302 
8303       if (tdep->num_zmm_regs == 0)
8304 	{
8305 	  tdep->zmmh_register_names = i386_zmmh_names;
8306 	  tdep->num_zmm_regs = 8;
8307 	  tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8308 	}
8309 
8310       for (i = 0; i < tdep->num_zmm_regs; i++)
8311 	valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8312 					    tdep->zmm0h_regnum + i,
8313 					    tdep->zmmh_register_names[i]);
8314 
8315       for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8316 	valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8317 					    tdep->xmm16_regnum + i,
8318 					    tdep->xmm_avx512_register_names[i]);
8319 
8320       for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8321 	valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8322 					    tdep->ymm16h_regnum + i,
8323 					    tdep->ymm16h_register_names[i]);
8324     }
8325   if (feature_avx)
8326     {
8327       /* AVX register description requires SSE register description.  */
8328       if (!feature_sse)
8329 	return 0;
8330 
8331       if (!feature_avx512)
8332 	tdep->xcr0 = X86_XSTATE_AVX_MASK;
8333 
8334       /* It may have been set by OSABI initialization function.  */
8335       if (tdep->num_ymm_regs == 0)
8336 	{
8337 	  tdep->ymmh_register_names = i386_ymmh_names;
8338 	  tdep->num_ymm_regs = 8;
8339 	  tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8340 	}
8341 
8342       for (i = 0; i < tdep->num_ymm_regs; i++)
8343 	valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8344 					    tdep->ymm0h_regnum + i,
8345 					    tdep->ymmh_register_names[i]);
8346     }
8347   else if (feature_sse)
8348     tdep->xcr0 = X86_XSTATE_SSE_MASK;
8349   else
8350     {
8351       tdep->xcr0 = X86_XSTATE_X87_MASK;
8352       tdep->num_xmm_regs = 0;
8353     }
8354 
8355   num_regs = tdep->num_core_regs;
8356   for (i = 0; i < num_regs; i++)
8357     valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8358 					tdep->register_names[i]);
8359 
8360   if (feature_sse)
8361     {
8362       /* Need to include %mxcsr, so add one.  */
8363       num_regs += tdep->num_xmm_regs + 1;
8364       for (; i < num_regs; i++)
8365 	valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8366 					    tdep->register_names[i]);
8367     }
8368 
8369   if (feature_mpx)
8370     {
8371       tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8372 
8373       if (tdep->bnd0r_regnum < 0)
8374 	{
8375 	  tdep->mpx_register_names = i386_mpx_names;
8376 	  tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8377 	  tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8378 	}
8379 
8380       for (i = 0; i < I387_NUM_MPX_REGS; i++)
8381 	valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8382 	    I387_BND0R_REGNUM (tdep) + i,
8383 	    tdep->mpx_register_names[i]);
8384     }
8385 
8386   if (feature_segments)
8387     {
8388       if (tdep->fsbase_regnum < 0)
8389 	tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8390       valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8391 					  tdep->fsbase_regnum, "fs_base");
8392       valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8393 					  tdep->fsbase_regnum + 1, "gs_base");
8394     }
8395 
8396   if (feature_pkeys)
8397     {
8398       tdep->xcr0 |= X86_XSTATE_PKRU;
8399       if (tdep->pkru_regnum < 0)
8400 	{
8401 	  tdep->pkeys_register_names = i386_pkeys_names;
8402 	  tdep->pkru_regnum = I386_PKRU_REGNUM;
8403 	  tdep->num_pkeys_regs = 1;
8404 	}
8405 
8406       for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8407 	valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8408 					    I387_PKRU_REGNUM (tdep) + i,
8409 					    tdep->pkeys_register_names[i]);
8410     }
8411 
8412   return valid_p;
8413 }
8414 
8415 
8416 
8417 /* Implement the type_align gdbarch function.  */
8418 
8419 static ULONGEST
8420 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8421 {
8422   type = check_typedef (type);
8423 
8424   if (gdbarch_ptr_bit (gdbarch) == 32)
8425     {
8426       if ((type->code () == TYPE_CODE_INT
8427 	   || type->code () == TYPE_CODE_FLT)
8428 	  && type->length () > 4)
