xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/hppa-tdep.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Target-dependent code for the HP PA-RISC architecture.
2 
3    Copyright (C) 1986-2016 Free Software Foundation, Inc.
4 
5    Contributed by the Center for Software Science at the
6    University of Utah (pa-gdb-bugs@cs.utah.edu).
7 
8    This file is part of GDB.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 3 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22 
23 #include "defs.h"
24 #include "bfd.h"
25 #include "inferior.h"
26 #include "regcache.h"
27 #include "completer.h"
28 #include "osabi.h"
29 #include "arch-utils.h"
30 /* For argument passing to the inferior.  */
31 #include "symtab.h"
32 #include "dis-asm.h"
33 #include "trad-frame.h"
34 #include "frame-unwind.h"
35 #include "frame-base.h"
36 
37 #include "gdbcore.h"
38 #include "gdbcmd.h"
39 #include "gdbtypes.h"
40 #include "objfiles.h"
41 #include "hppa-tdep.h"
42 
43 static int hppa_debug = 0;
44 
45 /* Some local constants.  */
46 static const int hppa32_num_regs = 128;
47 static const int hppa64_num_regs = 96;
48 
49 /* We use the objfile->obj_private pointer for two things:
50  * 1.  An unwind table;
51  *
52  * 2.  A pointer to any associated shared library object.
53  *
54  * #defines are used to help refer to these objects.
55  */
56 
57 /* Info about the unwind table associated with an object file.
58  * This is hung off of the "objfile->obj_private" pointer, and
59  * is allocated in the objfile's psymbol obstack.  This allows
60  * us to have unique unwind info for each executable and shared
61  * library that we are debugging.
62  */
63 struct hppa_unwind_info
64   {
65     struct unwind_table_entry *table;	/* Pointer to unwind info */
66     struct unwind_table_entry *cache;	/* Pointer to last entry we found */
67     int last;				/* Index of last entry */
68   };
69 
70 struct hppa_objfile_private
71   {
72     struct hppa_unwind_info *unwind_info;	/* a pointer */
73     struct so_list *so_info;			/* a pointer  */
74     CORE_ADDR dp;
75 
76     int dummy_call_sequence_reg;
77     CORE_ADDR dummy_call_sequence_addr;
78   };
79 
80 /* hppa-specific object data -- unwind and solib info.
81    TODO/maybe: think about splitting this into two parts; the unwind data is
82    common to all hppa targets, but is only used in this file; we can register
83    that separately and make this static. The solib data is probably hpux-
84    specific, so we can create a separate extern objfile_data that is registered
85    by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c.  */
86 static const struct objfile_data *hppa_objfile_priv_data = NULL;
87 
88 /* Get at various relevent fields of an instruction word.  */
89 #define MASK_5 0x1f
90 #define MASK_11 0x7ff
91 #define MASK_14 0x3fff
92 #define MASK_21 0x1fffff
93 
94 /* Sizes (in bytes) of the native unwind entries.  */
95 #define UNWIND_ENTRY_SIZE 16
96 #define STUB_UNWIND_ENTRY_SIZE 8
97 
98 /* Routines to extract various sized constants out of hppa
99    instructions.  */
100 
101 /* This assumes that no garbage lies outside of the lower bits of
102    value.  */
103 
104 static int
105 hppa_sign_extend (unsigned val, unsigned bits)
106 {
107   return (int) (val >> (bits - 1) ? (-(1 << bits)) | val : val);
108 }
109 
110 /* For many immediate values the sign bit is the low bit!  */
111 
112 static int
113 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
114 {
115   return (int) ((val & 0x1 ? (-(1 << (bits - 1))) : 0) | val >> 1);
116 }
117 
118 /* Extract the bits at positions between FROM and TO, using HP's numbering
119    (MSB = 0).  */
120 
121 int
122 hppa_get_field (unsigned word, int from, int to)
123 {
124   return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
125 }
126 
127 /* Extract the immediate field from a ld{bhw}s instruction.  */
128 
129 int
130 hppa_extract_5_load (unsigned word)
131 {
132   return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
133 }
134 
135 /* Extract the immediate field from a break instruction.  */
136 
137 unsigned
138 hppa_extract_5r_store (unsigned word)
139 {
140   return (word & MASK_5);
141 }
142 
143 /* Extract the immediate field from a {sr}sm instruction.  */
144 
145 unsigned
146 hppa_extract_5R_store (unsigned word)
147 {
148   return (word >> 16 & MASK_5);
149 }
150 
151 /* Extract a 14 bit immediate field.  */
152 
153 int
154 hppa_extract_14 (unsigned word)
155 {
156   return hppa_low_hppa_sign_extend (word & MASK_14, 14);
157 }
158 
159 /* Extract a 21 bit constant.  */
160 
161 int
162 hppa_extract_21 (unsigned word)
163 {
164   int val;
165 
166   word &= MASK_21;
167   word <<= 11;
168   val = hppa_get_field (word, 20, 20);
169   val <<= 11;
170   val |= hppa_get_field (word, 9, 19);
171   val <<= 2;
172   val |= hppa_get_field (word, 5, 6);
173   val <<= 5;
174   val |= hppa_get_field (word, 0, 4);
175   val <<= 2;
176   val |= hppa_get_field (word, 7, 8);
177   return hppa_sign_extend (val, 21) << 11;
178 }
179 
180 /* extract a 17 bit constant from branch instructions, returning the
181    19 bit signed value.  */
182 
183 int
184 hppa_extract_17 (unsigned word)
185 {
186   return hppa_sign_extend (hppa_get_field (word, 19, 28) |
187 		      hppa_get_field (word, 29, 29) << 10 |
188 		      hppa_get_field (word, 11, 15) << 11 |
189 		      (word & 0x1) << 16, 17) << 2;
190 }
191 
192 CORE_ADDR
193 hppa_symbol_address(const char *sym)
194 {
195   struct bound_minimal_symbol minsym;
196 
197   minsym = lookup_minimal_symbol (sym, NULL, NULL);
198   if (minsym.minsym)
199     return BMSYMBOL_VALUE_ADDRESS (minsym);
200   else
201     return (CORE_ADDR)-1;
202 }
203 
204 static struct hppa_objfile_private *
205 hppa_init_objfile_priv_data (struct objfile *objfile)
206 {
207   struct hppa_objfile_private *priv;
208 
209   priv = (struct hppa_objfile_private *)
210   	 obstack_alloc (&objfile->objfile_obstack,
211 	 		sizeof (struct hppa_objfile_private));
212   set_objfile_data (objfile, hppa_objfile_priv_data, priv);
213   memset (priv, 0, sizeof (*priv));
214 
215   return priv;
216 }
217 
218 
219 /* Compare the start address for two unwind entries returning 1 if
220    the first address is larger than the second, -1 if the second is
221    larger than the first, and zero if they are equal.  */
222 
223 static int
224 compare_unwind_entries (const void *arg1, const void *arg2)
225 {
226   const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1;
227   const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2;
228 
229   if (a->region_start > b->region_start)
230     return 1;
231   else if (a->region_start < b->region_start)
232     return -1;
233   else
234     return 0;
235 }
236 
237 static void
238 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
239 {
240   if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
241        == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
242     {
243       bfd_vma value = section->vma - section->filepos;
244       CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
245 
246       if (value < *low_text_segment_address)
247           *low_text_segment_address = value;
248     }
249 }
250 
251 static void
252 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
253 		     asection *section, unsigned int entries,
254 		     size_t size, CORE_ADDR text_offset)
255 {
256   /* We will read the unwind entries into temporary memory, then
257      fill in the actual unwind table.  */
258 
259   if (size > 0)
260     {
261       struct gdbarch *gdbarch = get_objfile_arch (objfile);
262       unsigned long tmp;
263       unsigned i;
264       char *buf = (char *) alloca (size);
265       CORE_ADDR low_text_segment_address;
266 
267       /* For ELF targets, then unwinds are supposed to
268 	 be segment relative offsets instead of absolute addresses.
269 
270 	 Note that when loading a shared library (text_offset != 0) the
271 	 unwinds are already relative to the text_offset that will be
272 	 passed in.  */
273       if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
274 	{
275           low_text_segment_address = -1;
276 
277 	  bfd_map_over_sections (objfile->obfd,
278 				 record_text_segment_lowaddr,
279 				 &low_text_segment_address);
280 
281 	  text_offset = low_text_segment_address;
282 	}
283       else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
284         {
285 	  text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
286 	}
287 
288       bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
289 
290       /* Now internalize the information being careful to handle host/target
291          endian issues.  */
292       for (i = 0; i < entries; i++)
293 	{
294 	  table[i].region_start = bfd_get_32 (objfile->obfd,
295 					      (bfd_byte *) buf);
296 	  table[i].region_start += text_offset;
297 	  buf += 4;
298 	  table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
299 	  table[i].region_end += text_offset;
300 	  buf += 4;
301 	  tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
302 	  buf += 4;
303 	  table[i].Cannot_unwind = (tmp >> 31) & 0x1;
304 	  table[i].Millicode = (tmp >> 30) & 0x1;
305 	  table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
306 	  table[i].Region_description = (tmp >> 27) & 0x3;
307 	  table[i].reserved = (tmp >> 26) & 0x1;
308 	  table[i].Entry_SR = (tmp >> 25) & 0x1;
309 	  table[i].Entry_FR = (tmp >> 21) & 0xf;
310 	  table[i].Entry_GR = (tmp >> 16) & 0x1f;
311 	  table[i].Args_stored = (tmp >> 15) & 0x1;
312 	  table[i].Variable_Frame = (tmp >> 14) & 0x1;
313 	  table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
314 	  table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
315 	  table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
316 	  table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
317 	  table[i].sr4export = (tmp >> 9) & 0x1;
318 	  table[i].cxx_info = (tmp >> 8) & 0x1;
319 	  table[i].cxx_try_catch = (tmp >> 7) & 0x1;
320 	  table[i].sched_entry_seq = (tmp >> 6) & 0x1;
321 	  table[i].reserved1 = (tmp >> 5) & 0x1;
322 	  table[i].Save_SP = (tmp >> 4) & 0x1;
323 	  table[i].Save_RP = (tmp >> 3) & 0x1;
324 	  table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
325 	  table[i].save_r19 = (tmp >> 1) & 0x1;
326 	  table[i].Cleanup_defined = tmp & 0x1;
327 	  tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
328 	  buf += 4;
329 	  table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
330 	  table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
331 	  table[i].Large_frame = (tmp >> 29) & 0x1;
332 	  table[i].alloca_frame = (tmp >> 28) & 0x1;
333 	  table[i].reserved2 = (tmp >> 27) & 0x1;
334 	  table[i].Total_frame_size = tmp & 0x7ffffff;
335 
336 	  /* Stub unwinds are handled elsewhere.  */
337 	  table[i].stub_unwind.stub_type = 0;
338 	  table[i].stub_unwind.padding = 0;
339 	}
340     }
341 }
342 
343 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
344    the object file.  This info is used mainly by find_unwind_entry() to find
345    out the stack frame size and frame pointer used by procedures.  We put
346    everything on the psymbol obstack in the objfile so that it automatically
347    gets freed when the objfile is destroyed.  */
348 
349 static void
350 read_unwind_info (struct objfile *objfile)
351 {
352   asection *unwind_sec, *stub_unwind_sec;
353   size_t unwind_size, stub_unwind_size, total_size;
354   unsigned index, unwind_entries;
355   unsigned stub_entries, total_entries;
356   CORE_ADDR text_offset;
357   struct hppa_unwind_info *ui;
358   struct hppa_objfile_private *obj_private;
359 
360   text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
361   ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
362 					   sizeof (struct hppa_unwind_info));
363 
364   ui->table = NULL;
365   ui->cache = NULL;
366   ui->last = -1;
367 
368   /* For reasons unknown the HP PA64 tools generate multiple unwinder
369      sections in a single executable.  So we just iterate over every
370      section in the BFD looking for unwinder sections intead of trying
371      to do a lookup with bfd_get_section_by_name.
372 
373      First determine the total size of the unwind tables so that we
374      can allocate memory in a nice big hunk.  */
375   total_entries = 0;
376   for (unwind_sec = objfile->obfd->sections;
377        unwind_sec;
378        unwind_sec = unwind_sec->next)
379     {
380       if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
381 	  || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
382 	{
383 	  unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
384 	  unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
385 
386 	  total_entries += unwind_entries;
387 	}
388     }
389 
390   /* Now compute the size of the stub unwinds.  Note the ELF tools do not
391      use stub unwinds at the current time.  */
392   stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
393 
394   if (stub_unwind_sec)
395     {
396       stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
397       stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
398     }
399   else
400     {
401       stub_unwind_size = 0;
402       stub_entries = 0;
403     }
404 
405   /* Compute total number of unwind entries and their total size.  */
406   total_entries += stub_entries;
407   total_size = total_entries * sizeof (struct unwind_table_entry);
408 
409   /* Allocate memory for the unwind table.  */
410   ui->table = (struct unwind_table_entry *)
411     obstack_alloc (&objfile->objfile_obstack, total_size);
412   ui->last = total_entries - 1;
413 
414   /* Now read in each unwind section and internalize the standard unwind
415      entries.  */
416   index = 0;
417   for (unwind_sec = objfile->obfd->sections;
418        unwind_sec;
419        unwind_sec = unwind_sec->next)
420     {
421       if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
422 	  || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
423 	{
424 	  unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
425 	  unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
426 
427 	  internalize_unwinds (objfile, &ui->table[index], unwind_sec,
428 			       unwind_entries, unwind_size, text_offset);
429 	  index += unwind_entries;
430 	}
431     }
432 
433   /* Now read in and internalize the stub unwind entries.  */
434   if (stub_unwind_size > 0)
435     {
436       unsigned int i;
437       char *buf = (char *) alloca (stub_unwind_size);
438 
439       /* Read in the stub unwind entries.  */
440       bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
441 				0, stub_unwind_size);
442 
443       /* Now convert them into regular unwind entries.  */
444       for (i = 0; i < stub_entries; i++, index++)
445 	{
446 	  /* Clear out the next unwind entry.  */
447 	  memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
448 
449 	  /* Convert offset & size into region_start and region_end.