8429 	return 4;
8430 
8431       /* Handle x86's funny long double.  */
8432       if (type->code () == TYPE_CODE_FLT
8433 	  && gdbarch_long_double_bit (gdbarch) == type->length () * 8)
8434 	return 4;
8435     }
8436 
8437   return 0;
8438 }
8439 
8440 
8441 /* Note: This is called for both i386 and amd64.  */
8442 
8443 static struct gdbarch *
8444 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8445 {
8446   struct gdbarch *gdbarch;
8447   const struct target_desc *tdesc;
8448   int mm0_regnum;
8449   int ymm0_regnum;
8450   int bnd0_regnum;
8451   int num_bnd_cooked;
8452 
8453   /* If there is already a candidate, use it.  */
8454   arches = gdbarch_list_lookup_by_info (arches, &info);
8455   if (arches != NULL)
8456     return arches->gdbarch;
8457 
8458   /* Allocate space for the new architecture.  Assume i386 for now.  */
8459   i386_gdbarch_tdep *tdep = new i386_gdbarch_tdep;
8460   gdbarch = gdbarch_alloc (&info, tdep);
8461 
8462   /* General-purpose registers.  */
8463   tdep->gregset_reg_offset = NULL;
8464   tdep->gregset_num_regs = I386_NUM_GREGS;
8465   tdep->sizeof_gregset = 0;
8466 
8467   /* Floating-point registers.  */
8468   tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8469   tdep->fpregset = &i386_fpregset;
8470 
8471   /* The default settings include the FPU registers, the MMX registers
8472      and the SSE registers.  This can be overridden for a specific ABI
8473      by adjusting the members `st0_regnum', `mm0_regnum' and
8474      `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8475      will show up in the output of "info all-registers".  */
8476 
8477   tdep->st0_regnum = I386_ST0_REGNUM;
8478 
8479   /* I386_NUM_XREGS includes %mxcsr, so substract one.  */
8480   tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8481 
8482   tdep->jb_pc_offset = -1;
8483   tdep->struct_return = pcc_struct_return;
8484   tdep->sigtramp_start = 0;
8485   tdep->sigtramp_end = 0;
8486   tdep->sigtramp_p = i386_sigtramp_p;
8487   tdep->sigcontext_addr = NULL;
8488   tdep->sc_reg_offset = NULL;
8489   tdep->sc_pc_offset = -1;
8490   tdep->sc_sp_offset = -1;
8491 
8492   tdep->xsave_xcr0_offset = -1;
8493 
8494   tdep->record_regmap = i386_record_regmap;
8495 
8496   set_gdbarch_type_align (gdbarch, i386_type_align);
8497 
8498   /* The format used for `long double' on almost all i386 targets is
8499      the i387 extended floating-point format.  In fact, of all targets
8500      in the GCC 2.95 tree, only OSF/1 does it different, and insists
8501      on having a `long double' that's not `long' at all.  */
8502   set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8503 
8504   /* Although the i387 extended floating-point has only 80 significant
8505      bits, a `long double' actually takes up 96, probably to enforce
8506      alignment.  */
8507   set_gdbarch_long_double_bit (gdbarch, 96);
8508 
8509   /* Support of bfloat16 format.  */
8510   set_gdbarch_bfloat16_format (gdbarch, floatformats_bfloat16);
8511 
8512   /* Support for floating-point data type variants.  */
8513   set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8514 
8515   /* Register numbers of various important registers.  */
8516   set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8517   set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8518   set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8519   set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8520 
8521   /* NOTE: kettenis/20040418: GCC does have two possible register
8522      numbering schemes on the i386: dbx and SVR4.  These schemes
8523      differ in how they number %ebp, %esp, %eflags, and the
8524      floating-point registers, and are implemented by the arrays
8525      dbx_register_map[] and svr4_dbx_register_map in
8526      gcc/config/i386.c.  GCC also defines a third numbering scheme in
8527      gcc/config/i386.c, which it designates as the "default" register
8528      map used in 64bit mode.  This last register numbering scheme is
8529      implemented in dbx64_register_map, and is used for AMD64; see
8530      amd64-tdep.c.
8531 
8532      Currently, each GCC i386 target always uses the same register
8533      numbering scheme across all its supported debugging formats
8534      i.e. SDB (COFF), stabs and DWARF 2.  This is because
8535      gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8536      DBX_REGISTER_NUMBER macro which is defined by each target's
8537      respective config header in a manner independent of the requested
8538      output debugging format.
8539 
8540      This does not match the arrangement below, which presumes that
8541      the SDB and stabs numbering schemes differ from the DWARF and
8542      DWARF 2 ones.  The reason for this arrangement is that it is
8543      likely to get the numbering scheme for the target's
8544      default/native debug format right.  For targets where GCC is the
8545      native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8546      targets where the native toolchain uses a different numbering
8547      scheme for a particular debug format (stabs-in-ELF on Solaris)
8548      the defaults below will have to be overridden, like
8549      i386_elf_init_abi() does.  */
8550 
8551   /* Use the dbx register numbering scheme for stabs and COFF.  */
8552   set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8553   set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8554 
8555   /* Use the SVR4 register numbering scheme for DWARF 2.  */
8556   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8557 
8558   /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8559      be in use on any of the supported i386 targets.  */
8560 
8561   set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8562 
8563   set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8564 
8565   /* Call dummy code.  */
8566   set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8567   set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8568   set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8569   set_gdbarch_frame_align (gdbarch, i386_frame_align);
8570 
8571   set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8572   set_gdbarch_register_to_value (gdbarch,  i386_register_to_value);
8573   set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8574 
8575   set_gdbarch_return_value (gdbarch, i386_return_value);
8576 
8577   set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8578 
8579   /* Stack grows downward.  */
8580   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8581 
8582   set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8583   set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8584 
8585   set_gdbarch_decr_pc_after_break (gdbarch, 1);
8586   set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8587 
8588   set_gdbarch_frame_args_skip (gdbarch, 8);
8589 
8590   set_gdbarch_print_insn (gdbarch, i386_print_insn);
8591 
8592   set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8593 
8594   set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8595 
8596   /* Add the i386 register groups.  */
8597   i386_add_reggroups (gdbarch);
8598   tdep->register_reggroup_p = i386_register_reggroup_p;
8599 
8600   /* Helper for function argument information.  */
8601   set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8602 
8603   /* Hook the function epilogue frame unwinder.  This unwinder is
8604      appended to the list first, so that it supercedes the DWARF
8605      unwinder in function epilogues (where the DWARF unwinder
8606      currently fails).  */
8607   frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8608 
8609   /* Hook in the DWARF CFI frame unwinder.  This unwinder is appended
8610      to the list before the prologue-based unwinders, so that DWARF
8611      CFI info will be used if it is available.  */
8612   dwarf2_append_unwinders (gdbarch);
8613 
8614   frame_base_set_default (gdbarch, &i386_frame_base);
8615 
8616   /* Pseudo registers may be changed by amd64_init_abi.  */
8617   set_gdbarch_pseudo_register_read_value (gdbarch,
8618 					  i386_pseudo_register_read_value);
8619   set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8620   set_gdbarch_ax_pseudo_register_collect (gdbarch,
8621 					  i386_ax_pseudo_register_collect);
8622 
8623   set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8624   set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8625 