450 	     Stuff away the stub type into "reserved" fields.  */
451 	  ui->table[index].region_start = bfd_get_32 (objfile->obfd,
452 						      (bfd_byte *) buf);
453 	  ui->table[index].region_start += text_offset;
454 	  buf += 4;
455 	  ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
456 							  (bfd_byte *) buf);
457 	  buf += 2;
458 	  ui->table[index].region_end
459 	    = ui->table[index].region_start + 4 *
460 	    (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
461 	  buf += 2;
462 	}
463 
464     }
465 
466   /* Unwind table needs to be kept sorted.  */
467   qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
468 	 compare_unwind_entries);
469 
470   /* Keep a pointer to the unwind information.  */
471   obj_private = (struct hppa_objfile_private *)
472 	        objfile_data (objfile, hppa_objfile_priv_data);
473   if (obj_private == NULL)
474     obj_private = hppa_init_objfile_priv_data (objfile);
475 
476   obj_private->unwind_info = ui;
477 }
478 
479 /* Lookup the unwind (stack backtrace) info for the given PC.  We search all
480    of the objfiles seeking the unwind table entry for this PC.  Each objfile
481    contains a sorted list of struct unwind_table_entry.  Since we do a binary
482    search of the unwind tables, we depend upon them to be sorted.  */
483 
484 struct unwind_table_entry *
485 find_unwind_entry (CORE_ADDR pc)
486 {
487   int first, middle, last;
488   struct objfile *objfile;
489   struct hppa_objfile_private *priv;
490 
491   if (hppa_debug)
492     fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
493 		        hex_string (pc));
494 
495   /* A function at address 0?  Not in HP-UX!  */
496   if (pc == (CORE_ADDR) 0)
497     {
498       if (hppa_debug)
499 	fprintf_unfiltered (gdb_stdlog, "NULL }\n");
500       return NULL;
501     }
502 
503   ALL_OBJFILES (objfile)
504   {
505     struct hppa_unwind_info *ui;
506     ui = NULL;
507     priv = ((struct hppa_objfile_private *)
508 	    objfile_data (objfile, hppa_objfile_priv_data));
509     if (priv)
510       ui = ((struct hppa_objfile_private *) priv)->unwind_info;
511 
512     if (!ui)
513       {
514 	read_unwind_info (objfile);
515         priv = ((struct hppa_objfile_private *)
516 		objfile_data (objfile, hppa_objfile_priv_data));
517 	if (priv == NULL)
518 	  error (_("Internal error reading unwind information."));
519         ui = ((struct hppa_objfile_private *) priv)->unwind_info;
520       }
521 
522     /* First, check the cache.  */
523 
524     if (ui->cache
525 	&& pc >= ui->cache->region_start
526 	&& pc <= ui->cache->region_end)
527       {
528 	if (hppa_debug)
529 	  fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
530             hex_string ((uintptr_t) ui->cache));
531         return ui->cache;
532       }
533 
534     /* Not in the cache, do a binary search.  */
535 
536     first = 0;
537     last = ui->last;
538 
539     while (first <= last)
540       {
541 	middle = (first + last) / 2;
542 	if (pc >= ui->table[middle].region_start
543 	    && pc <= ui->table[middle].region_end)
544 	  {
545 	    ui->cache = &ui->table[middle];
546 	    if (hppa_debug)
547 	      fprintf_unfiltered (gdb_stdlog, "%s }\n",
548                 hex_string ((uintptr_t) ui->cache));
549 	    return &ui->table[middle];
550 	  }
551 
552 	if (pc < ui->table[middle].region_start)
553 	  last = middle - 1;
554 	else
555 	  first = middle + 1;
556       }
557   }				/* ALL_OBJFILES() */
558 
559   if (hppa_debug)
560     fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
561 
562   return NULL;
563 }
564 
565 /* Implement the stack_frame_destroyed_p gdbarch method.
566 
567    The epilogue is defined here as the area either on the `bv' instruction
568    itself or an instruction which destroys the function's stack frame.
569 
570    We do not assume that the epilogue is at the end of a function as we can
571    also have return sequences in the middle of a function.  */
572 
573 static int
574 hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
575 {
576   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
577   unsigned long status;
578   unsigned int inst;
579   gdb_byte buf[4];
580 
581   status = target_read_memory (pc, buf, 4);
582   if (status != 0)
583     return 0;
584 
585   inst = extract_unsigned_integer (buf, 4, byte_order);
586 
587   /* The most common way to perform a stack adjustment ldo X(sp),sp
588      We are destroying a stack frame if the offset is negative.  */
589   if ((inst & 0xffffc000) == 0x37de0000
590       && hppa_extract_14 (inst) < 0)
591     return 1;
592 
593   /* ldw,mb D(sp),X or ldd,mb D(sp),X */
594   if (((inst & 0x0fc010e0) == 0x0fc010e0
595        || (inst & 0x0fc010e0) == 0x0fc010e0)
596       && hppa_extract_14 (inst) < 0)
597     return 1;
598 
599   /* bv %r0(%rp) or bv,n %r0(%rp) */
600   if (inst == 0xe840c000 || inst == 0xe840c002)
601     return 1;
602 
603   return 0;
604 }
605 
606 static const unsigned char *
607 hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
608 {
609   static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
610   (*len) = sizeof (breakpoint);
611   return breakpoint;
612 }
613 
614 /* Return the name of a register.  */
615 
616 static const char *
617 hppa32_register_name (struct gdbarch *gdbarch, int i)
618 {
619   static char *names[] = {
620     "flags",  "r1",      "rp",     "r3",
621     "r4",     "r5",      "r6",     "r7",
622     "r8",     "r9",      "r10",    "r11",
623     "r12",    "r13",     "r14",    "r15",
624     "r16",    "r17",     "r18",    "r19",
625     "r20",    "r21",     "r22",    "r23",
626     "r24",    "r25",     "r26",    "dp",
627     "ret0",   "ret1",    "sp",     "r31",
628     "sar",    "pcoqh",   "pcsqh",  "pcoqt",
629     "pcsqt",  "eiem",    "iir",    "isr",
630     "ior",    "ipsw",    "goto",   "sr4",
631     "sr0",    "sr1",     "sr2",    "sr3",
632     "sr5",    "sr6",     "sr7",    "cr0",
633     "cr8",    "cr9",     "ccr",    "cr12",
634     "cr13",   "cr24",    "cr25",   "cr26",
635     "cr27",   "cr28",    "cr29",   "cr30",
636     "fpsr",    "fpe1",   "fpe2",   "fpe3",
637     "fpe4",   "fpe5",    "fpe6",   "fpe7",
638     "fr4",     "fr4R",   "fr5",    "fr5R",
639     "fr6",    "fr6R",    "fr7",    "fr7R",
640     "fr8",     "fr8R",   "fr9",    "fr9R",
641     "fr10",   "fr10R",   "fr11",   "fr11R",
642     "fr12",    "fr12R",  "fr13",   "fr13R",
643     "fr14",   "fr14R",   "fr15",   "fr15R",
644     "fr16",    "fr16R",  "fr17",   "fr17R",
645     "fr18",   "fr18R",   "fr19",   "fr19R",
646     "fr20",    "fr20R",  "fr21",   "fr21R",
647     "fr22",   "fr22R",   "fr23",   "fr23R",
648     "fr24",    "fr24R",  "fr25",   "fr25R",
649     "fr26",   "fr26R",   "fr27",   "fr27R",
650     "fr28",    "fr28R",  "fr29",   "fr29R",
651     "fr30",   "fr30R",   "fr31",   "fr31R"
652   };
653   if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
654     return NULL;
655   else
656     return names[i];
657 }
658 
659 static const char *
660 hppa64_register_name (struct gdbarch *gdbarch, int i)
661 {
662   static char *names[] = {
663     "flags",  "r1",      "rp",     "r3",
664     "r4",     "r5",      "r6",     "r7",
665     "r8",     "r9",      "r10",    "r11",
666     "r12",    "r13",     "r14",    "r15",
667     "r16",    "r17",     "r18",    "r19",
668     "r20",    "r21",     "r22",    "r23",
669     "r24",    "r25",     "r26",    "dp",
670     "ret0",   "ret1",    "sp",     "r31",
671     "sar",    "pcoqh",   "pcsqh",  "pcoqt",
672     "pcsqt",  "eiem",    "iir",    "isr",
673     "ior",    "ipsw",    "goto",   "sr4",
674     "sr0",    "sr1",     "sr2",    "sr3",
675     "sr5",    "sr6",     "sr7",    "cr0",
676     "cr8",    "cr9",     "ccr",    "cr12",
677     "cr13",   "cr24",    "cr25",   "cr26",
678     "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
679     "fpsr",    "fpe1",   "fpe2",   "fpe3",
680     "fr4",    "fr5",     "fr6",    "fr7",
681     "fr8",     "fr9",    "fr10",   "fr11",
682     "fr12",   "fr13",    "fr14",   "fr15",
683     "fr16",    "fr17",   "fr18",   "fr19",
684     "fr20",   "fr21",    "fr22",   "fr23",
685     "fr24",    "fr25",   "fr26",   "fr27",
686     "fr28",  "fr29",    "fr30",   "fr31"
687   };
688   if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
689     return NULL;
690   else
691     return names[i];
692 }
693 
694 /* Map dwarf DBX register numbers to GDB register numbers.  */
695 static int
696 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
697 {
698   /* The general registers and the sar are the same in both sets.  */
699   if (reg >= 0 && reg <= 32)
700     return reg;
701 
702   /* fr4-fr31 are mapped from 72 in steps of 2.  */
703   if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
704     return HPPA64_FP4_REGNUM + (reg - 72) / 2;
705 
706   return -1;
707 }
708 
709 /* This function pushes a stack frame with arguments as part of the
710    inferior function calling mechanism.
711 
712    This is the version of the function for the 32-bit PA machines, in
713    which later arguments appear at lower addresses.  (The stack always
714    grows towards higher addresses.)
715 
716    We simply allocate the appropriate amount of stack space and put
717    arguments into their proper slots.  */
718 
719 static CORE_ADDR
720 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
721 			struct regcache *regcache, CORE_ADDR bp_addr,
722 			int nargs, struct value **args, CORE_ADDR sp,
723 			int struct_return, CORE_ADDR struct_addr)
724 {
725   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
726 
727   /* Stack base address at which any pass-by-reference parameters are
728      stored.  */
729   CORE_ADDR struct_end = 0;
730   /* Stack base address at which the first parameter is stored.  */
731   CORE_ADDR param_end = 0;
732 
733   /* Two passes.  First pass computes the location of everything,
734      second pass writes the bytes out.  */
735   int write_pass;
736 
737   /* Global pointer (r19) of the function we are trying to call.  */
738   CORE_ADDR gp;
739 
740   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
741 
742   for (write_pass = 0; write_pass < 2; write_pass++)
743     {
744       CORE_ADDR struct_ptr = 0;
745       /* The first parameter goes into sp-36, each stack slot is 4-bytes.
746          struct_ptr is adjusted for each argument below, so the first
747 	 argument will end up at sp-36.  */
748       CORE_ADDR param_ptr = 32;
749       int i;
750       int small_struct = 0;
751 
752       for (i = 0; i < nargs; i++)
753 	{
754 	  struct value *arg = args[i];
755 	  struct type *type = check_typedef (value_type (arg));
756 	  /* The corresponding parameter that is pushed onto the
757 	     stack, and [possibly] passed in a register.  */
758 	  gdb_byte param_val[8];
759 	  int param_len;
760 	  memset (param_val, 0, sizeof param_val);
761 	  if (TYPE_LENGTH (type) > 8)
762 	    {
763 	      /* Large parameter, pass by reference.  Store the value
764 		 in "struct" area and then pass its address.  */
765 	      param_len = 4;
766 	      struct_ptr += align_up (TYPE_LENGTH (type), 8);
767 	      if (write_pass)
768 		write_memory (struct_end - struct_ptr, value_contents (arg),
769 			      TYPE_LENGTH (type));
770 	      store_unsigned_integer (param_val, 4, byte_order,
771 				      struct_end - struct_ptr);
772 	    }
773 	  else if (TYPE_CODE (type) == TYPE_CODE_INT
774 		   || TYPE_CODE (type) == TYPE_CODE_ENUM)
775 	    {
776 	      /* Integer value store, right aligned.  "unpack_long"
777 		 takes care of any sign-extension problems.  */
778 	      param_len = align_up (TYPE_LENGTH (type), 4);
779 	      store_unsigned_integer (param_val, param_len, byte_order,
780 				      unpack_long (type,
781 						   value_contents (arg)));
782 	    }
783 	  else if (TYPE_CODE (type) == TYPE_CODE_FLT)
784             {
785 	      /* Floating point value store, right aligned.  */
786 	      param_len = align_up (TYPE_LENGTH (type), 4);
787 	      memcpy (param_val, value_contents (arg), param_len);
788             }
789 	  else
790 	    {
791 	      param_len = align_up (TYPE_LENGTH (type), 4);
792 
793 	      /* Small struct value are stored right-aligned.  */
794 	      memcpy (param_val + param_len - TYPE_LENGTH (type),
795 		      value_contents (arg), TYPE_LENGTH (type));
796 
797 	      /* Structures of size 5, 6 and 7 bytes are special in that
798 	         the higher-ordered word is stored in the lower-ordered
799 		 argument, and even though it is a 8-byte quantity the
800 		 registers need not be 8-byte aligned.  */
801 	      if (param_len > 4 && param_len < 8)
802 		small_struct = 1;
803 	    }
804 
805 	  param_ptr += param_len;
806 	  if (param_len == 8 && !small_struct)
807             param_ptr = align_up (param_ptr, 8);
808 
809 	  /* First 4 non-FP arguments are passed in gr26-gr23.
810 	     First 4 32-bit FP arguments are passed in fr4L-fr7L.
811 	     First 2 64-bit FP arguments are passed in fr5 and fr7.
812 
813 	     The rest go on the stack, starting at sp-36, towards lower
814 	     addresses.  8-byte arguments must be aligned to a 8-byte
815 	     stack boundary.  */
816 	  if (write_pass)
817 	    {
818 	      write_memory (param_end - param_ptr, param_val, param_len);
819 
820 	      /* There are some cases when we don't know the type
821 		 expected by the callee (e.g. for variadic functions), so
822 		 pass the parameters in both general and fp regs.  */
823 	      if (param_ptr <= 48)
824 		{
825 		  int grreg = 26 - (param_ptr - 36) / 4;
826 		  int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
827 		  int fpreg = 74 + (param_ptr - 32) / 8 * 4;
828 
829 		  regcache_cooked_write (regcache, grreg, param_val);
830 		  regcache_cooked_write (regcache, fpLreg, param_val);
831 
832 		  if (param_len > 4)
833 		    {
834 		      regcache_cooked_write (regcache, grreg + 1,
835 					     param_val + 4);
836 
837 		      regcache_cooked_write (regcache, fpreg, param_val);
838 		      regcache_cooked_write (regcache, fpreg + 1,
839 					     param_val + 4);
840 		    }
841 		}
842 	    }
843 	}
844 
845       /* Update the various stack pointers.  */
846       if (!write_pass)
847 	{
848 	  struct_end = sp + align_up (struct_ptr, 64);
849 	  /* PARAM_PTR already accounts for all the arguments passed
850 	     by the user.  However, the ABI mandates minimum stack
851 	     space allocations for outgoing arguments.  The ABI also
852 	     mandates minimum stack alignments which we must
853 	     preserve.  */
854 	  param_end = struct_end + align_up (param_ptr, 64);
855 	}
856     }
857 
858   /* If a structure has to be returned, set up register 28 to hold its
859      address.  */
860   if (struct_return)
861     regcache_cooked_write_unsigned (regcache, 28, struct_addr);
862 
863   gp = tdep->find_global_pointer (gdbarch, function);
864 
865   if (gp != 0)
866     regcache_cooked_write_unsigned (regcache, 19, gp);
867 
868   /* Set the return address.  */
869   if (!gdbarch_push_dummy_code_p (gdbarch))
870     regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
871 
872   /* Update the Stack Pointer.  */
873   regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
874 
875   return param_end;
876 }
877 
878 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
879    Runtime Architecture for PA-RISC 2.0", which is distributed as part
880    as of the HP-UX Software Transition Kit (STK).  This implementation
881    is based on version 3.3, dated October 6, 1997.  */
882 
883 /* Check whether TYPE is an "Integral or Pointer Scalar Type".  */
884 
885 static int
886 hppa64_integral_or_pointer_p (const struct type *type)
887 {
888   switch (TYPE_CODE (type))
889     {
890     case TYPE_CODE_INT:
891     case TYPE_CODE_BOOL:
892     case TYPE_CODE_CHAR:
893     case TYPE_CODE_ENUM:
894     case TYPE_CODE_RANGE:
895       {
896 	int len = TYPE_LENGTH (type);
897 	return (len == 1 || len == 2 || len == 4 || len == 8);
898       }
899     case TYPE_CODE_PTR:
900     case TYPE_CODE_REF:
901       return (TYPE_LENGTH (type) == 8);
902     default:
903       break;
904     }
905 
906   return 0;
907 }
908 
909 /* Check whether TYPE is a "Floating Scalar Type".  */
910 
911 static int
912 hppa64_floating_p (const struct type *type)
913 {
914   switch (TYPE_CODE (type))
915     {
916     case TYPE_CODE_FLT:
917       {
918 	int len = TYPE_LENGTH (type);
919 	return (len == 4 || len == 8 || len == 16);
920       }
921     default:
922       break;
923     }
924 
925   return 0;
926 }
927 
928 /* If CODE points to a function entry address, try to look up the corresponding
929    function descriptor and return its address instead.  If CODE is not a
930    function entry address, then just return it unchanged.  */
931 static CORE_ADDR
932 hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
933 {
934   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
935   struct obj_section *sec, *opd;
936 
937   sec = find_pc_section (code);
938 
939   if (!sec)
940     return code;
941 
942   /* If CODE is in a data section, assume it's already a fptr.  */
943   if (!(sec->the_bfd_section->flags & SEC_CODE))
944     return code;
945 
946   ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
947     {
948       if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
949 	break;
950     }
951 
952   if (opd < sec->objfile->sections_end)
953     {
954       CORE_ADDR addr;
955 
956       for (addr = obj_section_addr (opd);
957 	   addr < obj_section_endaddr (opd);
958 	   addr += 2 * 8)
959 	{
960 	  ULONGEST opdaddr;
961 	  gdb_byte tmp[8];
962 
963 	  if (target_read_memory (addr, tmp, sizeof (tmp)))
964 	      break;
965 	  opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
966 
967 	  if (opdaddr == code)
968 	    return addr - 16;
969 	}
970     }
971 
972   return code;
973 }
974 
975 static CORE_ADDR
976 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
977 			struct regcache *regcache, CORE_ADDR bp_addr,
978 			int nargs, struct value **args, CORE_ADDR sp,
979 			int struct_return, CORE_ADDR struct_addr)
980 {
981   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
982   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
983   int i, offset = 0;
984   CORE_ADDR gp;
985 
986   /* "The outgoing parameter area [...] must be aligned at a 16-byte
987      boundary."  */
988   sp = align_up (sp, 16);
989 
990   for (i = 0; i < nargs; i++)
991     {
992       struct value *arg = args[i];
993       struct type *type = value_type (arg);
994       int len = TYPE_LENGTH (type);
995       const bfd_byte *valbuf;
996       bfd_byte fptrbuf[8];
997       int regnum;
998 
999       /* "Each parameter begins on a 64-bit (8-byte) boundary."  */
1000       offset = align_up (offset, 8);
1001 
1002       if (hppa64_integral_or_pointer_p (type))
1003 	{
1004 	  /* "Integral scalar parameters smaller than 64 bits are
1005              padded on the left (i.e., the value is in the
1006              least-significant bits of the 64-bit storage unit, and
1007              the high-order bits are undefined)."  Therefore we can
1008              safely sign-extend them.  */
1009 	  if (len < 8)
1010 	    {
1011 	      arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
1012 	      len = 8;
1013 	    }
1014 	}
1015       else if (hppa64_floating_p (type))
1016 	{
1017 	  if (len > 8)
1018 	    {
1019 	      /* "Quad-precision (128-bit) floating-point scalar
1020 		 parameters are aligned on a 16-byte boundary."  */
1021 	      offset = align_up (offset, 16);
1022 
1023 	      /* "Double-extended- and quad-precision floating-point
1024                  parameters within the first 64 bytes of the parameter
1025                  list are always passed in general registers."  */
1026 	    }
1027 	  else
1028 	    {
1029 	      if (len == 4)
1030 		{
1031 		  /* "Single-precision (32-bit) floating-point scalar
1032 		     parameters are padded on the left with 32 bits of
1033 		     garbage (i.e., the floating-point value is in the
1034 		     least-significant 32 bits of a 64-bit storage
1035 		     unit)."  */
1036 		  offset += 4;
1037 		}
1038 
1039 	      /* "Single- and double-precision floating-point
1040                  parameters in this area are passed according to the
1041                  available formal parameter information in a function
1042                  prototype.  [...]  If no prototype is in scope,
1043                  floating-point parameters must be passed both in the
1044                  corresponding general registers and in the
1045                  corresponding floating-point registers."  */
1046 	      regnum = HPPA64_FP4_REGNUM + offset / 8;
1047 
1048 	      if (regnum < HPPA64_FP4_REGNUM + 8)
1049 		{
1050 		  /* "Single-precision floating-point parameters, when
1051 		     passed in floating-point registers, are passed in
1052 		     the right halves of the floating point registers;
1053 		     the left halves are unused."  */
1054 		  regcache_cooked_write_part (regcache, regnum, offset % 8,
1055 					      len, value_contents (arg));
1056 		}
1057 	    }
1058 	}
1059       else
1060 	{
1061 	  if (len > 8)
1062 	    {
1063 	      /* "Aggregates larger than 8 bytes are aligned on a
1064 		 16-byte boundary, possibly leaving an unused argument
1065 		 slot, which is filled with garbage.  If necessary,
1066 		 they are padded on the right (with garbage), to a
1067 		 multiple of 8 bytes."  */
1068 	      offset = align_up (offset, 16);
1069 	    }
1070 	}
1071 
1072       /* If we are passing a function pointer, make sure we pass a function
1073          descriptor instead of the function entry address.  */
1074       if (TYPE_CODE (type) == TYPE_CODE_PTR
1075           && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1076         {
1077 	  ULONGEST codeptr, fptr;
1078 
1079 	  codeptr = unpack_long (type, value_contents (arg));
1080 	  fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1081 	  store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1082 				  fptr);
1083 	  valbuf = fptrbuf;
1084 	}
1085       else
1086         {
1087           valbuf = value_contents (arg);
1088 	}
1089 
1090       /* Always store the argument in memory.  */
1091       write_memory (sp + offset, valbuf, len);
1092 
1093       regnum = HPPA_ARG0_REGNUM - offset / 8;
1094       while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1095 	{
1096 	  regcache_cooked_write_part (regcache, regnum,
1097 				      offset % 8, min (len, 8), valbuf);
1098 	  offset += min (len, 8);
1099 	  valbuf += min (len, 8);
1100 	  len -= min (len, 8);
1101 	  regnum--;
1102 	}
1103 
1104       offset += len;
1105     }
1106 
1107   /* Set up GR29 (%ret1) to hold the argument pointer (ap).  */
1108   regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1109 
1110   /* Allocate the outgoing parameter area.  Make sure the outgoing
1111      parameter area is multiple of 16 bytes in length.  */
1112   sp += max (align_up (offset, 16), 64);
1113 
1114   /* Allocate 32-bytes of scratch space.  The documentation doesn't
1115      mention this, but it seems to be needed.  */
1116   sp += 32;
1117 
1118   /* Allocate the frame marker area.  */
1119   sp += 16;
1120 
1121   /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1122      its address.  */
1123   if (struct_return)
1124     regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1125 
1126   /* Set up GR27 (%dp) to hold the global pointer (gp).  */
1127   gp = tdep->find_global_pointer (gdbarch, function);
1128   if (gp != 0)
1129     regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1130 
1131   /* Set up GR2 (%rp) to hold the return pointer (rp).  */
1132   if (!gdbarch_push_dummy_code_p (gdbarch))
1133     regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1134 
1135   /* Set up GR30 to hold the stack pointer (sp).  */
1136   regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1137 
1138   return sp;
1139 }
1140 
1141 
1142 /* Handle 32/64-bit struct return conventions.  */
1143 
1144 static enum return_value_convention
1145 hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
1146 		     struct type *type, struct regcache *regcache,
1147 		     gdb_byte *readbuf, const gdb_byte *writebuf)
1148 {
1149   if (TYPE_LENGTH (type) <= 2 * 4)
1150     {
1151       /* The value always lives in the right hand end of the register
1152 	 (or register pair)?  */
1153       int b;
1154       int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1155       int part = TYPE_LENGTH (type) % 4;
1156       /* The left hand register contains only part of the value,
1157 	 transfer that first so that the rest can be xfered as entire
1158 	 4-byte registers.  */
1159       if (part > 0)
1160 	{
1161 	  if (readbuf != NULL)
1162 	    regcache_cooked_read_part (regcache, reg, 4 - part,
1163 				       part, readbuf);
1164 	  if (writebuf != NULL)
1165 	    regcache_cooked_write_part (regcache, reg, 4 - part,
1166 					part, writebuf);
1167 	  reg++;
1168 	}
1169       /* Now transfer the remaining register values.  */
1170       for (b = part; b < TYPE_LENGTH (type); b += 4)
1171 	{
1172 	  if (readbuf != NULL)
1173 	    regcache_cooked_read (regcache, reg, readbuf + b);
1174 	  if (writebuf != NULL)
1175 	    regcache_cooked_write (regcache, reg, writebuf + b);
1176 	  reg++;
1177 	}
1178       return RETURN_VALUE_REGISTER_CONVENTION;
1179     }
1180   else
1181     return RETURN_VALUE_STRUCT_CONVENTION;
1182 }
1183 
1184 static enum return_value_convention
1185 hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
1186 		     struct type *type, struct regcache *regcache,
1187 		     gdb_byte *readbuf, const gdb_byte *writebuf)
1188 {
1189   int len = TYPE_LENGTH (type);
1190   int regnum, offset;
1191 
1192   if (len > 16)
1193     {
1194       /* All return values larget than 128 bits must be aggregate
1195          return values.  */
1196       gdb_assert (!hppa64_integral_or_pointer_p (type));
1197       gdb_assert (!hppa64_floating_p (type));
1198 
1199       /* "Aggregate return values larger than 128 bits are returned in
1200 	 a buffer allocated by the caller.  The address of the buffer
1201 	 must be passed in GR 28."  */
1202       return RETURN_VALUE_STRUCT_CONVENTION;
1203     }
1204 
1205   if (hppa64_integral_or_pointer_p (type))
1206     {
1207       /* "Integral return values are returned in GR 28.  Values
1208          smaller than 64 bits are padded on the left (with garbage)."  */
1209       regnum = HPPA_RET0_REGNUM;
1210       offset = 8 - len;
1211     }
1212   else if (hppa64_floating_p (type))
1213     {
1214       if (len > 8)
1215 	{
1216 	  /* "Double-extended- and quad-precision floating-point
1217 	     values are returned in GRs 28 and 29.  The sign,
1218 	     exponent, and most-significant bits of the mantissa are
1219 	     returned in GR 28; the least-significant bits of the
1220 	     mantissa are passed in GR 29.  For double-extended
1221 	     precision values, GR 29 is padded on the right with 48
1222 	     bits of garbage."  */
1223 	  regnum = HPPA_RET0_REGNUM;
1224 	  offset = 0;
1225 	}
1226       else
1227 	{
1228 	  /* "Single-precision and double-precision floating-point
1229 	     return values are returned in FR 4R (single precision) or
1230 	     FR 4 (double-precision)."  */
1231 	  regnum = HPPA64_FP4_REGNUM;
1232 	  offset = 8 - len;
1233 	}
1234     }
1235   else
1236     {
1237       /* "Aggregate return values up to 64 bits in size are returned
1238          in GR 28.  Aggregates smaller than 64 bits are left aligned
1239          in the register; the pad bits on the right are undefined."