8626   /* Override the normal target description method to make the AVX
8627      upper halves anonymous.  */
8628   set_gdbarch_register_name (gdbarch, i386_register_name);
8629 
8630   /* Even though the default ABI only includes general-purpose registers,
8631      floating-point registers and the SSE registers, we have to leave a
8632      gap for the upper AVX, MPX and AVX512 registers.  */
8633   set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8634 
8635   set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8636 
8637   /* Get the x86 target description from INFO.  */
8638   tdesc = info.target_desc;
8639   if (! tdesc_has_registers (tdesc))
8640     tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8641   tdep->tdesc = tdesc;
8642 
8643   tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8644   tdep->register_names = i386_register_names;
8645 
8646   /* No upper YMM registers.  */
8647   tdep->ymmh_register_names = NULL;
8648   tdep->ymm0h_regnum = -1;
8649 
8650   /* No upper ZMM registers.  */
8651   tdep->zmmh_register_names = NULL;
8652   tdep->zmm0h_regnum = -1;
8653 
8654   /* No high XMM registers.  */
8655   tdep->xmm_avx512_register_names = NULL;
8656   tdep->xmm16_regnum = -1;
8657 
8658   /* No upper YMM16-31 registers.  */
8659   tdep->ymm16h_register_names = NULL;
8660   tdep->ymm16h_regnum = -1;
8661 
8662   tdep->num_byte_regs = 8;
8663   tdep->num_word_regs = 8;
8664   tdep->num_dword_regs = 0;
8665   tdep->num_mmx_regs = 8;
8666   tdep->num_ymm_regs = 0;
8667 
8668   /* No MPX registers.  */
8669   tdep->bnd0r_regnum = -1;
8670   tdep->bndcfgu_regnum = -1;
8671 
8672   /* No AVX512 registers.  */
8673   tdep->k0_regnum = -1;
8674   tdep->num_zmm_regs = 0;
8675   tdep->num_ymm_avx512_regs = 0;
8676   tdep->num_xmm_avx512_regs = 0;
8677 
8678   /* No PKEYS registers  */
8679   tdep->pkru_regnum = -1;
8680   tdep->num_pkeys_regs = 0;
8681 
8682   /* No segment base registers.  */
8683   tdep->fsbase_regnum = -1;
8684 
8685   tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
8686 
8687   set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8688 
8689   set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8690 
8691   set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8692   set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8693   set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8694 
8695   /* Hook in ABI-specific overrides, if they have been registered.
8696      Note: If INFO specifies a 64 bit arch, this is where we turn
8697      a 32-bit i386 into a 64-bit amd64.  */
8698   info.tdesc_data = tdesc_data.get ();
8699   gdbarch_init_osabi (info, gdbarch);
8700 
8701   if (!i386_validate_tdesc_p (tdep, tdesc_data.get ()))
8702     {
8703       delete tdep;
8704       gdbarch_free (gdbarch);
8705       return NULL;
8706     }
8707 
8708   num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8709 
8710   /* Wire in pseudo registers.  Number of pseudo registers may be
8711      changed.  */
8712   set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8713 					 + tdep->num_word_regs
8714 					 + tdep->num_dword_regs
8715 					 + tdep->num_mmx_regs
8716 					 + tdep->num_ymm_regs
8717 					 + num_bnd_cooked
8718 					 + tdep->num_ymm_avx512_regs
8719 					 + tdep->num_zmm_regs));
8720 
8721   /* Target description may be changed.  */
8722   tdesc = tdep->tdesc;
8723 
8724   tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
8725 
8726   /* Override gdbarch_register_reggroup_p set in tdesc_use_registers.  */
8727   set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8728 
8729   /* Make %al the first pseudo-register.  */
8730   tdep->al_regnum = gdbarch_num_regs (gdbarch);
8731   tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8732 
8733   ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8734   if (tdep->num_dword_regs)
8735     {
8736       /* Support dword pseudo-register if it hasn't been disabled.  */
8737       tdep->eax_regnum = ymm0_regnum;
8738       ymm0_regnum += tdep->num_dword_regs;
8739     }
8740   else
8741     tdep->eax_regnum = -1;
8742 
8743   mm0_regnum = ymm0_regnum;
8744   if (tdep->num_ymm_regs)
8745     {
8746       /* Support YMM pseudo-register if it is available.  */