1240 
1241 	 "Aggregate return values between 65 and 128 bits are returned
1242 	 in GRs 28 and 29.  The first 64 bits are placed in GR 28, and
1243 	 the remaining bits are placed, left aligned, in GR 29.  The
1244 	 pad bits on the right of GR 29 (if any) are undefined."  */
1245       regnum = HPPA_RET0_REGNUM;
1246       offset = 0;
1247     }
1248 
1249   if (readbuf)
1250     {
1251       while (len > 0)
1252 	{
1253 	  regcache_cooked_read_part (regcache, regnum, offset,
1254 				     min (len, 8), readbuf);
1255 	  readbuf += min (len, 8);
1256 	  len -= min (len, 8);
1257 	  regnum++;
1258 	}
1259     }
1260 
1261   if (writebuf)
1262     {
1263       while (len > 0)
1264 	{
1265 	  regcache_cooked_write_part (regcache, regnum, offset,
1266 				      min (len, 8), writebuf);
1267 	  writebuf += min (len, 8);
1268 	  len -= min (len, 8);
1269 	  regnum++;
1270 	}
1271     }
1272 
1273   return RETURN_VALUE_REGISTER_CONVENTION;
1274 }
1275 
1276 
1277 static CORE_ADDR
1278 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1279 				   struct target_ops *targ)
1280 {
1281   if (addr & 2)
1282     {
1283       struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
1284       CORE_ADDR plabel = addr & ~3;
1285       return read_memory_typed_address (plabel, func_ptr_type);
1286     }
1287 
1288   return addr;
1289 }
1290 
1291 static CORE_ADDR
1292 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1293 {
1294   /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1295      and not _bit_)!  */
1296   return align_up (addr, 64);
1297 }
1298 
1299 /* Force all frames to 16-byte alignment.  Better safe than sorry.  */
1300 
1301 static CORE_ADDR
1302 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1303 {
1304   /* Just always 16-byte align.  */
1305   return align_up (addr, 16);
1306 }
1307 
1308 CORE_ADDR
1309 hppa_read_pc (struct regcache *regcache)
1310 {
1311   ULONGEST ipsw;
1312   ULONGEST pc;
1313 
1314   regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1315   regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
1316 
1317   /* If the current instruction is nullified, then we are effectively
1318      still executing the previous instruction.  Pretend we are still
1319      there.  This is needed when single stepping; if the nullified
1320      instruction is on a different line, we don't want GDB to think
1321      we've stepped onto that line.  */
1322   if (ipsw & 0x00200000)
1323     pc -= 4;
1324 
1325   return pc & ~0x3;
1326 }
1327 
1328 void
1329 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1330 {
1331   regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1332   regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1333 }
1334 
1335 /* For the given instruction (INST), return any adjustment it makes
1336    to the stack pointer or zero for no adjustment.
1337 
1338    This only handles instructions commonly found in prologues.  */
1339 
1340 static int
1341 prologue_inst_adjust_sp (unsigned long inst)
1342 {
1343   /* This must persist across calls.  */
1344   static int save_high21;
1345 
1346   /* The most common way to perform a stack adjustment ldo X(sp),sp */
1347   if ((inst & 0xffffc000) == 0x37de0000)
1348     return hppa_extract_14 (inst);
1349 
1350   /* stwm X,D(sp) */
1351   if ((inst & 0xffe00000) == 0x6fc00000)
1352     return hppa_extract_14 (inst);
1353 
1354   /* std,ma X,D(sp) */
1355   if ((inst & 0xffe00008) == 0x73c00008)
1356     return (inst & 0x1 ? -(1 << 13) : 0) | (((inst >> 4) & 0x3ff) << 3);
1357 
1358   /* addil high21,%r30; ldo low11,(%r1),%r30)
1359      save high bits in save_high21 for later use.  */
1360   if ((inst & 0xffe00000) == 0x2bc00000)
1361     {
1362       save_high21 = hppa_extract_21 (inst);
1363       return 0;
1364     }
1365 
1366   if ((inst & 0xffff0000) == 0x343e0000)
1367     return save_high21 + hppa_extract_14 (inst);
1368 
1369   /* fstws as used by the HP compilers.  */
1370   if ((inst & 0xffffffe0) == 0x2fd01220)
1371     return hppa_extract_5_load (inst);
1372 
1373   /* No adjustment.  */
1374   return 0;
1375 }
1376 
1377 /* Return nonzero if INST is a branch of some kind, else return zero.  */
1378 
1379 static int
1380 is_branch (unsigned long inst)
1381 {
1382   switch (inst >> 26)
1383     {
1384     case 0x20:
1385     case 0x21:
1386     case 0x22:
1387     case 0x23:
1388     case 0x27:
1389     case 0x28:
1390     case 0x29:
1391     case 0x2a:
1392     case 0x2b:
1393     case 0x2f:
1394     case 0x30:
1395     case 0x31:
1396     case 0x32:
1397     case 0x33:
1398     case 0x38:
1399     case 0x39:
1400     case 0x3a:
1401     case 0x3b:
1402       return 1;
1403 
1404     default:
1405       return 0;
1406     }
1407 }
1408 
1409 /* Return the register number for a GR which is saved by INST or
1410    zero if INST does not save a GR.
1411 
1412    Referenced from:
1413 
1414      parisc 1.1:
1415      https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
1416 
1417      parisc 2.0:
1418      https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf
1419 
1420      According to Table 6-5 of Chapter 6 (Memory Reference Instructions)
1421      on page 106 in parisc 2.0, all instructions for storing values from
1422      the general registers are:
1423 
1424        Store:          stb, sth, stw, std (according to Chapter 7, they
1425                        are only in both "inst >> 26" and "inst >> 6".
1426        Store Absolute: stwa, stda (according to Chapter 7, they are only
1427                        in "inst >> 6".
1428        Store Bytes:    stby, stdby (according to Chapter 7, they are
1429                        only in "inst >> 6").
1430 
1431    For (inst >> 26), according to Chapter 7:
1432 
1433      The effective memory reference address is formed by the addition
1434      of an immediate displacement to a base value.
1435 
1436     - stb: 0x18, store a byte from a general register.
1437 
1438     - sth: 0x19, store a halfword from a general register.
1439 
1440     - stw: 0x1a, store a word from a general register.
1441 
1442     - stwm: 0x1b, store a word from a general register and perform base
1443       register modification (2.0 will still treate it as stw).
1444 
1445     - std: 0x1c, store a doubleword from a general register (2.0 only).
1446 
1447     - stw: 0x1f, store a word from a general register (2.0 only).
1448 
1449    For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7:
1450 
1451      The effective memory reference address is formed by the addition
1452      of an index value to a base value specified in the instruction.
1453 
1454     - stb: 0x08, store a byte from a general register (1.1 calls stbs).
1455 
1456     - sth: 0x09, store a halfword from a general register (1.1 calls
1457       sths).
1458 
1459     - stw: 0x0a, store a word from a general register (1.1 calls stws).
1460 
1461     - std: 0x0b: store a doubleword from a general register (2.0 only)
1462 
1463      Implement fast byte moves (stores) to unaligned word or doubleword
1464      destination.
1465 
1466     - stby: 0x0c, for unaligned word (1.1 calls stbys).
1467 
1468     - stdby: 0x0d for unaligned doubleword (2.0 only).
1469 
1470      Store a word or doubleword using an absolute memory address formed
1471      using short or long displacement or indexed
1472 
1473     - stwa: 0x0e, store a word from a general register to an absolute
1474       address (1.0 calls stwas).
1475 
1476     - stda: 0x0f, store a doubleword from a general register to an
1477       absolute address (2.0 only).  */
1478 
1479 static int
1480 inst_saves_gr (unsigned long inst)
1481 {
1482   switch ((inst >> 26) & 0x0f)
1483     {
1484       case 0x03:
1485 	switch ((inst >> 6) & 0x0f)
1486 	  {
1487 	    case 0x08:
1488 	    case 0x09:
1489 	    case 0x0a:
1490 	    case 0x0b:
1491 	    case 0x0c:
1492 	    case 0x0d:
1493 	    case 0x0e:
1494 	    case 0x0f:
1495 	      return hppa_extract_5R_store (inst);
1496 	    default:
1497 	      return 0;
1498 	  }
1499       case 0x18:
1500       case 0x19:
1501       case 0x1a:
1502       case 0x1b:
1503       case 0x1c:
1504       /* no 0x1d or 0x1e -- according to parisc 2.0 document */
1505       case 0x1f:
1506 	return hppa_extract_5R_store (inst);
1507       default:
1508 	return 0;
1509     }
1510 }
1511 
1512 /* Return the register number for a FR which is saved by INST or
1513    zero it INST does not save a FR.
1514 
1515    Note we only care about full 64bit register stores (that's the only
1516    kind of stores the prologue will use).
1517 
1518    FIXME: What about argument stores with the HP compiler in ANSI mode? */
1519 
1520 static int
1521 inst_saves_fr (unsigned long inst)
1522 {
1523   /* Is this an FSTD?  */
1524   if ((inst & 0xfc00dfc0) == 0x2c001200)
1525     return hppa_extract_5r_store (inst);
1526   if ((inst & 0xfc000002) == 0x70000002)
1527     return hppa_extract_5R_store (inst);
1528   /* Is this an FSTW?  */
1529   if ((inst & 0xfc00df80) == 0x24001200)
1530     return hppa_extract_5r_store (inst);
1531   if ((inst & 0xfc000002) == 0x7c000000)
1532     return hppa_extract_5R_store (inst);
1533   return 0;
1534 }
1535 
1536 /* Advance PC across any function entry prologue instructions
1537    to reach some "real" code.
1538 
1539    Use information in the unwind table to determine what exactly should
1540    be in the prologue.  */
1541 
1542 
1543 static CORE_ADDR
1544 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1545 			int stop_before_branch)
1546 {
1547   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1548   gdb_byte buf[4];
1549   CORE_ADDR orig_pc = pc;
1550   unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1551   unsigned long args_stored, status, i, restart_gr, restart_fr;
1552   struct unwind_table_entry *u;
1553   int final_iteration;
1554 
1555   restart_gr = 0;
1556   restart_fr = 0;
1557 
1558 restart:
1559   u = find_unwind_entry (pc);
1560   if (!u)
1561     return pc;
1562 
1563   /* If we are not at the beginning of a function, then return now.  */
1564   if ((pc & ~0x3) != u->region_start)
1565     return pc;
1566 
1567   /* This is how much of a frame adjustment we need to account for.  */
1568   stack_remaining = u->Total_frame_size << 3;
1569 
1570   /* Magic register saves we want to know about.  */
1571   save_rp = u->Save_RP;
1572   save_sp = u->Save_SP;
1573 
1574   /* An indication that args may be stored into the stack.  Unfortunately
1575      the HPUX compilers tend to set this in cases where no args were
1576      stored too!.  */
1577   args_stored = 1;
1578 
1579   /* Turn the Entry_GR field into a bitmask.  */
1580   save_gr = 0;
1581   for (i = 3; i < u->Entry_GR + 3; i++)
1582     {
1583       /* Frame pointer gets saved into a special location.  */
1584       if (u->Save_SP && i == HPPA_FP_REGNUM)
1585 	continue;
1586 
1587       save_gr |= (1 << i);
1588     }
1589   save_gr &= ~restart_gr;
1590 
1591   /* Turn the Entry_FR field into a bitmask too.  */
1592   save_fr = 0;
1593   for (i = 12; i < u->Entry_FR + 12; i++)
1594     save_fr |= (1 << i);
1595   save_fr &= ~restart_fr;
1596 
1597   final_iteration = 0;
1598 
1599   /* Loop until we find everything of interest or hit a branch.
1600 
1601      For unoptimized GCC code and for any HP CC code this will never ever
1602      examine any user instructions.
1603 
1604      For optimzied GCC code we're faced with problems.  GCC will schedule
1605      its prologue and make prologue instructions available for delay slot
1606      filling.  The end result is user code gets mixed in with the prologue
1607      and a prologue instruction may be in the delay slot of the first branch
1608      or call.
1609 
1610      Some unexpected things are expected with debugging optimized code, so
1611      we allow this routine to walk past user instructions in optimized
1612      GCC code.  */
1613   while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1614 	 || args_stored)
1615     {
1616       unsigned int reg_num;
1617       unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1618       unsigned long old_save_rp, old_save_sp, next_inst;
1619 
1620       /* Save copies of all the triggers so we can compare them later
1621          (only for HPC).  */
1622       old_save_gr = save_gr;
1623       old_save_fr = save_fr;
1624       old_save_rp = save_rp;
1625       old_save_sp = save_sp;
1626       old_stack_remaining = stack_remaining;
1627 
1628       status = target_read_memory (pc, buf, 4);
1629       inst = extract_unsigned_integer (buf, 4, byte_order);
1630 
1631       /* Yow! */
1632       if (status != 0)
1633 	return pc;
1634 
1635       /* Note the interesting effects of this instruction.  */
1636       stack_remaining -= prologue_inst_adjust_sp (inst);
1637 
1638       /* There are limited ways to store the return pointer into the
1639 	 stack.  */
1640       if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1641 	save_rp = 0;
1642 
1643       /* These are the only ways we save SP into the stack.  At this time
1644          the HP compilers never bother to save SP into the stack.  */
1645       if ((inst & 0xffffc000) == 0x6fc10000
1646 	  || (inst & 0xffffc00c) == 0x73c10008)
1647 	save_sp = 0;
1648 
1649       /* Are we loading some register with an offset from the argument
1650          pointer?  */
1651       if ((inst & 0xffe00000) == 0x37a00000
1652 	  || (inst & 0xffffffe0) == 0x081d0240)
1653 	{
1654 	  pc += 4;
1655 	  continue;
1656 	}
1657 
1658       /* Account for general and floating-point register saves.  */
1659       reg_num = inst_saves_gr (inst);
1660       save_gr &= ~(1 << reg_num);
1661 
1662       /* Ugh.  Also account for argument stores into the stack.
1663          Unfortunately args_stored only tells us that some arguments
1664          where stored into the stack.  Not how many or what kind!
1665 
1666          This is a kludge as on the HP compiler sets this bit and it
1667          never does prologue scheduling.  So once we see one, skip past
1668          all of them.   We have similar code for the fp arg stores below.
1669 
1670          FIXME.  Can still die if we have a mix of GR and FR argument
1671          stores!  */
1672       if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1673 	  && reg_num <= 26)
1674 	{
1675 	  while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1676 		 && reg_num <= 26)
1677 	    {
1678 	      pc += 4;
1679 	      status = target_read_memory (pc, buf, 4);
1680 	      inst = extract_unsigned_integer (buf, 4, byte_order);
1681 	      if (status != 0)
1682 		return pc;
1683 	      reg_num = inst_saves_gr (inst);
1684 	    }
1685 	  args_stored = 0;
1686 	  continue;
1687 	}
1688 
1689       reg_num = inst_saves_fr (inst);
1690       save_fr &= ~(1 << reg_num);
1691 
1692       status = target_read_memory (pc + 4, buf, 4);
1693       next_inst = extract_unsigned_integer (buf, 4, byte_order);
1694 
1695       /* Yow! */
1696       if (status != 0)
1697 	return pc;
1698 
1699       /* We've got to be read to handle the ldo before the fp register
1700          save.  */
1701       if ((inst & 0xfc000000) == 0x34000000
1702 	  && inst_saves_fr (next_inst) >= 4
1703 	  && inst_saves_fr (next_inst)
1704 	       <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1705 	{
1706 	  /* So we drop into the code below in a reasonable state.  */
1707 	  reg_num = inst_saves_fr (next_inst);
1708 	  pc -= 4;
1709 	}
1710 
1711       /* Ugh.  Also account for argument stores into the stack.
1712          This is a kludge as on the HP compiler sets this bit and it
1713          never does prologue scheduling.  So once we see one, skip past
1714          all of them.  */
1715       if (reg_num >= 4
1716 	  && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1717 	{
1718 	  while (reg_num >= 4
1719 		 && reg_num
1720 		      <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1721 	    {
1722 	      pc += 8;
1723 	      status = target_read_memory (pc, buf, 4);
1724 	      inst = extract_unsigned_integer (buf, 4, byte_order);
1725 	      if (status != 0)
1726 		return pc;
1727 	      if ((inst & 0xfc000000) != 0x34000000)
1728 		break;
1729 	      status = target_read_memory (pc + 4, buf, 4);
1730 	      next_inst = extract_unsigned_integer (buf, 4, byte_order);
1731 	      if (status != 0)
1732 		return pc;
1733 	      reg_num = inst_saves_fr (next_inst);
1734 	    }
1735 	  args_stored = 0;
1736 	  continue;
1737 	}
1738 
1739       /* Quit if we hit any kind of branch.  This can happen if a prologue
1740          instruction is in the delay slot of the first call/branch.  */
1741       if (is_branch (inst) && stop_before_branch)
1742 	break;
1743 
1744       /* What a crock.  The HP compilers set args_stored even if no
1745          arguments were stored into the stack (boo hiss).  This could
1746          cause this code to then skip a bunch of user insns (up to the
1747          first branch).
1748 
1749          To combat this we try to identify when args_stored was bogusly
1750          set and clear it.   We only do this when args_stored is nonzero,
1751          all other resources are accounted for, and nothing changed on
1752          this pass.  */
1753       if (args_stored
1754        && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1755 	  && old_save_gr == save_gr && old_save_fr == save_fr
1756 	  && old_save_rp == save_rp && old_save_sp == save_sp
1757 	  && old_stack_remaining == stack_remaining)
1758 	break;
1759 
1760       /* Bump the PC.  */
1761       pc += 4;
1762 
1763       /* !stop_before_branch, so also look at the insn in the delay slot
1764          of the branch.  */
1765       if (final_iteration)
1766 	break;
1767       if (is_branch (inst))
1768 	final_iteration = 1;
1769     }
1770 
1771   /* We've got a tenative location for the end of the prologue.  However
1772      because of limitations in the unwind descriptor mechanism we may
1773      have went too far into user code looking for the save of a register
1774      that does not exist.  So, if there registers we expected to be saved
1775      but never were, mask them out and restart.
1776 
1777      This should only happen in optimized code, and should be very rare.  */
1778   if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1779     {
1780       pc = orig_pc;
1781       restart_gr = save_gr;
1782       restart_fr = save_fr;
1783       goto restart;
1784     }
1785 
1786   return pc;
1787 }
1788 
1789 
1790 /* Return the address of the PC after the last prologue instruction if
1791    we can determine it from the debug symbols.  Else return zero.  */
1792 
1793 static CORE_ADDR
1794 after_prologue (CORE_ADDR pc)
1795 {
1796   struct symtab_and_line sal;
1797   CORE_ADDR func_addr, func_end;
1798 
1799   /* If we can not find the symbol in the partial symbol table, then
1800      there is no hope we can determine the function's start address
1801      with this code.  */
1802   if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1803     return 0;
1804 
1805   /* Get the line associated with FUNC_ADDR.  */
1806   sal = find_pc_line (func_addr, 0);
1807 
1808   /* There are only two cases to consider.  First, the end of the source line
1809      is within the function bounds.  In that case we return the end of the
1810      source line.  Second is the end of the source line extends beyond the
1811      bounds of the current function.  We need to use the slow code to
1812      examine instructions in that case.
1813 
1814      Anything else is simply a bug elsewhere.  Fixing it here is absolutely
1815      the wrong thing to do.  In fact, it should be entirely possible for this
1816      function to always return zero since the slow instruction scanning code
1817      is supposed to *always* work.  If it does not, then it is a bug.  */
1818   if (sal.end < func_end)
1819     return sal.end;
1820   else
1821     return 0;
1822 }
1823 
1824 /* To skip prologues, I use this predicate.  Returns either PC itself
1825    if the code at PC does not look like a function prologue; otherwise
1826    returns an address that (if we're lucky) follows the prologue.
1827 
1828    hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1829    It doesn't necessarily skips all the insns in the prologue.  In fact
1830    we might not want to skip all the insns because a prologue insn may
1831    appear in the delay slot of the first branch, and we don't want to
1832    skip over the branch in that case.  */
1833 
1834 static CORE_ADDR
1835 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1836 {
1837   CORE_ADDR post_prologue_pc;
1838 
1839   /* See if we can determine the end of the prologue via the symbol table.
1840      If so, then return either PC, or the PC after the prologue, whichever
1841      is greater.  */
1842 
1843   post_prologue_pc = after_prologue (pc);
1844 
1845   /* If after_prologue returned a useful address, then use it.  Else
1846      fall back on the instruction skipping code.
1847 
1848      Some folks have claimed this causes problems because the breakpoint
1849      may be the first instruction of the prologue.  If that happens, then
1850      the instruction skipping code has a bug that needs to be fixed.  */
1851   if (post_prologue_pc != 0)
1852     return max (pc, post_prologue_pc);
1853   else
1854     return (skip_prologue_hard_way (gdbarch, pc, 1));
1855 }
1856 
1857 /* Return an unwind entry that falls within the frame's code block.  */
1858 
1859 static struct unwind_table_entry *
1860 hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
1861 {
1862   CORE_ADDR pc = get_frame_address_in_block (this_frame);
1863 
1864   /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1865      result of get_frame_address_in_block implies a problem.
1866      The bits should have been removed earlier, before the return
1867      value of gdbarch_unwind_pc.  That might be happening already;
1868      if it isn't, it should be fixed.  Then this call can be
1869      removed.  */
1870   pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1871   return find_unwind_entry (pc);
1872 }
1873 
1874 struct hppa_frame_cache
1875 {
1876   CORE_ADDR base;
1877   struct trad_frame_saved_reg *saved_regs;
1878 };
1879 
1880 static struct hppa_frame_cache *
1881 hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
1882 {
1883   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1884   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1885   int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1886   struct hppa_frame_cache *cache;
1887   long saved_gr_mask;
1888   long saved_fr_mask;
1889   long frame_size;
1890   struct unwind_table_entry *u;
1891   CORE_ADDR prologue_end;
1892   int fp_in_r1 = 0;
1893   int i;
1894 
1895   if (hppa_debug)
1896     fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1897       frame_relative_level(this_frame));
1898 
1899   if ((*this_cache) != NULL)
1900     {
1901       if (hppa_debug)
1902         fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1903           paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
1904       return (struct hppa_frame_cache *) (*this_cache);
1905     }
1906   cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1907   (*this_cache) = cache;
1908   cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1909 
1910   /* Yow! */
1911   u = hppa_find_unwind_entry_in_block (this_frame);
1912   if (!u)
1913     {
1914       if (hppa_debug)
1915         fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1916       return (struct hppa_frame_cache *) (*this_cache);
1917     }
1918 
1919   /* Turn the Entry_GR field into a bitmask.  */
1920   saved_gr_mask = 0;
1921   for (i = 3; i < u->Entry_GR + 3; i++)
1922     {
1923       /* Frame pointer gets saved into a special location.  */
1924       if (u->Save_SP && i == HPPA_FP_REGNUM)
1925 	continue;
1926 
1927       saved_gr_mask |= (1 << i);
1928     }
1929 
1930   /* Turn the Entry_FR field into a bitmask too.  */
1931   saved_fr_mask = 0;
1932   for (i = 12; i < u->Entry_FR + 12; i++)
1933     saved_fr_mask |= (1 << i);
1934 
1935   /* Loop until we find everything of interest or hit a branch.
1936 
1937      For unoptimized GCC code and for any HP CC code this will never ever
1938      examine any user instructions.
1939 
1940      For optimized GCC code we're faced with problems.  GCC will schedule
1941      its prologue and make prologue instructions available for delay slot
1942      filling.  The end result is user code gets mixed in with the prologue
1943      and a prologue instruction may be in the delay slot of the first branch
1944      or call.
1945 
1946      Some unexpected things are expected with debugging optimized code, so
1947      we allow this routine to walk past user instructions in optimized
1948      GCC code.  */
1949   {
1950     int final_iteration = 0;
1951     CORE_ADDR pc, start_pc, end_pc;
1952     int looking_for_sp = u->Save_SP;
1953     int looking_for_rp = u->Save_RP;
1954     int fp_loc = -1;
1955 
1956     /* We have to use skip_prologue_hard_way instead of just
1957        skip_prologue_using_sal, in case we stepped into a function without
1958        symbol information.  hppa_skip_prologue also bounds the returned
1959        pc by the passed in pc, so it will not return a pc in the next
1960        function.