8747       tdep->ymm0_regnum = ymm0_regnum;
8748       mm0_regnum += tdep->num_ymm_regs;
8749     }
8750   else
8751     tdep->ymm0_regnum = -1;
8752 
8753   if (tdep->num_ymm_avx512_regs)
8754     {
8755       /* Support YMM16-31 pseudo registers if available.  */
8756       tdep->ymm16_regnum = mm0_regnum;
8757       mm0_regnum += tdep->num_ymm_avx512_regs;
8758     }
8759   else
8760     tdep->ymm16_regnum = -1;
8761 
8762   if (tdep->num_zmm_regs)
8763     {
8764       /* Support ZMM pseudo-register if it is available.  */
8765       tdep->zmm0_regnum = mm0_regnum;
8766       mm0_regnum += tdep->num_zmm_regs;
8767     }
8768   else
8769     tdep->zmm0_regnum = -1;
8770 
8771   bnd0_regnum = mm0_regnum;
8772   if (tdep->num_mmx_regs != 0)
8773     {
8774       /* Support MMX pseudo-register if MMX hasn't been disabled.  */
8775       tdep->mm0_regnum = mm0_regnum;
8776       bnd0_regnum += tdep->num_mmx_regs;
8777     }
8778   else
8779     tdep->mm0_regnum = -1;
8780 
8781   if (tdep->bnd0r_regnum > 0)
8782       tdep->bnd0_regnum = bnd0_regnum;
8783   else
8784     tdep-> bnd0_regnum = -1;
8785 
8786   /* Hook in the legacy prologue-based unwinders last (fallback).  */
8787   frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8788   frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8789   frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8790 
8791   /* If we have a register mapping, enable the generic core file
8792      support, unless it has already been enabled.  */
8793   if (tdep->gregset_reg_offset
8794       && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8795     set_gdbarch_iterate_over_regset_sections
8796       (gdbarch, i386_iterate_over_regset_sections);
8797 
8798   set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8799 					i386_fast_tracepoint_valid_at);
8800 
8801   return gdbarch;
8802 }
8803 
8804 
8805 
8806 /* Return the target description for a specified XSAVE feature mask.  */
8807 
8808 const struct target_desc *
8809 i386_target_description (uint64_t xcr0, bool segments)
8810 {
8811   static target_desc *i386_tdescs \
8812     [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8813   target_desc **tdesc;
8814 
8815   tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8816     [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8817     [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8818     [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8819     [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8820     [segments ? 1 : 0];
8821 
8822   if (*tdesc == NULL)
8823     *tdesc = i386_create_target_description (xcr0, false, segments);
8824 
8825   return *tdesc;
8826 }
8827 
8828 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8829 
8830 /* Find the bound directory base address.  */
8831 
8832 static unsigned long
8833 i386_mpx_bd_base (void)
8834 {
8835   struct regcache *rcache;
8836   ULONGEST ret;
8837   enum register_status regstatus;
8838 
8839   rcache = get_current_regcache ();
8840   gdbarch *arch = rcache->arch ();
8841   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
8842 
8843   regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8844 
8845   if (regstatus != REG_VALID)
8846     error (_("BNDCFGU register invalid, read status %d."), regstatus);
8847 
8848   return ret & MPX_BASE_MASK;
8849 }
8850 
8851 int
8852 i386_mpx_enabled (void)
8853 {
8854   gdbarch *arch = get_current_arch ();
8855   i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
8856   const struct target_desc *tdesc = tdep->tdesc;
8857 
8858   return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8859 }
8860 
8861 #define MPX_BD_MASK     0xfffffff00000ULL	/* select bits [47:20]  */
8862 #define MPX_BT_MASK     0x0000000ffff8	        /* select bits [19:3]   */
8863 #define MPX_BD_MASK_32  0xfffff000	        /* select bits [31:12]  */
8864 #define MPX_BT_MASK_32  0x00000ffc	        /* select bits [11:2]   */
8865 
8866 /* Find the bound table entry given the pointer location and the base
8867    address of the table.  */
8868 
8869 static CORE_ADDR
8870 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8871 {
8872   CORE_ADDR offset1;
8873   CORE_ADDR offset2;
8874   CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8875   CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8876   CORE_ADDR bd_entry_addr;