1961 
1962        We used to call hppa_skip_prologue to find the end of the prologue,
1963        but if some non-prologue instructions get scheduled into the prologue,
1964        and the program is compiled with debug information, the "easy" way
1965        in hppa_skip_prologue will return a prologue end that is too early
1966        for us to notice any potential frame adjustments.  */
1967 
1968     /* We used to use get_frame_func to locate the beginning of the
1969        function to pass to skip_prologue.  However, when objects are
1970        compiled without debug symbols, get_frame_func can return the wrong
1971        function (or 0).  We can do better than that by using unwind records.
1972        This only works if the Region_description of the unwind record
1973        indicates that it includes the entry point of the function.
1974        HP compilers sometimes generate unwind records for regions that
1975        do not include the entry or exit point of a function.  GNU tools
1976        do not do this.  */
1977 
1978     if ((u->Region_description & 0x2) == 0)
1979       start_pc = u->region_start;
1980     else
1981       start_pc = get_frame_func (this_frame);
1982 
1983     prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1984     end_pc = get_frame_pc (this_frame);
1985 
1986     if (prologue_end != 0 && end_pc > prologue_end)
1987       end_pc = prologue_end;
1988 
1989     frame_size = 0;
1990 
1991     for (pc = start_pc;
1992 	 ((saved_gr_mask || saved_fr_mask
1993 	   || looking_for_sp || looking_for_rp
1994 	   || frame_size < (u->Total_frame_size << 3))
1995 	  && pc < end_pc);
1996 	 pc += 4)
1997       {
1998 	int reg;
1999 	gdb_byte buf4[4];
2000 	long inst;
2001 
2002 	if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
2003 	  {
2004 	    error (_("Cannot read instruction at %s."),
2005 		   paddress (gdbarch, pc));
2006 	    return (struct hppa_frame_cache *) (*this_cache);
2007 	  }
2008 
2009 	inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
2010 
2011 	/* Note the interesting effects of this instruction.  */
2012 	frame_size += prologue_inst_adjust_sp (inst);
2013 
2014 	/* There are limited ways to store the return pointer into the
2015 	   stack.  */
2016 	if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2017 	  {
2018 	    looking_for_rp = 0;
2019 	    cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2020 	  }
2021 	else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
2022 	  {
2023 	    looking_for_rp = 0;
2024 	    cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
2025 	  }
2026 	else if (inst == 0x0fc212c1
2027 	         || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2028 	  {
2029 	    looking_for_rp = 0;
2030 	    cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2031 	  }
2032 
2033 	/* Check to see if we saved SP into the stack.  This also
2034 	   happens to indicate the location of the saved frame
2035 	   pointer.  */
2036 	if ((inst & 0xffffc000) == 0x6fc10000  /* stw,ma r1,N(sr0,sp) */
2037 	    || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
2038 	  {
2039 	    looking_for_sp = 0;
2040 	    cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
2041 	  }
2042 	else if (inst == 0x08030241) /* copy %r3, %r1 */
2043 	  {
2044 	    fp_in_r1 = 1;
2045 	  }
2046 
2047 	/* Account for general and floating-point register saves.  */
2048 	reg = inst_saves_gr (inst);
2049 	if (reg >= 3 && reg <= 18
2050 	    && (!u->Save_SP || reg != HPPA_FP_REGNUM))
2051 	  {
2052 	    saved_gr_mask &= ~(1 << reg);
2053 	    if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
2054 	      /* stwm with a positive displacement is a _post_
2055 		 _modify_.  */
2056 	      cache->saved_regs[reg].addr = 0;
2057 	    else if ((inst & 0xfc00000c) == 0x70000008)
2058 	      /* A std has explicit post_modify forms.  */
2059 	      cache->saved_regs[reg].addr = 0;
2060 	    else
2061 	      {
2062 		CORE_ADDR offset;
2063 
2064 		if ((inst >> 26) == 0x1c)
2065 		  offset = (inst & 0x1 ? -(1 << 13) : 0)
2066 		    | (((inst >> 4) & 0x3ff) << 3);
2067 		else if ((inst >> 26) == 0x03)
2068 		  offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
2069 		else
2070 		  offset = hppa_extract_14 (inst);
2071 
2072 		/* Handle code with and without frame pointers.  */
2073 		if (u->Save_SP)
2074 		  cache->saved_regs[reg].addr = offset;
2075 		else
2076 		  cache->saved_regs[reg].addr
2077 		    = (u->Total_frame_size << 3) + offset;
2078 	      }
2079 	  }
2080 
2081 	/* GCC handles callee saved FP regs a little differently.
2082 
2083 	   It emits an instruction to put the value of the start of
2084 	   the FP store area into %r1.  It then uses fstds,ma with a
2085 	   basereg of %r1 for the stores.
2086 
2087 	   HP CC emits them at the current stack pointer modifying the
2088 	   stack pointer as it stores each register.  */
2089 
2090 	/* ldo X(%r3),%r1 or ldo X(%r30),%r1.  */
2091 	if ((inst & 0xffffc000) == 0x34610000
2092 	    || (inst & 0xffffc000) == 0x37c10000)
2093 	  fp_loc = hppa_extract_14 (inst);
2094 
2095 	reg = inst_saves_fr (inst);
2096 	if (reg >= 12 && reg <= 21)
2097 	  {
2098 	    /* Note +4 braindamage below is necessary because the FP
2099 	       status registers are internally 8 registers rather than
2100 	       the expected 4 registers.  */
2101 	    saved_fr_mask &= ~(1 << reg);
2102 	    if (fp_loc == -1)
2103 	      {
2104 		/* 1st HP CC FP register store.  After this
2105 		   instruction we've set enough state that the GCC and
2106 		   HPCC code are both handled in the same manner.  */
2107 		cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2108 		fp_loc = 8;
2109 	      }
2110 	    else
2111 	      {
2112 		cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2113 		fp_loc += 8;
2114 	      }
2115 	  }
2116 
2117 	/* Quit if we hit any kind of branch the previous iteration.  */
2118 	if (final_iteration)
2119 	  break;
2120 	/* We want to look precisely one instruction beyond the branch
2121 	   if we have not found everything yet.  */
2122 	if (is_branch (inst))
2123 	  final_iteration = 1;
2124       }
2125   }
2126 
2127   {
2128     /* The frame base always represents the value of %sp at entry to
2129        the current function (and is thus equivalent to the "saved"
2130        stack pointer.  */
2131     CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2132                                                      HPPA_SP_REGNUM);
2133     CORE_ADDR fp;
2134 
2135     if (hppa_debug)
2136       fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2137 		          "prologue_end=%s) ",
2138 		          paddress (gdbarch, this_sp),
2139 			  paddress (gdbarch, get_frame_pc (this_frame)),
2140 			  paddress (gdbarch, prologue_end));
2141 
2142      /* Check to see if a frame pointer is available, and use it for
2143         frame unwinding if it is.
2144 
2145         There are some situations where we need to rely on the frame
2146         pointer to do stack unwinding.  For example, if a function calls
2147         alloca (), the stack pointer can get adjusted inside the body of
2148         the function.  In this case, the ABI requires that the compiler
2149         maintain a frame pointer for the function.
2150 
2151         The unwind record has a flag (alloca_frame) that indicates that
2152         a function has a variable frame; unfortunately, gcc/binutils
2153         does not set this flag.  Instead, whenever a frame pointer is used
2154         and saved on the stack, the Save_SP flag is set.  We use this to
2155         decide whether to use the frame pointer for unwinding.
2156 
2157         TODO: For the HP compiler, maybe we should use the alloca_frame flag
2158 	instead of Save_SP.  */
2159 
2160      fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2161 
2162      if (u->alloca_frame)
2163        fp -= u->Total_frame_size << 3;
2164 
2165      if (get_frame_pc (this_frame) >= prologue_end
2166          && (u->Save_SP || u->alloca_frame) && fp != 0)
2167       {
2168  	cache->base = fp;
2169 
2170  	if (hppa_debug)
2171 	  fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2172 			      paddress (gdbarch, cache->base));
2173       }
2174      else if (u->Save_SP
2175 	      && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2176       {
2177             /* Both we're expecting the SP to be saved and the SP has been
2178 	       saved.  The entry SP value is saved at this frame's SP
2179 	       address.  */
2180             cache->base = read_memory_integer (this_sp, word_size, byte_order);
2181 
2182 	    if (hppa_debug)
2183 	      fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2184 			          paddress (gdbarch, cache->base));
2185       }
2186     else
2187       {
2188         /* The prologue has been slowly allocating stack space.  Adjust
2189 	   the SP back.  */
2190         cache->base = this_sp - frame_size;
2191 	if (hppa_debug)
2192 	  fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2193 			      paddress (gdbarch, cache->base));
2194 
2195       }
2196     trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2197   }
2198 
2199   /* The PC is found in the "return register", "Millicode" uses "r31"
2200      as the return register while normal code uses "rp".  */
2201   if (u->Millicode)
2202     {
2203       if (trad_frame_addr_p (cache->saved_regs, 31))
2204         {
2205           cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2206 	  if (hppa_debug)
2207 	    fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2208         }
2209       else
2210 	{
2211 	  ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2212 	  trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2213 	  if (hppa_debug)
2214 	    fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2215         }
2216     }
2217   else
2218     {
2219       if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2220         {
2221           cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2222 	    cache->saved_regs[HPPA_RP_REGNUM];
2223 	  if (hppa_debug)
2224 	    fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2225         }
2226       else
2227 	{
2228 	  ULONGEST rp = get_frame_register_unsigned (this_frame,
2229                                                      HPPA_RP_REGNUM);
2230 	  trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2231 	  if (hppa_debug)
2232 	    fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2233 	}
2234     }
2235 
2236   /* If Save_SP is set, then we expect the frame pointer to be saved in the
2237      frame.  However, there is a one-insn window where we haven't saved it
2238      yet, but we've already clobbered it.  Detect this case and fix it up.