8877   CORE_ADDR bt_addr;
8878   CORE_ADDR bd_entry;
8879   struct gdbarch *gdbarch = get_current_arch ();
8880   struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8881 
8882 
8883   if (gdbarch_ptr_bit (gdbarch) == 64)
8884     {
8885       mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8886       bd_ptr_r_shift = 20;
8887       bd_ptr_l_shift = 3;
8888       bt_select_r_shift = 3;
8889       bt_select_l_shift = 5;
8890       bt_mask = (CORE_ADDR) MPX_BT_MASK;
8891 
8892       if ( sizeof (CORE_ADDR) == 4)
8893 	error (_("bound table examination not supported\
8894  for 64-bit process with 32-bit GDB"));
8895     }
8896   else
8897     {
8898       mpx_bd_mask = MPX_BD_MASK_32;
8899       bd_ptr_r_shift = 12;
8900       bd_ptr_l_shift = 2;
8901       bt_select_r_shift = 2;
8902       bt_select_l_shift = 4;
8903       bt_mask = MPX_BT_MASK_32;
8904     }
8905 
8906   offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8907   bd_entry_addr = bd_base + offset1;
8908   bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8909 
8910   if ((bd_entry & 0x1) == 0)
8911     error (_("Invalid bounds directory entry at %s."),
8912 	   paddress (get_current_arch (), bd_entry_addr));
8913 
8914   /* Clearing status bit.  */
8915   bd_entry--;
8916   bt_addr = bd_entry & ~bt_select_r_shift;
8917   offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8918 
8919   return bt_addr + offset2;
8920 }
8921 
8922 /* Print routine for the mpx bounds.  */
8923 
8924 static void
8925 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8926 {
8927   struct ui_out *uiout = current_uiout;
8928   LONGEST size;
8929   struct gdbarch *gdbarch = get_current_arch ();
8930   CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8931   int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8932 
8933   if (bounds_in_map == 1)
8934     {
8935       uiout->text ("Null bounds on map:");
8936       uiout->text (" pointer value = ");
8937       uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8938       uiout->text (".");
8939       uiout->text ("\n");
8940     }
8941   else
8942     {
8943       uiout->text ("{lbound = ");
8944       uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8945       uiout->text (", ubound = ");
8946 
8947       /* The upper bound is stored in 1's complement.  */
8948       uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8949       uiout->text ("}: pointer value = ");
8950       uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8951 
8952       if (gdbarch_ptr_bit (gdbarch) == 64)
8953 	size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8954       else
8955 	size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8956 
8957       /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8958 	 -1 represents in this sense full memory access, and there is no need
8959 	 one to the size.  */
8960 
8961       size = (size > -1 ? size + 1 : size);
8962       uiout->text (", size = ");
8963       uiout->field_string ("size", plongest (size));
8964 
8965       uiout->text (", metadata = ");
8966       uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8967       uiout->text ("\n");
8968     }
8969 }
8970 
8971 /* Implement the command "show mpx bound".  */
8972 
8973 static void
8974 i386_mpx_info_bounds (const char *args, int from_tty)
8975 {
8976   CORE_ADDR bd_base = 0;
8977   CORE_ADDR addr;
8978   CORE_ADDR bt_entry_addr = 0;
8979   CORE_ADDR bt_entry[4];
8980   int i;
8981   struct gdbarch *gdbarch = get_current_arch ();
8982   struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8983 
8984   if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8985       || !i386_mpx_enabled ())
8986     {
8987       gdb_printf (_("Intel Memory Protection Extensions not "
8988 		    "supported on this target.\n"));
8989       return;
8990     }
8991 
8992   if (args == NULL)
8993     {
8994       gdb_printf (_("Address of pointer variable expected.\n"));
8995       return;
8996     }
8997 
8998   addr = parse_and_eval_address (args);
8999 
9000   bd_base = i386_mpx_bd_base ();
9001   bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9002 
9003   memset (bt_entry, 0, sizeof (bt_entry));
9004 
9005   for (i = 0; i < 4; i++)
9006     bt_entry[i] = read_memory_typed_address (bt_entry_addr