2239 
2240      The prologue sequence for frame-pointer functions is:
2241 	0: stw %rp, -20(%sp)
2242 	4: copy %r3, %r1
2243 	8: copy %sp, %r3
2244 	c: stw,ma %r1, XX(%sp)
2245 
2246      So if we are at offset c, the r3 value that we want is not yet saved
2247      on the stack, but it's been overwritten.  The prologue analyzer will
2248      set fp_in_r1 when it sees the copy insn so we know to get the value
2249      from r1 instead.  */
2250   if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2251       && fp_in_r1)
2252     {
2253       ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2254       trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2255     }
2256 
2257   {
2258     /* Convert all the offsets into addresses.  */
2259     int reg;
2260     for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2261       {
2262 	if (trad_frame_addr_p (cache->saved_regs, reg))
2263 	  cache->saved_regs[reg].addr += cache->base;
2264       }
2265   }
2266 
2267   {
2268     struct gdbarch_tdep *tdep;
2269 
2270     tdep = gdbarch_tdep (gdbarch);
2271 
2272     if (tdep->unwind_adjust_stub)
2273       tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2274   }
2275 
2276   if (hppa_debug)
2277     fprintf_unfiltered (gdb_stdlog, "base=%s }",
2278       paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
2279   return (struct hppa_frame_cache *) (*this_cache);
2280 }
2281 
2282 static void
2283 hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2284 		    struct frame_id *this_id)
2285 {
2286   struct hppa_frame_cache *info;
2287   struct unwind_table_entry *u;
2288 
2289   info = hppa_frame_cache (this_frame, this_cache);
2290   u = hppa_find_unwind_entry_in_block (this_frame);
2291 
2292   (*this_id) = frame_id_build (info->base, u->region_start);
2293 }
2294 
2295 static struct value *
2296 hppa_frame_prev_register (struct frame_info *this_frame,
2297 			  void **this_cache, int regnum)
2298 {
2299   struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2300 
2301   return hppa_frame_prev_register_helper (this_frame,
2302 					  info->saved_regs, regnum);
2303 }
2304 
2305 static int
2306 hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2307                            struct frame_info *this_frame, void **this_cache)
2308 {
2309   if (hppa_find_unwind_entry_in_block (this_frame))
2310     return 1;
2311 
2312   return 0;
2313 }
2314 
2315 static const struct frame_unwind hppa_frame_unwind =
2316 {
2317   NORMAL_FRAME,
2318   default_frame_unwind_stop_reason,
2319   hppa_frame_this_id,
2320   hppa_frame_prev_register,
2321   NULL,
2322   hppa_frame_unwind_sniffer
2323 };
2324 
2325 /* This is a generic fallback frame unwinder that kicks in if we fail all
2326    the other ones.  Normally we would expect the stub and regular unwinder
2327    to work, but in some cases we might hit a function that just doesn't
2328    have any unwind information available.  In this case we try to do
2329    unwinding solely based on code reading.  This is obviously going to be
2330    slow, so only use this as a last resort.  Currently this will only
2331    identify the stack and pc for the frame.  */
2332 
2333 static struct hppa_frame_cache *
2334 hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
2335 {
2336   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2337   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2338   struct hppa_frame_cache *cache;
2339   unsigned int frame_size = 0;
2340   int found_rp = 0;
2341   CORE_ADDR start_pc;
2342 
2343   if (hppa_debug)
2344     fprintf_unfiltered (gdb_stdlog,
2345 			"{ hppa_fallback_frame_cache (frame=%d) -> ",
2346 			frame_relative_level (this_frame));
2347 
2348   cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2349   (*this_cache) = cache;
2350   cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2351 
2352   start_pc = get_frame_func (this_frame);
2353   if (start_pc)
2354     {
2355       CORE_ADDR cur_pc = get_frame_pc (this_frame);
2356       CORE_ADDR pc;
2357 
2358       for (pc = start_pc; pc < cur_pc; pc += 4)
2359 	{
2360 	  unsigned int insn;
2361 
2362 	  insn = read_memory_unsigned_integer (pc, 4, byte_order);
2363 	  frame_size += prologue_inst_adjust_sp (insn);
2364 
2365 	  /* There are limited ways to store the return pointer into the
2366 	     stack.  */
2367 	  if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2368 	    {
2369 	      cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2370 	      found_rp = 1;
2371 	    }
2372 	  else if (insn == 0x0fc212c1
2373 	           || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2374 	    {
2375 	      cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2376 	      found_rp = 1;
2377 	    }
2378 	}
2379     }
2380 
2381   if (hppa_debug)
2382     fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2383 			frame_size, found_rp);
2384 
2385   cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2386   cache->base -= frame_size;
2387   trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2388 
2389   if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2390     {
2391       cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2392       cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2393 	cache->saved_regs[HPPA_RP_REGNUM];
2394     }
2395   else
2396     {
2397       ULONGEST rp;
2398       rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2399       trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2400     }
2401 
2402   return cache;
2403 }
2404 
2405 static void
2406 hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
2407 			     struct frame_id *this_id)
2408 {
2409   struct hppa_frame_cache *info =
2410     hppa_fallback_frame_cache (this_frame, this_cache);
2411 
2412   (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2413 }
2414 
2415 static struct value *
2416 hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2417 			           void **this_cache, int regnum)
2418 {
2419   struct hppa_frame_cache *info
2420     = hppa_fallback_frame_cache (this_frame, this_cache);
2421 
2422   return hppa_frame_prev_register_helper (this_frame,
2423 					  info->saved_regs, regnum);
2424 }
2425 
2426 static const struct frame_unwind hppa_fallback_frame_unwind =
2427 {
2428   NORMAL_FRAME,
2429   default_frame_unwind_stop_reason,
2430   hppa_fallback_frame_this_id,
2431   hppa_fallback_frame_prev_register,
2432   NULL,
2433   default_frame_sniffer
2434 };
2435 
2436 /* Stub frames, used for all kinds of call stubs.  */
2437 struct hppa_stub_unwind_cache
2438 {
2439   CORE_ADDR base;
2440   struct trad_frame_saved_reg *saved_regs;
2441 };
2442 
2443 static struct hppa_stub_unwind_cache *
2444 hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
2445 			      void **this_cache)
2446 {
2447   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2448   struct hppa_stub_unwind_cache *info;
2449   struct unwind_table_entry *u;
2450 
2451   if (*this_cache)
2452     return (struct hppa_stub_unwind_cache *) *this_cache;
2453 
2454   info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2455   *this_cache = info;
2456   info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2457 
2458   info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2459 
2460   if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2461     {
2462       /* HPUX uses export stubs in function calls; the export stub clobbers
2463          the return value of the caller, and, later restores it from the
2464 	 stack.  */
2465       u = find_unwind_entry (get_frame_pc (this_frame));
2466 
2467       if (u && u->stub_unwind.stub_type == EXPORT)
2468 	{
2469           info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2470 
2471 	  return info;
2472 	}
2473     }
2474 
2475   /* By default we assume that stubs do not change the rp.  */
2476   info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2477 
2478   return info;
2479 }
2480 
2481 static void
2482 hppa_stub_frame_this_id (struct frame_info *this_frame,
2483 			 void **this_prologue_cache,
2484 			 struct frame_id *this_id)
2485 {
2486   struct hppa_stub_unwind_cache *info
2487     = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2488 
2489   if (info)
2490     *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2491 }
2492 
2493 static struct value *
2494 hppa_stub_frame_prev_register (struct frame_info *this_frame,
2495 			       void **this_prologue_cache, int regnum)
2496 {
2497   struct hppa_stub_unwind_cache *info
2498     = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2499 
2500   if (info == NULL)
2501     error (_("Requesting registers from null frame."));
2502 
2503   return hppa_frame_prev_register_helper (this_frame,
2504 					  info->saved_regs, regnum);
2505 }
2506 
2507 static int
2508 hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2509                           struct frame_info *this_frame,
2510                           void **this_cache)
2511 {
2512   CORE_ADDR pc = get_frame_address_in_block (this_frame);
2513   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2514   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2515 
2516   if (pc == 0
2517       || (tdep->in_solib_call_trampoline != NULL
2518 	  && tdep->in_solib_call_trampoline (gdbarch, pc))
2519       || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2520     return 1;
2521   return 0;
2522 }
2523 
2524 static const struct frame_unwind hppa_stub_frame_unwind = {
2525   NORMAL_FRAME,
2526   default_frame_unwind_stop_reason,
2527   hppa_stub_frame_this_id,
2528   hppa_stub_frame_prev_register,
2529   NULL,
2530   hppa_stub_unwind_sniffer
2531 };
2532 
2533 static struct frame_id
2534 hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2535 {
2536   return frame_id_build (get_frame_register_unsigned (this_frame,
2537                                                       HPPA_SP_REGNUM),
2538 			 get_frame_pc (this_frame));
2539 }
2540 
2541 CORE_ADDR
2542 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2543 {
2544   ULONGEST ipsw;
2545   CORE_ADDR pc;
2546 
2547   ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2548   pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2549 
2550   /* If the current instruction is nullified, then we are effectively
2551      still executing the previous instruction.  Pretend we are still
2552      there.  This is needed when single stepping; if the nullified
2553      instruction is on a different line, we don't want GDB to think
2554      we've stepped onto that line.  */
2555   if (ipsw & 0x00200000)
2556     pc -= 4;
2557 
2558   return pc & ~0x3;
2559 }
2560 
2561 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2562    Return NULL if no such symbol was found.  */
2563 
2564 struct bound_minimal_symbol
2565 hppa_lookup_stub_minimal_symbol (const char *name,
2566                                  enum unwind_stub_types stub_type)
2567 {
2568   struct objfile *objfile;
2569   struct minimal_symbol *msym;
2570   struct bound_minimal_symbol result = { NULL, NULL };
2571 
2572   ALL_MSYMBOLS (objfile, msym)
2573     {
2574       if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
2575         {
2576           struct unwind_table_entry *u;
2577 
2578           u = find_unwind_entry (MSYMBOL_VALUE (msym));
2579           if (u != NULL && u->stub_unwind.stub_type == stub_type)
2580 	    {
2581 	      result.objfile = objfile;
2582 	      result.minsym = msym;
2583 	      return result;
2584 	    }
2585         }
2586     }
2587 
2588   return result;
2589 }
2590 
2591 static void
2592 unwind_command (char *exp, int from_tty)
2593 {
2594   CORE_ADDR address;
2595   struct unwind_table_entry *u;
2596 
2597   /* If we have an expression, evaluate it and use it as the address.  */
2598 
2599   if (exp != 0 && *exp != 0)
2600     address = parse_and_eval_address (exp);
2601   else
2602     return;
2603 
2604   u = find_unwind_entry (address);
2605 
2606   if (!u)
2607     {
2608       printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2609       return;
2610     }
2611 
2612   printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
2613 
2614   printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
2615   gdb_flush (gdb_stdout);
2616 
2617   printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
2618   gdb_flush (gdb_stdout);
2619 
2620 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2621 
2622   printf_unfiltered ("\n\tflags =");
2623   pif (Cannot_unwind);
2624   pif (Millicode);
2625   pif (Millicode_save_sr0);
2626   pif (Entry_SR);
2627   pif (Args_stored);
2628   pif (Variable_Frame);
2629   pif (Separate_Package_Body);
2630   pif (Frame_Extension_Millicode);
2631   pif (Stack_Overflow_Check);
2632   pif (Two_Instruction_SP_Increment);
2633   pif (sr4export);
2634   pif (cxx_info);
2635   pif (cxx_try_catch);
2636   pif (sched_entry_seq);
2637   pif (Save_SP);
2638   pif (Save_RP);
2639   pif (Save_MRP_in_frame);
2640   pif (save_r19);
2641   pif (Cleanup_defined);
2642   pif (MPE_XL_interrupt_marker);
2643   pif (HP_UX_interrupt_marker);
2644   pif (Large_frame);
2645   pif (alloca_frame);
2646 
2647   putchar_unfiltered ('\n');
2648 
2649 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2650 
2651   pin (Region_description);
2652   pin (Entry_FR);
2653   pin (Entry_GR);
2654   pin (Total_frame_size);
2655 
2656   if (u->stub_unwind.stub_type)
2657     {
2658       printf_unfiltered ("\tstub type = ");
2659       switch (u->stub_unwind.stub_type)
2660         {
2661 	  case LONG_BRANCH:
2662 	    printf_unfiltered ("long branch\n");
2663 	    break;
2664 	  case PARAMETER_RELOCATION:
2665 	    printf_unfiltered ("parameter relocation\n");
2666 	    break;
2667 	  case EXPORT:
2668 	    printf_unfiltered ("export\n");
2669 	    break;
2670 	  case IMPORT:
2671 	    printf_unfiltered ("import\n");
2672 	    break;
2673 	  case IMPORT_SHLIB:
2674 	    printf_unfiltered ("import shlib\n");
2675 	    break;
2676 	  default:
2677 	    printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2678 	}
2679     }
2680 }
2681 
2682 /* Return the GDB type object for the "standard" data type of data in
2683    register REGNUM.  */
2684 
2685 static struct type *
2686 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2687 {
2688    if (regnum < HPPA_FP4_REGNUM)
2689      return builtin_type (gdbarch)->builtin_uint32;
2690    else
2691      return builtin_type (gdbarch)->builtin_float;
2692 }
2693 
2694 static struct type *
2695 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2696 {
2697    if (regnum < HPPA64_FP4_REGNUM)
2698      return builtin_type (gdbarch)->builtin_uint64;
2699    else
2700      return builtin_type (gdbarch)->builtin_double;
2701 }
2702 
2703 /* Return non-zero if REGNUM is not a register available to the user
2704    through ptrace/ttrace.  */
2705 
2706 static int
2707 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2708 {
2709   return (regnum == 0
2710           || regnum == HPPA_PCSQ_HEAD_REGNUM
2711           || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2712           || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2713 }
2714 
2715 static int
2716 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2717 {
2718   /* cr26 and cr27 are readable (but not writable) from userspace.  */
2719   if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2720     return 0;
2721   else
2722     return hppa32_cannot_store_register (gdbarch, regnum);
2723 }
2724 
2725 static int
2726 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2727 {
2728   return (regnum == 0
2729           || regnum == HPPA_PCSQ_HEAD_REGNUM
2730           || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2731           || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2732 }
2733 
2734 static int
2735 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2736 {
2737   /* cr26 and cr27 are readable (but not writable) from userspace.  */
2738   if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2739     return 0;
2740   else
2741     return hppa64_cannot_store_register (gdbarch, regnum);
2742 }
2743 
2744 static CORE_ADDR
2745 hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2746 {
2747   /* The low two bits of the PC on the PA contain the privilege level.
2748      Some genius implementing a (non-GCC) compiler apparently decided
2749      this means that "addresses" in a text section therefore include a
2750      privilege level, and thus symbol tables should contain these bits.
2751      This seems like a bonehead thing to do--anyway, it seems to work
2752      for our purposes to just ignore those bits.  */
2753 
2754   return (addr &= ~0x3);
2755 }
2756 
2757 /* Get the ARGIth function argument for the current function.  */
2758 
2759 static CORE_ADDR
2760 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2761 			     struct type *type)
2762 {
2763   return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2764 }
2765 
2766 static enum register_status
2767 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2768 			   int regnum, gdb_byte *buf)
2769 {
2770   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2771   ULONGEST tmp;
2772   enum register_status status;
2773 
2774   status = regcache_raw_read_unsigned (regcache, regnum, &tmp);
2775   if (status == REG_VALID)
2776     {
2777       if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2778 	tmp &= ~0x3;
2779       store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2780     }
2781   return status;
2782 }
2783 
2784 static CORE_ADDR
2785 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2786 {
2787   return 0;
2788 }
2789 
2790 struct value *
2791 hppa_frame_prev_register_helper (struct frame_info *this_frame,
2792 			         struct trad_frame_saved_reg saved_regs[],
2793 				 int regnum)
2794 {
2795   struct gdbarch *arch = get_frame_arch (this_frame);
2796   enum bfd_endian byte_order = gdbarch_byte_order (arch);
2797 
2798   if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2799     {
2800       int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2801       CORE_ADDR pc;
2802       struct value *pcoq_val =
2803         trad_frame_get_prev_register (this_frame, saved_regs,
2804                                       HPPA_PCOQ_HEAD_REGNUM);
2805 
2806       pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2807 				     size, byte_order);
2808       return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2809     }
2810 
2811   return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2812 }
2813 
2814 
2815 /* An instruction to match.  */
2816 struct insn_pattern
2817 {
2818   unsigned int data;            /* See if it matches this....  */
2819   unsigned int mask;            /* ... with this mask.  */
2820 };
2821 
2822 /* See bfd/elf32-hppa.c */
2823 static struct insn_pattern hppa_long_branch_stub[] = {
2824   /* ldil LR'xxx,%r1 */
2825   { 0x20200000, 0xffe00000 },
2826   /* be,n RR'xxx(%sr4,%r1) */
2827   { 0xe0202002, 0xffe02002 },
2828   { 0, 0 }
2829 };
2830 
2831 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2832   /* b,l .+8, %r1 */
2833   { 0xe8200000, 0xffe00000 },
2834   /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2835   { 0x28200000, 0xffe00000 },
2836   /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2837   { 0xe0202002, 0xffe02002 },
2838   { 0, 0 }
2839 };
2840 
2841 static struct insn_pattern hppa_import_stub[] = {
2842   /* addil LR'xxx, %dp */
2843   { 0x2b600000, 0xffe00000 },
2844   /* ldw RR'xxx(%r1), %r21 */
2845   { 0x48350000, 0xffffb000 },
2846   /* bv %r0(%r21) */
2847   { 0xeaa0c000, 0xffffffff },
2848   /* ldw RR'xxx+4(%r1), %r19 */
2849   { 0x48330000, 0xffffb000 },
2850   { 0, 0 }
2851 };
2852 
2853 static struct insn_pattern hppa_import_pic_stub[] = {
2854   /* addil LR'xxx,%r19 */
2855   { 0x2a600000, 0xffe00000 },
2856   /* ldw RR'xxx(%r1),%r21 */
2857   { 0x48350000, 0xffffb000 },
2858   /* bv %r0(%r21) */
2859   { 0xeaa0c000, 0xffffffff },
2860   /* ldw RR'xxx+4(%r1),%r19 */
2861   { 0x48330000, 0xffffb000 },
2862   { 0, 0 },
2863 };
2864 
2865 static struct insn_pattern hppa_plt_stub[] = {
2866   /* b,l 1b, %r20 - 1b is 3 insns before here */
2867   { 0xea9f1fdd, 0xffffffff },
2868   /* depi 0,31,2,%r20 */
2869   { 0xd6801c1e, 0xffffffff },
2870   { 0, 0 }
2871 };
2872 
2873 /* Maximum number of instructions on the patterns above.  */
2874 #define HPPA_MAX_INSN_PATTERN_LEN	4
2875 
2876 /* Return non-zero if the instructions at PC match the series
2877    described in PATTERN, or zero otherwise.  PATTERN is an array of
2878    'struct insn_pattern' objects, terminated by an entry whose mask is
2879    zero.
2880 
2881    When the match is successful, fill INSN[i] with what PATTERN[i]
2882    matched.  */
2883 
2884 static int
2885 hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2886 		  struct insn_pattern *pattern, unsigned int *insn)
2887 {
2888   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2889   CORE_ADDR npc = pc;
2890   int i;
2891 
2892   for (i = 0; pattern[i].mask; i++)
2893     {
2894       gdb_byte buf[HPPA_INSN_SIZE];
2895 
2896       target_read_memory (npc, buf, HPPA_INSN_SIZE);
2897       insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
2898       if ((insn[i] & pattern[i].mask) == pattern[i].data)
2899         npc += 4;
2900       else
2901         return 0;
2902     }
2903 
2904   return 1;
2905 }
2906 
2907 /* This relaxed version of the insstruction matcher allows us to match
2908    from somewhere inside the pattern, by looking backwards in the
2909    instruction scheme.  */
2910 
2911 static int
2912 hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2913 			  struct insn_pattern *pattern, unsigned int *insn)
2914 {
2915   int offset, len = 0;
2916 
2917   while (pattern[len].mask)
2918     len++;
2919 
2920   for (offset = 0; offset < len; offset++)
2921     if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2922 			  pattern, insn))
2923       return 1;
2924 
2925   return 0;
2926 }
2927 
2928 static int
2929 hppa_in_dyncall (CORE_ADDR pc)
2930 {
2931   struct unwind_table_entry *u;
2932 
2933   u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2934   if (!u)
2935     return 0;
2936 
2937   return (pc >= u->region_start && pc <= u->region_end);
2938 }
2939 
2940 int
2941 hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
2942 {
2943   unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2944   struct unwind_table_entry *u;
2945 
2946   if (in_plt_section (pc) || hppa_in_dyncall (pc))
2947     return 1;
2948 
2949   /* The GNU toolchain produces linker stubs without unwind
2950      information.  Since the pattern matching for linker stubs can be
2951      quite slow, so bail out if we do have an unwind entry.  */
2952 
2953   u = find_unwind_entry (pc);
2954   if (u != NULL)
2955     return 0;
2956 
2957   return
2958     (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2959      || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2960      || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2961      || hppa_match_insns_relaxed (gdbarch, pc,
2962 				  hppa_long_branch_pic_stub, insn));
2963 }
2964 
2965 /* This code skips several kind of "trampolines" used on PA-RISC
2966    systems: $$dyncall, import stubs and PLT stubs.  */
2967 
2968 CORE_ADDR
2969 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2970 {
2971   struct gdbarch *gdbarch = get_frame_arch (frame);
2972   struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2973 
2974   unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2975   int dp_rel;
2976 
2977   /* $$dyncall handles both PLABELs and direct addresses.  */
2978   if (hppa_in_dyncall (pc))
2979     {
2980       pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2981 
2982       /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it.  */
2983       if (pc & 0x2)
2984 	pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
2985 
2986       return pc;
2987     }
2988 
2989   dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2990   if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
2991     {
2992       /* Extract the target address from the addil/ldw sequence.  */
2993       pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2994 
2995       if (dp_rel)
2996         pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2997       else
2998         pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2999 
3000       /* fallthrough */
3001     }
3002 
3003   if (in_plt_section (pc))
3004     {
3005       pc = read_memory_typed_address (pc, func_ptr_type);
3006 
3007       /* If the PLT slot has not yet been resolved, the target will be
3008          the PLT stub.  */
3009       if (in_plt_section (pc))
3010 	{
3011 	  /* Sanity check: are we pointing to the PLT stub?  */
3012   	  if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
3013 	    {
3014 	      warning (_("Cannot resolve PLT stub at %s."),
3015 		       paddress (gdbarch, pc));
3016 	      return 0;
3017 	    }
3018 
3019 	  /* This should point to the fixup routine.  */
3020 	  pc = read_memory_typed_address (pc + 8, func_ptr_type);
3021 	}
3022     }
3023 
3024   return pc;
3025 }
3026 
3027 
3028 /* Here is a table of C type sizes on hppa with various compiles
3029    and options.  I measured this on PA 9000/800 with HP-UX 11.11
3030    and these compilers:
3031 
3032      /usr/ccs/bin/cc    HP92453-01 A.11.01.21
3033      /opt/ansic/bin/cc  HP92453-01 B.11.11.28706.GP
3034      /opt/aCC/bin/aCC   B3910B A.03.45
3035      gcc                gcc 3.3.2 native hppa2.0w-hp-hpux11.11
3036 
3037      cc            : 1 2 4 4 8 : 4 8 -- : 4 4
3038      ansic +DA1.1  : 1 2 4 4 8 : 4 8 16 : 4 4
3039      ansic +DA2.0  : 1 2 4 4 8 : 4 8 16 : 4 4
3040      ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3041      acc   +DA1.1  : 1 2 4 4 8 : 4 8 16 : 4 4
3042      acc   +DA2.0  : 1 2 4 4 8 : 4 8 16 : 4 4
3043      acc   +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3044      gcc           : 1 2 4 4 8 : 4 8 16 : 4 4
3045 
3046    Each line is:
3047 
3048      compiler and options
3049      char, short, int, long, long long
3050      float, double, long double
3051      char *, void (*)()
3052 
3053    So all these compilers use either ILP32 or LP64 model.
3054    TODO: gcc has more options so it needs more investigation.
3055 
3056    For floating point types, see:
3057 
3058      http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3059      HP-UX floating-point guide, hpux 11.00
3060 
3061    -- chastain 2003-12-18  */
3062 
3063 static struct gdbarch *
3064 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3065 {
3066   struct gdbarch_tdep *tdep;
3067   struct gdbarch *gdbarch;
3068 
3069   /* Try to determine the ABI of the object we are loading.  */
3070   if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
3071     {
3072       /* If it's a SOM file, assume it's HP/UX SOM.  */
3073       if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3074 	info.osabi = GDB_OSABI_HPUX_SOM;
3075     }
3076 
3077   /* find a candidate among the list of pre-declared architectures.  */
3078   arches = gdbarch_list_lookup_by_info (arches, &info);
3079   if (arches != NULL)
3080     return (arches->gdbarch);
3081 
3082   /* If none found, then allocate and initialize one.  */
3083   tdep = XCNEW (struct gdbarch_tdep);
3084   gdbarch = gdbarch_alloc (&info, tdep);
3085 
3086   /* Determine from the bfd_arch_info structure if we are dealing with
3087      a 32 or 64 bits architecture.  If the bfd_arch_info is not available,
3088      then default to a 32bit machine.  */
3089   if (info.bfd_arch_info != NULL)
3090     tdep->bytes_per_address =
3091       info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3092   else
3093     tdep->bytes_per_address = 4;
3094 
3095   tdep->find_global_pointer = hppa_find_global_pointer;
3096 
3097   /* Some parts of the gdbarch vector depend on whether we are running
3098      on a 32 bits or 64 bits target.  */
3099   switch (tdep->bytes_per_address)
3100     {
3101       case 4:
3102         set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3103         set_gdbarch_register_name (gdbarch, hppa32_register_name);
3104         set_gdbarch_register_type (gdbarch, hppa32_register_type);
3105 	set_gdbarch_cannot_store_register (gdbarch,
3106 					   hppa32_cannot_store_register);
3107 	set_gdbarch_cannot_fetch_register (gdbarch,
3108 					   hppa32_cannot_fetch_register);
3109         break;
3110       case 8:
3111         set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3112         set_gdbarch_register_name (gdbarch, hppa64_register_name);
3113         set_gdbarch_register_type (gdbarch, hppa64_register_type);
3114         set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3115 	set_gdbarch_cannot_store_register (gdbarch,
3116 					   hppa64_cannot_store_register);
3117 	set_gdbarch_cannot_fetch_register (gdbarch,
3118 					   hppa64_cannot_fetch_register);
3119         break;
3120       default:
3121         internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3122                         tdep->bytes_per_address);
3123     }
3124 
3125   set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3126   set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3127 
3128   /* The following gdbarch vector elements are the same in both ILP32
3129      and LP64, but might show differences some day.  */
3130   set_gdbarch_long_long_bit (gdbarch, 64);
3131   set_gdbarch_long_double_bit (gdbarch, 128);
3132   set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3133 
3134   /* The following gdbarch vector elements do not depend on the address
3135      size, or in any other gdbarch element previously set.  */
3136   set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3137   set_gdbarch_stack_frame_destroyed_p (gdbarch,
3138 				       hppa_stack_frame_destroyed_p);
3139   set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3140   set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3141   set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3142   set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
3143   set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3144   set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3145   set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3146 
3147   /* Helper for function argument information.  */
3148   set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3149 
3150   set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3151 
3152   /* When a hardware watchpoint triggers, we'll move the inferior past
3153      it by removing all eventpoints; stepping past the instruction
3154      that caused the trigger; reinserting eventpoints; and checking
3155      whether any watched location changed.  */
3156   set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3157 
3158   /* Inferior function call methods.  */
3159   switch (tdep->bytes_per_address)
3160     {
3161     case 4:
3162       set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3163       set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3164       set_gdbarch_convert_from_func_ptr_addr
3165         (gdbarch, hppa32_convert_from_func_ptr_addr);
3166       break;
3167     case 8:
3168       set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3169       set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3170       break;
3171     default:
3172       internal_error (__FILE__, __LINE__, _("bad switch"));
3173     }
3174 
3175   /* Struct return methods.  */
3176   switch (tdep->bytes_per_address)
3177     {
3178     case 4:
3179       set_gdbarch_return_value (gdbarch, hppa32_return_value);
3180       break;
3181     case 8:
3182       set_gdbarch_return_value (gdbarch, hppa64_return_value);
3183       break;
3184     default:
3185       internal_error (__FILE__, __LINE__, _("bad switch"));
3186     }
3187 
3188   set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3189   set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3190 
3191   /* Frame unwind methods.  */
3192   set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
3193   set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3194 
3195   /* Hook in ABI-specific overrides, if they have been registered.  */
3196   gdbarch_init_osabi (info, gdbarch);
3197 
3198   /* Hook in the default unwinders.  */
3199   frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3200   frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3201   frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3202 
3203   return gdbarch;
3204 }
3205 
3206 static void
3207 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3208 {
3209   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3210 
3211   fprintf_unfiltered (file, "bytes_per_address = %d\n",
3212                       tdep->bytes_per_address);
3213   fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3214 }
3215 
3216 /* Provide a prototype to silence -Wmissing-prototypes.  */
3217 extern initialize_file_ftype _initialize_hppa_tdep;
3218 
3219 void
3220 _initialize_hppa_tdep (void)
3221 {
3222   gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3223 
3224   hppa_objfile_priv_data = register_objfile_data ();
3225 
3226   add_cmd ("unwind", class_maintenance, unwind_command,
3227 	   _("Print unwind table entry at given address."),
3228 	   &maintenanceprintlist);
3229 
3230   /* Debug this files internals.  */
3231   add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3232 Set whether hppa target specific debugging information should be displayed."),
3233 			   _("\
3234 Show whether hppa target specific debugging information is displayed."), _("\
3235 This flag controls whether hppa target specific debugging information is\n\
3236 displayed.  This information is particularly useful for debugging frame\n\
3237 unwinding problems."),
3238 			   NULL,
3239 			   NULL, /* FIXME: i18n: hppa debug flag is %s.  */
3240 			   &setdebuglist, &showdebuglist);
3241 }
3242