9007 					     + i * data_ptr_type->length (),
9008 					     data_ptr_type);
9009 
9010   i386_mpx_print_bounds (bt_entry);
9011 }
9012 
9013 /* Implement the command "set mpx bound".  */
9014 
9015 static void
9016 i386_mpx_set_bounds (const char *args, int from_tty)
9017 {
9018   CORE_ADDR bd_base = 0;
9019   CORE_ADDR addr, lower, upper;
9020   CORE_ADDR bt_entry_addr = 0;
9021   CORE_ADDR bt_entry[2];
9022   const char *input = args;
9023   int i;
9024   struct gdbarch *gdbarch = get_current_arch ();
9025   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9026   struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
9027 
9028   if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
9029       || !i386_mpx_enabled ())
9030     error (_("Intel Memory Protection Extensions not supported\
9031  on this target."));
9032 
9033   if (args == NULL)
9034     error (_("Pointer value expected."));
9035 
9036   addr = value_as_address (parse_to_comma_and_eval (&input));
9037 
9038   if (input[0] == ',')
9039     ++input;
9040   if (input[0] == '\0')
9041     error (_("wrong number of arguments: missing lower and upper bound."));
9042   lower = value_as_address (parse_to_comma_and_eval (&input));
9043 
9044   if (input[0] == ',')
9045     ++input;
9046   if (input[0] == '\0')
9047     error (_("Wrong number of arguments; Missing upper bound."));
9048   upper = value_as_address (parse_to_comma_and_eval (&input));
9049 
9050   bd_base = i386_mpx_bd_base ();
9051   bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9052   for (i = 0; i < 2; i++)
9053     bt_entry[i] = read_memory_typed_address (bt_entry_addr
9054 					     + i * data_ptr_type->length (),
9055 					     data_ptr_type);
9056   bt_entry[0] = (uint64_t) lower;
9057   bt_entry[1] = ~(uint64_t) upper;
9058 
9059   for (i = 0; i < 2; i++)
9060     write_memory_unsigned_integer (bt_entry_addr
9061 				   + i * data_ptr_type->length (),
9062 				   data_ptr_type->length (), byte_order,
9063 				   bt_entry[i]);
9064 }
9065 
9066 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9067 
9068 void _initialize_i386_tdep ();
9069 void
9070 _initialize_i386_tdep ()
9071 {
9072   gdbarch_register (bfd_arch_i386, i386_gdbarch_init);
9073 
9074   /* Add the variable that controls the disassembly flavor.  */
9075   add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9076 			&disassembly_flavor, _("\
9077 Set the disassembly flavor."), _("\
9078 Show the disassembly flavor."), _("\
9079 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9080 			NULL,
9081 			NULL, /* FIXME: i18n: */
9082 			&setlist, &showlist);
9083 
9084   /* Add the variable that controls the convention for returning
9085      structs.  */
9086   add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9087 			&struct_convention, _("\
9088 Set the convention for returning small structs."), _("\
9089 Show the convention for returning small structs."), _("\
9090 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9091 is \"default\"."),
9092 			NULL,
9093 			NULL, /* FIXME: i18n: */
9094 			&setlist, &showlist);
9095 
9096   /* Add "mpx" prefix for the set and show commands.  */
9097 
9098   add_setshow_prefix_cmd
9099     ("mpx", class_support,
9100      _("Set Intel Memory Protection Extensions specific variables."),
9101      _("Show Intel Memory Protection Extensions specific variables."),
9102      &mpx_set_cmdlist, &mpx_show_cmdlist, &setlist, &showlist);
9103 
9104   /* Add "bound" command for the show mpx commands list.  */
9105 
9106   add_cmd ("bound", no_class, i386_mpx_info_bounds,
9107 	   "Show the memory bounds for a given array/pointer storage\
9108  in the bound table.",
9109 	   &mpx_show_cmdlist);
9110 
9111   /* Add "bound" command for the set mpx commands list.  */
9112 
9113   add_cmd ("bound", no_class, i386_mpx_set_bounds,
9114 	   "Set the memory bounds for a given array/pointer storage\
9115  in the bound table.",
9116 	   &mpx_set_cmdlist);
9117 
9118   gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9119 			  i386_svr4_init_abi);
9120 
9121   /* Initialize the i386-specific register groups.  */
9122   i386_init_reggroups ();
9123 
9124   /* Tell remote stub that we support XML target description.  */
9125   register_remote_support_xml ("i386");
9126 }
9127